Supplementary Materials for

Overfishing and habitat loss drives range contraction of iconic marine fishes to near extinction

Helen F. Yan, Peter M. Kyne, Rima W. Jabado, Ruth H. Leeney, Lindsay N.K. Davidson, Danielle H. Derrick, Brittany Finucci, Robert P. Freckleton, Sonja V. Fordham, Nicholas K. Dulvy.

Correspondence to: hfyan94@gmail.com

This PDF file includes:

Supplementary text
Fig. S1-S4
Tables S1-S2

Supplementary text

Habitat availability

To characterize ecological carrying capacity, we compared the performance and predictive accuracy of using coastline length, a proxy of the total habitat availability, versus continental shelf area. We measured coastline length (acquired from Natural Earth free database) as the coastline found within the distribution maps; for example, the coastline length of the USA was measured as the south-eastern coast [see Fig. 2A; (23)]. We measured continental shelf area using the species-specific depths reported by the IUCN Red List of Threatened Species: Pristis pectinata (88m), P. zijsron (70m), P. clavata (20m), and Anoxypristis cuspidata [40m; (20)]. Because P. pristis has no reported depth limit on the IUCN Red List, we considered a previously reported depth limit of 25 m [shelf area (shallow); (65)] and the maximum lower depth limit of 100 m [shelf area (deep); (23)] separately. Both the shallow and deep shelf area were highly correlated with coastline length ($r=0.87$ and 0.88 , respectively; Fig. S2). We used Boosted Regression Trees (BRT) to individually compare the performance of shelf area (shallow), shelf area (deep), and coastline length on the predictive accuracy of sawfish occurrence. Using 100 bootstrapped models, the cross-validated median of the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was lowest for shelf area deep $(\mathrm{AUC}=0.79)$ and equal for coastline length and shelf area shallow ($\mathrm{AUC}=0.83$). However, shelf area shallow explained more of the deviance in the test set (27.1%) compared to coastline length (6.0%). Consequently, we used shelf area shallow $\left(\mathrm{km}^{2}\right)$ as the measurement of total habitat available for sawfishes.

Species	Residential and commercial development	Energy production and mining	Transportation and service corridors	Natural system modifications	Pollution	Climate change and severe weather	Biological resource use
Largetooth Sawfish Pristis pristis							
Smalltooth Sawfish P. pectinata							
Green Sawfish P. zijsron							
Dwarf Sawfish P. clavata							
Narrow Sawfish Anoxypristis cuspidata							

Fig. S1. Reported threats for sawfishes from the IUCN Red List of Threatened Species.
Coloured boxes indicate listed threats affecting each species of sawfish. Blue boxes denote threats affecting habitat quality and quantity (i.e., ecological carrying capacity) and boxes in red denote threats derived from fishing (i.e., fishing pressure). Red silhouettes denote species that are listed as Critically Endangered and orange silhouettes denote species that are listed as Endangered. Note that although these are published with the Red List Assessments, the total number of threats impacting each species is not limited to this list. In practice, all five species are vulnerable to all the listed threats to a degree, but may differ in the magnitude by which they are affected.

Fig. S2. Pearson's correlation table for variables initially considered for analysis. Values highlighted in red represent positive correlations, purple boxes are negative correlations. Illegal unreported and unregulated fishing (IUU), marine fisheries production (MFP), coastline length (CLL), and shelf area (deep; SHD) were dropped from further analyses due to high collinearity with more than a single variable (collinear values are bolded).

Fig. S3. Current distribution of sawfishes. The total number of sawfish species that are Extant in each nation. Statuses are coloured in the Exclusive Economic Zone (EEZ) of each nation's coastal waters and where higher species richness is denoted by the warmer colours; no colour means that there are no confirmed Extant species in that nation (although at least one species of sawfish historically occurred in each EEZ shown).

Fig. S4. Predicted changes in occupancy and habitat availability with changes in mangrove area. The effects of increasing mangrove area on the occupancy of sawfishes. (A) Logistic regression where the light grey ticks show the raw data, the thin curves show draws from the posterior distribution, and the thick coloured curves are the mean posterior estimates. Curves are coloured and predicted by levels of mangrove area where fishing pressure is held at its mean: the colour darkens with the total area of mangrove, namely the darkest blue represents the maximum mangrove area. The thick grey line shows the intersection where 5% occupancy occurs. (B) Estimated habitat required to have 5\% occupancy from the posterior distribution through different levels of mangrove area. Violin plots and points show the spread of the posterior draws and the thick lines show the median value. Points have been jittered for ease of interpretation.

Table S1. Variable importance of all models in Boosted Regression Trees (BRT). Median, minimum, and maximum variable importance calculated from 1,000 bootstrapped BRT models for all variables.

Variable	Median (\%)	Minimum (\%)	Maximum (\%)
Indirect fishing pressures			
ln marine protein consumption	9.38	7.96	10.9
ln coastal population	4.82	3.70	6.18
Direct fishing pressures			
ln gear-specific landings	14.5	13.0	17.3
ln chondrichthyan landings	2.86	3.20	5.92
ln fishing effort		1.09	3.26
Management capacity	7.18		
\quad World Governance Index	5.66	6.04	8.41
ln Gross Domestic Product	3.67	2.50	7.04
Human Development Index	25.0	2.61	4.63
Ecological carrying capacity	14.8	22.8	
ln continental shelf area	3.06	13.0	28.6
ln mangrove area	2.10	1.91	17.0
ln estuarine discharge rate	1.52	1.15	4.09
ln marine primary productivity		0.69	3.08
Sea surface temperature	0.42	0	2.35
Species	0.54	0.19	
Green Sawfish (Pristis zijsron)	0.21	0.02	0.78
Smalltooth Sawfish (P. pectinata)	0	0	1.00
Largetooth Sawfish (P. pristis)	0	0	0.45
Narrow Sawfish (Anoxypristis cuspidata)		0	
Dwarf Sawfish (P. clavata)			0

Table S2. Predicted probability of extinction. Predicted probability of extinction from Boosted Regression Trees (BRTs) of Presence Uncertain nations shown as the median, minimum, and maximum predicted values of 1,000 bootstrapped samples. Presence Uncertain nations include nations where either the current presence of all sawfishes is unknown $(*)$, or although the presence of some species can be confirmed, the presence of others is unknown.

Country	Median (\%)	Minimum (\%)	Maximum (\%)
Jamaica	94.8	87.3	98.1
Brunei* $^{\text {F }}$ (ingapore	88.2	73.1	97.6
Djibouti*	86.9	75.5	95.3
Guinea	85.9	79.1	90.3
Taiwan*	85.7	73.6	94.2
Cambodia	85.4	75.1	92.3
Oman	85.2	77.3	93.2
El Salvador*	84.8	81.0	88.6
Timor-Leste*	84.4	76.1	92.3
Japan*	83.4	16.7	91.3
Haiti*	81.9	71.5	89.6
Iraq*	81.8	73.9	87.3
China*	81.8	77.8	85.4
Thailand	80.8	70.5	88.7
Guyana	79.7	69.4	87.0
Egypt*	73.9	60.7	86.2
South Korea*	73.4	58.8	89.0
Dominican Republic*	71.9	64.1	78.4
Vietnam	70.8	64.5	77.3
Venezuela	66.6	60.5	74.8
Iran	63.4	56.1	72.1
Kenya	62.0	56.5	67.5
Myanmar	58.9	50.5	66.0
India	42.9	26.0	53.7
Costa Rica	42.7	31.5	51.0
Yemen	42.0	19.7	59.8
Kuwait*	38.6	23.6	49.3
Somalia	33.4	19.2	46.2
Bangladesh	30.3	18.3	42.5
French Guiana	30.2	19.2	44.1
Suriname	30.2	21.0	38.4
Bahamas	26.2	16.9	37.3
Solomon Islands*	25.3	17.1	34.1
Sri Lanka	24.9	19.0	32.2
Mexico	18.6	6.2	38.9
Brazil	18.6	9.6	32.2
Panama	18.0	10.3	30.6
Madagascar	15.5	7.0	30.3
Colombia	13.3	6.9	24.1
Tanzania*	12.6	7.2	23.9
Cuba	12.2	5.8	23.9
	9.4	4.0	21.7

