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Abstract

The model of sparse vectors has proven invaluable for compressive imaging, allowing for
signal recovery from very few linear measurements. Recently however, the structured spar-
sity model of sparsity in levels has inspired a new generation of effective acquisition and
reconstruction modalities. Moreover this local structure arises in various areas of signal
processing such as parallel acquisition, radar, and the sparse corruptions problem. Recon-
struction strategies for sparse in levels signals have previously relied on a suitable convex
optimization program. While iterative and greedy algorithms can outperform convex opti-
mization and have been studied extensively in the case of standard sparsity, little is known
about their generalizations to the sparse in levels setting. We bridge this gap by showing
new stable and robust recovery guarantees for sparse in level variants of the iterative hard
thresholding and the compressive sampling matching pursuit algorithms. Our theoretical
analysis generalizes recovery guarantees currently available in the case of standard sparsity
and favorably compare to sparse in levels guarantees for weighted ¢' minimization, both in
accuracy and computational time. In addition, we propose and numerically test an exten-

sion of the orthogonal matching pursuit algorithm for sparse in levels signals.

Keywords: sparsity in levels, compressed sensing, iterative and greedy methods, stability

and robustness
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Chapter 1

Introduction

The model of sparse vectors has proven to be extremely useful for many physical phenomena.
A sparse vector has s nonzero entries whose locations may be arbitrary. The assumption
of underlying low-dimensional structure allows for recovery techniques from compressed
sensing to recover an s-sparse vector z € CV from noisy linear measurements y = Az +
e € C™. These techniques allow for accurate recovery of x even in the case where the
number of measurements m is proportional to s up to log factors in N, and thus much less
than the underlying dimension N. However, many applications exhibit structure beyond
classical sparsity. Hence, there has been study on more complex structured sparsity models
such as group or block sparsity, joint sparsity, weighted sparsity, connected tree sparsity
and numerous others. That is, assumptions on not just the total sparsity s, but on the
distribution of these nonzero entries. In fact, many of these more sophisticated models
can lead to boosted practical performance [10, 25, 37]. Thus the problem of identifying a
useful structured sparsity model that models applications and also admits a useful, tractable
theory, is one of significant importance.

The focus of this thesis is the so-called sparsity in levels model, which has been shown to
provide significant theoretical and practical gains over the standard sparsity model [7, 11].
Sparse in levels vectors exhibit a local sparsity pattern, specified by a vector (si,...,s;), as
opposed to a single sparsity s. This seemingly simple generalization allows specification of
a local structure within a vector, and leads to a rich theory that extends from the sparse
setting [7, 29]. Up to this point however, the recovery of sparse in levels vectors has been
approached via convex optimization techniques. Parallel to this, and of equal interest, is
that of greedy or iterative approaches — which generally use fewer computational resources.

We focus on three standard iterative and greedy algorithms: Iterative Hard Thresh-
olding (IHT), Orthogonal Matching Pursuit (OMP) and Compressive Sampling Matching
Pursuit (CoSaMP), which are important algorithms for compressed sensing with standard
sparsity [13, 32]. We introduce new generalizations of these methods to the sparse in lev-
els setting, the first iterative approaches for this sparsity class. We generalize the theory

of these recovery algorithms for sparse vectors to the levels case, and provides theoretical



guarantees for the recovery of sparse in levels vectors that are robust to terms of noise in
the measurement device or perturbations in the solution x itself. Furthermore, we study in
the practical behavior of these approaches in both speed and accuracy compared to their

sparse counterparts, and contrast them with convex optimization.

1.1 Motivation

While the theory of this model is inherently interesting, sparsity in levels arises commonly
in various applications. Some examples of interest include so-called sparse and distributed or
sparse and balanced vectors, which occur in parallel acquisition problems [20, 19] and radar
[24]. Notably, the specific case of two levels also arises in the sparse corruptions problem
[2, 30], in which a small fraction of the measurements of a signal are substantially corrupted
— in comparison to some assumption of bounded or Gaussian noise on the signal.

Sparsity in levels has hereto been exploited using optimization-based decoders. Yet, it
is well known that such decoders are not without issues; for example being computationally
intensive. More directly worrisome is the observation that a decoder based on minimizing a
convex optimization problem is not a method per se, as it requires a secondary algorithm to
actually compute a solution. Therefore, as noted in [3], there is a gap between compressed
sensing theory based on minimizers of optimization problems, and the observed practical
performance. With this in mind, a primary motivation for this work is to derive algorithms
with both recovery guarantees and provable polynomial computational time bounds in m
and N.

Finally this model is useful in the problem of compressive imaging, which is the most
direct and important application of this work. In compressive imaging problems, an image
is first written as Wx where the coefficient vector x is sparse given suitable W, such as W
encoding a wavelet basis. Then, linear samples of this image are recovered as y = AWz for
some sampling scheme A — for example A = PF where F is the the standard Fourier matrix,
and P a row sumsampling matrix. Not only is this vector = sparse, it exhibits sparsity in
levels structure with asymptotic decay in the nonzero entries. This can be taken advantage
of in the design of sampling strategies — in the design of the matrix A — to outperform
methods optimized for standard sparse models, and give enhanced recovery performance
[7, 8, 36]. Coupling this with a computationally guaranteed iterative or greedy method to

quickly recover z is an current inquiry for accelerating imaging problems, inspired by [3].

1.2 Contributions

In this work, we propose three new algorithms for sparse in levels recovery: Iterative Hard
Thresholding in Levels (IHTL), Orthogonal Matching Pursuit in Levels (OMPL) and Com-
pressive Sampling Matching Pursuit in Levels (CoSaMPL). In the analysis of these methods,

the main results of this work are robustness and stability guarantees for the levels-based



algorithms, THTL and CoSaMPL. They directly generalize known results for the sparse
case, and require no additional or stricter assumptions in the general setting of sparsity
in levels. These are presented in Theorem 12 and Theorem 13 respectively. These results
determine an error bound in certain weighted #'-norms and the £>-norm depending on the
approximate sparsity in levels, and the noise level. Furthermore we present equivalent results
for the optimization-based weighted Quadratically-Constrained Basis Pursuit (wQCBP) de-
coder with the sparsity in levels model (Theorem 3). In comparing these theoretical bounds,
we show that iterative approaches have no more stringent requirements for recovery than
wQCBP, and comparable stability and robustness guarantees.

Finally we contrast these approaches numerically. Generally, we find that the levels
based generalizations IHTL, CoSaMPL improve over their non-local counterparts, whereas
OMPL and wQCBP show situational improvement. Furthermore, comparison with opti-
mization based approaches show the iterative methods - specifically CoSaMPL - have simi-
lar accuracy with much less computational time. These numerics provide some evidence of
cases where approaches based on iterative approaches outperform, or compare similarly, to

convex optimization.

1.3 Literature review

The IHT and CoSaMP algorithms were introduced to compressed sensing in [13] and [32]
respectively. Their theoretical analysis can be found, for instance, in [27]. The Iterated
Shrinkage methods [26] served as a precursor for IHT, which was introduced in the context
of compressed sensing in the late 2000s [13, 14]. Accelerating THT using variable stepsize
was examined later [12, 15]. A generalization of IHT to the union of subspaces model was
studied in the context of model-based compressed sensing [10, 28]. Extensions of CoSaMP
to the union of subspaces model were developed and analyzed in the context of model-based
compressed sensing [10, 28]. Matching pursuit approaches were first studied by Zhang and
Mallat [31], with OMP formulated later in [21]. Basis pursuit (a special case of wQCBP) was
introduced to compressed sensing at its onset, in the seminal paper by Candes, Romberg,
and Tao [18].

The sparsity in levels model was introduced in [7, 11]. Nonuniform recovery guarantees
wQCBP were proven first in [7], with uniform guarantees later in [29].

Weighted QCBP has been studied recently in the compressed sensing literature, and
has shown theoretical and practical uses in this context [1, 5]. The IHTL and CoSaMPL
algorithms were introduced, and examined numerically, in [4] by the author. However, this
previous work contained no theoretical analysis, and did not consider OMPL. Much of this

thesis is based on a combination of work done by the author in [3, 4].



1.4 Outline

Chapter 2 begins with an introduction to compressed sensing in the sparse case, developing
the standard tools of compressed sensing. Using this as a guideline, Section 2.3 develops
sparsity in levels in a way motivated by the sparse case. This contains important theoretical
tools necessary for later proofs, foremost the RIPL and the wRSNPL. This chapter concludes
with the application of this theory to the example of Fourier-Haar wavelet problem in
compressive imaging — a sparse in levels recovery problem with practical value.

Chapter 3 first develops the sparse versions of the algorithms of interest, IHT, CoSaMP,
and OMP, and the merits of each. These approaches are then generalized to the levels
setting, leading to the new algorithms IHTL, CoSaMPL, and OMPL.

Chapter 4 begins with the statement of the main results of this work: the recovery
guarantees for IHTL and CoSaMPL. The benefits of these results, as well as comparison
to the sparse case, and to wQCBP are discussed at length in Section 4.1. These results are
proven in Section 4.2, which begins with its own detailed outline.

Chapter 5 numerically compares all the approaches mentioned within this work - - IHTL,
CoSaMPL, OMPL and wQCBP. We compare both accuracy and runtime of these methods,
to evaluate use cases for each.

Lastly, we conclude and point to some interesting directions of future work.



Chapter 2

Developing compressed sensing

2.1 Notation

We first require some notation. We write {e;}; for the canonical basis of CV. For = €

C™ 1 < p < oo, the fP-norm of x is

For A C {1,...,N} we write Pa for the matrix of the orthogonal projection with the range
span{e; : i € A}. Hence, for z € CV

Z;j jeA

(Paz)i = (2.1)

0 otherwise.

Furthermore, if A € CV*VN then PaA is the N x N matrix with ith row equal to the ith
row of A for i € A and zero otherwise. Similarly, AP has j-th column equal to A for each
j € A and zero otherwise. Finally, we note that the complement Pi‘ = Pac is the projection
onto those indices not in A. Generally we will use the latter notation. To state certain
error bounds, we make use of the notation C' < D if there exists some universal constant ¢
independent of any parameters such that C' < ¢D. Similarly, we may write w > 0 for a real
valued vector w € R”™. This is read component-wise, namely w; > 0,1 < ¢ < N.

Finally, we remark on some abuse of notation we shall use throughout. Pax is isomorphic
to a vector in C2!, and on occasion we shall use Paz to refer to this object. Similarly, P A
may refer to the CIA2*N matrix with the zero rows of PAA € CN*V deleted. In either case,

it should be clear from context — we will point out this where there is any ambiguity.



2.2 Sparsity and classical compressed sensing

Definition 1. A vector x € CN is s-sparse if
H{x; : x; 0} <s.

The set of all s-sparse vectors is denoted Y.

The set {z; : x; # 0} is referred to as the support of x. Further, the set of all index
sets A C {1,..., N} with |A| = s is denoted by Ds. We also remark that |supp(x)| is often
denoted |||/, the “¢°-norm’ This is in fact not a norm, but proves useful for notational
convenience.

Given that we wish to recover not only s-sparse vectors, it is important to develop some
notion of the effectiveness of an s-sparse approximation. These desired approximation rates

will be measured in the standard #P-norms.

Definition 2. For x € CV, the fP-norm best s-term approximation error is given by
os(@)er = f ||z —2ller-

Note that of course, if z € 35 we have o4(z)» = 0. Vectors for which o4(x)s is sufficiently
small are called compressible or approximately sparse. Of course, the tolerance for which
vectors are ‘sufficiently small’ may depend on application or context.

With these in hand, we can formally state the problem of interest. Given some set of
linear measurements y = Az + e € C™, where e € CV is some unknown noise, we wish to
recover € CV, where z is sparse. Here the measurement matriz A is given, for example, by
a physical measurement device. Furthermore, we wish to do so with the smallest number of
measurements m < N. This problem models the situation where samples are very expensive
to compute, such in a parametric PDEs [23, 41] or imaging problems [3]. Of course this is
not generally possible as our system is highly undetermined, and so we make the addition
assumption that x is sparse. With oracle knowledge of the nonzero entries of x, recovery
could be done in O(s) measurements. However, we seek to attain the more reasonable order
O(s - L) for a factor L logarithmic in both s and N.

While exact recovery of sparse vectors is desirable, we wish to generally recover com-
pressible vectors, or sparse approximations. More concretely, we wish to recover a vector
x with an error controlled by its distance to the set of s-sparse vectors, os(z)ew. This is
referred to as stability of a scheme. Similarly, we cannot measure our original signal x with
infinite precision. Thus, even in ideal circumstances, we should only seek to guarantee an
approximation Z to x that is close enough to z relative to ||e||,2 - not an exact recovery

to x. A result that gives recovery even under measurement error is known as a robustness



Figure 2.1: The ¢!-norm promotes sparsity. The solid line is the feasible set {z : Az = Az}.
The Dashed shape is the ¢! (left) or 2 (right) ball, with the intersection point 4 being
the minimal ¢'-norm (left) or ?>-norm (right) solution. The ¢£!-norm solution is generically
sparse, whereas the £2-norm solution is generically nonsparse.

guarantee. With these ideas, we can restate our goal as follows: stable and robust recovery
of x with as few measurements m as possible.

Let us consider the simplest case, when z is exactly sparse and there is no noise. This
will serve to inform us about the difficulties that arise in the general case. One seemingly
innocuous approach is to enforce the assumption of sparsity via a minimization approach,

seeking to find the sparsest solution to Az = y, that is,
min ||z]| subject to Az = y.
i 20 subj y

However, even this very basic idea immediately fails, as this problem is NP-hard and thus

infeasible to solve even for moderately sized problems [27].

2.2.1 Basis pursuit and null space properties

Knowing we cannot solve the 0 minimization problem, even for exactly sparse vectors, we
need some computationally tractable approach. One natural idea is to use a surrogate or
relaxation of || -||o. In the sparse, noiseless case, the Basis Pursuit (BP) problem is a natural
approach of interest

min ||z][,1 subject to Az = y. (BP)
zeCN

To see why this approach is reasonable, consider Fig. 2.1 in R?, reproduced with the authors
permission from [6].

The line pictured is the feasible set, with the unit ¢! ball. By finding the solution that
minimizes the £'-norm, we see that we coincide with an axis, namely the 9 ball! Thus based

on this intuition, we expect the solution of the basis pursuit problem to coincide with the



sparse solution in most cases, with the exception being when the feasible set pictured here
is tangent to the ¢! ball. Or in more precise terms, when there are vectors v in the null

space of the matrix A such that ||z + v|,s < ||x||,. This leads to the following definition:

Definition 3. A matriv A € C™*N satisfies the Null Space Property (NSP) of order s if
for each set A € Ds we have

|Pav]|gt < ||Pacv||p for all v € Null(A)\{0} (2.2)

This property gives rise to the following recovery result [27, Theorem 4.5]:

Theorem 1. Given a matric A € C™N, every s-sparse vector x € C" is the unique
solution (BP) with y = Ax if and only if A satisfies the NSP of order s.

Proof. Let us take some arbitrary A, and assume any vector x supported on A is the unique
minimizer of the problem
min subject to Az = Ax. (2.3)

zeCm
Then, taking arbitrary v in the null space of A this holds in particular for Az = APxv. But
noting that 0 = Av = A(Pav + Pacv) we have A(—Pacv) = APav and thus by assumption
||Pav]|gr < || Pacv||g, thus establishing the NSP.
Conversely, let us assume the NSP holds. Then, given some x supported on A and any
z # x with Ax = Az we construct v = x — z, which is nonzero and in the null space of A.
Then using the NSP

[zl <z = Pazllp + [Pazlle = [|Pavlle + [[Pazllen

< [|Pacvllp + [Pazlle = [|Paczller + [[Pazller = |zl

As the choice of z was arbitrary we have thus established the minimality of x, as was to be

shown. O

Now let us move to the more general context where the noise level e is nonzero. In this
setting, solving the BP problem is not a good idea. To see why, consider solving the BP
problem with y = Ax 4+ e. A solution Z, for which AZ = y, generally will be non-sparse.
In fact, the feasible set, the set of sparse vectors satisfying A% = y, may simply be empty.
However, given some estimate of |le||,2 < n, we know there is a sparse solution x satisfying
lly— Az||,2 < n. Replacing our equality constraint with this inequality constraint then allows
for minimization of the ¢! norm as before. This approach is Quadratically Constrained Basis

Pursuit (QCBP), which allows noise to be addressed in the recovery process:
min ||z]|, subject to ||Az — yll2 < n. (QCBP)
2eCN

We shall see the following null space property gives guarantees useful for QCBP:



Definition 4. A matriz A € C™*N has the robust Null Space Property (rNSP) of order s
with constants 0 < p <1 and 7 > 0 if

[Pavle <

Phe
Afacle s rjavta

for allv e CN and A € D;.

Note that this definition makes no assumptions on the vector v. However, if v € Null(A)
and p = 1, we recover a NSP-like property as the second term is simply ||Av|2 = 0, with a

stronger requirement that || Pav||z < 2 |

Pacvl| 1 . .
%. However, this second term gives us greater

control over the norm of Az even for those vectors not in the null space. As with the NSP,

this TNSP provides stable and robust recovery, formalized in the following result

Theorem 2. (See e.g. [6, Theorem 5.14]) Suppose that A € C™*N satisfies the rNSP of
order s with constants p € (0,1) and 7 > 0. Then for any x € CN, a solution & of QCBP

with y = Az + e and ||e||;2 < n approximates x with error

. 2(1 + 4t
|2 — x| < (1;)05(@51 + T p\/gn (2.4)
3 1 1 3 5

(1—p) Vs (1—p)

It is important to pause here and emphasize that this result not only gives the robustness
we desired as the right hand side depends on 7, but the stability as well, as the bound
depends on o4(x),. Results of this flavor are of the utmost interest for this thesis, with the

rNSP implying stable and robust recovery for some procedure — in this case QCBP.

2.2.2 From null space to restricted isometry property

While the rNSP gives a very useful theory, even in this sparse case it can be difficult to
establish even for a given matrix A. Instead we develop a related definition, the Restricted

Isometry Property (RIP).
Definition 5. Let 1 < s < N. The s-th Restricted Isometry Constant (RIC) 05 of a matrix
A e C™N s the smallest § > 0 such that

(1= 0)llals < [Azl% < 1+ 0)[al, Ve € S, (2.6)
If 0 < §s < 1 then the matriz is said to have the Restricted Isometry Property (RIP) of
order s.

This, as the name suggest, the RIP measures how close A is to an isometry — a distance
preserving map — on the set of s-sparse vectors. A useful characterization of the RIC is the

following:



Lemma 1. (See e.g. [6, Lemma 5.16]) The s-th RIC constant of a matriz satisfies

55 = Sup ”PAA*APA — PAH(?- (27)

A€Dg
Now, one may wonder why this property is useful in relation to sparse recovery — or to
the rNSP previously developed. The next result gives us precisely this link in the sparse

case:

Theorem 3. (See e.g. [17]) Suppose that A satisfies the RIP of order 2s with constant
82s = 0 < /2 — 1. Then A satisfies the rNSP of order s with constants
V20 1+4

Pmios T =g 28)

Firstly, and perhaps most importantly, as the RIP implies the rNSP, and the rNSP
implies stable and robust recovery, we can attack the recovery problem — in theory — by
finding those matrices which satisfy the RIP. It is also important to note that the condition
§ < /2 — 1 is not optimal. In fact, it has been shown & < 1/4/2 suffices, and that this is
sharp [16].

From this follows a recovery result:

Theorem 4. (See e.g. [6, Theorem 5.14]) Suppose that A € C™*N satisfies the rNSP of
order s with constants p € (0,1) and 7 > 0. Then for any x € CV, a solution & of QCBP

with y = Az + e and ||e|| < n approzimates x with error

. 2(1+p) 4t
— <o, ——/sm, 2.
&= 2l < = Fou(@)a + T (2.9)
1 1) o
12— 2 < Bp+1)(p+1)os(x)n N (3p+5)T (2.10)

.
I-p) s = d-p "
2.2.3 Matrices satisfying the RIP

Until this point, we have talked about the properties measurement matrices A should have —
but we have not examined any particular matrices. So it remains to see what measurement
matrices are used in practice. Notably, we now have several desirable properties we wish for
our matrices to satisfy — foremost being the RIP. With this in mind we return to one of the
original problems set out in this section - reducing the number of measurements m needed.
It is important to note that constructing deterministic matrices that give stable recovery
and optimal or near-optimal measurement complexity — m = s or m = O(slog(s)) — is
an open problem. Thus, all the matrices discussed here must naturally have some random
element in their construction.

The first class of standard measurement matrices is a Gaussian random matrix

10



Definition 6. A matriz A € R™N s a Gaussian random matriz if its entries are inde-

pendent normal random variables with mean zero and variance one.

Analyzing these types of matrices with tools from random matrix theory gives useful

recovery guarantees, that explicitly bound the number of measurements m needed.

Theorem 5. (See e.g. [6, Theorem 5.19]) Let € € (0,1), s € {1,...,N} and A = \/%fl

where A € R™N s a Gaussian random matriz. Then, if
m > slog(eN/s) +log(2¢1), (2.11)

the matrix A satisfies the RIP of order s with probability 1 — €.
From the previous discussions of the RIP and rNSP we have that

Corollary 1. (e.g. [6, Theorem 5.19]) Let A = \/%fl satisfy the RIP of order s, where

A e R™N s a random Gaussian matriz. Then, for every x € C™N and y = Ax + e,

where ||e]l;2 < n for some n > 0, any minimizer & of QCBP satisfies

|2 — 2| S os(z)n + Vsn,

) 1
[z =2l S —=0os(@)e + 1.

NG

While this result is extremely promising, issues arise applying this practically. Generally,
Gaussian random matrices are dense with no structure — and thus cannot be efficiently
stored. Thus computing with these can be infeasible for moderately large problems. Another
issue is simply being able to sample the underlying signal with a Gaussian matrix. For
example in compressive imaging, samples are often prescribed or given from the application
— such as Fourier samples in Magnetic Resonance Imaging.

These can both be tackled by the following ideas.

Definition 7. A matriz U € CN*N s unitary if UU* = U*U = 1.

Unitary matrices are interesting for many reasons, but one property of note is that they

are distance preserving, |Uz||;2 = ||z]|.

Definition 8. Suppose U € CN*N s unitary. A randomly-subsampled unitary matrizc is a

matriz A € C™N of the form
A=Y, (2.12)
m

where Q = {w1, ..., wn} and the w; are chosen randomly and independently from {1,... N}.

Under the umbrella of subsampled unitary matrices are methods permitting fast trans-

forms. A particularly useful example of this is when A is the Fourier matrix, which allows

11



for fast matrix-vector products via the FFT. To recall, the Fourier matrix F' is

1 (Comige\ N-LN-1
F=—— <62N J'“) (2.13)
j=0,k=0

The next question is which unitary matrices U will give good measurement conditions. For
example, a terrible choice (but a valid one in the definition above) would be that of U = I -
measuring the entries of x directly. Without any knowledge of the support of x a priori, poor
choices of indices can easily result in Polxz = 0, and generally we would need m = N total
measurements. Inspired by this, a good choice of U would be one that takes sparse xz and
transforms to nonsparse z = Uz, as then each measurement gives additional information

about x. Concretely, we measure this by the coherence of a matrix:

Definition 9. The coherence of a matriz U € CN*M s

uw(U) = Nrrz;z}x i |2, U= (uw)f\gfl (2.14)

Observe for a unitary matrix 1 < p(U) < N. We then shall say U is incoherent if
w(U) ~ 1 and coherent if u(U) ~ N. The extreme undesirable coherent case is pu(I) = N,
whereas an example of a maximally incoherent matrix is the normalized DFT matrix, for
which u(U) = 1. As we expect intuitively, coherence measures how the map U transforms

sparse vectors to nonsparse ones:

Lemma 2. Let U € CN*N be unitary. Then, for any x € CV,

N
[zl + Uzl > 2\/m. (2.15)

In the sparse case where ||z|s, < N, we require 2,/% to be as large as possible, as
then it follows ||Ux||,0 must be large, we have “spread out” the nonzero entries. Thus, small
coherence is precisely the correct measure. This also relates back to our previous definitions

in the following way:

Theorem 6. ([6, Theorem 5.22]) Let e € (0,1), 2 < s < N. Let U € CN*N be unitary,

and A be a randomly-subsampled unitary matriz based on U. Suppose that
m 2 s (log(s) log?(s) log(N) + log(¢ 1)) . (2.16)

Then, with probability 1 — e, A satisfies the RIP of order s.

Which gives the corresponding recovery result.
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Corollary 2. ([6, Theorem 5.22]) Let € € (0,1), 2 < s < N. Let U € CN*N be unitary,

and A be a randomly-subsampled unitary matriz based on U. Suppose that

m 2 su(U) (log(u(U)s) log?(s) log(N) + log(¢ ")) . (2.17)

Then, for every x € C™N and y = Ax+e, where ||e||p2 < n for somen > 0, any minimizer

Z of QCBP satisfies

lz = 2l S os(x)er + Vsm,

. 1
|z — 2|z ﬁas(x)p +7-
For incoherent U, we can simplify the measurement condition to be of the form

m 2, s - p(log(s),log(N)),

for some polynomial p of log factors in s, N. This generally means that the log factor
is worse than the Gaussian case — intuitively a consequence of Gaussian matrices being
more random. However, the amenability to fast computation makes subsampled unitary

transforms desirable nonetheless.

2.3 Sparsity in levels

We now introduce sparsity in levels, a natural generalization of sparsity. This and the
previous section proceed exactly in parallel, solving the same underlying problem of solving

the linear system Ax + e, now for sparse in levels x.

Definition 10. Let r > 1, M = (My,...,M,), where 1 < M; < My < ... < M, = N
and 8 = (s1,...,8.), where sp < My — M1 for k = 1,...,r, with My = 0. A vector
r = (z;)M, € CN is (s, M)-sparse if

|supp(z) N {Mk_1+1,... , Mp} <sp, k=1,...,m

We write Xs pr € CN for the set of (s, M)-sparse vectors.

This model was first introduced in [7]. We refer to s = s1+...+ s, for the total sparsity,
and we denote by Dsar C {1,...M} the set of all index sets which are the support an
(8, M)-sparse vector. We refer to M as sparsity levels and s as local sparsities. Moreover,
any index set of the form {My_; +1,..., My} for some k =1,...,r is said to be a level. Of

further use are the projection operators onto a level. Given z € CV, these are defined as

M x; iG{Mk+1,...Mk+1}
(PM:Hx)i = PMkHP]\L@ = ) .
0 otherwise

13



While this is obviously a special case of the projection onto an index set, it is used with
enough frequency to warrant special notation.

As in the sparse case it is important to develop some notion of the effectiveness of
an approximation. These desired approximation rates will be measured in the weighted

fP-norms

Definition 11. Let w = (w1, ..., wy) € RVbe a set of weights, with w; > 0 for all i. For
0 < p <2, the weighted P norm of a vector x € CV is

N 1/p
2—
]l er, = (Zwi p)lx#’> : (2.18)
i=1

Past works on convex optimization-based decoders for the sparsity in levels model have
found that better uniform recovery guarantees can be obtained by replacing a usual ¢'-norm
with a suitable weighted ¢!-norm [9, 37]. We shall find a similar phenomenon occurs in the
case of iterative and greedy methods. As in these previous works, we shall suppose that the

weights are constant on each level
wi=w®, My <i< M, 1<k<r, (2.19)

for some w*) > 0. This is natural, as the assumption of levels structure is a prior on the
nonzero entries. Assuming a sparse in levels structure assumes a s; nonzero entries in a level
— which naturally leads to having a constant weight on that level, expressing the size of the
prior s;. For example, a prior on the local sparsity s; being large is expressed by having

small weighting on this level.
Definition 12. Given a vector of weights w € RY with w > 0, the best (s, M)-term
approzimation error of x € CN (with respect to the weighted fP-norm) is defined as

oam (@), = mf {fo =2l 2 € e}

This directly generalizes the desired approximation error for the sparse case: if r = 1 and
w1 =...=w, =1, we recover o5 p(z)» = 0s(x)ew. As before, vectors for which o ar() e

is sufficiently small are called compressible or approximately sparse in levels.

2.3.1 Null space property in levels

Inspired by (QCBP), we examine the weighted Quadratically Constrained Basis Pursuit
(wQCBP) decoder

min ||z]|; subject to [[Az — y|l,2 <. (wQCBP)
2eCN v
In the case of constant weights wi = ... = w,, this is exactly QCBP. In the sparse case, we

had strong intuition building towards a robust null space property. We continue this thread
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in the levels case. The following null space property gives guarantees useful for wQCBP, and
will also appear later in recovery guarantees for other methods. Before stating this property,

we define following key quantities:
(= Z(w(i))Qsi, €= min (w®)2s;. (2.20)
i=1 -

Definition 13. A matriz A € C™*Y has the weighted rNSP (wrNSPL) in levels of order
(s, M) with constants 0 < p <1 and 7> 0 if

Pl Pacvl| o
——=" + 7[|Av|| 2,
V¢

[Pav]e2 <

for allv e C" and A € Dg pr.

This definition is due to see [9, Defn. 5.1]. In the case one level, unweighted case, this
definition simplifies to the rNSP for sparse vectors (2.2). As we had hoped, this definition

is sufficient to give a generalized recovery result.

Theorem 7. (derived from [9, Theorem 5.4]) Suppose A has the wrNSP in levels of order
(s, M) with constants 0 < p < 1 and 7 > 0. Then for any x € CN, a solution & of wQCBP
with y = Az + e, and ||el|;2 <1, satisfies

o=l < = D ountaly, + 1
. 1 2(1+p) 1
HCC — 37”@ < (1 + (C/§)1/4) (\/g(l_p)Us,M(HT)K}U + 11— p7'77> .

As before, this result not only gives the robustness we desired, but the stability as well.

2.3.2 Restricted isometry in levels

Proceeding exactly as the sparse case, it can be difficult to verify the wrNSPL for a given
matrix A. So, we extend the RIP to the Restricted Isometry Property in Levels (RIPL).

Definition 14. Let M = (Mj,...,M,) be sparsity levels and s = (s1,...,s,) be local
sparsities. The (s, M)-th Restricted Isometry Constant in Levels (RICL) 0sar of a matriz
A € C™*N s the smallest § > 0 such that

(1= 8)||z|2 < [|Az||2 < (1 +6)||z]2, Yz € Xsar. (2.21)

If 0 < d5,pr < 1 then the matriz is said to have the Restricted Isometry Property in Levels
(RIPL) of order (s, M).

The RIPL measures how close A is to an isometry on the set ¥, as, much how the RIP

measured this for sparse vectors. An alternate characterization of the RICL is the following.
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Lemma 3. The (s, M)-th RICL constant of a matriz A satisfies

6S,M = sup HPAA*APA - PAHEQ' (2.22)
AEDSVM

Here, we will prove this lemma. Note that this proof also shows the result for the sparse

case, Lemma 1.

Proof. By inspection, Eq. (2.21) is equivalent to

’HACEH?? —|lzlle| < dllzl7,, Vo€ Tsm, (2.23)
and thus
Os,M = |Az(|7 — l|z]|%| = | Az||7 — |lz]|Z (2.24)
s, M sup ol — |lzllz sup sup xllp — ||zl|p| .
€L M AeDg ppsupp(z)CA
llzll 2=1 || 2 =1

Thus consider arbitrary A € Dy ps with supp(z) C A. Then

[Az17. — ll2l17

= |IlAPaz|% — | Paz|if

= [((PAA"APA — Pa)z, )] .

And, noting that the matrix @ = PAA*APA — Pa is self adjoint, we have ||Q|,2 =
SUD||z| ,=1 |{Qx, x))|, giving precisely

= sup |[((PaA"APA — Pa)z,z)| = |[PAA"APA — Pallez,

sup ||| A% — [l2ll%
CA

supp(z) supp(z)CA
llzll 2=1 llzll2=1
and thus the result follows immediately. O

Both of these results, again, directly generalize theory from the sparse case. As before,
we now need the crucial ingredient: to show the RIPL implies the wRNSP, and thus stable

and robust recovery.

Theorem 8. Suppose that the (2s, M )-th RICL constant of A € C™*N satisfies

1
528,M < W, (225)

where ¢ and & are as in (2.20), for w € RN, with w > 0, be a set of weights as in (2.19).
Then A satisfies the wrNSPL of order (s, M) with constants

o= \/§ 528,M _ £/ 1 + 523,M (226)

5 T .
1-— 525,M 1-— 528,M
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And following from the previous discussion of the wRNSPL, we have recovery guarantees
from the RIPL:

Corollary 3. Suppose that the (28, M)-th RICL constant of A € C™*N satisfies

1
(5237]\/[ < W, (2.27)

where ¢ and & are as in (2.20), and let n > 0 and w € RY, with w > 0, be a set of weights
as in (2.19). Then, for all x € CV any minimizer of & of (WQCBP) for y = Az + e and
llellz < n satisfies

le = &, < Cosna(@)er, + DV,

o= alle < (1+(¢/9"") (Zzouna(ala, +Fn).

(2.28)

where C, D, E, F depend on d2s pr only.

The proof of Theorem 8 will conclude this chapter.

2.3.3 Constructing matrices satisfying the RIPL

Even in the general levels setting, Gaussian random matrices satisfy the RIPL. In fact,
a Gaussian matrix satisfies the RIPL of order 6537 < ¢ with probability at least 1 — e,
provided

m > Co 2 (i sk log (GWIC_]\M) + log(el)> , (2.29)

k=1 Sk

which follows as a corollary of [22] as noted in [29]. This is promising for the levels model,
as it reduces the number of measurements needed. More concretely, for the sparse case
we required slog(eN/s) measurements. In the levels case, this translates to slog(eN/s) =
Y h—1Sklog(eN/s). To see if there is any gain to be had, we compare the terms of this
previous result with the sum above. For example, if some level satisfies s, = My — My_1,
this contributes O(sy) to the sum above, as compared to the usual O(sy log(eN/s)). Thus,
the measurement condition for the RIPL here requires a smaller m than was required for
the RIP.

As before, this approach has two fundamental flaws. Gaussian matrices are infeasible
in large problems to efficiently store or multiply, and real applications often do not permit
Gausssian sampling. Thus, we need to develop some new notion of a subsampled isometry.

For this, the notion of a multilevel sampling scheme is required:

Definition 15. Let N = (Ni,...,N;), where 1 < N; < ... < N, = N and m =
(my,...m;), where my < Ny — Ni_1 for k =1,....7 and Ny = 0. Nn (m, N)-multilevel

sampling scheme is a set @ = QU ---UQ,. of m = my + ... + m, indices, where for
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each k the following holds. If my = Ni — Ni_1 then Qi = {Np_1 + 1,..., Ni}, and other-
wise Qy, consists of my, indices chosen independently and uniformly at random from the set
{Nk_1 +1,... ,Nk}.

How does this relate to our problem of recovering sparse in levels vectors? In the case
where N = M, we hope (intuitively) that we can spend mj measurements in the k-th
sampling level {My_1 + 1,..., My} to recover the s; nonzero entries of an (s, M )-sparse

vector x. This leads to the extension of a multilevel subsampled unitary matrix:

Definition 16. A matriv A € C™ s an (m, N)-multilevel subsampled unitary matriz
if A = PoDU for a unitary matriz U € CN*N and (m, N)) multilevel random sampling

scheme 2. Here, D is a diagonal scaling matriz with entries

;= (| Ve~ Nk (2.30)
mg

An important remark on Definition 16 is that there are two rather different types of
levels: those which have every index included, the so-called saturated level, and those which
are randomly sampled and are unsaturated. This is an important distinction, as the former is
explicitly not random in any sense. Otherwise, randomly sampling until we fully saturated a
level would fall afoul of the coupon collectors effect — requiring (N — Ng_1) log(( Nk — Ng_1))
measurements.

While coherence is the correct tool for sparse recovery, it does not capture the local

behavior of our multilevel scheme, leading to the more general definition:

Definition 17. The (k,l)-th local coherence of the matriz U is the coherence of the block
defined by the k-th sampling level and the l-th sparsity level. That is

Np M;_
prr(U) = N(PN: 1UPMZI Y.

The block PJZ\X“_IU Pj%l_l of the matrix U is for convenience denoted U*!| so that we

may write

yLh a2 oo gn)

ey k2 ... g
U=

ygrl) g2y oo g

This notion of local coherence is precisely the correct idea to imply the RIPL. As a result,
this coherence gives recovery guarantees for wQCBP with a well chosen set of weights. In

the general multilevel subsampled unitary matrix case, we have
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Theorem 9. (/29, Theorem 3.1]) Let €,5 € (0,1), x € CN,U € CV*N be unitary. Take A

to be a multilevel subsampled unitary matrix as in Definition 16, and suppose
T
my 2 672 (Ng — Ny—1) (Z Slukl(U)> L, k=1,...r (2.31)
i=1

where L = rlog(2m)log(2N)log?(2s) + log(e™!) and m = my + ... + m,. Then, with
probability 1 — €, The matriz A satisfies the RIPL of order (s, M) with RICL constant
5s,M < J.

2.3.4 The Fourier-Haar example

To illustrate, we now consider a concrete example of this setup. This example will be
rather terse, as to avoid developing the full tools of wavelet theory, but should serve as an
inspiration as to why these levels-based approaches are useful.

Consider a one dimensional function f that is smooth on a finite number of subintervals
of [0,1]. This is a very simplistic model of a 1-D image — with a finite number of edges.
The first task is to find some basis in which f is approximately sparse — and wavelets are
a perfect candidate. The so called Haar basis or Haar wavelet basis is a basis of L?([0,1])

given by shifts and scalings of the Haar function

1 0<z<1/2
h(z) =q¢-1 1/2<z<1

0 otherwise.

This gives a basis of L?([0,1]) indexed by j € Z and k as h;x(z) = 2//2h(2/x — k) for
k=0,...27 — 1, with the additional basis element ¢(x) = 1, called the scaling function.

Here the choice of index with two parameters is an instructive one. The parameter j is the
scale: the haar wavelets at scale j are supported on intervals of size 277. Thus, this may be
also referred to as the resolution of the approximation. This basis having localized support
implies the expansion of f in this basis reveals local behavior — wavelet coefficients are large
if their support intersects some local change in f, such as an edge. This is interesting in
particular our model of images, as there will be many small wavelet coefficients, capturing
the smoothly varying regions of f, and much fewer large coeflicients capturing the edges.
For example, consider Fig. 2.2, plotting the percentage of wavelet coefficients per scale
greater than threshold 1073 for a natural image f. As the scale increases, the number of
non-negligible coeflicients decreases: these are only the wavelets with support intersecting
the edges of f.

In fact, the coefficients of f in a wavelet basis decay asymptotically like 279/2 if the

corresponding wavelet has suppoer intersecting an edge, and 2739/2 otherwise. This means
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12 3 45 6 7 8 9

Figure 2.2: Percentage of wavelet coefficients above € = 1072 per level for image f. Repro-
duced with the authors permission from [6]

asymptotically, there are very few non-negligible coefficients. This is, the coefficient vector
of f is asymptotically compressible in levels, in a naturally occurring levels structure given
by the wavelet scales!

To phrase this as a sparse in levels recovery problem, let us truncate the series repre-

sentation of f at some scale r to write

r—127-1

flx)=do+ Z Z cikhj (). (2.32)

§=0 k=0

Putting aside indexing for a moment, we have f = S>2_, ¢;hi(2). Sampling f on a uniform
grid of 2" points gives an equation for each gridpoint, and thus a system of equations
f = Hec. Here each row is simply the evaluation of the expansion of f at each gridpoint,
and each column of H corresponds to a specific wavelet.

Now we consider attempting to recover this ¢ from some set of linear measurements. In
the case of MRI for example, this is prescribed as Fourier samples. However, this approach
is also theoretically sound — Fourier sampling performs well even when not enforced by
application. This comes from the observation that the DFT of a wavelet decomposition has,
at the wavelet scale j has frequency support essentially contained in the j-th frequency
band B; = {—27+1,...,—-2/71yu{2/7 ... —27}. Phrased intuitively, the wavelets at high
scales capture high frequency behavior — the finer the resolution; the better objects like
edges are characterized.

By having sampling levels corresponding to these dyadic frequency bands, and spar-
sity levels corresponding to the wavelet scales, we recover an (IN, M )-multilevel sampling
scheme. Concretely, M; = N; = 2!, with corresponding matrix U = FH, for F the DFT

matrix and H the Haar matrix above.
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It can be shown that the local coherences of this matrix satisfy [9]

2-k= <k

U(kvl) < ,
MU 2 gosam o

which by substitution into our previous theory gives a measurement condition

k—1 r
my 2 | sk + Z 312_(k_1) + Z 512_3“_’“) -Lfork=1,...,r
=1 I=k+1

where L =log(N/e) +log(s) + log(s/e).

This condition is quite useful, as it specifies how to choose m bases on the local sparsities.
Particularly in the natural imaging context where one has upper bounds on the si, this
provides a simple recipe for my. As one might expect, tighter bounds on the local sparsities
allow for reducing of the number of measurements m.

To remark on this more directly, this is a crucial step for approximating natural images
with a number of samples m = s + o(s), saving a log factor over what was previous con-
sidered optimal. This approach is twofold. First, the coarse, saturated, levels are sampled
deterministically. Further, the fine scales are sampled at a rate proportional to the number
of discontinuities of f times log(sy), seeking to only recover those fine scale coefficients
corresponding to wavelets intersecting the discontinuities. Overall, this leads to an intuitive
sampling complexity s + o(s). Proving this formally recovers f requires significant mathe-
matical technique beyond the scope of this thesis, but was previously tackled by the Author,
Adcock, and Brugiapaglia in [3], wherein the author of this thesis introduced much of the

groundwork for the approach.

2.3.5 Proof of Theorem 8

Proof. We begin by performing a decomposition in each level. For [ = 1,...7, let Z; be
the index set to the largest s; entries of P]]\\/[/[ll’lx in absolute value. Then, define =) =

Z0.1U...UEq,. For such index set, we decompose (Z()¢ = {1,..., N} \ 2O letting
E&l = El,l U 5271 U...,

where Zy; is index set of the s; largest entries of P=c ®, By is the index set of the largest
sy entries of Pz ,uz, ), and so on, letting Z;; = () as needed for sufficiently large i. (Note
that =§ ;, (0, UE1,)¢, etc. are relative complements with respect to the level /). Finally we
define 200 = Ei1U...UE;, for each i =1,2,.... Then

1

|1 Peoyzmzllp: € ————|APz)z0 2|72, (2.33)
1-— 523,M
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as by assumption A has the RIPL of order (2s, M). Then expanding according to the
partition as in [6, Theorem 5.13]

APz zm |7z < /1 + das,ml|Peovzm i Azl 2+ (AP zm @, APz x)|. (2.34)
i>2

Now using that [(APzo) zm®, Pz@2)| = 0 in tandem with Part (i) of Lemma 4 — which

here may be found in Chapter 4 — we see

[(APz©) =0T, APz x)| < d2s M (| Py 2|2 + | Pzl 2) || Per | 2
< \/§5ZS,MHPE<0)UE(1>$”£2 HPE(z‘>33||£2~

Furthermore using bounds (2.33) and (2.34) and the RIPL we have

1 53 1)
vt M Arle + VAT S Pl (235)

HPE(O)UE(O):UH?2 = 5
2s,M

1>2

Recalling our goal is the show the weighted robust null space property, we need to relate

the summation in the latter term to || PRy , where A = 2(0). But by construction

HP"' xHZQ < f” . x”goo < \/> mln |I']| < ” =i IJ‘THZI ||P~z llef,,lﬂ
= NeT wiy/51

Thus overall, we have

2
175l _ 1
LESNENTES> ( Tt ) < Pl

=1

And hence, 1
1Pz, zllee < —= ) |Pei-n x|l = —= | Pacz| g -
Z l Z 13 \/g w

i>2 z>2

Combining this with gives that

| Pazle2 < || Pzoyuz @z £ ————

\/1+62 M 0. sM
= HA Hz2+\f 2 \fHPAcﬂ?Hel

\/1 + (S s (5 s Pacx
1 —dos M1 1 —d2s,m \/E NG

Hence, A has the wrNSPL provided

V42 62$A4 V/7

7<1

1 _'52sﬂl Vfi

or namely 025 pr < \/% , as required. O
!
3
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Chapter 3

Iterative and greedy methods

3.1 Outline

In this chapter, we will develop the key objects of interest of this work. In Section 3.1,
we review and develop the methods of interest in the sparse case, building intuition and
contextualizing the different approaches. This will culminate in the standard recovery results
for the sparse case, Theorem 10 and Theorem 11. Next, the extension to the levels case will
proceed in Section 3.2. This will lead to the formulations of iterative hard thresholding in
levels, compressive sampling pursuit in levels, and orthogonal matching pursuit in levels.

The analysis of these methods is found in Chapter 4.

3.2 The sparse case

Until this point we have developed our theory in tandem with QCBP. However, any opti-
mization based recovery suffers from the same fundamental issue: we need to choose some
algorithm to solve the underlying optimization problem. What we would instead prefer is
an algorithm with stability and robustness results itself - thus skipping over this “middle-
man” of an optimization scheme. Thus we turn to iterative and greedy methods to solve
our sparse recovery problem. Much like the optimization arena, there are many potential

directions in which to proceed.

3.2.1 Developing OMP and CoSaMP

A first, and most classical, approach is that of Orthogonal Matching Pursuit (OMP), in-
troduced in [35], with recovery results proven in [38]. This method is inspired by the idea
of sparse approximation: if y = Ax for s-sparse x, y is a linear combination of exactly s
columns of A. So we need to determine which columns these are, and a first idea is to find
the support of z index by index. That is, to construct approximations z(™ to z at step n,
which have exactly n nonzero entries. While one can imagine many ways of doing this, a rea-

sonable idea is to find the column of A most strongly correlated with the residual y — Az(™
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in the hopes that this column gives a new index from the support of z. Finally after finding
the candidate index set, a least squares solution on this support set can be performed to
find the current best sparse approximation. Ideally at the end of s iterations, the algorithm
will have identified first the support of z, and then its entries via least squares.

This approach is very different from optimization schemes such as wQCBP, in that it
always terminates after a fixed number of iterations s. Notably then these intermediate
least squares problems never exceed size m x s. These together can, in certain cases (e.g.,
when the target sparsity s is very small), save significant computational time. For example,
in the case where A is dense and unstructured, OMP has a running time proportional to

O(mNs) whereas basis pursuit requires O(N?2s3/2) operations [21].

Function & = OMP(A, y, )
Inputs: A € C™*N, y € C™, sparsity s
Initialization: (*) € CV (e.g. (9 =0) , S© =0
Iterate: For each k =1,..., s, set
Ji € argmax |(A*(y — Aa:(kfl)))j]
j=1,....N
Update S®) = =1 {41
Set () € argmin {||y — Az||;2 + 2 € CV st supp(z) C S(k)}
Output: & = 2

A final interesting property of OMP is that we reduce the size of the residual at each

iteration. Namely for all k,
ly — Az® |2 < [ly — Aa® V|3 — (A7 (y — AxD)), (3.1)

which can be found for example in [27, Lemma 3.3]. Thus one can see OMP in a slightly
different lens: this is a greedy selection which reduces the £2 norm of the residual y — Az®*)
as much as possible per iteration, in the sense above.

A next approach is inspired again by an iteration which also seeks minimizes to the
residual ||y — Az||,2. One obvious weakness of OMP is that if an incorrect choice of index
is made at some step, it remains in the approximation for all future steps. Compressive
sampling matching pursuit (CoSaMP) attempts to tackle this issue. As before, the indices
columns most correlated with the residual are chosen as candidates for the support of x. But
instead of simply taking a single index at each step, 2s are added to the running support
set before least squares fitting. Then, a thresholding is performed to ensure this vector

is s-sparse. This algorithm was proposed in the late 2000’s [32], inspired by the so-called
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reqularized orthogonal matching pursuit algorithm|[33, 34]. In what follows, we use the index
set Lag(x) to denote the indices of the 2s largest entries of x, in absolute value.

To enforce sparsity, we use the hard thresholding operator. For a vector € CV (not
necessarily sparse), let Lg(x) be the index set of its s largest entries in absolute value. The
hard thresholding operator Hy : CV — CN is, for « = (z;)¥, € CV, is defined by

0 otherwise

{xi i € Lg(x)

Function CoSaMP(A,y, s)
Inputs: A € C™*N, y € C™, sparsity s
Initialization: z(©) € CV (e.g. (0 = 0)

Iterate: Until some stopping criterion is met at n = 7, set

UMD = supp(2™) U Ly (A* (y — Az™))

™Y € argmin{|jy — Az|2 : supp(z) c UMDY
zeCN

x(n-i—l) _ Hs (u(n-‘rl))

Output: & = 2™

3.2.2 Developing IHT

One of the most simplistic ideas is perhaps that of Iterative hard thresholding (IHT). There
are approaches to develop IHT, but one simple way is through the lens of a fixed point
iteration. Suppose y = Az. Then, we can make the simple rearrangement of 0 = y — Az =
A*(y — Ax). And, adding = to both sides, we have that a solution to our linear system

should satisfy the fixed point equation
r=x+ A*(y — Az).
Then, from this argument we know a sparse solution satisfies
x=Hgs(x+ A*(y — Ax)).
And, to inspire an iteration scheme, we use this as a fixed point iteration for x, namely

e = 7 (2 A% (y — Az™M)).
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This is a remarkably simple idea - and is perhaps surprising that such a strategy could work

well. We can define the algorithm concretely as follows:

~

Function & = THT (A, y, s)
Inputs: A € C™*N, y € C™, sparsity s
Initialization: z(©) € CV (e.g. z(°) = 0)

Iterate: Until some stopping criterion is met at n =, set
2D = Hy(2(™ 4+ A*(y — Aa™))

Output: & = z(™

.

IHT was introduced in the context of compressed sensing in the late 2000s [13, 14].
Improvements to IHT with variable stepsizes have also been introduced, [12, 15], as have
been generalizations to other structured sparsity models [10, 28]. It is important to note
that THT requires some estimation of the sparsity s, but does not reference any noise level
7, the exact opposite of the QCBP decoder. Having a reasonable estimate of either of these
parameters depends on the problem one wishes to solve. More strikingly for QCBP, the

optimal choice of parameter 7 is exactly the noise level [40].

3.2.3 Recovery guarantees for IHT and CoSaMP.

The analysis of these algorithms hinges on the RIP. With suitable assumptions, each of

these exhibit stable and robust recovery guarantees.

Theorem 10. (E.g. [27, Theorem 6.21]) Suppose that the 6s-th RIC constant of A € C™*N
satisfies dgs < % Then, for all z € CN and e € C™, the sequence (l’("))nzo defined by
IHT(A,y,2s) with y = Az + e and z(°) = 0 satisfies, for any n > 0,

o = 2™ < Coy(@)p + D/sllelle +2v/50" 2,

C
lz — 2™l < —zos(@)p + Dlellz + p" |l 2,

NG
where p = \/3%s < 1, and C, D > 0 are constants only depending on .
Theorem 11. (E.g. [27, Theorem 6.28]) Suppose that the 8s-th RIC constant of A satisfies

5-1

3

0gs < ~ 0.478.
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Then, for all z € CN and e € C™ the sequence (x(”))nzo defined by CoSaMP(A,y,2s) with
y= Az + e and 0 =0, satisfies for any n > 0,

lz — 2"l < Cog(2)p + DVslell + 2v/5p" ||z 2,

C
lz =2 < ﬁas(fc)el + Dlellez + 2™ ||| 2,

202, (1+362,)
—1-

s <1 and C,D > 0 are constants only depending on gs.

where p =
4s

A similar result for OMP holds. We will not discuss it here in detail, as we will not
extend the recovery result to the levels case. The difficulties in generalizing OMP to the

levels setting will be discussed at length in the following sections.

3.3 Extension to the levels case

It is natural to develop generalization to the iterative and greedy methods for the levels case,
as we still wish to avoid the inherent computational difficulties of optimization approaches.

We begin with IHT and CoSaMP, noting that the only explicit reference to the sparsity
in each algorithms simply appears in the thresholding operator Hy, or set of largest entries
Ls. Thus, fix sparsity levels M = (Mjy,..., M,). Note that any vector x € CV can be
written uniquely as x = Y _; 2, where 2, € CV with supp(zx) € {My_1 +1,..., My}

Now let s = (s1,...,5,) be local sparsities. For z € CV, we write Ls pr(x) for the set

r

LS,M(.’L') = U Lsk(xk>
k=1
In other words, this is the index set consisting, in each level {M;_1+1,..., M;}, of the largest
absolute s; entries of x in that level. With this in hand, we define the hard thresholding in
levels operator Hg pr : CN — CN by

T, 1€ L37M(af>
Hypr(x) = (Hopr(2)i)y,  Hsnr(x)s = , w= (), eCV.
0 otherwise

With these, we can state the algorithms of interest.
The IHT in Levels (IHTL) algorithm is
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Function & = IHTL(A, y, s, M)
Inputs: A € C™*V 4y € C™, local sparsities s, sparsity levels M
Initialization: (¥ ¢ CV (e.g. (9 = 0)

Iterate: Until some stopping criterion is met at n =7, set
2D — H&M(m(n) + A*(y — Az™))

Output: & = 2™

and CoSaMP in Levels (CoSaMPL) is defined by

Function & = CoSaMPL(A,y, s, M)
Inputs: A € C™*N y e C™, local sparsities s, sparsity levels M
Initialization: z(©) € CV (e.g. (0 = 0)

Iterate: Until some stopping criterion is met at n =, set

UMD = supp(2™) U Lo, pr(A*(y — Az™))
le2 : supp(z) C U("H)}

u™V € argmin{||y — Az
zeCN
x(n-i—l) _ Hs M(u(n-i-l))

)

Output: & = z(™

. J

We again emphasize here that these differ from the non-levels based versions only in the
threshold operator and the index set Log ar, and do not change the main iteration steps at
all. Thus much of the analysis and intuition of these algorithms in the sparse case may still
be applied, albeit with care.

OMP also admits a generalization to this new setting, motivated by the desirable feature
of terminating after s iterations. The levels situation differs however, in that now one is given
a budget of target sparsities s. Whereas before we simply chose the index most correlated
with the residual, there is a question of how to enforce the levels structure. A single index
can be selected at each step, or r indices at each step — one in each level. Thus, the usual
operation of greedy index selection becomes more subtle, as it is not immediately obvious
how one should select the “best” indices.

To resemble the spirit of OMP most closely, the choice here is the former. Given a
budget of local sparsities s, ..., s,, we seek to have s; nonzero entries in the ith level. As
with OMP, we select the index most correlated with the residual at each iteration. The
only issue occurs when the column most correlated with the residual lies in a level with s;
nonzero entries already in the approximation — the budget in that level is expended. Thus,

the idea is to simply stop selecting any indices that lie in a level with s; entries already
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selected, and continue the algorithm. However, other extensions of OMP - using a different
criterion to determine which indices to select — may well perform numerically as well as our
proposed version.

Within the work done for this thesis, stability and robustness results for OMPL still
prove elusive. While we will demonstrate its numerical effectiveness, it is unclear whether the
proposed generalization is best. It is possible that this — or another reasonable formulation

of OMPL - will admit similar recovery results as in the sparse case.

Function & = OMPL(A,y,s, M)
Inputs: A € C™*N, y € C™, local sparsities s, sparsity levels M (with M, = N)
Initialization: Choose initial 2(?), and set S© =, s = 0 and £ = 0.

Iterate: For each k =1,..., s, set

jk € argmax |(A*(y — Ax(kfl)))j]
j=1,..,N
JEMp_ 141, My}, ¥peL

and denote [ as the level such that ji, € {M;_1 +1,... M;}.
Update s = s(:=1) 4+ ¢;, where ¢; is the I-th standard unit vector

Update S®) = §*=1) y {51
If sl(k) = s;, then update the set of saturated levels £ = £ U {l}

Set z(*) € argmin {Hy — Azl + 2 € CN st supp(z) C S(k)}
Output: & = z(®
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Chapter 4

Analysis of levels based methods

Much as in the sparse case, the analysis of these algorithms is based on the RIPL. The
following results are the main contributions of this work, and will be proven at the end of
this chapter. These generalize Theorem 10 and Theorem 11, which will serve as a comparison

point in our discussion.

Theorem 12. Suppose that the (6s, M )-th RICL constant of A € C™*N satisfies d6s,M <
%, and let w € RY | with w > 0, be a set of weights constant in each level, i.e. as in (2.19).

Then, for all x € CV and e € C™, the sequence ($(”))n20 defined by THTL(A,y,2s, M)
with y = Az + e and 9 = 0 satisfies, for any n > 0,

o — ™y < c“fgas,w)% + DVCelle + 21/C0" |l e,

E
lz = 2™l < —Zzosm(@)e, + Flelle + p" e,

Ve
where p = \/36¢s. < 1 and C, D, E, F > 0 only depend on 8¢s a1, and ¢, € are as in (2.20).
An analogous result holds for CoSaMPL.
Theorem 13. Suppose that the (8s, M)-th RICL constant of A € C™*N satisfies

1 _q

3

0gs, M < ~~ 0.478,

and let w € RN, with w > 0, be a set of weights constant in each level as in Theorem 12.
Then, for allz € CN ande € C™ the sequence (x(”))nzo constructed by CoSaMPL(A, y,2s, M)
with y = Az + e and (0 = 0, satisfies for any n >0,

o — ™y < c“fgas,m)% + DVClell + 21/C0" |l e,

E
lz — 2™l < —Zzosm(@)e, + Flelle + p" el e,

3
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26§S,M(1+36§8,M)

32 1 and C,D,E,F > 0 only
8s

where ¢ and & are as in Theorem 12 and p = \/
depend on 0gs pr-

The proofs of these main results are at the end of this chapter. However, we first discuss

the usefulness and implications of these results.

4.1 Discussion

Firstly, some general comments on the results: what do they mean? Foremost, these result
guarantee stable and robust recovery for all sparse in levels vectors using either IHTL or
CoSaMPL. These are the first results of this type for any iterative method. These result
include sparse vectors, and all the other aforementioned applications, as a special case.
Furthermore the weights appear as parameters in both results, but are not used in the
algorithms themselves — for a given x these error bounds hold simultaneously for any choice
of weights. This is in contrast to wQCBP, which explicitly requires weights to be chosen
ahead of time for the algorithm.

There is also no noise assumption: we do not require any a priori knowledge of ||e||,2 —
which is very desirable, as many signal recovery problems do not have have any model for
the signal noise. In fact, results of similar flavor for basis pursuit, e.g. Eq. (2.28), require
explicit estimates of a noise level 1. More precisely, given |le||,2 < n for wQCBP, Corollary 3
has an ¢2-norm error that scales with (14 (¢/€)'/4)n — serving to amplify noise.

It should be noted that the assumptions on the RICL constants for each result are no
more stringent than the sparse case. For example for IHT and IHTL, we require d, ds pr <
1/4/3. Similarly, the constant p in these more general results has the same dependence on
0 from the sparse case. In fact, the results above simplify to nearly exactly the sparse case
for r = 1 and constant weights.

There is a subtle detail that the constants F,F have differing scaling with § in the
levels setting — these constants are derived in Theorem 14, and arise from a different proof
technique than was used in the sparse case. To be precise, Theorem 14 proves distance
bounds for the 2 and £. norms independently, whereas the sparse case proves a similar
result for all /% norms, 1 < p < 2 simultaneously. Even with this technical detail, for a

constant 7 depending on § these constant only differ roughly by
C=14+V8r#14+V2r=E, D=2r#F=r.

4.1.1 Some useful and interesting cases

There are several useful special cases to consider. For the case of arbitrary number of levels

r, but constant weights w; = ... = w, = 1, we have that
C =S, € = Hlln Si
ByereyT
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and thus for sufficiently large n our error bounds reduce to

NG
|z — x(n)Hgl N \/ﬁas,M(fﬂ)zl + Vslelle,
1 21

1
: Os,M
v/ 1min; S;

The issue in this case arises when min; s; is small in relation to the total sparsity s, as

lz — 2™l S (@)er + llell e

then the scaling term in front of o4 pr(2)s becomes large. In fact, to make this factor of
moderate size, we would need 0 < min; s; &~ max; s;. Accordingly, a good choice of weights
is realized by making (/¢ order one, which results in the error bound in the £.-norm being
optimal up to a constant.

Inspired by this idea, another choice of weights — that requires a priori knowledge of
the local sparsities — is w; = \/s/s; for i = 1,...,r. With this choice, we have error bounds
where the constant factors only depend on the number of levels r and the total sparsity s.

More precisely,

C=rs, £=s

and thus our bounds reduce to

||z — $(n)||£,11, S \/;US,M(ﬁ)é}u + Vrsllell e,

1
|z — 2™ < ﬁas,M(x)z; + el

Notably we have a dependence scaling with the number of levels.

In both of these results, and in the recovery guarantees for wQCBP (Corollary 3), the
factor (/¢ appears repeatedly. This ratio is seemingly ubiquitous, and thus a choice of
weights to minimize this factor is ideal - such as the one above. In the results for wQCBP
the scaling on o5 pr(z), improves by a factor of V/C/€. Conversely, the £2-norm error bound
is better for the IHTL and CoSaMPL decoders, by a factor of (¢/£)/*. However, the scaling

on noise - identifying n with |e||,2 - is the same.

4.1.2 Scaling with (,¢ and its implications

Finally, it is worthwhile to point out how the assumptions for each theorem scale with , &.
For Corollary 3 the assumption on the RICL constant explicitly depends on the parameters
(,&. Contrasting, the assumptions for IHTL and CoSaMPL are independent of these. For
example, in the unweighted case the condition (2.27) for QCBP becomes

1

4 < ;
2o M V/2s/min;{s;} + 1

(4.1)
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which depends on the ratio of the total sparsity s and the minimal local sparsity. Conversely,
if the weights are chosen as in w; = /s/s;, the condition (2.27) becomes

Sasnt < \/27~1+1 (4.2)
Observe from (2.29) that the number of measurements that guarantees an RIP generally
scales like 6~2. Combining this observation with condition (4.2) suggests that m should
scale linearly in r for wQCBP to ensure stable and robust recovery, whereas for IHTL and
CoSaMPL the corresponding condition on m would be independent of r.

This scaling is extremely important in applications. Recall the Fourier-Haar example
as described at the end of chapter 2. The levels structure therein required r scale roughly
like log(N'). This means the measurement condition necessary to apply wQCBP in practice
increases by a factor of log?(N). As natural imaging problems can become large in N, this

additional log factor is far from insignificant.

4.2 Proofs
4.2.1 Outline

As this series of proofs is quite lengthy, we begin by outlining the main steps. Both Theo-
rem 12 and Theorem 13 are direct generalizations of standard sparse results, giving useful
bounds involving the RICL constant. Using these, we prove a key result, Theorem 14, which
gives conditions on any vector 2’ and RICL constant s pr to guarantee the true solution
x and ' are sufficiently close. Using this result, the overall argument for both IHTL and
CoSaMPL is similar. In either case we use Theorem 12 and Theorem 13, along with careful
tracking of index sets, to show that (" = 2/ satisfies the assumptions of Theorem 14. From
this, the final results follow immediately. This style of argument is extended from the sparse

case contained in [27].

4.2.2 Preliminary Lemmas
The following two results are based on [27, Lemma 6.16], and [27, Lemma 6.20] respectively.

Lemma 4. Letu,v € CV be (s', M)-sparse and (s", M)-sparse respectively, and A € Dg pr
be arbitrary. Then for any matriz A € C™*NV,

@) Ko, (I = A" A)v)| <bgpom pallull|lv]l
(i) [[Pa(f = A" A)vlle2 < bspsm nrfvlle

Proof. To show (i) we expand the inner product
’<U, (I - A*A)U>| = ‘(’LL,’U> - <A’U,, AUH
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and define 2 = supp(u) Usupp(v) € Dy yg7 pr- Then the above may be written as

|{u,v) — (Au, Av)| = |(P=zu, Pzv) — ((AP=z)P=u, (AP=)P=v)|
= |<P5u, (PE — (PEA*APE)PE)UM
< |Pzullp|| Pz — (P=A"APz) | 2| P=vl| 2. (4.3)

As Pzv is (8", M )-sparse and thus (s’ + s”, M)-sparse, we use that

6s/+8//’M = sup ||PE - PEA*APEHéQ?
ZeD,

s/ +s!"" M
to obtain that the right-hand side of (4.3) may be written as

[Peulle || Pz — (PeA" APz ||| Pevllee < Egqor ml|Peullel| Pevlle = Zovor pllulle (0]l

which gives (7).

For (ii), we note that
IPA(I — A*A)v||fa = [(PA(I — A" A)v, (I — A*A)v),
and apply (i) with u = PA(I — A*A)v, giving
IPA(I = A*A)ol[e < bspsm pal| Pa(I — A" A)v]|2 [[0]] 2,

and dividing through by ||Pa(I — A*A)v||,2 gives the desired result. O

Lemma 5. Let e € C™, A € C"™*N with RICL ds,m and A € Dg pr. Then
[PaA%ellz < \/1+ 8s,nallell 2
Proof. We compute
|PAAe|s = (A%, PaA") = (¢, APAA"€) < el 2| APA A"el 2.
But as Py A*e is (s, M )-sparse we have

lelle|APAA ]l < lell2y/1 + b5 pr [ PaAe]| g2

and dividing through by ||PaA*e||y2 gives the desired result. O

With these is hand, we prove a key result. This theorem is directly extended from the

sparse case in [27, Lemma 6.23].
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Theorem 14. Suppose A € C™N satisfies the RIPL of order (s, M) and has RICL
dsmr < 1. Let K, 7 > 0,A > 0 and e € C™ be given, and w € RN, with w > 0, be a set of
weights constant on each level, such that w; = w(k), for M1 <t < My and1 <k <.
Suppose we have x,x’ € CV such that

2’ € Dys 1, and |P=x — 2 ||p2 < 7||APzcx + €|z + A,

where 2 =21U...UE,, and Z; is the index set of the largest 2s; entries of P]\%"Ax. Then,
there exist constants Cy, r, Dy +, Fy. -+ > 0 depending only on £ and 7 and E,, > 0 depending

only on k such that

o=/l < cﬁ,féas,m)% Doy /Cllellir + B/

os, (7)) + Tlellz + A,

F,

3

[z = 2’|l <

where

i=1,...,r

¢=> (s, &= min (W)
i=1

Proof. Let us consider some fixed level ¢, and = defined as above. We consider the case of

the weighted 1-norm first. Projecting onto level i gives

1Py~ (@ = 2)lley, < w|[Pesrl|pn + 00| Pe,r = Poy' = ol

and where ¢ = {M,_; +1,...,M;} \ E; is the relative complement of =; with respect to
the level i. We bound the latter term by noting that Pz,x — Pj\%i_lx’ is (2 + K)si-sparse, so

that

wO| P,z — Pyl < /(2 + R)si(w®)2|[ P,z — Py .

Further defining A € Dg pr to be the index set of a best (s, M)-term approximation to
x, we bound the former term by w(i)HPEZC.THgl < w(i)HPAglEHZl. Summing over all levels

i =1,...,r and using the Cauchy-Schwarz inequality gives
lz = 2llet, < os,m (@), + 4/ (2 + K)C|| Pz — 2|2
By supposition we have then
o — 2'llg, < Gont(@), + /@ + KT APzcz + ell2 + A). (1.4)
We now perform a particular decomposition of A¢={1,..., N} \ A, letting
A =E;1UEipU...,
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where Z; 1 is index set of the s; largest entries of PAg% =2 is the index set of the largest s;
entries of Pa,uz, ,)e%, and so on. (Note that Af, (A; UZ; )¢, ete. are relative complements

with respect to the level 7). This allows us to define the collection =k for k=1,2,...

-
=) = U ks where by construction =k ¢ Dg
i=1

and furthermore Z¢ = (J;>o =Z(*). Using this decomposition and the RIPL assumption we

have

T
1
1AP=ex +ellez < 3 \/1+ sl Pewallee + llelle < V2 J > Pzl + llellee

k>2 E>1 \i=1 ¢

< VIL S IS 1Psal +lelle < L1Pacala + el
S — Ei’kﬂf 7 Cllp2 =~ —F= AcT gqlu €|l p2
Ve E>1 \ i=1 s 3

V2

= —7=0s,Mm (7)1, + [lefl e
Ve v

Combining this result with (4.4), we have

VELZEE o prlady + @+ r)rllle + 2+ w10

= CH,Téas,M($)Z}U + DH,T\/ZHeHgQ + E,.i\/Z)\,

lz = 2", < |1+

as was to be shown.

For the 2-norm case we again focus on particular level i. Using the definition of =; and
Stechkin’s inequality (see, e.g., [27, Proposition 6.23]), we see that
M;_ 2 2 M; 2
1Py~ (@ — @)z = 1Pzl + |1 P2,z — Py~

1 M;_
s 1Peszl|7s + || Pe,z — Py 'a' ||
1

(w®)2s

Summing over all levels ¢ = 1,...,r we have

<

1 1
|z =2l < ZllPecx||fy + || Pex — 2| < EUS,M(OC)ZU + (T APscx + el 2 + M),
where we have applied the definitions of &, =, and the assumptions of the theorem. As a

result we also have

V€

|z — 2| < US’M(x)gllU + T||APzcx + e||p2 + A
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As we have already bounded this second term, we have

14+V2r i
VE VE

thus completing the proof. d

Iz — 2"l < os,m(2)e, +7llelle + A= —Zos m(2) g, + Tllelle + A,

4.2.3 Proof of Theorem 12

The following theorem is based on [27, Theorem 6.18].

Theorem 15. Suppose z € CV is (s, M)-sparse in levels, with the RIPL constant satisfying

0 < !
3S,M \/g

Then, for allz € CN, e € C™ and A € Ds pr, the sequence (x("))nzo defined by THTL(A, y, s, M)
for y = Ax + e satisfies

le™ — Pazle < o2 — Pazll + 7| APscz + el .

where p = \/5535,]\/1 <1 and 7 > 0 only depends on p and 635 pr, with T < 2.18/(1 — p).

Proof. We firstly define A; = AN{M;_1 +1,...,M;} and AS = {M;_1 + 1,..., M;}\A;.

Analogously to the proof of Theorem 14, it will prove to be convenient to decompose

{I,...,N}=AUA° =[] A;UAY.
i=1

Similarly we define A?H as the index set of the largest s; entries of 2("*1) in the band
{M;—1+1,...M;}. With this decomposition, we may use techniques near-identical to those
in [27, Theorem 6.18], and thus we give a brief treatment where possible. By definition, for

any A,
1P, (2" + A% (y = Az™)) |2 < || Paes (a1 + A% (y — Az™)) 2.
Then we cancel any shared contribution on the set A; N A?H,
[P anet (27 4+ A%y — A2 < [Py o (2 + A%y — Az (45)

Here, making the observation that Pa,z = 0 on AP\ A, and P]\%"*Iz("Jrl) =0on Ai\AEnH),
we write the right-hand side of Eq. (4.5) as

HPA?H\Ai(x(n) + A*(y — Az 2 = HPA?H\Ai(x(n) — Ppx 4 A*(y — Az™))]|2.
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and we bound the left-hand side of Eq. (4.5) from below as

1Papant (27 + A% (y = Az™)) |z > | Paanst (Paz = Py )|

— 1Py pan1 (@™ = Paa + A*(y — Azt)) 2.
Combining these both into Eq. (4.5) we find that

1A\ ar1 (Pa,m — Py 2™ ) e < V2| Paniigp, (2™ — Paz + A*(y — Az™)]| 2,
(4.6)

where AT o A; = (ATTINA;) U (A\APT) is the symmetric difference. We now seek to

bound the left-hand side further from below. To do so, we decompose

HPAJZle(nH) _ PA#”H??
= |[Pynss <PM~ = Py ) [ + [Py (Pag = Py 2 D)
M;_
=P n+1( — Prx+ A% (y — Az ))Hp + HPMH) (Pa,x — Py 1x(n+1))\|§2.

Further observing that Pj\%i’lx("“) =0on (A"1)¢ and Pa,x =0 on A{, we can write

[Py~ a D = Pagallf = ([P (2 — Pa,o + A%(y — A™))],

M;_
+ | Papart (Paz = Py, Lp(ntl)y||2,.
Combining this argument with the previous bound Eq. (4.6) we have in summary

[PAE ) — Pa ol < 1Py (2 — P+ A*(y — Ae®))]%
+ 2| Pynsigp, (2 = Paja + A*(y — Az™)[I5
< 3HPA?+luA ( (m) _ PA r+ A" (y Am ))”ﬁ

Summing this over all levels ¢ = 1,...,r, we have that
2 — Paz||2 < 3| Pantiua (@™ — Paz + A*(y — Az™))||.

By redefining y = Ax + e = APxx + €/, with ¢/ = e + APxcz, we may further bound this

from above as

12D — Pazl,e < V3 [||PM+1uA(x<n> — Paz 4+ A*A(Paz — ™) |2 + || Pantiup A*e HEQ]
< V3| Pavtiuall = A*A) (@™ = Paz)l|e + [[PanciuaA*e[e]
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Here we note that supp(z(™ — Pa(z)) € AUA", and (A UA™) U (A" U A) € Dsg .
These observations allow us to apply part (ii) of Lemma 4 on the first term, and Lemma 5

on the second term, giving
&) — Paz)le < V3 [535,M||33(”) — Ppzfle +4/1+ 52s,MH€'Hz2} :
Finally by examining this inequality, we set
p = V3835, (1= p)7 =V3\/1+ 625 M.
Recalling that ¢/ = APxcx + e, we have
[0 — ozl < plla™ — Pagll + (1 — p)7l| APacx + ell e,
which, by induction on n, gives
|12 — Pall2 < p"[|2© = Paz|l + 7| APaca + ]

This was precisely the result to be shown, noting that

1 31+ d3s 01 3+v3 218
p<l&izgm < —= and so T:\[ +38’M< < .
V3 1-p L—p L—p
This concludes the proof. ]

Proof. (Theorem 12) Using Theorem 15 with (2s, M) instead of (s, M), there exist con-
stants p € (0,1), 7 > 0 depending on g5 as such that

o) = Pezlle < p"j® = Pealle + 7| APz + el

where 2 =20 U...UZ, and Z; is the index set of the largest 2s; entries of P]\%*laz (note
that we applied Theorem 15 with (2s, M) since Z € D pr). Then, by letting 2’ = (™ and
X\ = p"||Pzz||p2 (recall that z(9) = 0) we may apply Theorem 14 with x = 2 to assert

o — 2y, < CYo s nr(e)ey + DyClellr + 2V e

VE
e~ 2™l < ounr(z)ey +lells + "Izl
NG w
where C, D, E > 0 depend on T, p, k¥ and thus only on dgs, M. O

4.2.4 Proof of Theorem 13

The following is based on [27, Theorem 6.27].
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Theorem 16. Suppose the (4s, M)-th RICL constant of the matriz A € C™*N satisfies

—_

1
o

64s,M < 9

Then for x € CN, e € C™ and index set A € Dy n, the sequence (J?(n))nzo defined by
CoSaMPL(A,y,s, M) with y = Ax + e satisfies

|2 — Pazle < p" 2 — Paze + 7| APac + €] 2,

where p € (0,1) and T > 0 are constants only depending on das -

Proof. As before, with correct treatment of our index sets, many of the algebraic manipu-

lations follow near-identically from [27, Theorem 6.27]. Then,
1Pyt (Paz — 2™ )l < [[ul™D — 2| 4 u™*D — Prinppale. (47)

Further as (™) = Hy pr(u™+)) we bound [[u™ 1) — 2D 2 < |u™D — Pyiny op 2|2

This result, combined with the fact that P(U(n+1))cx(”+1) = P(U(n+1>)cu(”+1) = 0, asserts

| Paz — QT(nH)H% = HP(U(nH))c(PAﬂ? - CC(HH))”?? + 1Pyt (Paz — ﬂf(nﬂ))”?2

< N Pyosne(Paz — u" )% + 4] Pyoey (Paz — u™ V)[R, (4.8)

We will us this bound later, but we now examine the latter term more closely.

We first make the observation that Py A*(y — Au™)) = 0, as u**1) satisfies the
normal equations when restricted to its support. Thus we may write Ppni1)A*A(Paz —
™) = — Py A*e!, where ¢/ = APpcx + e. We use this to write

1Pyt (Paz = ul™ V)2 < [[(I = A*A)(Paz = u" D)2 + || Pywsny A*€/ | 2.

Now as A € Dgpr and U+l ¢ D3 v, we have their union is in Dyg pg. Thus using
Lemma 4 (ii) gives ||(I — A*A)(Paz — u™) |2 < S45.m || Paz — u V]2, and so

1Pyt (Paz = ul™ V)l < Sasml|Paz — w2 + || Py A%€/ | 2. (4.9)

From here denoting d4s pr = 9, we wish to derive the inequality

1
1P gnne (Paz — ul™ )2 + T 1Pvem A e

| Prrniy (Paz — U(n+1))||e2 < —5
(4.10)

o
V1 —42
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We here split into cases. If || Pynt1 (Paz —utD)|o < 55| Pyn+1(A*€’)||2, then the desired

inequality is immediate. As
1
|Pyner (Paz — ul™ )|z < g 1P (A€]l2
1

J n *
B \/ﬁHPI}”Jrl(PAm —ul" )]s + TP (4 e’)llz-

Otherwise, if || Pyn+1(Paz — wtD)[jy > 5| Pyn+1(A*€)||2, we rearrange (4.9) to write
1Pimss (Paz — u D) |2 — || Pynsi (A%€))|l2 < 6] Paz — ul" V2.

Squaring both sides, which in this case are both nonnegative, and decomposing the right

hand side gives

(1Pnss (Paz = ™ D)2 — || Pyns (A%€))]l2)* < 8[| Pynss (Paz — ul" V)3

+ 0%|| Pfuia (Paz — u™ ) 3.
For temporary convenience, we rewrite the above as
(a —c)? < 6%a® + 5%,

where a = || Pyni1(Paz — u"tD)||y, b= | Pihir (Pax — u™ )|y and ¢ = || Pyns+1(A*€)]f2.

Using this we rearrange to find
(a—c)? —6%a® < 6%0?
or after some simplification,

= (o= 5g) (- gy ) <0

Here we use our assumption that || Pa+1(Paz — uV)[|s > 15| Pyn+1(A*€’) |2, or in this

new notation a — ﬁ > (0. Thus we may bound

which allows us to assert that

(-a5n) <ate®
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Now taking a square-root and rearranging gives

and by substituting back in the values of a, b, ¢ we find the desired inequality:

1 *
[ Pihir (Pa@ =) s+ | Puess (A%€') . (4:11)

| Pynir (Paz —u )|, <

e

Recalling that CoSaMPL defines S = supp(x(”)), and that S c UMD, Further we
define T("+1) = Ly, pr(A*(y— Az(™)). As this is the index set of the largest (2s, M) entries
of A*(y — Ax(”)), and AU S™ ¢ Do pr we have

1PAuseon A*(y = Az™) |2 < || Pron A*(y — Az™) |2
In turn, eliminating the shared contribution on (A U S™) N T+ we find
HPAUs(n))\T("“'l)A (y — Az )||£2 < ||PT<n+1>\(Aus(n))A (y — Azl )||£2

Now as Paz — 2™ =0 on T\ (AU S™) we may write the right-hand side of the above

as

I Pt (ausen A" (Y = Az™) 2 = || Ppsan (ausoy (Paz — 2™ + A*(y — Az(™))| e,

whereas for the left-hand side we apply a reverse triangle inequality

1P auseoyprinsn A (y — Az 2
> HP(Ausm))\T(nH)(PAx — 2|2 = [ Pauseon g (Paz — 2™ + A*(y — Az™)) |2
= [P ye(Paz = 2|2 = [|Paugm o (Paz — ™ + A*(y — Az™))|2.

Combining these two observations and rearranging gives

||P(T<n+1)) (Paz — ! )||122
< V2| Pringausm) (Paz — 2™ + A*(y — Azt)| 2
< V2||Prsn g ausemy (I — A*A) (@™ = Paz)ll2 + V2I| Prosn o ausem) A% ez,

where © denotes the symmetric difference, and y = APaz+¢ is as before. Now, as T("1) ¢
UMt and S ¢ U™+ by the definition of CoSaMPL, we may bound the left-hand side
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of the above equation from below by

IPgmsvye(Paz = 2™l > | Pymsnye (Paz — 2l = | Pymrnye Pazle2
= | Pyinsnye(Paz — u™ ).
With this lower bound in hand, we note that A, S ¢ Dy pr and T+l ¢ Dog pr so that

we may apply Lemma 5 (i) with 70"+ & (AU S™) c T+ U (AUS™) € Dy pr on the
term || Ppenngausm) (I — A*A)(2" — Paz)||2. Combining this series of observations gives

IPgmsvye(Paz — ul™ D)l < V2615 ml2"™ — Pazll + V2] Prontneausm) (A ).
(4.12)
To conclude our argument, it remains to combine the three distinct results of equations
(4.8), (4.11) and (4.12). Again, this is near identical to the sparse case in [27, Theorem

6.27], and contains purely algebraic manipulations. This leads to the inequality

252 1 35
| Paz — 2"V, <A\ + — Pazl|e
+ 302)
\/7”131“(%1@ Ausm) A€ |2 + 7||PU<"+1)A e[|z

Now using Lemma 5 on the sets ("1 & (AU S(”)) € Dyg pr and Ut ¢ Dss v C Das ir

we find

(n 262 +352 21 4+9)(1+30%)  2V1+96
[Paz—a#D | < (230 PAzngw(\/( L )ue’np,

which is exactly

|Paz — 2|2 < pllat™) — Pagll + 7l APact + ellg,
for suitable p, 7 > 0 depending only on §. Then by a simple induction we have
2" = Paz|l2 < p"|2©) — Pazle + 7| APact + €] 2.
Which is precisely the result to be shown. Notably, the constant p < 1 only if

262(1 + 302)

5 <1le66*+352-1<0,

4

as was assumed. O

which by solving this quadratic in §2 for its largest root gives us that we require 62 <
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Proof. (Theorem 13) Under the hypotheses of the theorem, let us denote = = Log ar(x)
to be the index set corresponding to the largest (2s, M) entries of z. First, we may apply
Theorem 16 to assert there exist p € (0,1) and 7 > 0 depending only on dgs ar such that,
for any n > 0,

12 — Psall2 < p"||Pezl + 7l|APzca + ] o

Then, we may apply Theorem 14 with 2/ = (™ and X = p"|| Pz < p"||z|,2 to give us

that

o=l < CY2ounale, + DyCllels + 205 el

E
lz — 2™l < —Zzosm(@)e, +Tllele + p"llze

3

where C, D, E > 0 depend only on 7, p, dgs ar and thus only on dgs as. This is exactly the

result that was to be shown. O
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Chapter 5

Numerical examination of the
methods

With the theory of IHTL and CoSaMPL developed, it is important to also examine the
practical performance of these iterative approaches. There are several types of comparisons
that are interesting to analyse. Foremost of interest is the comparison of the levels-based
algorithms against the sparse counterparts. Then, of course, is the comparison of the levels
methods against each other. Also of interest is the performance of these iterative methods
against that of wQCBP — or in the sparse case, QCBP.

5.1 Experimental setup

A standard methodology is to attempt to recover randomly generated vectors over many
trials, with a varying number of samples m. Over these trials and m values, we will plot
the empirical recovery probability. The goal of such experiments is to see numerically which
algorithms require the fewest number of samples. This, as stated in previous chapters, was
one of the guiding goals of this work. While we have proved under the RIP that recovery
is guaranteed, it is not a necessary condition and we may succeed in recovery even for
somewhat smaller m. Thus, we are interested in three regions of m values: the region of
zero recovery probability, the region of probability one, and the thin region between them,
termed the phase transition.

To be precise, all numerical experiments share the following setup. For each fixed total
sparsity s and number of measurements m, we generate an (s, M )-sparse in levels vector x
of length N = 128 with random support and unit normal random entries. The local sparsity
pattern s depends on the experiment, as outlined below. Using a measurement matrix A
that is a Gaussian random matrix (independent, normally distributed entries with mean
zero and variance 1/y/m), linear samples y = Az are generated. Then we compute an
approximation Z to the vector z and record the relative error ||z — &||y2/||z[/,2. Over 50

trials, we compute the success probability with the success criterion that the relative error
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be less than 1072, For IHTL and CoSaMPL, we have the additional stopping criterion that
the algorithms terminate either when |z("*t1) — (") 2 is less than a tolerance 10~4, or if
the algorithms exceeds 1000 iterations. For OMPL, we simply run s iterations.

We also add a comparison to weighted quadratically constrained basis pursuit. We do
this with and without weights, to show the levels structure also boosts performance in the
optimization setting. For practical purposes, we use weights w; = /s/(s; + 1075). This
regularization is to avoid issues when s; = 0, which is an interesting case to consider — and
has the intended behavior of having large weights where the local sparsity is small. This
convex optimization problem is solved using the SPGL1 package in Matlab [39], with default
tolerances and default recommended maximum iterations of 10000. This should serve as a
baseline comparison of accuracy, with the important note that this decoder is quite slow in

comparison to the iterative methods.

5.2 The experiments

We firstly examine each method for various fixed total sparsities, Fig. 5.1. These experiments
are designed to compare the levels based algorithms to the sparse versions. In the first
numerical test, we recover a vector with underlying sparsity s; = (s/2,5/2), s2 = (3s/4, s/4)
and s3 = (s, 0) for fixed levels M = (N/2, N). Here, intuition says that moving to the levels
case should be extremely beneficial, especially for so — as we have most of our nonzero entries
in the first level. That is, the local structure is very pronounced. However, for s, we expect
marginal or no benefits, as being (s/2,s/2)-sparse in levels (1, N/2, N) is equivalent to
simply being s-sparse. And, this behavior is exactly what we observe, in that the transition
curve for s1 is the latest, that is, it takes the most measurements to successfully recovery sy
sparse vectors. For example With CoSaMPL and s = 32, this takes m = 80 measurements
to find and empirical probability of P = 1. Comparatively, recovery for s3 — where we know
that the first level contains all the nonzero entries — requires only 64 measurements to
reach P = 1, whereas s requires approximately m = 75. The takeaway of this experiment
is thus that the levels based algorithms perform better in the presence of more distinct
levels structure, when the nonzero entries are more concentrated in specific levels. Another
important observation - and one that will reoccur throughout all the following experiments
— will be that IHTL performs generally worse than CoSaMPL, and is much more likely to
not converge. This is perhaps unsurprising considering the simplicity of IHT’s iteration. For
example, with s = 32, the empirical recovery probability for si, s5 is always zero, and even
for s3-sparse vectors IHTL never exceeds P = 0.5. In fact, in cases where IHT does not
converge, iterates may ‘blow up’ in #2-norm. The iteration of CoSaMP avoids this behavior
however, due to the least squares performed at each iteration.

Finally, we compare to basis pursuit. We overall have similar recovery behavior to

CoSaMPL, with all three tests having the same appearance qualitatively. Quantitatively,
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this is most obvious for s3, where both CoSaMPL and wQCBP reach P = 1 at approxi-
mately m = 40, m = 50, m = 60. To contrast these approaches however, the phase transition
region for CoSaMPL is much sharper. For example in s = 32 and s3, CoSaMPL transitions
between probability zero and one approximately on the interval [60,65] whereas wQCBP

between [40, 60]. This means that BP has nonzero probability of succeeding at smaller m,

at the tradeoff of reaching P = 1 later.
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Horizontal phase transition line showing success probability versus m for
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With the same local sparsity patterns as above, we also test the speed of each method.
The experimental setup is the same as the above, plotting median time of each test in
seconds. Here, each row corresponds to a different total sparsity s = 8,16,32, and each
column to a sparsity pattern. This allows the superposition of all the methods, to easily
contrast between each approach on the same test set. There are several observations to be
made. Foremost, running OMP and IHTL is negligible for every sparsity and every number
of samples, with runtime ¢ < 0.01s. This is particularly interesting for OMPL, which has
reasonable recovery, as we will illustrate below. In comparison, CoSaMPL and BP have
much longer runtime, on the order of median 0.07 seconds for CoSaMPL in the worst case
(s1,s8 = 32), and 0.05 for BP (s3,s = 32). While this may sound extremely fast, this
experiment is a “toy problem” in size, with N = 128 and 50 tests only. This increase, over
many tests, with problem of reasonable size, can easily become difficult to run.

For more particular observations, it is interesting to point out that when the probability
of recovery P = 1 or P = 0, CoSaMPL’s runtime is also negilible, < 0.01s, whereas basis
pursuit always needs some time greater than 0.01s, even with m on the order of N. This is
discouraging as we will see below CoSaMPL and BP ave similar phase transitions. Counter
to this is the regime where s = 32 for s; and s9, where CoSaMPL has longer runtime than
BP during the transition.

Overall, the takeaway is the tradeoff between recovery probability and runtime. IHTL
takes this to the extreme end of runtime, and BP to the extreme end of recovery. Overall,
OMPL seems to be the most “happy medium”, balancing good phase transition behavior
with fast runtime, and a guaranteed s iterations.

Next, we perform a similar experiment, now moving to the four levels case. The vector we
recover is (s, M )-sparse with M = (N/4,N/2,3N/4, N) and either s; = (3s/8,5/8,3s/8,5/8)
or s = (5/2,0,8/2,0). We then run THTL, CoSaMPL, OMPL, and wQCBP with 1,2 or 4
levels each. Note that for the “2-levels” case, we have a working sparsity pattern of (s/2,s/2)
in levels (N/2, N). Here, intuition — and the results — say that moving to more levels is using
more accurate information of the local sparsity pattern, and thus should result in better
recovery. This effect is extremely pronounced in the s case, where moving to 4 levels in
the recovery algorithms result in a significant performance increase. Overall, the most gain
is to be had in moving from 2 to 4 levels.

For both these experiments, it is useful to compare the observed results to the predictions
of the theory. As our target vectors are exactly (s, M )-sparse, and we are using constant
weights for our iterative approaches — we expect exact recovery given sufficient iterations,
provided we have the RIPL (with appropriate constant for each algorithm) of order (2s, M).
For CoSaMPL in 4 levels, we observe this extremely clearly, with the transition to successful
recover at measurements totalling 2s. Of course, for A to have any chance of possessing the
appropriate RIP, we must take at least 2s measurements, and we see for each algorithm

that in the 4-levels case this is when recovery probability becomes nonzero. As before, it is
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Figure 5.2: Time per iteration (s) against m for various fixed total sparsities s. Two level
sparsity with M = (N/2, N). The local sparsities are s; = (s/2,5/2), so = (3s/4,s/4) and
s3 = (s,0), corresponding to the columns. Each row is a fixed total sparsity, with the top
row s = 8, the next s = 16, and the last row s = 32.

interesting to observe that wQCBP performs reasonably similar to CoSaMPL, with a wider

phase transition.

5.2.1 Phase transition plots

Next we proceed with phase transition plots. These are 2D arrays, in which each coordinate
corresponds to a different value of (s/N,m/N). For each value of s, m, we perform 50 tests
of recovery, using the same procedure as before. Each pixel value records the empirical
success probability, with yellow corresponding to 1, and blue 0. Correspondingly, more
yellow regions are desirable, with a perfect oracle recovering up to the line s = m. These
are very standard tools in the compressed sensing literature, as they reveal many of the
benefits — or failings — of an approach in a visually obvious way.

We first perform an experiment similar to the above, comparing the performance of

each algorithm against each other and their sparse counterparts. To observe the general
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Figure 5.3:  Horizontal phase transition line showing success probability versus m for
various fixed total sparsities s. Four level sparsity with M = (N/4,N/2,3N/4,N). The
local sparsities are s1 = (3s/8,5/8,3s/8,5/8) and so = (5/2,0,5/2,0). In the levels case we
consider two-level algorithms based on M = (N/2,N) and s = (s/2,s/2) and four-level
algorithms based on M = (N/4,N/2,3N/4,N) and s = s; or s = s3. Row one contains
IHT, THTL, row two CoSaMP and CoSaMPL, the third OMP and OMPL, and the final
wQCBP.

behavior, we return to the simple two level case, with the true solution being s = (s/2,s/2)
sparse in two levels M = (s/2, N). This is meant to model a natural problem of function
approximation arising in compressive imaging [3]. This is exactly the problem of recovering a
natural image using Fourier-Haar wavelet problem described at the end of Chapter 2, where
one level is fully saturated to capture the coarse-scale wavelet coefficients, and exponentially

fewer samples are required to recover fine scale details of an image. This is Fig. 5.4.
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Here, we see marginal improvement for CoSaMPL and IHTL. However, OMPL does not
improve over OMP in our experiments, contrasting with IHTL and CoSaMPL. This provokes
the natural question of whether the formulation of OMPL here is the best possible - and
if another variant would improve further. This calls back to the concerns we originally had
when developing OMPL. Similarly, moving to QCBP with weights does not improve over
its unweighted counterpart. This is not unexpected however, as the measurement condition
for wQCBP here explicitly scales with the number of levels r. To be concrete, this falls into

the special case of Eq. (2.28), requiring dos pr < \/%Jr - For suitable log factors L in s and

N, a Guassian matrix requiresnm > =2 - sL. Using our knowledge of the RICL this scales
as m 2 2r - sL. That is, we require a number of measurements scaling directly with the
number of levels.

Finally we conclude with a four level experiment, Fig. 5.5. Here, the underlying vector
is s = (s/2,0,5/2,0) sparse in four levels M = (N/4,N/2,3N/4, N). Notably this sparsity
pattern is only sensible up to m = N/2, so the axes are adjusted accordingly. Here, we see
uniform improvement for each levels based algorithm. Again, we see CoSaMP appears to
have the best phase transition curve, and IHT the worst.

It is also interesting to observe the phase transition behaivor of CoSaMP and wQCBP
resembling each other rather closely. This is rather interesting considering the different in
computational time, and sheds some positive light on CoSaMPL specifically.

As expected from the theory a priori knowledge allows for significant benefits, as then
the recovery algorithm can respect the underlying sparsity structure. In the most extreme
case, where some levels contain only zero entries, this — as the problem is essential reduced
to one of smaller, in this case half, dimension.

There are several general takeaways from these experiments. Foremost is that using
levels information in our recovery algorithms generally increases performance when the
underlying solution exhibits sparsity in levels. This is especially pronounced for CoSaMP
and IHT, whereas OMPL exhibits cases where it is outperformed by the sparse variant.
However, in all our experiments, this was only present in a small subset.

Similarly to the sparse case, CoSaMP (and its variants) have overall better recovery
in the sense of phase transitions, with OMP close behind. IHTL — as expected — performs
generally the worst in terms of accuracy, trading off for computational time. However,
the computational efficiency of OMPL combined with its reasonable accuracy and phase
transitions, makes make it the most more desirable in larger scale computations. While
CoSaMPL exhibits the best recovery, its runtime is lackluster and scales poorly along the
phase transition region. Thus, attempting to reduce the number of measurements m leads
to increased runtime for CoSaMPL - not a preferable design. Neither OMPL nor IHTL have
this, with runtime generally constant in small examples.

To compare to our optimization baseline, wQCBP, OMPL and IHTL generally trade

faster runtime for worse recovery for small m, whereas CoSaMPL has comparable runtime
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and better recovery than wQCBP. Thus depending on the computational budget, there is an
iterative method outperforming wQCBP. In the low budget, large scale example, OMPL is
the obvious choice, and in the large budget, small scale case, CoSaMPL is better suited. So,
the summary of the numerics is that iterative methods — either in speed or in accuracy — can
be used to outperform optimization approaches. Even in the cases where the performance
is similar (i.e. moderately sized problems) — they are a useful tool to keep in mind, with

guaranteed cost per iteration.
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Figure 5.4: Phase transition plots comparing the standard sparse decoders of THT,
CoSaMP, and OMP against the levels-based generalizations for N = 256. Here, the un-
derlying vector is s = (s/2, s/2) sparse in two levels M = (s/2, N). The final row is QCBP
and wQCBP as a comparison.
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Figure 5.5:  Phase transition plots comparing the standard sparse decoders of THT,

CoSaMP, and OMP against the levels-based generalizations for N = 256. Here, the un-
derlying vector is s = (s/2,0,s/2,0) sparse in four levels M = (N/4,N/2,3N/4, N). Row
one contains IHT, THTL, row two CoSaMP and CoSaMPL, the third OMP and OMPL,
and the The final row is QCBP and wQCBR4



Chapter 6

Conclusions and Future Work

To conclude this thesis, we summarize the results within, and point in several interesting
directions of future work.

The contributions within this work have foremost been the development and analysis of
IHTL, CoSaMPL, and OMPL. These are extended from standard algorithms in the sparse
case. We have extended stability and robustness for IHTL and CoSaMPL to sparse in levels
vectors, under no more stringent assumptions than the sparse situation. Furthermore, these
results have a beneficial scaling with the important parameters (,£. In the Fourier-Haar
example, this was particularly noticeable as the measurement cost was reduced by logQ(N )
compared to basis pursuit, a significant gain.

Numerically, we also observe the benefits of iterative approaches. Firstly, these methods
are simple to implement and understand, and require no secondary algorithm to solve — un-
like basis pursuit. Furthermore we have a guaranteed computational cost per iteration, and
in the case of OMPL terminate after a fixed number of iterations. Numerically, this runtime
improvement is observed rather strongly, with IHTL and OMPL having negligible runtime
in comparison to BP. In combination with the reduced sampling complexity garnered from
the sparse in levels structure, leads to extremely efficient recovery methods.

Furthermore, the phase transition behavior of the iterative methods is promising. CoSaMPL
performs as well as, or better than QCBP, whereas OMPL and IHTL perform only marginally
worse — and all methods have reasonable recovery for moderate number of samples. In fact,
the levels based variations improve almost unilaterally over their sparse counterparts — with
only OMPL having cases where it is outperformed by OMP.

In mentioning OMPL, it is worth emphasizing that the formulation here has not yet
been shown to have formal guarantees of stability and robustness. In fact, this is only one
of many potential versions of OMP in levels - and is a very interesting direction of future
consideration. As mentioned throughout, OMP’s guaranteed cost both per iteration and
fixed number of iterations means a recovery result would be extremely desirable.

Putting this theory and numerical evidence together, we have developed an important

tool for approximating sparse in levels signals. This is extremely useful in the case of com-
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pressive imaging. These tools — combined with design of the sensing matrix A — are possible
approaches to construct to guaranteed polynomial time recovery of images from linear sam-
ples. This may be specifically useful in MRI imaging, where Fourier-Haar measurements

with wavelet sparsity have seen success.
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