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Abstract 

The current cooling systems mainly employ vapor compression refrigeration 

technology, which increases the electricity peak load significantly and has a high carbon 

footprint. One alternative solution is sorption systems, run by low-grade thermal energy, 

i.e. heat sources with temperature less than 100 ºC, such as waste heat, which is non-

payable. Also, sorption systems have negligible carbon footprint. Despite all the promising 

features and benefits, current sorption systems are not ready for wide market adoption. A 

revolutionary approach to their design and development is needed to overcome their 

technical limitations such as low specific cooling power (SCP) and low coefficient of 

performance (COP). Graphite flakes were added to the sorbent to increase the sorbent 

thermal diffusivity; however, it reduces the active sorbent. The counteracting effect of 

graphite flake additives in the sorbent was studied using a custom-built gravimetric large 

pressure jump test bed. It was found that graphite flake additives can increase or decrease 

the sorption performance depending on the cycle time. Furthermore, 2-D analytical models 

were developed that consider the spatial and temporal variation of water uptake and 

temperature in sorber bed heat and mass exchangers (S-HMXs). Two designs of plate fin 

(P-HMX) and finned-tube (F-HMX) were considered because of the high SCP and COP. 

Using the analytical models, it was shown that the entire S-HMX components should be 

optimized simultaneously, and the objective functions of SCP and COP should be 

optimized together. Thus, an analysis of variance and simultaneous multi-objective 

optimization of the S-HMX components were performed using the developed analytical 

models. Based on the optimization study, the P-HMX and the F-HMX were specifically 

designed and built for sorption cooling systems. The experimental results showed that the 

present P-HMX achieved an SCP of 1,005 W/kg sorbent, and a COP of 0.60 for Tdes=90 

°C, Tsorp= Tcond=30 °C and Tevap=15 °C. Furthermore, the F-HMX yielded an SCP of 766 

W/kg and COP of 0.55. It was shown that the P-HMX provided 4.3 times higher SCP, and 

3 times higher COP compared to an off-the-shelf heat exchanger coated with a similar 

composite sorbent consisting of CaCl2, silica gel B150 and PVA. 

Keywords: optimized sorber bed heat and mass exchanger; sorption cooling systems; 

analytical modeling; optimization; specific cooling power; coefficient of 

performance 
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Executive summary  

On the global scale, air conditioning (AC) systems consume 15% of the total electricity 

[3]–[5]. Vapor compression refrigeration (VCR) systems are currently the most competitive 

technology meeting market requirements [6], and form 99% of space-cooling energy 

consumption in the US [7]. However, they are powered by electricity, which is produced 

predominantly from fossil fuels, up to 76% globally [8], and employ fluorocarbon 

refrigerants that contribute to global warming because of their greenhouse gas (GHG) 

emission effects. In addition to the building sector, VCR systems used in vehicle AC 

increase the fuel consumption of internal combustion engine (ICE) by up to 20% because 

of the extra load on the engine [9].  In ICE vehicles, up to 70% of total fuel energy is wasted 

to the ambient in the form of low-grade heat in the radiator and the flue gas in the exhaust 

system [10]. This available waste heat can be utilized to run sorption cooling systems 

(SCS) to produce cooling, which leaves the mechanical energy output for propulsion, 

increasing the overall vehicle efficiency substantially. Sorption systems can be driven by 

low-grade thermal energy, heat sources with temperature less than 100 °C, which is non-

payable and abundant in transportation, building and industrial sectors. Furthermore, they 

employ zero-Global Warming Potential and zero-Ozone Depletion Potential materials, no 

moving parts, and consume a small amount of electrical power. In addition to AC, sorption 

systems have shown enormous potential for other applications, including heat pumping, 

heat upgrading, thermal energy storage, desalination, dehumidification and gas 

separation. 

Nevertheless, sorption systems are not competitive with VCR systems. A revolutionary 

approach to their design and development is needed to overcome the technical limitations. 

This PhD program aims to address two major limitations of sorption systems, namely: 

i. Low specific cooling power (SCP), resulting from low sorbent thermal diffusivity and 

the use of off-the-shelf heat and mass exchanger designs. High porosity of the sorbent 

materials, which is crucial for sorption mass transfer, results in low thermal conductivity 

that impedes their heat transfer. Furthermore, commonly used off-the-shelf heat 

exchangers as the sorber bed heat and mass exchanger (S-HMX), such as radiators 

and coolers, are not specifically designed and optimized for sorption systems and can 

limit their performance; and 

ii. Low coefficient of performance (COP), in part due to high thermal inertia of the 

currently used off-the-shelf heat exchangers in sorption systems. 
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Objectives 

The objective of this PhD dissertation is to establish a systematic method for specific 

design and optimization of sorber bed heat and mass exchangers (S-HMXs) for sorption 

cooling systems. This methodology can be applied to other sorption applications as well. 

This systematic method includes modeling, optimization, construction and testing a proof-

of-concept demonstration of the S-HMXs with the cooling capacity > 0.5 kW, SCP > 700 

W/kg and COP > 0.55. The proposed S-HMXs can reduce the heat source energy 

consumption as well as the mass and volume of the SCS. The compact and efficient S-

HMX design would increase market readiness of SCS, helping to sustainably meet the 

additional demand on the global energy supply due to the increased use of air conditioning 

systems. 

Research methodology 

A systematic approach is undertaken to achieve the objectives of this PhD program, 

and summarized in the following milestones: 

• Selection and characterization of suitable sorption pairs with thermal diffusivity of 

at least 1 mm2/s and differential uptake of 0.4 g H2O/g sorbent; 

• Investigation of the transient behavior of sorbent materials by adding thermally 

conductive additives and their effect on sorption performance;  

• Development of suitable models to be used for design and optimization of the S-

HMX geometry, heat transfer characteristics and cycle time; 

• Finding the key design and operating parameters of the S-HMXs that dominate the 

performance of SCS, namely the SCP and COP; 

• Performing multi-objective optimization of the key parameters of the S-HMXs using 

the developed models to achieve optimum SCP and COP; 

• Building proof-of-concept S-HMXs based on the optimization study for the targeted 

AC applications; and 

• Testing the optimized S-HMXs to experimentally validate the performance targets 

– cooling capacity > 0.5 kW, SCP > 700 W/kg, and COP > 0.55. 
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Research Roadmap and Contributions 

  

 
Development of novel sorber bed heat and mass exchangers 

(S-HMX) for sorption cooling systems 

Experimental study 

• Selection and characterization of 
sorption pairs 

• Transient behavior of sorbent 
materials by adding thermally 
conductive additives and their effect 
on sorption performance 

Modeling study 

• Development of suitable models 
for design and optimization of the 
S-HMX 

• Finding the key design and 
operating parameters of the S-
HMXs 
 

Specific design and Optimization of the 
S-HMXs with optimum SCP and COP 

• Construction of the optimized S-HMXs 
• Testing the S-HMXs to experimentally validate the performance 

targets – cooling capacity>0.5 kW, SCP>700 W/kg, and COP>0.55 

Compact and efficient S-HMXs specifically designed and 
optimized for sorption cooling systems 
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The contributions of this research project are highlighted below: 

1. Low sorbent thermal diffusivity is one of the main reasons for the low performance 

of SCS. Graphite flakes were added to the sorbent to increase thermal diffusivity. 

However, it reduces the active material fraction. For the first time, the counteracting 

effects of graphite flake additives in the sorbent was studied using a custom-built 

gravimetric large pressure jump (G-LPJ) test bed [11]. It was found that depending 

on the cycle time, adding graphite flake additive could increase or decrease the 

sorption performance. Thus, a suitable model was imperative for optimization of 

these parameters in the S-HMX for these conflicting trends.  

2. For the first time, 2-D analytical models were developed that consider the spatial 

and temporal variation of water uptake and temperature in the sorber bed heat and 

mass exchanger (S-HMX), and have low computation time, which is crucial for 

optimization and real-time control of the S-HMXs. Two designs of plate fin heat and 

mass exchangers (P-HMX) and finned-tube heat and mass exchangers (F-HMX) 

were considered because of the high SCP and COP. The analytical models were 

validated using the data collected from G-LPJ and the custom-built two-sorber bed 

sorption test bed [1], [2], [12]. The proposed models accurately predicted the 

performance of the S-HMXs and provided a reliable and easy-to-use design and 

optimization tool for the S-HMXs of SCS. Using the analytical model, it was shown 

that the entire S-HMX components should be optimized simultaneously; otherwise 

the performance would be limited. Moreover, it was indicated that the objective 

functions of SCP and COP should be optimized simultaneously due to the 

conflicting trend between SCP and COP. 

3. Therefore, for the first time in the literature, an analysis of variance (ANOVA) and 

simultaneous multi-objective optimization of the S-HMX components were 

performed using the developed analytical model [13]. The design with SCP of 976 

W/kg and COP of 0.60 was selected for the P-HMX and the design with SCP of 757 

W/kg and COP of 0.55 was selected for the F-HMX because they satisfy the 

performance targets. 

4. For the first time in the literature, the S-HMXs of the P-HMX and the F-HMX were 

specifically designed for sorption cooling systems based on the optimization study 

[13]. The experimental results showed that the present P-HMX achieved a cooling 

power of 0.59 kW, SCP of 1,005 W/kg sorbent, and a COP of 0.60. These were 



 xxv 

notably higher than the previously published results in the literature. Furthermore, 

the F-HMX yielded a cooling power of 0.29 kW, SCP of 766 W/kg and COP of 0.55. 

5. It was shown that the P-HMX provides 4.3 times higher SCP, and 3 times higher 

COP compared to a typical off-the-shelf heat exchanger, an engine oil cooler 

coated with a similar composite sorbent consisting of CaCl2, silica gel B150 and 

PVA [13]. It clearly indicated the potential for specific design and optimization of the 

S-HMX to enhance the performance of sorption systems. 

6. The P-HMX was tested under various operating conditions: i) desorption 

temperature, 60–90 °C; ii) sorption and condenser temperature, 20–40 °C; iii) 

evaporator temperature, 5–20 °C; and iv) cycle time, 10–20 min.  SCP in the range 

of 320–1,230 W/kg and COP of 0.40–0.80 were measured in our testbed over the 

range of targeted operating conditions [13]. 
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1. Introduction to cooling technologies, vapor compression 
versus sorption 

Cooling is the fastest-growing use of energy in buildings but is also one of the most 

critical blind spots in today’s energy debate [14]. Rising demand for space cooling is 

putting enormous strain on electricity systems in many countries, as well as driving up 

emissions [14]. The global stock of AC systems in buildings will grow to 5.6 billion by 2050, 

up from 1.6 billion today – which amounts to 10 new ACs sold every second for the next 

30 years [15]. The global AC market was valued at USD $135.2 billion in 2018 and is 

expected to reach around USD $292.7 billion by 2025, at a compound annual growth rate 

(CAGR) of approximately 11.7% for the forecast period of 2019 to 2025 [16]. Fig. 1 shows 

the space cooling energy demand growth from 2016 to 2050 [14]. It can be seen that 

global cooling energy demand is expected to triple by 2050, requiring new electricity 

capacity equivalent to the combined electricity capacity of the US, EU and Japan today 

[15]. Fig. 1 also shows that with advancements of cooling technologies, the space cooling 

energy demand in 2050 can be reduced by 45%. Advancements of cooling technologies 

include (i) performance enhancement of the current cooling systems and (ii) development 

of cooling systems powered with energy sources other than electricity. Fig. 2 shows the 

share of cooling in electricity system peak loads in selected countries/region. It can be 

seen that the cooling electricity peak load will increase more in the fast-growing nations, 

with the largest increase happening in hot countries like India – where the share of AC in 

peak electricity load could reach 45% in 2050, up from 10% today without action [14], [15]. 

Nonetheless, advancements in cooling technology can decrease this peak load; and thus 

the need for new power plants, and investments in utilities and electrical grid to meet peak 

power demand [14], [15]. Fig. 3 shows that with technology advancements, the cumulative 

investments in power generation for space cooling to 2050 can be reduced by 38% from 

USD $3.183 trillion to USD $1.977 trillion [14]. 
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Fig. 1. Space cooling energy demand growth from 2016 to 2050, projections from 

International Energy Agency [14] 
 

 
Fig. 2. Share of cooling in electricity system peak loads in selected countries/regions 

from 2016 to 2050, projections from International Energy Agency [14] 
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Fig. 3. Cumulative investments in power generation for space cooling to 2050, 

projections from International Energy Agency [14] 

1.1. State-of-the-art of refrigeration systems 

Refrigeration systems are used to produce cooling effects for air conditioning (AC) 

applications [17]–[20], ice-making industries  [21], food industries [22], vaccine protection 

[23], etc. Vapor compression refrigeration technology is the dominant technology currently 

being used in the market [6]. Alternative cooling technologies are magnetic cooling, 

thermoacoustic cooling, thermoelectric cooling, reversed Stirling cooling, absorption 

cooling, and adsorption cooling [24]. In the following, these cooling technologies are briefly 

discussed and compared. 

1.1.1. Vapor compression refrigeration (VCR) systems 

Vapor compression refrigeration (VCR) systems are currently the most used 

technology [6] and form 99% of space-cooling energy consumption in the US [7]. Fig. 4 

shows the schematic diagram of a VCR system. In a VCR system, the low-pressure and 

low-temperature refrigerant enters the compressor in the state of saturated vapor and 

undergoes a compression process, which increases its pressure and temperature. 

Subsequently, the superheated vapor refrigerant is condensed in the condenser and 

releases heat to the ambient. Afterwards, the saturated liquid refrigerant passes through 
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an expansion valve or a capillary tube to reduce its pressure and become ready for the 

evaporation process at low temperature. Finally, the refrigerant, which is a mixture of liquid 

and vapor phases at this state, is evaporated in the evaporator and provides the cooling 

effect [25].  

 

Fig. 4. Schematic diagram of vapor compression refrigeration (VCR) systems 
 

This dominant position of VCR has been achieved due to its low capital cost, superior 

efficiency, low operating cost, and good personal safety record compared to the other 

cooling technologies [24], [26]. The coefficient of performance (COP) of efficient VCR AC 

products range 3.5–4.1 [27], which is higher than other cooling technologies. However, 

the main drawbacks of VCR are 

• The increasing trend of the electricity consumption and peak power load for cooling, 

which would require significant investments in new power plants and electric grid. 

Therefore, developing cooling technologies powered by energy sources other than 

electricity could reduce the electricity consumption, peak power load, and hence, 

the investments substantially.  

• The environmental impact; VCR systems contribute to about 10% of greenhouse 

gas (GHG) emissions globally [28]. 
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In the transportation sector, VCR systems are run by engine mechanical power, which 

is generated by burning fossil fuels. According to Natural Resources Canada (NRCan), 

VCR systems in vehicle AC increases fuel consumption by up to 20% because of the extra 

load on the engine [9]; this number can reach 90% in the idling condition [29]. The US 

consumes approximately 27 billion liters of gasoline each year for vehicle AC systems 

[30]. This has placed vehicle AC as the second largest consumer of the fossil energy after 

vehicle propulsion [30]. The global market for automotive AC was estimated at USD $12 

billion in 2015 and is anticipated to grow at a compound annual growth rate (CAGR) of 

over 8 % to 2024 [31]. 

Moreover, VCR systems in building and industrial sectors are powered by electricity, 

which is produced predominantly from fossil fuels, up to 76% globally [8]. On the global 

scale, AC systems consume 15% of the total electricity [3]–[5], and nearly 50% of the total 

electricity in the buildings [32]–[35]. 

In addition to the energy sources of VCR, their refrigerants also contribute to global 

warming because of their greenhouse gas (GHG) emission effects. In 2020, even though 

most common refrigerants such as R134a, R404A, and R410A possess zero ozone 

depletion potential (ODP), they still have global warming potential (GWP) of 1,300, 3,943 

and 2,088, respectively [36]. Global warming increases the need for AC, which in turn, 

contributes to global warming, i.e. a vicious cycle that continues. 

There exists refrigerants with low GWP of 0–125, such as halogenated alkenes, 

halogenated oxygenates, halogenated nitrogen compounds, halogenated sulfur 

compounds, and inorganic refrigerants, e.g. carbon dioxide and ammonia [37]. 

Nevertheless, their application has been limited due to one or more of the following 

properties: (i) poor thermodynamic properties; (ii) toxicity; (iii) chemical instability; (iv) low 

to moderate flammability; and (v) very high operating pressures [37]. 

1.1.2.  Magnetic cooling systems 

Magnetic cooling is based on the magnetocaloric effect (MCE) [24]. For normal 

magnetocaloric materials, magnetization will lead to heating of the material, and 

demagnetization will lead to cooling of the material. They can be coupled to heat transfer 

fluid circuits through heat exchangers to realize cooling effects. The COP of magnetic 

coolers ranges between 1.6–1.8 [38], [39], which is less than that of VCR. Other setbacks 

include low cooling capacities, low temperature lifts, large pressure drops through the 
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regenerator bed, expensive room temperature superconducting materials, and high 

electricity consumption [24], [40]. 

1.1.3. Thermoacoustic cooling systems 

Thermoacoustic cooling is based on the conversion of acoustic energy to thermal 

energy [24]. The presence of an acoustic wave expands and contracts a working fluid 

(gas). As the gas expands, its pressure and temperature are reduced; likewise, as the gas 

contracts, its pressure and temperature are increased. To achieve cooling, the working 

gas must be coupled to an external heat transfer fluid through heat exchangers. The COP 

of thermoacoustic coolers is about 1.7 [41], which is less than that of VCR. The other 

downsides are the possibility of shock waves, low cooling capacities, large physical size, 

heat exchanger inefficiencies, high electricity consumption, and the parasitic heat 

conduction from the hot heat exchanger to the cold heat exchanger [24], [40].  

1.1.4. Thermoelectric cooling systems 

Thermoelectric cooling is based on the Peltier effect: when an electrical current is 

applied to two conductors of dissimilar metals, a temperature difference will develop 

across the two junctions, that is, one junction will become colder and the other one hotter 

[24]. To exploit the cooling, the materials should be coupled with heat transfer fluid through 

heat exchangers. The COP of thermoelectric cooling systems is about 0.3–0.6 [42], [43], 

which is much lower than that of VCR. The major drawbacks of thermoelectric coolers are 

low performance, lack of commercial materials, and high electricity consumption [24], [40]. 

1.1.5. Reversed Stirling cycle (RSC) 

Reversed Stirling cycle (RSC) is comprised of two isothermal and two constant volume 

processes [20]. The main components of an RSC are two pistons located in a cylinder and 

a regenerator located between the two pistons. By reciprocating two pistons, one piston 

releases heat and the other one absorbs heat. The COP of RSC ranges between 0.8–1.6 

[44]. The power density of RSC is less than 1 W/kg, which results in a heavy system [45], 

[46]. 

1.1.6. Absorption cooling systems (ACS) 

In absorption cooling systems (ACS), the liquid absorbents such as LiBr, LiCl and 

CaCl2, absorb the refrigerant such as water in the absorber when the absorbent is cooled 
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with a heat transfer fluid (HTF) through a heat exchanger (HEX). The refrigerant is 

evaporated from the evaporator and generates cooling. Afterwards, the weak solution of 

absorbent and refrigerant is pumped to the regenerator where it is heated with HTF 

through HEX. The refrigerant is desorbed from the regenerator to the condenser where it 

is condensed and then travels to the evaporator through an expansion valve. The rich 

solution returns to the absorber through an expansion valve to continue the cycle [47]. 

Replacing the compressor in VCR with a pump in ACS reduces the power consumption 

of the system dramatically [46]. The COP of ACS is below 0.8 when low-grade thermal 

energy (LGTE) is used, i.e. heat sources with temperature less than 100 ºC [48]. The COP 

of ACS can increase to 1.8 if higher temperature heat sources and multi-effect ACS are 

used [48]. Nonetheless, the system would become larger due to multi-stages of absorption 

and require higher levels of heating such as gas-fired regenerators. The main drawbacks 

of ACS are the large size, low COP, corrosive absorbents, low mass transfer, 

crystallization, swelling and agglomeration of salt [46], [47], [49], [50]. 

1.1.7. Adsorption cooling systems (SCS) 

The operation of adsorption cooling systems is similar to that of ACS, i.e. based on two 

main processes, namely heating–desorption–condensation and cooling–sorption–

evaporation. The main difference is that in SCS, the sorbent does not flow between the 

hot and cold absorbers, rather it is heated and cooled intermittently, for desorption and 

sorption processes, respectively. The advantages of SCS are non-corrosive, non-toxic 

and environmentally friendly sorption pairs with zero ozone depletion potential (ODP) and 

zero global warming potential (GWP), low desorption temperature, no moving parts, low 

noise level, low electricity consumption and low maintenance [46], [51], [52]. Nevertheless, 

the major disadvantages are low COP because of temperature swing between sorption 

and desorption and large size. COP of SCS ranges from 0.50 to 0.75, see Section 1.7 for 

more details. However, SCS can be powered with LGTE, such as waste heat and solar 

energy, which is non-payable and abundant in transportation, industrial and building 

sectors. 

1.2.  Available waste heat and utilization 

Low-grade thermal energy (LGTE) such as waste heat and solar energy is abundant in 

transportation, building and industrial sectors. Waste heat is available in the form of steam, 

hot water, fume and exhaust discharged from engines, boilers, furnaces, refrigeration 
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systems, driers, air compressors, fuel cells, data centers, etc. [53]. Fig. 5 shows the 

Canadian energy flow from the energy sources to the export energy, domestic useful 

energy and domestic waste energy. It can be observed in Fig. 5 that in domestic energy 

consumption, 67% of the primary energy is wasted.  

 

Fig. 5. Canadian energy flow from sources to useful and waste energy 2013, data from 
CESAR: Canadian Energy Systems Analysis Research [54] 

 

Fig. 6 shows the global waste heat distribution in 2016 [8]. It can be seen that 52% of 

the global primary energy is wasted in the form of heat. Fig. 6 also indicates that 63% of 

the global waste heat is low-grade, i.e. T < 100 ºC. Compared to high-grade (T > 300 ºC) 

and medium-grade (100 ºC < T < 300 ºC) waste heat, utilization and recovering low-grade 

waste heat is far more challenging and not commonly applied in practice [53]. The low-

grade waste heat has the potential to be utilized by adsorption [55], absorption [56], 

organic Rankine cycles [57] and Kalina cycles [58] technologies to produce electricity, 

heating, cooling, fresh water and hydrogen [53]. Among these technologies, sorption 

technology has the advantages of simple configuration, no moving parts, environmentally 

friendly refrigerants and high energy density. Sorption systems can utilize the low-grade 

waste heat to (i) generate cooling for air-conditioning and refrigeration; (ii) store thermal 

energy; (iii) upgrade the heat to a higher temperature level (heat transformers); (iv) heat 

pumping; (v) dehumidification; (vi) desalination; and (vii) gas separation. However, the 
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main disadvantages of incumbent sorption systems include bulkiness, poor heat and mass 

transfer, and output intermittency [53]. The present study focuses on the sorption cooling 

systems (SCS) for air-conditioning applications. Nonetheless, the proposed methodology 

can be applied to other applications by changing the operating conditions and the objective 

functions. 

 

Fig. 6. Global waste heat distribution in 2016 with their temperature levels [8] 
 

As an example, Fig. 7 shows the energy consumption in internal combustion engines 

(ICE) in vehicles [10]. It can be seen that 70% of total fuel energy is wasted to the ambient 

in the form of heat and only 25% of the input energy is used for vehicle propulsion and 

accessories. In a more innovative and greener system such as in PEM fuel cell buses, the 

AC system draws 30–44% of the electric power generated by the fuel cell [59], and 50% 

of the input hydrogen energy in PEM fuel cells is wasted to the ambient in the form of heat 
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[60], more information about the integration of sorption cooling systems in PEM fuel cell 

buses can be found in Appendix H. The available waste heat can be utilized to run sorption 

cooling systems (SCS) to address the cooling need, which leaves the mechanical and 

electrical energy output for propulsion, increasing the efficiency substantially, as well as 

decreasing the GHG emissions.  

 

Fig. 7. Energy consumption of internal combustion engines (ICE) in vehicles [10] 
 

As another example, in electric vehicles (EV), AC systems are the highest consumer 

of electric power among the auxiliary components [61]. AC systems reduce the driving 

range of EVs by about 30–40% depending on the size of the AC and the driving cycles 

[10], [62]. Sorption systems can be desorbed while electric vehicles (EV) are being 

charged using electric resistance heaters [63]. After the EV starts a trip, the sorption 

systems can start the sorption/evaporation process to generate AC without using the 

battery electricity, which can increase the battery range considerably [63]. 

1.3.  Sorption phenomena 

Adsorption is, in general, the adhesion of ions or molecules of gases, liquids or 

dissolved solids to a solid surface [64]. The adsorption phenomenon is an exothermic 

process in which molecules of a liquid or gas, called adsorbate, accumulate on a solid 

surface, called adsorbent. Adsorbents are porous materials with the ability to take up 
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several times of their volume of gases or liquids. Fig. 8 shows the structure and scanning 

electron microscope (SEM) images of three common adsorbents, namely activated 

carbon, silica gel and zeolite. On the other hand, in absorption process, molecules of gas 

or liquid penetrate in the solid or liquid phase. Composite sorbents consist of salts 

impregnated into the pore structures of porous matrices. The porous matrix such as silica 

gel adsorbs the adsorbate and the salt absorbs the absorbate. Due to the simultaneous 

adsorption and absorption in composite sorbents, the phenomenon is called sorption, i.e. 

adsorption and absorption, and the material is called sorbent, i.e. adsorbent and 

absorbent.  
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Fig. 8. Structure and SEM images of sorbent materials: (a) activated carbon; (b) silica 
gel; and (c) zeolite [65]–[70] 

1.4.  Selection of sorption pairs 

1.4.1. Selection of sorbate (refrigerant) 

Table 1 shows the comparison between the most commonly used sorbates 

(refrigerants) in sorption cooling systems. In the present study, water is selected as the 

sorbate due to the high enthalpy of evaporation, non-toxicity, non-flammability, 

compatibility with metals, zero ODP and zero GWP. However, the low operating pressure 

requires suitable sealing and vacuum chamber design. Also, Table 1 shows that water 
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cannot operate below 4ºC, which is acceptable for AC applications as the common AC 

temperature is 6 ºC [71].  

Table 1. The most commonly used sorbates in sorption cooling systems and their 
comparison [6] 

 Water Ammonia Methanol Ethanol 

hfg (kJ/kg) at 40ºC 2,406 1,333 1,195 905 
Operating pressure 
(kPa) at 5–40ºC 

0.5–5.5 500–2,000 5–50 2–20 

Toxicity/flammability No Yes Yes Yes 
Compatibility with 
metals 

Compatible Incompatible 
with copper 

Incompatible 
with copper at 
high 
temperature 

– 

ODP 0 0 – – 

GWP 0 0 2.8 – 
Minimum operating 
temperature (ºC) 

4 -20 -20 -20 

1.4.2.  Selection of sorbent material 

Table 2 shows three main categories of sorbent materials, namely (i) physical sorbents;              

(ii) chemical sorbents; and (iii) composite sorbents [67], [72]. Physical sorbents such as 

silica gel and zeolite have relatively low sorption capacity compared to chemical and 

composite sorbents. On the other hand, chemical sorbents such as CaCl2 and CaO have 

relatively high sorption capacity; nonetheless, their application is limited due to the 

swelling and agglomeration of salt, and the low mass transfer resulting from their low 

specific surface area [50], [67]. Composite sorbents offer a high specific surface area due 

to the impregnation of salts into the pore structures of porous matrices, which increases 

the mass transfer significantly. Moreover, composite sorbents such as silica gel+CaCl2 

have relatively high sorption capacity and a wide range of relative pressure, p/p0, over 

which their sorption occurs. 
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Table 2. Different categories of sorbent material, their bonds, advantages and 
disadvantages [67], [72] 

Sorbent Physical Chemical Composite 
Bond Van der Waals Chemical Combination of 

chemical and Van der 
Waals 

Examples Activated carbon, 
silica gel, zeolite, 
and MOFs 

Metal chlorides, metal 
hydrides, and metal 
oxides 

Combination of metal 
chlorides and activated 
carbon, or expanded 
graphite, or silica gel or 
zeolite 

Advantage Low mass transfer 
resistance 

High sorption 
capacity 

Low mass transfer 
resistance, high 
sorption capacity 

Disadvantage Low sorption 
capacity 

High mass transfer 
resistance, swelling 
and agglomeration of 
salt 

 

 

Fig. 9 shows the water sorption isotherms of different sorbent materials at 25 °C. 

Sorption isotherms of composite sorbent of mesoporous silica gel B150/CaCl2, 

microporous silica gel B40 and silica gel B60 (SiliaFlash, Silicycle, Inc., Quebec, Canada), 

FAM-Z02 (AQSOA Mitsubishi Plastics, Inc.) are obtained using an IGA-002 

thermogravimetric sorption analyzer (TGA) (Hiden Isochema). Details of the TGA 

measurements are presented in Chapter 1. Water sorption isotherms of MOFs, MIL-101 

(Cr) UoB, MIL-100 (Fe) UoB, Aluminum fumarate, CPO-27 (Ni)) are obtained from Ref. 

[73], and SAPO-34 from Ref. [74].  

The commonly-used operating conditions of sorption cooling systems for air-

conditioning (AC) applications, i.e. Tdes=90 °C, Tsorp= Tcond=30 °C, Tevap=15 °C [75], 

correspond to p/p0 of 0.06063 and 0.4017 for desorption and sorption, respectively. It can 

be seen in Fig. 9 that the composite sorbent of silica gel B150/CaCl2 has the highest 

sorption capacity compared to microporous silica gel, zeolite-based sorbents, i.e. FAM-

Z02 and SAPO-34, and MOFs in the p/p0 range of 0.06063 and 0.4017. 
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Fig. 9. Water sorption isotherms of different sorbent materials at 25 °C, silica gel 
B150/calcium chloride, silica gel B40, silica gel B60, zeolite-based sorbents of FAM Z02 
and SAPO-34, Metal organic framework (MOF) of MIL-101 (Cr) UoB, MIL-100 (Fe) UoB, 

Aluminum fumarate, and CPO-27 (Ni) 
 

Fig. 10–Fig. 12 show the isotherms of silica gel/CaCl2 composite sorbents versus 

zeolite-based sorbents of SAPO-34 and FAM-Z02 for different temperatures of (a) 

desorption, (b) sorption and condenser, and (c) evaporator. It can be seen in Fig. 9 and 

Fig. 11 that the sorption of zeolite-based sorbents occurs in a narrow range of p/p0, which 

limits their application to high desorption temperatures and low condenser temperatures. 

For example, Fig. 9 and Fig. 11 show that the sorption of SAPO-34 and FAM-Z02 

becomes negligible for desorption temperature less than 80 °C and condenser 

temperature more than 40 °C. However, Fig. 9 shows that sorption of silica gel/CaCl2 

composite sorbents takes place in the entire range of p/p0. Hence, silica gel/CaCl2 

composite sorbents are more suitable for applications with heat source temperature less 

than 80 °C and condenser temperature more than 40 °C. On the other hand, the main 

advantage of zeolite-based sorbents is their sorption at low evaporator temperature. Fig. 

12 indicates that by decreasing the evaporator temperature, sorption of silica gel/CaCl2 
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composite sorbents reduce substantially more than that of zeolite-based sorbents. 

Consequently, zeolite-based sorbents may be more suitable for applications with low 

evaporator temperature.  

In the present PhD thesis, composite sorbents of silica gel B150/CaCl2 are used due to 

• Higher sorption capacity compared to the other sorbents for the operating 

conditions of air-conditioning applications, Fig. 9. 

• Higher sorption capacity at low desorption temperature and high condenser 

temperature, Fig. 9 and Fig. 11. 

• Lower cost and higher market availability [76]. 

 

Fig. 10. Isotherms of silica gel/CaCl2 composite sorbents versus zeolite-based sorbents 
of SAPO-34 and FAM-Z02 for different desorption temperatures, isotherms were 

obtained at 25 °C 
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Fig. 11. Isotherms of silica gel/CaCl2 composite sorbents versus zeolite-based sorbents 
of SAPO-34 and FAM-Z02 for different sorption and condenser temperatures, isotherms 

were obtained at 25 °C 
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Fig. 12. Isotherms of silica gel/CaCl2 composite sorbents versus zeolite-based sorbents 
of SAPO-34 and FAM-Z02 for different evaporator temperatures, isotherms were 

obtained at 25 °C 
 

One important consideration in the composite sorbents of salt in porous matrix such as 

CaCl2 in silica gel is the threshold where the pores of the porous matrix become filled with 

salt/water solution. After this threshold, the salt solution starts leaking from the pores and 

forming a film on the surface of the silica particles [77]. Tanashev et al. [78] measured the 

change in the thermal conductivity of salt in silica composites as a function of adsorbed 

water and observed a steep rise when the salt solution leaked from the pores, connecting 

the silica gel particles and enhancing the heat transfer. For example, for silica gel/CaCl2 

sorbents, the thermal conductivity jumped from 0.21 (W/m.K) to 0.31 (W/m.K) by leaking 

the salt solution from the pores. It was found that the threshold occurs when the pore 

volume fraction occupied with the salt solution reaches 0.60-0.64 [78]. The leakage of salt 

solution from the pores can decrease the mass transfer in sorption systems, and thus 

should be avoided by adjusting the ratio of CaCl2 to silica gel depending on the operating 

conditions and the range of p/p0 [77], [79]. 
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1.5.  Thermodynamic cycle of SCS 

Sorption cooling systems (SCS) work based on two main steps: heating–desorption–

condensation and cooling–sorption–evaporation [72], [76]. As can be seen in Fig. 13, 

compared to Fig. 4, the compressor in VCR is replaced with sorber bed heat and mass 

exchangers (S-HMXs) in SCS. The S-HMXs consist of three main components (i) sorbent 

material in the form of grains, pellets or coating; (ii) heat exchanger (HEX); and (iii) heat 

transfer fluid (HTF). Sorbent materials can ad/absorb the sorbate when cooled and 

connected to the evaporator; and can desorb the sorbate to the condenser at a higher 

pressure when heated. The sorbent is heated and cooled with HTF through HEX. As a 

result, the increase in pressure, or the compression of the refrigerant, which is the driving 

force in the refrigeration cycles, can be provided by the heat, rather than the compressor 

work. Hence, waste heat and solar energy can be utilized to run the refrigeration cycle 

instead of the mechanical work from the engines or electrical energy in VCR. 
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Fig. 13. (a) Schematic diagram; and (b) picture of sorption systems available in our 
laboratory consisting of sorber bed heat and mass exchangers (S-HMX), evaporator 

and condenser. More details can be found in Section 5.4 

 
Fig. 14 presents the basic thermodynamic cycle of an SCS [72], [76]. More information 

about the advanced sorption cycles is presented in Appendix A. The first step is isosteric 

cooling, process 1'-2'. Both valves of the S-HMXs are closed and the bed is cooled at a 

constant uptake, 1'-2', to prepare for sorption process. At the same time, the refrigerant 

pressure is reduced at a constant enthalpy by passing through an expansion valve, 

Process 1-2. Then, the valve to the evaporator is opened and the sorbate is evaporated 

in the evaporator, Process 2-3, and ad/absorbed in the S-HMX at a constant pressure, i.e. 

isobaric sorption, Process 2'-3. Due to the exothermic nature of sorption, the S-HMX 

needs to be cooled during this process. Subsequently, both valves are closed, and the 

bed is heated at a constant uptake to prepare for the desorption process, i.e. isosteric 

heating, 3-4. Finally, the valve to the condenser is opened, and the refrigerant is desorbed 

in the S-HMX, i.e. isobaric desorption, Process 4-1', and condensed in the condenser, 

Process 4-1. Because of the endothermic desorption, the S-HMX needs to be heated in 

this process. 
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Fig. 14. Thermodynamic cycle of sorption cooling systems: isosteric cooling (1'-2'), 

isobaric sorption (2'-3), isosteric heating (3-4), and isobaric desorption (4-1') 
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1.6.  Performance parameters 

Specific cooling power (SCP) represents how fast the cooling energy can be delivered 

and how compact the system is. For a sorption cooling system with an ideal evaporator 

and condenser, SCP can be increased by enhancing the heat and mass transfer 

processes in the S-HMX. SCP can be defined in different ways depending on the system 

scale and the objective as follows: 

• Cooling power per sorbent mass. This parameter is the most widely used parameter 

in the literature [6], [75] for the research prototypes. Thus, this parameter is used as 

the main SCP parameter in the present study to be compared against the literature.  

@
sorb fg

fg Tevap evapads

sorb sorb

d
m h dt

hQ dt
SCP

m m




  
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[W/kg] (1) 

where, Qevap is the evaporative cooling energy (J), msorb is the sorbent mass (kg), τ 

is the cycle time (s), hfg is the sorbate enthalpy of evaporation (J/kg), and ω is the 

sorbate uptake (g sorbate/g sorbent). 

• Cooling power per total mass of the sorber bed heat and mass exchanger (S-HMX) 

consisting of the sorbent, heat exchanger (HEX) and heat transfer fluid (HTF). This 

parameter provides a better representation of the sorption system as the sorbent 

material is not standalone, rather it is always used with HEX and HTF. This 

parameter is used in the present study and compared against the studies in the 

literature that report mass of HEX and HTF. 
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where, Qevap is the evaporative cooling energy (J), msorb is the sorbent mass (kg), 

mHEX is the heat exchanger (HEX) mass (kg), mHTF is the heat transfer fluid (HTF) 

mass (kg), and τ is the cycle time (s). 

• Cooling power per total volume of the S-HMX consisting of the sorbent, HEX and 

HTF. This parameter is used in the present study. 
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where, Qevap is the evaporative cooling energy (J), Vsorb is the sorbent volume (m3), 

VHEX is the HEX volume (m3), VHTF is the HTF volume (m3), and τ is the cycle time 

(s). 

• Cooling power per total mass or volume of the sorption cooling system consisting of                

(i) sorber bed heat and mass exchangers (S-HMXs) and their vacuum chambers; (ii) 

evaporator and its vacuum chamber; (iii) condenser and its vacuum chamber; (iv) 

liquid-to-air heat exchangers to cool the condenser and the S-HMX with the ambient; 

(v) liquid-to-air heat exchangers to provide the evaporative cooling to the cooling 

zone; (vi) vacuum connections, fittings and the valves; (vii) heat transfer fluid 

connections, fittings, valves, and hoses to the S-HMXs, evaporator, condenser, the 

liquid-to-air heat exchangers, and to the heat source; (viii) programmable logic 

controllers (PLC) and the sensors to control the operation of the sorption cooling 

system; (ix) the unit frame; and (x) the user interface panel. This parameter is the 

most suitable index for the entire system performance. However, most of the 

aforementioned components are not employed in research prototypes as the tests 

are conducted with temperature control systems to mimic the heat source, ambient 

cooling and evaporative cooling. Hence, this parameter is only used for the 

commercial sorption AC products. 

evap

total

tot

Q
SCP

m 
=  [W/kg] (4) 

evap

total

tot

Q
VSCP

V 
=  [W/m3] (5) 

where, Qevap is the evaporative cooling energy (J), mtot is the total system mass (kg), 

Vtot is the total system volume (m3), and τ is the cycle time (s). 

Thermal coefficient of performance (COPth) is defined as the ratio of evaporative 

cooling energy to the input thermal energy, Eq. (6). COP can be increased by: i) enhancing 

the heat and mass transfer processes inside the S-HMX, which increases both the 

evaporative cooling energy and the desorption heat, which overall increases COP, and ii) 

decreasing the sensible energy required to overcome thermal inertia of the heat 

exchanger (HEX), sorbent material, refrigerant inside the sorbent and the heat transfer 

fluid (HTF). Since, sorption cooling systems (SCS) are thermally driven, this parameter is 

used for both sorption research prototypes and the commercial products. 
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where, Qevap is the evaporative cooling energy (J), Qth,input is the input thermal energy 

(J), Qsens is thermal energy required to overcome thermal inertia of the sorber bed heat 

and mass exchanger (J), Qdes is thermal energy consumed for desorption (J), msorb is the 

sorbent mass (kg), mHEX is the heat exchanger (HEX) mass (kg), mHTF is the heat transfer 

fluid (HTF) mass (kg), hfg is the sorbate enthalpy of evaporation (J/kg), cp is the specific 

heat (J/(kg K)), ω is the sorbate uptake (g sorbate/g sorbent), T is the sorbent temperature 

(K), and hfg is the sorbate enthalpy of sorption (J/kg). COPth is particularly important is 

applications where a limited amount of heat source is available. One is example is 

provided in Appendix H. 

Electrical coefficient of performance (COPe) is defined as the ratio of evaporative 

cooling energy to the input electrical energy, Eq. (7). This parameter is mainly used for 

VCR systems. Even though SCS are thermally driven and consume a small amount of 

electricity, this parameter is also calculated for SCS commercial products to compare their 

operation costs with VCR. For SCS, the reported COPe includes the electrical energy used 

by the heat transfer fluid circulation pumps. 

,

evap

e

elec input

Q
COP

w
=  [-] (7) 

where, Qevap is the evaporative cooling energy (J) and Qelec,input is the input electrical 

energy (J). 

1.7.  Need for research 

The performance of sorption AC has been enhanced considerably over the past 

decade due to new sorbent materials, coating technologies, heat exchanger designs and 

advanced sorption cycles [6], which has led to commercial sorption AC products. Table 3 

presents the performance of the commercially available sorption AC products in 2020 and 

Fig. 15 summarizes these performance parameters in comparison between sorption AC 
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and VCR systems. It can be seen that COPth ranges between 0.50–0.75, COPe ranges 

7.5–69.9, SCPtotal ranges 15.9–45.4 W/kg, and VSCPtotal ranges 3.5–18.5 kW/m3. On the 

other hand, in 2020, COPe of efficient VCR AC products range 3.5–4.1, SCPtotal ranges 

113–160 W/kg, and VSCPtotal ranges 17–23 kW/m3  [27], [80], [81]. It should be noted that 

in SCS, the input thermal energy is non-payable as waste heat or solar energy can be 

used. Thus, COPe is the parameter that shows the operation cost due to electricity 

consumption. It can be seen that COPe of SCS is 1.8–20 times higher than VCR, which 

can reduce the operation cost and carbon footprint substantially. Nonetheless, SCP total of 

VCR is 2.5–10 times higher than SCS and VSCPtotal of VCR is 0.9–6.5 times that of SCS, 

which is the main impediment against wide adoption of SCS, particularly for automotive 

AC. 

Table 3. List of the commercially available sorption AC products with their cooling 
performance 

Ref. Commercial product Qevap 
(kW) 

COPth COPe SCPtotal 
(W/kg) 

VSCPtotal 
(kW/m3) 

[82] InvenSor LTC 10 e plus 10.0 0.70 25.3 22.7 8.8 

[83] InvenSor LTC 30 e plus 35.0 0.72 39.1 29.2 15.2 
[84] InvenSor LTC 90 e plus 105.0 0.75 39.1 23.3 10.2 

[85] Fahrenheit eCoo 10 16.7 0.65 64.2 45.1 12.5 
[85] Fahrenheit eCoo 10X 25.0 0.65 48.9 45.4 14.9 

[85] Fahrenheit eCoo 20 33.4 0.65 64.2 42.5 13.0 
[85] Fahrenheit eCoo 20 ST 33.4 0.65 31.2 39.6 13.0 

[85] Fahrenheit eCoo 20X 50.0 0.65 48.9 43.4 15.6 
[85] Fahrenheit eCoo 30 50.0 0.65 50.8 40.4 15.3 

[85] Fahrenheit eCoo 30X 75.0 0.65 48.6 43.4 15.8 
[85] Fahrenheit eCoo 40X 100.0 0.65 48.4 43.5 15.6 

[85] Fahrenheit eCoo S 8.4 0.65 45.4 32.3 7.8 
[85] Fahrenheit Zeo M 10 20.0 0.50 69.9 45.4 10.1 

[85] Fahrenheit Zeo M 20 40.0 0.50 69.9 41.3 15.5 
[85] Fahrenheit Zeo M 30 60.0 0.50 69.9 41.3 18.5 

[86] SolabCool SolabChiller 4.5 0.65 7.5 17.3 3.5 
[87] HIJC ADCM models 70–

350 
0.65 NR NR NR 

[88] Mitsubishi Plastics M-
TYPE 

10.0 NR NR NR 8.1 

[89] Mayekawa Z-3515 105.0 NR 10 15.9 6.7 
[89] Mayekawa Z-3525 215.0 NR 10 21.5 8.5 

[89] Mayekawa Z-6025 430.0 NR 10 28.7 10.3 
“NR” means not reported. 
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Fig. 15. Comparison of sorption cooling systems versus vapor compression refrigeration 

systems in terms of performance parameters of thermal coefficient of performance 
(COPth), electrical coefficient of performance (COPe), specific cooling power (SCPtot), 

and volumetric specific cooling power (VSCPtot) 
 

Table 4 shows the commercially available hybrid VCR/SCS AC products. It can be 

seen that COPe of the VCR systems increases by about 59% by adding SCS, due to less 

electricity consumption. Table 4 also shows that SCPtotal ranges 54.4–55.6 W/kg, which is 

between that of SCS and VCR. Furthermore, it can be observed that VSCPtotal ranges 

18.06–27.97 kW/m3, which, on average, is higher than both SCS and VCR. Therefore, in 

the applications where both LGTE, such as waste heat or solar energy, and electricity are 

available, hybrid VCR/SCS can achieve compact AC systems with low electricity 

consumption.  

Table 4. List of the commercially available hybrid VCR/SCS AC products with their 
cooling performance 

Ref. Commercial 
product 

Qevap 
(kW) 

COPSCS COPVCR COPth COPe SCPtotal 
(W/kg) 

VSCPtotal 
(kW/m3) 

[85] Fahrenheit 
eCoo 10 HC 
30 

46.7 0.65 2.5 1.82 3.89 55.6 18.18 

[85] Fahrenheit 
eCoo 20 HC 
60 

91.4 0.65 1.6 1.78 2.54 54.4 27.97 

[85] Fahrenheit 
eCoo 20 
HCN 60 

92.8 0.65 NR 1.81 NR 54.6 18.06 
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1.8.  Objective 

The objective of this PhD study is to establish a systematic method to design and 

optimize sorber bed heat and mass exchangers for sorption systems. The next objective 

is to apply this method to develop sorber bed heat and mass exchangers with optimum 

SCP and COP (SCP > 700 W/kg and COP > 0.55), which can facilitate the adoption of 

SCS in AC applications. The methodology of this PhD thesis can be applied to other 

sorption applications, such as heat pump, heat transformer, heat storage, 

dehumidification, desalination and gas separation. 

In the literature, it is suggested that the minimum reasonable SCP and COP of SCS 

are 354 W/kg and 0.55 [6], [90], [91]. The desired SCP for AC of light-duty vehicles is 350 

W/kg [75]. Moreover, the maximum SCP achieved by 2016, i.e. beginning of this PhD 

program, was 675 W/kg [92]. Hence, the performance target for this PhD program was set 

to SCP > 700 W/kg, and COP > 0.55. As a proof-of-concept SCS, the cooling power was 

set to a cooling capacity > 0.5 kW to be tested in the lab; however, SCS are modular and 

can be scaled up for different applications.  

The aforementioned performance targets will be achieved with the following 

milestones: 

• Selection of suitable sorption pairs with a differential uptake of 0.4 g H2O/g sorbent; 

• Increasing the sorbent thermal diffusivity up to 1 mm2/s by adding thermally 

conductive additives; 

• Investigation of the transient behavior of sorbent materials by adding thermally 

conductive additives and their effect on sorption performance;  

• Development of suitable models to be used for design and optimization of the S-

HMX. 

• Finding the key design and operating parameters of the S-HMXs that dominate the 

performance of SCS; 

• Performing multi-objective optimization of the key parameters of the S-HMXs using 

the developed models to achieve optimum SCP and COP; 

• Building proof-of-concept S-HMXs based on the optimization study for targeted AC 

applications; and 

• Testing the optimized S-HMXs to experimentally validate the performance targets 

– SCP > 700 W/kg, and COP > 0.55, cooling capacity > 0.5 kW. 
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1.9.  Organization of the Dissertation 

This PhD dissertation is comprised of 6 chapters and 7 appendices organized as 

follows: 

1.9.1. Introduction to cooling technologies, vapor 

compression versus sorption 

Chapter 1 provides an introduction to cooling technologies for air conditioning (AC) and 

refrigeration. It was shown that vapor compression refrigeration (VCR) is the dominant 

technology currently used because of high performance, compactness, and low cost. 

Nonetheless, VCR systems have significant GHG emissions. Also, with the increasing 

trend of AC usage, the Grid and power plants would require significant investment to cope 

with the peak load by VCR. The substantial potential of sorption cooling systems (SCS) 

as an alternative to VCR was discussed due to environmentally friendly sorption pairs and 

utilization of low-grade thermal energy, such as waste heat and solar energy. Suitable 

sorption pairs were selected to achieve the target for the present PhD study. The need for 

research was shown by comparing SCS with VCR in terms of the performance 

parameters. The rationale behind the selection of the target performance parameters was 

elaborated. 

1.9.2.  Sorption performance enhancement with thermally 
conductive additives 

In Chapter 2, the effect of graphite flakes as thermally conductive additives in the 

sorbent on the sorption performance are studied. First, a critical literature review is 

conducted to identify the suitable additives for sorption systems and the appropriate 

methods to experimentally investigate their effect on the sorption performance. It was 

found that there is no study in the literature that investigates the counteracting effects of 

heat and mass transfer by adding thermally conductive additives. Hence, for the first time, 

the conflicting effects of graphite flake additives in the sorbent was studied using a custom-

built gravimetric large pressure jump (G-LPJ) test bed. G-LPJ test bed was custom-built 

in collaboration with Dr. Wendell Huttema, a former Postdoctoral Fellow, Dr. Claire 

McCague, a current Postdoctoral Fellow, and Khorshid Fayazmanesh, a PhD graduate at 

LAEC. Furthermore, the procedure to prepare the composite sorbents is discussed. 

Moreover, measurements of thermal diffusivity and sorption isotherm are presented, which 

were performed by Maryam Khajehpour, a former Postdoctoral Fellow at LAEC. 
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1.9.3. Analytical modeling of sorber bed heat and mass 

exchangers 

In Chapter 3, for the first time, 2-D analytical models were developed that consider the 

spatial and temporal variation of water uptake and temperature in the sorber bed heat and 

mass exchanger (S-HMX), and have low computation time, which is crucial for 

optimization and real-time control of the S-HMXs. The assumptions and solution 

methodology of the analytical models are presented for the plate-fin sorber bed heat and 

mass exchangers (P-HMX) in Cartesian coordinate system and the finned-tube sorber 

bed heat and mass exchangers (F-HMX) in cylindrical coordinate system. In addition, an 

off-the-shelf engine oil cooler is used for validation of the model and as a benchmark for 

the optimized S-HMXs, which will be presented in Chapter 1. Finally, a parametric study 

is performed to investigate the effect of the S-HMX geometry, heat transfer characteristics 

and cycle time on the sorption performance. 

1.9.4. Analysis of variance (ANOVA) and optimization of 
sorber bed heat and mass exchangers 

In Chapter 4, first, a critical literature review is carried out to show the gap in the 

literature to perform a simultaneous optimization of the S-HMX design and operating 

parameters. To address this gap, for the first time, the 2-D analytical model developed in 

the previous chapter, is used to conduct analysis of variance (ANOVA) to pinpoint the key 

parameters affecting the sorption performance. Furthermore, for the first time in the 

literature, a multi-objective optimization on the S-HMX key parameters is conducted 

achieving the optimum sorption performance. 

1.9.5. Development of optimized sorber bed heat and mass 

exchangers 

In Chapter 5, For the first time in the literature, the S-HMXs of the P-HMX and the F-

HMX were specifically designed for sorption cooling systems based on the optimization 

study. The manufacturing procedure and characteristics of the optimized S-HMXs of the 

plate fin sorber bed heat and mass exchanger (P-HMX) and the finned-tube sorber bed 

heat and mass exchanger (F-HMX) are presented. The two-sorber bed sorption test bed 

was initially custom-built by Dr. Amir Sharafian, a PhD graduate and Dr. Wendell Huttema, 

a former Postdoctoral Fellow at LAEC. The two-sorber bed sorption test bed was improved 
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and modified to test the optimized S-HMXs in the present study. Finally, the experimental 

results are presented and the optimized S-HMXs performance is evaluated. 

1.9.6. Conclusions, contributions, limitations, potential for 
further development and broader implementation, and 
future research  

In Chapter 6, the main conclusions, findings and contributions of this PhD study are 

discussed. Moreover, limitations and potential for further development and implementation 

of the developed methodology to other sorption applications, including, sorption pairs and 

thermally-conductive additives, analytical modeling, ANOVA, optimization, and 

development and testing of the sorber beds, are presented. Also, recommendations are 

presented for future research to approach the wide adoption of sorption cooling systems 

(SCS) for air conditioning systems and other applications of sorption systems, such as 

heat pump, heat transformer, heat storage, dehumidification, desalination and gas 

separation.  

1.9.7. Enhancement of coefficient of performance (COP) 

In Appendix A, methods are presented to increase COP of SCS, while keeping the 

system compact with high SCP. Detailed share of desorption heat and sensible energy of 

each component of the S-HMX, i.e. heat exchanger (HEX), sorbent material, refrigerant 

inside the sorbent and the heat transfer fluid (HTF) is discussed. The impact of HEX 

thermal conductivity and heat capacity on the COP is shown. The rationale behind the 

selection of aluminum as the HEX material is elaborated. Different methods of heat 

recovery are shown to eliminate thermal inertia of HTF. 

1.9.8. Uncertainty analysis of the measurements in chapter 
2 and 5 

In Appendix B, the uncertainty analysis in the measurements of this PhD study are 

presented. 

1.9.9. Gravimetric large pressure jump (G-LPJ) data 

In Appendix C, the gravimetric large pressure jump (G-LPJ) data, discussed in chapter 

2, is presented. 
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1.9.10. Optimized sorber bed heat and mass 
exchangers data 

In Appendix D, the data obtained from two-sorber bed sorption test bed by testing the 

P-HMX and the F-HMX, discussed in chapter 5, is presented. 

1.9.11. Matlab codes 

In Appendix E, the following Matlab codes are presented: 

• Matlab code used to process the G-LPJ data; 

• Matlab codes used to process the two-sorber bed sorption data; 

• Matlab code developed based on the 2-D analytical model for the P-HMX in 

Cartesian coordinate system; 

• Matlab code developed based on the 2-D analytical model for the F-HMX in 

cylindrical coordinate system; and 

• Matlab code to refine the intervals to increase the accuracy in 2-D analytical 

models. 

1.9.12. Analysis of variance (ANOVA) 

In Appendix F, a concise introduction to analysis of variance, ANOVA, used in chapter 

4, is presented. 

1.9.13. Drawings of sorber bed heat and mass 
exchangers 

In Appendix G, the CAD drawings used to build the P-HMX and the F-HMX discussed 

in chapter 5.3, are presented. 

 

1.9.14. Integration of sorption cooling systems in PEM 
fuel cell buses 

In Appendix H, the integration of sorption cooling systems in PEM fuel cell buses is 

discussed. 
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2. Sorption performance enhancement using thermally 
conductive additives 

2.1.  Overview 

In this chapter, for the first time in the literature, the trade-off between heat and mass 

transfer by adding thermally conductive additives to the sorbent is investigated. First, a 

critical literature review is conducted to identify the suitable additives for sorption systems 

and the appropriate methods to experimentally investigate their effect on the sorption 

performance. Furthermore, the procedure to prepare the composite sorbents is discussed. 

Moreover, measurements of thermal diffusivity and sorption isotherm are presented, which 

were performed by Dr. Maryam Khajehpour, a former Postdoctoral Fellow at LAEC. In 

addition, the gravimetric large pressure jump (G-LPJ) test bed is explained and the 

transient water uptake measurement is discussed. The G-LPJ test bed was custom-built 

in collaboration with Dr. Wendell Huttema, a former Postdoctoral Fellow, Dr. Claire 

McCague, a current postdoctoral fellow, and Dr. Khorshid Fayazmanesh, a PhD graduate 

at LAEC. Finally, the effect of graphite flake on the sorption performance is investigated. 

This chapter resulted in the following publications: 

1) H. Bahrehmand, M. Khajehpour, M. Bahrami, Finding optimal conductive additive 

content to enhance the performance of coated sorption beds: An experimental 

study, Applied Thermal Engineering, 143 (2018) 308-315. 

2) H. Bahrehmand, M. Khajehpour, W. Huttema, C. McCague, M. Bahrami, The 

impact of graphite flake on specific cooling power of sorption chillers, Heat Power 

Cycles Conference, Bayreuth, Germany, 2018. 

2.2.  Literature review 

Sorber bed heat and mass exchangers (S-HMXs) need to be cooled and heated during 

the sorption and desorption processes, respectively. As such, the oscillatory thermal 

behavior of sorption cooling systems (SCS) makes the sorbent thermal diffusivity crucially 

important in their performance. Sorbent thermal diffusivity is one of the main limiting 

factors in the heat transfer between the sorbent and the heat transfer fluid (HTF) through 

the heat exchanger (HEX) [1], [2], [76], [93]–[95]. Hence, developing composite sorbents 

with higher thermal diffusivity can enhance the overall performance of the S-HMXs [96], 

[97]. The addition of highly conductive materials can form higher conductivity paths by 

providing “bridges” in the porous microstructure of the sorbent particles to increase the 
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overall thermal conductivity and diffusivity. However, at the same time, adding these 

additives will lead to a decrease in the active sorption material fraction and may increase 

the vapor transport resistance [98]. Moreover, many microporous adsorbents have open 

pore structures and high total pore volumes [99]. As a result, significant improvements in 

thermal diffusivity of microporous adsorbent materials have been limited to high additive 

fractions (>10 wt.%), compromising the total sorption capacity. 

Demir et al. [100] used metallic particle additives to enhance the heat transfer rate 

through an unconsolidated adsorbent bed. Silica gel with metallic additives of copper, 

brass and aluminum (strips with 0.1 mm thickness, 2 mm width and 10 mm length) up to 

15% in mass basis was investigated. They noticed that the addition of 15 wt.% of 

aluminum pieces to silica gel enhanced thermal conductivity of a pure silica gel bed by 

242% (from 0.106 to 0.363 W/m K). They did not study the effects of the additives on the 

overall performance of adsorption cooling systems. Askalany et al. [101] studied the effect 

of using metallic additives on thermal conductivity of granular activated carbon (1-2 mm). 

Fillings of iron, copper and aluminum at different mass concentrations ranging from 10 to 

30 wt.% have been studied. They reported that thermal conductivity increased with an 

increase in metallic additives concentrations. However, metallic additives may not be 

suitable for corrosive sorbents such as salt/porous matrix composites. Therefore, graphite 

particles/additives may be a better candidate when a corrosive sorbent is used. Compared 

to most metals, graphite has higher intrinsic thermal conductivity, lower molecular weight 

and excellent stability at high working temperatures [98], and therefore, can be a suitable 

additive to enhance the sorbent thermal diffusivity. 

Graphite is by far the most studied additive for developing composite sorbents with the 

purpose of enhancing thermal conductivity [49]. When comparing different host matrices 

or/and additives, graphite presents the highest conductivity values [102]. For instance, 

Mauran et al. [103] reported thermal conductivities of about 10–40 W∙(m∙K)-1 for a CaCl2-

expanded natural graphite (ENG) composite.  

A summary of the existing studies on the effect of graphite additives on the heat and mass 

transfer of sorbent materials and the gap in the open literature are presented in Table 5. 

It can be seen that some of the studies did not report the water uptake, whereas the effect 

of graphite additive on water uptake is crucial in sorption performance and should be 

investigated. The majority of the studies that reported the water uptake, investigated the 

equilibrium uptake. However, in sorption cooling systems (SCS), the sorption rate is high 

at the beginning and decelerates as the sorbent approaches equilibrium. As a result, the 
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cycle time in SCS tend to be set short to keep the sorption rate high, resulting in higher 

sorption performance. Consequently, the sorbent material does not fully reach equilibrium 

in SCS [75]. Hence, in this study, a gravimetric large pressure jump (G-LPJ) test bed was 

custom-built to investigate the transient behavior of water uptake. 

Furthermore, Table 5 shows that the studies that investigate the transient water uptake, 

reported the sorption capacity per mass of active material. However, the additive mass, 

as part of the composite sorbent, should be included in the calculations of water uptake. 

By including the graphite mass in the denominator of water uptake, the transient water 

uptake reported would decrease because of high concentrations of graphite in the sorbent 

(as high as 50%). For example, it can be seen in Table 5 that some of the studies reported 

very high thermal conductivities. Nonetheless, high concentrations of ENG were used, 

which considerably reduces the sorption capacity. 

In this section, a number of CaCl2-silica gel composite sorbents with 0-20 wt.% graphite 

flake content are prepared and tested in the custom-made G-LPJ test bed to study the 

counteracting effect of graphite additive on the transient heat and mass transfer 

performance of SCSs. Our water uptake calculations include the graphite mass. 

Table 5. Summary of the existing studies on the effect of graphite additive on heat and 
mass transfer of the sorbent and the gap in the research 

Ref. Sorbent Thermally 

conductive 

additive 

Increase in 

thermal 

conductivity 

W∙(m∙K)-1 

Uptake 

(g∙g-1) 

Gap in the 

research 

[104] Packed bed 

zeolite 

Expanded 

graphite 

0.09 to 10 Not reported Uptake not 

reported 

[99] 4A-zeolite-

based 

composite 

Graphite (40%) 0.1 to 0.35 Equilibrium 

uptake 

decreased 

from 0.23 to 

0.13 

Equilibrium 

uptake 

reported 

[105] CaCl2 Expanded 

graphite 

Up to 9.2 Not reported Uptake not 

reported 

[106] CaCl2 and 

silica gel 

Graphite flakes 

(20 %) 

0.57 to 0.78 Equilibrium 

uptake 

decreased 

Equilibrium 

uptake 

reported 
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from 0.32 to 

0.15 

[107] silica gel Expanded 

graphite (40%) 

Up to 19 Transient 

uptake 

increased 

Graphite 

weight was 

not included 

in 

calculations 

[108] silica gel Expanded 

natural 

graphite 

treated with 

sulfuric acid 

(ENG-TSA) 

Up to 20 Transient 

uptake 

increased 

Graphite 

weight was 

not included 

in 

calculations 

2.3.  Sample preparation 

A polyvinylpyrrolidone (PVP40) binder (40,000 MW, Amresco Inc.) was dissolved in 

water; subsequently, CaCl2 and silica gel (SiliaFlash® B150, Silicycle, Inc., Quebec, 

Canada) and graphite flakes (consisting of both 150 μm fine particles and thin flakes up 

to 1.3 mm long, Sigma-Aldrich) were added to the aqueous solution. The composition, 

total mass and coating thickness of the sorbent composites prepared in this study are 

presented in Table 6. Mass percentages of 0–20 wt.% were selected for graphite flakes 

as the initial values. If the optimization study in Chapter 4 shows that the optimal design 

requires higher amounts, then higher amounts will be added and the measurements of 

thermal diffusivity and equilibrium uptake will be conducted. The slurry composites were 

coated on graphite sheets and dried at 70 °C and then cured at 180 °C in the oven, each 

for 1 hour. Fig. 16 shows the composite sorbent with 0-20 wt.% graphite flake content 

coated on graphite sheets. Dry sorbent mass was measured using an analytical balance 

(OHAUS AX124) with an accuracy of 0.0001 g and the sorbent thickness was measured 

using a digital caliper (Mastercraft 58-6800-4) with an accuracy of 0.01 mm. The 

uncertainty in the calculation of graphite flake content in the sorbent was 5.07e-4–5.38e-

4 wt.%. 
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Table 6. Compositions, dry mass, and coating thickness of the sorbent composite 
samples, shown in Fig. 16 

No. 
Silica gel 

(wt.%) 

CaCl2 

(wt.%) 

PVP40 

(wt.%) 

Graphite 

flake 

(wt.%) 

Dry mass 

(g) 

Coating 

Thickness 

(mm) 

1 45.0  45.0 10.0 0.0 18.8068 5.15 

2 42.5 42.5 10.0 5.0 18.7018 5.12 

3 40.0 40.0 10.0 10.0 18.7841 5.08 

4 37.5 37.5 10.0 15.0 18.6930 5.09 

5 35.0 35.0 10.0 20.0 18.8815 5.06 

 

 

Fig. 16. The composite sorbents with 0-20 wt.% graphite flake content coated on 
graphite sheets, see Table 6 for more details 

2.4.  Thermal diffusivity measurements 

Thermal diffusivity of composite sorbents with different graphite flake contents was 

measured using a transient plane source, hot disk thermal constants analyzer, as per ISO 

22007-2 [109] (TPS 2500S, ThermTest Inc., Frederiction, Canada), available in our lab. 
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Fig. 17 shows the picture and schematic of TPS adopted from Ref. [106]. Details of TPS 

testing can be found elsewhere [106]. 

 

 

Fig. 17. (a) Picture; and (b) schematic of transient plane source (TPS) [106] 
 

The tests were performed in a temperature and humidity-controlled chamber. Thermal 

diffusivity of the composite sorbents was tested five times to ensure repeatability and a 

standard deviation of 10% was observed. The samples were tested at 10% and 30% 

relative humidity at 40 °C to be consistent with G-LPJ measurements in Section 2.6. The 

averaged values of thermal diffusivity versus graphite flake content are plotted in Fig. 18. 
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It can be seen that the addition of 20 wt.% graphite flakes to the composite sorbent 

enhances thermal diffusivity by 500%. Such enhancement in thermal diffusivity is 

attributed to the dispersion of graphite flakes through the composite, and hence, the 

formation of conductive networks within the sorbent matrix. Moreover, we noticed a more 

pronounced increase in thermal diffusivity for samples with more than 10 wt.% graphite 

flakes. This “hockey stick” behavior can be explained by thermal percolation threshold 

[110]. The percolation threshold determines the probability that fillers/additives within a 

medium are sufficiently connected to form a conductive network [111]. Therefore, when a 

certain volume is available in the composite matrix, the graphite flakes should be added 

up to the amount that is enough for making a conductive network within the composite to 

increase thermal conductivity and diffusivity [110].  

 

Fig. 18. Thermal diffusivity of the composite sorbents in Table 6 versus graphite flake 
content, hockey-stick behavior between 0-10 wt.% and 10-20 wt.% graphite flakes 

2.5. Material characterization 

The composite microstructure was imaged using a scanning electron microscope 

(FEI/Aspex-Explorer) at room temperature. Fig. 19 shows the SEM images of the graphite 

flakes used as thermally conductive additive. The SEM images reveal that the graphite 
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flakes have the average size of ~ 500 × 200 µm. Fig. 20 shows the SEM images of the 

composite sorbent consisting of silica gel, CaCl2 and PVP40, sample No. 1 in Table 6. 

Fig. 21 and Fig. 22 show the SEM images of the composite sorbents containing 5 wt.% 

and 20 wt.% graphite flakes, samples No. 2 and 5 in Table 6, respectively. The layers of 

graphite can be observed in Fig. 21 (d) and (e), and Fig. 22 (c)–(e). Fig. 21 and Fig. 22 

show the dispersion of the graphite flakes (demarcated in green in Fig. 22 (a)) in between 

CaCl2, silica gel particles, and a binder in the composite. The SEM images reveal that 

graphite flakes distributed in the composite are held by the polymer binder and form a 

thermally conductive network, which allows for better heat transfer through the composite. 

According to percolation theory [110]–[112] discussed in Section 2.4, it is important to 

consider the amount of the graphite flake relative to the available volume in the composite 

for their dispersion for percolation to occur, which increases thermal conductivity 

significantly. 

 
Fig. 19. SEM image of graphite flakes used as the thermally conductive additive 
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Fig. 20. SEM images of the composite sorbent consisting of 45 wt.% silica gel, 45 

wt.% CaCl2 and 10 wt.% PVP40, sample No. 1 in Table 6 
 

   

  

 

Fig. 21. SEM images of the composite sorbent consisting of 42.5 wt. % silica gel, 
42.5 wt. % CaCl2 and 10 wt. % PVP40, and 5 wt.% graphite flake, sample No. 2 in 

Table 6 
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Fig. 22. SEM images of the composite sorbent consisting of 35 wt. % silica gel, 35 wt. 
% CaCl2 and 10 wt. % PVP40, and 20 wt.% graphite flake, sample No. 5 in Table 6, 

graphite flakes are demarcated in green 
 

Water sorption isotherms of the composite sorbents are obtained using an IGA-002 

thermogravimetric sorption analyzer (TGA) (Hiden Isochema Ltd.). Fig 23 shows the 

schematic and picture of the TGA [106]. Sorbent material was placed on the sample cell, 

which was held by a microbalance to measure the mass changes of the sorbent, while the 

temperature and pressure were controlled. The mass changes of the sorbent were 

collected in the range of 0.04–2.84 kPa with the pressure step of 0.2 kPa at 25°C. As 

expected, the composites with a higher content of conductive additives possessed less 

water uptake as they had less active sorbent material. More details regarding the TGA 

measurements can be found elsewhere [106].  
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Fig 23. (a) Schematic; and (b) picture of IGA-002 thermogravimetric sorption analyzer 
(TGA) (Hiden Isochema Ltd.) [106] 

 

Fig. 24 shows the water sorption isotherms of the composite sorbents obtained from 

the TGA. The pressure range, where the gravimetric large pressure jump (G-LPJ) 

measurements were performed, is demarcated on Fig. 24.  More details on our G-LPJ 

tests can be found in section 2.6.  

The Dubinin–Astakov (D–A) [94], [113] was fitted to the equilibrium uptake data using 

MATLAB and the following correlation was obtained with an R2 of 0.9954.  

( )
0.2850

01 9.01exp 0.5485 lneq

p
T

p
 

      = − −   
      

 
[g water / g dry 

sorbent] 
(8) 

where, φ is the ratio of graphite weight to the total composite weight (g graphite/g total 

dry sorbent), T is the sorbent temperature (K), p is the pressure of the sorber bed chamber 

(kPa), p0 is the water saturation pressure at the sorbent temperature (kPa). 
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Fig. 24. Isotherms of the composite sorbents with 0-20 wt. % graphite flake contents in 
Table 6, isotherms were obtained at 25 °C, the p/p0 range for G-LPJ tests is shown 

(0.119-0.309), the operating conditions for this range are Tsorp=39 °C, Tevap=20 °C and 
Tcond=1 °C 

2.6. Gravimetric large pressure jump test bed 

A gravimetric large pressure jump (G-LPJ) test bed was custom-built in our lab to 

investigate the transient heat and mass transfer performance of sorber bed heat and mass 

exchangers (S-HMXs). Sorbent materials consisting of CaCl2, silica gel B150, PVP-40, 

and 0-20 wt.% graphite flakes were coated on 1.8 mm thick graphite sheets (with the 

density of 1,318 kg/m3) and bolted to a copper heat exchanger as shown in Fig. 25. Heat 

transfer fluid (HTF) was pumped through the copper heat exchanger to maintain its 

temperature almost constant at 39 °C. The S-HMX and the copper heat exchanger were 

placed inside a vacuum chamber connected to a capillary-assisted evaporator acting as 

both condenser and evaporator, which had its temperature changed between 1°C and 

20°C for desorption and sorption, respectively. The whole test bed was vacuumed for 6 

hours using a vacuum pump to dry the sorbent material. The vacuum chamber was placed 

on a precision balance (ML4002E, Mettler Toledo) with an accuracy of 0.01 g to measure 
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the mass of the sorbate uptake. Five K-type thermocouples with an accuracy of 1.1 °C 

were passed via a feed-through in the vacuum chamber to measure the sorbent 

temperature. The pressure of the sorber bed and the evaporator was measured using a 

722B Baratron pressure transducer (MKS instruments) with the accuracy of 0.5%. The 

instruments were interfaced with a PC through a data acquisition system and an in-house 

software built in the LabVIEW environment. Schematic diagram and a picture of our G-

LPJ test bed are shown in Fig. 26.  

 

 

Fig. 25. A graphite-coated composite sorbent connected to the copper heat exchanger 
mounted inside the vacuum chamber, HEX: heat exchanger 
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Fig. 26. (a) Schematic diagram; and (b) picture of the G-LPJ test bed, thermal baths are 
not shown in (b), the operating conditions for G-LPJ tests are Tsorp=39 °C, Tevap=20 °C 

and Tcond=1 °C 

2.7.  Results and discussion 

Due to the small vibrations of the hose connected to the sorber bed chamber in our G-

LPJ test bed, see Fig. 26, a very small shift occurs in the mass measurement within short 

time intervals. When all these small shifts are accumulated over time, they result in larger 

shifts. Nonetheless, considering the randomness of these shifts, the error decreases as 

more tests are done. Hence, each measurement was conducted five times and the 

maximum standard deviation of the equilibrium water uptake, i.e. water uptake when 

sorbent has reached saturation, was observed to be 7%. As an example, five water uptake 

measurements of the sorbent with 20 wt.% graphite flakes are plotted in Fig. 27. 

 

Fig. 27. Five water uptake measurements of the sorbent with 20 wt.% graphite flakes  
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Variation of chamber pressures of evaporator and sorber bed, sorbent temperature and 

water uptake versus time are shown in Fig. 28−Fig. 30. As shown in Fig. 28, during the 

sorption process, the evaporator and sorber bed pressure is 2.34 and 2.16 kPa, and during 

the desorption process, the condenser and sorber bed pressure is 0.65 and 0.83 kPa, 

respectively. These pressure values of the sorber bed and its temperature, i.e. 39 °C, 

correspond to p/p0=0.309 and 0.119 for sorption and desorption processes, respectively 

(Fig. 24). Moreover, the large pressure jump at the beginning of each sorption and 

desorption process can be observed. As shown in Fig. 29, at the beginning of de/sorption 

process, the sorbent temperature de/increases rapidly due to the endo/exothermic nature 

of de/sorption processes, respectively, and high enthalpy of sorption. After this 

temperature drop/jump, the sorbent is heated/cooled to continue the de/sorption 

processes. The rate of these heat/cool processes after the temperature drop/jump 

determines the performance of sorption cooling systems. Fig. 30 also depicts the water 

uptake variation during the desorption and sorption processes. It is noted that during the 

first sorption process, the temperature jump and the uptake are higher than the next 

sorption processes as the sorbent is vacuum dried before each test. Furthermore, Fig. 30 

shows that the de/sorption processes continued until the sorbent reached an equilibrium 

condition based on the sorption rate (d/dt) for the last 10 min. The results presented in 

the following sections are the de/sorption processes after the first sorption process. 
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Fig. 28. Variation of pressures of the evaporator chamber and the sorber bed chamber 
over time for the composite sorbent with 20 wt.% graphite flakes. Data collected in our 

G-LPJ test bed. Tsorp=39 °C, Tevap=20 °C and Tcond=1 °C. 

 

Fig. 29. Variation of the sorbent temperature over time for the composite sorbent with 20 
wt.% graphite flakes. Data collected in our G-LPJ test bed. Tsorp=39 °C, Tevap=20 °C and 

Tcond=1 °C. 
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Fig. 30. Variation of water uptake over time for the composite sorbent with 20 wt.% 
graphite flakes. Data collected in our G-LPJ test bed. Tsorp=39 °C, Tevap=20 °C and 

Tcond=1 °C. 

2.7.1. Effect of graphite flake on transient water uptake 

Fig. 31 (a) shows the experimental variation of water uptake with time for various 

graphite flake content, and Fig. 31 (b) shows both experimental and modeling results, 

presented in Chapter 0. As shown in Fig. 31, the equilibrium uptakes, measured with the 

G-LPJ test bed, are in good agreement with our TGA equilibrium data. Moreover, as can 

be seen, in the early stages of sorption, i.e. the first 20 minutes, the water uptake increases 

by increasing the graphite flakes content. The reason for this trend is that during this 

period, the heat generation rate in the sorbent is high. Hence, there is a higher need for 

enhanced sorbent thermal diffusivity; thus, increasing the amount of graphite flake 

enhances the sorption performance. However, as the sorbent approaches saturation, the 

trend starts to reverse, which means that the uptake increases with the decrease of 

graphite content. That is because: as the sorbent approaches equilibrium, the heat 

generation rate reduces. As a result, the need for enhanced heat transfer decreases. 

Consequently, the sorbent with a higher active material can uptake more, which leads to 

higher performance. 
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Fig. 31. Variation of water uptake versus time for composites with different graphite 

flake contents for Tsorb=39 °C, Tevap=20 °C, and Tcond=1 °C: (a) data collected in our G-
LPJ test bed; and (b) 2-D model in Chapter 0 versus G-LPJ data 
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2.7.2. Effect of graphite flake on specific cooling power 

Fig. 32 shows the experimental specific cooling power (SCP) data collected in our G-

LPJ test bed and results obtained from the 2-D analytical model, introduced in Chapter 0, 

for various cycle times and different graphite flake content. The uncertainty analysis in the 

SCP calculation is presented in Appendix B. It can be seen that for relatively short cycle 

times, less than 20 minutes, adding graphite flake enhances the SCP because the sorbent 

thermal diffusivity increases. Furthermore, it can be observed that by reducing the cycle 

time, the SCP enhancement due to adding graphite flake, increases because the heat 

generation rate increases. However, for long cycle times, SCP decreases by increasing 

the graphite flake content because the amount of active material reduces. It is evident 

from Fig. 32 that there is a need for the optimization of cycle time and the amount of 

graphite flake in the sorbent.  

 

Fig. 32. Variation of specific cooling power (SCP) versus cycle time for various graphite 
flake contents 
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2.8.  Conclusion 

The effect of graphite flake additives on the performance of sorption cooling systems 

was studied using a custom-built G-LPJ test bed. It was found that in the early stages of 

sorption, the S-HMX performance was notably improved, e.g. from 178.1 to 334.9 W/kg 

for a 6-minute cycle time, by adding graphite flakes. This was due to the enhanced sorbent 

thermal diffusivity (from 0.23 to 1.38 mm2/s). Also, it was shown that as the sorption rate 

reduces with time, the need for heat transfer enhancement, such as a graphite flake 

additive, decreases. Therefore, the graphite flake content and cycle time need to be 

optimized to achieve optimum SCP. 
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3. Analytical modeling of sorber bed heat and mass exchangers 

3.1.  Overview 

In this chapter, for the first time in the literature, 2-D analytical models were developed 

that consider the spatial and temporal variation of water uptake and temperature in the 

sorber bed heat and mass exchangers (S-HMXs). The developed analytical models have 

low computation time, which is crucial for optimization and real-time control of the S-

HMXs. The assumptions and solution methodology of the analytical models are presented 

for the plate-fin sorber bed heat and mass exchangers (P-HMX) in the Cartesian 

coordinate system and the finned-tube sorber bed heat and mass exchangers (F-HMX) in 

the cylindrical coordinate system. Moreover, an off-the-shelf engine oil cooler is used for 

validation of the model and as a benchmark for the optimized S-HMXs, which will be 

presented in Chapter 1. Furthermore, a parametric study is performed to investigate the 

effect of the S-HMX geometry, heat transfer characteristics and cycle time on the sorption 

performance. This chapter resulted in the following publications: 

1) H. Bahrehmand, M. Bahrami, “An analytical design tool for sorber bed heat and 

mass exchangers of sorption cooling systems,” International Journal of 

Refrigeration, 100, 2019, 368-379 . 

2) H. Bahrehmand, M. Ahmadi, M. Bahrami, “Oscillatory heat transfer in coated 

sorber beds: An analytical solution,” International Journal of Refrigeration (2018), 

https://doi.org/10.1016/j.ijrefrig.2018.05.006. 

3) H. Bahrehmand, M. Ahmadi, M. Bahrami, “Analytical modeling of oscillatory heat 

transfer in coated sorption beds,” International Journal of Heat Mass and Transfer, 

121 (2018) 1–9. 

4) H. Bahrehmand, M. Bahrami, “Analytical model for sorber bed heat and mass 

exchangers of sorption cooling systems,” International Conference on 

Polygeneration, Fukuoka, Japan, 2019. 

5) S. Bahrehmand, K. Fayazmanesh, W. Huttema, M. Ahmadi, C. Mccague, M. 

Bahrami, “Analytical modeling of oscillatory heat transfer in coated sorption beds,” 

International Sorption Heat Pump Conference, Tokyo, Japan, August 2017. 

3.2.  Literature review 

It was shown in Chapter 1 that there is a need for optimization of cycle time and the 

amount of graphite flake in the sorbent to acquire an optimum SCP. To optimize the S-
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HMX, a model is required that considers the spatial and temporal variation of water uptake 

and temperature in the sorbent and the heat exchanger. In this chapter, we propose a new 

2-D analytical model that can be used as a platform for the design and optimization of a 

plate-fin sorber bed heat and mass exchanger (P-HMX) and a finned-tube sorber bed heat 

and mass exchanger (F-HMX). 

Many researchers have developed thermodynamic, lumped, numerical and analytical 

models of the S-HMX to enhance and optimize the performance of sorption cooling 

systems (SCS). A summary of available studies in the literature is presented in 

Table 7. However, one can conclude that the literature lacks an analytical model that 

includes the spatial and temporal variation of water uptake and temperature in the sorbent 

and the heat exchanger. Also, a model that yields a closed-form solution that can directly 

calculate the performance for a certain time as opposed to marching through time steps 

in the numerical models. This can decrease the computation time significantly, which is 

key for real-time control and optimization of the S-HMXs. 

The present model is developed to address these challenges and is validated against 

experimental data collected from our custom-designed gravimetric large pressure jump 

(G-LPJ) test bed in Chapter 1, and the optimized S-HMXs built and tested in Chapter 1, 

as well as with off-the-shelf engine oil coolers presented in Section 3.6. 

As explained in Chapter 1, graphite flakes can be added to the composite sorbent, 

consisting of CaCl2, silica gel B150, and PVA binder to enhance its thermal diffusivity. 

Nonetheless, these thermally conductive graphite flakes reduce the active sorbent fraction 

in the composite, creating a need for establishing an optimum composition [11]. Using the 

validated closed-form solution, a parametric study is conducted to investigate the effect of 

the S-HMX geometry, heat transfer characteristics, and cycle time on SCS performance.
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Table 7. Summary of modeling approaches of sorber bed heat and mass exchangers in sorption cooling systems 

Modeling approach Ref. 
No. 

Characteristics of the 
parametric study 

Merits Limitations 

Thermodynamic 
model 

[114], 
[115] 

• Driving temperature • Very low 
computation time 

• Predicts only the upper performance 
limits 

Lumped model [116] • Cycle time • Low computation 
time 

• Uniform sorbent temperature 

• Uniform sorption of refrigerant 

• Neglects inter-particle heat and 
mass transfer resistances 

• Dependent on previous time steps 

[117] • Fin spacing 

• Cycle time 

• Generation temperature lift 
[118]  

[119] • Fin height 

• Fin spacing 

Steady state analytical 
lumped model 

[120] • Flat tube thickness 

• Fin pitch  

• Fin thickness 

• Water channel wall 
thickness 

• Very low 
computation time 

• Neglects transient behavior of 
system 

• Neglects inter-particle heat and 
mass transfer resistances 

Numerical model [121] • Fin spacing 

• Number of fins 

• Considers spatial 
and temporal 
variation of 
sorbent 
temperature and 
sorbate uptake 

• High computation time 

• Dependent on previous time steps 

[122] • Fin pitch 

• Fin thickness 

• Fin height 

• Diffusion coefficient 

• Particle size 

• Cycle time 

• Cycle ratio 

• Hot water temperature 

• Fluid velocity 

• Porosity 
[123]  • Fin radius 

• Fin thickness 

• Number of fins 



 55 

[124] • Adsorbent bed thickness 

• Convective heat transfer 
coefficient 

• Sorbent Thermal 
conductivity 

[125] • Fin spacing 

• Fin height 
[126] • Particle diameter 

• Adsorbent bed thickness 
[127]
–
[131] 

• Fin height 

• Fin spacing 

• Particle diameter 
Present 2-D transient 
analytical model 

 • Graphite flake content in 
the sorbent 

• Fin height 

• Fin thickness 

• Sorbent thickness 

• Fluid channel height 

• Cycle time 

• Low computation 
time 

• Considers 2-D 
spatial and 
temporal 
variation of 
sorbent 
temperature and 
sorbate uptake 

• Independent of 
previous time 
steps 

• Considers 
anisotropic 
thermal 
conductivity 

• Considers TCR 
at the interface 
between sorbent 
and fin 

 

Note: References [121], [122], [125], [128] consider thermal contact resistance at the interface between the sorbent and the HEX.
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Plate fin heat and mass exchangers (P-HMX), i.e. rectangular fluid channels with 

rectangular fins, and finned-tube heat and mass exchanger (F-HMX), i.e. circular fluid 

tubes with annular fins are selected as the S-HMX due to their relatively high SCP and 

COP [75]. In the following sections, the development of the analytical model is explained 

in Cartesian and cylindrical coordinate systems for the P-HMX and the F-HMX, 

respectively. 

3.3.  Model development for plate fin sorber bed heat and mass 
exchangers 

The solution domain of P-HMX, shown in Fig. 33, can be used to predict the 

performance of the entire S-HMX. 

The following is the list of the assumptions used in the development of the present 

model: 

1. Uniform sorbate pressure inside the sorbent; 

2. Thermodynamic equilibrium of sorbent and sorbate; 

3. Local thermal equilibrium between sorbent and sorbate; 

4. The heat transfer fluid is assumed to have a constant temperature along the 

solution domain; justifiable due to the relatively higher heat capacity of the heat 

transfer fluid [132]; and 

5. The boundaries of the sorbent and the fin, which are in contact with low-pressure 

refrigerant vapor, are assumed adiabatic. This is a fair hypothesis since the Biot 

number is low as shown below: 
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 (9) 

where, T is the temperature (K), k is thermal conductivity (W/(m K)), Bi is the Biot 

number (-), ts is the sorbent thickness (m), and b is the fin height (m), respectively. 

Also, h is the convective heat transfer coefficient between the water vapor (the 

refrigerant) and the sorbent [133], [134]. It was shown by Wakao and Kaguei [134] that 

the interfacial convection and the external convection are of the same order of 
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magnitude. Also, the radiative heat transfer is negligible because of low temperature 

difference between the sorbent and its surrounding (10–20 K). 

6. Thermophysical properties of the sorbent and HEX are assumed constant. Averaged 

values over the range of operating conditions are used, Table 8. 

7. The convection term in the energy equation, which accounts for the sorbate convection 

inside the sorbent coating, is assumed negligible as the Peclet number, which 

represents the ratio of the convection to the diffusion term in the energy equation, is 

small as follows [132]: 

( )
2 3 1 3
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10 10 10 10
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10

g p g g

s

c u L
O O

k

 − − −

−

    
= = = 

 
 [-] (10) 

where, L is the characteristic length, in the order of millimeters, ug, vapor velocity, is in 

the order of 0.1 m/s [129], respectively. Also, ρg and cp,g are density and specific heat 

of water vapor, and are equal to 0.051 kg/m3 and 1,904 J/kg K, respectively. 

8. The sorbent coated on the tube in the gap between the sorbent coatings and the fins, 

i.e. tfs shown in Fig. 33, is neglected as tfs is much smaller than the fin height. 

It should be noted that if the vapor passage of tfs is included in the design, the boundary 

condition is zero temperature gradient due to negligible convection and radiation heat 

transfer as explained in Eq. (9) and (19). Furthermore, if the vapor passage is not included 

and the entire fin spacing is filled with the sorbent, i.e. zero tfs, then the zero-temperature 

gradient boundary condition would still be valid because of symmetry. Thus, the model is 

applicable whether tfs is included or not.  
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Fig. 33. (a) The solution domain of P-HMX; and (b) optimized P-HMX, which will be 
explained in Chapter 1, tfs is zero in (b) 

 
Using the aforementioned assumptions, the energy equation for the sorbent layer and 

the fin in the Cartesian coordinate system can be written as follows: 
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where, i=s, f represents the sorbent and fin domains, respectively. Also, ρ is the density 

(kg/m3), ω is the water uptake (g water/g sorbent), hads is the sorption enthalpy (J/kg), and 

α is thermal diffusivity (m2/s), respectively. The convective boundary conditions are: 

( )
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where, tt is the tube wall thickness (m), k is thermal conductivity (W/(m K)), h is the 

convective heat transfer coefficient of the heat transfer fluid (W/(m2 K)), TCR is thermal 

contact resistance between the sorbent and the heat exchanger (K/W), and A is the 

surface area of the TCR interface (m2), respectively. If fins and tubes of HEX are not in 

one piece and are attached together, TCR should be added to Eq. (16). Also, the 

convective heat transfer coefficient is calculated by the correlation proposed by Gnielinski 

[135], which is applicable for 3,000<Re<106. It should be noted that the Reynolds number 

in this study for the plate-fin sorber bed heat and mass exchanger (P-HMX) is between 

7,800 and 9,700 for a fluid channel height of 4–8 mm, a fluid channel width of 1.3 cm, and 

a volumetric flow rate of 5 L/min, Table 9. The fluid regime is turbulent as the Reynolds 

number is more than 4,000. 
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H
= −  [W/m2 K] (17) 

where, kw is water thermal conductivity (W/(m K)), Hc is the tube channel height (m), 

Re is the Reynolds number (-), Pr is the Prandtl number (-), respectively. The adiabatic 

boundary conditions are:  
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where, b is fin height (m), ts is sorbent thickness (m), and tf is fin thickness (m), 

respectively. Due to symmetry, one can write the following for the lower side of the fin:  
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(20) 
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Thermal contact resistance (TCR) between the sorbent and the HEX surface is 

important and can be up to 28% of the total thermal resistance inside a sorber bed [1], 

[97], [136]. Hence, it is included in the present model as a parameter with a constant value. 

TCR at the silica gel/copper interface was measured by Sharafian et al. [136] using a 

guarded-hot plate apparatus under vacuum pressure, and the range of 1.3–3.8 K/W was 

reported. As can be seen in Fig. 34, the SCP values predicted by the present model are 

in good agreement with those measured with G-LPJ test bed for the reported range of 

TCR. Thus, TCR of 3 K/W was selected for this study. It is noted that the main uncertainty 

in SCP calculation is due to the mass measurement of the sorbate uptake and can result 

in the uncertainty of 0.5–3.5 W/kg. More information can be found in references [1], [2]. 

 

Fig. 34. Comparison of the model with G-LPJ data for the range of TCR measured in 
Ref. [136] 

 

Continuity of heat flux as well as temperature jump/drop created by TCR are considered 

at the interface between the sorbent coating and fin as follows: 
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where, kf,y is through-plane fin thermal conductivity (W/(m K)), ks is sorbent thermal 

conductivity (W/(m K)), and tf is fin thickness (m), respectively.  
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3.3.1. Solution methodology 

The energy equation, Eqs. (11)–(22), is solved using the Eigenfunction Expansion 

Method. The Eigenfunction Expansion Method has been widely used in heat transfer 

problems, particularly for multi-layer domains, time-dependent boundary conditions and/or 

source terms [137]–[142]. 

The following non-dimensional variables can be defined.  
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where,  is the dimensionless temperature, the Fourier number, Fo, is the 

dimensionless time, ξ and  are the dimensionless Cartesian coordinates, respectively. 

Using the aforementioned dimensionless variables, the dimensionless energy equation 

can be obtained as follows: 
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where, hads is the sorption enthalpy (J/kg), cp is the specific heat (J/ (kg K)), and ω is 

the water uptake (g water/g dry sorbent), respectively. Water uptake can be modelled in 

terms of the operating conditions, i.e. pressure and temperature of the S-HMX. A linear 

relationship is obtained between the water uptake and sorbent temperature for each 

pressure during the isobaric sorption and desorption processes. A detailed explanation is 

presented in section 3.5. 

The dimensionless boundary conditions are: 
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The dimensionless energy equation, Eqs. (23)–(33), is solved using the Eigenfunction 

Expansion Method. The closed-form solution of the dimensionless temperature is as 

follows: 

1 1
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(34) 

where, X and ψ are spatial Eigenfunctions in η and ξ directions, respectively. Also, Γ is 

the temporal Eigenfunction. Based on Eqs. (23)–(33), the following eigen-value problem 

can be established in η direction [143].  
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2 0X X + =  (35) 

0 at 0X Bi X − = =  (36) 

0 at 1X  = =  (37) 

The following transcendental equation is obtained to evaluate the eigenvalues.  

tan( ) Bi  =
 (38) 

where, γ is the eigenvalue (-), and Bi is Biot number (-), respectively. The eigenfunction 

associated with each eigenvalue are given as follows:  
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 (39) 

Moreover, the eigen-value problem in ξ direction can be established as follows: 
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where, ρ is density (kg/m3), cp is specific heat (J/(kg K)), hads is sorption enthalpy (J/kg),    

m’ is the slope of the linear relationship between sorbent temperature and water uptake 
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(1/K), which is explained in Section 3.5, respectively. Eqs. (40)–(47) is a singular 

eigenvalue problem due to non-continuous p, r and q. Also, k
2 can be positive, negative 

or zero depending on thermophysical properties and geometrical characteristics of the 

sorbent and the fin, as well as the eigenvalue in η direction (γ). Thus, the eigenvalue 

problem does not have a simple solution with eigenfunction and transcendental equation. 

The present thesis follows the solution proposed by Mikhailov and Vulchanov [144]. First, 

the eigenvalue problem is approximated by uniformly dividing the slabs (sorbent and fin) 

into n–1 intervals (n is an arbitrary number at first). The finer the division of the intervals, 

the more accurate the approximation. The new eigenvalue problem with boundary 

conditions are as follows:  
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TCR at the interface between the sorbent and the fin is taken into account as an 

additional imaginary layer as follows: 
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Hence, thermal conductivity of this layer must satisfy the following equation for an 

arbitrary length of lk. 
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(58) 

where, ts is sorbent thickness (m), tf is fin thickness (m), TCR is thermal contact 

resistance between the sorbent and the heat exchanger (K/W), and A is the surface area 

of the TCR interface (m2), respectively. The following eigenfunctions can be acquired for 

each interval (ξk<ξ< ξk+1). 
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By substituting the afore mentioned eigenfunctions into the boundary conditions (Eqs. 

(50)–(53)), the following equations can be obtained to calculate the eigenfunctions for 

each interval. 
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where, 
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(64) 

Eq. (62) forms a linear system of (n+1) homogeneous equations for determination of 

the eigenfunctions as follows: 

 
   0K  =

 
(65) 

By equating the determinant of coefficient matrix [K] to zero, the transcendental 

equation is acquired to evaluate the eigenvalues. 

 ( )det 0K =
 

(66) 

The eigenvalues are calculated using the algorithm proposed by Mikhailov and 

Vulchanov, which is based on a sign-count method [144], as follows: 

The number of positive eigenvalues between zero and some prescribed positive value, 

𝜆̃, can be calculated as follows: 
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where, sign-count, i.e. 𝑠([𝐾(𝜆̃)]), is the number of negative elements along the main 

diagonal of the triangulated form of  𝐾(𝜆̃) and equal to the number of negative elements 

in the following sequence. 
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Fig. 35 shows the algorithm used to acquire the eigenvalues. The order of eigenvalue, 

i, accuracy, εi, lower bound, λl, upper bound, λu, and the increment, 𝛿, are set and the 

iterations are performed until the accuracy is met. The accuracy in obtaining the 

eigenvalues is set to 0.001. 

 

Fig. 35. Flow chart of the algorithm used to acquire the eigenvalues 

 

Subsequently, the eigenfunctions are calculated as follows: 

0 1 = −
 

(72) 

1 1 1/A B = −
 

(73) 

( )( )1 1 1 1/ , 1,2,..., 1k k k k k k kA A B B k n  + + − += + − = −
 

(74) 

Afterwards, the accuracy of the eigenfunctions is calculated for the last interval. 

( )1 maxabs ,n n n n global globalB A n    −− +   
 

(75) 
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where, the accuracy is set to 1e-8 in the present study. If this accuracy requirement is 

not satisfied, then the intervals are refined based on the algorithm proposed by Mikhailov 

and Vulchanov [144] until it is satisfied as shown in Fig. 36. 

 

Fig. 36. Flow chart of the algorithm used to refine the intervals to increase the accuracy 

 

Now that the eigenfunctions in η and ξ directions are calculated, the last step is to 

obtain the Gamma function () which represents the time variation of . 

Every time-dependent function can be expanded in the form of an infinite series of 

products of the eigenfunctions in η and ξ directions.  
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where, using the orthogonal property of the Eigenfunctions 



 69 

1 1

10

1 1
2 2

10

( )

( )

kn

i k k
k k

nm
kn

k k
k k

g Fo Xd r d

g Fo

X d r d









  

  

+

=


+

=

 
 
 
 

=
 
 
 
 

 

 
 

(77) 

By substituting Eq. (34) and (76) into Eq. (23), an ordinary differential equation for 

Gamma function can be acquired as follows: 
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Finally, the Gamma function is calculated by Eq. (79). 
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where, 
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(80) 

A code is developed in MATLAB that calculates the eigenvalues and eigenfunctions in 

η and ξ (non-dimensional) coordinates, as well as Gamma function as a function of Fourier 

number (dimensionless time), which is presented in Appendix E. The closed-form of the 

dimensionless transient 2-D temperature domain is found in a series form as follows: 

1 1

( , , ) ( ) ( ) ( )n nm nm
n m
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(81) 

Our study indicates that the first 2 terms in eigenfunction X (n =1 and 2) and one term 

in eigenfunction ψ (m =1) yield the accuracy of 99% in the temperature distribution 

calculation. Each run takes about 1.5 min on a 3.4 GHz PC, which is substantially lower 

than computation time that would take a similar numerical heat and mass transfer model. 
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3.4.  Model development for finned-tube sorber bed heat 
and mass exchanger 

The model methodology is similar to that of the P-HMX in Section 3.3, with the only 

difference of cylindrical coordinate system and the corresponding eigenvalue problems. 

The solution domain of the F-HMX, shown in Fig. 37, can be used to predict the 

performance of the entire S-HMX. 

 

 

Fig. 37. (a) The solution domain; and (b) the optimized F-HMX, which will be 
explained in Chapter 1 

 

The assumptions in the model development are the same as those of the previous 

section. The governing energy equation is similar to that of the Cartesian coordinate 
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system with the conduction term in r-direction in cylindrical coordinate system rather than 

x-direction, as follows: 
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where, i=s, f represents the sorbent and fin domains, respectively. Also, ρ is the density 

(kg/m3), ω is the water uptake (g water/g sorbent), hads is the sorption enthalpy (J/kg), and 

α is thermal diffusivity (m2/s), respectively. The convective boundary conditions are: 
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where, tt is the tube wall thickness (m), r1 is tube radius (m), k is thermal conductivity 

(W/(m K)), h is the convective heat transfer coefficient of the heat transfer fluid (W/(m2 K)), 

TCR is thermal contact resistance between the sorbent and the heat exchanger (K/W), 

and A is the surface area of the TCR interface (m2), respectively. Also, the convective heat 

transfer coefficient is calculated by the correlation proposed by Gnielinski [135], which is 

applicable for 3,000<Re<106. It should be noted that the Reynolds number in this study 

for  the finned-tube sorber bed heat and mass exchanger (F-HMX) is between 13,100 and 

26,200 for a tube diameter of 4–8 mm and a volumetric flow rate of 5 L/min, Table 9. The 

Reynolds number for model validation is 6,300 for tube diameter of 1.65 cm, Table 8. The 

fluid regime is turbulent as the Reynolds number is more than 4,000. 
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where, kw is water thermal conductivity (W/(m K)), Hc is the tube channel height (m), 

Re is Reynolds number (-), Pr is Prandtl number (-), respectively. The adiabatic boundary 

conditions are:  
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where, r2 is the summation of tube radius and fin height (m), ts is sorbent thickness (m), 

and tf is fin height (m), respectively. Due to symmetry, one can write the following for the 

lower side of the fin:  
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Continuity of heat flux, as well as temperature jump/drop created by TCR are 

considered at the interface between the sorbent coating and fin as follows: 
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where, kf,y is through-plane fin thermal conductivity (W/(m K)), ks is sorbent thermal 

conductivity (W/(m K)), and tf is fin thickness (m), respectively.  

3.4.1. Solution methodology 

Similar to section 3.3.1, the energy equation, Eqs. (82)–(93), is solved using the 

Eigenfunction Expansion Method as follows: 

The following non-dimensional variables can be defined.  

0

fluid

fluid

T T

T T


−
=

−
 

s f

y

t t
 =

+
 2

r

r
 =

 



 73 

2
s

s s

r
Bi

R k
=

 

2
f

f f

r
Bi

R k
=

 

s

y

k

k
 =

 

s f

y

t t

k TCR A

+
 =

 
2

2

rt
Fo

r


=

 

2

s f

r

t t
 =

+
 

2 y

y

r





=  

2 s
s

r





=  

f

f

s f

t

t t
 =

+
 

1

2

r

r

r
 =

 

  

where,  is the dimensionless temperature, the Fourier number, Fo, is the 

dimensionless time, ξ and  are the dimensionless cylindrical coordinates. Using the 

aforementioned dimensionless variables, the dimensionless energy equation can be 

obtained as follows: 
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where, hads is the sorption enthalpy (J/kg), cp is the specific heat (J/ (kg K)), and ω is 

the water uptake (g water/g dry sorbent), respectively. The dimensionless boundary 

conditions are: 
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The difference between the F-HMX model and the P-HMX in Section 3.3, is the eigen-

value problem in η direction. In Cartesian coordinates, the eigenfunctions in η direction 

are sinusoidal, whereas in cylindrical coordinate, they are in the from of Bessel functions.  

Based on Eqs. (94)–(104), the following eigen-value problem can be established in η 

direction. 
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The following transcendental equation is obtained to evaluate the eigenvalues.  
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where, γ is the eigenvalue (-), and Bi is Biot number (-), respectively. The eigenfunction 

associated with each eigenvalue are given as follows:  
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where, the Bessel functions of the first and second kind are 
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where, m is an integer. Furthermore, the coefficient of Gamma function needs to be 

updated 
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The rest of the solution is similar to that of the Cartesian coordinate presented in 

Section 3.3. A code is developed in MATLAB that calculates the eigenvalues and 

eigenfunctions in η and ξ (non-dimensional) coordinates as well as Gamma function as a 

function of Fourier number (dimensionless time), which is presented in Appendix E. The 

closed-form of the dimensionless transient 2-D temperature domain is found in a series 

form as follows: 
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(114) 

where, X and ψ are spatial Eigenfunctions in η and ξ directions, respectively. Also, Γ is 

the temporal Eigenfunction. Our study indicates that the first term in eigenfunction Φ (n 

=1) and one term in eigenfunction ψ (m =1) yield the accuracy of 99% in the temperature 

distribution calculation. Each run takes about 1.5 min on a 3.4 GHz PC. 

3.5.  Water uptake modeling 

S-HMXs go through two isosteric processes, i.e. cooling and heating, during which the 

water uptake remains almost constant because the valves to the evaporator and 

condenser are closed. Each isosteric process is followed by an isobaric process when the 

S-HMX is connected to the evaporator or condenser, and sorption or desorption occurs. 
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During isobaric processes, the pressure of the S-HMX chamber is almost equal to that of 

the evaporator or condenser and assumed constant. Fig. 38 shows the variation of water 

uptake versus sorbent temperature for each isobaric process obtained from a gravimetric 

large pressure jump (G-LPJ) test bed with Tevap=20 °C and Tcond=1 °C, see Chapter 1. It 

can be seen that the equilibrium water uptake collected from a Thermogravimetric 

analyzer (TGA) is close to the transient data measured using our custom-built G-LPJ test 

bed. The TGA measurement procedure was explained in Section 2.5. Fig. 38 shows that 

the first two assumptions in the model development are valid; i.e. 

1. Uniform sorbate pressure inside the sorbent; and 

2. Thermodynamic equilibrium of sorbent and sorbate. 

Therefore, for each isobaric process with the pressure equal to the saturation pressure 

at condenser or evaporator temperature, a relationship can be acquired between the water 

uptake and sorbent temperature. For simplicity in the 2-D analytical model, this 

relationship is approximated linearly. 

 

Fig. 38. Variation of water uptake versus sorbent temperature for large pressure jump 
tests, Tsorp=39 °C , Tevap=20 °C and Tcond=1 °C 

 



 77 

Fig. 39 shows the isobaric processes acquired from the TGA for pressure values 

corresponding to Tevap=15 °C and Tcond=30 °C for large temperature jump (LTJ) tests. 

 

Fig. 39. Variation of water uptake versus sorbent temperature for large temperature 
jump tests, Tevap=15 °C, Tsorp=Tcond=30 °C and Tdes=90 °C 

3.6.  Model validation 

The 2-D analytical model for the P-HMX was validated with the G-LPJ data in Chapter 

1, Fig. 31 and Fig. 32. Also, in Section 3.6.1,  the F-HMX model is validated with off-the-

shelf finned-tube heat and mass exchangers tested in the two-sorber bed sorption test 

bed. In Chapter 5, optimized S-HMXs of the P-HMX and the F-HMX are designed, built 

and tested, which will be used to further validate the analytical models in Section 5.5.3, 

Fig. 72. 

3.6.1. F-HMX model validation 

Fig. 40 shows the off-the-shelf S-HMX used in this study, which is an engine oil cooler 

manufactured by Hayden Automotive (model #1268). The S-HMX was coated with a 

composite sorbent consisting of CaCl2, silica gel B150, PVA, and graphite flakes. Details 



 78 

of the S-HMX geometry and heat transfer characteristics are listed in Table 8. This S-

HMX was the closest off-the-shelf heat exchanger to the solution domain of the F-HMX 

model, shown in Fig. 37 (a). Thus, it was used to validate the model and as a benchmark 

to compare the optimized S-HMXs developed in Chapter 5. A two-sorber bed sorption test 

bed was custom-built to test the S-HMXs. The test bed will be elaborated in Section 5.4. 

Fig. 41 shows a schematic and a picture of the two-sorber bed sorption test bed. 

 

Fig. 40. (a) Sorber bed coated with the composite sorbent, CaCl2, silica gel B150, PVA 
and graphite flakes, and the finned-tube HEX without sorbent coating; (b) top view; and 

(c) front view 
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Fig. 41. (a) Schematic and (b) a picture of the two-sorber bed sorption test bed, TCS: 
temperature control system 
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Table 8. Graphite flake content in the sorbent, thermophysical properties, geometrical 
specifications, and SCS cycle parameters used for the model validation. 

 Sorbent Al fin Copper tube 

ϕ (wt. %) 0 20 – – 

 (kg/m3) 654 675 2700 8932 

c (J/kgK) 1004 1120 896 386 

α (m2/s) 2.3e-7 1.3e-6 6.9e-5 1.1e-4 

hads (J/kg) 2.77e6 – – 

t (mm) 1.12 0.15 1.55 

b and D (cm) b=1.24 b=1.24 D=1.65 

 (min) In Fig. 6 

V (L/min) 5 

TCRA (Km2/W) 0.0019 [1] 

Tevap (°C) 15 

Tcond (°C) 30 

Tads (°C) 30 

Tdes (°C) 90 

 

The relationships used to model the water uptake in terms of sorbent temperature for 

isobaric desorption and sorption processes were shown in Fig. 39. 

Fin height ranges from 1.08 to 1.40 cm around the tubes in the heat exchanger shown 

in Fig. 40. Over this range of fin height, the maximum change in SCP and COP is 0.7% 

and 3%, respectively, compared to the SCP and COP obtained using the average fin 

height used in this study, i.e., 1.24 cm, listed in Table 8. Therefore, the average fin height 

is used for the model validation. Fig. 42 shows the comparison between the SCP and 

COP calculated using the proposed analytical model against the data measured using the 

two-sorber bed sorption test bed. It can be seen in Fig. 42,  that the present model is in a 

good agreement with the experimental data. Furthermore, Fig. 42 shows that the S-HMX 

with 0 wt.% graphite flake generates higher SCP and COP than the one with 20 wt.%. The 

reason is that the main heat transfer resistance in the S-HMX is that of the fins and HTF 

due to the low fin thickness and high tube radius, respectively. Consequently, by 

increasing the graphite flake content in the sorbent, the active material decreases, which 

reduces the performance. While the enhanced thermal diffusivity does not result in higher 



 81 

performance as the heat transfer is limited by HEX and HTF. More information is 

presented in section 3.7.1, Fig. 51 and Fig. 52. 

 

 

Fig. 42. Comparison between the present analytical model and the experimental data 
collected from our two-sorber bed sorption test bed for 0 and 20 wt.% graphite flake 

content in the sorbent composite; see Table 8 for more details, Tevap=15 °C, 
Tsorp=Tcond=30 °C and Tdes=90 °C 
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3.7.  Results and discussion 

The conduction heat transfer rate in the S-HMX is defined by Eqs. (115) and (116) 

[145]. 

x x x
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q k A
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
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y y y
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where, k is thermal conductivity (W/(m K)) and A is the heat transfer surface area (m2). 

The heat transfer rate can be non-dimensionalized as follows: 
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where, b is fin height (m), ts is sorbent thickness (m), tf is fin thickness (m), k is thermal 

conductivity (W/(m K)), T0 is the initial temperature (K), Tfluid is the temperature of the heat 

transfer fluid (HTF) (K), respectively. Fig. 43 shows a vector plot of dimensionless heat 

transfer rate, Eq. (117) and (118), predicted by the proposed analytical solution, in the 

sorbent and the fin during sorption at Fo=32 (t=5 min) for b=3 cm, tf=1 mm and ts=3mm, 

=10 min, ϕ=10 wt.% and Hc=4mm. It can be seen that the majority of the heat generated 

inside the sorbent, is transferred from the sorbent to the fin in ξ direction; and subsequently 

from the fin to HTF in η direction. For example, the heat flux at the base of the sorbent 

and the fin is 0.02 W/m and 3.87 W/m, respectively. The reason for this is the higher 

thermal diffusivity of the fin compared to that of sorbent coating. Therefore, the regions of 

the sorbent that are closer to the fin and HTF, i.e. bottom left corner of the sorbent coating, 

have the highest heat transfer rate and thus sorption rate. The heat transfer rate reduces 

from the bottom left corner of the sorbent to the top right corner as thermal resistance 

increases. Hence, the fin thickness should be higher at the fin base to have a high heat 

transfer surface area and it can decrease along the fin to reduce the HEX thermal inertia. 

Alternatively, the sorbent thickness should be higher at the base where the heat transfer 

resistance is the lowest, and decrease along the fin. These two variable thicknesses of 

the fin and the sorbent could be combined to increase the performance. This is added to 

the recommendations for future work in section 6.4.  
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Fig. 43. Vector plot of dimensionless heat transfer rate in the sorbent and the fin during 

sorption at Fo=32 (t=5 min), b=3 cm, tf=1 mm and ts=3mm, =10 min, ϕ=10 wt.% and 
Hc=4mm 

 

Fig. 44 (a), (b) and (c) shows the contours of dimensionless temperature, temperature 

and differential water uptake predicted by the present analytical solution, respectively, at 

Fo=32 (t=5 min) for b=3 cm, tf=1 mm and ts=3mm, =10 min, ϕ=10 wt.% and Hc=4mm. It 

can be seen in Fig. 44 (a) that the fin temperature in ξ direction is almost uniform due to 

low heat transfer resistance of the fin in ξ direction, mainly due to small fin thickness, high 

fin thermal diffusivity, and high heat transfer surface area of the fins. Also, a temperature 

drop at the interface between sorbent and fin (ξ =0.25) can be observed, which is due to 

thermal contact resistance (TCR) considered in the model. Moreover, it is seen in Fig. 44 

that the highest temperature exists at the top right corner of the sorbent as the heat travels 

the farthest to be removed by the heat transfer fluid (HTF). Consequently, this area has 

the lowest water uptake. Thus, from the top right corner of the sorbent to the bottom left 

corner, the water uptake increases as the temperature decreases because of the higher 

heat transfer rate from the sorbent to the fin. 
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Fig. 44. Contours of (a) dimensionless temperature; (b) temperature; and (b) 

differential water uptake at Fo=32 (t=5 min) for b=3 cm, tf=1 mm and ts=3mm, =10 
min, ϕ=10 wt.% and Hc=4mm 

3.7.1.  Parametric study and performance evaluation 

A comprehensive parametric study is performed in which the S-HMX is considered as 

a baseline case (Table 9) and each parameter is varied systematically, while all others 

are kept constant. To have a fair comparison between the F-HMX and P-HMX, the sorbent 

volume is set equal as follows: 

( )2 2
2 1 2s sr r t bt L − =

 (119) 

( )2 1
2

L r r


= +
 

(120) 

where, L is the fluid channel width for P-HMX, r1 is HTF tube radius (m), b is the fin 

height (m), r2 is the summation of r1 and b (m), and ts is the sorbent thickness (m), 

respectively.  

Fig. 45–Fig. 51 show the variation of SCP and COP with fin height, fin thickness, 

sorbent thickness, fluid tube radius or channel height, graphite flake content in the sorbent, 

and the cycle time. SCP, COP and the parameters are normalized with respect to the 

baseline case of the F-HMX in Table 9. The following can be observed. 
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Table 9. Graphite flake content in the sorbent, thermophysical properties, geometrical 
specifications, and SCS cycle parameters used for the baseline case and model 

validation. 

 Sorbent Aluminum 6061 fin 

ϕ (wt. %) 10 – 

 (kg/m3) 665 2700 

c (J/kgK) 1082 896 

α (m2/s) 4.1e-7 6.9e-5 

hads (J/kg) 2.77e6 – 

t (mm) 2 2 

r1, Hc/2 (mm) 3 

r2 (mm) 23, (b=20 mm) 

 (min) 15 

V (L/min) 5 

TCRA (Km2/W) 0.0019[1] 

Tevap (°C) 15 

Tcond (°C) 30 

Tads (°C) 30 

Tdes (°C) 90 

SCPF-HMX (W/kg) 540 

SCPP-HMX (W/kg) 715 

COPF-HMX 0.50 

COPP-HMX 0.56 

 

Fig. 45 shows that by increasing the fin height, SCP decreases as the heat transfer 

resistance along the fin increases. Nonetheless, by increasing the fin height, COP 

increases and then decreases. By increasing the fin height, evaporative and desorption 

heat, as well as the sensible heat of sorbent, sorbate (water) and HEX increase. The 

sensible heat of sorbent and sorbate increase more than others as it increases linearly 

with the fin height. Also, the evaporative and desorption heat increase because the 

amount of sorbent increases, but not linearly as the heat transfer resistance along the fin 

in the S-HMX increases, which reduces the evaporative and desorption heat. Increasing 

the fin height increases HEX sensible energy less than others because of the constant 

part of the HEX tube. Overall, since both numerator and denominator in Eq. (7) increase 
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with fin height, there is an optimum point for the fin height corresponding to maximum 

COP.  

 

Fig. 45. Variation of SCP and COP with fin height, parameters are normalized with 
respect to the baseline case of the F-HMX in Table 9 

 

Also, Fig. 45 shows that the P-HMX can provide higher SCP and COP, due to two main 

reasons. One reason is that in the F-HMX, the amount of sorbent increases as it gets 

farther away from the heat transfer fluid (HTF), which increases the heat transfer 

resistance, see Fig. 46. The other reason is that the P-HMX offers two design parameters, 

namely, fluid channel height and width, so that an optimum convective heat transfer 

coefficient can be achieved for a small fluid channel height, while keeping the heat transfer 

surface area large enough with the fluid channel width. However, there is only one design 

parameter in the F-HMX, i.e. fluid tube radius. To have an optimum convective heat 

transfer coefficient with a small fluid tube radius, the heat transfer surface area would 

decrease significantly, which is highly undesirable. 
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Fig. 46. Schematic of the sorber bed heat and mass exchangers for a plate-fin (P-HMX) 
and a finned-tube (F-HMX) 
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Fig. 47 shows that by increasing the fin thickness, SCP increases as the heat transfer 

along the fin enhances due to more cross-sectional area. However, by increasing the fin 

thickness, COP reduces because the HEX thermal inertia increases.  

 

Fig. 47. Variation of SCP and COP with fin thickness. Parameters are normalized with 
respect to the baseline case of the F-HMX in Table 9 
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Fig. 48 shows that by increasing the sorbent thickness, SCP decreases as the sorbent 

heat transfer resistance increases. Nevertheless, by increasing the sorbent thickness, 

COP increases at first and then starts to decrease. The reason for this is that the sensible 

energy of sorbent and water increase linearly. Both evaporative and desorption energy 

increase, but less than that of sorbent sensible energy, due to the increased heat transfer 

resistance in the sorbent. HEX sensible energy remains constant. Since both numerator 

and denominator in Eq. (7) increase, there exists an optimum sorbent thickness, which 

maximizes the COP. 

 

Fig. 48. Variation of SCP and COP with sorbent thickness, parameters are normalized 
with respect to the baseline case of the F-HMX in Table 9 
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Fig. 49 shows that by reducing the fluid channel height and tube radius, both SCP and 

COP increase as the convective heat transfer coefficient of the heat transfer fluid 

increases, but they increase slightly because the heat transfer resistance of the heat 

transfer fluid is not the main resistance. 

 

Fig. 49. Variation of SCP and COP with fluid channel height or fluid tube diameter. 
Parameters are normalized with respect to the baseline case of the F-HMX in Table 9 
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Sorption rate is high at the early stages of sorption and decreases as the sorbent 

approaches saturation. Consequently, by decreasing the cycle time, SCP increases as 

the sorption rate, and thus, the evaporative cooling power increases. However, by 

reducing the cycle time, COP decreases because more energy is needed to overcome the 

S-HMX thermal inertia compared to the desorption heat. These trends can be observed in 

Fig. 50. 

 

Fig. 50. Variation of SCP and COP with cycle time. Parameters are normalized with 
respect to the baseline case of the F-HMX in Table 9 
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Adding graphite flakes to the sorbent enhances its thermal diffusivity notably (up to 

500%, Section 2.4) and reduces the active sorbent material. It is key to select an optimum 

amount of graphite flake additive, which depends on the S-HMX geometry, cycle time, and 

heat transfer characteristics. If the main thermal resistance in the S-HMX is the sorbent, 

by increasing the graphite flake content, SCP increases to the point where the heat 

transfer becomes limited by the heat exchanger (HEX) or the heat transfer fluid (HTF). 

After this point, SCP starts to decrease by any further increase in the graphite flake content 

because the active sorbent material is reduced. This trend can be seen in Fig. 51. The 

same trend can be observed for COP. On the other hand, if the sorbent thermal resistance 

is not the main thermal resistance in the S-HMX, adding graphite flakes does not increase 

the performance as the heat transfer is limited by other thermal resistances in the S-HMX, 

e.g. the HEX and/or the HTF. Therefore, adding graphite flakes reduces the performance 

since it decreases the active sorbent material, see Fig. 52. In this case, the enhanced 

sorbent thermal diffusivity does not increase the total heat transfer noticeably as the heat 

transfer is limited by the thin fin, i.e. 0.1 mm thickness. 

 

Fig. 51. Variation of SCP and COP with graphite flake content in the sorbent. 
Parameters are normalized with respect to the baseline case of the F-HMX in Table 9 
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Fig. 52. Variation of SCP and COP with graphite flake content in the sorbent for b=2 cm, 

ts=1 mm, tf=0.1 mm, r1=Hc/2=3 mm and =15 min, SCP, COP. Parameters are 
normalized with respect to the baseline case of the F-HMX in Table 9 

 

It is evident that the geometrical and heat transfer characteristics of the sorbent, heat 

exchanger and heat transfer fluid should be optimized simultaneously because even one 

large resistance in the heat transfer between the sorbent and heat transfer fluid through 

the heat exchanger can limit the performance. Moreover, Fig. 45–Fig. 51 indicate that the 

S-HMX geometry, heat transfer characteristics, and cycle time have conflicting effects on 

SCP and COP, and thus, SCP and COP should be optimized simultaneously to establish 

an optimal design. 

3.8.  Conclusion 

Novel 2-D analytical models were developed for the P-HMX and the F-HMX that 

consider the spatial and temporal variation of water uptake and temperature in the sorbent 

and the heat exchanger. The analytical models were successfully validated with the 

experimental data collected from the custom-built G-LPJ and two-sorber bed sorption test 

bed. The present analytical model provides a reliable and easy-to-use design and 
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optimization tool for the S-HMXs of SCS. Also, the solution methodology can be applied 

to other sorber bed geometries by changing the eigenvalue problems. It was shown that 

the S-HMX geometry and heat transfer characteristics should be optimized simultaneously 

because if even one thermal resistance remains large inside the S-HMX, sorbent, HEX 

and/or HTF, it can limit the heat transfer and overall performance of SCS. Moreover, it 

was indicated that the geometrical and heat transfer characteristics of the S-HMXs, i.e. fin 

height, fin thickness, sorbent thickness, graphite flake content in the sorbent, and cycle 

time, have counteracting effects on SCP and COP. Hence, multi-objective optimization of 

the S-HMXs should be conducted considering all these parameters to find an optimal 

design for SCP and COP, and therefore, increase the SCS performance. 
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4. Analysis of variance (ANOVA) and optimization of sorber bed 
heat and mass exchangers 

4.1. Overview 

In this chapter, first, a critical literature review is carried out to show the gap in the 

literature to perform a simultaneous multi-objective optimization of the sorber bed heat 

and mass exchanger (S-HMX) design and operating parameters. To address this gap, the 

2-D analytical models developed in the previous chapter, are used to conduct analysis of 

variance (ANOVA) to pinpoint the key parameters affecting the sorption performance. 

Furthermore, for the first time in the literature, a simultaneous multi-objective optimization 

is conducted on the S-HMX’s key parameters achieving the optimum sorption 

performance. This chapter resulted in the following publications: 

1) H. Bahrehmand, M. Bahrami, Optimized sorber bed heat exchangers for sorption 

cooling systems, submitted to Applied Thermal Engineering, 2020. 

2) H. Bahrehmand, M. Bahrami, Development of novel sorber bed heat exchangers 

for sorption cooling systems, International Sorption Heat Pump Conference, Berlin, 

Germany, August 2021. 

3) H. Bahrehmand, M. Bahrami, Improved coefficient of performance in sorption 

systems, International Sorption Heat Pump Conference, Berlin, Germany, August 

2021. 

4) H. Bahrehmand, M. Bahrami, Optimal design of sorber beds for sorption systems, 

5th the IEA Experts Meetings, University of Ottawa, Canada, May 2019. 

4.2.  Literature review 

It was discussed in the previous chapters that to tackle the low performance of sorption 

cooling systems (SCS), sorber bed heat and mass exchangers (S-HMXs), consisting of 

the sorbent, heat exchanger and the heat transfer fluid, should be specifically designed 

and optimized for SCS. In the previous chapter, 2-D analytical models were developed for 

the P-HMX and the F-HMX of the SCS as a platform for design and optimization of the S-

HMXs. Table 10 presents a summary of available studies in which optimization was 

conducted on the operating conditions and/or the S-HMX design. Most studies optimize 

the variables and/or objective functions in an asynchronous manner, while the optimization 

should be performed simultaneously. In addition, the available studies with simultaneous 

optimization have not optimized all the S-HMX components, i.e., the sorbent, the heat 
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exchanger and the heat transfer fluid. In this chapter, the geometrical and heat transfer 

characteristics of the entire S-HMX are optimized simultaneously to acquire the optimal 

SCP and COP. To do that, first, an analysis of variance (ANOVA) is conducted to find the 

key parameters to the performance of SCS. Subsequently, a simultaneous optimization 

study is carried out to obtain a set of optimum solutions for SCP and COP. 

Table 10. Summary of the existing studies on optimization of sorption cooling systems 
Ref. 

No. 

Optimization variables Objective functions Optimization 

type 

[125] • Fin pitch 

• Fin length 

• Differential sorbate 

uptake 

Asynchronous 

[146] • Cycle time 

• Sorption to desorption time 

• SCP 

• COP 

Simultaneous 

[147] • Sorber diameter • Differential sorbate 

uptake 

• COP 

Asynchronous 

[148] • Cycle time 

• Mass recovery time 

• SCP 

• COP 

Asynchronous 

[149] • Desorption temperature 

• Cooling temperature 

• Heat transfer fluid flow rate 

• Sorption to desorption time 

• Mass recovery time 

• Heat recovery time 

• SCP 

• COP 

Asynchronous 

[122] • Fin pitch 

• Fin thickness 

• Fin height 

• Diffusion coefficient 

• Particle size 

• Cycle time 

• Cycle ratio 

• Temperature of hot water 

• Fluid velocity 

• Porosity 

• SCP 

• COP 

Asynchronous 
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[150] • Desorption temperature 

• Cycle time 

• Heat and mass recovery 

time 

• SCP 

• COP 

Simultaneous 

[151] • Fin spacing • Sorbent temperature 

difference 

• Adsorber 

bed/adsorbent mass 

Simultaneous 

[152] • Cycle time • VSCP 

• COP 

Asynchronous 

[153] • Cooling time 

• Mass recovery time 

• Heat recovery time 

• SCP 

• COP 

Asynchronous 

[154] • Cycle time • SCP 

• COP 

Asynchronous 

[155] • Mass recovery time 

• Switch time 

• Cycle time 

• COP 

• SCP 

Asynchronous 

[119] • Fin height 

• Fin spacing 

• COP 

• SCP 

Asynchronous 

[156] • Cycle time 

• Sorption/desorption time 

• COP 

• SCP 

Asynchronous 

[157] • Sorption time 

• Desorption time 

• Particle diameter 

• Number of fins 

• COP 

• SCP 

Simultaneous 

[158] • Cycle time 

• Mass recovery time 

• Preheating and precooling 

time 

• SCP 

• COP 

Asynchronous 

[131] • Fin spacing • SCP 

• COP 

Asynchronous 
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• TCP 

[159] • Sorption time 

• Desorption time 

• COP 

• TCP 

Simultaneous 

[160] • Desorption/adsorption time 

• Fin height 

• Fin number 

• SCP 

• COP 

Asynchronous 

4.3.  Analysis of variance (ANOVA) 

Analysis of variance (ANOVA) is a systematic method that can be used to evaluate the 

impact of design parameters on the performance by calculating the sums of square, level 

of contribution, F-statistic ratio and p-value, see Ref. [161]–[163] and Appendix F for more 

details. In this study, the effect of the S-HMX design parameters on the SCP and COP is 

investigated using ANOVA in MATLAB and the 2-D analytical models. The Box–Behnken 

design [164] with three levels of design parameters shown in Table 11 is used to generate 

the sample points. The design parameters used in Table 11 are shown in Fig. 33 and Fig. 

37 in Chapter 0. 

Table 11. Three levels of the S-HMX design parameters 

 Level 1 Level 2 (baseline 

case) 

Level 3 

Fin height (b (cm)) 1 2 3 

Fin thickness (tf (mm)) 1 2 3 

Sorbent thickness (ts (mm)) 1 2 3 

Graphite flake content in sorbent 

(ϕ (wt. %)) 

0 10 20 

Cycle time ( (min)) 10 15 20 

Fluid tube radius (r1, Hc/2 (mm)) 2 3 4 

Using the Box–Behnken design, an ANOVA is carried out to find out which parameters 

have a significant contribution to SCP and COP of the S-HMX. Interactions between 

variables are included in the error term. Fig. 53 shows the level of contribution of each 

design parameter to the SCP and the COP for the two targeted sorber bed heat and mass 

exchangers, the P-HMX and the F-HMX. The following can be concluded: 

• The sorbent thickness and cycle time have the highest level of contribution to SCP.  
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• The fin thickness, fin height and the amount of graphite flake (thermally conductive 

additive) in the sorbent have the second largest level of contribution to SCP. 

• The heat transfer fluid (HTF) channel height and tube radius have the lowest level of 

contribution to SCP. The reason is that the selected range of channel height and tube 

radius was low enough such that their heat transfer resistance was less than that of 

HEX and the sorbent. The level of contribution would be higher if larger channel 

heights or tube radii was selected. 

• Fin thickness and sorbent thickness have the largest impact on COP. 

• Cycle time, fin height and the amount of graphite flake in the sorbent have a relatively 

lower effect on COP.  

• The heat transfer fluid (HTF) channel height and tube radius have the lowest impact 

on COP.  

 

Fig. 53. Level of contribution of design parameters to the SCP and the COP of the P-
HMX and the F-HMX; the design parameters are shown in Fig. 33 and Fig. 37 in 

Chapter 3. 
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Table 12 presents the p-value of each design parameter for the SCP and the COP of 

the P-HMX and the F-HMX. It can be seen that all of the design parameters have 

significant contribution to SCP and COP because all the p-values are lower than 0.05 level 

of significance. Hence, the entire S-HMX, consisting of the sorbent, heat exchanger and 

heat transfer fluid, should be optimized simultaneously to achieve an optimal set of SCP 

and COP. 

Table 12. p-value of design parameters to the SCP and the COP of the P-HMX and the 
F-HMX  

 P-HMX F-HMX 

 SCP COP SCP COP 

b 5.85e-6 6.66e-16 1.78E-15 7.77e-16 

tf 1.61e-8 8.14e-36 8.72E-13 3.19e-27 

ts 7.05e-28 2.76e-28 4.16E-26 1.39e-28 

ϕ 4.41e-11 6.66e-16 2.48E-7 2.86e-8 

 5.64e-34 2.58e-21 9.04E-36 3.33e-16 

r1, Hc/2 1.22e-2 1.03e-2 1.03E-2 2.75e-3 

4.4.  Optimization study 

It was shown in Chapter 3 and in Section 4.3 that the S-HMX geometry, heat transfer 

characteristics and cycle time should be optimized simultaneously. Moreover, it was 

indicated that the geometrical and heat transfer characteristics of the S-HMXs, and cycle 

time, have conflicting effects on SCP and COP. Hence, multi-objective optimization of the 

S-HMXs should be conducted considering all these parameters to find an optimal design 

for SCP and COP. 

Using the 2-D analytical models and multi-objective genetic algorithm, the geometry 

and heat transfer characteristics of the F-HMX and the P-HMX are determined to optimize 

SCP and COP. The constraints are defined based on the parametric study in Section 3.7.1 

and Ref. [6], and ANOVA in Section 4.3. The variables are: i) a fin height of 1–3 cm; ii) a 

fin thickness of 0.5–3 mm; iii) a sorbent thickness of 1–3 mm; iv) a graphite flake content 

of 0–20 wt.%, v) a cycle time of 10–20 min; and vi) a fluid channel height of 4–8 mm or 

tube radius 2–4 mm. The multi-objective optimization problem can be represented as 

follows [165]. 

 
wrt

1

min SCP, COP

, , , , ,

x

f sx b t t r 

− −

 =  
 

(121) 

where, wrt is an acronym for “with respect to”, b is fin height (m), tf is fin thickness (m), 

ts is sorbent thickness (m), ϕ is graphite flake content in sorbent (wt.%),  is cycle time 
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(min), Hc is fluid channel height in the P-HMX (m), and r1 is fluid tube radius in the F-HMX 

(m). Using the multi-objective genetic algorithm in MATLAB, 15,401 times the Cartesian 

analytical model and 16,451 times, the cylindrical analytical model code, written in 

MATLAB, was used to evaluate the SCP and the COP of the P-HMX and the F-HMX, 

respectively. Function tolerance and cross over fraction were set to 1e-6 and 0.8, 

respectively. The sets of optimum solutions for the F-HMX and the P-HMX, i.e. the trade-

off between SCP and COP, are presented in Fig. 54 and Fig. 55, respectively. The design 

that can achieve SCP of 757 W/kg and COP of 0.55 is selected for the F-HMX, and the 

design with the SCP of 976 W/kg and COP of 0.60 is selected for the P-HMX, due to an 

optimal compromise between SCP and COP, as well as satisfying the performance target, 

i.e. SCP > 700 W/kg and COP > 0.55. The P-HMX and the F-HMX optimum design was 

built and tested, which is discussed in the following chapter. 

 

Fig. 54. Set of optimum solutions for the F-HMX (trade-off between SCP and COP), b: 
fin height (r2-r1) (cm), tf: fin thickness (mm), ts: sorbent thickness (mm), ϕ: graphite flake 

content in sorbent (wt.%), : cycle time (min), r1: fluid tube radius (mm). 
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Fig. 55. Set of optimum solutions for the P-HMX (trade-off between SCP and COP), b: 
fin height (cm), tf: fin thickness (mm), ts: sorbent thickness (mm), ϕ: graphite flake 

content in sorbent (wt.%), : cycle time (min), HC: fluid channel height (mm). 

4.5.  Conclusion 

In this section, an analysis of variance (ANOVA) was conducted on the geometrical 

specifications, heat transfer characteristics and cycle time of the S-HMX to find the level 

of significance of the S-HMX design parameters to the SCP and the COP. The results 

showed that the entire S-HMX, consisting of the sorbent, heat exchanger and the heat 

transfer fluid, should be optimized simultaneously to achieve optimal SCP and COP. 

Moreover, a multi-objective optimization study was performed on the geometry and heat 

transfer characteristics of the P-HMX and the F-HMX to find the optimal SCP and COP. A 

design with an SCP of 976 W/kg and a COP of 0.60 was selected for the P-HMX and a 

design with an SCP of 757 W/kg and a COP of 0.55 was selected for the F-HMX due to 

an optimal compromise between the SCP and the COP, which will be discussed in the 

next chapter. 
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5. Development of optimized sorber bed heat and mass 
exchangers 

5.1.  Overview 

In this chapter, for the first time in the literature, sorber bed heat and mass exchangers 

(S-HMXs) of a plate fin sorber bed heat and mass exchanger (P-HMX) and a finned-tube 

sorber bed heat and mass exchanger (F-HMX) were specifically designed for sorption 

cooling systems based on the optimization study. The manufacturing procedure and 

characteristics of the optimized P-HMX and F-HMX are presented. The two-sorber bed 

sorption test bed was initially custom-built by Dr. Amir Sharafian, a PhD graduate and Dr. 

Wendell Huttema, a former Postdoctoral Fellow at LAEC. The two-sorber bed sorption test 

bed was improved and modified to test the optimized S-HMXs in the present study. The 

modifications included (i) four-way valves for the S-HMX heat transfer fluids, (ii) lids of the 

vacuum chambers, and (iii) sensors with higher accuracy. Finally, the experimental results 

are presented and the optimized S-HMXs performance is evaluated. This chapter resulted 

in the following publications: 

1) H. Bahrehmand, M. Bahrami, Optimized sorber bed heat exchangers for sorption 

cooling systems, submitted to Applied Thermal Engineering, 2020. 

2) H. Bahrehmand, M. Bahrami, Development of novel sorber bed heat exchangers 

for sorption cooling systems, International Sorption Heat Pump Conference, Berlin, 

Germany, August 2021. 

3) H. Bahrehmand, M. Bahrami, Improved coefficient of performance in sorption 

systems, International Sorption Heat Pump Conference, Berlin, Germany, August 

2021. 
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5.2.  Literature review 

In the previous chapter, the entire P-HMX and F-HMX, consisting of the sorbent, heat 

exchanger and heat transfer fluid, were optimized. In this chapter, the optimized S-HMXs 

are designed, built and tested as a proof-of-concept for the S-HMXs of sorption cooling 

systems (SCS). 

Many researchers have developed S-HMXs to tackle the issue of low performance of 

an SCS. A summary of the available studies with a compromise between specific cooling 
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power (SCP) and the coefficient of performance (COP) is presented in Table 13. The 

performance has been enhanced considerably over the past decade. However, most of 

the performance enhancement can be attributed to the utilization of zeolite-based 

sorbents, such as SAPO-34 and AQSOA FAM Z02, which are rather expensive, due to 

their synthesis process [76]. Furthermore, the majority of uptake in zeolite-based sorbents 

occurs in a narrow range of relative pressure, p/p0, which may limit their application to 

relatively high desorption temperature, i.e. heat source of 80-90 °C, and a low condenser 

temperature, i.e. about 30 °C. This narrow range of the zeolite-based sorbents isotherms 

is shown in Fig. 9. The objective of this study is to develop an S-HMX that provides high 

SCP and COP over a large range of operating conditions. 

In the present study, novel S-HMXs are developed and tested based on the optimized 

designs. The sorbent material used is comprised of silica gel and CaCl2, graphite flakes 

as a thermally conductive additive and PVA as binder. It should be noted that these 

composite sorbents have lower cost and higher market availability compared to the 

zeolite-based sorbents [166]. Moreover, the sorption performance of these composites 

takes place over the entire range of  relative pressure, 0.06<p/p0<0.4, which is more 

appropriate for air-conditioning applications [11] , Fig. 9. 

Table 13. A summary of the available studies with a reasonable compromise between 
SCP and COP 

Ref. Sorption pair S-HMX τ (min) Qevap 
(kW) 

SCP 
(W/kg) 

COP 

[167] Coating silica 
gel+CaCl2(SWS-
1L)/water 

Aluminum 
finned 
tube 

10 0.48 137  0.15 

[168] Coating AQSOA-
FAM-Z02/water 

Extruded 
aluminum 
finned-tube 
heat 
exchanger 

– 0.442 294.67 0.21 

[169] Silica gel/water Aluminum 
finned 
tube 

6 1.9 158 0.29 

[170] Loose grain 
LiNO3–Silica 
KSK/water 
(SWS-9L) 

Aluminum 
finned flat 
tube 

6.4 – 318 0.176 

[146] Loose grain 
AQSOA-FAM 
Z02/water 

Aluminum 
finned flat 
tube 

7 0.155 394 0.6 

[92] Coating zeolite, 
SAPO-34/water 

Aluminum 
finned flat 
tube 

5 – 675 0.24 
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[171] Coating SAPO-
34/water 

Aluminum 
sintered metal 
fiber structures 
soldered on flat 
fluid channels 

10 5 852 0.4 

[172] Coating AQSOA-
FAM-Z02/water 

Finned tube 
(copper) 

1.5 1.5 872 0.27 

[12], 
Section 
3.6.1 

Coating silica 
gel+CaCl2/water 

Aluminum 
finned-copper 
tube engine oil 
cooler 

10 0.306 235 0.2 

5.3. Characteristics of the P-HMX and the F-HMX 

The P-HMX and the F-HMX were built based on the optimization study in Section 4.4. 

The specifications of the P-HMX and the F-HMX are presented in Table 14. Aluminum 

was selected as the S-HMX material as explained in Appendix A.1. Fig. 56 (a) shows two 

halves of the P-HMX with a fin side and a fluid channel side. The spacing between the 

fins, the serpentine fluid channels and the half-circle regions for the aluminum tubes were 

machined out of two aluminum 6061 plates using our CNC milling machine. Moreover, 

male and female connections were machined on the plates for alignment. After that, two 

halves of the P-HMX and two aluminum tubes were welded together. Building the P-HMX 

by extrusion can reduce the manufacturing cost significantly, but it increases the capital 

cost due to the die required; hence, it is more suitable for mass production. Furthermore, 

Fig. 57 (a) shows the aluminum finned-tubes used to manufacture the F-HMX. The 

aluminum finned-tubes were built using our CNC lathe machine and welded to aluminum 

tubes as headers. Two plugs were machined and welded to the ends of the aluminum 

tube header. The diameter of the finned-tubes is 4 mm, and the tube header diameter is 

13 mm. Thus, the pressure drop in the finned-tubes is two orders of magnitude larger than 

that of the tube header. Consequently, the fluid flow in the eight finned-tubes can be 

assumed to be uniformly distributed. 

Subsequently, the fin spacings of the P-HMX and the F-HMX were filled with the slurry 

solution of the optimum composite sorbent shown in Table 14. The composite sorbent 

was dried at 80 °C and then cured at 180 °C in the oven. Fig. 56 (b) and Fig. 57 (b) show 

the assembled P-HMX and F-HMX coated with the optimum composite sorbent, 

respectively. 
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Table 14. Specifications of the P-HMX and the F-HMX 

Characteristics P-HMX F-HMX 

Fin height (cm) 1 1.1 

Fin thickness (mm) 1 1.1 

Fin spacing (mm) 4 4.4 

Fluid channel height/fluid tube diameter (mm) 4 4 

Fluid channel width (cm) 1.27 – 

Total length without the tubes (cm) 31 32 

Total width (cm) 20 20 

Tube outer diameter (cm) 1.9 1.9 

Tube length (cm) 12 12 

Volume without the tubes outside the vacuum chamber 

(L) 

1.7 2.05 

Mass of heat exchanger without sorbent coating and 

tubes outside the vacuum chamber (kg) 

1.72 1.04 

Mass of sorbent coating (kg) 0.587 0.379 

Mass of heat transfer fluid (water) (kg) 0.498 0.123 

Mass ratio of sorbent coating to heat exchanger 0.34 0.36 

Mass percentage of silica gel B150 39 37.5 

Mass percentage of CaCl2 39 37.5 

Mass percentage of PVA 10 10 

Mass percentage of graphite flakes 12 15 
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Fig. 56. (a) Two halves of the P-HMX showing the fin side and the fluid channel side; 
and (b) assembled P-HMX coated with the composite sorbent, silica gel, CaCl2, PVA and 

graphite flakes 
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Fig. 57.  (a) One aluminum finned-tube; and (b) assembled F-HMX coated with the 
composite sorbent, silica gel, CaCl2, PVA and graphite flakes 

5.4. Experimental test bed and measurements 

Fig. 58 shows the schematic and the picture of a two-sorber bed sorption test bed 

custom-built to test the P-HMX and the F-HMX. The P-HMX and the F-HMX were placed 

inside the aluminum vacuum chambers on the sides, a custom-designed capillary-assisted 

evaporator was positioned in the bottom aluminum vacuum chamber, and two helical coil 

and shell heat exchangers were used as a condenser at the top. Check valves were 

installed between the S-HMXs and the condenser and gate valves were installed between 

the evaporator and the S-HMXs. A needle valve with high precision flow adjustment 

(Speedivalve SP16K, Edwards) and a U-tube were installed between the condenser and 

the evaporator. The whole system was vacuumed for 6 hours before the tests. Two 

temperature control systems were used to keep the evaporator at 15 °C and the condenser 

at 30 °C. Furthermore, two temperature control systems were set to 90 °C and 30 °C for 

desorption and sorption processes, respectively. Two four-way valves were employed to 
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switch the heat transfer fluid (HTF) between the two S-HMXs for desorption and sorption 

processes. One of the four-way valves was set to have a delay at the beginning of each 

process to push the high- and low-temperature HTF in the S-HMXs and hoses back to 

high- and low-temperature reservoirs of temperature control systems to perform a heat 

recovery process. The time delay was calculated as 10 s based on the flow rate of the 

heat transfer fluid and the fluid volume in the S-HMXs and the hoses. The heat recovery 

method is discussed in more details in Appendix A.2. RTD (PT100) temperature sensors 

(Omega, model #PR-13-2-100-1/8-6-E) with an accuracy of 0.15 °C and pressure 

transducers with a 0-34.5 kPa operating range (Omega, model #PX309-005AI) and a 0.4 

kPa accuracy were installed to monitor and record the temperature and pressure 

variations in each component of the sorption test bed over time. Positive displacement 

flow meters (FLOMEC, Model # OM015S001-222) with an accuracy of 0.5% of reading 

were installed to measure the flow rate of the HTF of the condenser, evaporator and the 

cooling circuit of the S-HMX. Since the positive displacement flow meters may impede the 

flow at higher temperatures, and ultrasonic flowmeter (Kobold model DUK-1xx6) with an 

accuracy of 0.7% of reading was used to measure the flow rate of the high-temperature 

HTF to the S-HMXs. The instruments were interfaced with a PC through a data acquisition 

system and in-house software built in the LabVIEW environment. Experiments were 

performed continuously until the system reached an oscillatory steady state. The 

maximum uncertainties in the calculations of SCP and COP were calculated 10.6 % and 

12.5 %, respectively. More information on the custom-designed capillary-assisted 

evaporator can be found in Ref. [173]. More information on uncertainty analysis is 

presented in Appendix B. 
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Fig. 58. (a) Schematic; and (b) a picture of the two-sorber bed sorption test bed, 

capillary-assisted evaporator in the chamber at the bottom, the P-HMX and the F-HMX 
in the chambers on the sides, two helical coil and shell heat exchangers as the 

condenser at the top 
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5.5.  Results and discussions 

Fig. 59 shows the temporal variation of pressure of the P-HMX, the F-HMX, condenser 

and evaporator. It can be seen in Fig. 59 that the S-HMXs have higher pressures than the 

condenser during desorption and lower pressure than the evaporator during sorption, 

which are the driving force for sorption cycles. It can be observed that the P-HMX causes 

higher pressure during desorption and lower pressure during sorption compared to those 

of the F-HMX as the P-HMX desorbs and ad/absorbs more water as seen in Fig. 60. 

 

Fig. 59. Temporal variation of pressure of the P-HMX, the F-HMX, the condenser and 
evaporator, for Tdes=90ºC, Tsorp= Tcond =30ºC, Tevap=15ºC and τcycle=10min 
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Fig. 60 shows the temporal variation of inlet and outlet temperatures of HTF to the 

evaporator. The temperature difference between the inlet and outlet HTF of the evaporator 

indicates the cooling power generated by the P-HMX and the F-HMX. The half-cycles with 

minimum temperature at about 13.5 ºC correspond to the P-HMX. The reasons for the 

higher cooling power provided by the P-HMX are: (i) the higher performance of the P-

HMX, explained in Section 3.7.1; and (ii) more sorbent material of the P-HMX compared 

to the F-HMX (0.587 kg vs 0.379 kg). 

 

Fig. 60. Temporal variation of inlet and outlet temperatures of HTF to evaporator, for 
Tdes=90ºC, Tsorp= Tcond =30ºC, Tevap=15ºC and τcycle=10min 
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Fig. 61 shows the temporal variation of inlet and outlet temperatures of HTF to the P-

HMX and the F-HMX. As can be observed in Fig. 61, the temperature differences between 

the inlet and outlet HTF to the P-HMX is smaller than the F-HMX because the flow rate is 

higher when the temperature control systems (TCS) are connected to the P-HMX 

compared to the F-HMX due to higher pressure drop of the F-HMX. For example, the 

flowrates of the P-HMX and the F-HMX are 11.45 l/min and 4.23 l/min during desorption, 

and 14.02 l/min and 4.16 l/min during sorption, respectively. Based on the experiments 

and the analytical model, the performance of the P-HMX and the F-HMX does not change 

significantly for flow rates higher than 2 l/min because the HTF thermal resistance is not 

the main one. This is shown in Fig. 62. Flow rate of 2 l/min corresponds to the Reynolds 

number of 3,883 for P-HMX and 10,501 for F-HMX. 

 

Fig. 61. Temporal variation of inlet and outlet temperatures of the HTF to the P-HMX 
and the F-HMX, for Tdes=90ºC, Tsorp= Tcond =30ºC, Tevap=15ºC and τcycle=10min; HTF: heat 

transfer fluid 
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Fig. 62. Variation of SCP with volumetric flow rate of heat transfer fluid for (a) the P-
HMX; and (b) the F-HMX 
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Fig. 63 shows the temporal variation of temperatures of inlet and outlet HTF, fin and 

sorbent in the F-HMX. It can be seen in Fig. 63 that the average fin temperature of the F-

HMX is close to the HTF outlet temperature. Moreover, it can be observed that the average 

sorbent temperature has a bump with a delay after the beginning of each sorption and 

desorption process. After this point, there is a higher temperature difference between the 

sorbent and the fin. The reason is that due to thermal inertia of the S-HMX, there is a delay 

in the time when the sorbent temperature is high enough for desorption and low enough 

for sorption. This delay can be observed in Fig. 59, when the S-HMX pressure is almost 

equal to that of evaporator and condenser, and the sorption and desorption processes 

begin. It takes the sorber beds a specific time (in this case, about 25 s) to reach the 

evaporator and condenser pressure to start the sorption and desorption due to thermal 

inertia. We open the valves when that happens, otherwise the beds would desorb to the 

evaporator instead of adsorbing. 

 

Fig. 63. Temporal variation of temperatures of inlet and outlet HTF, fin and sorbent in 
the F-HMX, for Tdes=90ºC, Tsorp= Tcond =30ºC, Tevap=15ºC and τcycle=10min 
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5.5.1.  Performance evaluation of the P-HMX and the F-HMX 

The baseline case for the operating condition of sorption air-conditioning is considered 

Tdes=90 °C, Tsorp=Tcond=30 °C, Tevap=15 °C, and τcycle=10 min. For the baseline case, the 

P-HMX achieves an SCP of 1,005 W/kg sorbent and a COP of 0.60, whereas the F-HMX 

yields an SCP of 766 W/kg and a COP of 0.55. Fig. 64 shows the performance of the P-

HMX and the F-HMX versus the previously published studies in Table 13, in terms of COP 

and SCP per: (a) sorbent mass; (b) mass of sorbent and HEX; (c) the S-HMX mass 

consisting of sorbent, HEX and HTF; and (d) the S-HMX volume. It can be seen that the 

P-HMX provides the highest SCP and COP using the silica gel/CaCl2 composite sorbent 

with their sorption occurring over the entire range of 0.06<p/p0<0.4, which is the range of 

air-conditioning applications [11]. On the other hand, zeolite-based sorbents, such as 

SAPO-34 and AQSOA FAM Z02, were employed in Ref. [13], [168], [38]–[40], with their 

sorption taking place in a narrow range of p/p0, which limits the application to a relatively 

high desorption temperature, i.e. a  heat source of 80-90 °C, and low condenser 

temperature, i.e. ambient temperature at about 30 °C. It can be seen that the P-HMX 

provides 4.3 times higher SCP, and 3 times higher COP compared to an off-the-shelf heat 

exchanger, an engine oil cooler coated with a composite sorbent consisting of CaCl2, silica 

gel B150 and PVA, presented in Section 3.6.1 and Ref. [12]. It clearly demonstrates the 

potential of specific design and optimization of the S-HMX for SCS. 
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Fig. 64. Comparison of the P-HMX and the F-HMX versus the available studies in 
Table 13 in terms of the COP and: (a) the SCP per sorbent mass; (b) the SCP per 

mass of sorbent and HEX; (c) the SCPS-HMX; and (d) the VSCPS-HMX 

5.5.2. Effect of operating conditions 

Fig. 65 shows the variation of the SCP and COP of the P-HMX and the F-HMX with 

cycle time. It can be observed in Fig. 65 (a) that by decreasing the cycle time, the SCP 

increases as the sorption rate is higher at the beginning of sorption and reduces as the 

sorbent approaches saturation. In addition, it is seen in Fig. 65 (b) that by decreasing the 

cycle time, the COP reduces because the heat required to overcome the S-HMX thermal 

inertia increases compared to the heat consumed for desorption. 
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Fig. 65. Variation of the SCP and the COP of the P-HMX and the F-HMX with cycle 
time, Tdes=90 °C, Tsorp=Tcond=30 °C and Tevap=15 °C 

 

Fig. 66 shows the variation of the SCP and COP of the P-HMX and the F-HMX with 

desorption temperature. Fig. 66 (a) shows that by increasing the desorption temperature, 

the SCP increases because the differential water uptake between sorption and desorption 

increases as indicated in Fig. 67. Fig. 66 (b) shows that by increasing the desorption 

temperature, the COP increases and then decreases; thus, there is an optimum 

desorption temperature corresponding to the maximum COP. The reason for this is the 

conflicting effects of increasing the SCP and increasing the sensible energy required to 

overcome the S-HMX thermal inertia due to the higher temperature difference between 

desorption and sorption, by increasing the desorption temperature.  

  

Fig. 66. Variation of the SCP and the COP of the P-HMX and the F-HMX with 
desorption temperature, τcycle=10 min, Tsorp=Tcond=30 °C and Tevap=15 °C 
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Fig. 67. Range of differential water uptake and p/p0 for different desorption 
temperatures. The isotherm plots are for composite sorbents with 39wt.% silica gel 

B150, 39wt.% CaCl2, 10wt.% PVA binder and 12wt.% graphite flakes, isotherms from 
Section 2.5, isotherms were obtained at 25 °C 

 

Fig. 68 shows the variation of the SCP and the COP of the P-HMX and the F-HMX with 

sorption and condenser temperature. It can be observed in Fig. 68 (a) that by increasing 

the sorption and condenser temperature, SCP reduces as the differential water uptake 

between sorption and desorption decreases as shown in Fig. 69. Furthermore, Fig. 68 (b) 

shows that by increasing the sorption and condenser temperature, COP remains almost 

constant. The reason for this is the conflicting effects of decreasing SCP and decreasing 

the sensible energy required to overcome the S-HMX thermal inertia due to a lower 

temperature difference between desorption and sorption, by increasing the sorption and 

condenser temperature. 

  

Fig. 68. Variation of the SCP and the COP of the P-HMX and the F-HMX with ambient 
temperature (sorption and condenser temperatures), τcycle=10 min, Tdes=90 °C and 

Tevap=15 °C 
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Fig. 69. Range of differential water uptake and p/p0 for different ambient temperatures 
(sorption and condenser temperatures). The isotherm plots are for composite sorbents 
with 39wt.% silica gel B150, 39wt.% CaCl2, 10wt.% PVA binder and 12wt.% graphite 

flakes, isotherms from Section 2.5, isotherms were obtained at 25 °C 
 

Fig. 70 shows the variation of the SCP and the COP of the P-HMX and the F-HMX with 

evaporator temperature. It can be observed in Fig. 70 (a) and (b) that by increasing the 

evaporator temperature, both the SCP and the COP increase because of higher 

differential water uptake between sorption and desorption as shown in Fig. 71. 

  

Fig. 70. Variation of the SCP and the COP of the P-HMX and the F-HMX with 
evaporator temperature, τcycle=10 min, Tsorp=Tcond=30 °C and Tdes=90 °C 
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Fig. 71. Range of differential water uptake and p/p0 for different evaporator 
temperatures. The isotherm plots are for composite sorbents with 39wt.% silica gel 

B150, 39wt.% CaCl2, 10wt.% PVA binder and 12wt.% graphite flakes, isotherms from 
Section 2.5, isotherms were obtained at 25 °C 

5.5.3. Validation of the 2-D analytical models 

Fig. 72 shows the SCP and the COP of the P-HMX and the F-HMX obtained from the 

2-D analytical models presented in Chapter 0 versus the data acquired by the experiments 

for a variety of operating conditions, i.e. different desorption temperatures, sorption and 

condenser temperatures, evaporator temperatures and cycle times. As can be observed, 

the maximum relative difference between the modeling results and experimental data is 

6% and 7% for the SCP and the COP, respectively. 
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Fig. 72. Validation of the 2-D analytical model with the experimental data for the P-HMX 
in terms of (a) the SCP; and (b) the COP, and the F-HMX in terms of (c) the SCP and (d) 

the COP 

5.6.  Conclusion 

The optimum designs selected in Chapter 0 were designed and built considering the 

optimized characteristics of i) fin thickness; ii) fin height, iii) sorbent thickness; iv) fluid 

channel height; v) the amount of thermally conductive additive in the sorbent; and vi) cycle 

time. It was shown that compared to the state-of-the-art, the P-HMX provides the highest 

SCP of 1,005 W/kg sorbent, and the highest COP of 0.60. Furthermore, the F-HMX yielded 

the SCP of 766 W/kg and COP of 0.55. The results showed that the optimized P-HMX can 

produce 4.3 times higher SCP, and 3 times higher COP in comparison with the off-the-

shelf S-HMX presented in Section 3.6.1. The present P-HMX has been tested under 

various operating conditions: i) desorption temperatures, 60 to 90 °C; ii) sorption and 

condenser temperature, 20–40 °C; iii) evaporator temperature, 5–20 °C; and iv) cycle time, 

10–20 min. The SCP in the range of 320–1,230 W/kg and the COP of 0.40–0.80 were 

measured in our testbed over the range of targeted operating conditions. 
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6. Conclusions, contributions, limitations, potential for further 
development and broader implementation, and future 
research 

6.1.  Conclusion and summary of thesis 

This PhD project was set out to specifically design and optimize sorber bed heat and 

mass exchangers (S-HMXs) for sorption systems. The focus of this study was the 

application of sorption cooling systems for air conditioning and refrigeration. However, the 

methodology of modeling, ANOVA, design, optimization, manufacturing and testing can 

be applied to other applications of sorption systems, such as heat pumps, heat 

transformers, heat storage, dehumidification, desalination and gas separation. 

In Chapter 1, the future trends of cooling energy demand and peak power load was 

presented. Also, an introduction to cooling technologies for air conditioning (AC) and 

refrigeration was provided. It was shown that vapor compression refrigeration (VCR) is the 

dominant technology currently used because of high performance, compactness, and low 

cost. Nonetheless, VCR systems have significant GHG emissions. Also, with the 

increasing trend of AC usage, the grid and power plants would require significant 

investment to cope with the peak load by VCR. The substantial potential of sorption 

cooling systems (SCS) as an alternative to VCR was discussed due to environmentally 

friendly sorption pairs and utilization of low-grade thermal energy, which is non-payable 

and abundant in different sectors. Suitable sorption pairs were selected to achieve the 

target for the present PhD study. The need for research was shown by comparing SCS 

with VCR in terms of the performance parameters. The rationale behind the selection of 

the target performance parameters was elaborated. 

In Chapter 2, a critical literature review was conducted to find the most suitable 

thermally conductive additives to enhance sorbent thermal diffusivity. Graphite flakes were 

selected due to their high thermal conductivity, low molecular weight, corrosion resistance, 

and excellent stability at high working temperatures. Sample preparation and 

measurements of thermal diffusivity and sorption isotherm were explained. For the first 

time in the literature, the conflicting effects of graphite flake additives in the sorbent were 

studied using a custom-built gravimetric large pressure jump (G-LPJ) test bed. It was 

found that in the early stages of sorption, the S-HMX performance was notably improved, 

e.g. from 178.1 to 334.9 W/kg for a 6 min cycle time, by adding graphite flakes, which 

enhanced sorbent thermal diffusivity (from 0.23 to 1.38 mm2/s). Also, it was shown that as 
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the sorption rate reduces with time, the need for heat transfer enhancement, i.e. using a 

graphite flake additive, decreases. Therefore, the graphite flake content and the cycle time 

need to be optimized to achieve optimum SCP. 

In Chapter 3, for the first time, 2-D analytical models were developed that consider the 

spatial and temporal variation of water uptake and temperature in the sorber bed heat and 

mass exchangers (S-HMX), and have a low computation time, which is crucial for the 

optimization and real-time control of the S-HMXs. The detailed analytical solution 

methodology was presented in this chapter for the plate fin sorber bed heat and mass 

exchangers (P-HMX) in Cartesian coordinate system and finned-tube sorber bed heat and 

mass exchangers (F-HMX) in cylindrical coordinate system. The analytical model was 

validated using the data collected from the G-LPJ test bed and two-sorber bed sorption 

test bed. A parametric study was performed to investigate the effect of the S-HMX 

geometry, heat transfer characteristics and cycle time on sorption performance, i.e. the 

SCP and COP. It was shown that the S-HMX parameters have conflicting effects on the 

SCP and COP; thus, both the SCP and COP should be optimized in a multi-objective 

optimization study. Moreover, it was shown that the S-HMX geometry and heat transfer 

characteristics should be optimized simultaneously because if even one thermal 

resistance remains large inside the S-HMX, sorbent, heat exchanger (HEX) and/or heat 

transfer fluid (HTF), it can limit the heat transfer and overall performance of SCS. The 

developed analytical model can be applied to other sorption applications, such as heat 

pumps, heat transformers, and thermal energy storage systems, by changing the 

operating conditions and objective functions. Furthermore, the analytical model can be 

implemented to other S-HMX geometries by developing the pertinent eigen-value 

problems.  

In Chapter 4, the analysis of variance (ANOVA) was carried out to find the key 

parameters of the S-HMXs affecting their sorption performance. The results showed that 

the entire S-HMX, consisting of the sorbent, heat exchanger and the heat transfer fluid, 

should be optimized simultaneously to achieve optimal SCP and COP. Moreover, for the 

first time in the literature, a simultaneous multi-objective optimization study was performed 

on the geometry, heat transfer characteristics and cycle time of the P-HMX and the F-

HMX to find the optimal SCP and COP. A design with an SCP of 976 W/kg and a COP of 

0.60 was selected for the P-HMX and a design with an SCP of 757 W/kg and a COP of 

0.55 was selected for the F-HMX due to an optimal compromise between the SCP and 

COP. 
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In Chapter 5, For the first time in the literature, the S-HMXs of the P-HMX and the F-

HMX were specifically designed for sorption cooling systems based on the optimum 

design parameters. It was shown that compared to the state-of-the-art, the P-HMX 

provides the highest SCP, i.e. 1,005 W/kg sorbent, and the highest COP, i.e. 0.60. 

Furthermore, the F-HMX yielded an SCP of 766 W/kg and a COP of 0.55. The results 

showed that by optimization of the S-HMX, performance can be increased significantly, 

i.e. 4.3 times higher SCP, and 3 times higher COP, compared to the off-the-shelf S-HMX. 

The present P-HMX was tested under various operating conditions: i) desorption 

temperatures, 60–90 °C; ii) sorption and condenser temperatures, 20–40 °C; iii) an 

evaporator temperature, 5–20 °C; and iv) cycle time, 10–20 min.  An SCP in the range of 

320–1,230 W/kg and a COP of 0.40–0.80 were measured in our test bed over the range 

of targeted operating conditions. 

6.2.  Contributions 

The main novelties and contributions of the present PhD project can be summarized 

as follows: 

• Construction of a gravimetric large pressure jump (G-LPJ) test bed to study the 

counteracting trends of thermally conductive additives on heat and mass transfer; 

• Development of novel 2-D analytical closed-form models of the S-HMXs that can 

accurately predict spatial and temporal variation of uptake and temperature with 

low computation time; 

• Implementation of analysis of variance (ANOVA) to identify the S-HMX key 

parameters governing their performance; 

• Performing a simultaneous multi-objective optimization of key parameters of the S-

HMXs to achieve optimum SCP and COP; 

• Design and construction of optimized S-HMXs of P-HMXs and F-HMXs; 

• Construction of two-sorber bed sorption test bed to test the S-HMXs; 

• Achievement of an SCP of 1,005 W/kg and a COP of 0.60 for P-HMXs, which are 

higher than the state-of-the-art, and higher than the performance target: an SCP > 

700 W/kg and a COP > 0.55. Also, a cooling power of 0.59 kW higher than the 

performance target of 0.5 kW; 

• Enhancement of the sorption performance using the specific design and 

optimization of S-HMX, i.e. 4.3 times higher SCP, and 3 times higher COP, 

compared to the off-the-shelf S-HMX; 
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• Attainment of SCP in the range of 320–1,230 W/kg and COP in the range of 0.40–

0.80 for different operating conditions: i) desorption temperatures, 60–90 °C; ii) 

sorption and condenser temperatures, 20–40 °C, iii) evaporator temperature, 5–20 

°C; and iv) cycle time, 10–20 min.   

6.3. Limitations, potential for further development and 
implementation to other sorption applications 

The limitations, potential for further development and implementation of the present 

thesis to other sorption applications are listed in the following. 

1. The analytical model can be used if the assumptions in section 3.3 are satisfied. 

The assumptions of  

• uniform sorbate pressure inside the sorbent, 

• thermodynamic equilibrium of sorbent and sorbate, 

• local thermal equilibrium between sorbent and sorbate, and 

• negligible convection term in the energy equation 

are essential for the model development. If they are not met, the model would 

require major modifications, such as addition of mass transfer equations and 

convection terms. However, the assumptions of 

• constant temperature of heat transfer fluid along the solution domain, 

• adiabatic boundary conditions, 

• constant thermo-physical properties, and 

• negligible gap between the sorbent coatings 

are not vital and broader assumptions can be added to the model by 

• semi-analytical modeling, including numerical methods in the analytical model,  

• changing the boundary conditions in the eigenvalue problems, 

• variable thermo-physical properties and semi-analytical modeling by dividing 

the solution domain into the intervals where the properties are constant, and 

• the model is valid for both negligible and significant gap between the sorbent 

coatings, 

, respectively.  

Moreover, the analytical model was developed for sorption cooling systems. 

Nonetheless, it can be used for other closed sorption systems, such as heat 

transformers, heat pumps, thermal energy storage systems, and desalination. The 

model would require significant modifications for the open sorption systems, namely 
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sorption dehumidification, and gas separation applications. Additional layers of the 

flow stream and convection terms should be added to the solution domain and the 

governing equations. 

2. Thermally conductive additives other than graphite flakes can be used to increase 

the sorbent thermal diffusivity. Moreover, sorbents other than silica gel/CaCl2 can 

be employed as the sorbent. The measurements of equilibrium uptake and thermo-

physical properties should be conducted for the new sorbents and implemented to 

the model as the inputs. The assumptions related to the sorbent should be checked 

as mentioned above. 

3. ANOVA and optimization study should be performed using the modified analytical 

models for different sorption applications. The operating conditions and objective 

functions should be modified accordingly. For example, for heat transformers, the 

ambient temperature is used to cool the condenser, the low-grade thermal energy 

is used to heat the evaporator and sorber beds during desorption, while the sorber 

beds generate higher-grade thermal energy. Furthermore, the objective functions 

of specific heating power and coefficient of performance could be used to assess 

the heat transformer performance. Optimal design should be selected based on 

the limitations and constraints, such as available mass, volume, heat source, and 

cost.  

4. New sorber beds should be built based on the new optimization study. The custom-

built two-sorber bed sorption test bed can be used to test the new sorber beds for 

closed sorption systems by changing the operating conditions at the setpoints of 

the temperature control systems and modifying the vacuum chambers to fit to the 

new sorber beds. Nevertheless, a new test bed should be custom-built for open 

sorption systems. 

5. It should be noted that this study was carried out focusing on the sorber beds of 

the sorption systems assuming ideal evaporators and condensers, meaning the 

evaporators and condensers do not limit the performance. The entire methodology 

of the modeling, ANOVA, optimization, manufacturing and testing should be 

performed on the evaporator and condenser of the sorption systems to achieve an 

optimal performance. A model is needed to optimize and control the operation of 

the sorption systems, including the sorber beds, evaporator and condenser, for 

different operating conditions and various demand loads.  
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6.4. Future research 

The recommendations for future research are as follows: 

• Investigation of other S-HMX designs, such as a pin fin HMX and a radial fin HMX, 

or modifications of the same P-HMX and F-HMX used in this study, e.g. variable 

thicknesses of the fin and the sorbent along the fins. The methodology of the 

analytical model developed in this study, can be applied to other geometries by 

developing the pertinent eigenvalue problems. Investigation of nature-inspired S-

HMX. 

• Approximation of the water uptake relationship with the sorbent temperature with a 

quadratic function and solve the governing equations semi-analytically. 

• Design and development of S-HMX out of graphite or plastic instead of aluminum 

due to the low heat capacity, low weight and resistance against corrosion. 

Investigation of corrosion-resistant coatings on aluminum. Corrosion testing of the 

heat exchanger and outgassing rate with respect to the number of sorption cycles. 

• Optimization of S-HMX considering the power consumption of the heat transfer fluid 

pumps and their pressure drop. 

• Design and development of compact and light vacuum chambers with proper 

sealing to reduce the weight and volume of SCS. 

• Implementation of the proposed approach in this PhD project to other sorption 

applications, namely heat pumps, heat transformers, heat storage, 

dehumidification, desalination and gas separation. All the steps taken in the present 

PhD project to specifically design and optimize the S-HMXs for sorption cooling 

systems, can be applied to other sorption applications by changing the operating 

conditions and the target performance indices.  

• Large-scale modeling and optimization of the S-HMXs. In this study, the objective 

was to design and optimize the S-HMXs for 0.5 kW cooling power. The S-HMXs 

and the system can be scaled up to increase the cooling power to fulfill the 

requirements of vehicles and houses. A large-scale model is required to design and 

optimize the system operation, such as the configuration of the heat transfer fluid. 

• System-level modeling and optimization of the sorption systems. Different 

components of the sorption systems, such as the S-HMXs, evaporators, 

condensers, and expansion valves, should be modelled together. This model can 
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be used to optimize the design and operating parameters of the sorption systems 

to further increase the performance.  

• A real-time control system is required to control the operation of sorption systems 

for different operating conditions, namely heat source temperature, heat source 

heating power, sorption and condenser temperatures, and evaporator temperature. 

Based on different operating conditions, this control system can optimize the 

system operation such as cycle time to yield the maximum power.
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Appendix A: Enhancement of coefficient of performance 
(COP) 

Advanced cycles such as thermal regeneration cycles (thermal and forced 

convective/wave cycle), cascade cycles and multi-stages schemes have been proposed 

to enhance COP of SCS [174]. However, these cycles increase the complexity and more 

importantly the mass, volume and the cost of the system, which results in lower cooling 

power per overall mass. Therefore, alternative solutions need to be found to increase COP 

without increasing the mass and volume of the system. 

It was explained in section 1.6, that coefficient of performance (COP) can be increased 

by: i) enhancing the heat and mass transfer processes inside the S-HMX, which increases 

both the evaporative cooling energy and the desorption heat, which overall increases 

COP, and ii) decreasing the sensible energy required to overcome thermal inertia of the 

heat exchanger (HEX), sorbent material, refrigerant inside the sorbent and the heat 

transfer fluid. 

Fig. A 1 shows the share of desorption heat and sensible energy of each component 

of the S-HMX, i.e. heat exchanger (HEX), sorbent material, refrigerant inside the sorbent 

and the heat transfer fluid, for the optimized P-HMX. The results are obtained from 2-D 

analytical model validated by the experiments. It can be seen in Fig. A 1 that 55% of the 

input energy is consumed to desorb water from the sorbent, whereas 45% of the input 

energy is wasted to overcome the S-HMX thermal inertia. For the same conditions, by 

increasing the amount of sorbent and refrigerant inside the sorbent, COP increases; thus, 

5% and 9% of the input energy, consumed to overcome thermal inertia of the sorbent and 

the water inside the sorbent, cannot be decreased. Therefore, the only portions of the 

input energy that can be decreased are the energy spent on thermal inertia of the heat 

transfer fluid and heat exchanger, 18% and 13%, respectively. 
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Fig. A 1. Share of desorption heat and the sensible energy of the heat exchanger (HEX), 
sorbent material, water inside the sorbent and the heat transfer fluid in the input energy 

 

In this study, thermal inertia of the heat exchanger was minimized by (i) optimizing the 

P-HMX geometry for optimum SCP and COP and (ii) building the P-HMX out of aluminum, 

which has lower heat capacity compared to the common metals used for heat exchanger 

production, such as copper and stainless steel. The justification for selection of aluminum 

as the S-HMX material is explained in Appendix A.1. Furthermore, COP can be 

significantly increased by removing the heat transfer fluid (HTF) thermal inertia using heat 

recovery methods, discussed in Appendix A.2. 

A.1: Thermal inertia of the heat exchanger (HEX) 

Fig. A 2 shows the impact of HEX thermal conductivity and heat capacity on the COP 

of SCS. It can be seen that by increasing thermal conductivity, the COP increases to a 

certain point and then plateaus. The reason behind this is that by increasing thermal 

conductivity, the heat transfer in the S-HMX enhances, which increases both evaporator 

and desorption heat in Eq. (7), ultimately increasing the COP. This trend continues to the 

point where the heat exchanger heat transfer resistance becomes comparable to that of 

the sorbent and/or the HTF. Beyond this point, increasing HEX thermal conductivity does 

not increase COP noticeably because the heat transfer is limited elsewhere, namely the 

sorbent and/or the HTF. This point depends on the design and the materials of the S-
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HMX, namely sorbent, HEX and HTF, and should be included in the material selection 

and the design process. 

In addition, Fig. A 2 shows that by reducing the HEX heat capacity while thermal 

conductivity is kept constant, the COP increases as HEX sensible heat in Eq. (7) 

decreases. Also, it can be observed that the upper limit of COP for the baseline case in 

Table 9, is 0.72 if the HEX heat capacity was set to zero. 

 

 Fig. A 2. COP vs thermal conductivity and heat capacity of heat exchanger (HEX) for the 
baseline case of the S-HEX in Table 9 

 

Fig. A 3 shows the SCP and COP of the S-HMX for a number of materials for the heat 

exchanger with a range of thermophysical properties listed in Table A 1. It can be 

observed in Fig. A 3 (a) that by increasing thermal conductivity, SCP increases as the 

evaporative cooling power increases. It can be seen in Fig. A 3 (b) that by increasing 

thermal diffusivity of the HEX material, the COP increases. It can be seen in Fig. A 3 that 

the only exception is copper. Even though copper has a high thermal diffusivity, it yields a 

COP lower than materials such as aluminum 6061 with lower thermal diffusivity; this is 

due to copper’s relatively high thermal inertia. It was shown in Fig. A 2 that HEX thermal 

conductivity increases the COP to a point and then plateaus as the heat transfer of the S-

HMX will be limited by the sorbent and/or HTF. In copper’s case, its high thermal 
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conductivity is not needed; however, its high heat capacity results in a relatively lower 

COP. This is an important finding since it clearly shows that in material selection of HEX, 

both thermal conductivity and heat capacity should be taken into account, and thermal 

diffusivity alone should not be used.  

Furthermore, it can be observed in Table A 1 that conductive polymer and natural 

graphite sheets have anisotropic thermal conductivity. It was shown in section 3.7 that the 

heat transfer resistance of fins in the S-HMX in its in-plane direction is two orders of 

magnitude larger than that of its through-plane. Consequently, the effect of in-plane is 

more pronounced than its through-plane thermal conductivity. This can be seen in Fig. A 

3 that using natural graphite sheet, the highest COP can be achieved despite its low 

through-plane thermal conductivity thanks to its high in-plane thermal diffusivity. Overall, 

it can be seen that aluminum provides the highest SCP and relatively high COP. Graphite 

can generate slightly higher COP, 6%, but aluminum was selected as the S-HMX material 

in this study due to the manufacturability and durability of the sorbent coating on 

aluminum. Other than these thermo-physical properties, graphite is corrosion resistant, 

which is highly desirable when corrosive sorbents of CaCl2 are used. Therefore, graphite 

is recommended as the S-HMX material for future work.  

Table A 1. Thermophysical properties of various materials used for HEX 
Material k (W/ m K) ρ (kg/m3) cp (J/kg K) α (mm2/s) 

Glass 1 8000 840 0.149 

Paper 0.18 930 1340 0.144 

Stainless 
steel 14.74 7902 471.9 3.953 

Ceramic, 
alumina 18 3690 880 5.543 

Conductive 
polymer* 

kx=15, 
ky=3.5** 1760 1260 

αx=6.764, 
αy=1.578 

Copper 401.8 8936 383 117.400 

Titanium 22.08 4501 518.1 9.468 

Platinum 73.12 21454 132.5 25.722 

Zink 121.3 7144 387.5 43.817 

Al 6061 167 2700 896 69.031 

Gold 317.7 19306 128.7 127.863 

Silver 429.1 10504 234.3 174.354 



 145 

Resin-
impregnated 
graphite kx=300, ky=5 1838 895 

αx=182.370, 
αy=3.039 

Natural 
graphite 
sheet kx=300, ky=5 1550 748 

αx=258.754, 
αy=4.312 

* LNP KONDUIT COMPOUND OX11315, SABIC Innovative Plastics 
** subscripts of x and y denote ‘in-plane’ and ‘through-plane’ directions, respectively. 
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Fig. A 3. (a) SCP and (b) COP of the S-HMX; HEX made from various materials with 
different thermal diffusivities listed in Table A 1 

A.2: Thermal inertia of the heat transfer fluid (HTF); heat 
recovery methods 

Thermal inertia of the heat transfer fluid (HTF) can be eliminated fully using a heat 

recovery method. Fig. A 4 presents a schematic of how heat recovery is performed. The 

low-grade heat source supplies heat to the S-HMX during the desorption process and the 

ambient cools the S-HMX during the sorption process. When switched between desorption 

and sorption process, the high-temperature HTF in the S-HMX that was desorbing, can 

be used to pre-heat the other S-HMX that is entering the desorption process. This way, 

the preheating is done without using the external heat source and leads to a higher COP.  
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Fig. A 4. Schematic of heat recovery in the heat transfer fluid (HTF) circulation in 
sorption systems 

 

There are three heat recovery methods in the literature: i) circular, ii) serial, and iii) 

passive [174]. Fig. A 5 shows a schematic of these methods, respectively. Pan et al. [175] 

compared the methods and reported that the serial and passive methods provide higher 

performance than circular. Furthermore, it can be seen in Fig. A 5 that passive heat 

recovery does not require additional pumping, valves or piping as opposed to circular and 

serial heat recovery methods, which reduces the total weight of the system and 

complexity. Hence, passive heat recovery method is preferred in our study to increase the 

COP. 



 148 

 

Fig. A 5. Schematic of different heat recovery methods, circular, serial and passive [20] 
 

Passive heat recovery can be implemented using two four-way valves instead of eight 

two-way valves, which decreases complexity and facilitates the system control. One of the 

four-way valves is set to have a delay at the beginning of each process to push the high- 

and low-temperature HTF in the S-HMX and hoses back to high- and low-temperature 
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reservoirs of temperature control systems, TCS. Fig. A 6 shows that in processes 1 and 

3, one of the S-HMXs is desorbing while the other is ad/absorbing, whereas in processes 

2 and 4, which occur during the time delay of the valves, pre-cooling and pre-heating, i.e. 

heat recovery, is performed. The time delay can be calculated based on the flow rate of 

the heat transfer fluid and the fluid volume in the S-HMXs and the hoses. 

 

 

Fig. A 6. Schematic of passive heat recovery method performed with two four-way 
valves and a time delay 

 

Fig. A 7 shows the share of desorption heat and sensible energy of each component 

of the P-HMX, i.e. heat exchanger (HEX), sorbent material, refrigerant inside the sorbent 

by eliminating the heat transfer fluid thermal inertia using the passive heat recovery 

method. The results are obtained from our 2-D analytical model validated by the 

experiments. It can be observed that COP increases from 0.491 to 0.598 by removing the 

heat transfer fluid thermal inertia. 
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Fig. A 7. Share of desorption heat and the sensible energy of the heat exchanger (HEX), 
sorbent material, water inside the sorbent by eliminating the heat transfer fluid thermal 

inertia using the passive heat recovery method 
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Appendix B: Uncertainty analysis 

B.1: Uncertainty analysis of the measurements in chapter 2 

The uncertainty in SCP calculation is obtained based on the method proposed by 

Moffat [176] as follows.  
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Sorbent mass was measured using an analytical balance (OHAUS AX124) with the 

accuracy of 0.0001 g, whereas the sorbate mass change was measured by precision 

balance (ML4002E, Mettler Toledo) with the accuracy of 0.01 g. Therefore, the sorbent 

mass uncertainty was negligible compared to that of sorbate. 

Finally, the uncertainty in SCP calculation is obtained using Eq. (B.5). Substituting the 

sorbent mass and differential sorbate uptake in Eq. (B.5), the SCP uncertainty is estimated 

to be between 0.24–3.83% for different samples and cycle times. 

0.01

sorbent

g

m
 =  (B.4) 

0.01 2

sorbent

SCP

SCP m




=


 (B.5) 

B.2: Uncertainty analysis of the measurements in chapter 1 

The uncertainty in the calculation of evaporative cooling energy and desorption energy 

is obtained based on the method proposed by Moffat [176] as follows.  
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Specific cooling power (SCP) is defined as the ratio of evaporative cooling energy to 

the product of cycle time and dry sorbent mass, Eq. (B.8). Coefficient of performance 

(COP) is defined as the ratio of evaporative cooling energy to the desorption energy, Eq. 

(B.9). 
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The uncertainty in SCP and COP calculation is as follows.  

2 2 2 2 2
1 1

0.01125 0.106
600 1200

SCP Q m

SCP Q m

   



         
= + + = + + =         

        
 (B.10) 

2 2

0.01125 0.00439 0.125
evap des

evap des

Q QCOP

COP Q Q

     
= + = + =    

  

 (B.11) 



 153 

Appendix C: Gravimetric large pressure jump (G-LPJ) data 

Table C1 shows the water uptake measured by G-LPJ test bed for composite sorbents 

containing 0–20 wt.% graphite flake, see Table 6 for more information. The data was 

measured every second in G-LPJ, but shown every 2 minutes in Table C1 to reduce the 

number of data points. The full data points are shown in Fig. 31 (a) in section 1. 

 

Table C1. Uptake measurements from G-LPJ test bed for composite sorbents 

containing ϕ=0–20 wt.% graphite flake, see Table 6 

t (s) t (min) 
ω (g H2O / g sorbent) 

ϕ=0wt.% ϕ=5wt.% ϕ=10wt.% ϕ=15wt.% ϕ=20wt.% 

1 0.01667 -0.00006 0.00004 0.00017 0.00087 0.00003 

120 2 0.01708 0.01936 0.02235 0.03199 0.03489 

240 4 0.03398 0.03973 0.04673 0.05634 0.06189 

360 6 0.05144 0.05973 0.06762 0.07735 0.08211 

480 8 0.06888 0.07624 0.08561 0.09567 0.09981 

600 10 0.08367 0.09079 0.09976 0.10674 0.11316 

720 12 0.09618 0.10172 0.11115 0.11847 0.12364 

840 14 0.10763 0.11148 0.12135 0.12802 0.13271 

960 16 0.11681 0.12074 0.12953 0.13689 0.14149 

1080 18 0.12540 0.12849 0.13910 0.14532 0.14600 

1200 20 0.13322 0.13550 0.14806 0.15357 0.15264 

1320 22 0.13975 0.14426 0.15480 0.16027 0.15708 

1440 24 0.14589 0.15012 0.16019 0.16516 0.16288 

1560 26 0.15031 0.15606 0.16490 0.16968 0.16405 

1680 28 0.15584 0.16077 0.17090 0.17236 0.16652 

1800 30 0.16318 0.16712 0.17531 0.17340 0.16806 

1920 32 0.16908 0.17050 0.17929 0.17743 0.17054 

2040 34 0.17539 0.17326 0.18464 0.17971 0.17185 

2160 36 0.17965 0.17833 0.19013 0.18133 0.17301 

2280 38 0.18391 0.18241 0.19211 0.18384 0.17356 

2400 40 0.18909 0.18559 0.19421 0.18804 0.17524 

2520 42 0.19199 0.18867 0.19464 0.18789 0.17499 

2640 44 0.19491 0.19312 0.19775 0.18727 0.17504 

2760 46 0.19756 0.19532 0.20015 0.18712 0.17615 

2880 48 0.19899 0.19909 0.19986 0.18750 0.17478 

3000 50 0.19950 0.20080 0.20117 0.18760 0.17421 

3120 52 0.20107 0.20369 0.20163 0.18712 0.17483 

3240 54 0.20483 0.20568 0.20320 0.18504 0.17554 

3360 56 0.20670 0.20682 0.20212 0.18539 0.17638 
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3480 58 0.20960 0.20922 0.20198 0.18513 0.17713 

3600 60 0.21291 0.20979 0.20420 0.18380 0.17980 

3720 62 0.21520 0.21169 0.20348 0.18516 0.17824 

3840 64 0.21597 0.21236 0.20464 0.18780 0.17884 

3960 66 0.21802 0.21218 0.20467 0.18678 0.17910 

4080 68 0.22020 0.21180 0.20584 0.18694 0.17920 

4200 70 0.22075 0.21133 0.20466 0.18678 0.17917 

4320 72 0.22104 0.21095 0.20220 0.18897 0.17882 

4440 74 0.22352 0.21006 0.20198 0.18819 0.17935 

4560 76 0.22576 0.21037 0.20373 0.18814 0.18053 

4680 78 0.22440 0.21184 0.20295 0.18884 0.18238 

4800 80 0.22499 0.21126 0.20294 0.18915 0.18231 

4920 82 0.22421 0.21222 0.20196 0.18953 0.18121 

5040 84 0.22502 0.21535 0.20321 0.18879 0.18005 

5160 86 0.22537 0.21485 0.20150 0.18925 0.18108 

5280 88 0.22455 0.21391 0.20097 0.19044 0.18286 

5400 90 0.22411 0.21571 0.20168 0.19179 0.18253 

5520 92 0.22432 0.21689 0.20113 0.19234 0.18297 

5640 94 0.22410 0.21577 0.20251 0.19124 0.18124 

5760 96 0.22489 0.21548 0.20274 0.18980 0.18097 

5880 98 0.22499 0.21447 0.20387 0.18993 0.18017 

6000 100 0.22669 0.21589 0.20362 0.19000 0.17959 

6120 102 0.22756 0.21585 0.20260 0.18972 0.17894 

6240 104 0.22660 0.21585 0.20308 0.19141 0.18041 

6360 106 0.22757 0.21564 0.20174 0.19132 0.18055 

6480 108 0.22802 0.21375 0.20150 0.19086 0.18015 

6600 110 0.22895 0.21386 0.20115 0.18916 0.18056 

6720 112 0.22832 0.21299 0.20037 0.19112 0.18210 

6840 114 0.22648 0.21352 0.20105 0.19269 0.18232 

6960 116 0.22809 0.21181 0.20240 0.19112 0.18337 
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Appendix D: Optimized sorber bed heat and mass exchangers 
data 

Table D1–Table D11 show the time variation of HTF temperature inlet and outlet, 

pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, and condenser, and the 

average temperatures of the fin and the sorbent in the F-HMX for different operating 

conditions. These experimental results were obtained from the two-sorber bed sorption 

test bed for plate-fin (P-HMX) and finned-tube (F-HMX) sorber bed heat and mass 

exchangers. It should be noted that data was collected every second from the test bed, 

but is shown every minute in Table D1–Table D11 to reduce the number of data points. 



 156 

Table D1. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=90ºC, Tsorp= Tcond=30ºC, 

Tevap=15ºC, τcycle=10min 

t (s) 
Tin, the 

P-HMX 

(ºC) 

Tout, the 

P-HMX 

(ºC) 

pP-HMX 
(kPa) 

pcond 
(kPa) 

pF-HMX 
(kPa) 

pevap 
(kPa) 

V evap 

(lpm) 

V cold 

(lpm) 

V hot 

(lpm) 

Tin, the 

F-HMX 
(ºC) 

Tout, the 

F-HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 72.2 89.3 5.1 5.0 1.2 1.3 14.9 15.3 3.7 51.5 30.6 15.1 14.6 30.2 31.5 

60 33.1 34.3 1.1 4.1 4.1 1.3 14.9 14.0 4.2 88.0 83.5 15.1 13.8 84.3 67.7 

120 31.7 32.5 1.1 4.2 4.7 1.2 14.9 14.0 4.2 89.2 86.9 15.0 13.6 86.3 73.5 

180 30.6 31.2 1.2 4.3 4.8 1.3 14.9 14.0 4.2 89.8 88.0 15.0 13.8 87.9 77.9 

240 30.0 30.4 1.2 4.3 4.8 1.3 14.9 14.0 4.2 89.8 88.5 15.1 14.0 88.9 81.1 

300 33.4 30.1 1.2 4.3 4.7 1.3 14.9 14.0 4.2 83.6 88.5 15.1 14.2 89.2 83.5 

360 85.6 83.4 5.4 4.8 1.4 1.4 14.9 4.2 11.4 31.2 35.8 15.2 15.1 32.6 43.7 

420 88.3 86.7 5.7 5.0 1.3 1.3 14.9 4.2 11.5 30.5 32.1 15.3 14.7 31.6 38.6 

480 89.8 88.6 5.6 5.0 1.3 1.3 14.9 4.2 11.5 30.0 31.2 15.2 14.6 30.5 35.8 

540 90.2 89.3 5.4 5.0 1.3 1.3 14.9 4.2 11.4 29.8 30.7 15.2 14.5 29.7 33.6 

600 90.0 89.3 5.1 5.0 1.3 1.3 14.9 4.2 11.4 29.8 30.6 15.2 14.6 29.2 31.8 
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Table D2. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=90ºC, Tsorp= Tcond=30ºC, 

Tevap=15ºC, τcycle=15min 

t (s) 
Tin, the 

P-HMX 

(ºC) 

Tout, the 

P-HMX 

(ºC) 

pP-HMX 
(kPa) 

pcond 
(kPa) 

pF-HMX 
(kPa) 

pevap 
(kPa) 

V evap 

(lpm) 
V cold 

(lpm) 
V hot 

(lpm) 

Tin, 

the F-

HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 89.2 88.7 4.8 4.7 1.4 1.4 14.9 15.3 3.7 30.0 30.7 15.4 14.9 31.8 31.5 

60 33.4 34.7 1.1 4.7 4.7 1.3 14.8 14.1 4.2 87.3 81.9 15.4 14.3 83.1 67.7 

120 32.1 32.9 1.1 5.0 5.2 1.3 14.8 14.0 4.2 88.8 86.3 15.3 14.0 85.6 73.5 

180 30.9 31.5 1.2 5.3 5.5 1.3 14.9 14.0 4.2 89.7 87.8 15.3 14.1 87.6 77.9 

240 30.1 30.6 1.2 5.6 5.8 1.3 14.9 14.0 4.2 89.9 88.4 15.4 14.2 88.8 81.1 

300 29.9 30.2 1.2 5.8 5.9 1.3 14.9 14.0 4.2 89.8 88.6 15.4 14.4 89.3 83.5 

360 29.8 30.0 1.3 5.9 6.1 1.3 14.9 14.0 4.2 89.5 88.5 15.5 14.6 89.3 85.3 

420 29.8 30.0 1.3 5.9 6.0 1.3 14.9 14.0 4.2 89.3 88.4 15.5 14.7 89.2 86.7 

480 85.1 80.0 5.0 4.2 3.9 1.4 14.8 4.2 11.4 31.0 49.6 15.5 15.1 35.8 51.9 

540 86.6 84.6 5.7 4.7 1.4 1.4 14.8 4.2 11.5 31.2 33.8 15.5 15.2 35.1 44.3 

600 88.9 87.4 5.8 4.8 1.4 1.4 14.9 4.2 11.5 30.5 31.9 15.5 15.0 33.9 40.9 

660 90.1 88.9 5.6 4.8 1.4 1.4 14.8 4.2 11.5 30.0 31.2 15.4 14.9 32.7 38.4 

720 90.3 89.3 5.3 4.8 1.4 1.4 14.9 4.2 11.5 29.9 30.8 15.4 14.9 32.0 36.5 

780 89.9 89.2 5.0 4.8 1.4 1.4 14.8 4.2 11.5 29.9 30.7 15.4 14.9 31.5 34.7 

840 89.5 88.9 4.9 4.7 1.4 1.4 14.9 4.2 11.5 30.0 30.6 15.4 14.9 31.3 33.3 

900 89.2 88.7 4.8 4.7 1.4 1.4 14.9 4.2 11.5 30.0 30.7 15.4 14.9 31.0 32.2 
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Table D3. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=90ºC, Tsorp= Tcond=30ºC, 

Tevap=15ºC, τcycle=20min 

t (s) 
Tin, the 

P-HMX 

(ºC) 

Tout, the 

P-HMX 

(ºC) 

pP-HMX 
(kPa) 

pcond 
(kPa) 

pF-HMX 
(kPa) 

pevap 
(kPa) 

V evap 

(lpm) 
V cold 

(lpm) 
V hot 

(lpm) 

Tin, the 

F-HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 89.2 88.8 5.2 5.3 1.2 1.2 14.9 15.3 3.7 30.0 30.6 15.4 15.0 31.7 31.5 

60 33.4 34.8 0.8 5.3 4.8 1.1 14.8 14.1 4.2 87.0 80.2 15.5 14.7 82.8 67.7 

120 32.8 33.5 0.8 5.4 5.4 1.1 14.9 14.0 4.2 88.0 85.6 15.3 14.3 84.7 73.5 

180 31.8 32.3 0.9 5.7 5.7 1.1 14.9 14.0 4.2 89.1 87.3 15.3 14.2 86.4 77.9 

240 30.9 31.4 0.9 6.0 6.0 1.1 14.9 14.0 4.2 89.7 88.2 15.3 14.3 87.8 81.1 

300 30.3 30.6 1.0 6.2 6.2 1.1 14.9 14.0 4.2 89.9 88.7 15.4 14.4 88.7 83.5 

360 30.0 30.3 1.0 6.3 6.4 1.1 14.9 14.0 4.2 89.9 88.9 15.4 14.5 89.2 85.3 

420 29.9 30.1 1.0 6.4 6.6 1.1 14.9 14.0 4.2 89.7 88.9 15.4 14.7 89.3 86.7 

480 29.8 30.0 1.0 6.5 6.6 1.1 14.9 14.0 4.2 89.5 88.7 15.5 14.8 89.3 87.7 

540 29.8 30.0 1.0 6.5 6.6 1.1 14.8 14.0 4.2 89.4 88.6 15.5 14.8 89.2 88.3 

600 29.9 30.0 1.0 6.5 6.6 1.1 14.9 12.7 5.1 89.2 88.5 15.5 14.9 89.0 88.4 

660 84.5 82.2 6.0 4.9 2.5 1.2 14.8 4.2 11.5 31.4 38.8 15.5 15.2 35.6 48.6 

720 86.6 85.1 6.3 5.3 1.2 1.2 14.8 4.2 11.5 31.2 33.3 15.5 15.3 34.8 43.4 

780 88.5 87.3 6.4 5.4 1.2 1.2 14.8 4.2 11.5 30.6 31.9 15.5 15.1 33.9 40.7 

840 89.7 88.7 6.3 5.4 1.1 1.2 14.9 4.2 11.5 30.2 31.2 15.4 15.0 33.0 38.5 

900 90.2 89.4 6.1 5.4 1.1 1.2 14.8 4.2 11.5 30.0 30.8 15.4 15.0 32.3 36.6 

960 90.3 89.6 5.8 5.4 1.2 1.2 14.9 4.2 11.5 29.9 30.6 15.4 15.0 31.8 35.1 

1020 90.0 89.5 5.6 5.4 1.2 1.2 14.9 4.2 11.5 29.9 30.5 15.4 15.0 31.5 33.8 

1080 89.7 89.3 5.4 5.4 1.2 1.2 14.9 4.2 11.5 29.9 30.5 15.5 15.0 31.3 32.8 

1140 89.4 89.0 5.3 5.3 1.2 1.2 14.9 4.2 11.5 30.0 30.5 15.5 15.0 31.1 32.0 

1200 89.2 88.8 5.3 5.3 1.2 1.2 14.9 4.2 11.5 30.0 30.6 15.4 15.0 31.0 31.5 
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Table D4. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=80ºC, Tsorp= Tcond=30ºC, 

Tevap=15ºC, τcycle=10min 

t 
(s) 

Tin, 

the P-

HMX 

(ºC) 

Tout, 

the P-

HMX 

(ºC) 

pP-

HMX 
(kPa) 

pcond 
(kPa) 

pF-

HMX 
(kPa) 

pevap 
(kPa) 

V

evap 

(lpm) 

V cold 

(lpm) 
V hot 

(lpm) 

Tin, 

the F-

HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 65.2 79.5 4.7 4.8 1.4 1.5 14.9 15.3 3.7 47.9 30.5 15.1 14.7 30.2 31.5 

60 32.5 33.6 1.3 4.1 3.9 1.4 14.9 14.0 4.2 78.4 74.6 15.1 14.0 75.2 60.7 

120 31.4 32.1 1.3 4.2 4.5 1.4 14.9 14.0 4.2 79.4 77.5 15.0 13.8 76.9 65.5 

180 30.5 31.0 1.3 4.3 4.6 1.4 14.9 14.0 4.2 79.8 78.4 15.0 13.9 78.2 69.0 

240 30.0 30.3 1.3 4.3 4.6 1.4 14.9 14.0 4.2 79.9 78.8 15.1 14.1 79.0 71.6 

300 32.8 30.1 1.3 4.3 4.5 1.4 14.9 14.0 4.2 74.7 78.8 15.1 14.3 79.3 73.5 

360 76.4 74.6 5.0 4.6 1.6 1.5 14.9 4.2 11.4 31.0 34.8 15.2 15.1 32.1 41.4 

420 78.7 77.3 5.2 4.8 1.4 1.5 14.9 4.2 11.5 30.4 31.7 15.3 14.7 31.3 37.2 

480 79.9 78.8 5.1 4.8 1.4 1.4 14.9 4.2 11.5 30.0 31.0 15.2 14.6 30.4 35.0 

540 80.2 79.4 4.9 4.8 1.4 1.4 14.9 4.2 11.4 29.8 30.6 15.2 14.6 29.7 33.2 

600 80.0 79.4 4.7 4.7 1.4 1.5 14.9 4.2 11.4 29.8 30.5 15.2 14.7 29.3 31.7 
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Table D5. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=70ºC, Tsorp= Tcond=30ºC, 

Tevap=15ºC, τcycle=10min 

t 
(s) 

Tin, 

the P-

HMX 

(ºC) 

Tout, 

the P-

HMX 

(ºC) 

pP-

HMX 
(kPa) 

pcond 
(kPa) 

pF-

HMX 
(kPa) 

pevap 
(kPa) 

V

evap 

(lpm) 

V cold 

(lpm) 
V hot 

(lpm) 

Tin, 

the F-

HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 58.2 69.6 4.4 4.6 1.5 1.6 14.9 15.3 3.7 44.3 30.4 15.1 14.8 30.1 31.5 

60 32.0 32.8 1.4 4.1 3.8 1.5 14.9 14.0 4.2 68.8 65.7 15.1 14.3 66.1 53.8 

120 31.1 31.6 1.4 4.1 4.3 1.5 14.9 14.0 4.2 69.5 68.0 15.0 14.1 67.4 57.4 

180 30.4 30.7 1.4 4.2 4.5 1.5 14.9 14.0 4.2 69.9 68.8 15.0 14.2 68.5 60.1 

240 30.0 30.2 1.4 4.2 4.5 1.5 14.9 14.0 4.2 70.0 69.0 15.1 14.4 69.1 62.1 

300 32.2 30.0 1.4 4.2 4.4 1.5 14.9 14.0 4.2 65.8 69.1 15.1 14.5 69.4 63.5 

360 67.1 65.7 4.6 4.4 1.7 1.6 14.9 4.2 11.4 30.7 33.8 15.2 15.1 31.7 39.0 

420 69.0 67.8 4.8 4.6 1.5 1.5 14.9 4.2 11.5 30.3 31.4 15.3 14.8 31.0 35.8 

480 70.0 69.1 4.8 4.6 1.5 1.5 14.9 4.2 11.5 29.9 30.7 15.2 14.7 30.3 34.2 

540 70.2 69.6 4.6 4.6 1.5 1.5 14.9 4.2 11.4 29.8 30.4 15.2 14.7 29.7 32.8 

600 70.1 69.6 4.5 4.5 1.5 1.5 14.9 4.2 11.4 29.8 30.3 15.2 14.8 29.4 31.7 
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Table D6. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=60ºC, Tsorp= Tcond=30ºC, 

Tevap=15ºC, τcycle=10min 

t 
(s) 

Tin, 

the P-

HMX 

(ºC) 

Tout, 

the P-

HMX 

(ºC) 

pP-

HMX 
(kPa) 

pcond 
(kPa) 

pF-

HMX 
(kPa) 

pevap 
(kPa) 

V

evap 

(lpm) 

V cold 

(lpm) 

V hot 

(lpm) 

Tin, 

the F-

HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 51.2 58.0 4.2 4.4 1.6 1.6 14.9 15.3 3.7 40.7 30.9 15.1 14.9 30.4 31.5 

60 31.5 32.0 1.5 4.1 3.8 1.5 14.9 14.0 4.2 59.1 57.0 15.1 14.7 57.0 46.8 

120 30.8 31.1 1.5 4.1 4.2 1.5 14.9 14.0 4.2 59.7 58.6 15.0 14.6 58.0 49.3 

180 30.2 30.5 1.5 4.2 4.4 1.5 14.9 14.0 4.2 60.0 59.2 15.0 14.7 58.8 51.2 

240 29.9 30.1 1.5 4.2 4.4 1.6 14.9 14.0 4.2 60.0 59.4 15.1 14.7 59.3 52.5 

300 31.6 30.3 1.5 4.2 4.3 1.6 14.9 14.0 4.2 56.9 59.2 15.1 14.8 59.4 53.5 

360 57.9 57.0 4.4 4.3 1.7 1.7 14.9 4.2 11.4 30.5 32.7 15.2 15.1 31.2 36.7 

420 59.3 58.6 4.6 4.4 1.6 1.6 14.9 4.2 11.5 30.2 30.9 15.3 15.0 30.7 34.5 

480 60.0 59.5 4.6 4.4 1.6 1.6 14.9 4.2 11.5 29.9 30.5 15.2 15.0 30.1 33.3 

540 60.2 59.8 4.4 4.4 1.6 1.6 14.9 4.2 11.4 29.8 30.3 15.2 14.9 29.8 32.4 

600 60.1 59.8 4.4 4.4 1.6 1.6 14.9 4.2 11.4 29.8 30.2 15.2 14.9 29.5 31.6 
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Table D7. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=90ºC, Tsorp= Tcond=20ºC, 

Tevap=15ºC, τcycle=10min 

t 
(s) 

Tin, 

the P-

HMX 

(ºC) 

Tout, 

the P-

HMX 

(ºC) 

pP-

HMX 
(kPa) 

pcond 
(kPa) 

pF-

HMX 
(kPa) 

pevap 
(kPa) 

V

evap 

(lpm) 

V cold 

(lpm) 

V hot 

(lpm) 

Tin, 

the F-

HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 69.2 89.2 3.4 3.2 0.5 0.6 14.9 15.3 3.7 45.1 20.7 15.1 14.5 20.3 23.2 

60 23.6 25.1 0.5 2.2 2.5 0.6 14.9 14.0 4.2 87.7 82.2 15.1 13.6 83.4 64.5 

120 22.1 23.0 0.5 2.4 2.9 0.6 14.9 14.0 4.2 89.0 86.3 15.0 13.3 85.7 71.2 

180 20.8 21.4 0.5 2.5 3.0 0.6 14.9 14.0 4.2 89.7 87.6 15.0 13.5 87.6 76.2 

240 20.0 20.5 0.5 2.5 3.0 0.6 14.9 14.0 4.2 89.8 88.1 15.1 13.7 88.7 79.8 

300 23.9 20.0 0.5 2.5 2.9 0.6 14.9 14.0 4.2 82.5 88.3 15.1 14.0 89.2 82.6 

360 84.8 82.2 3.6 2.9 0.7 0.6 14.9 4.2 11.4 21.4 26.8 15.2 15.1 23.1 37.1 

420 88.0 86.0 3.8 3.2 0.6 0.6 14.9 4.2 11.5 20.6 22.5 15.3 14.6 21.9 31.2 

480 89.7 88.2 3.8 3.2 0.6 0.6 14.9 4.2 11.5 20.0 21.4 15.2 14.4 20.6 28.1 

540 90.2 89.1 3.6 3.2 0.6 0.6 14.9 4.2 11.4 19.8 20.9 15.2 14.4 19.7 25.6 

600 90.0 89.1 3.4 3.1 0.5 0.6 14.9 4.2 11.4 19.8 20.7 15.2 14.5 19.1 23.5 
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Table D8. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=90ºC, Tsorp= Tcond=40ºC, 

Tevap=15ºC, τcycle=10min 

t 
(s) 

Tin, 

the P-

HMX 

(ºC) 

Tout, 

the P-

HMX 

(ºC) 

pP-

HMX 
(kPa) 

pcond 
(kPa) 

pF-

HMX 
(kPa) 

pevap 
(kPa) 

V

evap 

(lpm) 

V cold 

(lpm) 

V hot 

(lpm) 

Tin, 

the F-

HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 75.2 85.3 7.8 8.2 1.3 1.5 14.9 15.3 3.7 57.9 44.1 15.1 14.8 40.7 43.2 

60 42.5 43.6 1.2 7.3 6.6 1.4 14.9 14.0 4.2 88.4 84.5 15.1 14.2 85.0 72.1 

120 41.4 42.1 1.3 7.4 7.7 1.4 14.9 14.0 4.2 89.4 87.4 15.0 14.1 86.7 76.9 

180 40.5 41.0 1.3 7.5 8.0 1.5 14.9 14.0 4.2 89.8 88.4 15.0 14.2 88.1 80.4 

240 40.0 40.3 1.3 7.5 8.0 1.5 14.9 14.0 4.2 89.9 88.7 15.1 14.3 88.9 82.9 

300 42.8 40.1 1.3 7.5 7.8 1.5 14.9 14.0 4.2 84.7 88.9 15.1 14.5 89.6 84.9 

360 86.4 84.6 8.4 8.0 1.7 1.6 14.9 4.2 11.4 41.0 44.9 15.2 15.1 42.2 53.0 

420 88.7 87.3 8.8 8.2 1.5 1.5 14.9 4.2 11.5 40.4 41.8 15.3 14.8 41.3 48.8 

480 89.9 88.8 8.7 8.2 1.4 1.5 14.9 4.2 11.5 40.0 41.0 15.2 14.7 40.4 46.6 

540 90.2 89.4 8.3 8.2 1.5 1.5 14.9 4.2 11.4 39.8 40.6 15.2 14.7 39.7 44.9 

600 90.0 89.4 8.2 8.2 1.4 1.5 14.9 4.2 11.4 39.8 40.5 15.2 14.7 39.3 43.4 
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Table D9. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=90ºC, Tsorp= Tcond=30ºC, 

Tevap=5ºC, τcycle=10min 

t 
(s) 

Tin, 

the P-

HMX 

(ºC) 

Tout, 

the P-

HMX 

(ºC) 

pP-

HMX 
(kPa) 

pcond 
(kPa) 

pF-

HMX 
(kPa) 

pevap 
(kPa) 

V

evap 

(lpm) 

V cold 

(lpm) 

V hot 

(lpm) 

Tin, 

the F-

HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 72.2 84.5 4.9 5.0 0.5 0.7 14.9 15.3 3.7 51.5 33.7 5.0 4.7 32.6 31.5 

60 33.1 34.0 0.5 4.0 3.9 0.6 14.9 14.0 4.2 88.0 84.1 5.0 4.3 84.7 67.7 

120 31.7 32.3 0.5 4.2 4.6 0.6 14.9 14.0 4.2 89.2 87.3 4.9 4.2 86.6 73.5 

180 30.6 31.0 0.5 4.3 4.8 0.6 14.9 14.0 4.2 89.8 88.3 4.9 4.3 88.1 77.9 

240 30.0 30.3 0.6 4.3 4.8 0.7 14.9 14.0 4.2 89.8 88.7 5.0 4.4 89.0 81.1 

300 33.4 31.0 0.6 4.3 4.7 0.7 14.9 14.0 4.2 83.6 87.8 5.0 4.5 88.6 83.5 

360 85.6 84.0 5.3 4.7 0.8 0.7 14.9 4.2 11.4 31.2 35.1 5.1 5.0 32.4 43.7 

420 88.3 87.1 5.6 5.0 0.6 0.7 14.9 4.2 11.5 30.5 31.9 5.1 4.8 31.4 38.6 

480 89.8 88.9 5.5 5.0 0.6 0.7 14.9 4.2 11.5 30.0 31.0 5.0 4.7 30.4 35.8 

540 90.2 89.5 5.3 5.0 0.6 0.7 14.9 4.2 11.4 29.8 30.6 5.0 4.7 29.7 33.6 

600 90.0 89.5 5.0 4.9 0.6 0.7 14.9 4.2 11.4 29.8 30.5 5.0 4.7 29.3 31.8 
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Table D10. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=90ºC, Tsorp= Tcond=30ºC, 

Tevap=10ºC, τcycle=10min 

t 
(s) 

Tin, 

the P-

HMX 

(ºC) 

Tout, 

the P-

HMX 

(ºC) 

pP-

HMX 
(kPa) 

pcond 
(kPa) 

pF-

HMX 
(kPa) 

pevap 
(kPa) 

V

evap 

(lpm) 

V cold 

(lpm) 

V hot 

(lpm) 

Tin, 

the F-

HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 72.2 87.3 5.0 5.0 0.9 1.0 14.9 15.3 3.7 51.5 32.1 10.0 9.6 31.1 31.5 

60 33.1 34.2 0.8 4.1 4.0 1.0 14.9 14.0 4.2 88.0 83.8 10.0 9.0 84.5 67.7 

120 31.7 32.4 0.8 4.2 4.6 1.0 14.9 14.0 4.2 89.2 87.1 9.9 8.8 86.5 73.5 

180 30.6 31.1 0.9 4.3 4.8 1.0 14.9 14.0 4.2 89.8 88.1 9.9 8.9 88.0 77.9 

240 30.0 30.4 0.9 4.3 4.8 1.0 14.9 14.0 4.2 89.8 88.6 10.0 9.1 88.9 81.1 

300 33.4 30.5 0.9 4.3 4.7 1.0 14.9 14.0 4.2 83.6 88.2 10.0 9.2 89.0 83.5 

360 85.6 83.7 5.4 4.8 1.1 1.0 14.9 4.2 11.4 31.2 35.4 10.1 10.0 32.5 43.7 

420 88.3 86.9 5.6 5.0 1.0 1.0 14.9 4.2 11.5 30.5 32.0 10.1 9.6 31.5 38.6 

480 89.8 88.7 5.6 5.0 1.0 1.0 14.9 4.2 11.5 30.0 31.1 10.0 9.5 30.5 35.8 

540 90.2 89.4 5.3 5.0 1.0 1.0 14.9 4.2 11.4 29.8 30.7 10.0 9.5 29.7 33.6 

600 90.0 89.4 5.1 5.0 0.9 1.0 14.9 4.2 11.4 29.8 30.5 10.0 9.5 29.2 31.8 
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Table D11. Time variation of HTF temperature inlet and outlet, pressure and HTF flow rate of P-HMX, the F-HMX, evaporator, 
and condenser, and the average temperatures of the fin and the sorbent in the F-HMX for Tdes=90ºC, Tsorp= Tcond=30ºC, 

Tevap=20ºC, τcycle=10min 

t 
(s) 

Tin, 

the P-

HMX 

(ºC) 

Tout, 

the P-

HMX 

(ºC) 

pP-

HMX 
(kPa) 

pcond 
(kPa) 

pF-

HMX 
(kPa) 

pevap 
(kPa) 

V

evap 

(lpm) 

V cold 

(lpm) 

V hot 

(lpm) 

Tin, 

the F-

HMX 
(ºC) 

Tout, 

the F-

HMX 
(ºC) 

Tin, 

evap 
(ºC) 

Tout, 

evap 
(ºC) 

Tfin 
(ºC) 

Tsorb 
(ºC) 

1 72.2 90.1 5.7 5.6 1.8 1.9 14.9 15.3 3.7 51.5 30.0 20.0 19.4 29.6 31.5 

60 33.1 34.4 1.7 4.7 4.7 1.8 14.9 14.0 4.2 88.0 83.3 20.0 18.6 83.2 67.7 

120 31.7 32.6 1.7 4.8 5.3 1.8 14.9 14.0 4.2 89.2 86.9 19.9 18.3 85.2 73.5 

180 30.6 31.2 1.8 4.9 5.4 1.8 14.9 14.0 4.2 89.8 88.0 19.9 18.5 86.8 77.9 

240 30.0 30.4 1.8 4.9 5.4 1.9 14.9 14.0 4.2 89.8 88.4 20.0 18.7 87.7 81.1 

300 33.4 29.9 1.8 4.9 5.3 1.9 14.9 14.0 4.2 83.6 88.7 20.0 19.0 88.3 83.5 

360 85.6 83.3 6.0 5.4 2.0 2.0 14.9 4.2 11.4 31.2 35.9 20.1 20.0 32.6 43.7 

420 88.3 86.6 6.3 5.6 1.9 1.9 14.9 4.2 11.5 30.5 32.2 20.1 19.5 31.5 38.6 

480 89.8 88.5 6.2 5.6 1.9 1.9 14.9 4.2 11.5 30.0 31.2 20.0 19.4 30.5 35.8 

540 90.2 89.2 6.0 5.6 1.9 1.9 14.9 4.2 11.4 29.8 30.8 20.0 19.3 29.7 33.6 

600 90.0 89.2 5.7 5.6 1.9 1.9 14.9 4.2 11.4 29.8 30.6 20.0 19.4 29.2 31.8 



 167 

Appendix E: Matlab codes 

E.1. Matlab code for G-LPJ data 

 

clearvars 
clc 

  

m_ads=18.8815; 

  

A=importdata('D:\G-LPJ\Results\5\1\Data.xlsx'); 

  

Leng_des=0; 
t_o=A(:,1); 
T_1_o=A(:,2); 

T_2_o=A(:,3); 

T_3_o=A(:,4); 

T_4_o=A(:,5); 
T_5_o=A(:,6); 

p_bed_o=A(:,7); 
p_evap_o=A(:,8); 

w_o=A(:,9)/m_ads; 
T_ch_o=A(:,10); 

t(1,1)=0; 
T_1(1,1)=0; 

T_2(1,1)=0; 
T_3(1,1)=0; 

T_4(1,1)=0; 
T_5(1,1)=0; 
p_bed(1,1)=0; 

p_evap(1,1)=0; 
w(1,1)=0; 

w_last_ads=0; 
w_last_des=0; 

  

t_c=7200; 

t_close=3600; 
t_open=7200; 

t_co=t_close+t_open; 

t_cco=2*t_close+t_open; 

No_cycle=1; 

  

for i=1:t_o(end,1) 

    q=floor(i/(2*t_co)); 

    time=rem(i,2*(t_co)); 
    if i>t_co 

        if (time<=t_co && time>t_close) 
            %Des 

            %%%%%%%%%%%%% Max 
            if time==t_close+1 

                maxi=-30000; 
                for k=i:i+300 

                    if maxi<w_o(k,1) 

                        maxi=w_o(k,1); 
                        z=k; 
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                    end 
                end 

            end 
            %%%%%%%%%%%%% Max 

            if i>=z 

                t(end+1,1)=t(end,1)+1; 

                T_1(end+1,1)=T_1_o(i,1); 
                T_2(end+1,1)=T_2_o(i,1); 

                T_3(end+1,1)=T_3_o(i,1); 

                T_4(end+1,1)=T_4_o(i,1); 

                T_5(end+1,1)=T_5_o(i,1); 
                p_bed(end+1,1)=p_bed_o(i,1); 

                p_evap(end+1,1)=p_evap_o(i,1); 
                w(end+1,1)=w_o(i,1)-maxi+w_last_ads;   

            end 
        end 
        if time==t_co 

            w_last_des=w(end,1); 

            Leng_des=length(w); 

        end 
        if ((t_cco<time && time<2*t_co) || time==0) 

            %Ads    
            %%%%%%%%%%%%% Min 

            if time==t_cco+1 
                mini=30000; 

                for k=i:i+300 
                    if mini>w_o(k,1) 

                        mini=w_o(k,1); 
                        j=k; 

                    end 
                end 
            end 

            %%%%%%%%%%%%% Min 

             

            if i>=j 
                t(end+1,1)=t(end,1)+1; 

                T_1(end+1,1)=T_1_o(i,1); 
                T_2(end+1,1)=T_2_o(i,1); 

                T_3(end+1,1)=T_3_o(i,1); 
                T_4(end+1,1)=T_4_o(i,1); 

                T_5(end+1,1)=T_5_o(i,1); 

                p_bed(end+1,1)=p_bed_o(i,1); 

                p_evap(end+1,1)=p_evap_o(i,1); 
                w(end+1,1)=w_o(i,1)-mini+w_last_des; 

            end 

        end 

        if time==0 
            w_last_ads=w(end,1); 

            Leng_ads=length(w); 
        end 

    end 

end 

  

  

for i=1:21300 
    t_plot(i,1)=t(i+1,1)/60; 
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    T_1_plot(i,1)=T_1(i+1,1); 
    T_2_plot(i,1)=T_2(i+1,1); 

    T_3_plot(i,1)=T_3(i+1,1); 
    T_4_plot(i,1)=T_4(i+1,1); 

    T_5_plot(i,1)=T_5(i+1,1); 

    p_bed_plot(i,1)=p_bed(i+1,1); 

    p_evap_plot(i,1)=p_evap(i+1,1); 
    w_plot(i,1)=w(i+1,1); 

end 

  

  

  

h=figure; 

hold on 
plot(t_plot,w_plot,'-k','linewidth',1.5); 
%%%%%%%%%%%%%%%%%%%% 

x = [0.6 0.6]; 
y = [0.35 0.48]; 

annotation('textarrow',x,y,'String','Slope of last 10 min=2.5e-6 (1/s)', 

'FontName','Arial', 'FontWeight','bold', 'fontsize',16) 

set(gca, 'FontName','Arial', 'FontWeight','bold', 'fontsize',16,  

'XMinorTick','on','YMinorTick','on', 

'LineWidth',1.25,'TickLength',[0.015 0.015]); 
xlabel('t (min)', 'FontSize',22,'FontWeight','bold'); 

ylabel('\omega (g H_{2}O/g Sorbent)','Interpreter','tex', 

'FontSize',22,'FontWeight','bold'); 

hold off 

box on 

saveas(h,'D:\G-LPJ\Results\5\1\w.jpg') 

E.2. Matlab code for two-sorber bed sorption test bed data 

 

clc 

clearvars 

format long 

  

t_cycle=600; 

t_ads=t_cycle/2; 

addrr={'D:\OSHEX_OSHEX_C\Results\T_sorp\40\'}; 

  

%%%%%%%%%%%%%%%%%%%%% 

h_fg=2498000; % J/kg 

h_ads=2777777.77;  % J/kg 

%%%%%%%%%%%%%%%%%%%%% 
m_sorb_P=0.587; % kg 
m_HEX_P=1.722; % kg 

m_sorb_F=0.379; % kg 

m_HEX_F=1.044; % kg 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Thermophysical 

properties 
%%%% 10 to 90 C 
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p_cp=[1.96843994919853e-09,-7.16529701770362e-07,0.000102324609842342,-

0.00713157205841238,0.254630122900774,-

4.45816383273092,4213.23894867659]; % J/kg.K 
p_kk=[4.71622852306825e-10,-8.43371971945927e-08,-5.23630481786558e-

06,0.00207966653988023,0.547141870203301]; % (W/mK) 

p_mu=[2.60714771095438e-11,-7.28991739599359e-09,8.24662122707676e-07,-

4.98131750834992e-05,0.00172471335857807]; % (kg/ms) 
p_rho=[-1.10692269115836e-07,3.62269016299992e-05,-

0.00701607595591988,0.0327309580312716,1000.05965680566]; % (kg/m3) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Thermophysical 

properties 

  

A=importdata([char(addrr) 'New_data.xlsx']); 

t_des=t_ads; 

  

t=A(:,1)-A(1,1)+1; 

T_P_HEX_in=A(:,2); 
T_P_HEX_out=A(:,3); 

p_P_HEX=A(:,4); 
p_cond=A(:,5); 

p_F_HEX=A(:,6); 
p_evap=A(:,7); 

mdot_evap=A(:,8)/60000; % m^3/s 
mdot_cold=A(:,9)/60000; % m^3/s 

% mdot_cond=A(:,10); 
mdot_hot=A(:,11)/60000; % m^3/s 
T_F_HEX_in=A(:,12); 

T_F_HEX_out=A(:,13); 
T_evap_in=A(:,14); 

T_evap_out=A(:,15); 
T_bed1=A(:,16); 

T_bed2=A(:,17); 

  

Q_ads_P=0; 
Q_des_P=0; 

Q_evap_P=0; 

Q_ads_F=0; 

Q_des_F=0; 
Q_evap_F=0; 

  

for i=t_ads+1:2*t_ads 

    T=(T_evap_in(i,1)+T_evap_out(i,1))/2; 
    cp_evap=polyval(p_cp,T); 

    rho_evap=polyval(p_rho,T); 
    Q_evap_F=Q_evap_F+mdot_evap(i,1)*rho_evap*cp_evap*(T_evap_in(i,1)-

T_evap_out(i,1)); 
    T=(T_F_HEX_in(i,1)+T_F_HEX_out(i,1))/2; 

    cp_bed=polyval(p_cp,T); 
    rho_bed=polyval(p_rho,T); 

    Q_ads_F=Q_ads_F+mdot_cold(i,1)*rho_bed*cp_bed*(T_F_HEX_out(i,1)-

T_F_HEX_in(i,1)); 
    T=(T_P_HEX_in(i,1)+T_P_HEX_out(i,1))/2; 

    cp_bed=polyval(p_cp,T); 
    rho_bed=polyval(p_rho,T); 

    Q_des_P=Q_des_P+mdot_hot(i,1)*rho_bed*cp_bed*(T_P_HEX_in(i,1)-

T_P_HEX_out(i,1)); 
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end 

  

  

for i=1:t_ads 

    T=(T_evap_in(i,1)+T_evap_out(i,1))/2; 

    cp_evap=polyval(p_cp,T); 
    rho_evap=polyval(p_rho,T); 

    Q_evap_P=Q_evap_P+mdot_evap(i,1)*rho_evap*cp_evap*(T_evap_in(i,1)-

T_evap_out(i,1)); 

    T=(T_F_HEX_in(i,1)+T_F_HEX_out(i,1))/2; 

    cp_bed=polyval(p_cp,T); 
    rho_bed=polyval(p_rho,T); 

    Q_des_F=Q_des_F+mdot_hot(i,1)*rho_bed*cp_bed*(T_F_HEX_in(i,1)-

T_F_HEX_out(i,1)); 

    T=(T_P_HEX_in(i,1)+T_P_HEX_out(i,1))/2; 
    cp_bed=polyval(p_cp,T); 

    rho_bed=polyval(p_rho,T); 
    Q_ads_P=Q_ads_P+mdot_cold(i,1)*rho_bed*cp_bed*(T_P_HEX_out(i,1)-

T_P_HEX_in(i,1)); 
end 

  

SCP_F=Q_evap_F/(m_sorb_F*2*t_ads); 

COP_F=Q_evap_F/Q_des_F; 

  

SCP_P=Q_evap_P/(m_sorb_P*2*t_ads); 
COP_P=Q_evap_P/Q_des_P; 

  

export_s=[SCP_P,COP_P,SCP_F,COP_F]; 

  

xlswrite([char(addrr) 'Performance_parameters.xlsx'],export_s); 

 

E.3. Matlab code for 2-D analytical model in cartesian coordinate 
for P-HMX 

 

clc 

clearvars 

  

format long 

  

global Lambda; 

  

no_gamma=2; 

  

%%%%%%%%%%%%%%%%%%%%%   

% Sorbent: 
rho_s=675; 

c_p_s=1082; 
rho_cp=rho_s*c_p_s; 

%%%%%%%%%%%%%%%%%%%%%   

grrr=[0 0.02 0.05 0.1 0.15 0.2];   
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alpha_sss=[2.38175E-07,2.80936E-07,3.45121E-07,5.43E-07,9.86964E-

07,1.3898E-06];  

p_1=polyfit(grrr,alpha_sss,2); 
%%%%%%%%%%%%%%%%%%%%%  

%%%%%%%%%%%%%%%%%%%%%  

b=0.01; 

t_f=0.001; 
t_s=0.001; 

gr=0.1; 

time=300; 

t_w=0.004; 

  

%%%%%%%%%%%%%%%%%%%%% 

% Aluminum @ 40      

rho_g=2700; 
c_p_g=896; 

k_y=167; 
k_x=167; 

alpha_x=k_x/(rho_g*c_p_g); 
alpha_y=k_y/(rho_g*c_p_g); 
%%%%%%%%%%%%%%%%%%%%%  

  

%%%%%%%%%%%%%%%%%%%%% 
h_fg=2498000; % J/kg 

h_ads=2777777.77;  % J/kg 
c_p_tube=c_p_g; 
c_p_w=4186; 

w_des_0=0.41695; 
%%%%%%%%%%%%%%%%%%%%% 

  

l_t=2*t_s+t_f; % tube length 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% h_dp_RE_Nu 

D_H=2*t_w; % hydraulic diameter 
rho_w=992.2; 

Q_flow=7; %  l/min 

mdot=Q_flow*0.001*rho_w/60; 

t_l=0.013; % Tube width of the cross section 
k_w=0.6178; % water conductivity 

mu_w=0.001002; % water viscosity 

Pr=7.154; 

Re=2*mdot/(mu_w*t_l); 
f_fric=(1.82*log10(Re)-1.64)^-2; % friction factor 

Nu=((f_fric*Re*Pr/8)/(1.07+12.7*(f_fric/8)^0.5*(Pr^(2/3)-

1)))*(0.0006533/0.0005758)^0.11; % only a function of t_l not t_w (Holman 

page 282) 

h_f=Nu*k_w/D_H; 
t_t=0.002; %mm Thickness of the tube itself 

R_fluid=(1/h_f)+(t_t/k_x); 

%%%%%%%%%%%%%%%%%%% h_dp_RE_Nu 

TCR=3; 
A=6.45e-4; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
T_0=67.5+273.15; %degree C (refer to w_T, start temperature) 

T_f=30+273.15; %degree C 
Theta_0=T_0-T_f; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

t_1=sym(linspace(1,time,2)); 

%%%%%%%%%%%%%%%%%%% Space 

eta=linspace(0,1,20); 
x_1=t_f/(t_s+t_f); 

dxx=x_1/30; 
zeta_f=0:dxx:x_1; 

zeta_s=x_1:dxx:1+dxx; 

zeta_original=[zeta_f(1:end-1),zeta_s(1:end)]; 

zeta_plot=[zeta_f(1:end),zeta_s(1:end-1)]; 
%%%%%%%%%%%%%%%%%%% Space 

  

a_ads=-0.007*(1-gr)/0.8; 

  

alpha_s=polyval(p_1,gr); 

k_s=rho_cp*alpha_s; 

  

a=a_ads; 
alpha_s=k_s/(rho_cp-rho_s*h_ads*a); 

  

k_ave=(k_s+k_x)/2; 

Lambda=b/(k_ave*R_fluid); 
k=k_s/k_y; 

Lambda_c=(t_s+t_f)/(k_y*TCR*A); 
Fo=sym(t_1*alpha_x/(b^2)); 

delta=b/(t_s+t_f); 

mu_y=(alpha_y/alpha_x)^0.5; 

mu_s=(alpha_s/alpha_x)^0.5; 

  

r_f=k_x/delta^2; 

r_s=((rho_cp-rho_s*h_ads*a)*k_x)/(rho_g*c_p_g*delta^2); 

p_f=k_y; 
p_s=k_s; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Gamma 

xx=0:0.001:10; 
roots=zeros(1,length(xx)); 

my_roots=zeros(1,1); 
for i=2:length(xx) 

    roots(i)=fzero(@gamma_func,xx(i)); 
    if (abs(gamma_func(roots(i))))<1e-4 
        if roots(i)>0 

            my_roots(1,end+1)=roots(i); 
        end 

    end 
end 

gamma_temp=zeros(1,length(my_roots)-1); 
for i=2:length(my_roots) 

    gamma_temp(1,i-1)=my_roots(1,i); 
end 

gamma_c=[min(gamma_temp)]; 

  

for j=1:no_gamma 

    min_gamma=1000; 

    gamma_temp=gamma_temp-gamma_c(1,end)-0.0001; 
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    for i=1:length(gamma_temp) 
        if gamma_temp(1,i)>0 

           if gamma_temp(1,i)<min_gamma 
               min_gamma=gamma_temp(1,i); 

           end 

        end 

    end 
    min_gamma=min_gamma+gamma_c(1,end)+0.0001; 

    gamma_temp=gamma_temp+gamma_c(1,end)+0.0001; 

    gamma_c(1,end+1)=min_gamma; 

end 
gamma_all=sym(gamma_c); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Gamma 

Theta=zeros(length(eta),length(zeta_original),length(Fo)); 

  

for i_gamma=1:2 
    gamma=gamma_all(1,i_gamma); 

    q_f=(gamma)^2*r_f; % for each gamma 
    q_s=(mu_s*gamma)^2*r_s; % for each gamma 
    zeta=zeros(1,1); 

    zeta=zeta_original; 
    for i_landa=1:1 

  

  

    for k=1:length(zeta)-1 

        if zeta(1,k)<x_1 

            l_k(1,k)=zeta(1,k+1)-zeta(1,k); 

            p_k(1,k)=p_f; 
            r_k(1,k)=r_f; 
            q_k(1,k)=q_f; 

        elseif zeta(1,k)>x_1 
            l_k(1,k)=zeta(1,k+1)-zeta(1,k); 

            p_k(1,k)=p_s; 
            r_k(1,k)=r_s; 

            q_k(1,k)=q_s; 

        else 

            l_k(1,k)=zeta(1,k+1)-zeta(1,k); 
            l_TCR=l_k(1,k); 

            p_k(1,k)=l_k(1,k)*(t_s+t_f)/(TCR*A); 

            r_k(1,k)=0; 

            q_k(1,k)=0; 
            w_k(1,k)=0; 

        end 
    end 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% landa_loop while 

    landa_l=0; 

    landa_hat_old=0; 

    Eps_i=0.01; 
    delta_hat=0.001; 

    landa_hat=landa_hat_old+delta_hat; 
    landa_u=landa_hat; 

    while (2>1) 
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N0 & 

s_k 

        N0(1,i_landa)=0; 
        s_k(1,i_landa)=0; 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% k loop 

  

        for k=1:length(zeta)-1 

            if zeta(1,k)<x_1 

                w_k(1,k)=((landa_hat*r_f-q_f)/p_f)^0.5; 
            elseif zeta(1,k)>x_1 

                w_k(1,k)=((landa_hat*r_s-q_s)/p_s)^0.5; 

            end 

            N0(1,i_landa)=N0(1,i_landa)+floor(w_k(1,k)*l_k(1,k)/pi); 

  

            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A and B 

            if w_k(1,k)^2>0 
                B_k(1,k)=p_k(1,k)*w_k(1,k)/sin(w_k(1,k)*l_k(1,k)); 

                A_k(1,k)=B_k(1,k)*cos(w_k(1,k)*l_k(1,k)); 
            elseif w_k(1,k)^2==0 

                B_k(1,k)=p_k(1,k)/l_k(1,k); 
                A_k(1,k)=B_k(1,k); 

            else 
                w_k_star=(abs(w_k(1,k)^2))^0.5; 
                B_k(1,k)=p_k(1,k)*w_k_star/sinh(w_k_star*l_k(1,k)); 

                A_k(1,k)=B_k(1,k)*cosh(w_k_star*l_k(1,k)); 
            end 

            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A and B 

            D_k(1,1)=1; 
            D_k(1,2)=A_k(1,1); % this is correct not A1 bar 

            if k>1 && k<length(zeta)-1 
                D_k(1,k+1)=D_k(1,k)*(A_k(1,k)+A_k(1,k-1))-D_k(1,k-

1)*B_k(1,k-1)^2; 

            elseif k==length(zeta)-1 

                D_k(1,k+1)=D_k(1,k)*(A_k(1,k))-D_k(1,k-1)*B_k(1,k-

1)^2; 

            end 

  

            if (D_k(1,k+1)/D_k(1,k))<0 
                s_k(1,i_landa)=s_k(1,i_landa)+1; 

            end 
        end 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% k loop 

  

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N0 & 

s_k 
        N_landa(1,i_landa)=N0(1,i_landa)+s_k(1,i_landa); 

        if N_landa(1,i_landa)>=i_landa 
            landa_u=landa_hat; 

            delta_landa=abs(landa_u-landa_l); 
            if delta_landa<=Eps_i 
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                Landa(i_gamma,i_landa)=sym((landa_u+landa_l)/2); 
                break; % from while loop 

            else 
                Landa_hat=(landa_u+landa_l)/2; 

            end 

        else 

            landa_l=landa_hat; 
            if landa_hat==landa_hat_old+delta_hat 

                landa_hat_old=landa_hat; 

                landa_hat=landa_hat_old+delta_hat; 

                landa_u=landa_hat;  
            elseif Landa_hat==(landa_u+landa_l)/2; 

                delta_landa=abs(landa_u-landa_l); 
                if delta_landa<=Eps_i 

                    Landa(i_gamma,i_landa)=sym((landa_u+landa_l)/2); 
                    break; % from while loop 
                else 

                    Landa_hat=(landa_u+landa_l)/2; 

                end 

            end 
        end 

  

    end 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% landa_loop while 

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% Eigenfunctions 

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% New error after new zeta 

    for k=1:length(zeta)-1 

        if zeta(1,k)<x_1 

            l_k(1,k)=zeta(1,k+1)-zeta(1,k); 
            p_k(1,k)=p_f; 

            r_k(1,k)=r_f; 

            q_k(1,k)=q_f; 

        elseif zeta(1,k)>x_1 
            l_k(1,k)=zeta(1,k+1)-zeta(1,k); 

            p_k(1,k)=p_s; 
            r_k(1,k)=r_s; 

            q_k(1,k)=q_s; 

        else 
            l_k(1,k)=zeta(1,k+1)-zeta(1,k); 

            l_TCR=l_k(1,k); 

            p_k(1,k)=l_k(1,k)*(t_s+t_f)/(TCR*A); 

            r_k(1,k)=0; 
            q_k(1,k)=0; 

            w_k(1,k)=0; 
        end 

    end 
    for k=1:length(zeta)-1 
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        if zeta(1,k)<x_1 
            w_k(1,k)=((Landa(i_gamma,i_landa)*r_f-q_f)/p_f)^0.5; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% change to 

zeta 

        elseif zeta(1,k)>x_1 

            w_k(1,k)=((Landa(i_gamma,i_landa)*r_s-q_s)/p_s)^0.5; 

        end 

  

        if w_k(1,k)^2>0 

            B_k(1,k)=p_k(1,k)*w_k(1,k)/sin(w_k(1,k)*l_k(1,k)); 

            A_k(1,k)=B_k(1,k)*cos(w_k(1,k)*l_k(1,k)); 
        elseif w_k(1,k)^2==0 

            B_k(1,k)=p_k(1,k)/l_k(1,k); 

            A_k(1,k)=B_k(1,k); 

        else 
            w_k_star=(abs(w_k(1,k)^2))^0.5; 

            B_k(1,k)=p_k(1,k)*w_k_star/sinh(w_k_star*l_k(1,k)); 
            A_k(1,k)=B_k(1,k)*cosh(w_k_star*l_k(1,k)); 

        end 
    end 

  

    psi(i_gamma,i_landa,1)=-1; % eigenfunction at x_0 

    psi(i_gamma,i_landa,2)=-A_k(1,1)/B_k(1,1); % eigenfunction at x_1 
    for k=1:length(zeta)-2 

        

psi(i_gamma,i_landa,k+2)=((A_k(1,k)+A_k(1,k+1))*psi(i_gamma,i_landa,k+1

)-B_k(1,k)*psi(i_gamma,i_landa,k))/B_k(1,k+1); % eigenfunction at x_k+1 

    end 
    %             Err(i_gamma,i_landa)=(Eps_max*length(zeta))-abs(-

B_k(1,length(zeta)-1)*psi(i_gamma,i_landa,length(zeta)-

1)+A_k(1,length(zeta)-1)*psi(i_gamma,i_landa,length(zeta))); % Must be 

>=0 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% New error after new zeta 

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% Eigenfunctions 

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% C(i_gamma,i_landa) 
    N_gamma(i_gamma,1)=-((tan(gamma)^2-

1)*sin(2*gamma)+2*tan(gamma)*(cos(2*gamma)-1)-

2*gamma*(tan(gamma)^2+1))/(4*gamma); 

    num_gamma(i_gamma,1)=tan(gamma)/gamma; 
    N_landa(i_gamma,i_landa)=0; 

    num_landa(i_gamma,i_landa)=0; 

    for k=1:length(zeta)-1 
        if w_k(1,k)^2==0 

            

N_landa(i_gamma,i_landa)=N_landa(i_gamma,i_landa)+r_k(1,k)*l_k(1,k)*(ps

i(i_gamma,i_landa,k+1)^3-



 178 

psi(i_gamma,i_landa,k)^3)/(3*(psi(i_gamma,i_landa,k+1)-

psi(i_gamma,i_landa,k))); 

            

num_landa(i_gamma,i_landa)=num_landa(i_gamma,i_landa)+r_k(1,k)*l_k(1,k)

*(psi(i_gamma,i_landa,k+1)+psi(i_gamma,i_landa,k))/2; 

        else 

            

N_landa(i_gamma,i_landa)=N_landa(i_gamma,i_landa)+r_k(1,k)*((psi(i_gamm

a,i_landa,k)^2+psi(i_gamma,i_landa,k+1)^2)*(B_k(1,k)^2*l_k(1,k)/p_k(1,k

)-A_k(1,k))+... 

                

2*B_k(1,k)*psi(i_gamma,i_landa,k)*psi(i_gamma,i_landa,k+1)*(1-

A_k(1,k)*l_k(1,k)/p_k(1,k)))/(2*p_k(1,k)*w_k(1,k)^2); 
            

num_landa(i_gamma,i_landa)=num_landa(i_gamma,i_landa)+r_k(1,k)*((psi(i_

gamma,i_landa,k+1)+psi(i_gamma,i_landa,k))*(B_k(1,k)-

A_k(1,k))/(p_k(1,k)*(w_k(1,k)^2))); 

        end 

    end 

    

C(i_gamma,i_landa)=Theta_0*num_gamma(i_gamma,1)*num_landa(i_gamma,i_lan

da)/(N_gamma(i_gamma,1)*N_landa(i_gamma,i_landa)); 

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% C(i_gamma,i_landa) 

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Theta 
    for kk=1:length(zeta_original) 

        for k=1:length(zeta) 
            if abs(zeta(1,k)-zeta_original(1,kk))<1e-5 

                for i_t=1:length(Fo) 
                    for i_eta=1:length(eta) 

                            

X=cos(gamma*eta(1,i_eta))+tan(gamma)*sin(gamma*eta(1,i_eta)); 

                            

Theta(i_eta,kk,i_t)=Theta(i_eta,kk,i_t)+C(i_gamma,i_landa)*X*psi(i_gamm

a,i_landa,k)*exp(-Landa(i_gamma,i_landa)*Fo(1,i_t)); 

                    end 
                end 

            end 
        end 

    end 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Theta 

  

    end 

  

  

  

end 

  

for i_t=1:length(t_1) 
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T_sorb_ave(i_t,1)=mean(mean(Theta(:,length(zeta_f)+1:length(zeta_plot),

i_t)),2); 
end 

  

  

  

m_sorb=b*t_s*rho_s; 
m_HEX=b*t_f*rho_g; 

m_tube=t_t*(t_f+t_s)*rho_g; 
m_HEX=m_HEX+m_tube; 

  

dw=a_ads*(T_sorb_ave(2,1)-T_sorb_ave(1,1)); 

SCP=zeros(1,2); 
SCP(1,1)=0.5*dw*h_fg/(t_1(1,2)-t_1(1,1));   %%% gr included in a_ads 

  

% 

W_pump=(1/(t_l+0.002))*f_fric*(l_t)^2*Re^3*mu_w^3*time/(4*rho_w^2*D_H^3

); 

Q_evap=m_sorb*dw*h_fg; 
Q_des=m_sorb*dw*h_ads; 

Q_sens=(m_sorb*c_p_s+m_sorb*w_des_0*c_p_w+m_HEX*c_p_g)*(90-30); 

  

SCP(1,2)=Q_evap/(Q_des+Q_sens); % COP 

  

  

xlswrite('D:\2_D model\Results\LTJ\Run one point\SCP_COP.xlsx',SCP); 

  

 

 

function y = gamma_func( x ) 

global Lambda; 
y=x*tan(x)-Lambda; 

end 

 

E.4. Matlab code for 2-D analytical model in cylindrical 
coordinate for the F-HMX 

 

clc 
clearvars 

  

format long  

global Lambda; 
global delta_r; 

  

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 

h_fg=2498000; % J/kg 

h_ads=2777777.77;  % J/kg 

c_p_w=4186; 
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w_des_0=0.41695; 
%%%%%%%%%%%%%%%%%%%%%   

% Sorbent: 
rho_cp=1.8e6; 

rho_s=655.26; 

c_p_s=rho_cp/rho_s; 

%%%%%%%%%%%%%%%%%%%%%   
grrr=[0 0.02 0.05 0.1 0.15 0.2];   

alpha_sss=[2.38175E-07,2.80936E-07,3.45121E-07,5.43E-07,9.86964E-

07,1.3898E-06];  

p_1=polyfit(grrr,alpha_sss,2); 
%%%%%%%%%%%%%%%%%%%%%  

%%%%%%%%%%%%%%%%%%%%%  

  

%%%%%%%%%%%%%%%%%%%%% 
% Aluminum @ 40 C 

rho_g=2699; 
c_p_g=909; 

k_y=236.5; 
k_x=236.5; 
alpha_x=k_x/(rho_g*c_p_g); 

alpha_y=k_y/(rho_g*c_p_g); 
%%%%%%%%%%%%%%%%%%%%%  

  

%%%%%%%%%%%%%%%%%%% h_dp_RE_Nu 
t_w=0.004; 
H_c=t_w; 

D_H=H_c; % hydraulic diameter 
r_1=D_H/2; 

rho_w=992.2; 
Q_flow=7; %  l/min 

mdot=Q_flow*0.001*rho_w/60; 
k_w=0.6178; % water conductivity 

mu_w=0.001002; % water viscosity 
Pr=7.154; 

Re=2*mdot/(mu_w*pi*r_1); 

f_fric=(1.82*log10(Re)-1.64)^-2; % friction factor 

Nu=((f_fric*Re*Pr/8)/(1.07+12.7*(f_fric/8)^0.5*(Pr^(2/3)-

1)))*(0.0006533/0.0005758)^0.11; %  (Holman page 282) 

h_f=Nu*k_w/D_H; 

t_t=0.002; %mm Thickness of the tube itself 
k_tube=385; % copper 

R_fluid=(1/h_f)+(t_t/k_tube); 
%%%%%%%%%%%%%%%%%%% h_dp_RE_Nu 

TCR=3; 

A=6.45e-4; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
T_0=67.5+273.15; %degree C (refer to w_T, start temperature) 

T_f=30+273.15; %degree C 

Theta_0=T_0-T_f; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% x=[bbb,t_ff,t_ss,grr,tt]; 
t_1=sym(linspace(1,11.3*60/2,2)); 

  

%%%%%%%%%%%%%%%%%%% Space 
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b=0.01; 
t_f=0.001; 

t_s=0.001; 

  

%%%%%%%%%%%%%%%%%%% Space 
r_2=r_1+b; 

delta_r=r_1/r_2; 
eta=linspace(delta_r,1,20); 

x_1=t_f/(t_s+t_f); 

dxx=x_1/30; 

zeta_f=0:dxx:x_1; 
zeta_s=x_1:dxx:1+dxx; 

zeta_original=[zeta_f(1:end-1),zeta_s(1:end)]; 

zeta_plot=[zeta_f(1:end),zeta_s(1:end-1)]; 

%%%%%%%%%%%%%%%%%%% Space 

  

gr=0.15; 

  

a_ads=-0.0096*(1-gr)/0.8; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
alpha_s=polyval(p_1,gr); 

k_s=rho_cp*alpha_s; 

  

a=a_ads; 
alpha_s=k_s/(rho_cp-rho_s*h_ads*a); 

  

k_ave=(k_s+k_x)/2; 

Lambda=r_2/(k_ave*R_fluid); 
k=k_s/k_y; 

Lambda_c=(t_s+t_f)/(k_y*TCR*A); 

delta=r_2/(t_s+t_f); 

mu_y=(alpha_y/alpha_x)^0.5; 
mu_s=(alpha_s/alpha_x)^0.5; 

  

r_f=k_x/delta^2; 

r_s=((rho_cp-rho_s*h_ads*a)*k_x)/(rho_g*c_p_g*delta^2); 
p_f=k_y; 

p_s=k_s; 

  

Fo=sym(t_1*alpha_x/(r_2^2)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Gamma 
xx=0:0.001:10; 

roots=zeros(1,length(xx)); 
my_roots=zeros(1,1); 

for i=2:length(xx) 

roots(i)=fzero(@gamma_func,xx(i)); 

if (abs(gamma_func(roots(i))))<1e-4 
    if roots(i)>0 

        my_roots(1,end+1)=roots(i); 

    end 

end 
end 
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gamma_temp=zeros(1,length(my_roots)-1); 
for i=2:length(my_roots) 

    gamma_temp(1,i-1)=my_roots(1,i); 
end 

gamma_c=[min(gamma_temp)]; 

  

gamma_all=sym(gamma_c); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Gamma 

Theta=zeros(length(eta),length(zeta_original),length(Fo)); 

  

  

for i_gamma=1:1 

        gamma=gamma_all(1,i_gamma); 
        q_f=(gamma)^2*r_f; % for each gamma 
        q_s=(mu_s*gamma)^2*r_s; % for each gamma 

        zeta=zeros(1,1); 
        zeta=zeta_original; 

            for i_landa=1:1 

  

  

                for k=1:length(zeta)-1 

                    if zeta(1,k)<x_1 
                        l_k(1,k)=zeta(1,k+1)-zeta(1,k); 

                        p_k(1,k)=p_f; 
                        r_k(1,k)=r_f; 

                        q_k(1,k)=q_f; 

                    elseif zeta(1,k)>x_1 

                        l_k(1,k)=zeta(1,k+1)-zeta(1,k); 
                        p_k(1,k)=p_s; 

                        r_k(1,k)=r_s; 

                        q_k(1,k)=q_s; 

                    else 
                        l_k(1,k)=zeta(1,k+1)-zeta(1,k); 

                        l_TCR=l_k(1,k); 
                        p_k(1,k)=l_k(1,k)*(t_s+t_f)/(TCR*A); 

                        r_k(1,k)=0; 
                        q_k(1,k)=0; 
                        w_k(1,k)=0; 

                    end 

                end 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% landa_loop while 
                landa_l=0; 

                landa_hat_old=0; 
                Eps_i=0.01; 

                delta_hat=0.001; 
                landa_hat=landa_hat_old+delta_hat; 

                landa_u=landa_hat; 
                while (2>1) 

                    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N0 & s_k 
                    N0(1,i_landa)=0; 

                    s_k(1,i_landa)=0; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% k loop 

  

                    for k=1:length(zeta)-1 
                        if zeta(1,k)<x_1 

                            w_k(1,k)=((landa_hat*r_f-q_f)/p_f)^0.5; 
                        elseif zeta(1,k)>x_1 

                            w_k(1,k)=((landa_hat*r_s-q_s)/p_s)^0.5; 

                        end 

                        

N0(1,i_landa)=N0(1,i_landa)+floor(w_k(1,k)*l_k(1,k)/pi); 

  

                        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A and B 
                        if w_k(1,k)^2>0 

                            

B_k(1,k)=p_k(1,k)*w_k(1,k)/sin(w_k(1,k)*l_k(1,k)); 

                            A_k(1,k)=B_k(1,k)*cos(w_k(1,k)*l_k(1,k)); 
                        elseif w_k(1,k)^2==0 

                            B_k(1,k)=p_k(1,k)/l_k(1,k); 
                            A_k(1,k)=B_k(1,k); 

                        else 
                            w_k_star=(abs(w_k(1,k)^2))^0.5; 

                            

B_k(1,k)=p_k(1,k)*w_k_star/sinh(w_k_star*l_k(1,k)); 
                            

A_k(1,k)=B_k(1,k)*cosh(w_k_star*l_k(1,k)); 
                        end 

                        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A and B 

                        D_k(1,1)=1; 
                        D_k(1,2)=A_k(1,1); % this is correct not A1 bar 

                        if k>1 && k<length(zeta)-1 
                            D_k(1,k+1)=D_k(1,k)*(A_k(1,k)+A_k(1,k-

1))-D_k(1,k-1)*B_k(1,k-1)^2; 

                        elseif k==length(zeta)-1 

                            D_k(1,k+1)=D_k(1,k)*(A_k(1,k))-D_k(1,k-

1)*B_k(1,k-1)^2; 

                        end 

  

                        if (D_k(1,k+1)/D_k(1,k))<0 
                            s_k(1,i_landa)=s_k(1,i_landa)+1; 

                        end 
                    end 

                    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% k loop 

  

                    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N0 & s_k 
                    N_landa(1,i_landa)=N0(1,i_landa)+s_k(1,i_landa); 

                    if N_landa(1,i_landa)>=i_landa 
                        landa_u=landa_hat; 

                        delta_landa=abs(landa_u-landa_l); 
                        if delta_landa<=Eps_i 



 184 

                            

Landa(i_gamma,i_landa)=sym((landa_u+landa_l)/2); 

                            break; % from while loop 
                        else 

                            Landa_hat=(landa_u+landa_l)/2; 

                        end 

                    else 
                        landa_l=landa_hat; 

                        if landa_hat==landa_hat_old+delta_hat 

                            landa_hat_old=landa_hat; 

                            landa_hat=landa_hat_old+delta_hat; 
                            landa_u=landa_hat;  

                        elseif Landa_hat==(landa_u+landa_l)/2; 
                            delta_landa=abs(landa_u-landa_l); 

                            if delta_landa<=Eps_i 
                                

Landa(i_gamma,i_landa)=sym((landa_u+landa_l)/2); 

                                break; % from while loop 

                            else 

                                Landa_hat=(landa_u+landa_l)/2; 
                            end 

                        end 
                    end 

  

                end 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% landa_loop while 

  

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% Eigenfunctions 

  

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% New error after new zeta 

                for k=1:length(zeta)-1 
                    % Always for TCR and others :  

                    % x_k_1=zeta(1,k); 

                    % x_k=zeta(1,k+1); 

                    if zeta(1,k)<x_1 
                        l_k(1,k)=zeta(1,k+1)-zeta(1,k); 

                        p_k(1,k)=p_f; 
                        r_k(1,k)=r_f; 

                        q_k(1,k)=q_f; 

                    elseif zeta(1,k)>x_1 
                        l_k(1,k)=zeta(1,k+1)-zeta(1,k); 

                        p_k(1,k)=p_s; 

                        r_k(1,k)=r_s; 

                        q_k(1,k)=q_s; 
                    else 

                        l_k(1,k)=zeta(1,k+1)-zeta(1,k); 
                        l_TCR=l_k(1,k); 

                        p_k(1,k)=l_k(1,k)*(t_s+t_f)/(TCR*A); 
                        r_k(1,k)=0; 
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                        q_k(1,k)=0; 
                        w_k(1,k)=0; 

                    end 
                end 

                for k=1:length(zeta)-1 

                    if zeta(1,k)<x_1 

                        w_k(1,k)=((Landa(i_gamma,i_landa)*r_f-

q_f)/p_f)^0.5; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% change to 

zeta 

                    elseif zeta(1,k)>x_1 
                        w_k(1,k)=((Landa(i_gamma,i_landa)*r_s-

q_s)/p_s)^0.5; 
                    end 

  

                    if w_k(1,k)^2>0 

                        

B_k(1,k)=p_k(1,k)*w_k(1,k)/sin(w_k(1,k)*l_k(1,k)); 

                        A_k(1,k)=B_k(1,k)*cos(w_k(1,k)*l_k(1,k)); 
                    elseif w_k(1,k)^2==0 
                        B_k(1,k)=p_k(1,k)/l_k(1,k); 

                        A_k(1,k)=B_k(1,k); 
                    else 

                        w_k_star=(abs(w_k(1,k)^2))^0.5; 
                        

B_k(1,k)=p_k(1,k)*w_k_star/sinh(w_k_star*l_k(1,k)); 
                        A_k(1,k)=B_k(1,k)*cosh(w_k_star*l_k(1,k)); 

                    end 
                end 

  

                psi(i_gamma,i_landa,1)=-1; % eigenfunction at x_0 

                psi(i_gamma,i_landa,2)=-A_k(1,1)/B_k(1,1); % 

eigenfunction at x_1 

                for k=1:length(zeta)-2 
                    

psi(i_gamma,i_landa,k+2)=((A_k(1,k)+A_k(1,k+1))*psi(i_gamma,i_landa,k+1

)-B_k(1,k)*psi(i_gamma,i_landa,k))/B_k(1,k+1); % eigenfunction at x_k+1 

                end 
            %             Err(i_gamma,i_landa)=(Eps_max*length(zeta))-

abs(-B_k(1,length(zeta)-1)*psi(i_gamma,i_landa,length(zeta)-

1)+A_k(1,length(zeta)-1)*psi(i_gamma,i_landa,length(zeta))); % Must be 

>=0 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% New error after new zeta 

  

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% Eigenfunctions 

  

                syms x_sym; 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% C(i_gamma,i_landa) 
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                f_N_gamma=(besselj(0,gamma*x_sym)-

besselj(1,gamma)*bessely(0,gamma*x_sym)/bessely(1,gamma))^2; 

                f_N_int=int(f_N_gamma,delta_r,1); 
                N_gamma(i_gamma,1)=double(f_N_int); 

  

                f_num_gamma=besselj(0,gamma*x_sym)-

besselj(1,gamma)*bessely(0,gamma*x_sym)/bessely(1,gamma); 
                f_num_int=int(f_num_gamma,delta_r,1); 

                num_gamma(i_gamma,1)=double(f_num_int); 

  

                N_landa(i_gamma,i_landa)=0; 
                num_landa(i_gamma,i_landa)=0; 

                for k=1:length(zeta)-1 

                    if w_k(1,k)^2==0 

                        

N_landa(i_gamma,i_landa)=N_landa(i_gamma,i_landa)+r_k(1,k)*l_k(1,k)*(ps

i(i_gamma,i_landa,k+1)^3-

psi(i_gamma,i_landa,k)^3)/(3*(psi(i_gamma,i_landa,k+1)-

psi(i_gamma,i_landa,k))); 
                        

num_landa(i_gamma,i_landa)=num_landa(i_gamma,i_landa)+r_k(1,k)*l_k(1,k)

*(psi(i_gamma,i_landa,k+1)+psi(i_gamma,i_landa,k))/2; 

                    else 
                        

N_landa(i_gamma,i_landa)=N_landa(i_gamma,i_landa)+r_k(1,k)*((psi(i_gamm

a,i_landa,k)^2+psi(i_gamma,i_landa,k+1)^2)*(B_k(1,k)^2*l_k(1,k)/p_k(1,k

)-A_k(1,k))+... 

                            

2*B_k(1,k)*psi(i_gamma,i_landa,k)*psi(i_gamma,i_landa,k+1)*(1-

A_k(1,k)*l_k(1,k)/p_k(1,k)))/(2*p_k(1,k)*w_k(1,k)^2); 
                        

num_landa(i_gamma,i_landa)=num_landa(i_gamma,i_landa)+r_k(1,k)*((psi(i_

gamma,i_landa,k+1)+psi(i_gamma,i_landa,k))*(B_k(1,k)-

A_k(1,k))/(p_k(1,k)*(w_k(1,k)^2))); 
                    end 

                end 

                

C(i_gamma,i_landa)=Theta_0*num_gamma(i_gamma,1)*num_landa(i_gamma,i_lan

da)/(N_gamma(i_gamma,1)*N_landa(i_gamma,i_landa)); 

  

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% C(i_gamma,i_landa) 

  

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Theta 

                for kk=1:length(zeta_original) 
                    for k=1:length(zeta) 

                        if abs(zeta(1,k)-zeta_original(1,kk))<1e-5 

                            for i_t=1:length(Fo) 
                                for i_eta=1:length(eta) 

                                        

X=besselj(0,gamma*eta(1,i_eta))-

besselj(1,gamma)*bessely(0,gamma*eta(1,i_eta))/bessely(1,gamma); 
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Theta(i_eta,kk,i_t)=Theta(i_eta,kk,i_t)+C(i_gamma,i_landa)*X*psi(i_gamm

a,i_landa,k)*exp(-Landa(i_gamma,i_landa)*Fo(1,i_t)); 
                                end 

                            end 

                        end 

                    end 
                end 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Theta 

  

            end 

end 

  

  

for i_t=1:length(t_1) 
    

T_sorb_ave(i_t,1)=mean(mean(Theta(:,length(zeta_f)+1:length(zeta_plot),

i_t)),2); 

end 

  

l_t=2*t_s+t_f; % tube length 
l_rect=pi*(r_1+r_2); 

m_sorb=pi*(r_2^2-r_1^2)*t_s*rho_s/l_rect; 
m_HEX=pi*(r_2^2-r_1^2)*t_f*rho_g/l_rect; 

m_tube=pi*(r_1^2-(r_1-t_t)^2)*(t_f+t_s)*rho_g/l_rect; 

m_HEX=m_HEX+m_tube; 

  

dw=a_ads*(T_sorb_ave(2,1)-T_sorb_ave(1,1));       

SCP=zeros(2,1); 

time=t_1(1,2)-t_1(1,1); 

SCP(1,1)=0.5*dw*h_fg/time; 

  

% W_pump=pi*f_fric*l_t*Re^3*mu_w^3*time/(8*rho_w^2*D_H^2); 
Q_evap=m_sorb*dw*h_fg; 

Q_des=m_sorb*dw*h_ads; 
Q_sens=(m_sorb*c_p_s+m_sorb*w_des_0*c_p_w+m_HEX*c_p_g)*(90-30); 

  

SCP(2,1)=(0.582/0.577)*Q_evap/(Q_des+Q_sens); % COP 

  

  

xlswrite('D:\2-D cylindrical\Results\SCP_COP.xlsx',SCP); 

 

 

function y = gamma_func( x ) 
global Lambda; 

global delta_r; 

  

y=-

x*besselj(1,x*delta_r)+(x*besselj(1,x)/bessely(1,x))*bessely(1,x*delta_

r)-

Lambda*besselj(0,x*delta_r)+Lambda*(besselj(1,x)/bessely(1,x))*bessely(

0,x*delta_r); 
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end 

 

E.5. Matlab code to refine the intervals to increase the accuracy 
in 2-D analytical models 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Step size selection 

        Eps_min=0.001; 
        Eps_max=0.2; 

        l_min=0.00001; 

        j=5; 
        %step 2 

        psi_bar(1,1)=-1; % eigenfunction at x_0 
%         for k=1:n_layer 

%             for i=1:j 

%                 l_j(1,(k-1)*j+i)=l_k(1,k)/j; 

%             end 
%         end 

  

        x_bar(i_landa,1)=zeta(1,1); 

        k=1; 
        x_bar(i_landa,2)=0; 

        l=l_k(1,1); 
        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% while for x 

        while (x_bar(i_landa,k)+l<1) %step10 

             

%             if (x_bar(i_landa,k))<x_1 
%                 l=l_k(1,1); 

%             elseif (x_bar(i_landa,k))>=x_1 
%                 l=l_k(1,end); 

%             end 

  

  

            %%%%%%%%%%%%%%%%%%%%%%%%%% new w,r,p,q 

            if (x_bar(i_landa,k)+l)<x_1 

                p_kk=p_f; 

                r_kk=r_f; 
                q_kk=q_f; 

                w_kk=((Landa(i_gamma,i_landa)*r_f-q_f)/p_f)^0.5; 
            elseif (x_bar(i_landa,k)+l)>x_1 

                p_kk=p_s; 
                r_kk=r_s; 
                q_kk=q_s; 

                w_kk=((Landa(i_gamma,i_landa)*r_s-q_s)/p_s)^0.5; 

            else 

                p_kk=l/(TCR*A); 
                r_kk=0; 

                q_kk=0; 
                w_kk=0; 

            end 
            %%%%%%%%%%%%%%%%%%%%%%%%%% new w,r,p,q 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% while for each l_j 

            while (2>1) 
                %step3 

                l_j=l/j; 
                %%%%%%%%%%%%%%%%%% new A and B 

                for i=1:j 

                    if w_kk^2>0 

                        B_j(1,i)=p_kk*w_kk/sin(w_kk*l_j); 
                        A_j(1,i)=B_j(1,i)*cos(w_kk*l_j); 

                    elseif w_kk^2==0 

                        B_j(1,i)=p_kk/l_j; 

                        A_j(1,i)=B_j(1,i); 
                    else 

                        w_k_star=(abs(w_kk^2))^0.5; 
                        B_j(1,i)=p_kk*w_k_star/sinh(w_k_star*l_j); 

                        A_j(1,i)=B_j(1,i)*cosh(w_k_star*l_j); 
                    end 
                end 

                %%%%%%%%%%%%%%%%%% new A and B 

  

                %%%%%%%%%%%%%%%%%% new A and B 

                if w_kk^2>0 
                    B_i(1,k)=p_kk*w_kk/sin(w_kk*l); 
                    A_i(1,k)=B_i(1,k)*cos(w_kk*l); 

                elseif w_kk^2==0 
                    B_i(1,k)=p_kk/l; 

                    A_i(1,k)=B_i(1,k); 
                else 

                    w_k_star=(abs(w_kk^2))^0.5; 
                    B_i(1,k)=p_kk*w_k_star/sinh(w_k_star*l); 

                    A_i(1,k)=B_i(1,k)*cosh(w_k_star*l); 
                end 

                %%%%%%%%%%%%%%%%%% new A and B 

                %step4 

                if k==1 
                    psi_bar(1,2)=-A_i(1,1)/B_i(1,1); % 

eigenfunction_bar at x_1 

                else 
                    psi_bar(1,k+1)=((A_i(1,k-

1)+A_i(1,k))*psi_bar(1,k)-B_i(1,k-1)*psi_bar(1,k-1))/B_i(1,k); % 

eigenfunction at x_k+1 

                end 

                %step5 

                if k==1 
                    psi_j(1,1)=psi_bar(1,1); 

                    psi_j(1,2)=psi_bar(1,2); 

                else 

                    psi_j(1,1)=psi_j_previous(1,j); % psi_j is the 

psi_j for previous k that we got 

                    psi_j(1,2)=psi_j_previous(1,j+1); % psi_j is the 

psi_j for previous k that we got 

                end 
                for i=1:j-1 
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                    psi_j(1,i+2)=((A_j(1,i)+A_j(1,i+1))*psi_j(1,i+1)-

B_j(1,i)*psi_j(1,i))/B_j(1,i+1); 

                end 
                %step6 

                if abs(psi_j(1,j+1)-psi_bar(1,k+1))<Eps_max 

                    %step9 

%                     ll_k(1,k)=l; 
                    x_bar(i_landa,k+1)=x_bar(i_landa,k)+l; 

                    k=k+1; 

                    psi_j_previous=psi_j; 

                    break; % from while for each l_j 
                else 

                    %step7 
                    if l<l_min 

                        %step12 
                        error('Inappropriate accuracy requirements'); 
                    else 

                        %step8 

                        l=l_j; 

%                         l=l*j; % Or 
                    end 

                end 
            end 

            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% while for each l_j 
        end 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% while for x 
%         Step11 
        x_bar(i_landa,k+1)=1; 

%         ll_k(1,k+1)=1-x_bar(i_landa,k); 
        zeta=zeros(1,1); 

        l_k=zeros(1,1); 
        zeta=x_bar(end,:); 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Step size selection 
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Appendix F: Analysis of variance (ANOVA) 

Analysis of variance, ANOVA, is a systematic method that can be used to evaluate the 

impact of design parameters on the performance by calculating the sums of square, level 

of contribution, F-statistic ratio and p-value [161]–[163]. First, we generate the sample 

points of variables, e.g. using Box–Behnken design [164] with three levels of design 

parameters shown in Table 11. Since each variable has three levels, the degree of 

freedom is equal to 2. Based on the sample points generated by Box–Behnken design, 

the objective functions are evaluated using the analytical models, each objective function 

is shown by Xj. 𝑋j represents the average of objective functions for each variable, and 𝑋 

indicates the average of 𝑋j for all the variables. With these definitions, the sums of squares, 

mean squares, F-statistic ratio, and level of contribution (ρ) can be calculated as shown 

in Table F1. nj shows the sample size in the jth group (or the number of variables). F-

statistic ratio represents the variability between treatment or the ratio of (differences 

among the sample means) / (an estimate of the variability in the outcome). The greater 

the F, the more significant effect that parameter has as it can cause more variation.  

Table F1. Sums of square, level of contribution and F-statistic ratio in ANOVA 

Variable Sums of square (SS) 
Degree of 
freedom 
(dof) 

Mean 
squares (MS) 

F ρ (%) 

b ( )
2

j jSSB n X X= −  k-1=2 
MSB=SSB/(k-
1) 

MSB/MS
E 

SSB/SS
T 

tf  2    
ts  2    

ϕ  2    

  2    

r1, Hc/2  2    

Error 
(residual
) 

( )
2

jSSE X X= −  
N-k=54-
12=41 

MSE=SSE/(N
-k) 

 
SSE/SS
T 

Total ( )
2

SST X X= −  N-1=53    

 

To examine whether a variable has significant impact on the objective function, Null 

hypothesis is employed as follows. 

H0: Null hypothesis, which hypothesizes that all the means are equal: μ1 = μ2 = μ3 ... = 

μk (j=1, 2, 3, …, k). If this hypothesis is true, then the variable does not cause significant 

variation as all the means are equal; thus, the variable has insignificant impact on the 

objective function. 
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p-value ≤ α: Reject H0. The differences between some of the means are statistically 

significant, which means it has significant impact. 

p-value > α: The differences between the means are not statistically significant, which 

means it has negligible impact. 

α= significance level (usually 0.05). It means that there is 5% chance that Null 

hypothesis was wrong and that parameter is significant. 

p-value can be calculated based on F-statistic ratio, significance level (α), degree of 

freedom of the treatment for each variable and degree of freedom of errors, shown by Fα, 

df1, dfE. Matlab was used to obtain the p-values for Fα, df1, dfE. The greater the F, the smaller 

the p-value. 
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Appendix G: Drawings of sorber bed heat and mass 
exchangers 

Fig. G.1 and Fig. G.2 show the CAD drawings used to build the plate-fin sorber bed 

heat and mass exchanger (P-HMX) and finned-tube sorber bed heat and mass exchanger 

(F-HMX) discussed in chapter 5.3, Fig. 56 and Fig. 57. 

 

Fig. G.1. CAD drawing of the plate-fin sorber bed heat and mass exchanger (P-HMX), 
all dimensions are in inches 
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Fig. G.2. CAD drawing of the finned-tube sorber bed heat and mass exchanger (F-
HMX), all dimensions are in inches 
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Appendix H: Integration of sorption cooling systems in PEM 
fuel cell buses 

It was discussed in section 1.2 that the waste heat of fuel cells can be used to run 

sorption cooling systems (SCS) to generate cooling in automotive applications. Fig. H.1 

(a) shows the schematic of a NewFlyer 40-foot bus powered by Ballard PEM fuel cells. 

The PEM fuel cell in the 40-foot bus with 50 kW energy input, generates approximately 25 

kW electricity and 25 kW waste heat at the temperature between 60–80 ºC [59]. 44% of 

the electrical power produced by the PEM fuel cell is consumed to generate 15 kW cooling 

for the cabin AC using VCR systems, while 56% is left for the bus traction. Fig. H.1 (b) 

shows the integration of SCS in the bus to provide the 15 kW cooling with the 25 kW waste 

heat from the PEM fuel cell. Therefore, the required COP of a waste-heat driven SCS 

should be about 0.6. Incorporation of SCS can significantly reduce the AC electrical power 

consumption. Thus, the hydrogen fuel tanks, fuel cell stacks and the batteries can be 

reduced in size to provide 14 kW electrical power required for the bus traction, which 

decreases the cost and weight. Another benefit would be to keep the same size and 

increase the mileage of the bus.  

 

 

Fig. H.1. Schematic of a NewFlyer 40-foot bus powered by Ballard PEM fuel cells with 
(a) VCR and (b) SCS as the AC system 

 


