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Abstract

We consider the game of cops and robbers, which is a game played on a finite graph 𝐺 by two
players, Alice and Bob. Alice controls a team of cops, and Bob controls a robber, both of which
occupy vertices of 𝐺. On Alice’s turn, she may move each cop to an adjacent vertex or leave it at
its current position. Similarly, on Bob’s turn, he may move the robber to an adjacent vertex or
leave it at its current position. Traditionally, Alice wins the game when a cop occupies the same
vertex as the robber—that is, when a cop captures the robber. Conversely, Bob wins the game by
letting the robber avoid capture forever. In a variation of the game, Alice wins the game when each
neighbor of the robber’s vertex is occupied by a cop—that is, when cops surround the robber. We
will consider both of these winning conditions.

The most fundamental graph invariant with regard to the game of cops and robbers is the cop
number of a graph 𝐺, which denotes the minimum number of cops that Alice needs in order to
have a winning strategy on 𝐺. We will introduce new techniques that may be used to calculate
lower and upper bounds for the cop numbers of certain Cayley graphs. In particular, we will show
that the well-known Meyniel’s conjecture holds for both undirected and directed abelian Cayley
graphs. We will also introduce new techniques for establishing upper bounds on the cop numbers
of surface-embedded graphs bounded by the genus of the surface in the surrounding win condition.

Keywords: cops and robbers, Cayley graph, Meyniel’s conjecture, planar graph, graph genus
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Chapter 1

Introduction

1.1 Notation

We follow standard graph theoretic notation used by Bondy and Murty [7]. We say that a graph is
a collection of vertices and edges, where vertices are elements of a set, and edges are sets consisting
of exactly two distinct vertices. For a graph 𝐺, we often write 𝑉 (𝐺) to denote the vertices of 𝐺,
and we often write 𝐸(𝐺) to denote the edges of 𝐺. With this notation, 𝐸(𝐺) ⊆

(︀𝑉 (𝐺)
2
)︀
. We say

that a graph 𝐻 is a subgraph of 𝐺 if 𝑉 (𝐻) ⊆ 𝑉 (𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺). For a graph 𝐺 in which
𝑢, 𝑣 ∈ 𝑉 (𝐺), if {𝑢, 𝑣} ∈ 𝐸(𝐺), we say that 𝑢 and 𝑣 are adjacent, and we also say that 𝑢 and 𝑣 are
endpoints of the edge {𝑢, 𝑣}. To briefly denote that 𝑢 and 𝑣 are adjacent, we often write 𝑢 ∼ 𝑣.
Furthermore, we often write 𝑢𝑣 to denote the edge {𝑢, 𝑣}.

For a graph 𝐺 and a vertex 𝑣 ∈ 𝑉 (𝐺), we write 𝑁(𝑣) to denote the set of all vertices of 𝐺

that are adjacent to 𝑣; that is 𝑁(𝑣) = {𝑢 ∈ 𝑉 (𝐺) : 𝑢𝑣 ∈ 𝐸(𝐺)}. We say that 𝑁(𝑣) is the open
neighborhood of 𝑣, or simply the neighborhood of 𝑣. Furthermore, we write 𝑁 [𝑣] to denote the set
𝑁(𝑣)∪ {𝑣}, and we say that 𝑁 [𝑣] is the closed neighborhood of 𝑣. The degree of a vertex 𝑣 denotes
the number of vertices in 𝑁(𝑣), and we write 𝛿(𝐺) and Δ(𝐺) for the minimum and maximum
degree over all vertices in a graph 𝐺, respectively.

Given a graph 𝐺, we say that a path 𝑃 in 𝐺 is a subgraph of 𝐺 whose vertices may be arranged
into a non-repeating sequence (𝑣1, . . . , 𝑣𝑘) such that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸(𝐺) for every 1 ≤ 𝑖 ≤ 𝑘−1, and such
that 𝑃 has exactly these 𝑘 − 1 edges. We say that 𝑣1 and 𝑣𝑘 are the endpoints of 𝑃 . We say that
the length of a path 𝑃 is the number of edges in 𝑃 . For a graph 𝐺 and two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), we
say that the distance between 𝑢 and 𝑣 is the length of a shortest path with 𝑢 and 𝑣 as endpoints,
and we write dist(𝑢, 𝑣) for the distance between 𝑢 and 𝑣. We say that a geodesic path (or just
geodesic) from 𝑢 to 𝑣 is a path with 𝑢 and 𝑣 as endpoints and of length dist(𝑢, 𝑣). For any vertex
𝑣 ∈ 𝑉 (𝐺), we have dist(𝑣, 𝑣) = 0. We say that a graph 𝐺 is connected if for any 𝑢, 𝑣 ∈ 𝑉 (𝐺), there
exists a path with 𝑢 and 𝑣 as endpoints. In this thesis, we will assume that all graphs are finite and
connected.
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Given a graph 𝐺, we say that a cycle 𝐶 in 𝐺 is a subgraph of 𝐺, containing at least three vertices,
whose vertices may be arranged into a non-repeating sequence (𝑣1, . . . , 𝑣𝑘) such that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸(𝐺)
for every 1 ≤ 𝑖 ≤ 𝑘 − 1, and such that 𝐶 contains exactly these 𝑘 − 1 edges, along with the edge
𝑣𝑘𝑣1. Informally, a cycle is a path of length at least 3 whose two endpoints are the same. We say
that the girth of a graph 𝐺 is the length of a shortest cycle in 𝐺.

Given a graph 𝐺 and an orientable surface 𝑆, an embedding of 𝐺 in 𝑆 is a representation (often
called a drawing) of 𝐺 such that each vertex of 𝐺 is represented by a distinct point in 𝑆, each edge
of 𝐺 is represented by a distinct simple arc in 𝑆, and such that the following properties hold:

∙ An arc representing an edge 𝑒 ∈ 𝐸(𝐺) has endpoints in 𝑆 corresponding to the endpoint
vertices of 𝑒 in 𝐺.

∙ An arc representing an edge 𝑒 ∈ 𝐸(𝐺) does not contain any point in 𝑆 corresponding to a
vertex in 𝐺 that is not an endpoint of 𝑒.

∙ No two arcs intersect in 𝑆 except at their endpoints.

Given an orientable surface 𝑆, the genus of 𝑆 is the maximum number of simple closed curves that
may be removed from 𝑆 without disconnecting 𝑆. Informally, a sphere has genus 0, and the genus
of a general orientable surface 𝑆 is the number of “holes" in 𝑆. The genus 𝑔 of a graph 𝐺 is the
minimum genus 𝑔 of a surface 𝑆 in which 𝐺 has an embedding. An orientable surface of genus 0 is
homeomorphic to a sphere, and a graph that may be embedded in a genus 0 surface is called planar.
An orientable surface of genus 1 is homeomorphic to a torus, and a graph that may be embedded
in a surface of genus 1 is called toroidal.

We will also consider groups, and we will use standard group theoretic notation, such as that
used by Herstein [22]. A group is a set 𝐴 of elements paired with a binary operation × satisfying
the following properties.

∙ For any elements 𝑎, 𝑏 ∈ 𝐴, 𝑎× 𝑏 ∈ 𝐴.

∙ For any elements 𝑎, 𝑏, 𝑐 ∈ 𝐴, (𝑎× 𝑏)× 𝑐 = 𝑎× (𝑏× 𝑐).

∙ There exists an identity element 𝑒 ∈ 𝐴 such that for any 𝑎 ∈ 𝐴, 𝑎× 𝑒 = 𝑒× 𝑎 = 𝑎.

∙ For any element 𝑎 ∈ 𝐴, there exists an element 𝑏 ∈ 𝐴 such that 𝑎 × 𝑏 = 𝑏 × 𝑎 = 𝑒. In this
case, 𝑏 is called the inverse of 𝑎, and we write 𝑏 = 𝑎−1.

We often omit the binary operation × and write 𝑎𝑏 for 𝑎× 𝑏. We say that a group (𝐴,×) is abelian
if for any 𝑎, 𝑏 ∈ 𝐴, 𝑎 × 𝑏 = 𝑏 × 𝑎. For further definitions and basic results related to groups, such
as subgroups, quotient groups, generating sets, and group homomorphisms, we refer the reader to
Herstein [22].
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1.2 Background

We consider the game of cops and robbers, a perfect information game played by two players on a
finite graph 𝐺. The first player, whom we call Alice, controls a team of 𝑚 cops. The second player,
whom we call Bob, controls a robber. (Often, Alice is identified with the cops that she controls,
and Bob is identified with the robber.) At the beginning of the game, Alice chooses a set of 𝑚 (not
necessarily distinct) vertices 𝑣1, . . . , 𝑣𝑚 ∈ 𝑉 (𝐺) and places a cop at each of these vertices. Next,
Bob chooses a vertex 𝑤 ∈ 𝑉 (𝐺) and places the robber at 𝑤. Alice and Bob then take turns moving
the cops and robber throughout 𝐺. On Alice’s turn, for each cop 𝐶, Alice may move 𝐶 along an
edge to an adjacent vertex or leave 𝐶 at its current vertex. There is no restriction preventing Alice
from moving two or more cops to a single vertex. On Bob’s turn, Bob may move the robber along
an edge to an adjacent vertex or leave the robber at its current vertex. Alice wins the game if the
robber and any cop occupy the same vertex at any time, in which case we say that the robber is
captured. Bob wins the game if the robber avoids capture forever. We may also give Bob a finite-
time win condition by saying that Bob wins the game if the same game position ever appears twice.
This change does not affect the strategy of either player.

The game of cops and robbers was first introduced by Quilliot in [30], and later independently
by Nowakowski and Winkler [28]. These two papers both focused on games in which Alice uses only
one cop. Later, Aigner and Fromme generalized the game so that Alice may control any number 𝑚

of cops [1]. In Aigner and Fromme’s paper, the authors introduce the concept of the cop number of
a graph 𝐺, which is the minimum number 𝑚 of cops that Alice needs in order to have a winning
strategy on 𝐺. For a graph 𝐺, we write 𝑐(𝐺) for the cop number of 𝐺. Aigner and Fromme then
give simple bounds for the cop numbers of planar graphs and graph of girth at least 5.

We will also consider the game of surrounding cops and robbers, first invented by Burgess et al.
in [11]. The rules of the game are the same as those of cops and robbers, except that Alice wins
the game only when the robber occupies a vertex whose neighbors are all occupied by cops—that
is, Alice wins the game by surrounding the robber with cops. Furthermore, at the end of each of
Bob’s turns, the robber may not occupy the same vertex as a cop; this prevents Bob from leaving
the robber at a vertex of high degree forever.

The slight change in rules between traditional cops and robbers and surrounding cops and
robbers brings about some differences in gameplay. In the surrounding variant, Alice can no longer
win the game simply by “capturing" the robber with a cop. Rather, whenever Alice moves a cop
to the robber’s vertex, the robber is simply forced to move away, since Bob may not leave the
robber at a vertex occupied by a cop. Therefore, when Alice “captures" the robber with a cop in
the surrounding variant, she accomplishes nothing other than forcing the robber to move to a new
vertex. Additionally, in the surrounding variant, a cop may not “guard" all of the vertices in its
neighborhood like in the traditional game, since the robber is no longer threatened by the prospect
of being captured by a cop. Rather, if Alice wishes to prevent the robber from moving to a vertex
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𝑣, she must place a cop at 𝑣, as Bob is not allowed to move the robber to a vertex already occupied
by a cop.

The game of surrounding cops and robbers is one of several variants of the game of cops and
robbers. Another such variant is called cops and attacking robber, invented by Bonato et al. [6],
in which the robber may capture a cop by moving to the cop’s vertex, after which the captured
cop is removed from the game. Yet another variant is lazy cops and robbers, invented by Offner
and Ojakian [29], in which only one cop may move on each turn. When considering the game of
surrounding cops and robbers, one natural parameter to consider is the surrounding cop number
of a graph 𝐺, which is the minimum number of cops that Alice needs to have a winning strategy
on 𝐺. The authors of [11] show several bounds on the surrounding cop number of certain graph
classes, including grids and products of cycles.

The concept of cop number is a natural step in graph theory toward the study of dynamic graph
parameters. The graph parameters traditionally considered by graph theorists, such as Hamiltonic-
ity, chromatic number, genus, girth, or crossing number, are all based on the existence or nonex-
istence of a certain static structure in a graph. The cop number of a graph, however, is a certain
characterization of how units move throughout a graph dynamically. In fact, cop number can be
formally distinguished from traditional graph parameters by its complexity, as cop number deci-
sion problems are EXPTIME-complete [24], while decision problems for the traditional parameters
listed above belong to NP. In the spirit of investigating a graph’s dynamic properties, the game
of cops and robbers has led to a field known as graph searching, which is a more general study of
processes that move and spread through a graph, including graph sweeping, graph localization, and
zero forcing (see [15], [12], and [32] for further discussion of these topics). While the graph theoretic
game of cops and robbers has little application in real-life law enforcement, its importance and
motivation lie in its description and characterization of how graphs behave in a dynamic sense.

1.3 Known results

We give some basic results and conjectures for the game of cops and robbers.

1.3.1 Standard win condition

We first consider the game of cops and robbers with the standard “capture" win condition. Recall
that the game of cops and robbers is played on a finite graph 𝐺 by two players, Alice and Bob.
Recall that Alice controls 𝑚 cops, while Bob controls a robber. If Alice has a winning strategy on 𝐺

using 𝑚 cops, then we say that 𝐺 is 𝑚-copwin. The first result that we survey in cops and robbers
characterizes graphs that are 1-copwin, or simply copwin.

Let 𝐺 be a graph, and let 𝑣 ∈ 𝑉 (𝐺). If there exists a vertex 𝑢 ∈ 𝑉 (𝐺), 𝑢 ̸= 𝑣 such that
𝑁 [𝑣] ⊆ 𝑁 [𝑢], then we say that 𝑣 is a corner of 𝐺. (Some authors also say that 𝑣 is a pitfall [1] or
an irreducible vertex [28].) We say that 𝐺 has an elimination ordering (𝑣1, . . . , 𝑣𝑛) if for each vertex
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𝑣𝑖 ∈ 𝑉 (𝐺), 1 ≤ 𝑖 ≤ 𝑛− 1, 𝑣𝑖 is a corner in the graph 𝐺[𝑣𝑖, 𝑣𝑖+1, . . . , 𝑣𝑛]. We then have the following
theorem.

Theorem 1.3.1 ([28]). Let 𝐺 be a graph. Then 𝐺 is copwin if and only if 𝐺 has an elimination
ordering.

Theorem 1.3.1 gives a complete characterization of graphs with cop number equal to 1. For
𝑚 ≥ 2, 𝑚-copwin graphs do not admit such clean characterizations, but many graph classes still
have well-understood bounds on cop number. For instance, the following theorems show that the
cop number of a graph embedded on a surface of bounded genus is bounded above. Recall that for
a graph 𝐺, we write 𝑐(𝐺) for the cop number of 𝐺. Recall further that we assume that all graphs
are finite and connected.

Theorem 1.3.2 ([26]). Let 𝐺 be a graph with genus at most 1. Then 𝑐(𝐺) ≤ 3.

Theorem 1.3.3 ([8]). Let 𝐺 be a graph with genus 𝑔. Then 𝑐(𝐺) ≤ 4
3𝑔 + 10

3 .

Additionally, for certain Cayley graphs, cop number may be bounded above by a function of
the graph degree. A Cayley graph is defined as follows.

Definition 1.3.4. Let 𝐺 be a group, and let 𝑆 ⊆ 𝐺 be a generating set of 𝐺 satisfying 𝑆 = 𝑆−1

that does not contain the identity of 𝐺. Then the Cayley graph of 𝐺 and 𝑆, written Cay(𝐺, 𝑆), is
a graph whose vertex set is give by 𝐺 and whose edges are defined as follows. For each element
𝑎 ∈ 𝐺 and each generator 𝑠 ∈ 𝑆, 𝑎 ∼ 𝑠𝑎 in Cay(𝐺, 𝑆); that is, 𝑎 and 𝑠𝑎 are adjacent. Furthermore,
a Cayley graph is called normal if 𝑔−1𝑆𝑔 = 𝑆 for all 𝑔 ∈ 𝐺.

Theorem 1.3.5 ([16]). Let 𝐺 be a 𝑑-regular Cayley graph on an abelian group. Then 𝑐(𝐺) ≤
⌈1

2(𝑑 + 1)⌉.

Theorem 1.3.6 ([17]). Let 𝐺 be a 𝑑-regular normal Cayley graph. Then 𝑐(𝐺) ≤ 𝑑.

For graphs of large girth, on the other hand, cop number can be bounded below.

Theorem 1.3.7 ([1]). Let 𝐺 be a graph of girth at least 5. Then 𝑐(𝐺) ≥ 𝛿(𝐺).

Theorem 1.3.8 ([10]). Let 𝑡 ≥ 1, and let 𝐺 be a graph of girth at least 4𝑡 + 1 and minimum degree
𝛿. The 𝑐(𝐺) ≥ 1

𝑒𝑡(𝛿 − 1)𝑡.

One question that has persisted throughout the study of cops and robbers is the following. What
is the maximum cop number of a graph on 𝑛 vertices? One conjecture that is widely suspected to
be true, but that is still open, is Meyniel’s conjecture, which suggests the following answer.

Conjecture 1.3.9 ([17]). Let 𝐺 be a graph on 𝑛 vertices. Then 𝑐(𝐺) = 𝑂(
√

𝑛).
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Even the following weaker conjecture, which is implied by Meyniel’s conjecture, is still widely
open. This conjecture appears in [4] but has likely been considered since Meyniel’s conjecture was
posed.

Conjecture 1.3.10. There exists a value 𝜖 > 0 such that for all graphs 𝐺 on 𝑛 vertices, 𝑐(𝐺) ≤
𝑛1−𝜖.

Meyniel’s conjecture, first posed in 1985, is perhaps the furthest reaching conjecture in the area
of cops and robbers. It has driven a great deal of research, but since being posed 35 years ago, little
progress has been made. Currently, the best general upper bound for the cop number of a graph
on 𝑛 vertices is as follows.

Theorem 1.3.11 ([27, 34]). Let 𝐺 be a graph on 𝑛 vertices. Then

𝑐(𝐺) = 𝑂

(︂
𝑛

2(1−𝑜(1))
√

log 𝑛

)︂
.

If Conjecture 1.3.9 is true, then it would be best possible, as we will see that there exist several
graph families in which a graph on 𝑛 vertices has cop number Ω(

√
𝑛). However, the overall lack

of progress even on Conjecture 1.3.10 shows how difficult Conjecture 1.3.9 is. On the other hand,
during 35 years of study, no graph family in which a graph on 𝑛 vertices has cop number greater
than 𝑂(

√
𝑛) has been found. We will conclude this section with a graph construction that shows

that Conjecture 1.3.9, if true, is best possible.

Theorem 1.3.12 ([4]). Let 𝑞 be a prime power, and let 𝑃𝑞 be the projective plane over the field
F𝑞, with 𝑞2 + 𝑞 + 1 points and 𝑞2 + 𝑞 + 1 lines. Let 𝐺 be a graph whose vertices are given by the
points and lines of 𝑃𝑞 such that each line of 𝑃𝑞 is adjacent to the points that it contains. Then 𝐺

is a (𝑞 + 1)-regular graph of girth 6, and hence 𝑐(𝐺) ≥ 𝑞 + 1.

For a prime power 𝑞, the graph 𝐺 obtained from the projective plane 𝑃𝑞 contains 2𝑞2 + 2𝑞 + 2
vertices and has cop number 𝑞+1, implying that 𝑐(𝐺) ≥ (1−𝑜(1))

√︁
|𝑉 (𝐺)|

2 = Ω(
√︀
|𝑉 (𝐺)|). Therefore,

Conjecture 1.3.9 cannot be improved.

1.3.2 Surrounding win condition

Next, we consider the surrounding cops and robbers win condition. Given a graph 𝐺, we say that
the surrounding cop number of 𝐺, written 𝑠(𝐺), is the minimum number 𝑚 such that Alice has a
winning strategy with 𝑚 cops in the game of surrounding cops and robbers on 𝐺.

By the definition of the surrounding win condition, Alice can only win if she has enough cops
to occupy every neighbor of the robber’s vertex, which gives us a straightforward lower bound for
𝑠(𝐺):

Observation 1.3.13 ([11]). Let 𝐺 be a graph of minimum degree 𝛿. Then 𝑠(𝐺) ≥ 𝛿.
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Furthermore, if a cop occupies every neighbor of the robber’s vertex, then the robber clearly
cannot avoid being captured in the traditional sense, giving another straightforward lower bound
for 𝑠(𝐺):

Theorem 1.3.14 ([11]). Let 𝐺 be a graph with cop number 𝑐(𝐺). Then 𝑠(𝐺) ≥ 𝑐(𝐺).

Bounds on the surrounding cop number of a graph may also be obtained from properties related
to a graph’s decomposition. One such property is the treewidth of a graph, which is defined as follows.
For an integer 𝑘 ≥ 1, a k-tree is a graph that is formed from a 𝑘-clique by repeatedly adding vertices
of degree exactly 𝑘 whose neighbors induce a clique. Then, for a graph 𝐺, the treewidth of 𝐺 is
the minimum integer 𝑘 for which 𝐺 is a subgraph of some 𝑘-tree. A graph’s treewidth gives the
following bound on the surrounding cop number.

Theorem 1.3.15 ([11]). Let 𝐺 be a graph of treewidth 𝑘. Then 𝑠(𝐺) ≤ 𝑘 + 1.

Another parameter related to the surrounding cop number of a graph is degeneracy, which is
defined as follows. For a graph 𝐺, the degeneracy of 𝐺 is the minimum integer 𝑘 for which every
subgraph of 𝐺 has a vertex of degree at most 𝑘. The degeneracy of a graph gives the following
bound on the surrounding cop number.

Theorem 1.3.16. Let 𝐺 be a graph, and let 𝑘 be the least integer for which 𝐺 is 𝑘-degenerate.
Then 𝑠(𝐺) ≥ 𝑘.

Proof. This theorem is implied by the methods of [11] but is not stated explicitly, so we include a
proof for completeness.

If every subgraph of 𝐺 contains a vertex of degree at most 𝑘 − 1, then 𝐺 is (𝑘 − 1)-degenerate;
hence, as 𝐺 is not (𝑘 − 1)-degenerate, 𝐺 contains a subgraph 𝐻 ⊆ 𝐺 of minimum degree 𝑘. Bob’s
strategy will be to begin the game with the robber at a vertex of 𝐻 and to leave the robber at 𝐻

for the entire game. If Alice has at most 𝑘 − 1 cops, then when the robber is at a vertex of 𝐻, the
robber will always have an unoccupied neighbor in 𝐻. Furthermore, if a cop moves to the robber’s
vertex, then the robber will always have an available vertex of 𝐻 to which to move. Therefore, Bob
may leave the robber at 𝐻 indefinitely and win the game.

Surprisingly, apart from the bounds listed here and some straightforward bounds for simple
graph classes, little else is known about the surrounding cop number. In particular, no analogues
of Theorems 1.3.2 and 1.3.3 bounding the surrounding cop number of graphs of bounded genus are
known.

1.4 Thesis structure

This thesis will be divided into two main parts. The first part of the thesis will consider the game
of cops and robbers on Cayley graphs. We will first show a simple argument that proves Meyniel’s
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conjecture for abelian Cayley graphs, showing that an abelian Cayley graph on 𝑛 vertices has cop
number at most 6

√
𝑛. Next, we will give a more technical argument that bounds the cop number

of both directed and undirected abelian Cayley graphs on 𝑛 vertices by approximately 1.33
√

𝑛 + 10
and 0.94

√
𝑛 + 6, respectively. Finally, we will construct several Cayley graph families on 𝑛 vertices

with cop number Ω(
√

𝑛).
In the second part of the thesis, we will consider the game of surrounding cops and robbers.

We will prove upper bounds for the surrounding cop number of planar graphs, bipartite planar
graphs, toroidal graphs, graphs of bounded genus, and graphs that exclude a minor. We will also
extend Theorem 1.3.6 and show that for a 𝑑-regular normal Cayley graph, 𝑠(𝐺) = 𝑑, which is best
possible.

1.5 Submission disclosures

The results in Section 2.1 appear in [9].
The results in Sections 2.2 and Section 2.3.1 are joint work with Jérémie Turcotte and Seyyed

Aliasghar Hosseini. These results have been submitted to the European Journal of Combinatorics
and are currently in revision.

The results of Section 3.1 are joint work with Seyyed Aliasghar Hosseini. These results have
been submitted to the Journal of Combinatorics and are awaiting review.
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Chapter 2

Cops and robbers on Cayley graphs

2.1 Abelian Cayley graphs: a simple proof of Meyniel’s conjecture

We will consider the game of cops and robbers on Cayley graphs over abelian groups. We have
already defined Cayley graphs in the previous section, but as we wish to use notation that is
specifically suited to abelian groups in this section, we will restate the definition of a Cayley graph
over an abelian group. Given an abelian group (𝐺, +) and a set 𝑆 ⊆ 𝐺 satisfying 0 ̸∈ 𝑆 and 𝑆 = −𝑆,
we define the graph 𝐶𝑎𝑦(𝐺, 𝑆) as follows. The elements of 𝐺 become the vertices of 𝐶𝑎𝑦(𝐺, 𝑆), and
two elements 𝑢, 𝑣 ∈ 𝐺 are adjacent if −𝑢 + 𝑣 ∈ 𝑆. We say that 𝐶𝑎𝑦(𝐺, 𝑆) is the Cayley graph on 𝐺

generated by 𝑆. Whenever we consider a Cayley graph on an abelian group 𝐺 generated by a set 𝑆,
we will always assume that 𝑆 = −𝑆 and 0 ̸∈ 𝑆. We note that the elements of 𝑆 generate 𝐺 if and
only if 𝐶𝑎𝑦(𝐺, 𝑆) is connected, and the requirement that 𝑆 = −𝑆 ensures that vertex adjacency
is symmetric; that is, 𝑢𝑣 ∈ 𝑉 (𝐺) if and only if 𝑣𝑢 ∈ 𝑉 (𝐺). We say that 𝐶𝑎𝑦(𝐺, 𝑆) is an abelian
Cayley graph if 𝐺 is an abelian group. In the definition above, we say that 𝑆 is the generating set
of 𝐶𝑎𝑦(𝐺, 𝑆), and we call the elements of 𝑆 generators. Frankl considers the cop number of abelian
Cayley graphs in [16].

We will outline Frankl’s general approach to capturing a robber on an abelian Cayley graph.
When playing cops and robbers on a Cayley graph on an abelian group 𝐺 generated by 𝑆 ⊆ 𝐺, we
imagine that at each turn, the robber occupies some group element 𝑟 ∈ 𝐺 and has a list of possible
moves corresponding to the elements of 𝑆. The robber may choose any element 𝑠 ∈ 𝑆 on his turn
and move to the group element 𝑟 + 𝑠 ∈ 𝐺. We call this playing the move 𝑠. To capture the robber,
we will let our cops follow a strategy that makes certain robber moves 𝑠 ∈ 𝑆 unsafe for the robber.
As we make certain robber moves unsafe, the robber’s list of possible moves will become shorter,
and the robber’s movement options will become more limited. As the robber’s movement becomes
more limited, it will become easier for the cops to make even more robber moves unsafe, and the
cops will be able to limit the robber’s movement further. Eventually, the cops will make every move
unsafe for the robber, and the robber will have no way to avoid capture. The precise meaning of
an unsafe move will be discussed later.
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Frankl shows in [16] that on an abelian Cayley graph, one cop can almost always make two
robber moves unsafe, which gives the following theorem.

Theorem 2.1.1 ([16]). Let Γ be a Cayley graph on an abelian group with a generating set 𝑆 that
satisfies 𝑆 = −𝑆 and 0 /∈ 𝑆. Then,

𝑐(Γ) ≤
⌈︂ |𝑆|+ 1

2

⌉︂
.

By applying the ideas of Frankl used in Theorem 2.1.1, we will prove the following theorem,
which proves Meyniel’s conjecture for abelian Cayley graphs.

Theorem 2.1.2. Let Γ be a Cayley graph on an abelian group of 𝑛 elements. Then 𝑐(Γ) ≤ 6
√

𝑛.

Frankl’s bound is linear to the size of the generating set of a Cayley graph, so for abelian Cayley
graphs with large generating sets, our bound is an improvement over that of Frankl. The proof of
Theorem 2.1.2 builds upon Frankl’s idea of letting cops make certain robber moves unsafe. We use
the fact that if a Cayley graph has distinct generators 𝑎1, 𝑎2, . . . , 𝑎𝑗 , 𝑏1, 𝑏2, . . . , 𝑏𝑗 for which there
exists an element 𝑑 ∈ 𝐺 satisfying 𝑑 = 𝑎1 − 𝑏1 = 𝑎2 − 𝑏2 = · · · = 𝑎𝑗 − 𝑏𝑗 ̸= 0, then we can execute
the following strategy. If the robber is at vertex 𝑟 ∈ 𝐺, then we show that we can place a cop at a
vertex 𝑟 +𝛾𝑑 for some nonnegative integer 𝛾. Then, if the robber uses 𝑎𝑖 for any 1 ≤ 𝑖 ≤ 𝑗, then the
cop responds with 𝑏𝑖. This way, if the robber uses any of 𝑎1, 𝑎2, . . . , 𝑎𝑗 , then the difference between
the cop and the robber’s positions decreases by exactly 𝑑. Furthermore, if the robber uses any of
these moves 𝑎𝑖 a total of 𝛾 times, then the difference between the cop and robber becomes zero, and
the robber is caught. Therefore, the robber must eventually stop using the moves 𝑎1, 𝑎2, . . . , 𝑎𝑗 , and
our cop essentially takes away all of the moves 𝑎1, 𝑎2, . . . , 𝑎𝑗 from the robber. We say that a cop
that follows this strategy makes the moves 𝑎1, . . . , 𝑎𝑗 unsafe. The difference between our method
and that of Frankl is that while Frankl only allows one cop to take away two moves from the robber,
we allow one cop to take away many moves from the robber.

Our proof also uses the following general idea. If the generating set of a Cayley graph is
small, then a small number cops can capture the robber by using Frankl’s strategy from [16].
If the generating set of a Cayley graph is large, however, then there will be many generators
𝑎1, 𝑎2, . . . , 𝑎𝑗 , 𝑏1, 𝑏2, . . . , 𝑏𝑗 that can be paired into equal differences 𝑎1 − 𝑏1 = 𝑎2 − 𝑏2 = · · · =
𝑎𝑗 − 𝑏𝑗 ̸= 0, and we can find a strategy in which one cop takes away many moves from the robber.
Thus, regardless of whether the generating set of a graph is small or large, we can capture the
robber with a small number of cops.

For our proof, we will need the following definition and lemma.

Definition 2.1.3. Let (𝐺, +) be a finite abelian group, and let 𝑆 ⊆ 𝐺. For 𝑠 ∈ 𝑆, we say that a set
𝐾 ⊆ 𝐺 accounts for 𝑠 with respect to 𝑆 if there exists an element 𝑗 ∈ 𝑆 ∪ {0} such that 𝑠− 𝑗 ∈ 𝐾.
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We say that 𝐾 accounts for 𝑆 if for each 𝑠 ∈ 𝑆, 𝐾 accounts for 𝑠 with respect to 𝑆. When 𝐾 is a
singleton set {𝑘}, we write that 𝑘 accounts for 𝑠 with respect to 𝑆.

This definition is essential for our strategy. A key idea that we will show in our proof is that given
an abelian Cayley graph 𝐶𝑎𝑦(𝐺, 𝑆), we can construct a set 𝐾 = {𝑑1, . . . , 𝑑𝑙} accounting for 𝑆; then if
the robber is at vertex 𝑟, we will show that we can place 𝑙 cops at vertices 𝑟+𝑘1𝑑1, 𝑟+𝑘2𝑑2, . . . , 𝑟+𝑘𝑙𝑑𝑙

(for some nonnegative integers 𝑘1, . . . , 𝑘𝑙) and capture the robber in a finite number of moves. Hence
the cardinality of 𝐾 will be closely related to the number of cops needed to catch the robber, and
bounding the cardinality of 𝐾 will help us bound the cop number of 𝐶𝑎𝑦(𝐺, 𝑆). This brings us to
the following lemma.

Lemma 2.1.4. Let (𝐺, +) be an abelian group of order 𝑛, and let 𝑆 = {𝑎1, . . . , 𝑎𝑘} ⊆ 𝐺, |𝑆| ≥
2, 𝑆 = −𝑆. Then there exists a set 𝐾 ⊆ 𝐺 of order at most ⌊3

2
√

𝑛 + 5
2⌋ such that 0 ̸∈ 𝐾 and such

that 𝐾 accounts for 𝑆.

Proof. Let 𝑘 = |𝑆|. If 𝑘 ≤
√

𝑛, then we may let 𝐾 = 𝑆. Then, for any element 𝑠 ∈ 𝑆, there exists
an element 𝑠 ∈ 𝐾 satisfying 𝑠−0 = 𝑠, which implies that 𝑠 accounts for 𝑠 with respect to 𝑆. Hence,
in this case, we have a set 𝐾 of size at most

√
𝑛 that accounts for 𝑆. Otherwise,

√
𝑛 < 𝑘 ≤ 𝑛, and

there exists 0 < 𝜖 ≤ 1
2 such that 𝑘 = 𝑛1/2+𝜖.

We will construct a set 𝐾 that accounts for 𝑆 by building 𝐾 one element at a time. Whenever
we add an element to 𝐾, we will simultaneously construct a set 𝐿 of all elements 𝑠 ∈ 𝑆 accounted
for by 𝐾. We begin with 𝐾 = ∅. As the empty set does not account for any elements, we also begin
with 𝐿 = ∅. We use the following algorithm, which we call the Pairing Algorithm.

1. Compute the multiset 𝑀 of nonzero differences 𝑎𝑖 − 𝑎𝑗 such that 𝑎𝑖, 𝑎𝑗 ∈ 𝑆, and 𝑎𝑖 ̸∈ 𝐿.

2. Let 𝑦 be an element in 𝑀 that appears with greatest frequency. Add 𝑦 to 𝐾, and for each
𝑎𝑖, 𝑎𝑗 ∈ 𝑆 such that 𝑎𝑖 − 𝑎𝑗 = 𝑦, set 𝐿← 𝐿 ∪ {𝑎𝑖}.

3. Repeat the first two steps ⌈
√

𝑛⌉ times or until 𝐿 contains all elements of 𝑆.

By construction, 𝐿 records the elements of 𝑆 accounted for by 𝐾. We claim that after the Pairing
Algorithm terminates, 𝐿 contains at least 𝑘−⌈

√
𝑛⌉ elements. In proving this claim, if at any point

𝐿 contains at least 𝑘−⌈
√

𝑛⌉ elements, then we are done. Otherwise, we assume that each time the
Pairing Algorithm executes Step 1, |𝐿| ≤ 𝑘−⌈

√
𝑛⌉. We show that each time we add 𝑦 to 𝐾 in Step

2, we add at least 𝑛𝜖 − 1 new distinct elements to 𝐿.
Consider some iteration of Step 1 of the Pairing Algorithm. Let 𝑧 be the number of elements

already in 𝐿 during this iteration. We claim that when 𝑀 is created at this iteration, 𝑀 contains
at least 𝑘(𝑘− 1)− (𝑘− 1)𝑧 elements. Indeed, 𝑘(𝑘− 1) counts the ordered pairs of distinct elements
𝑎𝑖, 𝑎𝑗 ∈ 𝑆 and hence also counts the number of differences 𝑎𝑖 − 𝑎𝑗 . However, as 𝑀 only contains
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differences of those pairs 𝑎𝑖, 𝑎𝑗 such that 𝑎𝑖 does not belong to 𝐿, (𝑘 − 1)𝑧 differences 𝑎𝑖 − 𝑎𝑗 with
𝑎𝑖 belonging to 𝐿 are excluded from 𝑀 . This gives us a lower bound for the cardinality of 𝑀 :

|𝑀 | ≥ 𝑘(𝑘 − 1)− (𝑘 − 1)𝑧

> 𝑘2 − 𝑘(𝑧 + 1)

= 𝑛1+2𝜖 − 𝑛
1
2 +𝜖(𝑧 + 1).

We note that as each element in 𝑀 belongs to the group 𝐺, there are at most 𝑛 unique elements
in 𝑀 . Therefore, some element in 𝑀 appears at least |𝑀 |

𝑛 times: that is, at least

𝑛2𝜖 − 𝑛𝜖− 1
2 (𝑧 + 1)

times. We know that 𝑧 ≤ 𝑘 − ⌈
√

𝑛⌉ ≤ 𝑘 −
√

𝑛 =
√

𝑛(𝑛𝜖 − 1). Therefore,

|𝑀 |
𝑛
≥ 𝑛2𝜖 − 𝑛𝜖− 1

2 (
√

𝑛(𝑛𝜖 − 1) + 1) ≥ 𝑛𝜖 − 1,

and hence, some element of 𝑀 must appear at least 𝑛𝜖− 1 times. Therefore, the value 𝑦 computed
during Step 2 of the Pairing Algorithm must appear in 𝑀 at least 𝑛𝜖 − 1 times. Due to the group
inverse property, each element 𝑐 ∈ 𝑆 belongs to at most one difference 𝑐 − 𝑑 = 𝑦, where 𝑑 ∈ 𝑆.
Hence, each unaccounted element in 𝑆 contributes to at most one appearance of 𝑦 in 𝑀 . Therefore,
when we add 𝑦 to 𝐾, we add at least 𝑛𝜖 − 1 elements to 𝐿. By repeating this process ⌈

√
𝑛⌉ times,

we add at least 𝑛1/2+𝜖 − ⌈
√

𝑛⌉ new elements to 𝐿. Thus when the Pairing Algorithm terminates,
|𝐿| ≥ 𝑛1/2+𝜖 − ⌈

√
𝑛⌉ = |𝑆| − ⌈

√
𝑛⌉.

When the Pairing Algorithm terminates, the elements in 𝑆 not yet accounted for by 𝐾 are given
by the set 𝑆 ∖ 𝐿. If 𝑆 ∖ 𝐿 = ∅, then 𝐾 accounts for 𝑆. In this case, |𝐾| ≤ ⌈

√
𝑛⌉, and hence we are

done. Otherwise, 𝑆 ∖ 𝐿 is nonempty, and 𝐾 contains exactly ⌈
√

𝑛⌉ elements.
If 𝑆 ∖𝐿 is nonempty, then we would like to add a few more elements to 𝐾 in order to account for

these remaining elements in 𝑆 ∖𝐿. While |𝑆 ∖𝐿| > 2, we can find 𝑏, 𝑏′ ∈ 𝑆 ∖𝐿 such that 𝑏 + 𝑏′ ̸= 0.
We add 𝑏 + 𝑏′ to 𝐾 and add 𝑏 and 𝑏′ to 𝐿, as 𝑏− (−𝑏′) = 𝑏 + 𝑏′, and 𝑏′ − (−𝑏) = 𝑏 + 𝑏′. Similarly, if
𝐿 = {𝑏, 𝑏′} with 𝑏 + 𝑏′ ̸= 0, we then add 𝑏 + 𝑏′ to 𝐾. If 𝐿 = {𝑏}, we add 𝑎 + 𝑏 to 𝐾, where 𝑎 ∈ 𝑆

and 𝑎 + 𝑏 ̸= 0. If 𝐿 = {𝑏,−𝑏}, we add 𝑏 + 𝑏 and (−𝑏) + (−𝑏) to 𝐾. After this process, 𝐾 accounts
for 𝑆.

Let 𝑟 be the size of 𝑆 ∖ 𝐿 when the Pairing Algorithm terminates. The process above adds
at most 𝑟

2 + 1 elements to 𝐾. As |𝐿| ≥ |𝑆| − ⌈
√

𝑛⌉ when the Pairing Algorithm terminates, it
follows that 𝑟 ≤ ⌈

√
𝑛⌉, and therefore the process above adds at most 1

2⌈
√

𝑛⌉ + 1 elements to 𝐾.
Furthermore, the Pairing Algorithm adds at most ⌈

√
𝑛⌉ elements to 𝐾. Therefore, we obtain the
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following bound:

|𝐾| ≤ ⌈
√

𝑛⌉+ 1
2⌈
√

𝑛⌉+ 1 ≤ (
√

𝑛 + 1) + 1
2(
√

𝑛 + 1) + 1 ≤ 3
2
√

𝑛 + 5
2 .

As |𝐾| is an integer, this implies that |𝐾| ≤ ⌊3
2
√

𝑛 + 5
2⌋. This completes the proof.

We are now ready to prove Theorem 2.1.2.

Proof of Theorem 2.1.2: We show by induction on 𝑛 that the cop number of a connected abelian
Cayley graph on 𝑛 vertices is at most 6

√
𝑛. For 1 ≤ 𝑛 ≤ 99, we consider an abelian group 𝐺

of order 𝑛 generated by a set 𝑆 ⊆ 𝐺 satisfying 𝑆 = −𝑆 and 0 ̸∈ 𝑆, and we consider the graph
Γ = 𝐶𝑎𝑦(𝐺, 𝑆). By Theorem 2.1.1, 𝑐(Γ) ≤ ⌈ |𝑆|+1

2 ⌉ ≤
𝑛
2 + 1. As 𝑛

2 + 1 < 6
√

𝑛 for 1 ≤ 𝑛 ≤ 99, the
theorem holds. For the induction step, we assume that the statement is true for abelian Cayley
graphs on fewer than 𝑛 vertices for some 𝑛 ≥ 100. Again, we consider an abelian group 𝐺 of order 𝑛

generated by a set 𝑆 ⊆ 𝐺 satisfying 𝑆 = −𝑆 and 0 ̸∈ 𝑆, and we consider the graph Γ = 𝐶𝑎𝑦(𝐺, 𝑆).
We will show that ⌊6

√
𝑛⌋ cops have a strategy to capture the robber on Γ.

Let 𝑆 be the set of generators in Γ. If |𝑆| = 1, then Γ is a cycle with cop number at most two,
and the result follows. Otherwise, by Lemma 2.1.4, we can construct a set 𝐾 ⊆ 𝐺 accounting for
𝑆 such that 0 ̸∈ 𝐾 and |𝐾| ≤ 3

2
√

𝑛 + 5
2 . We let 𝐾 = {𝑑1, . . . , 𝑑𝑙}, and we denote the position of the

robber with 𝑟. Our goal is to place 𝑙 cops 𝑐1, . . . , 𝑐𝑙 at vertices 𝑟 + 𝑘1𝑑1, 𝑟 + 𝑘2𝑑2, . . . , 𝑟 + 𝑘𝑙𝑑𝑙, where
𝑘1, . . . , 𝑘𝑙 are nonnegative integers. Then, if the robber plays a move 𝑎 for which there exists 𝑏 ∈ 𝑆

such that 𝑎 − 𝑏 = 𝑑𝑖, then 𝑐𝑖 will respond by playing 𝑏, decreasing the difference between 𝑐𝑖 and
the robber by exactly 𝑑𝑖, and all other cops 𝑐𝑗 will play 𝑎, maintaining their original difference in
position with the robber. If 𝑐𝑖 moves closer to the robber 𝑘𝑖 times, then the difference between 𝑐𝑖

and the robber decreases to zero, and the robber is caught. However, as {𝑑1, . . . , 𝑑𝑙} accounts for
𝑆, it follows that for any move 𝑎 ∈ 𝑆 that the robber plays, there exists 𝑏 ∈ 𝑆 such that 𝑎− 𝑏 = 𝑑𝑗

for some 𝑗 ≤ 𝑙; thus, after any robber move, some cop 𝑐𝑗 can play 𝑏 and decrease its difference
in position with the robber. Hence after the robber plays any 𝑘1 + 𝑘2 + · · · + 𝑘𝑙 − 𝑙 + 1 moves,
the robber will surely be caught. Furthermore, if the robber decides not to move at all, then one
extra cop can catch the robber. Hence after placing 𝑙 cops as described above, the number of cops
required to catch the robber is at most 𝑙 + 1 = |𝐾|+ 1 ≤ 3

2
√

𝑛 + 5
2 + 1 < ⌊6

√
𝑛⌋; this last inequality

holds for all positive integers 𝑛. Thus, it remains only to show that we can place 𝑙 cops at vertices
𝑟 + 𝑘1𝑑1, 𝑟 + 𝑘2𝑑2, . . . , 𝑟 + 𝑘𝑙𝑑𝑙 for some nonnegative integers 𝑘1, . . . , 𝑘𝑙, where 𝑟 is the position of
the robber.

If a cop 𝑐 is at a vertex 𝑟 + 𝑘𝑖𝑑𝑖 following the strategy described above, we say that 𝑐 is busy. If
𝑐 is not busy, then we say that 𝑐 is free. Using this language, the strategy above requires at most 𝑙

cops to be busy. As 𝑙 = |𝐾| ≤ 3
2
√

𝑛 + 5
2 , as long as fewer than 𝑙 cops are busy, we always have at

13



least ⌊6
√

𝑛⌋ − (3
2
√

𝑛 + 5
2) + 1 > 9

2
√

𝑛 − 5
2 free cops. As the number of free cops is an integer, we

therefore always have at least ⌈9
2
√

𝑛− 5
2⌉ free cops.

We show that for any 𝑑𝑖 ∈ 𝐾, we can place a free cop at 𝑟 + 𝑘𝑖𝑑𝑖, where 𝑟 is the position of
the robber and 𝑘𝑖 is some nonnegative integer. To show this, we choose an element 𝑑𝑖 ∈ 𝐾, and
we consider the game of cops and robbers played on 𝐶𝑎𝑦(𝐺/⟨𝑑𝑖⟩, 𝜑(𝑆)), where 𝜑 : 𝐺 → 𝐺/⟨𝑑𝑖⟩ is
the natural homomorphism 𝜑 : ℎ ↦→ (ℎ + ⟨𝑑𝑖⟩)/⟨𝑑𝑖⟩. As |𝐺/⟨𝑑𝑖⟩| ≤ 𝑛

2 , there exists a strategy by
which ⌊6

√︀
𝑛/2⌋ cops can capture the robber on 𝐺/⟨𝑑𝑖⟩ by the induction hypothesis. For 𝑛 ≥ 100,

⌈9
2
√

𝑛− 5
2⌉ > ⌊6

√︀
𝑛/2⌋; therefore, ⌈9

2
√

𝑛− 5
2⌉ free cops can evaluate their positions on 𝐺/⟨𝑑𝑖⟩ using 𝜑

and follow a strategy that allows some free cop to capture the robber on 𝐺/⟨𝑑𝑖⟩. However, capturing
the robber on 𝐺/⟨𝑑𝑖⟩ is equivalent to landing on a vertex 𝑟 + 𝑘𝑖𝑑𝑖, where 𝑘𝑖 is a nonnegative integer
and 𝑟 is the position of the robber, which was our goal.

By repeating this process for each 𝑑𝑖 ∈ 𝐾, we can place 𝑙 cops at vertices 𝑟+𝑘1𝑑1, 𝑟+𝑘2𝑑2, . . . , 𝑟+
𝑘𝑙𝑑𝑙 for some nonnegative integers 𝑘1, . . . , 𝑘𝑙, where 𝑟 is the position of the robber. Then by following
the strategy above, the robber is captured after making at most 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑙− 𝑙 +1 moves.

2.2 Abelian Cayley graphs: a sharper upper bound

In this section, we will apply the ideas of the previous section in a more precise way in order to
obtain a better upper bound for the cop number of Cayley graphs on abelian groups. We will make
several changes from the previous section. First, we will consider directed Cayley graphs on abelian
groups. A directed Cayley graph on an abelian group is defined as follows.

Definition 2.2.1. Let (𝐺, +) be an abelian group, and let 𝑆 ⊆ 𝐺 be a generating set of 𝐺. The
directed Cayley graph Γ generated by 𝐺 and 𝑆 is defined as follows:

∙ 𝑉 (Γ) = 𝐺;

∙ For any 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑢𝑣 ∈ 𝐸(Γ) if and only if 𝑣 − 𝑢 ∈ 𝑆.

We write Cay(𝐺, 𝑆) to refer to the directed Cayley graph generated by 𝐺 and 𝑆.

The only difference between this definition and our original definition for a Cayley graph on an
abelian group is that we no longer require that 𝑆 = −𝑆. When 𝑆 = −𝑆, then this definition gives
us a directed Cayley graph whose edges are all bidirectional, and we may consider such a graph
to be undirected for the purposes of cops and robbers. Here, the requirement that 𝑆 generate 𝐺

ensures that the digraph Cay(𝐺, 𝑆) is strongly connected. Furthermore, in this section, when we
consider a Cayley graph generated by an abelian group 𝐺 and a generating set 𝑆 ⊆ 𝐺, we will
always assume that 0 ∈ 𝑆.

We will use the same strategy of making robber moves unsafe, as defined in the previous section,
until the robber has no safe move left and cannot avoid capture. As we will consider strategies in
which certain robber moves unsafe, it will often be convenient to define a set 𝑇 ⊆ 𝑆 consisting
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of safe moves for the robber and to assume that the robber may only play moves in 𝑇 . When we
consider such a set 𝑇 ⊆ 𝑆 and assume that the robber may only play moves in 𝑇 , we say that 𝑇 is
the moveset of the robber. The next definition gives a convenient way of writing an upper bound
for the number of cops needed to capture the robber using such a strategy.

Definition 2.2.2. Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛 and 𝑠 ≥ 1. We write 𝑐(𝑛, 𝑠, 𝑡) for the maximum number of
cops required to capture the robber on a directed Cayley graph generated by an abelian group 𝐺

of 𝑛 elements and a generating set 𝑆 ⊆ 𝐺 of 𝑠 elements, when the robber’s moveset is a set 𝑇 ⊆ 𝑆

of 𝑡 elements.

Since a graph with 𝑛 vertices always has cop number at most 𝑛, 𝑐(𝑛, 𝑠, 𝑡) has an upper bound
of 𝑛 and thus is well defined for each triple (𝑛, 𝑠, 𝑡). By this definition, if Γ is a Cayley graph over
an abelian group 𝐺 of 𝑛 elements generated by a set 𝑆 ⊆ 𝐺 of 𝑠 elements, then 𝑐(Γ) ≤ 𝑐(𝑛, 𝑠, 𝑠),
since in the standard game of cops and robbers, the robber’s moveset is the entire set 𝑆. For any
integers 1 ≤ 𝑠 ≤ 𝑛, we write 𝑐(𝑛, 𝑠, 0) = 0. The value 𝑐(𝑛, 𝑠, 0) corresponds to a game of cops and
robbers in which the robber’s moveset 𝑇 is empty. We will see that the value 𝑐(𝑛, 𝑠, 0) arises in
inductive arguments from situations in which all of the robber’s moves are already guarded by cops
and such that no additional cops are needed to capture the robber. As such, letting 𝑐(𝑛, 𝑠, 0) = 0
is a natural definition.

This section will be organized as follows. First, we will define a general strategy for capturing
a robber on a directed Cayley graph over an abelian group, and we will establish an upper bound
for the cop number of directed Cayley graphs on abelian groups. Then, we will show that the same
strategy also applies to undirected Cayley graphs on abelian groups, and we will establish a sharper
bound for the cop number of undirected Cayley graphs on abelian groups.

2.2.1 An upper bound for directed abelian Cayley graphs

In this section, we will establish an upper bound for the cop number of directed Cayley graphs on
abelian groups. As such, all graphs that we consider in this section will be directed graphs. We
will use the strategy of guarding robber moves as discussed previously. Our main tool will be the
following lemma, which essentially formalizes a general inductive strategy of capturing the robber
by guarding robber moves until no robber move is safe.

Lemma 2.2.3. Let 𝑔(𝑛, 𝑠, 𝑡) ≥ 0 be a real valued function defined for all integers 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛

and 𝑠 ≥ 1, and let ℎ(𝑛, 𝑠, 𝑡) ≥ 1 be a real-valued function defined for all integers 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛.
Suppose that 𝑔 and ℎ respect the following conditions for all 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛:

1. For any abelian group 𝐺 of 𝑛 elements with a generating set 𝑆 ⊆ 𝐺 of 𝑠 elements and a subset
𝑇 ⊆ 𝑆 of 𝑡 elements, there exists an element 𝑘 ∈ 𝐺 accounting for at least ℎ(𝑛, 𝑠, 𝑡) elements
of 𝑇 with respect to 𝑆.
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2. If 𝑛′ ≤ 𝑛
2 , 𝑠′ ≤ 𝑠, and 𝑡′ ≤ 𝑡, then either 𝑔(𝑛, 𝑠, 𝑡) ≥ 𝑐(𝑛′, 𝑠′, 𝑡′) or 𝑔(𝑛, 𝑠, 𝑡) ≥ 𝑔(𝑛′, 𝑠′, 𝑡′),.

3. If 𝑡′ ≤ 𝑡− ℎ(𝑛, 𝑠, 𝑡), then 𝑔(𝑛, 𝑠, 𝑡) ≥ 𝑔(𝑛, 𝑠, 𝑡′) + 1.

Then 𝑐(𝑛, 𝑠, 𝑡) ≤ 𝑔(𝑛, 𝑠, 𝑡).

Proof. Let 𝐺 be an abelian group generated by a set 𝑆 ⊆ 𝐺, and let 𝑇 ⊆ 𝑆. Let |𝐺| = 𝑛, |𝑆| =
𝑠, |𝑇 | = 𝑡. We show that 𝑔(𝑛, 𝑠, 𝑡) cops may capture the robber on the digraph Cay(𝐺, 𝑆) when the
robber’s moveset is 𝑇 .

We induct on 𝑛, and for fixed 𝑛, we induct on 𝑡. We show that the lemma holds when 𝑛 = 1.
When 𝑛 = 1, we must have 𝑡 = 𝑠 = 𝑛 = 1. As ℎ(𝑛, 𝑠, 𝑡) ≥ 1 and 𝑡 = 1, condition (1) implies
that ℎ(𝑛, 𝑠, 𝑡) = 1, as an element 𝑘 ∈ 𝐺 cannot account for more than 𝑡 elements in 𝑇 . Then,
by condition (3), we have that 𝑔(𝑛, 𝑠, 𝑡) ≥ 1. Furthermore, as 𝐺 is the trivial group generated by
the identity, a single cop may capture the robber on Cay(𝐺, 𝑆). Thus 𝑐(𝑛, 𝑠, 𝑡) = 1 ≤ 𝑔(𝑛, 𝑠, 𝑡).
Furthermore, when 𝑡 = 0, we have 𝑐(𝑛, 𝑠, 0) = 0 ≤ 𝑔(𝑛, 𝑠, 𝑡), and the lemma holds.

Now suppose that 𝑛 ≥ 2 is fixed and that 𝑡 ≥ 1. By condition (1), we may choose an element
𝑘 ∈ 𝐺 that accounts for at least ℎ(𝑛, 𝑠, 𝑡) elements of 𝑇 with respect to 𝑆. First, we attempt to
move a cop to a vertex 𝑟 + 𝛾𝑘, where 𝛾 is any nonnegative integer, and 𝑟 ∈ 𝐺 is the vertex of the
robber. Accomplishing this is equivalent to capturing the robber on the graph Cay(𝐺/⟨𝑘⟩, 𝜑(𝑆)),
where 𝜑 : 𝐺→ 𝐺/⟨𝑘⟩ is the homomorphism 𝑥 ↦→ 𝑥 + ⟨𝑘⟩, and letting the robber only use moves of
𝜑(𝑇 ). As 𝑘 ̸= 0, 𝑛′ = |𝐺/⟨𝑘⟩| ≤ 𝑛/2, and clearly 𝑠′ = |𝜑(𝑆)| ≤ 𝑠, and 𝑡′ = |𝜑(𝑇 )| ≤ 𝑡. Therefore, by
condition (2), 𝑔(𝑛, 𝑠, 𝑡) cops suffice to capture the robber on Cay(𝐺/⟨𝑘⟩, 𝜑(𝑆)) when the robber’s
moves are restricted to 𝜑(𝑇 ), either directly, or by the induction hypothesis if 𝑔(𝑛, 𝑠, 𝑡) ≥ 𝑔(𝑛′, 𝑠′, 𝑡′).
Hence, a cop 𝐶 successfully reaches a vertex 𝑟 + 𝛾𝑘 for some nonnegative integer 𝛾, where 𝑟 ∈ 𝐺

is the vertex of the robber.
Next, we show that at this point, 𝐶 has a strategy to restrict the robber to a moveset of size at

most 𝑡 − ℎ(𝑛, 𝑠, 𝑡). Let 𝐴 = {𝑎1, . . . , 𝑎𝑚} ⊆ 𝑇 be the set of robber moves accounted for by 𝑘 with
respect to 𝑆. If the robber plays a move 𝑎′ ̸∈ 𝐴, then 𝐶 plays 𝑎′, and 𝐶 will stay at vertex of the
form 𝑟 + 𝛾𝑘, where 𝑟 is the new position of the robber. If the robber plays a move 𝑎𝑖 ∈ 𝐴, then 𝐶

has a move 𝑏𝑖 ∈ 𝑆 such that 𝑎𝑖 − 𝑏𝑖 = 𝑘. After 𝐶 plays 𝑏𝑖, 𝐶 now occupies a vertex 𝑟 + (𝛾 − 1)𝑘,
where 𝑟 is the new position of the robber. Thus we see that whenever the robber plays a move
𝑎𝑖 ∈ 𝐴 accounted for by 𝑘, the “difference" between the robber and 𝐶 decreases by exactly 𝑘. Thus
if the robber plays a move accounted for by 𝑘 sufficiently many times (𝛾 times), then the robber
will be caught by 𝐶. Therefore, the robber must eventually stop playing all moves 𝑎𝑖 ∈ 𝐴 accounted
for by 𝑘. The number of moves 𝑎𝑖 ∈ 𝐴 accounted for by 𝑘 is at least ℎ(𝑛, 𝑠, 𝑡), and hence 𝐶 restricts
the robber to a moveset 𝑇 ∖𝐴 of size at most 𝑡− ℎ(𝑛, 𝑠, 𝑡).

Once 𝐶 has restricted the robber to a moveset of size 𝑡′ ≤ 𝑡− ℎ(𝑛, 𝑠, 𝑡), then by condition (3),
the remaining 𝑔(𝑛, 𝑠, 𝑡)− 1 ≥ 𝑔(𝑛, 𝑠, 𝑡′) cops are enough to capture the robber. This completes the
proof.
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Lemma 2.2.3 tells us that in order to bound the cop number of directed Cayley graphs on
abelian groups, it is enough to find appropriate functions 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) that satisfy the
conditions of Lemma 2.2.3 and such that 𝑔(𝑛, 𝑠, 𝑡) is not too large. In the following theorem, we
give a simple example of a pair of functions 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) that satisfy the conditions of
Lemma 2.2.3. We note that the following theorem is a generalization of a theorem of Hamidoune
[20].

Theorem 2.2.4. Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛 and 𝑠 ≥ 1. Then 𝑐(𝑛, 𝑠, 𝑡) ≤ 𝑡.

Proof. For 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, we define ℎ(𝑛, 𝑠, 𝑡) = 1, and for 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛 and 𝑠 ≥ 1, we define
𝑔(𝑛, 𝑠, 𝑡) = 𝑡. Then, for any 𝑎 ∈ 𝑇 , 𝑎 accounts for 𝑎 with respect to 𝑆, because there exists an
element 0 ∈ 𝑆 such that 𝑎 − 0 = 𝑎. Therefore, 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) respect condition (1) of
Lemma 2.2.3. It is easy to check that 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) also satisfy conditions (2) and (3) of
Lemma 2.2.3. Thus the theorem holds.

Now, we will attempt to find a pair 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) of functions that give us a better
upper bound for 𝑐(𝑛, 𝑠, 𝑡). We will define a function ℎ(𝑛, 𝑠, 𝑡) that satisfies condition (1) of the
lemma, and we will continue to use this function ℎ(𝑛, 𝑠, 𝑡) throughout the entire section.

Definition 2.2.5. For 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, we define

ℎ(𝑛, 𝑠, 𝑡) =

⎧⎨⎩1 𝑡 ≤ 𝑐
√

𝑛 + 9;
𝑡(𝑠−1)

𝑛 𝑡 > 𝑐
√

𝑛 + 9,

where 𝑐 is a fixed constant satisfying 0.7 ≤ 𝑐 ≤ 1 whose exact value we will choose later.

Lemma 2.2.6. Let 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, and let 𝐺 be an abelian group on 𝑛 elements generated by a
set 𝑆 of 𝑠 elements, and let 𝑇 ⊆ 𝑆 be a subset of 𝑡 elements. Then there exists an element 𝑘 ∈ 𝐺

accounting for at least ℎ(𝑛, 𝑠, 𝑡) elements of 𝑇 with respect to 𝑆.

Proof. When 𝑡 ≤ 𝑐
√

𝑛 + 9, let 𝑎 ∈ 𝑇 . Then 𝑎 accounts for 𝑎 with respect to 𝑆, because 0 ∈ 𝑆, and
𝑎 − 0 = 𝑎. Hence, if we let 𝑘 = 𝑎, then 𝑘 accounts for at least 1 = ℎ(𝑛, 𝑠, 𝑡) elements of 𝑇 with
respect to 𝑆.

When 𝑡 > 𝑐
√

𝑛 + 9, let 𝑀 be a multiset consisting of all differences in 𝐺 of the form 𝑎 − 𝑏,
where 𝑎 ∈ 𝑇, 𝑏 ∈ 𝑆, 𝑎 ̸= 𝑏. The number of elements in 𝑀 is equal to 𝑡(𝑠 − 1), and hence, by the
pigeonhole principle, some element of 𝐺 appears in 𝑀 at least 𝑡(𝑠−1)

𝑛 times. Let 𝑘 ∈𝑀 be such an
element. Note that 𝑘 ̸= 0. There exist at least 𝑡(𝑠−1)

𝑛 elements 𝑎𝑖 ∈ 𝑇 for which some 𝑏𝑖 ∈ 𝑆 satisfies
𝑎𝑖 − 𝑏𝑖 = 𝑘. Thus 𝑘 accounts for at least 𝑡(𝑠−1)

𝑛 elements of 𝑇 with respect to 𝑆.

Next, we will define a function 𝑔(𝑛, 𝑠, 𝑡), and our goal for the remainder of the section will be
to show that 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) satisfy the conditions of Lemma 2.2.3 and that 𝑔(𝑛, 𝑠, 𝑡) is not
too large.
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Definition 2.2.7. Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛 and 𝑠 ≥ 1. We define

𝑔(𝑛, 𝑠, 𝑡) =

⎧⎨⎩𝑡 1 ≤ 𝑡 ≤ 𝑐
√

𝑛 + 9

𝛾(𝑛, 𝑠, 𝑡) + 𝑐
√

𝑛 + 10 𝑡 > 𝑐
√

𝑛 + 9,

where 𝛾(𝑛, 𝑠, 𝑡) = log 𝑡
𝑐
√

𝑛

(︁
log 𝑛

𝑛−𝑠+1

)︁−1
, and the value 𝑐 is the same as in Definition 2.2.5.

This choice of 𝑔(𝑛, 𝑠, 𝑡) may not seem straightforward, so we present the intuition behind this
definition of 𝑔(𝑛, 𝑠, 𝑡). We suppose that for integers 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, we have an abelian group 𝐺 on
𝑛 elements generated by a set 𝑆 ⊆ 𝐺 of 𝑠 elements, and a subset 𝑇 ⊆ 𝑆 of 𝑡 elements. We would
like to estimate the number of elements of 𝐺 needed to form a set 𝐾 such that the elements of 𝐾

altogether account for each element of 𝑇 , since, as we have discussed, this will help us count the
number of cops needed to make every robber move unsafe.

In order to estimate the number of elements needed in 𝐾, we may construct 𝐾 iteratively. The
iterative construction that we describe here is a refinement of the Pairing Algorithm from Section
2.1. If 𝑡 ≤ 𝑐

√
𝑛, then it is enough just to let 𝐾 = 𝑇 , as each element 𝑎 ∈ 𝑇 accounts for itself with

respect to 𝑆. If 𝑡 > 𝑐
√

𝑛, we may choose one element 𝑘 ∈ 𝐺 to account for at least 𝑡(𝑠−1)
𝑛 elements

of 𝑇 , as in the proof of Lemma 2.2.6. More generally, we can define a recursive process that adds
elements to 𝐾, and we may run this process until at most 𝑐

√
𝑛 elements of 𝑇 are not accounted

for by 𝐾. We define 𝑧𝑖 to be the number of elements accounted for by 𝐾 after 𝑖 iterations of our
process. We immediately see that 𝑧0 = 0, and if we choose 𝑘 as described earlier during the first
iteration of our process, we may let 𝑧1 ≥ 𝑡(𝑠−1)

𝑛 . Additionally, given 𝑧𝑖−1, there are 𝑡−𝑧𝑖−1 elements
of 𝑇 not accounted for by 𝐾, and hence on the 𝑖th iteration of our procedure, we may add an
element to 𝐾 that accounts for (𝑠−1)(𝑡−𝑧𝑖−1)

𝑛 new elements of 𝑇 . Therefore, we obtain a recursive
inequality for the number of elements in 𝑇 accounted for by 𝐾 after 𝑖 iterations of our procedure:

𝑧𝑖 ≥ 𝑧𝑖−1 + (𝑠− 1)(𝑡− 𝑧𝑖−1)
𝑛

= 𝑛− 𝑠 + 1
𝑛

𝑧𝑖−1 + (𝑠− 1)𝑡
𝑛

,

which has a closed form of
𝑧𝑖 ≥ 𝑡− 𝑡

(︂
𝑛− 𝑠 + 1

𝑛

)︂𝑖

,

from standard methods for solving recursions.
Hence, after 𝑖 iterations, there are at most 𝑡

(︁
𝑛−𝑠+1

𝑛

)︁𝑖
elements of 𝑇 not accounted for by 𝐾. As

soon as the number of elements in 𝑇 not accounted for by 𝐾 is at most 𝑐
√

𝑛, we may simply add
the remaining unaccounted elements of 𝑇 to 𝐾. Therefore, the recursive method we have described
will run 𝑖 times, where 𝑖 is the smallest integer such that 𝑡

(︁
𝑛−𝑠+1

𝑛

)︁𝑖
≤ 𝑐
√

𝑛. We thus may calculate
that

𝑖 = ⌈𝛾(𝑛, 𝑠, 𝑡)⌉,
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and hence after the recursive method runs 𝑖 times, at most 𝑐
√

𝑛 elements of 𝑇 will be left unac-
counted for by 𝐾. At this point, the remaining 𝑐

√
𝑛 unaccounted elements of 𝑇 may be added to

𝐾, at which point the elements of 𝐾 altogether account for all of 𝑇 . In total, our count shows that
our set 𝐾 needs at most

⌈𝛾(𝑛, 𝑠, 𝑡)⌉+ 𝑐
√

𝑛

elements. This counting method gives us an intuition with which we define the function 𝑔(𝑛, 𝑠, 𝑡).
The extra additive constants of 𝑔(𝑛, 𝑠, 𝑡) are included for technical reasons that will become clear
later.

In the following lemmas, we will bound 𝑔(𝑛, 𝑠, 𝑡) above, and we will show that 𝑔(𝑛, 𝑠, 𝑡) and
ℎ(𝑛, 𝑠, 𝑡) satisfy conditions (2) and (3) of Lemma 2.2.3.

Lemma 2.2.8. Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛 and 𝑠 ≥ 1, and let 𝜖 = 10−6. If 𝑑 ≥ 1+𝜖
𝑐𝑒 + 𝑐, then 𝑔(𝑛, 𝑠, 𝑡) ≤

𝑑
√

𝑛 + 10.

Proof. We consider two cases :

1. If 𝑡 ≤ 𝑐
√

𝑛 + 9, then
𝑔(𝑛, 𝑠, 𝑡) = 𝑡 ≤ 𝑐

√
𝑛 + 9 < 𝑑

√
𝑛 + 9.

2. If 𝑡 > 𝑐
√

𝑛 + 9, then 10 ≤ 𝑡 ≤ 𝑛. We first note that 𝑔(𝑛, 𝑠, 𝑡) ≤ 𝑔(𝑛, 𝑠, 𝑠). We wish to find 𝛼

such that 𝛾(𝑛, 𝑠, 𝑠) ≤ 𝛼
√

𝑛. This inequality can be rewritten as

1 ≤ 𝑐
√

𝑛

𝑠

(︂
𝑛

𝑛− 𝑠 + 1

)︂𝛼
√

𝑛

= 𝑟𝛼,𝑐(𝑛, 𝑠).

One calculates that the derivative relative to 𝑠 is

𝜕𝑟𝛼,𝑐

𝜕𝑠
= 1

𝑠

(︁
𝑐𝑛𝛼

√
𝑛+1/2

)︁
(𝑛− 𝑠 + 1)−𝛼

√
𝑛

(︃
−(𝑛 + 1) + 𝑠(1 + 𝛼

√
𝑛)

𝑠(𝑛− 𝑠 + 1)

)︃
.

We see that 𝑟𝛼,𝑐(𝑛, 𝑠) achieves a minimum at 𝑠* = 𝑛+1
𝛼

√
𝑛+1 .

Hence, it suffices to find a value 𝛼 such that

𝑟𝛼,𝑐(𝑛, 𝑠*) = 𝑐

(︂
1− 1

𝑛 + 1

)︂𝛼
√

𝑛+1/2
· 1 + 𝛼

√
𝑛√

𝑛 + 1
·
(︂

1 + 1
𝛼
√

𝑛

)︂𝛼
√

𝑛

≥ 1.

As 𝑛→∞, 𝑟𝛼,𝑐(𝑛, 𝑠*) ∼ 𝑐𝛼𝑒. Therefore, if we choose 𝛼 = 1+𝜖
𝑐𝑒 , then as 𝑛→∞, 𝑟𝛼,𝑐(𝑛, 𝑠*)→

1 + 𝜖. Furthermore, one may verify computationally that for values 0.7 ≤ 𝑐 ≤ 1 and 𝑛 ≥ 10,
𝑟𝛼,𝑐(𝑛, 𝑠*)− 1 is positive and approaches 𝜖.

Therefore, we choose 𝛼 = 1+𝜖
𝑐𝑒 , and then 𝑔(𝑛, 𝑠, 𝑡) ≤

(︁
1+𝜖
𝑐𝑒 + 𝑐

)︁√
𝑛 + 10 ≤ 𝑑

√
𝑛 + 10.

19



Lemma 2.2.9. Let 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, and let 𝜖 = 10−6. If there exists a real number 𝑑 such that
𝑑 ≥ 1+𝜖

𝑐𝑒 + 𝑐 and 𝑐 ≥ 𝑑√
2 , then 𝑔(𝑛, 𝑠, 𝑡) respects condition (2) of Lemma 2.2.3.

Proof. Let 𝑛′ ≤ 𝑛
2 , 𝑠′ ≤ 𝑠, and 𝑡′ ≤ 𝑡.

1. If 𝑡 ≤ 𝑐
√

𝑛 + 9, then
𝑔(𝑛, 𝑠, 𝑡) = 𝑡 ≥ 𝑡′ ≥ 𝑐(𝑛′, 𝑠′, 𝑡′)

by Theorem 2.2.4.

2. If 𝑡 > 𝑐
√

𝑛 + 9, then by Lemma 2.2.8 and our hypotheses on 𝑐, 𝑑,

𝑔(𝑛, 𝑠, 𝑡) > 𝑐
√

𝑛 + 10 ≥ 𝑑
√︁

𝑛/2 + 10 > 𝑑
√

𝑛′ + 10 ≥ 𝑔(𝑛′, 𝑠′, 𝑡′),

when 𝑡′ > 𝑐
√︀

𝑛/2 + 9, and

𝑔(𝑛, 𝑠, 𝑡) > 𝑐
√

𝑛 + 10 ≥ 𝑡′ ≥ 𝑐(𝑛′, 𝑠′, 𝑡′),

when 𝑡′ ≤ 𝑐
√︀

𝑛/2 + 9, by Theorem 2.2.4.

Lemma 2.2.10. Let 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛. Then 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) respect condition (3) of Lemma
2.2.3.

Proof. Consider a value 𝑡′ ≤ 𝑡− ℎ(𝑛, 𝑠, 𝑡).
We consider three cases :

1. If 2 ≤ 𝑡 ≤ 𝑐
√

𝑛 + 9, then ℎ(𝑛, 𝑠, 𝑡) = 1, and thus 𝑡 ≥ 𝑡′ + 1. Then,

𝑔(𝑛, 𝑠, 𝑡) = 𝑡 ≥ 𝑡′ + 1 = 𝑔(𝑛, 𝑠, 𝑡′) + 1

2. If 𝑡 > 𝑐
√

𝑛 + 9 and 𝑡′ ≤ 𝑐
√

𝑛 + 9, then

𝑔(𝑛, 𝑠, 𝑡) = 𝛾(𝑛, 𝑠, 𝑡) + 𝑐
√

𝑛 + 10 ≥ 𝑡′ + 1 = 𝑔(𝑛, 𝑠, 𝑡′) + 1

3. If 𝑡, 𝑡′ > 𝑐
√

𝑛 + 1, we know that 𝑡′ ≤ 𝑡− 𝑡(𝑠−1)
𝑛 = 𝑡

(︁
𝑛−𝑠+1

𝑛

)︁
.

Thus,

𝑔(𝑛, 𝑠, 𝑡) = 𝛾(𝑛, 𝑠, 𝑡) + 𝑐
√

𝑛 + 10 ≥ log
(︂

𝑡′

𝑐
√

𝑛
· 𝑛

𝑛− 𝑠 + 1

)︂(︂
log 𝑛

𝑛− 𝑠 + 1

)︂−1
+ 𝑐
√

𝑛 + 10

= 𝛾(𝑛, 𝑠, 𝑡′) + 1 + 𝑐
√

𝑛 + 10 = 𝑔(𝑛, 𝑠, 𝑡′) + 1.
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We now can prove the following result.

Theorem 2.2.11. The cop number of any directed abelian Cayley graph on 𝑛 vertices is at most
1.3328

√
𝑛 + 10.

Proof. We let 𝜖 = 10−6. We first find values 𝑐 and 𝑑 such that 𝑐 ≥ 𝑑√
2 and 𝑑 ≥ 1+𝜖

𝑐𝑒 +𝑐 which minimize

𝑑. A computation shows that the optimal solution is 𝑐 =
√︂

1+𝜖

(√
2−1)𝑒

≈ 0.94 and 𝑑 =
√︂

2(1+𝜖)
(√

2−1)𝑒
<

1.3328. Then, by the lemmas of this section, 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) satisfy all three conditions of
Lemma 2.2.3. Hence, by Lemmas 2.2.3 and 2.2.8, 𝑐(Cay(𝐺, 𝑆)) ≤ 𝑐(𝑛, 𝑠, 𝑠) ≤ 𝑔(𝑛, 𝑠, 𝑠) ≤ 𝑑

√
𝑛 +

10.

By considering only abelian groups of odd size, we may obtain a slightly better bound.

Theorem 2.2.12. Let 𝐺 be an abelian group with an odd number 𝑛 of elements, and let 𝑆 ⊆ 𝐺 be
a generating set of 𝐺. Then 𝑐(Cay(𝐺, 𝑆)) ≤ 1.2279

√
𝑛 + 10.

Proof. In condition (2) of Lemma 2.2.3, we require 𝑛′ ≤ 𝑛
2 because of the bound |𝐺/⟨𝑘⟩| ≤ 𝑛/2 for

any element 𝑘 ∈ 𝐺, 𝑘 ̸= 0. However, if 𝑛 is odd, then we know that |𝐺/⟨𝑘⟩| ≤ 𝑛/3, so we only need
to require that 𝑛′ ≤ 𝑛

3 in this condition. Hence, we may relax the requirement 𝑐 ≥ 𝑑√
2 from Lemma

2.2.9 to 𝑐 ≥ 𝑑√
3 .

Then, minimizing 𝑑 with respect to 𝑐 ≥ 𝑑√
3 and 𝑑 ≥ 1+𝜖

𝑐𝑒 + 𝑐 yields the solution 𝑐 =
√︁

1+𝜖
(
√

3−1)𝑒 ≈

0.71, 𝑑 =
√︂

3(1+𝜖)
(
√

3−1)𝑒 < 1.2279. Then the result follows as Theorem 2.2.11.

2.2.2 An upper bound for undirected abelian Cayley graphs

In this section, we will establish an upper bound for the cop number of undirected Cayley graphs
on abelian groups. We realize an undirected Cayley graph as a directed Cayley graph on an abelian
group 𝐺 generated by a set 𝑆 ⊆ 𝐺 satisfying 𝑆 = −𝑆. We will define a value 𝑐𝑢(𝑛, 𝑠, 𝑡), which
is a counterpart of 𝑐(𝑛, 𝑠, 𝑡) specifically suited to Cayley graphs Cay(𝐺, 𝑆) on abelian groups 𝐺

generated by sets 𝑆 satsifying 𝑆 = −𝑆. By bounding 𝑐𝑢(𝑛, 𝑠, 𝑡), we will obtain a bound for the cop
number of undirected abelian Cayley graphs.

Definition 2.2.13. Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛 and 𝑠 ≥ 1. We write 𝑐𝑢(𝑛, 𝑠, 𝑡) for the maximum number of
cops required to capture the robber on an undirected Cayley graph generated by an abelian group
𝐺 of 𝑛 elements and a generating set 𝑆 ⊆ 𝐺 of 𝑠 elements satisfying 𝑆 = −𝑆, when the robber’s
moveset is a set 𝑇 ⊆ 𝑆 of 𝑡 elements.

As before, for 1 ≤ 𝑠 ≤ 𝑛, we let 𝑐𝑢(𝑛, 𝑠, 0) = 0.

21



Our general approach in this section will be very similar to that of Section 2.2.1. We will
establish a lemma analagous to Lemma 2.2.3 that bounds 𝑐𝑢(𝑛, 𝑠, 𝑡), and we will define functions 𝑔

and ℎ that satisfy our lemma and such that 𝑔 is not too large. Note that the functions 𝑔 and ℎ that
we will define in this section are not the same as the functions 𝑔 and ℎ from the previous section.
As this section follows the same approach as Section 2.2.1, our presentation will be terser.

Lemma 2.2.14. Let 𝑔(𝑛, 𝑠, 𝑡) ≥ 0 be a real valued function defined for all integers 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛

and 𝑠 ≥ 1, and let ℎ(𝑛, 𝑠, 𝑡) ≥ 1 be a real-valued function defined for all integers 3 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛.
Suppose that 𝑔 and ℎ respect the following conditions for all 3 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛:

1. For any abelian group 𝐺 of 𝑛 elements with a generating set 𝑆 = −𝑆 of 𝑠 elements and a
subset 𝑇 ⊆ 𝑆 of 𝑡 elements, there exists an element 𝑘 ∈ 𝐺 accounting for at least ℎ(𝑛, 𝑠, 𝑡)
elements of 𝑇 with respect to 𝑆.

2. Either 𝑔(𝑛, 𝑠, 𝑡) ≥ 𝑐𝑢(𝑛′, 𝑠′, 𝑡′), or 𝑔(𝑛, 𝑠, 𝑡) ≥ 𝑔(𝑛′, 𝑠′, 𝑡′) for 𝑛′ ≤ 𝑛
2 , 𝑠′ ≤ 𝑠, and 𝑡′ ≤ 𝑡.

3. 𝑔(𝑛, 𝑠, 𝑡) ≥ 𝑔(𝑛, 𝑠, 𝑡′) + 1 if 𝑡′ ≤ 𝑡− ℎ(𝑛, 𝑠, 𝑡).

Then 𝑐𝑢(𝑛, 𝑠, 𝑡) ≤ 𝑔(𝑛, 𝑠, 𝑡) + 2.

Proof. We prove the statement by induction on 𝑛. For fixed 𝑛, we induct on 𝑡.
Suppose that 𝑡 ≤ 2. If 𝑡 = 0, then 𝑐𝑢(𝑛, 𝑠, 𝑡) = 0, and we are done. If 𝑡 = 1, then the robber

only has one legal move, and hence is restricted to a directed cycle. Thus, when 𝑡 = 1, a single cop
may capture the robber.

When 𝑡 = 2, the robber is restricted to two moves 𝑎 and 𝑏. If 𝑎 = −𝑏, then the robber is restricted
to a cycle, and two cops may capture the robber. Otherwise, 𝑎 + 𝑏 ̸= 0. In this case, we aim to
place a cop at a vertex 𝑟 + 𝛾(𝑎 + 𝑏), where 𝛾 is an integer, and 𝑟 ∈ 𝐺 is the vertex of the robber.
Accomplishing this is the same as capturing the robber on the Cayley graph Cay(𝐺/⟨𝑎 + 𝑏⟩, 𝜑(𝑆)),
where 𝜑 : 𝐺 → 𝐺/⟨𝑎 + 𝑏⟩ is the homomorphism 𝑥 ↦→ 𝑥 + ⟨𝑎 + 𝑏⟩, and the robber is restricted to
moves in 𝜑(𝑇 ). In the game on Cay(𝐺/⟨𝑎 + 𝑏⟩, 𝜑(𝑆)), 𝜑(𝑎) = −𝜑(𝑏), so the robber is restricted to a
cycle, and two cops may capture the robber in this game. Therefore, a cop 𝐶 successfully reaches
a vertex 𝑟 + 𝛾(𝑎 + 𝑏), where 𝛾 is an integer, and 𝑟 ∈ 𝐺 is the vertex of the robber.

Now, whenever the robber plays the move 𝑎, 𝐶 responds with −𝑏, after which 𝐶 occupies the
vertex 𝑟 + (𝛾− 1)(𝑎 + 𝑏), where 𝑟 is the new position of the robber. Similarly, if the robber plays 𝑏,
then 𝐶 responds with −𝑎, after which 𝐶 again occupies the vertex 𝑟+(𝛾−1)(𝑎+𝑏). Therefore, after
the robber plays any 𝛾 moves, the robber will be captured by 𝐶. Hence, in all cases, 𝑐𝑢(𝑔, 𝑠, 𝑡) ≤ 2.
Note that these base cases of 𝑡 ≤ 2 also cover the base cases of 𝑛 ≤ 2.

When 𝑡 ≥ 3, we use the same inductive strategy as Lemma 2.2.3.

Similarly to Lemma 2.2.3, we may define a pair 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) of functions from which
Lemma 2.2.14 gives an upper bound for 𝑐𝑢(𝑛, 𝑠, 𝑡). We show this pair of functions in the following
theorem, which is a generalization of Theorem 2.1.1 with a small additive error.
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Theorem 2.2.15. Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛 and 𝑠 ≥ 1. Then 𝑐𝑢(𝑛, 𝑠, 𝑡) ≤ 𝑡
2 + 2.

Proof. For 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛 and 𝑠 ≥ 1, we let 𝑔(𝑛, 𝑠, 𝑡) = 𝑡
2 . For 3 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, we let ℎ(𝑛, 𝑠, 𝑡) = 2.

Whenever 𝑇 contains at least three elements, we may always choose elements 𝑎, 𝑏 ∈ 𝑇 such that
𝑎 + 𝑏 ̸= 0𝐺. Then, letting 𝑘 = 𝑎 + 𝑏, we see that 𝑘 accounts for 𝑎, as −𝑏 ∈ 𝑆, and 𝑎 − (−𝑏) = 𝑘.
Furthermore, 𝑘 accounts for 𝑏, as −𝑎 ∈ 𝑆, and 𝑏− (−𝑎) = 𝑘. Therefore, 𝑘 accounts for two elements
of 𝑇 with respect to 𝑆, and hence condition (1) of Lemma 2.2.14 is satisifed.

It is easy to check that conditions (2) and (3) of Lemma 2.2.14 hold with our choice of 𝑔(𝑛, 𝑠, 𝑡)
and ℎ(𝑛, 𝑠, 𝑡). Therefore, 𝑐𝑢(𝑛, 𝑠, 𝑡) ≤ 𝑡

2 + 2.

We again define a function ℎ(𝑛, 𝑠, 𝑡) that satisfies condition (1) of Lemma 2.2.14, and we will
use this definition of ℎ(𝑛, 𝑠, 𝑡) throughout the entire section. We note that the function ℎ we define
here is different from the function ℎ of the previous section.

Definition 2.2.16. For 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, we define

ℎ(𝑛, 𝑠, 𝑡) =

⎧⎨⎩2 𝑡 ≤ 𝑐
√

𝑛 + 3
𝑡(𝑠−1)

𝑛 𝑡 > 𝑐
√

𝑛 + 3

where 𝑐 is a fixed constant satisfying 0.85 ≤ 𝑐 ≤ 1.5 whose exact value we will choose later.

Lemma 2.2.17. Let 3 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, and let 𝐺 be an abelian group on 𝑛 elements generated by a
set 𝑆 = −𝑆 of 𝑠 elements, and let 𝑇 ⊆ 𝑆 be a subset of 𝑡 elements. Then there exists an element
𝑘 ∈ 𝐺 accounting for at least ℎ(𝑛, 𝑠, 𝑡) elements of 𝑇 with respect to 𝑆.

Proof. When 3 ≤ 𝑡 ≤ 𝑐
√

𝑛 + 3, let 𝑎, 𝑏 ∈ 𝑇 such that 𝑘 = 𝑎 + 𝑏 ̸= 0. Then for 𝑎, we have −𝑏 ∈ 𝑆,
𝑎− (−𝑏) = 𝑘, and for 𝑏, we have −𝑎 ∈ 𝑆, and 𝑏− (−𝑎) = 𝑘. Therefore, 𝑘 accounts for at least two
elements of 𝑇 with respect to 𝑆.

When 𝑡 > 𝑐
√

𝑛 + 3, the proof is the same as in Lemma 2.2.6.

Now, we define a function 𝑔 that we will use for the entire section. Again, the function 𝑔 we
define here is different from the function 𝑔 of the previous section.

Definition 2.2.18. Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛 and 𝑠 ≥ 1. We define

𝑔(𝑛, 𝑠, 𝑡) =

⎧⎨⎩
𝑡
2 + 2 1 ≤ 𝑡 ≤ 𝑐

√
𝑛 + 3

𝛾(𝑛, 𝑠, 𝑡) + 𝑐
2
√

𝑛 + 5 𝑡 > 𝑐
√

𝑛 + 3,

where, again, 𝛾(𝑛, 𝑠, 𝑡) = log 𝑡
𝑐
√

𝑛

(︁
log 𝑛

𝑛−𝑠+1

)︁−1
, and the value 𝑐 is the same as in Definition 2.2.16.

Lemma 2.2.19. Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, 𝑠 ≥ 1, and let 𝜖 = 10−6. If 𝑑 ≥ 1+𝜖
𝑐𝑒 + 𝑐

2 , then 𝑔(𝑛, 𝑠, 𝑡) ≤
𝑑
√

𝑛 + 5.
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Proof. We consider two cases :

1. If 𝑡 ≤ 𝑐
√

𝑛 + 3, then
𝑔(𝑛, 𝑠, 𝑡) = 𝑡

2 + 2 <
𝑐

2
√

𝑛 + 5 < 𝑑
√

𝑛 + 5.

2. If 𝑡 > 𝑐
√

𝑛 + 3, then 𝑛 ≥ 𝑡 ≥ 4. We again note that 𝑔(𝑛, 𝑠, 𝑡) ≤ 𝑔(𝑛, 𝑠, 𝑠). We wish to find 𝛼

such that 𝛾(𝑛, 𝑠, 𝑠) ≤ 𝛼
√

𝑛. This inequality can be rewritten as

1 ≤ 𝑐
√

𝑛

𝑠

(︂
𝑛

𝑛− 𝑠 + 1

)︂𝛼
√

𝑛

= 𝑟𝛼,𝑐(𝑛, 𝑠).

As in Lemma 2.2.8, 𝑟𝛼,𝑐(𝑛, 𝑠) achieves a minimum at 𝑠* = 𝑛+1
𝛼

√
𝑛+1 .

Hence, it suffices to find a value 𝛼 such that

𝑟𝛼,𝑐(𝑛, 𝑠*) = 𝑐

(︂
1− 1

𝑛 + 1

)︂𝛼
√

𝑛+ 1
2
· 1 + 𝛼

√
𝑛√

𝑛 + 1
·
(︂

1 + 1
𝛼
√

𝑛

)︂𝛼
√

𝑛

≥ 1.

As 𝑛→∞, 𝑟𝛼,𝑐(𝑛, 𝑠*) ∼ 𝑐𝛼𝑒. Therefore, if we choose 𝛼 = 1+𝜖
𝑐𝑒 , then as 𝑛→∞, 𝑟𝛼,𝑐(𝑛, 𝑠*)→

1 + 𝜖. Furthermore, one may verify computationally that for values 0.85 ≤ 𝑐 ≤ 1.5 and 𝑛 ≥ 4,
𝑟𝛼,𝑐(𝑛, 𝑠*)− 1 is positive and approaches 𝜖.

Therefore, we choose 𝛼 = 1+𝜖
𝑐𝑒 , and then 𝑔(𝑛, 𝑠, 𝑡) ≤

(︁
1+𝜖
𝑐𝑒 + 𝑐

2

)︁√
𝑛 + 5 ≤ 𝑑

√
𝑛 + 5.

Lemma 2.2.20. Let 3 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛, and let 𝜖 = 10−6. If there exists a real number 𝑑 such that
𝑑 ≥ 1+𝜖

𝑐𝑒 + 𝑐
2 and 𝑐

2 ≥
𝑑√
2 , then 𝑔(𝑛, 𝑠, 𝑡) respects condition (2) of Lemma 2.2.3.

Proof. Let 𝑛′ ≤ 𝑛
2 , 𝑠′ ≤ 𝑠, and 𝑡′ ≤ 𝑡.

1. If 𝑡 ≤ 𝑐
√

𝑛 + 3, then

𝑔(𝑛, 𝑠, 𝑡) = 𝑡

2 + 2 ≥ 𝑡′

2 + 2 ≥ 𝑐𝑢(𝑛′, 𝑠′, 𝑡′)

by Theorem 2.2.15.

2. If 𝑡 > 𝑐
√

𝑛 + 3, then by Lemma 2.2.19 and our hypotheses on 𝑐 and 𝑑,

𝑔(𝑛, 𝑠, 𝑡) >
𝑐

2
√

𝑛 + 5 ≥ 𝑑
√︁

𝑛/2 + 5 ≥ 𝑑
√

𝑛′ + 5 ≥ 𝑔(𝑛′, 𝑠′, 𝑡′),

when 𝑡′ > 𝑐
√︀

𝑛/2 + 3, and

𝑔(𝑛, 𝑠, 𝑡) >
𝑐

2
√

𝑛 + 5 ≥ 𝑡′

2 + 2 ≥ 𝑐𝑢(𝑛′, 𝑠′, 𝑡′),

when 𝑡′ ≤ 𝑐
√︀

𝑛/2 + 3, by Theorem 2.2.15.
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Lemma 2.2.21. Let 3 ≤ 𝑡 ≤ 𝑠 ≤ 𝑛. Then 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) respect condition (3) of Lemma
2.2.3.

Proof. Consider a value 𝑡′ ≤ 𝑡− ℎ(𝑛, 𝑠, 𝑡).
We consider three cases :

1. If 2 ≤ 𝑡 ≤ 𝑐
√

𝑛 + 3, then ℎ(𝑛, 𝑠, 𝑡) = 2, and thus 𝑡 ≥ 𝑡′ + 2. Then,

𝑔(𝑛, 𝑠, 𝑡) = 𝑡

2 + 2 ≥ 𝑡′

2 + 3 = 𝑔(𝑛, 𝑠, 𝑡′) + 1

2. If 𝑡 > 𝑐
√

𝑛 + 3 and 𝑡′ ≤ 𝑐
√

𝑛 + 3, then

𝑔(𝑛, 𝑠, 𝑡) = 𝛾(𝑛, 𝑠, 𝑡) + 𝑐

2
√

𝑛 + 5 >
𝑡′

2 + 3 = 𝑔(𝑛, 𝑠, 𝑡′) + 1

3. If 𝑡, 𝑡′ > 𝑐
√

𝑛 + 3, we know that 𝑡′ ≤ 𝑡− 𝑡(𝑠−1)
𝑛 = 𝑡

(︁
𝑛−𝑠+1

𝑛

)︁
.

Thus,

𝑔(𝑛, 𝑠, 𝑡) = 𝛾(𝑛, 𝑠, 𝑡) + 𝑐

2
√

𝑛 + 5 ≥ log
(︂

𝑡′

𝑐
√

𝑛
· 𝑛

𝑛− 𝑠 + 1

)︂(︂
log 𝑛

𝑛− 𝑠 + 1

)︂−1
+ 𝑐

2
√

𝑛 + 5

= 𝛾(𝑛, 𝑠, 𝑡′) + 1 + 𝑐

2
√

𝑛 + 5 = 𝑔(𝑛, 𝑠, 𝑡′) + 1.

Theorem 2.2.22. The cop number of an undirected Cayley graph on an abelian group of 𝑛 elements
is at most 0.9425

√
𝑛 + 7.

Proof. Let 𝐺 be an abelian group on 𝑛 vertices generated by set 𝑆 ⊆ 𝐺, 𝑆 = −𝑆 of 𝑠 elements.
We let 𝜖 = 10−6. We first find values 𝑐 and 𝑑 satisfying 𝑐

2 ≥
𝑑√
2 , 𝑑 ≥ 1+𝜖

𝑐𝑒 + 𝑐
2 , which minimize 𝑑.

A computation of such values 𝑐, 𝑑 yields 𝑐 =
√︂

2(1+𝜖)
𝑒(

√
2−1) ≈ 1.33 and 𝑑 =

√︁
1+𝜖

𝑒(
√

2−1) < 0.9425. Then,
by the lemmas of this section, 𝑔(𝑛, 𝑠, 𝑡) and ℎ(𝑛, 𝑠, 𝑡) satisfy all three conditions of Lemma 2.2.14.
Hence, by Lemmas 2.2.14 and 2.2.19, 𝑐(Cay(𝐺, 𝑆)) ≤ 𝑐(𝑛, 𝑠, 𝑠) ≤ 𝑔(𝑛, 𝑠, 𝑠) + 2 ≤ 𝑑

√
𝑛 + 7.

A strengthening similar to Theorem 2.2.12 is possible when 𝑛 is odd.

Theorem 2.2.23. Let 𝐺 be an abelian group with an odd number 𝑛 of elements. Let 𝑆 ⊆ 𝐺 be a
generating set of 𝐺, and let 𝑆 = −𝑆. Then 𝑐(Cay(𝐺, 𝑆)) ≤ 0.8683

√
𝑛 + 7.
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Proof. In condition (2) of Lemma 2.2.14, we require 𝑛′ ≤ 𝑛
2 because of the bound |𝐺/⟨𝑘⟩| ≤ 𝑛/2

for any element 𝑘 ∈ 𝐺, 𝑘 ̸= 0. However, if 𝑛 is odd, then we know that |𝐺/⟨𝑘⟩| ≤ 𝑛/3, so we only
need to require that 𝑛′ ≤ 𝑛

3 in this condition. Hence, we may relax the requirement 𝑐
2 ≥

𝑑√
2 from

Lemma 2.2.20 to 𝑐
2 ≥

𝑑√
3 .

Then, minimizing 𝑑 with respect to 𝑐
2 ≥

𝑑√
3 and 𝑑 ≥ 1+𝜖

𝑐𝑒 + 𝑐
2 yields the solution 𝑐 =

√︁
1+𝜖

(
√

3−1)𝑒 ≈

1.00, 𝑑 = 1
2

√︂
3(1+𝜖)

( 𝑒
2 (

√
3−1)) < 0.8683. Then the result follows as in Theorem 2.2.22.

Theorem 2.2.24. Let 𝐺 be an abelian group with 𝑛 elements such that 𝑛 is not a multiple of 2 or
3. Let 𝑆 ⊆ 𝐺 be a generating set of 𝐺, and let 𝑆 = −𝑆. Then 𝑐(Cay(𝐺, 𝑆)) ≤ 0.8578

√
𝑛 + 7.

Proof. We let 𝜖 = 10−6. As 2 and 3 do not divide 𝑛, in condition (2) of Lemma 2.2.14, we only need
to require 𝑛′ ≤ 𝑛

5 . Hence, we may relax the requirement 𝑐
2 ≥

𝑑√
2 from Lemma 2.2.20 to 𝑐

2 ≥
𝑑√
5 .

Then, minimizing 𝑑 with respect to 𝑐
2 ≥

𝑑√
5 and 𝑑 ≥ 1+𝜖

𝑐𝑒 + 𝑐
2 yields the solution 𝑐 = 𝑑 =√︁

2(1+𝜖)
𝑒 ≈ 0.85776. Then the result follows as in the Theorem 2.2.22.

2.3 Meyniel extremal families

Meyniel’s conjecture asserts that the cop number of a graph on 𝑛 vertices is of the form 𝑂(
√

𝑛). For a
family of graphs 𝒢, Meyniel’s conjecture would imply that a lower bound of the form 𝑐(𝐺) = Ω(

√
𝑛)

for each graph 𝐺 ∈ 𝒢, |𝐺| = 𝑛 is as large as possible. A family 𝒢 of graphs for which such a lower
bound holds for the cop number of graphs in 𝒢 is called a Meyniel extremal family. Baird and
Bonato show that there exists a family of projective plane incidence graphs on 𝑛 vertices with cop
number at least

√︁
𝑛
2 [4], and Hasiri and Shinkar show that there exists a family of abelian Cayley

graphs on 𝑛 vertices with cop number at least
√︁

𝑛
5 [21]. The result of Hasiri and Shinkar shows

that the bound of Theorem 2.2.22 is best possible up to a constant factor.
We will give constructions for undirected and directed abelian Cayley graphs with cop number

Θ(
√

𝑛). Our Cayley graph constructions, which use finite fields for groups, will show that the
bounds given in Theorem 2.2.11 and Theorem 2.2.22 are best possible up to a constant factor. Our
construction for undirected abelian Cayley graphs will improve the result of Hasiri and Shinkar. We
will also give a construction of a Cayley graph on a generalized dihedral group whose lower bound
for cop number asymptotically matches the currently best known lower bounds for cop number in
terms of number of vertices.

2.3.1 Cayley graphs on abelian groups

We will consider an abelian group 𝐺. We let 0 ∈ 𝑆 in order to simplify notation. When a cop or
robber does not move during some turn, we consider that this cop or robber plays the move 0.

Let 𝑝 > 3 be a prime, and let 𝐺 be the additive group (Z/𝑝Z)2. Note that Z/𝑝Z is in fact a
field, and we will apply addition and multiplication on Z/𝑝Z in the standard way. Let 𝑆1 and 𝑆2
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be defined as follows:
𝑆1 = {(𝑥, 𝑥3) : 𝑥 ∈ Z/𝑝Z},

𝑆2 = {(𝑥, 𝑥2) : 𝑥 ∈ Z/𝑝Z}.

We note that our sets 𝑆1 and 𝑆2 appear as examples of Sidon subsets for certain finite abelian
groups in a paper by L. Babai and V. Sós [3].

It is straightforward to show that 𝑆1 and 𝑆2 are both generating sets of 𝐺. We note that 𝑆1 is
also closed under inverses, while 𝑆2 is not closed under inverses in general. Therefore, we consider
Cay(𝐺, 𝑆1) to be an undirected abelian Cayley graph, and we consider Cay(𝐺, 𝑆2) to be a directed
abelian Cayley graph. We note that |𝐺| = 𝑝2. The next two theorems show that both Cay(𝐺, 𝑆1)
and Cay(𝐺, 𝑆2) have a cop number of the form Θ(𝑝).

Theorem 2.3.1. Let 𝐺, 𝑆1, and 𝑝 be as in the construction above. Then the cop number of
Cay(𝐺, 𝑆1) is exactly ⌈1

2𝑝⌉ = ⌈1
2
√︀
|𝐺|⌉.

Proof. We first give a lower bound for the cop number of Cay(𝐺, 𝑆1). Whenever a cop is able to
capture the robber after the robber plays a move (𝑥, 𝑥3), we say that the cop guards the move
(𝑥, 𝑥3). We show that a single cop cannot simultaneously guard more than two robber moves. Let
𝑣 ∈ 𝐺 be a vertex occupied by a cop 𝐶, and let 𝑟 ∈ 𝐺 be the vertex occupied by the robber. If the
robber is not yet caught, then 𝑣 − 𝑟 = (𝑎, 𝑏), where 𝑎 and 𝑏 are not both zero. If 𝐶 guards a move
(𝑥, 𝑥3) ∈ 𝑆1, then there must exist a move (𝑦, 𝑦3) ∈ 𝑆1 by which 𝐶 can capture the robber in reply
to (𝑥, 𝑥3). It then follows that (𝑥, 𝑥3)− (𝑦, 𝑦3) = (𝑎, 𝑏). Thus 𝑥 and 𝑦 must satisfy

𝑥− 𝑦 = 𝑎

𝑥3 − 𝑦3 = 𝑏.

By substitution, we obtain the equation

𝑎3 − 3𝑎2𝑥 + 3𝑎𝑥2 = 𝑏.

We see that if 𝑎 ̸= 0, then the system of equations has at most two solutions; otherwise, 𝑎 = 𝑏 = 0.
Therefore, for fixed 𝑎 and 𝑏 not both equal to 0, there exist at most two values 𝑥 for which a
solution to the system of equations exists. Hence 𝐶 guards at most two robber moves (𝑥, 𝑥3) ∈ 𝑆1.

The robber has a total number of moves equal to |𝑆1| = 𝑝 =
√︀
|𝐺|. If the total number of cops

is less than 1
2𝑝, then the robber will always have some move that is not guarded by any cop. Then

by naively moving to an unguarded vertex on each turn, the robber can evade capture forever.
Hence the cop number of Cay(𝐺, 𝑆1) is at least 1

2𝑝 = 1
2
√︀
|𝐺|. As cop number is an integer, the cop

number of Cay(𝐺, 𝑆1) therefore is at least ⌈1
2𝑝⌉. It follows from Theorem 2.1.1 that the cop number

of Cay(𝐺, 𝑆1) is exactly ⌈1
2𝑝⌉.
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We now show an analoguous result for directed graphs.

Theorem 2.3.2. Let 𝐺 and 𝑆2 be as in the construction above. Then the cop number of the directed
graph Cay(𝐺, 𝑆2) is equal to |𝑆2| = 𝑝 =

√︀
|𝐺|.

Proof. We first give a lower bound for the cop number of Cay(𝐺, 𝑆2). Whenever a cop is able to
capture the robber after the robber plays a move (𝑥, 𝑥2), we say that the cop guards the move
(𝑥, 𝑥2). We show that a single cop cannot guard more than one robber move. Let 𝑣 ∈ 𝐺 be a vertex
occupied by a cop 𝐶, and let 𝑟 ∈ 𝐺 be the vertex occupied by the robber. If the robber is not yet
caught, then 𝑣− 𝑟 = (𝑎, 𝑏), where 𝑎 and 𝑏 are not both zero. If 𝐶 guards a move (𝑥, 𝑥2), then there
must exist a move (𝑦, 𝑦2) by which 𝐶 can capture the robber in reply to (𝑥, 𝑥2). It then follows
that (𝑥, 𝑥2)− (𝑦, 𝑦2) = (𝑎, 𝑏). Thus 𝑥 and 𝑦 must satisfy

𝑥− 𝑦 = 𝑎

𝑥2 − 𝑦2 = 𝑏.

By substitution, we obtain the equation 𝑎2 − 2𝑎𝑥 = 𝑏, from which we see that whenever 𝑎 ̸= 0,
𝑥 is uniquely determined; otherwise 𝑎 = 𝑏 = 0. Therefore, for fixed 𝑎 and 𝑏 not both equal to 0,
there exists exactly one value 𝑥 for which a solution to the system of equations exists. Hence the
cop occupying 𝐶 guards at most one robber move (𝑥, 𝑥2) ∈ 𝑆2.

The robber has a total number of moves equal to |𝑆2| = 𝑝 =
√︀
|𝐺|. If the total number of cops

is less than 𝑝, then the robber will always have some move that is not guarded by any cop. Then by
naively moving to an unguarded vertex on each turn, the robber can evade capture forever. Hence
the cop number of Cay(𝐺, 𝑆2) is at least |𝑆2| = 𝑝 =

√︀
|𝐺|.

For the upper bound, a theorem of Hamidoune states that a directed Cayley graph on an abelian
group generated by a set 𝑆 ⊆ 𝐺 satisfying 0 ∈ 𝑆 has cop number at most |𝑆| [20, Lemma 3.3].

Our construction in Theorem 2.3.2 implies that if Meyniel’s conjecture holds for strongly con-
nected directed graphs, written as 𝑐(𝐺) ≤ 𝑐

√
𝑛, then the constant must respect 𝑐 ≥ 1. Furthermore,

from Theorem 2.3.2, we can construct a Meyniel extremal family of strongly connected directed
graphs with cop number (1 − 𝑜(1))

√
𝑛. It is shown in [23] and [4] that there exist graph families

on 𝑛 vertices with cop number Ω(
√

𝑛), but our multiplicative constant of 1 − 𝑜(1) is the largest
constant of any known construction for directed graphs.

Corollary 2.3.3. For 𝑛 sufficiently large, there exists a strongly connected directed graph on 𝑛

vertices with cop number at least
√

𝑛− 2𝑛0.7625 = (1− 𝑜(1))
√

𝑛.

Proof. We borrow a lemma from number theory which tells us that for 𝑥 sufficiently large, there
exists a prime in the interval [𝑥−𝑥0.525, 𝑥] [5]. From this lemma it follows that for sufficiently large
𝑥, there exists a square of a prime in the interval [𝑥− 2𝑥0.7625, 𝑥].
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For our construction, we let 𝑛 be sufficiently large, and we choose a prime number 𝑝 with
𝑝2 ∈ [𝑛− 2𝑛0.7625, 𝑛]. We let 𝐺 = (Z/𝑝Z)2, and we let 𝑆2 be as in Theorem 2.3.2. We then attach
a sufficiently long bidirectional path to one of the vertices of Cay(𝐺, 𝑆2) to obtain a strongly
connected directed graph on 𝑛 vertices with cop number equal to 𝑐(𝐺, 𝑆2) = 𝑝 ≥

√
𝑛− 2𝑛0.7625 =

(1− 𝑜(1))
√

𝑛.

We conjecture that the constructions given in Theorems 2.3.1 and 2.3.2 have greatest possible
cop number in terms of 𝑛, up to an additive constant.

Conjecture 2.3.4. The cop number of any undirected abelian Cayley graph on 𝑛 vertices is at
most 1

2
√

𝑛 + 𝑂(1).

Conjecture 2.3.5. The cop number of any directed abelian Cayley graph on 𝑛 vertices is at most
√

𝑛 + 𝑂(1).

2.3.2 Cayley graphs on generalized dihedral groups

Finally, we will show that Cayley graphs may be used to construct graphs on 𝑛 vertices with a cop
number of at least

√︁
𝑛
2 , which is as large as the best known lower bound for cop number in terms

of vertices. We will construct a family of Cayley graphs on a generalized dihedral group; however,
for the sake of simplicity, rather than fully describing the group structure of our graph family, we
will define our construction based on an abelian group structure.

Given a prime number 𝑝 ≥ 3, we construct a graph 𝐺𝑝 as follows. For each element (𝑥, 𝑦) ∈
(Z/𝑝Z)2, we define two vertices 𝑢(𝑥,𝑦) and 𝑣(𝑥,𝑦). Then, for each vertex 𝑢(𝑥,𝑦) and each element
𝑎 ∈ Z/𝑝Z, we add an edge (𝑢(𝑥,𝑦), 𝑣(𝑥+𝑎,𝑦+𝑎2)) to 𝐺𝑝. With this construction, 𝐺𝑝 is a bipartite
𝑝-regular graph on 2𝑝2 vertices. One may show in fact that 𝐺 is a Cayley graph on the generalized
dihedral group Dih((Z/𝑝Z)2).

Theorem 2.3.6. Let 𝑝 ≥ 3 be a prime, and let 𝐺𝑝 be given as above. Then 𝑐(𝐺𝑝) ≥ 𝑝. Letting
𝑛 = |𝐺𝑝|, 𝑐(𝐺𝑝) ≥

√︁
𝑛
2 .

Proof. We claim that the girth of 𝐺𝑝 is at least 6. As 𝐺𝑝 is bipartite, it suffices to check only that
𝐺𝑝 has no 4-cycle. We may assume without loss of generality that if 𝐺𝑝 contains a 4-cycle, then
𝑢(0,0) belongs to a 4-cycle.

Let 𝐶 be a 4-cycle containing 𝑢(0,0), and let 𝑢(𝑎,𝑏) be the vertex of 𝐶 at a distance of 2 from
𝑢(0,0). As 𝑢(𝑎,𝑏) belongs to 𝐶, 𝑢(𝑎,𝑏) must be reachable by two internally disjoint 2-paths from 𝑢(0,0).

Suppose 𝑢(𝑎,𝑏) is reached from 𝑢(0,0) by two edges (𝑢(0,0), 𝑣(𝑥,𝑥2)) and (𝑢(𝑎,𝑏), 𝑣(𝑎+𝑦,𝑎+𝑦2)). It
must follow that 𝑎 = 𝑥 − 𝑦 and that 𝑏 = 𝑥2 − 𝑦2. However, as before, this gives us the equation
𝑎2−2𝑎𝑥 = 𝑏, which tells us either that 𝑥 and 𝑦 are uniquely determined or that 𝑎 = 𝑏 = 0. If 𝑥 and
𝑦 are uniquely determined, then no two disjoint 2-paths from 𝑢(0,0) to 𝑢(𝑎,𝑏) can exist. If 𝑎 = 𝑏 = 0,
then 𝐶 is not a 4-cycle. In both cases, we have a contradiction.
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Therefore, the girth of 𝐺𝑝 is at least 6. Since 𝐺𝑝 has girth at least 5, Theorem 1.3.7 then tells
us that 𝑐(𝐺𝑝) ≥ 𝛿(𝐺𝑝) = 𝑝.

We note that 𝐺𝑝 is a bipartite graph on 𝑛 vertices with Θ(𝑛3/2) edges and no 𝐾2,2, which is
best possible up to a constant factor by a theorem of Kővári, Sós, and Turán [25]. To the best of our
knowledge, this is the first example of a construction of edge-extremal 𝐾2,2-free bipartite graphs
that uses Cayley graphs.

2.4 Acknowledgment

I am grateful to Matt DeVos for his suggestion to consider Sidon subsets for constructing abelian
Cayley graphs of high cop number.
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Chapter 3

Surrounding cops and robbers

3.1 Embedded and minor-free graphs

3.1.1 Introduction

We will consider the game of surrounding cops and robbers on graphs embedded in surfaces. We
recall the rules for surrounding cops and robbers. The game of surrounding cops and robbers is
played by two players: Alice and Bob. Again, Alice controls a team of cops, and Bob controls
a robber. The players move their cops and robbers according to the same rules as the original
game of cops and robbers. Unlike the original game of cops and robbers, in surrounding cops and
robbers, Alice wins the game whenever every neighbor of the robber’s vertex is occupied by a cop.
Furthermore, Bob may not end a turn with the robber at the same vertex as a cop. For a graph 𝐺,
we write 𝑠(𝐺) for the surrounding cop number, which is the minumum number of cops that Alice
needs in order to have a winning strategy under these rules.

As stated before, these rule changes bring about some differences between the original game
of cops and robbers and the surrounding variant of cops and robbers. Firstly, in the surrounding
variant, Alice’s task is more difficult than in the traditional version. Indeed, if Alice moves a cop
to the same vertex as the robber, she does not win; rather, the robber is simply forced to move
to a different vertex, as Bob may not leave the robber at the same vertex as a cop. Therefore, in
the surrounding variant, “capturing" the robber with a cop does not win the game for Alice and
serves only to force the robber to move. Secondly, unlike in the traditional game, it is safe for Bob
to move the robber to a vertex that neighbors a cop, as being “captured" by a cop poses no threat.
Therefore, if Alice wishes to prevent the robber from moving to a certain vertex 𝑣, she must place a
cop at 𝑣, since Bob may not move the robber to a vertex that is already occupied by a cop. Finally,
we see that any winning strategy for Alice in the surrounding variant also gives a winning strategy
in the traditional version of cops and robbers, as a robber that is surrounded in the traditional
version of the game may not avoid capture.

We will consider planar graphs, bipartite planar graphs, toroidal graphs, graphs of bounded
genus, and in a more general flavor, graphs with an excluded minor. Our main tool will be the
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guarding of geodesic paths, introduced by Aigner and Fromme in [1] and used by many other
authors (c.f. [27], [31], [33]). Given a graph 𝐺, we will choose certain geodesic paths in 𝐺 to be
guarded. We will refer to the robber’s region or territory as the component occupied by the robber
in the graph obtained by removing guarded paths from 𝐺. We will successively make the robber’s
territory smaller until the robber’s territory contains a single vertex, at which point we will show
that the robber is surrounded.

3.1.2 Planar graphs

In this section, we will consider the game of surrounding cops and robbers on planar graphs. We
will show that for planar graphs 𝐺, 𝑠(𝐺) ≤ 7. We will need some preliminaries. We will say that a
(𝑢, 𝑣)-path is a path with endpoints 𝑢, 𝑣. We recall that if 𝑃 is a (𝑢, 𝑣)-path of length 𝑙 in a graph
𝐺, then 𝑃 is geodesic with respect to 𝐺 if all (𝑢, 𝑣)-paths in 𝐺 have length at least 𝑙.

Definition 3.1.1. Let 𝐺 be a graph with a subgraph 𝐻. We say that 𝐻 is geodesically closed with
respect to 𝐺 if for any 𝑢, 𝑣 ∈ 𝑉 (𝐻), every geodesic (𝑢, 𝑣)-path in 𝐺 is a subgraph of 𝐻.

The following observation is a common tool in methods that use geodesic paths. We include a
proof for completeness.

Observation 3.1.2. Let 𝐺 be a graph, and let 𝑃 = (𝑣0, 𝑣1, . . . , 𝑣𝑘) be a geodesic path in 𝐺. Suppose
that a vertex 𝑤 ∈ 𝑉 (𝐺) is adjacent to 𝑣𝑗 ∈ 𝑉 (𝑃 ). Then 𝑗 − 1 ≤ 𝑑𝑖𝑠𝑡(𝑣0, 𝑤) ≤ 𝑗 + 1.

Proof. The path (𝑣0, . . . , 𝑣𝑗 , 𝑤) is a path of length 𝑗 + 1, so dist(𝑣0, 𝑤) ≤ 𝑗 + 1. Suppose that
dist(𝑣0, 𝑤) ≤ 𝑗 − 2. Then dist(𝑣0, 𝑣𝑗) ≤ 𝑗 − 1, implying dist(𝑣0, 𝑣𝑘) ≤ 𝑘 − 1, which contradicts the
assumption that 𝑃 is a geodesic path.

We will show that in the surrounding game, three cops may guard a geodesic path. In compar-
ison, Aigner and Fromme show in [1] that in the traditional game of cops and robbers, a single cop
may guard a geodesic path. Aigner and Fromme’s strategy uses the concept of the robber’s shadow,
which is defined as follows.

Definition 3.1.3. Let 𝐺 be a graph, and let 𝑃 = (𝑣0, . . . , 𝑣𝑘) be a geodesic path of 𝐺. Suppose
that the robber occupies a vertex 𝑤 ∈ 𝑉 (𝐺) for which dist(𝑣0, 𝑤) = 𝑑. If 𝑑 ≤ 𝑘, then we say that
the robber has a 𝑃 -shadow at 𝑣𝑑. If 𝑑 > 𝑘, then we say that the robber has a 𝑃 -shadow at 𝑣𝑘.

The main idea behind Aigner and Fromme’s proof is as follows. Suppose that there exists a
geodesic path 𝑃 = (𝑣0, . . . , 𝑣𝑘) in a planar graph. On each turn, the robber’s distance from 𝑣0

changes by at most 1, so on each turn, the robber’s 𝑃 -shadow either does not move or moves to
an adjacent vertex on 𝑃 . Therefore, there exists a strategy using one cop 𝐶 by which, after a finite
number of moves, 𝐶 may move to the vertex of 𝑃 containing the robber’s 𝑃 -shadow on each turn.
We say that this movement pattern of 𝐶 is called stalking the robber’s 𝑃 -shadow. In the traditional
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game of cops and robbers, if the robber ever moves to a vertex on 𝑃 , then the robber will occupy
the same vertex as its 𝑃 -shadow, and thus when 𝐶 stalks the robber’s 𝑃 -shadow, 𝐶 will capture
the robber should the robber choose to move to 𝑃 . Thus, by this strategy, the robber can never
safely visit a vertex of 𝑃 .

In the surrounding variant of cops and robbers, however, the robber is not threatened by the
prospect of being “captured" by 𝐶. Therefore, we may modify Aigner and Fromme’s strategy by
adding up to two additional cops that follow 𝐶 in 𝑃 , occupying one or both neighbors of 𝐶 in 𝑃 at
all times. By making this modification, we will see that whenever the robber attempts to move to
a vertex 𝑣 ∈ 𝑉 (𝑃 ), 𝐶 will either already occupy 𝑣, or one of 𝐶’s “followers" will occupy 𝑣, which
means that the robber will be blocked from moving to 𝑣. We first give a definition that concisely
refers to this strategy.

Definition 3.1.4. Let 𝑃 = (𝑣0, . . . , 𝑣𝑘) be a geodesic path in a graph 𝐺. Let 𝒞 = {𝐶1, . . . , 𝐶𝑡},
where 𝑡 ∈ {2, 3}, be a set of two or three cops. We say that the cops in 𝒞 stalk the robber’s 𝑃 -shadow
if they obey the following strategy:

∙ If 𝑡 = 2, then 𝐶2 moves to the vertex 𝑣𝑖 of 𝑃 containing the robber’s 𝑃 -shadow on each turn,
and 𝐶1 moves to 𝑣𝑖−1 on each turn (except when 𝑖 = 0, in which case 𝐶1 moves to 𝑣0).

∙ If 𝑡 = 3, then 𝐶2 moves to the vertex 𝑣𝑖 of 𝑃 containing the robber’s 𝑃 -shadow on each turn,
𝐶1 moves to 𝑣𝑖−1 on each turn, and 𝐶3 moves to 𝑣𝑖+1 on each turn (except when 𝑖 = 0, in
which case 𝐶1 moves to 𝑣0, and except when 𝑖 = 𝑘, in which case 𝐶3 moves to 𝑣𝑘).

In other words, when a set of cops stalks the robber’s 𝑃 -shadow, a single cop “captures" the
robber’s 𝑃 -shadow on each turn, and one or two additional cops follow on both sides of the first
cop. For a geodesic path 𝑃 , the robber’s 𝑃 -shadow moves by at most one vertex on each turn, so
a set of two or three cops can always stalk the robber’s 𝑃 -shadow after a finite number of moves.
We illustrate three cops stalking a robber’s shadow in Figure 3.1.

Lemma 3.1.5. Let 𝐺 be a graph. Let 𝑃 = (𝑣0, . . . , 𝑣𝑘) be a geodesic path of 𝐺. If three cops stalk
the robber’s 𝑃 -shadow, then the robber is unable to move to a vertex of 𝑃 .

Proof. We name our cops 𝐶1, 𝐶2, and 𝐶3. We claim that when 𝐶1, 𝐶2, and 𝐶3 begin stalking the
robber’s 𝑃 -shadow, the robber must leave 𝑃 for at least one turn. Indeed, if the robber occupies a
vertex 𝑣𝑗 ∈ 𝑃 , then the robber’s 𝑃 -shadow occupies 𝑣𝑗 , and 𝐶1, 𝐶2, and 𝐶3 occupy 𝑣𝑗 , along with
both neighbors of 𝑣𝑗 on 𝑃 ; therefore, as the robber may not end a move on the same vertex as a
cop, the robber must move off of 𝑃 .

Next, we show that after 𝐶1, 𝐶2, and 𝐶3 begin stalking the robber’s 𝑃 -shadow, the robber
cannot enter 𝑃 from a vertex outside of 𝑃 . Suppose that the robber occupies a vertex 𝑤 that does
not belong to 𝑃 . If 𝑤 is not adjacent to 𝑃 , then the robber cannot move onto 𝑃 . If 𝑤 is adjacent
to 𝑃 and dist(𝑣0, 𝑤) = 𝑗, let 𝑢 ∈ 𝑃 be a neighbor of 𝑤. By Observation 3.1.2, 𝑢 is at a distance in

33



𝑣0 𝑣𝑘𝑣𝑘−1𝑣𝑖𝑣𝑖−1 𝑣𝑖+1
𝐶2𝐶1 𝐶3

· · · · · ·

𝑣0 𝑣𝑘𝑣𝑘−1𝑣𝑖𝑣𝑖−1 𝑣𝑖+1
𝐶2𝐶1
𝐶3

· · · · · ·

Figure 3.1: The figures show a geodesic path 𝑃 drawn in bold. In each figure, the robber occupies
the black vertex, and the robber’s 𝑃 -shadow occupies the grey vertex. In both figures, three cops
𝐶1, 𝐶2, and 𝐶3 stalk the robber’s 𝑃 -shadow. In the top figure, the robber’s 𝑃 -shadow occupies an
internal vertex 𝑣𝑖 of 𝑃 , so 𝐶1, 𝐶2, and 𝐶3 occupy 𝑣𝑖 and its neighbors. In the bottom figure, the
robber’s 𝑃 -shadow occupies 𝑣𝑘, so 𝐶1 occupies 𝑣𝑘−1, while 𝐶2 and 𝐶3 occupy 𝑣𝑘.

the set {𝑗 − 1, 𝑗, 𝑗 + 1} from 𝑣0, so 𝑢 is occupied by one of 𝐶1, 𝐶2, and 𝐶3; therefore, the robber
cannot move onto 𝑃 .

We see that when 𝐶1, 𝐶2, and 𝐶3 begin stalking the robber’s 𝑃 -shadow, the robber is forced to
exit 𝑃 , and then the robber is never again able to enter 𝑃 . Thus the lemma is proven.

Next, we show that if a graph 𝐺 has a geodesic path 𝑃 that is geodesically closed, then two
cops stalking the robber’s 𝑃 -shadow can guard 𝑃 .

Lemma 3.1.6. Let 𝐺 be a graph. Let 𝑃 = (𝑣0, . . . , 𝑣𝑘) ⊆ 𝐺 be a path. If 𝑃 is geodesically closed,
and if two cops stalk the robber’s 𝑃 -shadow, then the robber is unable to move to a vertex of 𝑃 .

Proof. We claim that by stalking the robber’s 𝑃 -shadow, 𝐶1 and 𝐶2 prevent the robber from
entering 𝑃 from outside of 𝑃 . Suppose that the robber occupies a vertex 𝑤 ̸∈ 𝑉 (𝑃 ) that is adjacent
to 𝑣𝑗 ∈ 𝑉 (𝑃 ). By Observation 3.1.2, dist(𝑣0, 𝑤) ∈ {𝑗−1, 𝑗, 𝑗 +1}. Furthermore, as 𝑃 is geodesically
closed, dist(𝑣0, 𝑤) ̸= 𝑗 − 1; otherwise, (𝑣0, . . . , 𝑤, 𝑣𝑗) is a geodesic path between two vertices in 𝑃

that is not contained in 𝑃 , a contradiction. Thus we see that dist(𝑣0, 𝑤) ∈ {𝑗, 𝑗 + 1}, and thus the
strategy of 𝐶1 and 𝐶2 dictates that a cop occupy the vertex 𝑣𝑗 . Therefore, the robber is unable to
enter 𝑃 .

It remains to show that 𝐶1 𝐶2 can force the robber to leave the path 𝑃 by stalking the robber’s
𝑃 -shadow. Suppose that the robber occupies a vertex 𝑣𝑗 ∈ 𝑉 (𝑃 ) when 𝐶1 and 𝐶2 begin stalking
the robber’s 𝑃 -shadow. As the robber occupies 𝑣𝑗 , the robber’s 𝑃 -shadow also occupies 𝑣𝑗 , and
𝐶1 and 𝐶2 occupy 𝑣𝑗−1 and 𝑣𝑗 . (If the robber occupies 𝑣0, then 𝐶1 and 𝐶2 both occupy 𝑣0.) Thus
the robber must move away from 𝑣𝑗 . If the robber leaves 𝑃 , then the proof is complete; otherwise,
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the robber moves to 𝑣𝑗+1. Then 𝐶1 𝐶2 move to 𝑣𝑗 and 𝑣𝑗+1, and the robber must move off of 𝑃

or move to 𝑣𝑗+2. By continuing to stalk the robber’s 𝑃 -shadow, the robber will either move off of
𝑃 voluntarily, or the robber will reach 𝑣𝑘, at which point 𝐶1 𝐶2 will occupy 𝑣𝑘−1 and 𝑣𝑘. At this
point, the robber will have no unoccupied neighbor in 𝑃 , and the robber will be forced to leave 𝑃 .
This completes the proof.

Our tools for guarding geodesic paths are in place. Now we will devise a strategy for using
guarded geodesic paths to surround the robber. We will begin by enclosing the robber’s region with
two guarded paths. We will iteratively choose new paths to guard in order to make the robber’s
region smaller. Furthermore, we will always keep the robber’s region enclosed by at least one path
that requires only two cops to guard. Eventually, we will restrict the robber’s region to a single
vertex. When the robber’s region consists a single vertex 𝑟, every neighbor of 𝑟 in 𝐺 will belong to
a guarded path. Furthermore, by construction, a set of cops guards a geodesic path 𝑃 by stalking
the robber’s 𝑃 -shadow, so when the robber moves to a vertex 𝑟 adjacent to 𝑃 , all neighbors of 𝑟 in
𝑃 are occupied by cops. Therefore, if we say that each neighbor of 𝑟 belongs to a guarded path, this
will imply that each neighbor of 𝑟 is occupied by a cop. Therefore, to show that we can surround
the robber, we only need to show that we can reduce the robber’s territory to a single vertex.

The following lemma shows that a path guarded by three cops can be exchanged for another
guarded path using at most two extra cops. The lemma is quite technical in its statement, so we
illustrate the maneuver that we are describing in Figure 3.2.

Lemma 3.1.7. Let 𝐺 be a planar graph with a fixed drawing in the plane. Let 𝑃1, 𝑃2 ⊆ 𝐺 be two
(𝛼, 𝛽)-paths in 𝐺, where 𝛼, 𝛽 ∈ 𝑉 (𝐺). Let 𝐴 be a component of 𝐺 ∖ (𝑃1 ∪ 𝑃2) enclosed by 𝑃1 and
𝑃2. Suppose the following hold:

∙ The robber occupies a vertex in 𝐴.

∙ For 𝑖 ∈ {1, 2}, 𝑃𝑖 is geodesic with respect to 𝑃𝑖 ∪𝐴.

∙ 𝑃1 is not geodesically closed with respect to 𝑃1 ∪ 𝐴, and three cops 𝐶1, 𝐶2, and 𝐶3 stalk the
robber’s 𝑃1-shadow.

∙ 𝑃2 is geodesically closed with respect to 𝑃2 ∪ 𝐴, and two cops 𝐶 ′
1 and 𝐶 ′

2 stalk the robber’s
𝑃2-shadow.

Then, using at most two additional cops 𝐶4 and 𝐶5, the robber can be confined to a smaller region
𝐵 ( 𝐴. Furthermore, the cops can keep the robber in 𝐵 by guarding two (𝛼, 𝛽)-paths, each requiring
at most three cops, and at least one of which can be guarded with two cops.

Proof. Let 𝑃1 = (𝛼 = 𝑣0, . . . , 𝑣𝑘 = 𝛽). We assume that the robber’s 𝑃1-shadow that 𝐶1, 𝐶2, and
𝐶3 stalk is calculated with respect to 𝑣0.
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𝛼 𝛽

𝑃2, 2 cops

𝐴′

ℵ
𝑃3

𝑃1, 3 cops

Figure 3.2: This figure illustrates the cop maneuver that is described in Lemma 3.1.7. We suppose
that the robber is confined to the region enclosed by 𝑃1 and 𝑃2. Lemma 3.1.7 claims that there
exists an (𝛼, 𝛽)-path 𝑃3 such that, when guarded by cops, the robber is confined to either the region
𝐴′ or ℵ. If the robber is confined to 𝐴′, we claim that the robber can be kept in 𝐴′ by guarding 𝑃2
with two cops and 𝑃3 with three cops. If the robber is confined to ℵ, we claim that the robber can
be kept in ℵ by guarding 𝑃1 with two cops and 𝑃3 with two cops.

As 𝑃1 is not geodesically closed with respect to 𝐴∪𝑃1, we can choose a geodesic (w.r.t. 𝐴∪𝑃1)
path 𝑆 ̸⊆ 𝑃1, with endpoints 𝑣𝑖, 𝑣𝑗 ∈ 𝑃 (𝑖 < 𝑗), such that 𝑆 is of shortest length out of all such
geodesic paths. In Figure 3.3, such a path 𝑆 is given by (𝑣𝑖, 𝑥, 𝑣𝑙). Let 𝑃1(𝑖, 𝑗) = (𝑣𝑖, 𝑣𝑖+1, . . . , 𝑣𝑗),
and let 𝑆 = (𝑣𝑖, 𝑤𝑖+1, . . . , 𝑤𝑗−1, 𝑣𝑗). Let ℵ be the region enclosed by (and not including) 𝑆 and
𝑃1(𝑖, 𝑗). Let 𝑆 be chosen out of all (𝑣𝑖, 𝑣𝑗)-geodesics to minimize the number of vertices in ℵ. By
our choice of 𝑆, we may assume that 𝑃1 ∪ ℵ does not contain any (𝑣𝑖, 𝑣𝑗)-geodesic besides 𝑃1(𝑖, 𝑗),
as such a geodesic would allow for a smaller region ℵ. (Such a path 𝑆 is called a bypath in [18], in
which González and Mohar apply a similar technique to the lazy variant of cops and robbers.)

We claim that for any vertex 𝑥 ∈ 𝐴, if 𝑥 is adjacent to a vertex 𝑣𝑙 ∈ 𝑃 (𝑖, 𝑗) ∖ {𝑣𝑖, 𝑣𝑗}, then
dist(𝑣0, 𝑥) ∈ {𝑙, 𝑙 + 1}. We know from Observation 3.1.2 that dist(𝑣0, 𝑥) ∈ {𝑙 − 1, 𝑙, 𝑙 + 1}. Suppose
for the sake of contradiction that dist(𝑣0, 𝑥) = 𝑙 − 1. Then 𝑥 must belong to a geodesic path
𝑆′ = (𝑣𝑚, . . . , 𝑥, 𝑣𝑙), where 𝑣𝑚 is chosen to make 𝑆′ as short as possible for this fixed value 𝑙. By the
minimality of 𝑆, we must have 0 ≤ 𝑚 < 𝑖, and so 𝑆′ must cross 𝑆 at some vertex 𝑤𝑝. As 𝑆 and 𝑆′

are geodesics, it then follows that (𝑣𝑖, . . . , 𝑤𝑝, . . . , 𝑣𝑙) is a geodesic shorter than 𝑆, a contradiction.
We illustrate this contradiction in Figure 3.3, and in the particular case depicted in the figure,
𝑥 = 𝑤𝑝. Thus the claim is proven.

We define 𝑃3 = (𝑣0, 𝑣1, . . . , 𝑣𝑖, 𝑤𝑖+1, . . . , 𝑤𝑗−1, 𝑣𝑗 , . . . , 𝑣𝑘). We calculate the robber’s 𝑃3-shadow
with respect to 𝑦0, and we let two additional cops 𝐶4 and 𝐶5 stalk the robber’s 𝑃3-shadow. (At this
point we may assume that the robber’s 𝑃3-shadow does not occupy a vertex of 𝑃1, as otherwise 𝑃3

would already be guarded, and the argument would be complete.) Then, on each subsequent move
after 𝐶4 and 𝐶5 begin stalking the robber’s 𝑃3-shadow, we move 𝐶3 on 𝑃1 toward the vertex 𝑣𝑗 . We
note that 𝐶3 will reach 𝑣𝑗 before the robber’s 𝑃1-shadow can reach 𝑣𝑗 . We let 𝐶1 and 𝐶2 continue
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𝑣0

𝑃2, 2 cops

𝑃1, 3 cops

𝐴

𝑣𝑘𝑣𝑚 𝑣𝑖

𝑥

𝑣𝑙· · · 𝑣𝑗

Figure 3.3: The figure shows a planar graph 𝐺 in which the robber is restricted to a region 𝐴
enclosed by two geodesic paths 𝑃1 and 𝑃2. In the figure, the shortest geodesic path 𝑆 with respect
to 𝑃1 ∪ 𝐴 with endpoints in 𝑃1 and not belonging to 𝑃1 is (𝑣𝑖, 𝑥, 𝑣𝑙). If the bolded geodesic path
beginning with 𝑣𝑖 and ending with 𝑣𝑗 is incorrectly chosen as 𝑆, then the shorter geodesic path
(𝑣𝑖, 𝑥, 𝑣𝑙) may be found, as described in the proof of Lemma 3.1.7.

to stalk the robber’s 𝑃1-shadow. We illustrate this point in the cops’ strategy after 𝐶3 reaches 𝑣𝑗

in Figure 3.4.
We claim that if the robber’s 𝑃3-shadow ever occupies a vertex of 𝑃1, then we have three cops

in position to stalk the robber’s 𝑃3-shadow. If the robber’s 𝑃3 shadow occupies a vertex of 𝑃1, then
one of two cases must have occured.

Case 1: The robber’s 𝑃3-shadow moves from 𝑤𝑖+1 to 𝑣𝑖. Then 𝐶1 and 𝐶2 move to 𝑣𝑖−1, 𝑣𝑖, and
𝐶5 remains at 𝑤𝑖+1. The robber does not occupy a vertex of 𝑃3, and 𝐶1, 𝐶2, 𝐶5 stalk the robber’s
𝑃3-shadow.

Case 2: The robber’s 𝑃3-shadow moves from 𝑤𝑗−1 to 𝑣𝑗 . Then 𝐶3 moves to 𝑣𝑗+1, and 𝐶4, 𝐶5

move to 𝑤𝑗−1, 𝑣𝑗 . The robber does not occupy a vertex of 𝑃3, and 𝐶4, 𝐶5, and 𝐶3 stalk the robber’s
𝑃3-shadow.

In both cases, three cops successfully guard 𝑃3. If the robber’s region is enclosed by 𝑃1 and 𝑃3,
then the robber’s region is ℵ. 𝑃3 is guarded by 3 cops, and 𝑃1 is geodesically closed with respect
to 𝑃1 ∪ ℵ; hence the robber’s region is enclosed by two (𝛼, 𝛽)-paths, one of which is guarded by
only two cops 𝐶1, 𝐶2, and the lemma is proven. (In fact, in this case, 𝑃3 is also geodesically closed
with respect to the robber’s territory, so we do not need all three cops to keep guarding 𝑃3.) If the
robber’s region is enclosed by 𝑃2 and 𝑃3, then the robber if confined to a smaller region 𝐵 ( 𝐴,
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𝑣0

𝑃2, 2 cops

𝑃1, 3 cops

𝐴

𝐶4 𝐶5

ℵ

𝐶1 𝐶2

𝐶3

𝑣𝑘𝑣𝑖 𝑣𝑖+1

𝑤𝑖+1
𝑤𝑖+5

· · · · · ·𝑣𝑖+6

Figure 3.4: The figure shows a planar graph 𝐺 in which the robber is restricted to a region 𝐴
enclosed by two geodesic paths 𝑃1 and 𝑃2. The smaller region ℵ is enclosed by (𝑣𝑖, . . . , 𝑣𝑖+6) and
(𝑣𝑖, 𝑤𝑖+1, . . . , 𝑤𝑖+5, 𝑣𝑖+6). In the figure, the cops attempt either to remove the region ℵ from the
robber’s territory or confine the robber to ℵ. To accomplish this, two cops 𝐶4 and 𝐶5 are stalking
the robber’s 𝑃3 shadow, where 𝑃3 = (𝑣0, . . . , 𝑣𝑖, 𝑤𝑖+1, . . . , 𝑤𝑖+5, 𝑣𝑖+6, . . . , 𝑣𝑘). Here, the robber’s
vertex is colored black, the robber’s 𝑃1-shadow and 𝑃3-shadow are colored grey. As 𝐶4 and 𝐶5 are
successfully stalking the robber’s 𝑃3-shadow, 𝐶3 has stopped stalking the robber’s 𝑃1-shadow and
has moved to 𝑣𝑖+6, where 𝑃3 rejoins 𝑃1. If the robber’s 𝑃3-shadow moves far enough left or right,
then three cops will be stalking the robber’s 𝑃3 shadow, and the robber will not be able to move
to 𝑃3. This will either remove ℵ from the robber’s territory or confine the robber to ℵ.
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namely one obtained from 𝐴 by removing ℵ and 𝑃3. 𝑃3 is guarded by 3 cops, and 𝑃2 is guarded by
two cops by assumption, and the lemma is proven.

Hence we arrive at a point in which the robber’s 𝑃3-shadow must lie on the subpath

(𝑤𝑖+1, 𝑤𝑖+2 . . . , 𝑤𝑗−2, 𝑤𝑗−1).

At this point, we move 𝐶3 on 𝑃3 toward the robber’s 𝑃3-shadow until 𝐶3, 𝐶4, and 𝐶5 stalk the
robber’s 𝑃3-shadow. At this point, one of two cases occurs:

Case 1: The robber occupies a vertex in the region enclosed by 𝑃2 and 𝑃3. In this case, 𝑃2 is guarded
by two cops, and we have three cops 𝐶3, 𝐶4, and 𝐶5 guarding 𝑃3. In this case, the proof is complete.

Case 2: The robber occupies a vertex in the region ℵ enclosed by 𝑃1 and 𝑃3. In this case, we
have three cops 𝐶3, 𝐶4, and 𝐶5 guarding 𝑃3. Additionally, 𝑃1 is geodesically closed with respect to
𝑃1 ∪ℵ, so 𝐶1 and 𝐶2 can guard 𝑃1 by continuing to stalk the robber’s 𝑃1 shadow. In this case, the
proof is complete.

With this lemma in place, we can prove an upper bound for the surrounding cop number of
planar graphs.

Theorem 3.1.8. Let 𝐺 be a planar graph. Then 𝑠(𝐺) ≤ 7.

Proof. We will play the game in stages. In each Stage 𝑖 of the game, we will have two paths 𝑃1

and 𝑃2 with common endpoints that are guarded by cops who stalk the robber’s 𝑃1-shadow and
𝑃2-shadow. We will define the robber’s region 𝑅𝑖 at Stage 𝑖 as the component of 𝐺 ∖ (𝑃1 ∪𝑃2) that
the robber occupies. We will show that at each stage, we can reduce the robber’s region to a new
region 𝑅𝑖+1 ( 𝑅𝑖.

If 𝐺 is a tree, then by [11], 𝑠(𝐺) = 2, and we are done. Otherwise, we begin the game at Stage
1. As 𝐺 is not a tree, there exists an edge (𝑢𝑣) ∈ 𝐸(𝐺) such that a geodesic path exists from 𝑢 to 𝑣

in the graph 𝐺 ∖ (𝑢𝑣). We let 𝑃2 be the path (𝑢, 𝑣), and we let 𝑃1 be any (𝑢, 𝑣)-path geodesic with
respect to 𝐺 ∖ (𝑢𝑣). 𝑃2 is of length one and can clearly be guarded with two cops. 𝑃1 is a geodesic
path with respect to 𝐺 ∖ 𝑃2, and so 𝑃1 can be guarded with three cops who stalk the robber’s
𝑃1-shadow. At this point, the component of the graph 𝐺 ∖ (𝑃1 ∪ 𝑃2) that the robber occupies is
called 𝑅1. We may redraw 𝐺 so that 𝑅1 is enclosed by 𝑃1 and 𝑃2

We describe the strategy that we follow at each Stage 𝑖 of the game.

Case 1: The robber’s region 𝑅𝑖 is enclosed by two guarded (𝛼, 𝛽)-paths 𝑃1 and 𝑃2. 𝑃1 is not
geodesically closed with respect to 𝑃1 ∪𝑅𝑖, and 𝑃2 is geodesically closed with respect to 𝑃2 ∪𝑅𝑖.

Let 𝑃1 be guarded by three cops 𝐶1, 𝐶2, and 𝐶3. Let 𝑃2 be guarded by cops 𝐶 ′
1 and 𝐶 ′

2. Then by
Lemma 3.1.7, we can use two extra cops 𝐶4 and 𝐶5 and replace 𝑃1 with an (𝛼, 𝛽)-path 𝑃 ′

1 so that at
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most three cops guard 𝑃 ′
1, and such that there exists an (𝛼, 𝛽)-path 𝑃 ′

2 guarded by at most two cops
such that the robber is restricted to a component 𝑅𝑖+1 of 𝐺 ∖ (𝑃 ′

1 ∪𝑃 ′
2) with 𝑅𝑖+1 ( 𝑅𝑖. Depending

on whether or not 𝑃 ′
1 is geodesically closed with respect to 𝑃 ′

1∪𝑅𝑖+1, this brings us to Case 1, 2, or 3.

Case 2: The robber’s region 𝑅𝑖 is enclosed by two guarded (𝛼, 𝛽)-paths 𝑃1 and 𝑃2. 𝑃1 is geodesically
closed with respect to 𝑃1 ∪𝑅𝑖, and 𝑃2 is geodesically closed with respect to 𝑃2 ∪𝑅𝑖. Furthermore,
we assume there exists an (𝛼, 𝛽)-path in 𝑃1 ∪ 𝑃2 ∪𝑅𝑖 distinct from 𝑃1 and 𝑃2.

We choose a shortest (𝛼, 𝛽)-path in 𝑃1 ∪ 𝑃2 ∪ 𝑅𝑖, and we call this path 𝑃3. We guard 𝑃3 with
at most three cops. 𝑃3 divides the region 𝑅𝑖 into two parts, and hence the robber’s region is either
enclosed by 𝑃1 and 𝑃3, or the robber’s region is enclosed by 𝑃2 and 𝑃3. In both cases, the robber’s
region is restricted to a region 𝑅𝑖+1 ( 𝑅𝑖, and one of the paths enclosing 𝑅𝑖+1 is guarded by at
most two cops. Depending whether or not 𝑃3 is geodesically closed with respect to 𝑃3 ∪𝑅𝑖+1, this
brings us to Case 1, 2, or 3.

Case 3: The robber’s region 𝑅𝑖 is enclosed by two guarded (𝛼, 𝛽)-paths 𝑃1 and 𝑃2. 𝑃1 is geodesically
closed with respect to 𝑃1 ∪ 𝑅𝑖, and 𝑃2 is geodesically closed with respect to 𝑃2 ∪ 𝑅𝑖. There exists
no (𝛼, 𝛽)-path in 𝑃1 ∪ 𝑃2 ∪𝑅𝑖 distinct from 𝑃1 and 𝑃2.

In this case, without loss of generality, 𝑃1 has only one vertex 𝑥 ∈ 𝑉 (𝑃1) adjacent to the robber’s
region, and 𝑃2 is not adjacent to the robber’s region. Then the robber can be restricted to his region
simply by placing a cop at 𝑥. We thus place two cops 𝐶1 and 𝐶2 at 𝑥 and confine the robber to his
region. If 𝑥 has only one neighbor 𝑦 in the robber’s region, then we move 𝐶1 to 𝑦 and move 𝐶2 to
𝑦 on the next turn. We may continue this process until 𝐶1 and 𝐶2 occupy a vertex 𝑥 that has at
least two neighbors 𝑦, 𝑧 in the robber’s region 𝑅𝑖. Then we choose 𝑃 ′

2 = (𝑥, 𝑦), and we let 𝑃 ′
1 be an

(𝑥, 𝑦)-geodesic in 𝑅𝑖 ∖ (𝑥𝑦). We guard 𝑃 ′
1 with at most three cops, and we redraw 𝑅𝑖 so that the

robber is enclosed by 𝑃 ′
1 and 𝑃 ′

2. Then the robber is confined to a region 𝑅𝑖+1 ( 𝑅𝑖, and depending
on whether or not 𝑃 ′

1 is geodesically closed with respect to 𝑃 ′
1 ∪ 𝑅𝑖+1, this brings us to Case 1, 2,

or 3.
If we continue this process, we will eventually reach a point in which the robber’s region contains

a single vertex, at which point the robber is surrounded.

Theorem 3.1.9. There exists a planar graph 𝐺 with 𝑠(𝐺) ≥ 6.

Proof. Let 𝐻 be the truncated icosahedron, that is, the 3-regular polyhedron with 60 vertices and
90 edges whose shape resembles a soccer ball or a 𝐶60 molecule. Let 𝐺 be the graph obtained by
adding a vertex 𝑣 to each face 𝑓 of 𝐻 and adding an edge from 𝑣 to each vertex of 𝑓 . We note that
in 𝐺, all vertices have degree 5 or 6, and every degree 6 vertex has five neighbors of degree 6.

Suppose we have five cops. We let the robber execute the following strategy. The robber begins
on a vertex 𝑟 of degree 6 and waits for a cop to occupy 𝑟. As 𝑟 has degree 6, and as we play with
five cops, the robber will not be surrounded before a cop moves to 𝑟. If a cop moves to 𝑟, then
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at this point, at most four of the robber’s neighboring vertices are occupied by cops. The robber
then chooses an unoccupied neighbor of degree 6 and moves to this vertex. The robber repeats this
strategy indefinitely and wins. Therefore, 𝑠(𝐺) ≥ 6.

Although our methods give an upper bound of 7 for the surrounding cop number of planar
graphs, we are currently unable to find examples of planar graphs with surrounding cop number
equal to 7. This leaves the question of whether 𝑠(𝐺) ≤ 6 for planar graphs 𝐺, or whether a planar
graph 𝐺 with 𝑠(𝐺) = 7 exists.

3.1.3 Bipartite planar graphs

In this section, we consider the game of surrounding cops and robbers played on bipartite planar
graphs. We establish an upper bound of 4 for the surrounding cop number of bipartite planar graphs
using the ideas of the previous section. Our method of proof will follow the previous section closely,
and the main ideas of this section will essentially show that the methods of the previous section
can be applied on bipartite planar graphs with fewer cops. We also show that our upper bound is
tight.

First, we will need to establish specialized bipartite versions of the tools from the previous
section. We will use the same notion of a robber’s shadow on a geodesic path. However, the following
observation will let us use the technique of stalking the robber’s shadow on a geodesic path with
fewer cops.

Lemma 3.1.10. Let 𝐺 be a bipartite graph, and let 𝑃 = (𝑣0, 𝑣1, . . . , 𝑣𝑘) be a geodesic path in 𝐺.
Suppose that a vertex 𝑤 ∈ 𝑉 (𝐺) is adjacent to 𝑣𝑗 ∈ 𝑉 (𝑃 ). Then either dist(𝑣0, 𝑤) = 𝑗 − 1 or
dist(𝑣0, 𝑤) = 𝑗 + 1.

Proof. By Observation 3.1.2, dist(𝑣0, 𝑤) ∈ {𝑗 − 1, 𝑗, 𝑗 + 1}. If dist(𝑣0, 𝑤) = 𝑗, then there exists
a closed walk (𝑣0, . . . , 𝑣𝑗 , 𝑤, . . . , 𝑣0) of length 2𝑗 + 1, which contradicts the assumption that 𝐺 is
bipartite. Hence dist(𝑣0, 𝑤) = 𝑗 − 1 or dist(𝑣0, 𝑤) = 𝑗 + 1.

Lemma 3.1.10 essentially tells us that if the robber occupies a vertex 𝑥 adjacent to a geodesic
path 𝑃 in a graph, then at most two vertices of 𝑃 need to be occupied in order to prevent the
robber from moving to a vertex on 𝑃 . This is fewer than the three cops needed to prevent the
robber from moving to a geodesic path in the general case. With this observation in hand, we will
redefine the notion of stalking the robber’s shadow for bipartite graphs. We emphasize that the
definition of stalking the robber’s shadow given here is different from the previous section, as the
following definition only holds for bipartite graphs.

Definition 3.1.11. Let 𝑃 = (𝑣0, . . . , 𝑣𝑘) be a geodesic path in a bipartite graph 𝐺. Let 𝒞 =
{𝐶1, . . . , 𝐶𝑡}, where 𝑡 ∈ {1, 2}, be a set of one or two cops. We say that the cops in 𝒞 stalk the
robber’s 𝑃 -shadow if they obey the following strategy:
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𝑣0 𝑣𝑘𝑣𝑘−1𝑣𝑖𝑣𝑖−1 𝑣𝑖+1
𝐶1 𝐶2

· · · · · ·

𝑣0 𝑣𝑘𝑣𝑘−1𝑣𝑖𝑣𝑖−1 𝑣𝑖+1
𝐶2𝐶1

· · · · · ·

Figure 3.5: The figures show a geodesic path 𝑃 , drawn in bold, of a bipartite graph. In each figure,
the robber occupies the black vertex, and the robber’s 𝑃 -shadow occupies the grey vertex. In both
figures, two cops 𝐶1 and 𝐶2 stalk the robber’s 𝑃 -shadow. In the top figure, the robber’s shadow
occupies an internal vertex 𝑣𝑖 of 𝑃 , so 𝐶1 and 𝐶2 occupy the neighbors of 𝑣𝑖. In the bottom figure,
the robber’s shadow occupies 𝑣𝑘, so 𝐶1 occupies 𝑣𝑘−1, while 𝐶2 occupies 𝑣𝑘.

∙ If 𝑡 = 1, then letting 𝑣𝑖 denote the vertex of 𝑃 containing the robber’s 𝑃 -shadow, 𝐶1 moves
to 𝑣𝑖−1 on each turn. If 𝑖 = 0, then 𝐶1 moves to 𝑣0.

∙ If 𝑡 = 2, then letting 𝑣𝑖 denote the vertex of 𝑃 containing the robber’s 𝑃 -shadow, 𝐶1 moves
to 𝑣𝑖−1 on each turn, and 𝐶2 moves to 𝑣𝑖+1. If 𝑖 = 0, then 𝐶1 moves to 𝑣0, and if 𝑖 = 𝑘, then
𝐶2 moves to 𝑣𝑘.

We show two cops stalking the robber’s shadow on a geodesic path of a bipartite graph in
Figure 3.5. In the next lemmas, we show that in a bipartite graph, two cops stalking the robber’s
𝑃 -shadow on a geodesic path 𝑃 prevent the robber from accessing 𝑃 , and one cop stalking the
robber’s 𝑃 -shadow on a geodesically closed path 𝑃 prevents the robber from accessing 𝑃 .

Lemma 3.1.12. Let 𝐺 be a bipartite graph. Let 𝑃 = (𝑣0, . . . , 𝑣𝑘) be a geodesic path of 𝐺. If two
cops stalk the robber’s 𝑃 -shadow, then the robber is unable to move to a vertex of 𝑃 from outside
of 𝑃 . Furthermore, there exists a strategy involving two cops by which the robber may be forced to
leave 𝑃 and never again move to a vertex of 𝑃 .

Proof. We name our cops 𝐶1 and 𝐶2. We first show that if the robber does not occupy a vertex of
𝑃 when 𝐶1 and 𝐶2 begin stalking the robber’s shadow on 𝑃 , then the robber is unable to move to
𝑃 . Suppose that the robber occupies a vertex 𝑤 that does not belong to 𝑃 . If 𝑤 is not adjacent to
𝑃 , then the robber cannot move onto 𝑃 . If 𝑤 is adjacent to 𝑃 and dist(𝑣0, 𝑤) = 𝑗, let 𝑢 ∈ 𝑃 be a
neighbor of 𝑤. By Lemma 3.1.10, 𝑢 ∈ {𝑣𝑗−1, 𝑣𝑗+1}. At this point, the robber’s shadow occupies 𝑣𝑗 ,
and thus as 𝐶1 and 𝐶2 stalk the robber’s 𝑃 -shadow, 𝑢 is occupied by a cop. Therefore, the robber
cannot move onto 𝑃 .
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Now, we show that 𝐶1 and 𝐶2 can force the robber to leave 𝑃 and never return. As the robber’s
shadow moves by at most one vertex on each turn, 𝐶1 and 𝐶2 may begin stalking the robber’s
𝑃 -shadow after a finite number of moves. If the robber occupies a vertex 𝑣𝑗 of 𝑃 when 𝐶1 and
𝐶2 begin stalking the robber’s 𝑃 -shadow, then the robber’s shadow also occupies 𝑣𝑗 , and 𝐶1 and
𝐶2 must occupy 𝑣𝑗−1 and 𝑣𝑗+1. We let 𝐶1 move to 𝑣𝑗 and let 𝐶2 stay put. If the robber’s shadow
moves to either 𝑣𝑗 or 𝑣𝑗+1, then the robber must have left 𝑃 , and 𝐶1 and 𝐶2 can stalk the robber’s
shadow using the original strategy, forcing the robber never to return to 𝑃 . Otherwise, the robber’s
shadow moves to 𝑣𝑗−1. Then 𝐶1 and 𝐶2 move to 𝑣𝑗−1 and 𝑣𝑗 . If the robber’s shadow moves to 𝑣𝑗−1

or 𝑣𝑗 , then by the same argument, 𝐶1 and 𝐶2 can stalk the robber’s shadow on 𝑃 and prevent the
robber from accessing 𝑃 . Otherwise, the robber’s shadow again moves toward 𝑣0. In this case, 𝐶1

and 𝐶2 can continue pushing the robber’s shadow toward 𝑣0 until either the robber’s shadow can
be stalked by 𝐶1 and 𝐶2 as in the previous discussion, or until the robber’s shadow reaches 𝑣0. If
the robber’s shadow reaches 𝑣0, then this implies that the robber occupies 𝑣0. Then 𝐶1 and 𝐶2 will
occupy 𝑣0 and 𝑣1, and the robber’s shadow will be forced to move to 𝑣1, and the robber will be
forced to leave 𝑃 . Then 𝐶2 can move to 𝑣2, and 𝐶1, 𝐶2 can stalk the robber’s shadow and prevent
the robber from accessing 𝑃 .

Lemma 3.1.13. Let 𝐺 be a bipartite graph. Let 𝑃 = (𝑣0, . . . , 𝑣𝑘) ⊆ 𝐺 be a path that is geodesically
closed. If one cop stalks the robber’s 𝑃 -shadow, then the robber is unable to move to a vertex of 𝑃

from outside 𝑃 .

Proof. By the discussion in the proof of Lemma 3.1.5, a single cop can reach a vertex 𝑣𝑗−1, where
𝑣𝑗 is the position of the robber’s shadow, on every turn after a finite number of turns. We claim
that by doing so, the cop prevents the robber from entering 𝑃 from outside of 𝑃 .

Suppose that the robber occupies a vertex 𝑤 that is not in 𝑃 and is adjacent to 𝑣𝑗 ∈ 𝑃 . As
𝐺 is bipartite, either dist(𝑣0, 𝑤) = 𝑗 − 1 or dist(𝑣0, 𝑤) = 𝑗 + 1. Furthermore, as 𝑃 is geodesically
closed, dist(𝑣0, 𝑤) = 𝑗 + 1; otherwise, (𝑣0, . . . , 𝑤, 𝑣𝑗) is a geodesic path between two vertices in 𝑃

that is not contained in 𝑃 , a contradiction. Thus we see that dist(𝑣0, 𝑤) = 𝑗 + 1, and the cop’s
strategy dictates that the cop occupy the vertex 𝑣𝑗 . Therefore, the robber is unable to move to 𝑣𝑗 ,
and hence the robber is unable to enter 𝑃 .

We will establish a path-switching lemma that is similar to Lemma 3.1.7. We illustrate the
maneuver described in this lemma in Figure 3.6.

Lemma 3.1.14. Let 𝐺 be a bipartite planar graph with a fixed drawing in the plane. Let 𝑃1, 𝑃2 ⊆ 𝐺

be two (𝛼, 𝛽)-paths in 𝐺, where 𝛼, 𝛽 ∈ 𝑉 (𝐺). Let 𝐴 be a component of 𝐺 ∖ (𝑃1 ∪𝑃2) enclosed by 𝑃1

and 𝑃2. Suppose the following hold:

∙ The robber occupies a vertex in 𝐴.

∙ For 𝑖 ∈ {1, 2}, 𝑃𝑖 is geodesic with respect to 𝑃𝑖 ∪𝐴.
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𝛼 𝛽

𝑃2, 1 cop

𝐴′

ℵ
𝑃3

𝑃1, 2 cops

Figure 3.6: This figure illustrates the cop maneuver that is described in Lemma 3.1.14. We suppose
that the robber is confined to the region enclosed by 𝑃1 and 𝑃2. Lemma 3.1.14 claims that there
exists an (𝛼, 𝛽)-path 𝑃3 such that, when guarded by cops, the robber is confined to either the region
𝐴′ or ℵ. If the robber is confined to 𝐴′, we claim that the robber can be kept in 𝐴′ by guarding 𝑃2
with one cop and 𝑃3 with two cops. If the robber is confined to ℵ, we claim that the robber can be
kept in ℵ by guarding 𝑃1 with one cop and 𝑃3 with one cop.

∙ 𝑃1 is not geodesically closed with respect to 𝑃1∪𝐴, and two cops 𝐶1 and 𝐶2 stalk the robber’s
𝑃1-shadow.

∙ 𝑃2 is geodesically closed with respect to 𝑃2 ∪ 𝐴, and a single cop 𝐶 ′
1 stalks the robber’s 𝑃2-

shadow.

Then, using at most one additional cop 𝐶3, the robber can be confined to a smaller region 𝐵 ( 𝐴.
Furthermore, the cops can keep the robber in 𝐵 by guarding two (𝛼, 𝛽)-paths, each requiring at most
three cops, and at least one of which can be guarded with two cops.

Proof. Let 𝑃1 = (𝛼 = 𝑣0, . . . , 𝑣𝑘 = 𝛽). We assume that the robber’s 𝑃1-shadow stalked by 𝐶1 and 𝐶2

is calculated with respect to 𝑣0. As 𝑃1 is not geodesically closed in 𝐴∪𝑃1, we can choose a geodesic
(w.r.t. 𝐴∪ 𝑃1) path 𝑆 ̸⊆ 𝑃1, with endpoints 𝑣𝑖, 𝑣𝑗 ∈ 𝑃 (𝑖 < 𝑗) such that 𝑆 is of shortest length out
of all such geodesic paths. Let 𝑃1(𝑖, 𝑗) = (𝑣𝑖, 𝑣𝑖+1, . . . , 𝑣𝑗), and let 𝑆 = (𝑣𝑖, 𝑤𝑖+1, . . . , 𝑤𝑗−1, 𝑣𝑗). Let
ℵ be the region enclosed by 𝑆 and 𝑃1(𝑖, 𝑗). We may let 𝑆 be chosen out of all (𝑣𝑖, 𝑣𝑗)-geodesics to
minimize ℵ and hence assume that 𝑃1 ∪ ℵ does not contain any (𝑣𝑖, 𝑣𝑗)-geodesic besides 𝑃1(𝑖, 𝑗).

We claim that for any vertex 𝑥 ∈ 𝐴, if 𝑥 is adjacent to a vertex 𝑣𝑙 ∈ 𝑃 (𝑖, 𝑗) ∖ {𝑣𝑖, 𝑣𝑗}, then
dist(𝑣0, 𝑥) = 𝑙+1. We know from Lemma 3.1.10 that dist(𝑣0, 𝑥) ∈ {𝑙−1, 𝑙+1}. Suppose for the sake
of contradiction that dist(𝑣0, 𝑥) = 𝑙−1. Then 𝑥 must belong to a geodesic path 𝑆′ = (𝑣𝑚, . . . , 𝑥, 𝑣𝑙),
where 𝑣𝑚 is chosen to make 𝑆′ as short as possible for this fixed value 𝑙. By the minimality of 𝑆,
𝑚 < 𝑖, and so 𝑆′ must cross 𝑆 at some vertex 𝑤𝑝. As 𝑆 and 𝑆′ are geodesics, it then follows that
(𝑣𝑖, . . . , 𝑤𝑝, . . . , 𝑣𝑙) is a geodesic shorter than 𝑆, a contradiction. Thus the claim is proven.

We define 𝑃3 = (𝑣0, 𝑣1, . . . , 𝑣𝑖, 𝑤𝑖+1, . . . , 𝑤𝑗−1, 𝑣𝑗 , . . . , 𝑣𝑘), and we calculate the robber’s 𝑃3-
shadow using 𝑣0. We let an additional cop 𝐶3 stalk the robber’s 𝑃3-shadow. (At this point we may
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𝑣0

𝑃2, 1 cop

𝑃1, 2 cops

𝐴

𝐶3

ℵ

𝐶1

𝐶2

𝑣𝑘𝑣𝑖 𝑣𝑖+1

𝑤𝑖+1
𝑤𝑖+5

· · · · · ·𝑣𝑖+6

Figure 3.7: The figure shows a bipartite planar graph 𝐺 in which the robber is restricted to a region
𝐴 enclosed by two geodesic paths 𝑃1 and 𝑃2. The smaller region ℵ is enclosed by (𝑣𝑖, . . . , 𝑣𝑖+6) and
(𝑣𝑖, 𝑤𝑖+1, . . . , 𝑤𝑖+5, 𝑣𝑖+6). In the figure, the cops attempt either to remove the region ℵ from the
robber’s territory or confine the robber to ℵ. To accomplish this, a cop 𝐶3 is stalking the robber’s
𝑃3 shadow, where 𝑃3 = (𝑣0, . . . , 𝑣𝑖, 𝑤𝑖+1, . . . , 𝑤𝑖+5, 𝑣𝑖+6, . . . , 𝑣𝑘). Here, the robber’s vertex is colored
black, the robber’s 𝑃1-shadow and 𝑃3-shadow are colored grey. As 𝐶3 is successfully stalking the
robber’s 𝑃3-shadow, 𝐶2 has stopped stalking the robber’s 𝑃1-shadow and has moved to 𝑣𝑖+6, where
𝑃3 rejoins 𝑃1. If the robber’s shadow moves far enough left or right, then two cops will be stalking
the robber’s 𝑃3 shadow, and the robber will not be able to move to 𝑃3. This will either remove ℵ
from the robber’s territory or confine the robber to ℵ.

assume that the robber’s 𝑃3-shadow does not occupy a vertex of 𝑃1, as otherwise 𝑃3 would already
be guarded, and the argument would be complete.) Then on each subsequent move after 𝐶3 begins
stalking the robber’s 𝑃3-shadow, we move 𝐶2 on 𝑃1 toward the vertex 𝑣𝑗 . We note that 𝐶2 will reach
𝑣𝑗 before the robber’s 𝑃1-shadow can reach 𝑣𝑗 . We let 𝐶1 continue stalking the robber’s 𝑃1-shadow.
We illustrate this point of the strategy in Figure 3.7.

We claim that if the robber’s 𝑃3-shadow ever occupies a vertex of 𝑃1, then we have two cops
in position to guard the path 𝑃3 by stalking the robber’s 𝑃3-shadow. Indeed, if the robber’s 𝑃3

shadow occupies a vertex of 𝑃1, then one of two cases must have occured.

Case 1: The robber’s 𝑃3-shadow moves from 𝑤𝑖+1 to 𝑣𝑖. Then 𝐶1 moves to 𝑣𝑖−1, and 𝐶3 remains
at 𝑤𝑖+1. The robber does not occupy a vertex of 𝑃3, and 𝐶1 and 𝐶3 stalk the robber’s 𝑃3-shadow;
hence 𝐶1, 𝐶3 are guarding 𝑃3.

Case 2: The robber’s 𝑃3-shadow moves from 𝑤𝑗−1 to 𝑣𝑗 . Then 𝐶2 moves to 𝑣𝑗+1, and 𝐶3 remains
at 𝑤𝑗−1. The robber does not occupy a vertex of 𝑃3, and 𝐶2 and 𝐶3 stalk the robber’s shadow on
𝑃3; hence 𝐶2 and 𝐶3 are guarding 𝑃3.
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In both cases, two cops successfully guard 𝑃3. If the robber’s region is enclosed by 𝑃1 and 𝑃3,
then the robber’s region is ℵ. 𝑃3 is guarded by two cops, and 𝑃1 is geodesically closed with respect
to 𝑃1 ∪ ℵ; hence the robber’s region is enclosed by two paths, one of which is guarded by only
one cop 𝐶1, and the lemma is proven. (In fact, as before, 𝑃3 is geodesically closed with respect to
the robber’s region, so we only need one cop to continue guarding 𝑃3.) If the robber’s region is
enclosed by 𝑃2 and 𝑃3, then the robber is restricted to a smaller region 𝐵 ( 𝐴, namely the region
obtained by removing 𝑃3 and ℵ from 𝐴. 𝑃3 is guarded by two cops, and 𝑃2 is guarded by one cop
by assumption, and the lemma is proven.

Hence we arrive at a point in which the robber’s shadow must exist on the subpath

(𝑤𝑖+1, 𝑤𝑖+2 . . . , 𝑤𝑗−2, 𝑤𝑗−1).

At this point, we move 𝐶2 on 𝑃3 toward the robber’s shadow until 𝐶2 and 𝐶3 stalk the robber’s
𝑃3-shadow. At this point, one of three cases occurs:

Case 1: The robber occupies a vertex in the region enclosed by 𝑃2 and 𝑃3. In this case, 𝑃2 is
guarded by one cop, and we have two cops 𝐶2 and 𝐶3 guarding 𝑃3. In this case, the proof is com-
plete.

Case 2: The robber occupies a vertex in the region ℵ enclosed by 𝑃1 and 𝑃3. In this case, we
have two cops 𝐶2 and 𝐶3 guarding 𝑃3. Additionally, 𝑃1 is geodesically closed with respect to 𝑃1∪ℵ,
so 𝐶1 can guard 𝑃1 by continuing to stalk the robber’s 𝑃1-shadow. In this case, the proof is complete.

Case 3: The robber occupies a vertex 𝑤𝑙 of 𝑃3. In this case, 𝐶2 occupies 𝑤𝑙−1, and 𝐶3 occupies 𝑤𝑙+1.
Then 𝐶2 moves to 𝑤𝑙, and 𝐶3 remains at 𝑤𝑙+1. 𝐶1 continues stalking the robber’s 𝑃1-shadow. If the
robber’s 𝑃3-shadow moves to 𝑤𝑙 or 𝑤𝑙+1, then the robber moves off of 𝑃3, and 𝐶2 and 𝐶3 can stalk
the robber’s 𝑃3-shadow and bring us to Case 1 or Case 2. Otherwise, the robber’s 𝑃3-shadow moves
toward 𝑣𝑖. In this case, 𝐶2 and 𝐶3 both move along 𝑃3 toward 𝑣𝑖 and push the robber’s 𝑃3-shadow
toward 𝑣𝑖. By repeating this process, either the robber’s 𝑃3-shadow will make a movement that
allows itself to be stalked, giving us Case 1 or Case 2, or the robber’s 𝑃3-shadow will reach 𝑤𝑖+1,
with 𝐶1 occupying 𝑣𝑖, 𝐶3 occupying 𝑤𝑖+1, and 𝐶2 occupying 𝑤𝑖+2. At this point, the robber must
move to a vertex that is not on 𝑃3, and the robber’s 𝑃3-shadow can be stalked on the next move,
giving us Case 1 or Case 2. Thus in this case, the proof is complete.

With this lemma in place, we can prove an upper bound for the surrounding cop number of
bipartite planar graphs. As stated before, the proof of this theorem will follow the method of
Theorem 3.1.8 very closely.

Theorem 3.1.15. Let 𝐺 be a planar bipartite graph. Then 𝑠(𝐺) ≤ 4.
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Proof. We will play the game in stages. In each Stage 𝑖 of the game, we will have two paths 𝑃1 and
𝑃2 with common endpoints that are guarded by cops in such a way that the robber is unable to
access the vertices of 𝑃1 and 𝑃2. We will define the robber’s region 𝑅𝑖 at Stage 𝑖 as the component
of 𝐺 ∖ (𝑃1 ∪ 𝑃2) that the robber occupies. We will show that at each stage, we can reduce the
robber’s region to a new region 𝑅𝑖+1 ( 𝑅𝑖.

If 𝐺 is a tree, then 𝑠(𝐺) = 2, and we are done. Otherwise, we begin the game at Stage 1. As
𝐺 is not a tree, there exists an edge (𝑢𝑣) ∈ 𝐸(𝐺) such that a geodesic path exists from 𝑢 to 𝑣 in
the graph 𝐺 ∖ (𝑢𝑣). We let 𝑃2 be the path (𝑢, 𝑣), and we let 𝑃1 be any (𝑢, 𝑣)-path geodesic with
respect to 𝐺∖ (𝑢𝑣). 𝑃2 is geodesically closed with respect to 𝐺 and thus can be guarded by one cop.
𝑃1 is a geodesic path with respect to 𝐺 ∖ 𝑃2, and so 𝑃1 can be guarded with two cops by stalking
the robber’s 𝑃1-shadow. At this point, the component of the graph 𝐺 ∖ (𝑃1 ∪ 𝑃2) that the robber
occupies is called 𝑅1. We may redraw 𝐺 so that 𝑅1 is enclosed by 𝑃1 and 𝑃2.

We describe the strategy that we follow at each Stage 𝑖 of the game.

Case 1: The robber’s region 𝑅𝑖 is enclosed by two guarded (𝛼, 𝛽)-paths 𝑃1 and 𝑃2. 𝑃1 is not
geodesically closed with respect to 𝑃1 ∪𝑅𝑖, and 𝑃2 is geodesically closed with respect to 𝑃2 ∪𝑅𝑖.

Let 𝑃1 be guarded by two cops 𝐶1, 𝐶2. Let 𝑃2 be guarded by a cop 𝐶 ′
1. Then by Lemma 3.1.14,

we can use one extra cop 𝐶3 and replace 𝑃1 with an (𝛼, 𝛽)-path 𝑃 ′
1 so that at most two cops guard

𝑃 ′
1, and such that there exists an (𝛼, 𝛽)-path 𝑃 ′

2 guarded by at most one cop such that the robber
is restricted to a component 𝑅𝑖+1 of 𝐺 ∖ (𝑃 ′

1 ∪ 𝑃 ′
2) with 𝑅𝑖+1 ( 𝑅𝑖. Depending on whether or not

𝑃 ′
1 is geodesically closed with respect to 𝑃 ′

1 ∪𝑅𝑖+1, this brings us to Case 1, 2, or 3.

Case 2: The robber’s region 𝑅𝑖 is enclosed by two guarded (𝛼, 𝛽)-paths 𝑃1 and 𝑃2. 𝑃1 is geodesically
closed with respect to 𝑃1 ∪ 𝑅𝑖, and 𝑃2 is geodesically closed with respect to 𝑃2 ∪ 𝑅𝑖. There exists
an (𝛼, 𝛽)-path in 𝑃1 ∪ 𝑃2 ∪𝑅𝑖 distinct from 𝑃1 and 𝑃2.

We choose a shortest (𝛼, 𝛽)-path in 𝑃1 ∪ 𝑃2 ∪ 𝑅𝑖, and we call this path 𝑃3. We guard 𝑃3 with
at most two cops. 𝑃3 divides the region 𝑅𝑖 into two parts, and hence the robber’s region is either
enclosed by 𝑃1 and 𝑃3, or the robber’s region is enclosed by 𝑃2 and 𝑃3. In both cases, the robber’s
region is restricted to a region 𝑅𝑖+1 ( 𝑅𝑖, and one of the paths enclosing 𝑅𝑖+1 is guarded by at
most one cop. Depending whether or not 𝑃3 is geodesically closed with respect to 𝑃3 ∪ 𝑅𝑖+1, this
brings us to Case 1, 2, or 3.

Case 3: The robber’s region 𝑅𝑖 is enclosed by two guarded (𝛼, 𝛽)-paths 𝑃1 and 𝑃2. 𝑃1 is geodesically
closed with respect to 𝑃1 ∪ 𝑅𝑖, and 𝑃2 is geodesically closed with respect to 𝑃2 ∪ 𝑅𝑖. There exists
no (𝛼, 𝛽)-path in 𝑃1 ∪ 𝑃2 ∪𝑅𝑖 distinct from 𝑃1 and 𝑃2.

In this case, without loss of generality, 𝑃1 has only one vertex 𝑥 ∈ 𝑃1 adjacent to the robber’s
region, and 𝑃2 is not adjacent to the robber’s region. Then the robber can be restricted to his
region simply by placing a cop at 𝑥. We thus place two cops 𝐶1 and 𝐶2 at 𝑥 and confine the robber
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to his region. If 𝑥 has only one neighbor 𝑦 in the robber’s region, then we move 𝐶1 to 𝑦 and move
𝐶2 to 𝑦 on the next turn. We may continue this process until 𝐶1 and 𝐶2 occupy a vertex 𝑥 that
has at least two neighbors 𝑦, 𝑧 in the robber’s region 𝑅𝑖. Then we choose 𝑃 ′

2 = (𝑥, 𝑦), and we let 𝑃 ′
1

be an (𝑥, 𝑦)-geodesic in 𝑅𝑖 ∖ (𝑥𝑦). We guard 𝑃 ′
1 with at most three cops and we may redraw 𝑅𝑖 so

that the robber is enclosed by 𝑃 ′
1 and 𝑃 ′

2. Then the robber is confined to a region 𝑅𝑖+1 ( 𝑅𝑖, and
depending on whether or not 𝑃 ′

1 is geodesically closed with respect to 𝑃 ′
1 ∪𝑅𝑖+1, this brings us to

Case 1, 2, or 3.
If we continue this process, we will eventually reach a point in which the robber’s region consists

of a single vertex, at which point the robber is surrounded.

Unlike Theorem 3.1.8, we can show that the bound in Theorem 3.1.15 is tight.

Theorem 3.1.16. There exists a planar bipartite graph 𝐺 with 𝑠(𝐺) = 4.

Proof. Let 𝒫5 be the family of planar graphs with minimum degree 5. Let 𝐻 ∈ 𝒫5, and let 𝐺 be the
graph obtained from 𝐻 by subdividing each edge exactly once. We color vertices originally from 𝐻

red, and we color vertices added as subdivisions blue. This is a proper coloring, and thus we see
that 𝐺 is bipartite.

We show that 3 cops are not sufficient to surround the robber on 𝐺. The robber uses the
following strategy. The robber begins at a red vertex 𝑟 ∈ 𝐺 and does not move until a cop occupies
𝑟. As red vertices have degree at least 5, the robber will not be surrounded before being captured.
Suppose that a cop occupies 𝑟. As 𝐻 has minimum degree 5, there are at least 5 red vertices within
distance 2 of the robber. Let 𝑣1, . . . , 𝑣5 be 5 such red vertices. The cop occupying 𝑟 does not have
any of 𝑣1, . . . , 𝑣5 in its closed neighborhood. Furthermore, each of the other two cops does not have
more than two of 𝑣1, . . . 𝑣5 in its closed neighborhood. Therefore, there exists a red vertex 𝑣𝑖 within
distance 2 of 𝑟 that is not in the closed neighborhood of any cop. At this point, the robber uses the
next two moves to move on the shortest path toward 𝑣𝑖. As 𝑣𝑖 is not in the closed neighborhood
of any cop, the robber will reach 𝑣𝑖 before any cop reaches 𝑣𝑖. The robber then can repeat this
strategy indefinitely and avoid being surrounded forever. Hence 𝑠(𝐺) ≥ 4, and by Theorem 3.1.15,
𝑠(𝐺) = 4.

3.1.4 Toroidal graphs

The aim of this section is to bound 𝑠(𝐺) for toroidal graphs 𝐺. We will mimic the strategy used by
Lehner to show that every toroidal graph has cop number at most 3 [26]. The strategy of Lehner
from [26] uses the notion of a planar tiling of a toroidal graph, which is informally defined as follows.
Given a toroidal graph 𝐺, by definition, 𝐺 has an embedding in the unit square 𝑆 in the plane
defined by 0 ≤ 𝑥, 𝑦 ≤ 1, with the lines 𝑥 = 0, 𝑥 = 1 identified, and with the lines 𝑦 = 0, 𝑦 = 1
identified. Then, a planar tiling 𝐺𝑇 of 𝐺 is obtained by copying the embedding of 𝐺 in the unit
square 𝑆 into every square in the plane of the form 𝑘1 ≤ 𝑥 ≤ 𝑘1 + 1, 𝑘2 ≤ 𝑦 ≤ 𝑘2 + 1, for each
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𝑘1, 𝑘2 ∈ Z. It will be useful to consider a planar tiling 𝐺𝑇 of a toroidal graph 𝐺, as it will essentially
allow us to circumvent the fact that 𝐺 is not planar and apply strategies from planar graphs directly
to 𝐺𝑇 .

When we consider the game of surrounding cops and robbers on a toroidal graph 𝐺, rather than
considering the graph 𝐺 directly, we will consider an infinite planar tiling 𝐺𝑇 of 𝐺, and we will
attempt to capture the robber on 𝐺𝑇 . When the robber chooses a vertex 𝑟 of 𝐺, we will choose a
corresponding vertex 𝑟0 of 𝐺𝑇 , and we will consider a large ball 𝐵 around 𝑟0. We will then guard
geodesic paths from 𝑟0 to the boundary of 𝐵, and we will divide the robber’s region in 𝐵 until
the robber is restricted to a planar region of 𝐺𝑇 . Then we will surround the robber by the planar
strategy.

The following observation will be useful.

Observation 3.1.17. In the proof of Theorem 3.1.8, if we allow 𝑃2 to be guarded by 3 cops, then
we have a strategy to capture the robber on a planar graph using 8 cops.

We will establish some preliminaries.

Definition 3.1.18. We say that a cyclic order of integers in the form (𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑚− 1, 𝑎 +
𝑚, 𝑎 + 𝑚− 1, . . . , 𝑎 + 1) is called a sawtooth order.

Observation 3.1.19. Let 𝐴 = (𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑚− 1, 𝑎 + 𝑚, 𝑎 + 𝑚− 1, . . . , 𝑎 + 1) be a sawtooth
order. Let 𝑖, 𝑗 ∈ 𝐴, 𝑖 < 𝑗. Then for any subsequence 𝐵 = (𝑖, . . . , 𝑗) ⊆ 𝐴, replacing 𝐵 with (𝑖, 𝑖 +
1, . . . , 𝑗 − 1, 𝑗) gives a sawtooth order.

We give an example of an application of the previous observation. Consider the sawtooth order
(1, 2, 3, 4, 5, 4, 3, 2). If we replace the subsequence (1, 2, 3, 4, 5, 4) with the sequence (1, 2, 3, 4), then
we obtain a shorter sawtooth order (1, 2, 3, 4, 3, 2).

Definition 3.1.20. Let 𝐻 be a planar graph with an embedding in the plane, and let 𝑣0 ∈ 𝑉 (𝐻).
Let (ℎ1, ℎ2, ℎ3, . . . , ℎ𝑚) be a clockwise walk around the boundary of 𝐻. Then we define the following
cyclic order:

(𝐻, 𝑣0)𝑏𝑑 := (𝑑𝑖𝑠𝑡(𝑣0, ℎ1), 𝑑𝑖𝑠𝑡(𝑣0, ℎ2), 𝑑𝑖𝑠𝑡(𝑣0, ℎ3), . . . , 𝑑𝑖𝑠𝑡(𝑣0, ℎ𝑚)).

Lemma 3.1.21. Let 𝐺 be a planar graph with an embedding in the plane. Let 𝑣0, 𝑣𝑘 ∈ 𝑉 (𝐺) be a
pair of vertices at distance 𝑘, and let Π be the set of all geodesic paths from 𝑣0 to 𝑣𝑘. There exist
two geodesic paths 𝑃1 and 𝑃2 from 𝑣0 to 𝑣𝑘 enclosing an interior ℵ such that

⋃︀
Π ⊆ ℵ ∪ 𝑃1 ∪ 𝑃2.

The statement of Lemma 3.1.21 is illustrated in Figure 3.8.

Proof. We will prove the following statement (*):
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Figure 3.8: The figure shows part of a planar graph 𝐺 embedded in the plane. Two vertices 𝑣0, 𝑣8 ∈
𝑉 (𝐺) at distance 8 are shown, and all (𝑣0, 𝑣8)-geodesics belong to the region 𝑅, including its
boundary. (Not all of these geodesics are shown in the figure.) In the figure, the two geodesics
𝑃1 = (𝑣0, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑣6, 𝑣7, 𝑣8) and 𝑃2 = (𝑣0, 𝑣1, . . . , 𝑣8) enclose all (𝑣0, 𝑣8)-geodesics.

Let Π′ be a proper subset of all geodesic paths from 𝑣0 to 𝑣𝑘. Let 𝐻 ⊆ 𝐺 be the union of all
paths in Π′, and let 𝐻 inherit a planar embedding from 𝐺. Suppose that (𝐻, 𝑣0)𝑏𝑑 is sawtooth.
Then there exists a geodesic (𝑣0, 𝑣𝑘)-path 𝑃 ′ ̸∈ Π′ such that (𝐻 ∪ 𝑃 ′, 𝑣0)𝑏𝑑 is sawtooth. (*)

To show an example of the statement (*), in Figure 3.8, we may take Π′ to be all (𝑣0, 𝑣8)
geodesics contained in the region 𝑅, including its boundary. Then, we may find a path 𝑃 ′ =
(𝑣0, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑣6, 𝑣7, 𝑣8) such that (𝐻 ∪ 𝑃 ′, 𝑣0)𝑏𝑑 gives the sawtooth order

(0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1).

This statement (*) implies that we can let Π′ begin with a single geodesic path 𝑃0, for which
(𝑃0, 𝑣0)𝑏𝑑 = (0, 1, . . . , 𝑘−1, 𝑘, 𝑘−1, . . . , 1) is clearly sawtooth, and we can add new (𝑣0, 𝑣𝑘)-geodesics
to Π′ one at a time until Π′ contains all (𝑣0, 𝑣𝑘)-geodesics—that is, until Π′ = Π. Furthermore, in
this way we can ensure that (

⋃︀
Π, 𝑣0)𝑏𝑑 is sawtooth. Then we let (ℎ1, . . . , ℎ𝑙, . . . , ℎ𝑚) be a clockwise

ordering of the boundary of
⋃︀

Π such that (𝑑𝑖𝑠𝑡(𝑣0, ℎ1), . . . , 𝑑𝑖𝑠𝑡(𝑣0, ℎ𝑙)) is increasing and such that
(𝑑𝑖𝑠𝑡(𝑣0, ℎ𝑙), . . . , 𝑑𝑖𝑠𝑡(𝑣0, ℎ𝑚)) is decreasing. We let 𝑞1 be a (𝑣0, ℎ1)-geodesic of

⋃︀
Π, and we let

𝑞′
1 be an (ℎ𝑚, 𝑣𝑘)-geodesic of

⋃︀
Π. We let 𝑞2 be a (𝑣0, ℎ𝑚)-geodesic of

⋃︀
Π, and we let 𝑞′

2 be an
(ℎ𝑙, 𝑣𝑘)-geodesic of

⋃︀
Π. We see that 𝑃1 := 𝑞1 ∪ (ℎ1, . . . , ℎ𝑙) ∪ 𝑞′

1 and 𝑃2 := 𝑞2 ∪ (ℎ𝑚, . . . , ℎ𝑙) ∪ 𝑞′
2

are (𝑣0, 𝑣𝑘)-geodesics of 𝐺 that enclose a region ℵ such that
⋃︀

Π ⊆ ℵ∪𝑃1 ∪𝑃2. Then the lemma is
proven. Thus we aim to prove the statement (*).
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Let Π′ be any proper subset of all geodesic paths from 𝑣0 to 𝑣𝑘. Let 𝐻 ⊆ 𝐺 be the union of
all paths in Π′, and let 𝐻 inherit a planar embedding from 𝐺. Suppose that (𝐻, 𝑣0)𝑏𝑑 is sawtooth.
Let ℵ be the region including and enclosed by the boundary of 𝐻. Let 𝑃 * ̸∈ Π′ be a geodesic path
from 𝑣0 to 𝑣𝑘. We write 𝑃 * = (𝑤0, . . . , 𝑤𝑘).

We make the following claim. Suppose that 𝑤𝑖 ∈ 𝑉 (𝑃 *) belongs to the boundary of 𝐻. Then
dist𝐻(𝑣0, 𝑤𝑖) = 𝑖. To prove the lemma, suppose that dist𝐻(𝑣0, 𝑤𝑖) < 𝑖. Then there exists a path
𝑃 ⊆ 𝐻 from 𝑣0 to 𝑤𝑖 of length 𝑖′ < 𝑖, implying that 𝑃 ∪ 𝑃 *(𝑤𝑖, 𝑣𝑘) is a walk from 𝑣0 to 𝑣𝑘 of
length less than 𝑘, a contradiction. Suppose, on the other hand, that dist𝐻(𝑣0, 𝑤𝑖) > 𝑖. Then there
exists a path 𝑃 ⊆ 𝐻 from 𝑤𝑖 to 𝑣𝑘 of length less than 𝑘 − 𝑖, namely (𝑤𝑖, . . . , 𝑤𝑘), implying that
𝑃 *(𝑣0, 𝑤𝑖) ∪ 𝑃 is a walk from 𝑣0 to 𝑣𝑘 of length less than 𝑘, a contradiction. Thus we see that
dist𝐻(𝑣0, 𝑤𝑖) = 𝑖.

If 𝑃 * ⊆ ℵ, then clearly (𝐻, 𝑣0)𝑏𝑑 is sawtooth. Otherwise, 𝑃 * is not contained in ℵ. Let 𝑤𝑖+1 ∈ 𝑃 *

be the first vertex of 𝑃 * that does not belong to ℵ, and let 𝑤𝑗 be the first vertex in 𝑃 * after 𝑤𝑖+1

that belongs to ℵ. By the previous discussion, dist𝐻(𝑣0, 𝑤𝑖) = 𝑖, 𝑑𝑖𝑠𝑡𝐻(𝑣0, 𝑤𝑗) = 𝑗. As 𝑃 * is a
geodesic, this implies that the subpath 𝑞 = (𝑤𝑖, . . . , 𝑤𝑗) is of length 𝑗− 𝑖 and that there exist paths
𝑝 = (𝑣0, . . . , 𝑤𝑖) ⊆ 𝐻, 𝑝′ = (𝑤𝑗 , . . . , 𝑣𝑘) respectively of lengths 𝑖 and 𝑘− 𝑗. Therefore, 𝑃 ′ := 𝑝∪𝑞∪𝑝′

is a geodesic path in 𝐺 that is not included in ℵ. We show that (𝐻 ∪ 𝑃 ′, 𝑣0)𝑏𝑑 is sawtooth.
As (dist(𝑣0, 𝑤𝑖), dist(𝑣0, 𝑤𝑖+1), . . . , dist(𝑣0, 𝑤𝑗−1), dist(𝑣0, 𝑤𝑗)) = (𝑖, 𝑖 + 1, . . . , 𝑗−1, 𝑗), the cyclic

order (𝐻 ∪ 𝑃 ′, 𝑣0)𝑏𝑑 is obtained from (𝐻, 𝑣0)𝑏𝑑 by replacing a subsequence (𝑖, . . . , 𝑗) with (𝑖, 𝑖 +
1, . . . , 𝑗 − 1, 𝑗). By Observation 3.1.19, this leaves us with another sawtooth order. Hence (𝐻 ∪
𝑃 ′, 𝑣0)𝑏𝑑 is also sawtooth.

Thus the statement (*) holds, and we see that there exist (𝑣0, 𝑣𝑘)-geodesic paths 𝑃1 and 𝑃2 that
enclose a region ℵ such that

⋃︀
Π ⊆ ℵ ∪ 𝑃1 ∪ 𝑃2. Thus the lemma is proven.

We now have most of our tools in place for proving an upper bound on 𝑠(𝐺) for a toroidal
graph 𝐺. As stated before, rather than working directly with an embedding of 𝐺 on the torus, we
will consider an infinite planar tiling 𝐺𝑇 of 𝐺. A planar tiling of 𝐺 is a type of planar cover of
𝐺, which is defined as a planar embedding of a graph 𝐺 in the plane in which a vertex 𝑣 ∈ 𝑉 (𝐺)
may be represented by multiple (and possible infinitely many) points in the plane, and an edge
𝑒 ∈ 𝐸(𝐺) may be represented by multiple (and possibly infinitely many) points in the plane. In a
planar cover of 𝐺, the standard rules for embeddings still apply; that is, two drawn edges may not
cross, and a drawn edge may not include a point representing a vertex. The following definition
and lemma will be essential to our strategy for toroidal graphs.

Definition 3.1.22. Let 𝐺 be an infinite graph. We say that 𝐺 has polynomial growth if there exists
a polynomial 𝑓 such that for any vertex 𝑣 ∈ 𝐺, the number of vertices at distance exactly 𝑑 from
𝑣 is at most 𝑓(𝑑).

The following lemma is proven in [26].
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Lemma 3.1.23. Let 𝐺 be a finite toroidal graph. Then there is an infinite planar cover of 𝐺 with
polynomial growth.

We are now ready to prove an upper bound for the surrounding cop number of toroidal graphs.

Theorem 3.1.24. Let 𝐺 be a toroidal graph. Then 𝑠(𝐺) ≤ 8.

Proof. Let |𝐺| = 𝑛. We will essentially use the strategy of Lehner from [26] with some slight
modifications. Rather than considering 𝐺 directly, we will consider an infinite planar tiling 𝐺𝑇 of 𝐺

with polynomial growth (by Lemma 3.1.23). We note that there exists a natural projection function
𝜋 : 𝑉 (𝐺𝑇 ) → 𝑉 (𝐺). If we play a game of cops and robbers on 𝐺, then at each point in the game,
each cop 𝐶 has an infinite number of preimages in 𝐺𝑇 given by 𝜋−1(𝐶). Furthermore, the robber
𝑟 has an infinite number of preimages 𝜋−1(𝑟). The robber 𝑟 and a cop 𝐶 occupy the same vertex
in 𝐺 if and only if some element of 𝜋−1(𝐶) occupies the same vertex as some element of 𝜋−1(𝑟) in
𝐺𝑇 . Furthermore, the robber is surrounded on 𝐺 if and only if some element of 𝜋−1(𝑟) occupies a
vertex 𝑥 ∈ 𝐺𝑇 such that all neighbors of 𝑥 are occupied by cop preimages.

In our strategy, rather than aiming to let the cop preimages on 𝐺𝑇 surround any arbitrary robber
preimage, we will focus on surrounding one predetermined robber preimage. This restriction can
only make the game more difficult for the cops, and therefore any upper bound on the number of
cops needed to surround a specific preimage of the robber on 𝐺𝑇 also gives an upper bound for the
number of cops needed to surround the robber on 𝐺.

From this point onward, we will identify the robber with the 𝐺𝑇 preimage of the robber that
we wish to surround. Let the robber begin the game at 𝑟0 ∈ 𝐺𝑇 . We let 𝐷 be a large value that is
to be determined later. We define 𝐵 = 𝐵𝑟0(𝐷) as the ball of radius 𝐷 centered at 𝑟0. Let 𝑄 be the
circumference of this ball; that is, let 𝑄 be the set of vertices at distance exactly 𝐷 from 𝑟0. First,
we will need a lemma. In the following lemma, we assume that the robber is never too close to the
boundary of 𝐵, because in fact the cops will be able to capture the robber before the robber comes
close to escaping 𝐵.

Lemma 3.1.25. Let 𝑣 ∈ 𝑄. Let 𝑃 be a geodesic path in 𝐵 from 𝑟0 to 𝑣. Suppose that the robber is
at distance 𝑑 < 𝐷− 3𝑛 from 𝑟0. Then 𝑃 can be guarded by three cop preimages as in Lemma 3.1.5
before the robber reaches a distance of 𝑑 + 2𝑛 from 𝑟0.

Proof. Let 𝑃 = (𝑟0, 𝑣1, . . . , 𝑣𝐷 = 𝑣).
As the diameter of 𝐺 is at most 𝑛, three cops preimages 𝐶1, 𝐶2, and 𝐶3 can reach 𝑣𝑑+𝑛+1,

𝑣𝑑+𝑛+2, and 𝑣𝑑+𝑛+3 within 𝑛 moves. By assumption, when 𝐶1, 𝐶2, and 𝐶3 reach their positions, the
shadow of the robber on 𝑃 is on the subpath (𝑟0, 𝑣1, . . . , 𝑣𝑑+𝑛). Then 𝐶1, 𝐶2, and 𝐶3 move along
𝑃 toward the robber’s 𝑃 -shadow until they reach a position to stalk the robber’s 𝑃 -shadow. 𝐶1,
𝐶2 , and 𝐶3 reach such a position before the robber reaches 𝑣𝑑+2𝑛.
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Figure 3.9: The figures show the initial maneuvers of the strategy of Theorem 3.1.24. In each figure,
the circle represents the ball 𝐵 around 𝑟0, and 𝑅 represents the robber’s region in 𝐵. Figure (a)
shows six cops guarding two (𝑟0, 𝑞1)-geodesics 𝑃1, 𝑃2 that enclose all (𝑟0, 𝑞1)-geodesics. Figure (b)
shows that if R is not enclosed by 𝑃1 and 𝑃2, then 𝑃1, 𝑃2 can be guarded with four cops. Figure
(c) shows 𝑅 being divided by an (𝑟0, 𝑞[𝑚/2])-geodesic 𝑃3. Figure (d) shows three additional cops
guarding another (𝑟0, 𝑞[𝑚/2])-geodesic 𝑃2 that separates 𝑅 from all (𝑟0, 𝑞[𝑚/2])-geodesics. Figure (e)
shows that the paths 𝑃1, 𝑃2 adjacent to 𝑅 are geodesically closed with respect to 𝑅 and thus need
only four cops to guard. Figure (f) shows 𝑅 being divided again by an (𝑟0, 𝑞[𝑚/4])-geodesic 𝑃 ′

1. The
maneuvers shown in (d), (e), (f) can be repeated until the robber is contained in a planar region of
𝐺𝑇 .
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Now, let |𝑄| = 𝑚. Let (𝑞1, . . . , 𝑞𝑚) be the cyclic ordering of the elements of 𝑄 according to the
planar embedding of 𝐺𝑇 . First, we use Lemma 3.1.21 to compute two geodesics 𝑃1 and 𝑃2 from 𝑟0

to 𝑞1 that enclose all (𝑟0, 𝑞1)-geodesics. Then we use six cops to guard 𝑃1 and 𝑃2, as in Figure 3.9
(a). If the robber is enclosed by 𝑃1 and 𝑃2, then the robber is restricted to a planar region by six
cops, and then we can win the game with eight cops by Observation 3.1.17. Otherwise, 𝑃1 and 𝑃2

are geodesically closed with respect to the robber’s territory in 𝐵, and we only need four of our six
cops to continue to guard 𝑃1 and 𝑃2 (see Figure 3.9 (b)).

Next, we choose a geodesic 𝑃3 from 𝑟0 to 𝑞[𝑚/2] and guard 𝑃3 with 3 cops (see Figure 3.9 (c)).
Without loss of generality, the robber is restricted to a region of 𝐵 enclosed by 𝑃1 and 𝑃3, which
are guarded by a total of 5 cops.

From this point onward, we repeat the following procedure, which will recursively restrict the
robber’s territory until the robber is confined to a planar region of 𝐺𝑇 .

Let the robber be confined to a region of 𝐵 bounded by geodesics 𝑃1 = (𝑟0, . . . , 𝑞𝑎) and 𝑃3 =
(𝑟0, . . . , 𝑞𝑏). Suppose further that 𝑃1 is guarded by two cops. Using Lemma 3.1.21, we compute a
geodesic 𝑃2 from 𝑟0 to 𝑞𝑎 such that 𝑃2 and 𝑃3 enclose all (𝑟0, 𝑞𝑎)-geodesics in the robber’s territory
(see Figure 3.9 (d)). We then use three cops to guard 𝑃2. If the robber is in the interior of 𝑃2 ∪𝑃3,
then the robber is confined to a planar region of 𝐵 with six cops, and we win the game with
eight cops by Observation 3.1.17. Otherwise, 𝑃2 is geodesically closed with respect to the robber’s
territory and can be guarded by two cops. Now the robber is confined to a region of 𝐵 that is
enclosed by 𝑃1 and 𝑃2, each of which is guarded by two cops (see Figure 3.9 (e)). Next, we use
three cops to guard a geodesic 𝑃 ′

1 from 𝑟0 to 𝑞[(𝑎+𝑏)/2] (see Figure 3.9 (f)). Now we see that, without
loss of generality, the robber’s territory in 𝐵 is enclosed by a geodesic 𝑃 ′

1 from 𝑟0 to 𝑞[(𝑎+𝑏)/2] and
a geodesic 𝑃2 from 𝑟0 to 𝑞𝑏. Furthermore, we see that 𝑃2 is guarded by two cops. Thus the initial
conditions of our procedure are satisfied again, and we can repeat our procedure.

We repeat this process until the robber’s territory in 𝐵 is enclosed by a geodesic 𝑃1 from 𝑟0

to 𝑞𝑎 and a geodesic 𝑃2 from 𝑟0 to 𝑞𝑎+1. We see that reaching this point requires at most log 𝑚

iterations of the procedure. As (𝑞𝑖) are in cyclic order with respect to the drawing of 𝐺𝑇 , once 𝑃1

and 𝑃2 are guarded as such, the robber is confined to a planar region of 𝐺𝑇 and can be captured
with eight cops by Observation 3.1.17.

As our procedure relies on Lemma 3.1.25, it remains only to show that the robber’s distance
from 𝑟0 cannot reach 𝐷 − 3𝑛 before the procedure is complete. Any time a path is guarded, the
robber is only able to move a distance of at most 2𝑛 away from 𝑟0. To initialize our procedure,
we require our cops to guard three paths. In each iteration of our procedure, we guard two paths.
Furthermore, we execute at most log 𝑚 = log |𝑄| iterations of our procedure. Therefore, the total
number of paths guarded in our strategy is at most 3 + 2 log 𝑚, and hence when our procedure is
finished, the robber is at a distance of at most 6𝑛 + 4𝑛 log 𝑚 from 𝑟0.

We now assign a value to 𝐷. We set 𝐷 = 𝑒𝑘𝑛, where 𝑘 is a sufficiently large constant. Recall
that 𝑚 is bounded by the polynomial expression 𝑓(𝑚). We can bound the polynomial 𝑓(𝑚) by
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another polynomial 𝑓*(𝑚) of the form 𝐴𝑚𝛼 such that 𝑓(𝑚) ≤ 𝑓*(𝑚) for 𝑚 ≥ 1. Then the distance
of the robber from 𝑟0 is at most

6𝑛 + 4𝑛 log 𝑚 ≤ 6𝑛 + 4𝑛 log(𝐴𝐷𝛼) ≤ 6𝑛 + 4𝑛(log 𝐴 + 𝛼𝑘𝑛) < 𝑒𝑘𝑛 − 3𝑛

for sufficiently large 𝑘. Therefore, we can choose 𝐷 large enough that the robber stays sufficiently
far from the boundary of 𝐵 before being confined to a planar region of 𝐺𝑇 . Finally, once the robber
is confined to a planar region in 𝐺𝑇 with at most six cops, we can surround the robber with at
most eight cops by Observation 3.1.17.

We show that the upper bound in Theorem 3.1.24 is close to best possible.

Theorem 3.1.26. There exists a toroidal graph 𝐺 such that 𝑠(𝐺) ≥ 7.

Proof. Let 𝐻 be a 6-regular tiling of equilateral triangles on the torus. Let 𝐺 be a graph obtained
by adding a vertex 𝑣 at each face 𝑓 of 𝐻 and adding an edge from 𝑣 to every vertex of 𝑓 . Clearly
𝐺 is toroidal. We call the vertices from 𝐻 original vertices, and we call the additional vertices face
vertices. We let the robber play on the original vertices, each of which has degree 12 in 𝐺.

Suppose there are six cops. We note that the robber cannot be surrounded on an original vertex.
Suppose that a cop moves to occupy 𝑟. At this point, at most five neighboring original vertices of 𝑟

are occupied by cops. Thus there exists an unoccupied original vertex adjacent to 𝑟, and the robber
moves to this vertex. The robber repeats this process indefinitely and wins. Therefore, six cops are
insufficient to surround the robber on 𝐺, and 𝑠(𝐺) ≥ 7.

We can also use the methods in the proof of Theorem 3.1.24 to prove an upper bound on the
surrounding cop number of bipartite toroidal graphs. Furthermore, we can show that this upper
bound is tight.

Theorem 3.1.27. Let 𝐺 be a bipartite toroidal graph. Then 𝑠(𝐺) ≤ 5.

Proof. The proof technique is nearly identical to that of Theorem 3.1.24. When 𝐺 is bipartite,
however, paths that are geodesic with respect to the robber’s region can be guarded with two cops,
and paths that are geodesically closed with respect to the robber’s region can be guarded with
one cop. In Figure 3.10, we give a sketch of how the ideas of Theorem 3.1.24 can be applied to a
bipartite toroidal graph 𝐺 to restrict the robber to a planar region of the planar tiling 𝐺𝑇 using
five cops. Then, by following the strategy of Theorem 3.1.15, the robber can be surrounded using
five cops.

Theorem 3.1.28. There exists a bipartite toroidal graph 𝐺 with 𝑠(𝐺) = 5.
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Figure 3.10: The figures show the initial maneuvers of the strategy of Theorem 3.1.27. The figures
have the same meanings as those of Figure 3.9. In these figures, however, we let two cops guard
a general path that is geodesic with respect to 𝑅, and we show one cop guarding a path that is
geodesically closed with respect to 𝑅.
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Proof. Let 𝐶𝑚, 𝐶𝑛 be cycles respectively of length 𝑚, 𝑛 ≥ 2. Let 𝐻 = 𝐶𝑚�𝐶𝑛—that is, the
Cartesian product of an 𝑚-cycle and an 𝑛-cycle—and let 𝐻 have a grid embedding on the torus.
We construct a graph 𝐺 as follows: at each face 𝑓 of 𝐻, we add a quadrilateral, and we add an edge
from each vertex of the quadrilateral to a vertex of 𝑓 in a way that does not introduce crossings.
𝐺 is clearly bipartite. We show that 𝑠(𝐺) = 5.

By Theorem 3.1.27, 𝑠(𝐺) ≤ 5. We call the vertices of 𝐺 that originate as vertices of 𝐻 original
vertices. We note that each original vertex is of degree 8 and has four neighbors that are original
vertices. We show that four cops are not sufficient to surround the robber. We let the robber begin
at an original vertex 𝑟. As 𝑟 has degree 8, robber cannot be surrounded without a cop first occupying
𝑟. If a cop occupies 𝑟, then at most three neighboring original vertices of 𝑟 are occupied by cops.
Therefore, there exists an unoccupied neighboring original vertex of 𝑟, and the robber can move
to this original vertex. The robber can repeat this process indefinitely. Therefore, exactly five cops
are needed to surround the robber on 𝐺.

3.1.5 Outerplanar graphs

In this section, we consider the game of surrounding cops and robbers on outerplanar graphs, which
are defined as graphs that may be embedded in the plane so that all vertices are incident to a single
face. Outerplanar graphs are typically drawn in the plane with all vertices incident to the outer
face, which gives them this name. Clarke shows in [14] that the cop number of outerplanar graphs
is at most 2. In this section, we will show that for outerplanar graphs 𝐺, 𝑠(𝐺) ≤ 3.

The following lemma is given by Chartrand and Harary in [13] and is fairly straightforward.

Lemma 3.1.29. Let 𝐺 be a two-connected outerplanar graph. Then 𝐺 is Hamiltonian, and in any
outerplanar embedding of 𝐺, the facial walk of the exterior face of 𝐺 is a Hamiltonian cycle.

We will prove that 𝑠(𝐺) ≤ 3 for two-connected outerplanar graphs 𝐺. Then we will use this to
show that 𝑠(𝐺) ≤ 3 for all outerplanar graphs 𝐺.

For a graph 𝐺 with an outerplanar embedding, we will say that an edge that is adjacent to the
exterior face of 𝐺 is called an exterior edge. We will say that any edge that is not an exterior edge
is an interior edge.

Lemma 3.1.30. Let 𝐺 be a two-connected outerplanar graph with a fixed outerplanar embedding.
Let (𝑣0, . . . , 𝑣𝑛−1) be the Hamiltonian cycle given by the exterior facial walk of 𝐺. Let 𝑣𝑖𝑣𝑗 be an
interior edge of 𝐺. Then 𝐺∖{𝑣𝑖, 𝑣𝑗} has two components, which are induced by (𝑣𝑖+1, . . . , 𝑣𝑗−1) and
(𝑣𝑗+1, . . . , 𝑣𝑖−1) (where addition is considered modulo 𝑛).

Proof. Clearly the vertices {𝑣𝑖+1, . . . , 𝑣𝑗−1} belong to a single component of 𝐺 ∖ {𝑣𝑖, 𝑣𝑗}, as do the
vertices {𝑣𝑗+1, . . . , 𝑣𝑖−1}. Note that neither of these sets is empty, as 𝑣𝑖, 𝑣𝑗 are not adjacent on
the outer face of 𝐺. Furthermore, the vertices (𝑣𝑖, 𝑣𝑖+1, . . . , 𝑣𝑗−1, 𝑣𝑗 , 𝑣𝑖) form a cycle 𝐶. As 𝐺 is
outerplanar, it follows that any non-exterior edge adjacent to a vertex of {𝑣𝑖+1, . . . , 𝑣𝑗−1} must
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Figure 3.11: The figure shows a two-connected outerplanar graph. If two cops 𝐶1, 𝐶2 occupy the
endpoints 𝑣𝑖 and 𝑣𝑗 of the bolded edge, then a robber occupying a vertex of {𝑣𝑖+1, . . . , 𝑣𝑗−1} cannot
cross the bold edge 𝑣𝑖𝑣𝑗 . Furthermore, there exists a strategy involving a third cop 𝐶3 by which
the geodesic path 𝑃 may be guarded, further restricting the robber to a smaller region of the
outerplanar graph.

be drawn in the interior of 𝐶 and therefore cannot have an endpoint that does not belong to
𝐶. We hence see that {𝑣𝑖+1, . . . , 𝑣𝑗−1} is a maximal connected component of 𝐺 ∖ {𝑣𝑖, 𝑣𝑗}, as is
{𝑣𝑗+1, . . . , 𝑣𝑖−1} by a similar argument. This proves the lemma.

Corollary 3.1.31. Let 𝐺 be a two-connected outerplanar graph with a fixed outerplanar embedding.
Let (𝑣0, . . . , 𝑣𝑛−1) be the Hamiltonian cycle given by the exterior facial walk of 𝐺. Suppose that two
cops occupy vertices 𝑣𝑖, 𝑣𝑗, where 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺). Then the robber is restricted to either the vertex set
{𝑣𝑖+1, . . . , 𝑣𝑗−1} or the vertex set {𝑣𝑗+1, . . . , 𝑣𝑖−1}.

Proof. If 𝑣𝑖𝑣𝑗 is an exterior edge of 𝐺, then without loss of generality, {𝑣𝑖+1, . . . , 𝑣𝑗−1} contains all
vertices of 𝐺 ∖ {𝑣𝑖, 𝑣𝑗}, and clearly the robber is restricted to 𝐺 ∖ {𝑣𝑖, 𝑣𝑗}. If 𝑣𝑖𝑣𝑗 is an interior edge
of 𝐺, then by Lemma 3.1.30, the robber is restricted to a component of 𝐺 ∖ {𝑣𝑖, 𝑣𝑗}, and the result
follows.

Next, the following lemma shows that in a two-connected outerplanar graph, the robber’s region
can be reduced using three cops. Corollary 3.1.31 and Lemma 3.1.32 are illustrated in Figure 3.11

Lemma 3.1.32. Let 𝐺 be a two-connected outerplanar graph with a fixed outerplanar embedding.
Let (𝑣0, . . . , 𝑣𝑛−1) be the Hamiltonian cycle given by the exterior facial walk of 𝐺. Let 𝑣𝑖𝑣𝑗 be
an edge of 𝐺, and suppose that two cops occupy 𝑣𝑖 and 𝑣𝑗, restricting the robber to vertex set
𝑋 = {𝑣𝑖+1, . . . , 𝑣𝑗−1}. Then there exists a strategy involving one additional cop by which two cops
guard adjacent vertices 𝑣𝑘, 𝑣𝑙 and restrict the robber to a vertex set {𝑣𝑘+1, . . . , 𝑣𝑙−1} ( 𝑋.

Proof. We call the cop at 𝑣𝑖 𝐶1, and we call the cop at 𝑣𝑗 𝐶2. Let 𝐻 = 𝐺[𝑣𝑖, 𝑣𝑖+1, . . . , 𝑣𝑗−1, 𝑣𝑗 ]∖(𝑣𝑖𝑣𝑗).
We note that the robber’s territory in 𝐺 is a subgraph of 𝐻. Let 𝑃 = (𝑢0, . . . , 𝑢𝑞) be a (𝑣𝑖, 𝑣𝑗)-
geodesic in 𝐻. Note that 𝑞 ≥ 2. As before, the robber’s 𝑃 -shadow must either stay put in 𝑃 on
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each turn or move to an adjacent vertex of 𝑃 . Therefore, a cop 𝐶3 can stalk the robber’s 𝑃 -shadow
after a finite number of moves. We let 𝐶3 execute such a strategy.

After 𝐶3 begins stalking the robber’s 𝑃 -shadow, we let 𝐶1 move toward the robber’s 𝑃 -shadow
on each turn until reaching 𝑢𝑘−1, where 𝑢𝑘 is the position of the robber’s 𝑃 -shadow. 𝐶1 then moves
to 𝑢𝑘−1 on each subsequent turn, where 𝑢𝑘 is a subsequent position of the robber’s 𝑃 -shadow.
When 𝐶1 executes this strategy, the robber will not be able to reach 𝑣𝑖 = 𝑢0; in order to reach
𝑢0, the robber would first have to move to a vertex at distance one from 𝑢0, at which point 𝐶1

would occupy 𝑢0. At the same time, we let 𝐶2 move toward the robber’s 𝑃 -shadow until reaching
𝑢𝑘+1, where 𝑢𝑘 is the position of the robber’s shadow (or until reaching 𝑢𝑞 if the robber’s shadow
occupies 𝑢𝑞). 𝐶2 then moves to 𝑢𝑘+1 on each subsequent turn, where 𝑢𝑘 is a subsequent position
of the robber’s shadow (or to 𝑢𝑞 if the robber’s shadow occupies 𝑢𝑞). By a similar argument, the
robber will not be able to reach 𝑣𝑗 while 𝐶2 executes this strategy. Therefore, when 𝐶1 and 𝐶2

execute this strategy, the robber’s territory in 𝐺 does not increase.
After 𝐶1, 𝐶2, and 𝐶3, successfully execute their strategies, 𝐶1, 𝐶2, and 𝐶3 together stalk the

robber’s 𝑃 -shadow and guard the path 𝑃 , and the robber is restricted to a component of 𝐻 ∖
{𝑢0, . . . , 𝑢𝑞}. For 0 ≤ 𝑖 ≤ 𝑞 − 1, let 𝑃 (𝑢𝑖, 𝑢𝑖+1) be the graph induced by the vertices of the exterior
path from 𝑢𝑖 to 𝑢𝑖+1 that does not include any vertex 𝑢𝑗 for 𝑗 ̸∈ {𝑖, 𝑖 + 1}. As 𝑞 ≥ 2, 𝑃 (𝑢𝑖, 𝑢𝑖+1) is
uniquely defined.

If 𝐻 ∖ {𝑢0, . . . , 𝑢𝑞} is empty, then the robber has no territory, implying that the robber is sur-
rounded by 𝐶1, 𝐶2, 𝐶3. Otherwise, by Lemma 3.1.30, the components of the graph 𝐻 ∖ {𝑢0, . . . , 𝑢𝑞}
must be of the form 𝑃 (𝑢𝑖, 𝑢𝑖+1)∖{𝑢𝑖, 𝑢𝑖+1}. Therefore, the robber is restricted to a region 𝑃 (𝑢𝑖, 𝑢𝑖+1)∖
{𝑢𝑖, 𝑢𝑖+1}. As 𝑃 is guarded, we can move two cops to occupy 𝑢𝑖, 𝑢𝑖+1 before the robber can reach
either of 𝑢𝑖, 𝑢𝑖+1. We move two cops in such a way to 𝑢𝑖, 𝑢𝑖+1. The vertices 𝑢𝑖, 𝑢𝑖+1 can be written
as 𝑣𝑘, 𝑣𝑙. Furthermore, with 𝑣𝑘, 𝑣𝑙 guarded, the robber is restricted to a vertex set {𝑣𝑘+1, . . . , 𝑣𝑙−1},
which is a proper subset of {𝑣𝑖+1, . . . , 𝑣𝑗−1}. Thus the lemma is proven.

Corollary 3.1.33. Let 𝐻 be a two-connected subgraph of an outerplanar graph 𝐺. Suppose that
two cops occupy adjacent vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝐻. Then there exists a strategy involving three cops that
removes 𝐻 from the territory of the robber.

Proof. By following the strategy in Lemma 3.1.32, we can iteratively reduce the number of vertices
in 𝐻 that belong to the robber’s territory. Note that each time we apply Lemma 3.1.32, the exterior
of the robber’s territory forms a cycle, so the robber’s territory is a two-connected outerplanar
graph. We can continue this process until no vertex of 𝐻 belongs to the robber’s territory. Then
the robber is either surrounded or prevented from entering 𝐻.

Corollary 3.1.33 gives us the tool that we need to devise a strategy that uses three cops to capture
the robber on an outerplanar graph. Corollary 3.1.33 tells us that in an outerplanar graph 𝐺, three
cops have a strategy to take away two-connected blocks from the robber repeatedly and “push"
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Figure 3.12: The figure shows an outerplanar graph 𝐺, with each circle in the figure representing a
block of 𝐺. If two cops occupy the endpoints of the shown edge in the block 𝐵, and if the robber
occupies a vertex to the right of this edge, then there exists a strategy involving three cops that
forces the robber to the right out of the block 𝐵 and pushes the robber through the block-cut tree
of 𝐺 until reaching a terminal block of 𝐺. In the figure, the terminal block that the robber might
reach are labelled with the letter 𝑇 . Once the robber reaches a terminal block of 𝐺, the three cops
will have a strategy to surround the robber.

the robber toward a terminal block of the block-cut tree of 𝐺—that is, a maximal two-connected
component of 𝐺 with a single cut-vertex. (For a more detailed description of the block-cut tree of
a graph, see [?, Section 5 what].) Once the robber reaches a terminal block of 𝐺, when the cops
take away the robber’s territory in this last block, the robber will be surrounded. We illustrate this
idea in Figure 3.12.

Theorem 3.1.34. Let 𝐺 be an outerplanar graph. Then 𝑠(𝐺) ≤ 3.

Proof. If 𝐺 is a tree, then by [11], 𝑠(𝐺) ≤ 2. Otherwise, we name our cops 𝐶1, 𝐶2, and 𝐶3. We
begin the game by choosing a maximal two-connected subgraph 𝐻 ⊆ 𝐺. We place two cops at two
adjacent vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝐻. We show that at each point of the game, we can reduce the robber’s
territory 𝑅𝑖. We consider two cases:

Case 1: No two cops occupy the endpoints of an edge with both endpoints adjacent to the robber’s
territory, and a cop occupies a cut-vertex adjacent to the robber’s territory.

Without loss of generality, let 𝐶1 occupy a cut-vertex 𝑥 adjacent to the robber’s territory. We
then let 𝐶2 guard a neighbor 𝑦 of 𝑥 for which 𝑦 belongs to the robber’s territory. This reduces the
robber’s territory to 𝑅𝑖+1 ( 𝑅𝑖 and depending on whether or not 𝑦 is a cut-vertex of 𝐺, this brings
us to Case 1 or 2.

Case 2: Two cops occupy the endpoints of an edge with endpoints 𝑢, 𝑣 adjacent to the robber’s
territory.

Let 𝐻 ⊆ 𝐺 be a maximal two-connected subgraph containing 𝑢, 𝑣. By Corollary 3.1.33, 𝐶1,
𝐶2, and 𝐶3 have a strategy to remove all vertices of 𝐻 from the robber’s territory. Furthermore,
as 𝑢, 𝑣 are both adjacent to the robber’s territory, the robber’s territory has at least one vertex in
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𝐻. Therefore, by removing the vertices of 𝐻 from the robber’s territory, we reduce the robber’s
territory to a region 𝑅𝑖+1 ( 𝑅𝑖. If the robber is not surrounded during the execution of such a
strategy, then the robber is forced to leave 𝐻, and there exists a cut-vertex 𝑥 ∈ 𝐻 adjacent to the
robber’s territory. As the vertices of 𝐻 are guarded, the robber can be prevented from accessing 𝑥;
that is, a cop can reach 𝑥 before the robber. We let a cop move to 𝑥 before the robber reaches 𝑥,
and this brings us to Case 1.

By repeatedly reducing the robber’s territory in this way, we will eventually reach a point in
which the robber’s territory is a single vertex. At this point, the robber is surrounded, and the cops
win the game.

Finally, we show that this bound is tight, even for bipartite outerplanar graphs.

Theorem 3.1.35. There exists a bipartite outerplanar graph 𝐺 with 𝑠(𝐺) = 3.

Proof. Let 𝐺 = 𝑃1�𝑃3 be the grid with 8 vertices. We note that 𝐺 is bipartite and outerplanar.
We show that 2 cops cannot surround a robber on 𝐺.

We note that 𝐺 has four degree 3 vertices that form a 4-cycle 𝐶. We let the robber begin the
game at a vertex 𝑟 of 𝐶. As the vertices of 𝐶 have degree 3, the robber cannot be surrounded
at 𝑟 without a cop moving to occupy 𝑟. If a cop occupies 𝑟, then at most one of the robber’s
𝐶-neighbors is occupied by a cop, and thus the robber can move to a neighboring vertex in 𝐶. The
robber can repeat this strategy indefinitely. Therefore, 𝑠(𝐺) ≥ 3. By Theorem 3.1.34, it follows
that 𝑠(𝐺) = 3.

3.1.6 Graphs of higher genus and graphs that exclude a minor

We will briefly consider the surrounding cop number bounds of graphs of higher genus and graphs
that exclude a minor. In the traditional game of cops and robbers, strategies for capturing a robber
on a graph of higher genus are similar to strategies for planar and toroidal graphs; that is, the cops
capture the robber by guarding geodesic paths and iteratively reducing the robber’s region, as in
[31] and [33]. Currently, the best known general strategy for capturing the robber on a graph of
genus 𝑔 is given by Bowler et. al., who prove the following theorem.

Theorem 3.1.36 ([8]). Let 𝐺 be a graph of genus 𝑔. Then 𝑐(𝐺) ≤ ⌊4
3𝑔 + 10

3 ⌋.

Theorem 3.1.36 is based on guarding geodesic paths in order to reduce the robber’s region to
a single vertex, and the strategy of Theorem 3.1.36 needs at most ⌊4

3𝑔 + 10
3 ⌋ geodesic paths to be

guarded at one time. This immediately gives us the following result.

Theorem 3.1.37. Let 𝐺 be a graph of genus 𝑔. Then 𝑠(𝐺) ≤ 4𝑔+10. Furthermore, if 𝐺 is bipartite,
then 𝑠(𝐺) ≤ ⌊8

3𝑔 + 20
3 ⌋.

Proof. We apply the strategy of Theorem 3.1.36, using three cops to guard a geodesic path in the
general case, and using two cops to guard a geodesic path if 𝐺 is bipartite.
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More generally, we may also consider families of graphs that exclude a minor. A theorem of
Andreae from [2] shows that if 𝐺 is a graph that does not contain 𝐻 as a minor, then for any vertex
ℎ ∈ 𝑉 (𝐻) that is not adjacent to a leaf of 𝐻, 𝑐(𝐺) ≤ |𝐸(𝐻 − ℎ)|. Furthermore, the strategy of
Andreae is carried out solely by guarding geodesic paths. Therefore, by using three cops to guard
each path in Andreae’s strategy (or two cops for the bipartite case), the strategy can be adapted
to the surrounding variant of cops and robbers to give us the following theorem.

Theorem 3.1.38. Let 𝐻 be a graph, and let ℎ ∈ 𝑉 (𝐻) be a vertex of 𝐻 that has no neighbor of
degree one. If 𝐺 is a graph that does not contain 𝐻 as a minor, then 𝑠(𝐺) ≤ 3|𝐸(𝐻 − ℎ)|. If 𝐺 is
also bipartite, then 𝑠(𝐺) ≤ 2|𝐸(𝐻 − ℎ)|.

3.1.7 Open questions

We have shown that for planar graphs 𝐺, 𝑠(𝐺) ≤ 7, and 𝑠(𝐺) may be as large as 6. Furthermore,
for toroidal graphs 𝐺, we have shown that 𝑠(𝐺) ≤ 8, and 𝑠(𝐺) may be as large as 7. Thus we may
naturally ask the following questions:

∙ Does there exist a planar graph 𝐺 for which 𝑠(𝐺) = 7?

∙ Does there exist a toroidal graph 𝐺 for which 𝑠(𝐺) = 8?

We conjecture that both of these questions have a negative answer.
Furthermore, González and Mohar show that three cops are enough to capture a robber on a

planar graph even when only two cops are allowed to move on each turn [19]. These authors also
show that four cops are sufficient to capture a robber on a planar graph even when each cop is
required to move on every turn [18]. We may thus ask the following questions as well:

∙ How many cops are required to surround a robber on a planar (toroidal) graph when at most
𝑘 cops may move on each turn?

∙ How many cops are required to surround a robber on a planar (toroidal) graph when all cops
are required to move on each turn?
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3.2 Normal Cayley graphs

In this section, we will consider the game of surrounding cops and robbers on normal Cayley
graphs. We will show that for a group 𝐺 and a generating set 𝑆 ⊆ 𝐺 closed under conjugation, the
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surrounding cop number of Cay(𝐺, 𝑆) satisfies 𝑠(Cay(𝐺, 𝑆)) = |𝑆|, which is equal to the minimum
degree of Cay(𝐺, 𝑆) and hence best possible.

As before, we describe walks on Cay(𝐺, 𝑆) in terms of moves. Suppose that a cop or robber moves
throughout the elements of 𝐺 by traversing edges of Cay(𝐺, 𝑆). We may imagine that whenever
our cop or robber occupies an element 𝑎 ∈ 𝐺, it may choose a generator 𝑠 ∈ 𝑆 and then move to
𝑠𝑎; that is, the cop or robber may transform its position using left multiplication by 𝑠. Hence any
move that the cop or robber makes along an edge of Cay(𝐺, 𝑆) may be interpreted as the selection
of a generator 𝑠 ∈ 𝑆 and a resulting group transformation. We will use this interpretation when we
describe strategies of cops and robbers on Cayley graphs.

When we consider a game of cops and robbers on a normal Cayley graph Cay(𝐺, 𝑆), whenever
a cop or robber moves from a vertex 𝑎 ∈ 𝐺 to a vertex 𝑠𝑎 for an element 𝑠 ∈ 𝑆, we say that
the cop or robber plays the move 𝑠. In other words, playing a move 𝑠 is equivalent to applying
left multiplication by 𝑠 to the current position of the cop or robber. When considering a game of
cops and robbers on a normal Cayley graph Cay(𝐺, 𝑆), we will add the following modification.
Suppose that the robber plays a move 𝑠 ∈ 𝑆. Then, after each cop plays its subsequent move
in response to the robber, we transform the position 𝑎 ∈ 𝐺 of the robber and each cop by the
transformation 𝑎 ↦→ 𝑥−1𝑎𝑥. As Cay(𝐺, 𝑆) is a normal Cayley graph, the transformation 𝑎 ↦→ 𝑥−1𝑎𝑥

is an automorphism of game positions on Cay(𝐺, 𝑆) and thus does not affect the strategy of either
player. This transformation will make it easier to keep track of the “difference" between the position
of the robber and a cop.

Recall that a normal Cayley graph is a Cayley graph constructed with a group 𝐺 and a generat-
ing set 𝑆 satisying 𝑆 = 𝑆−1 and 𝑆 = 𝑔−1𝑆𝑔 for each 𝑔 ∈ 𝐺. We will show that on a normal Cayley
graph Cay(𝐺, 𝑆), |𝑆| cops have a strategy to surround a robber. In fact, we will prove a stronger
result. We will consider a nonempty set 𝑇 ⊆ 𝑆, and we will only allow the robber to play moves
in 𝑇 , while still allowing cops to use all moves of 𝑆. We will show that in this modified game of
surrounding cops and robbers, |𝑇 | cops have a strategy to occupy all vertices 𝑡𝑟, where 𝑡 ∈ 𝑇 and
𝑟 is the position of the robber. Letting 𝑇 = 𝑆, this is equivalent to saying that 𝑠(Cay(𝐺, 𝑆)) = |𝑆|.

Theorem 3.2.1. Let 𝐺 be a group, and let 𝑆 ⊆ 𝐺 be a generating set of 𝐺 that is closed under
conjugation. Let 𝑇 ⊆ 𝑆 be a nonempty set. Then in the modified game of surrounding cops and
robbers in which the robber must play moves from 𝑇 , there exists a winning strategy with |𝑇 | cops.

Proof. When 𝑇 = 𝑆, the theorem tells us that 𝑠(Cay(𝐺, 𝑆)) = |𝑆|, as the upper bound follows
from the theorem statement, and the lower bound follows from the fact that the minimum degree
of Cay(𝐺, 𝑆) is equal to |𝑆|.

We induct on |𝑇 |. When |𝑇 | = 1, the robber must move along a directed cycle 𝐷. A single cop
may capture the robber by moving through 𝐷 in the opposite direction that the robber moves.

Now, we consider a set 𝑇 ⊆ 𝑆 with |𝑇 | ≥ 2. We choose a cop 𝐶 and first let 𝐶 move to a vertex
of ⟨𝑇 ⟩𝑟0, where 𝑟0 ∈ 𝐺 is initial the position of the robber. The cop 𝐶 will reach a group element
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𝑐 ∈ 𝐺 such that 𝑐 = 𝑡𝑘 . . . 𝑡1𝑟, where 𝑟 is the new position of the robber, and 𝑡1, . . . , 𝑡𝑘 ∈ 𝑇 . We will
show by induction on 𝑘 that the |𝑇 | cops have a strategy to capture the robber.

If 𝑘 = 1, then 𝑐 = 𝑡1𝑟, and hence the robber may not play 𝑡1. Furthermore, for any move
𝑥 ∈ 𝑇 ∖ {𝑡1} that the robber plays, 𝐶 may copy the robber and play 𝑥. Then, after applying the
transformation 𝑎 ↦→ 𝑥−1𝑎𝑥 to the positions of 𝐶 and the robber, and letting 𝑐′ and 𝑟′ respectively
denote the new positions of 𝐶 and the robber, 𝑐′𝑟′−1 = 𝑥−1(𝑥𝑐)(𝑥𝑟)−1𝑥 = 𝑐𝑟−1 = 𝑡1, and hence
𝑐′ = 𝑡1𝑟′. This shows us that after 𝐶 plays 𝑥, the position of 𝐶 in relation to the robber does not
change. Therefore, on each subsequent move, the robber must play a move of 𝑇 ∖ {𝑡1}. Hence, by
induction on |𝑇 |, the remaining |𝑇 | − 1 cops apart from 𝐶 have a strategy to capture the robber.

Otherwise, suppose that 𝑘 ≥ 2. Recall that 𝑟 represents the current position of the robber and
that 𝐶 occupies a vertex 𝑐 = 𝑡𝑘 . . . 𝑡1𝑟. If the robber plays 𝑡𝑘, then we let 𝐶 stay put at its current
vertex. Then, after applying the transformation 𝑎 ↦→ 𝑡−1

𝑘 𝑎𝑡𝑘, and letting 𝑐′ and 𝑟′ respectively
represent the new positions of the cop and the robber, 𝑐′𝑟′−1 = 𝑡−1

𝑘 𝑐(𝑡𝑘𝑟)−1𝑡𝑘 = 𝑡−1
𝑘 𝑐𝑟−1, and hence

𝑐′ = 𝑡𝑘−1 . . . 𝑡1𝑟′. Then, the cops have a winning strategy by induction on 𝑘. On the other hand,
if the robber chooses not to move, then 𝐶 plays the move 𝑡−1

𝑘 . Then, with 𝑐′ representing the new
position of 𝐶, 𝑐′ = 𝑡𝑘−1 . . . 𝑡1𝑟, and the cops again win by induction on 𝑘.

Hence, we see that in order not to lose the game by induction immediately, the robber must
play a move 𝑥 ∈ 𝑇, 𝑥 ̸= 𝑡𝑘, in which case 𝐶 plays 𝑥. Letting 𝑐′ and 𝑟′ respectively represent
the new positions of the cop and the robber, then after applying the transformation 𝑎 ↦→ 𝑥−1𝑎𝑥,
𝑐′𝑟′−1 = 𝑥−1(𝑥𝑐)(𝑥𝑟)−1𝑥 = 𝑐𝑟, and hence 𝑐′ = 𝑡𝑘 . . . 𝑡1𝑟′. Thus we see that if the robber plays
a move 𝑥 ̸= 𝑡𝑘 and 𝐶 copies the robber, then the position of 𝐶 relative to the robber does not
change. This implies that on each subsequent move, the robber must continue to play a move of
𝑇 ∖ {𝑡𝑘}. Therefore, 𝐶 essentially forces the robber to play a strategy of the modified game of cops
and robbers in which the robber may only use moves in 𝑇 ∖ {𝑡𝑘}. Hence, by induction on |𝑇 |, the
remaining |𝑇 | − 1 cops apart from 𝐶 have a strategy to win the game.
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