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Abstract

A novel coronavirus, called SARS-CoV-2, has caused the outbreak of the pandemic of
COVID-19. The global economy, people’s health and life have been facing a tremendous
threat in COVID-19. This project is to determine some important factors in COVID-19
severity based on 137 Tianjin patients who have been exposed to COVID-19 since Jan-
uary 5, 2020. We fit a logistic regression model and estimate the parameters using standard
Markov chain Monte Carlo (MCMC) methods. Due to the weaknesses and limitations of the
standard MCMC methods, we then perform model estimation in one special example of a
Piecewise Deterministic Markov Process, named the Bouncy Particle Sampler (BPS). This
method is also known as a rejection-free and irreversible MCMC, and can draw samples from
our target distribution efficiently. One type of the BPS algorithm, the Local Bouncy Par-
ticle Sampler (LBPS), has advantages in computational efficiency. We apply the standard
MCMC method and the LBPS to our dataset. We conclude that age and Wuhan-related
exposures (i.e. people who have lived or traveled from Wuhan) are two important factors
in a COVID-19 severity test.

Keywords: COVID-19; Logistic regression model; Markov chain Monte Carlo; Bouncy
particle sampler; Local bouncy particle sampler.
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Chapter 1

Introduction

A novel coronavirus, called SARS-CoV-2, has caused the outbreak of the pandemic of
COVID-19. Patients with COVID-19 have suffered strokes and also Respiratory Tract Infec-
tion (RTI) symptoms like fever, sore throat, running nose, and fatigue. Also, some COVID-
19 reports [13] have mentioned patients that have ben infected with pneumonia, Severe
Acute Respiratory Syndrome (SARS), renal failure, or even death in severe cases. In a re-
cent paper, Wu and Jennifer [32] have analyzed the epidemiological characteristics of the
COVID-19 outbreak in China, suggesting that age is one important factor in COVID-19
severity. They also mention that most COVID-19 cases were diagnosed in Wuhan and that
the majority of exposures were related to Wuhan. Hence, Wuhan-related exposures is
another important factor in COVID-19 severity.

Logistics regression models have a specific interpretation to analyze some potential factors
in COVID-19 severity. We tackle the estimation via posterior sampling in Piece-wise De-
terministic Markov Process (PDMP). Compared to traditional Markov chain Monte Carlo
(MCMC) algorithms, PDMP is rejection-free. This means that there is no need to waste
proposal samples. In addition, PDMP belongs to one irreversible Markov chain, while tra-
ditional MCMC approaches are reversible with the detailed balance condition [25]. Notably,
some theoretical work and numerical simulations, including [4], [27] and [28], have shown
that the irreversible Markov chain (i.e., algorithms in the PDMP family) is more efficient
than traditional MCMC algorithms in terms of mixing rate and asymptotic variance. So
far, there are three different algorithms in the PDMP family: the Bouncy Particle Sam-
pler (BPS), such as [12], the Zig-Zag sampler [8] and [10], and the Boomerang sampler [9].
Wu and Robert [31] have summarized 3 class of dynamics for the PDMP algorithms: the
deterministic dynamic, the event occurrence, and the transition dynamic (i.e. the velocity
update).
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The BPS and Zig-Zag sampler have the same pattern of deterministic dynamic which means
they generate a piece-wise deterministic Markov chain. In contrast, the Boomerang sam-
pler was developed by constructing the trajectory along with a piece-wise elliptical path.
Moreover, the BPS and Boomerang sampler have indistinguishable velocity updates, while
the Zig-Zag sampler updates velocity by some fixed coordinate. Furthermore, all algorithms
share the same event occurrence that is generated from an inhomogeneous Poisson Process.
To overcome the reducibility problem, both the BPS and Boomerang sampler add one ho-
mogeneous Poisson Process (i.e., exponential distribution with positive rate parameter) in
generating the event occurrence, whereas that is not required in the Zig-Zag sampler since it
has been proved to be ergodic under very mild conditions by [11]. Besides, the Generalized
Bouncy Particle Sampler (GBPS) was first proposed by Wu and Robert [30], and can act
as a bridge between the Zig-Zag sampler and the BPS. That means the velocity update
in the GBPS is comprised of the one in both the BPS and Zig-Zag sampler. Particularly,
the algorithm avoids the tuning process (i.e., rate parameter in exponential distribution)
like the Zig-Zag sampler and has shown some advantages in sampling from multimodal
distributions. In this project, we mainly focus on parameter estimation in the logistic re-
gression model with the BPS and then Local Bouncy Particle Sampler (LBPS) - which can
be considered as a natural extension of the BPS with applications to large datasets.

This project is organized as follows. In Chapter 2, we will start with an overview of the
logistics regression model. We then describe the techniques for estimating parameters in
frequentist and Bayesian frameworks. Particularly, we will discuss the sampling strategies
of the BPS and Local BPS with application to large datasets. Next, numerical simulations
are conducted to evaluate the accuracy and computational cost in both frequentist and
Bayesian frameworks in Chapter 3. In Chapter 4, we describe applications of our sampling
approaches to a real-world dataset from COVID-19. Finally, in Chapter 5, we conclude with
a discussion of these methods and our analyses, as well as outline potential future work.
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Chapter 2

Methodology

2.1 Overview of Methods

In this chapter, we describe parameter estimation in a logistics regression model from two
schools of statistical inference: frequentist and Bayesian. In the frequentist approach, the
unknown parameters in regression models can be estimated through maximum likelihood
estimation (MLE). In the Bayesian framework, we simulate a random sample from the
posterior distribution with different sampling mechanisms with the traditional Metropo-
lis–Hastings(MH) algorithm, as well as a Piece-wise Deterministic Markov Process (PDMP)
called the Local Bouncy Particle Sampler (LBPS). Finally, we implement both approaches
by using some existing R functions or our own code to compute the approximated posterior
mean and standard deviation (SD).

2.2 Logistic Regression Model

Consider the response y has a binary outcome, y ∈ {0, 1}. Each response is associated
with p-dimensional predictors, z = (z1, z2, ..., zp) ∈ Rp. Vector x = (x1, ..., xp) ∈ Rp are its
corresponding coefficients, which are assumed to be unknown. Let YYY be a column vector
of length n. For i = 1, ..., n, each yi follows an independent Bernoulli distribution with
the parameter πi (i.e., the probability of y being 1 for any given observation in the i-th
population).

Consider a binary GLM model, Pr(Yi = y) = πyi (1 − πi)1−y. The natural parameter is the
canonical link:

log
Å

πi
1− πi

ã
= logit(πi). (2.1)
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We can use Equation (2.1) as our link function, so we can write the model in regression
form:

log
Å

πi
1− πi

ã
=

p∑
j=0

zijxj i = 1, 2, . . . , n. (2.2)

After taking the base number e on both sides of the equation, we have

πi
1− πi

= exp


p∑
j=0

zijxj

 ,
for i = 1, ..., n.

So,

πi =
exp
¶∑p

j=0 zijxj
©

1 + exp
¶∑p

j=0 zijxj
© . (2.3)

Formally, the logistic regression model has the form:

Pr(yi = 1|zzz,xxx) = 1
1 + exp

¶
−∑p

j=0 zijxj
© . (2.4)

2.3 Parameter Estimation via MLE

We aim to estimate p+1 unknown parameters from Equation (2.2). This can be achieved by
maximum likelihood estimation (MLE). Outcome vector yi’s follow independent Bernoulli(πi),
which are fixed and known. Given the outcome vector YYY , the likelihood function for x can
be expressed as

L(xxx|YYY ) =
n∏
i=1

πyi
i (1− πi)1−yi . (2.5)

The log-likelihood function can be derived by taking the natural logarithm of Equation
(2.5),

l(xxx|YYY ) =
n∑
i=1

yi · log
Å

πi
1− πi

ã
+ log(1− πi). (2.6)

Plugging Equation (2.3) into Equation (2.6), the log-likelihood function is thus simplified
into

l(xxx|YYY ) =
n∑
i=1

yi · p∑
j=0

zijxj − log

Ñ
1 + exp


p∑
j=0

zijxj


é . (2.7)
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Therefore, the global maximizer x̂xx in Equation (2.7) would be the MLE for xxx. In practice,
we derive the MLEs via the Fisher scoring method. To be more specific, it replaces the
second derivatives in the Newton Raphson method with the Fisher Information matrix. For
example, if we want to find the MLE for xxx, this algorithm can be summarized as follows:

Algorithm 1 Fisher Scoring Algorithm
1: Initialize xxx(0) = x̃xx.
2: for all n = 1, 2, ..., N do
3: (a) Update the estimates:

xxx(n) = xxx(n−1) −
f
Ä
xxx(n−1)

ä
f ′
(
xxx(0)) . (2.8)

4: (b) Compute its error:

ε(n) = xxx(n) − xxx(n−1). (2.9)

5: if ε(n) = 0 then exit the For loop in Line 2.
6: end if
7: end for

We first set the initial value to be its method of moments (MOM) estimator x̃xx, and compute
the Fisher Information matrix evaluated at its MOM that is f ′(x̃xx). The second step involves
updating the estimates obtained from the previous step, and computing its corresponding
error ε(n). To acquire its MLE, we will iterate these two steps as many times as it is specified,
or until a convergence criterion is met, such as when the error function in Equation (2.9) is
equal to 0 or less than a specified threshold.

2.4 Parameter Estimation in Bayesian Inference

In Bayesian framework, we are given the data denoted

Data = {(Z1, y1), (Z2, y2), ..., (Zn, yn)}

as well as its likelihood function, which we presented in Equation (2.5). Our goal is to gen-
erate random samples from a posterior distribution, which is the distribution over unknown
parameters given the data and prior. In addition, it encodes the uncertainly around the
parameters in the model. This can be computed by the posterior distribution of x given the
data using “Bayes rule”, that is,

π(xxx|Data) ∝ π(xxx) · L(xxx|Data), (2.10)

5



where π(x) is the posterior distribution, which describes our subjective beliefs about the
unknown parameters xxx. In practice, one commonly used prior is that each x follows an
independent standard normal distribution.

Next, we compute the posterior distribution point-wisely up to a normalizing constant. In
particular, we are interested in the components that can summarize the posterior distribu-
tion, such as posterior mean and variance. And finally, we need to compute the expected
value of any arbitrary function ϕ(x) with respect to our target distribution π:

E (ϕ(x)) =
∫
ϕ(x)π(x) dx. (2.11)

However, it is difficult to solve the integration analytically. Thus, we need to think about
solving the integrals by using sampling strategies that generate random samples from the
proposal distribution in Markov chain Monte Carlo (MCMC). We can then use the ran-
dom samples to compute the approximate posterior mean and variance. In the next two
sections, we will demonstrate one standard MCMC approach via the Metropolis-Hastings
(MH) algorithm and one rejection-free MCMC method via the BPS.

2.4.1 Posterior Inference via Markov Chain Monte Carlo (MCMC)

In this section and Section 2.6, we denote that X(i)
1:n be a sample of a Markov chain as it

moves from 1 to n, and there are N random samples in total. We also know the target
density of each particle only up to a normalizing constant, given by

π(x1:n) = γ(x1:n)
Z

, (2.12)

where γ(x1:n) is the target density up to a normalizing constant, and Z is unknown. We
then average over dependent particles from one Markov chain to evaluate the approximated
moments of the posterior distribution, while the Monte Carlo integration approach has been
averaging over independent particles to get an estimator (i.e., posterior mean or variance)
that is sampled from either one important distribution or the target distribution.

The Metropolis-Hastings (MH) algorithm is commonly used, which was first introduced by
Metropolis et al [22]. In 1970, Hastings [18] has developed a more general version of the
algorithm by modifying the acceptance ratio. The MH algorithm produces the chain so
that it has the target distribution π(x) as a stationary distribution where our Markov chain
{Xt}t=1,..,n will eventually converge to. Let K denote a transition kernel, which describes
the random move to a new candidate value in state y given the current position x. In other
words, K is a distribution on y given x, denoted by K(y|x). Sometimes, it is called the
proposal distribution.

6



This algorithm performs an accept-or-reject mechanism that is telling us whether a gener-
ated particle would be retained or not with the acceptance probability α(y|x). This can be
computed by:

α(y|x) = min
®

1, π(y)K(x|y)
π(x)K(y|x)

´
. (2.13)

Furthermore, we can choose any arbitrary initial value at state x0. The proposal distribution
can also be selected as long as it meets the requirement that the proposed Markov chain is
irreducible. Finally, the algorithm is summarized as follows:

Algorithm 2 Metropolis-Hastings Algorithm
1: Initialize the chain at state x0.
2: for all t = 1, 2, ..., N do
3: (a) Generate a new proposal, x∗ ∼ K(y|xt−1).
4: (b) Calculate the acceptance probability, α(y|xt).
5: (c) Simulate a random variable, u ∼ Uniform(0, 1).
6: if u ≤ α(y|x) then
7: Move to the new state x∗ with the above probability.
8: else
9: Remain in the current state, xt = xt−1.

10: end if
11: end for

2.4.2 Posterior Inference via Bouncy Particle Samplers (BPS)

Most MCMC methods that work on discrete-time reversible Markov processes include two
major steps: generating a new point based on a proposal distribution from which it is easy to
sample, and then performing the accept/reject mechanism according to the acceptance prob-
ability to update the transition kernels. In 2018, [12] explored a technique called the BPS
that was first proposed by [23]. This technique has been used in physical sciences and data
science. It has become more popular in designing new MCMC methods that is particularly
efficient in large datasets in recent years. This technique is also known as a nonreversible
rejection-free MCMC method which can continuously track an exponentially-distributed
travel time, and then propagate to another state. Note that the rate of exponential distri-
bution is dependent on the current state.

To begin with, we sample from a target distribution, such that,

π(x) = exp{−U(x)}, (2.14)

7



where U(x) is its associate energy function, given by

U(x) = − log(π(x)). (2.15)

We also assume U(x) is continuously differentiable. Then, the gradient of U(x) evaluated
at each x is denoted by ∇U(x) =

(
∂U(x)
∂x1

, . . . , ∂U(x)
∂xp

)′
.

The BPS algorithms generate piece-wise linear trajectories through space Rp. For i-th point
x(i) ∈ Rp in the space, it has two additional elements: a time of travel τi ∈ R+ and a
velocity v(i) ∈ Rp. Specifically, the velocity explains the transition path, such as which
direction should the point go next, as well as its speed. The time of travel demonstrates the
length between two events. In addition, we denote ti be the total travel time at position
i (i.e., ti = ∑i

j=1 τj for i > 1) and set t0 = 0 for convenience purposes. Furthermore, we
denote the total trajectory length (or total time of travel) by T .

The second step consists of all the components (i.e., position, velocity, and total time of
travel) are updated by the following scenarios:

(a) Position update: the position x(i) at time t ∈ [ti−1, ti) is updated by

x(i) ← x(i−1) + v(i−1)τi,

where τi is the total travel length between ti−1 and ti, which takes the minimal between
τbounce and τref. More specifically, the bounce event occurrence τbounce can be simulated
from the first arrival times of the inhomogeneous Poisson Processes (PP) with rate
function χ(t),

χ(t) = λ(x(i−1) + v(i−1)t, v(i−1))

= max
{

0,
î
∇U(x(i−1) + v(i−1)t)

ó′
v(i−1)

}
, (2.16)

suggested by [6, 12,20].

In order to overcome reducibility problems, [12] added one homogeneous PP into the
BPS algorithm. That is the refreshment event occurrence τ ref can be generated from
an exponential distribution with rate = λref, which is a tuning parameter in this
algorithm. Moreover, [12] proved that the transition kernel (i.e., velocity updates) of
the BPS allows the target distribution to preserve the correct stationary distribution
for λref > 0.

(b) Velocity update: The velocity is reformed depending on which τ is being selected in
the “position update” step. When the bounce event occurs (i.e., τ = τbounce), the

8



velocity is updated by

v(i) = R
Ä
x(i)ä v(i−1)

= v(i−1) − 2 ·
î
∇U
Ä
x(i−1)

äó′
v(i−1)

||∇U(x(i−1))||2
∇U(x(i−1)), (2.17)

where ||·|| is the Euclidean norm. Otherwise, the velocity is updated from the standard
normal distribution.

(c) The total time of travel is updated by adding the updated τ in (a). Note that it will
terminate the for loop if the threshold ti = ∑i

k=1 τk ≥ T is met.

The global BPS algorithm is thus summarized below,

Algorithm 3 Global Bouncy Particle Samplers (BPS) Algorithm
1: Initialization step:
2: i. Arbitrarily initialize

Ä
x(0), v(0)

ä
on Rp × Rp.

3: ii. Let T = 0.

4: for all i = 1, 2, ..., N do
5: τ simulation:
6: i. Simulate the first arrival time τbounce according to Equation (2.16).
7: ii. Simulate

τref ∼ Exponential
Ä
rate = λrefä .

8: iii. Set
τi ← min{τbounce, τref}.

9: (a) Position update:
Set x(i) ← x(i−1) + v(i−1)τi.

10: (b) Velocity update:
11: if τi = τref then
12: Simulate v(i) ∼ N (0p, Ip).
13: else
14: Set v(i) ← R

Ä
x(i)
ä
υ(i−1) in Equation (2.17).

15: end if

16: (c)Total travel time update: Set T ← T + τi.

17: return
¶
x(i), v(i), T

©
.

18: end for
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Figure 2.1 illustrates one example of the global BPS sampler to a Gaussian distribution with
mean = (1, 1)′ and covariance matrix I2 = diag(1, 1). The left plot shows the trajectories
of the global BPS sampler after two iterations, and the right plot shows the trajectories
after 1,000 iterations. In addition, Figure 2.2 displays the trace and density plots of the
X-axis and Y-axis. Note that the red line represents the true mean. Based on the plots, we
can see that the chain converges to a stationary distribution after 1,000 iterations, and the
posterior means are very close to their true values.
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Figure 2.1: The Global BPS Sampler to a Standard Normal Target Distribution. The left
plot shows the trajectories of BPS sampler after 2 steps. The right plot shows the trajectories
of the PS sampler after 1,000 steps. x(0) = [0, 0]′ (the black dot) is the start point with [0, 0]′
velocity. x(1) (the red dot) is the first point after velocity update. Likewise, x(2) is the second
point after velocity update. All the solid black line segments describe the total travel length
after each bounce/refreshment event. The true mean (on the right plot) is pointed by the
light green.
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Figure 2.2: Trace and Density plots of Global BPS algorithm for X-axis and Y-axis. Note
that the red solid line on the right plot indicates the true mean = [1, 1]′ for X-axis and
Y-axis.

Ultimately, we need to calculate the expected value of any arbitrary function ϕ(x) with
respect to our target distribution π. In this case, we are given a set of x(i) associated with
its velocity v(i) for i = 1, ..., n over the interval [0, T ]. Then,

E (ϕ(x)) ≈ 1
T

∫ T

0
ϕ(x(t))π(x) dt

= 1
T

[
n−1∑
i=1

∫ τi

0
ϕ
Ä
x(i−1) + v(i−1)t

ä
dt+

∫ tn−T

0
ϕ
Ä
x(n−1) + v(n−1)t

ä
dt

]
. (2.18)

When ϕ(x) = x
(i)
j for i = 1, ..., n, j = 1, ...p then the first moment of x(i)

j is given by,

E
(
x

(i)
j

)
=
∫ τi

0

[
x

(i−1)
j + v

(i−1)
j t

]
dt

= x
(i−1)
j τi + 1

2v
(i−1)
j τ2

i , (2.19)
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the second moment of x(i)
j is given by,

E

ï(
x

(i)
j

)2ò
=
∫ τi

0

[
x

(i−1)
j + v

(i−1)
j t

]2
dt

=
[
x

(i−1)
j

]2
τi + x

(i−1)
j v

(i−1)
j τ2

i + 1
3
[
v

(i−1)
j

]3
τ3
i . (2.20)

So the standard deviation of x(i)
j can be calculated according to Equation (2.19) and Equa-

tion (2.20).

However if Equation(2.18) is intractable, we may need to borrow the idea from linear in-
terpolation; that is, we select some new data points within the range of each line segment.
For example, let b be the data points selected from the trajectory. Then an estimator can
be constructed as

1
b

b−1∑
l=0

ϕ

ï
x

Å
l · T
b− 1

ãò
. (2.21)

Likewise, the second moment needs to be approximated by numerical quadrature.

After N BPS iterations, we can perform Geweke’s diagnostic [17] to evaluate the accuracy of
the BPS using the posterior means and SD. Similar to standard MCMC samplers, Geweke’s
diagnostic is used to determine the burn-in period.

Example 1. Gaussian Distribution

Consider the target distribution is a p-dimensional multivariate Gaussian with 0 means and
variance-covariance matrix Σ. The probability density function is thus:

π(x) = 1
(2π)n/2|Σ|1/2 exp

ß
−1

2x
′Σ−1x

™
∝ exp

ß
−1

2x
′Σ−1x

™
.

The associated energy function is given by U(x) = 1
2x
′Σ−1x, and the gradient of the U(x)

evaluated at x is ∇U(x) = x′Σ−1. We aim to solve the τ? such that

τ? = argmint:t≥0U(x+ vt).

So, the closed-form for τ∗ is

τ∗ = (v′v)−1
[
−x′v +

»
(x′v)2 − 2v′v log(V )

]
, (2.22)

which is given in [12] and [15], where V is the ratio between π(x+ vτ) and π(x+ vτ∗).
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2.4.3 Posterior Inference via Local Bouncy Particle Sampler (LBPS)

The Local Bouncy Particle Sampler (LBPS) is known as one natural extension of the global
BPS, which combines the global BPS with sub-sampling strategies. First, this requires the
target density to decompose into a representation of the form:

π(x) =
∏
f∈F

πf (xf ) , (2.23)

where xf denotes some subset of the variables x and F is an index set called the set of
factors. Hence, the energy function can be expressed as

U(x) = U (0)(x) +
n∑
i=1

U (i)(x)︸ ︷︷ ︸
(?)

. (2.24)

We also have ∂Uf (x)/∂xk = 0 for k ∈ {1, 2, ..., p}\Nf that is the variables exclude from
factor f . Second, we need to uniformly select one factor f at random, and then uniformly
pick one observation within this factor. Using that observation to update the weight compo-
nent. Specifically, the sub-sampling strategies contain two parts: first, we construct one joint
probability mass function, qi,j(i, j) that contains both observations and covariates; second,
we sample j from its marginal distribution qj(·); and finally we select observation i based
on the conditional distribution qi|j(·|j). Example 2 demonstrates how to sample particles
with the local BPS in logistic regression analysis.

Example 2. Logistics Regression via LBPS

We use the same settings of data in Section 2.2. We further assume the unknown parameters
x ∈ Rp follow a standard Gaussian prior, denoted by ψ(x). Then the posterior distribution
can be derived by,

π(x) ∝ ψ(x) · L(x)

∝
p∏
j=1

exp
ñ
−(xj)2

2

ô
·
n∏
i=1

exp
¶
yi ·

∑p
j=0 zijxj

©
1 + exp

¶∑p
j=0 zijxj

© . (2.25)

In this case, the energy function in Equation (2.24) can be decomposed into two parts:
U (0)(x) which comes from the prior and U (i)(x) (where i = 1, ..., n), which comes from the
likelihood function. Specifically, U (0)(x) has the following form:

U (0)(x) =
p∑
j=1

[
(x2
j )

2

]
+ constant, (2.26)
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and (?) in Equation (2.24) is formulated by,

n∑
i=1

U (i)(x) =
n∑
i=1

log

Ñ
1 + exp


p∑
j=0

zijxj


é
− yi

Ñ
p∑
j=0

zijxj

é . (2.27)

So the gradient of Equation (2.26) is

∇U (0)(x) = ∂U (0)(x)
∂xj

= xj ≤ ‖x‖, (2.28)

and the gradient of Equation (2.27) for each component i can be derived as:

∇U (i)(x) = ∂U (i)(x)
∂xj

=
n∑
i=1

zij · exp
¶∑p

j=0 zijxj
©

1 + exp
¶∑p

j=0 zijxj
© − yizij

=
n∑
i=1

zij · logit
Ñ

p∑
j=0

zijxj

é
︸ ︷︷ ︸

(??)

−yizij

 . (2.29)

We notice that 0 < (??) above < 1 for ∑p
j=0 zijxj ∈ R.

Moreover, simulation of τ can be performed according to the following scenarios:

• Simulation of τ (0) can be approached using Example 1 above;

• Simulation of τ (i) for i = 1, ..., n can be applied to the thinning algorithm in PP [20].

Now we need to find the upper bound for the rate function described in (2.16) on its domain.
The derivation procedure is shown below:

χ(t) ≤
p∑
j=1

χ(i)(t)

= max
{

0,
î
∇U (i)(x+ vt)

ó′
v
}

= max

0,

 n∑
i=1

zij · logit
Ñ

p∑
j=0

zij(xj + vjt)

é
− yizij

′ vi


= max

0,

 n∑
i=1

logit
Ñ

p∑
j=0

zij(xj + vjt)

é
− yi

′ z′ijvi
 . (2.30)
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When yi = 0, Equation (2.30) becomes

χ(i)(t) = max

0,

 n∑
i=1

logit
Ñ

p∑
j=0

zij(xj + vjt)

é
− yi

′ z′ijvi


≤
p∑
j=1

z′ij [vi · I {vi > 0}] = χ(i), (2.31)

where I {vi > 0} is an indicator function which equals to 1 when vi > 0 for i = 1, .., n and
0 otherwise, χ(i) is the upper bounds based on the i-th datapoint, and zij is assumed to be
non-negative. When yi = 1, likewise, Equation (2.30) becomes

χ(i)(t) ≤
p∑
j=1

z′ij [|vi| · I {vi < 0}] = χ(i). (2.32)

However it is possible to have negative covariates; that is, zij < 0. Thus, we can further
expand Equation (2.31) into

χ(i)(t) =
n∑
i=1

max

0,

logit
Ñ

p∑
j=0

zij(xj + vjt)

é
− yi

′ z′ijvi


+ min

−
logit

Ñ
p∑
j=0

zij(xj + vjt)

é
− yi

′ z′ijvi, 0


≤
p∑
j=1

z′ij [vi · I {vi > 0}] = χ(i). (2.33)

Therefore, the upper bound of ∑n
i=1 χ

(i)(t) is

χ =
p∑
j=1
|vj |

n∑
i=1

1 [vj(−1)yi ≥ 0] zi,j , (2.34)

which is a constant and only depends on the velocity.

In order to exploit the sub-sampling, we can manipulate the joint probability mass function
which contains both data points and covariates. That is,

qi,j(i, j) = |vj |1 [vj(−1)yi ≥ 0] zi,j
χ

. (2.35)

15



The velocity component is updated by sub-samplings and an adaptive thinning algorithm.
To do so, we first sample

j ∼ qj(·) =
∑n
i=1 |vj |1 [vj(−1)yi ≥ 0] zi,j

χ
,

and then we select

i ∼ qi|j(·|j). (2.36)

In other words, we uniformly select the observation i at random according to Equation (2.35)
based on the j. According to the thinning algorithm, the velocity component will only be

updated when the ratio χ(i)

χ
< V , where i is given by Equation (2.36), V ∼ Uniform(0, 1)

and the velocity updated can be referred to Equation (2.17). Alternatively, we may consider
to apply the naive sub-sampling method. That is

χ(i) = max
i
|zij |.

Finally, the local BPS algorithm is summarized below.

2.5 Implementation

We implemented the methods for parameter estimation in R. We used the glm function to
fit the logistic regression model to the COVID-19 Tianjin dataset.

In the Bayesian framework, there are some available packages for the MH method, such
as MCMCpack::MCMClogit [21]. For the global BPS algorithm, various functions from the
RZigZag [5] package (i.e. BPSGaussian, BPSIIDGaussian, and BPSStudentT) are able to im-
plement the global BPS sampler for a Gaussian target distribution or Student T distribution.
The ESS can be computed by the R functions RZigZag::effectiveSize or mcmcse::ess

[14]. The Geweke’s diagnostic can be implemented via coda::geweke.diag [24]. Moreover,
Galbraith [15] wrote his own Python script to use the global BPS as well as the LBPS for
various settings.

However, we cannot find any existing R functions to fulfill the logistic regression model with
the LBPS. Thus, we write our own R script to implement the LBPS algorithm, which is
available in Appendix C.
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Algorithm 4 Local Bouncy Particle Samplers (LBPS) Algorithm
1: Initialization step:
2: (a) Arbitrarily select

Ä
x(0), v(0)

ä
on Rp × Rp.

3: (b) Set global travel time T = 0.
4: (c) Set local time upper-bounds

T ← ∆.

5: (d) Calculate local-in-time upper bound on the prior factor

χprior = 1
σ2 max

{
0,
Ä
x(0) + ∆v(0)ä′ v(0)

}
.

6: for all i = 1, 2, ..., n do
7: (a) Calculate local-in-time upper bound on the data factors χ in Equation (2.34),
8: (b) Simulate τ such that

τ ∼ Expoential
Ä
rate = χprior + χ+ λrefä .

9: if T + τ > T then
10: i. Position update:

Set x(i) ← x(i−1) + v(i−1)(T − T ).

11: ii. Velocity update:
Set v(i) ← v(i−1).

12: iii. Local-in-time upper bound on the prior factor update:

χprior = 1
σ2 max

{
0,
Ä
x(i) + ∆v(i)ä′ v(i)

}
.

13: iv. Travel time update:

T ← T ,

T ← T + ∆.

14: else
15: i. Position update:

x(i) ← x(i−1) + v(i−1)τ.

16: ii. Velocity update: generate a random integer k from

Discrete
Ç

χ̄

χ̄prior + χ̄+ λref ,
λref

χ̄prior + χ̄+ λref ,
χ̄prior

χ̄prior + χ̄+ λref

å
.
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17: if k=1 then
18: i. Sample j according to qj(·),
19: ii. Generate i based on the conditional distribution qi|j(·|j),
20: iii. Generate V ∼ Uniform(0, 1).

21: if V <
max

{
0,
î
∇[i](x(i))

ó′
v(i−1)

}
χ[i] then

22: v(i) is updated by Equation (2.17).

23: else
24:

Set v(i) ← v(i−1)

.
25: end if
26: end if

27: if k=2 then
28:

Simulate v(i) ∼ N(0p, IIIp).

29: end if

30: if k=3 then
31: i. Let b be the position of τ∗ referring to Equation (2.22),
32: ii. Generate V ∼ Uniform(0, 1).

33: if V <
max

{
0,
î
∇[i](x(b))

ó′
v(i−1)

}
χprior

then

34: v(i) is updated by (2.17).

35: else
36:

Set v(i) ← v(i−1).

37: end if
38: end if

39: iii. Local-in-time upper bound on the prior factor update:

χprior = 1
σ2 max

{
0,
Ä
x(i) + ∆v(i)ä′ v(i)

}
.

40: iv. Travel time update:
Set T ← T + τ.

41: end if
42: return

¶
x(i), v(i), T

©
.

43: end for
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Chapter 3

Numerical Simulation

In this chapter, we design 2 simulation studies to evaluate the model performance in terms
of the computation time and accuracy:

• In the first study, we consider two settings where p = 2 and n ∈ {30, 100}. We tune
the λref for the LBPS algorithm, compare it to the BPS with the naive subsampling,
and compare the estimation accuracy among the MH, LBPS as well as MLE;

• In the second study, we first consider the setting where p = 5, and various values of
n, where n ∈ {30, 100, 200, 500}. We further discover the setting where we encounter
large and sparse datasets. In both experiments, we fix the computation budget, and
compare the estimation accuracy between the MH and LBPS.

3.1 Simulation Design

3.1.1 Experiment Design I

Experiment I

We consider a setting where p = 2 and n = 100. The synthetic data were generated
by sampling the covariates: X1 and X2 are independent and identically distributed (iid)
Uniform(0.1, 1). The responses yi are sampled from Equation (2.4) with true coefficients.
That is,

xxx = [x0, x1, x2]′ = [0.5, 1, 1]′.

Firstly, we need to tune the rate parameter of the homogeneous PP to stable efficiency and
accuracy in the LBPS. The tuning procedure for each variable is as follows:
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• We consider the values of λref = (0.01, 0.1, 0.5, 1, 10).

• Each LBPS algorithm was executed by using N = 10, 000 (the number of iterations
for the LBPS).

• The initial position x(0) was set to [−1, 2, 2] with velocity vector [1,−1,−1].

• We further assume the posterior distribution given in Equation (2.25) to be a standard
normal distribution and set ∆ = 0.5.

• We then repeat this process M times. In this case, M = 20.

• Finally, we calculate the in-sample mean square error (sMSE) for each value of λref.
The optimal tuning parameter will be the one with the minimum average sMSE.

Secondly, we compare the LBPS method with the optimal λref versus the BPS with naive
sub-sampling in terms of the square root sMSE and ESS.

Finally, we compare parameter estimations by the LBPS to those produced by the MH
as well as MLE. MLEs were generated by the Fisher scoring algorithm as described in
Algorithm 1. We then use N = 10, 000 (the number of MH/LBPS iterations for the MCMC
sampler). For the MH algorithm, we also add a burn-in 1000 iterations to ensure that the
MCMC estimates are free of early failures. For both Bayesian approaches, we assume one
multivariate prior on xxx with 0 means and variance-covariance = σ2I3. The value of σ2 is set
to be 0.04 for the MH and 1 for the LBPS. Moreover, the initial values for x0, x1, x2 are set to
be their corresponding MLE values in the MH algorithm. In the LBPS, the initial position,
velocity, and the value of ∆ are set the same as we applied in Experiment 1. In addition to
that, we used the optimal value of λref. Similar to the MH algorithm, we treat the first 10%
of samples as burn-in. Overall, we repeat each approach (i.e., MLE, MH, and tuned LBPS
(LBPS with optimal value of λref) 100 times and calculate the coverage probabilities (CP)
of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 95% confidence/credible interval.

Experiment II

We repeat the same procedures as Simulation Design I except the sample size of the data.
In this experiment, we sample X1 and X2 with n = 30.

3.1.2 Simulation Design II

Experiment I

We consider settings where p = 5 and n = {30, 100, 200, 500}. The synthetic data were
generated by sampling the covariates from iid Uniform(0.1, 1). The response yi are sample
from Equation (2.4) with true coefficients [0.5, 1, 1, 1, 1, 1]′.
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For the MH algorithm, we start with their corresponding MLE values. In addition, we
assume one multivariate prior on xxx with 0 means and variance-covariance = σ2I6. The
value of σ2 is set to be 0.04. We also add a burn-in 10 % sample to ensure that the MCMC
estimates are free of early failures.

For the LBPS algorithm, we start with x(0) = [−1, 2, 2, 2, 2, 2] with the velocity vector

v(0) = [1,−1,−1,−1,−1,−1],

and set λref = 0.5. Other variables such as σ2, ∆ were set to be same as Simulation I.

For each n ∈ {30, 100, 200, 500}, we run the MH and LBPS algorithms 20 times given by
the fixed computation cost (i.e. same iterations for both algorithms), and then compare the
estimation accuracy like the last procedure in Simulation I.

Experiment II

We consider a setting where p = 5 and n = 500. The synthetic data were generated by
sampling from the mixture distribution [26]:

να(dx) = (1− α)δ0(dx) + αρ(x)dx, (3.1)

where

• δ0(dx) is a point mass at 0.

• α ∈ [0, 1] controls the level of sparsity. For example, α = 0.1 means 10 % of the data
are non-zero.

• ρ can be chosen from any smooth distribution. In this case, we choose ρ = Uniform
(0.1, 1).

The responses yi are sampled from Equation (2.4) with true coefficients. That is,

xxx = [x0, x1, x2]′ = [0.5, 1, 1, 1, 1, 1]′.

The initial values and other variables (i.e. σ2, λref) for the MH and the LBPS were set to
be the same as Simulation III.

In this experiment, we consider 3 types of sparse dataset: serve sparse (α = 0.1), intermediate

sparse (α = 0.5), and light sparse (α = 0.9). For each setting, we repeat the MH and LBPS
algorithms 20 times given by the fixed computation cost, and then compare the estimation
accuracy.
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3.2 Simulation Results

3.2.1 Experiment Design I

Experiment I

According to the relative square root sMSE boxplot below (Figure 3.1 and Figure 3.2), we
find λref = 0.5 performs the best in terms of sMSE and ESS for each variable.
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Figure 3.1: Boxplot of relative square-root sMSE for the LBPS with different values of
λref = (0.01, 0.1, 0.5, 1, 10) resulting from the synthetic data in Simulation Design I. For
each run, all sMSE are divided by the smallest sMSE produced; values of 1 means that the
LBPS with the specified λref produced the lowest sMSE.
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Figure 3.2: Boxplot of ESS for the LBPS with different values of λref = (0.01, 0.1, 0.5, 1,
10) resulting from the synthetic data in Simulation Design I.

We further compare relative square-root sMSE between the LBPS with λref = 0.5 and the
BPS with naive sub-sampling in terms of sMSE and ESS. According to Figure 3.3, the
LBPS with λref = 0.5 outperforms the other method with the lower variance and sMSE.
Figure 3.4 displays the ESS of X1 and X2 for both methods, the LBPS with λref = 0.5 has
a larger ESS than that for the BPS with sub-sampling. Therefore, the LBPS with a tuned
rate parameter outperforms in this study.
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Figure 3.3: Comparison of relative square-root sMSE and the LBPS with λref = 0.5 and the
BPS with naive sub-sampling resulting from the synthetic data in Simulation Design I. For
each run, each sMSE is divided by the smallest sMSE produced; values of 1 means that the
LBPS with that λref produced the lowest sMSE.
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Figure 3.4: Comparison between the LBPS with λref = 0.5 and the BPS with naive sub-
sampling in terms of ESS resulting from the synthetic data in Simulation Design I.
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Figure A.1 and Figure B.1 display the trace plots (the values generated from the Markov
chain versus the iteration number we specified) and the distribution of x1, x2 posterior that
were drawn from each MCMC iteration of the MH and the LBPS with optimal value of λref

suggested in the Experiment 1. The acceptance rate for the proposed parameters is 0.36
for the MH samplers. All the p-values from the Geweke’s diagnostic are greater than 0.05.
Based on the trace plots, they all show random scatter around one mean value, suggesting
that the chain mixed well and the sample of 10,000 values is adequate to produce accurate
parameter approximations of the posterior distribution.

Figure 3.5 illustrates the coverage probability (CP) of the a set of confidence intervals (CI)
ranging from 10% to 95% for MLE as well as the same set of credible intervals (CI) for
both the MH algorithm and tuned the LBPS. The diagonal line (the black dashed line) is
one reference line, indicating that the theoretical quantile is equal to the true quantile. The
point estimates will become more accurate when the CP is closer to the reference line. Based
on the plots, we observe that the point estimates among all methods perform similarly.
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Figure 3.5: The CP of CIs for MLE as well as CIs for both the MH algorithm and the LBPS
resulting from the synthetic data in Simulation Design I. The black dashed line is used as
a benchmark indicating where theoretical quantile is equal to the computed quantile.
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Experiment II

Based on the relative square root sMSE and ESS boxplot below (Figure 3.6, we find none
of the λref values outperform the others in terms of sMSE and ESS for each variable. From
the top two boxplots, the LBPS with λref = 10 is suggested since it has the lowest average
error, while it has the largest variation in X1. In addition, the LBPS with λref = 0.01 has
the largest ESS from the bottom two boxplots.
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Figure 3.6: Boxplot of relative square-root sMSE and ESS for the LBPS with different values
of λref = (0.01, 0.1, 0.5, 1, 10) resulting from the synthetic data in Simulation Design II The
top two plots are boxplots of the relative square-root sMSE with λref = (0.01, 0.1, 0.5, 1, 10).
For each run, each sMSE is divided by the smallest sMSE produced; values of 1 means that
the LBPS with that λref produced the lowest sMSE. The bottom two plots illustrate the
ESS.

Next, we manually checked the trace and density plots of the X1 and X2 posteriors that
were drawn from each MCMC iteration of the MH algorithm and the LBPS with the opti-
mal value of λref. Both plots showed random scatter around one mean value, suggesting that
the chain mixed well and the sample of 10,000 values was adequate to produce accurate pa-
rameter approximations of the posterior distribution. The acceptance rate for the proposed
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parameters is 0.43 for the MH samplers. All the p-values from the Geweke’s diagnostic are
greater than 0.05.

Finally, Figure 3.7 illustrates the CP of a set of CIs ranging from 10% to 95% for MLE as
well as the same set of CIs for both the MH algorithm and a tuned LBPS resulting from
the smaller dataset. Based on the plots, we observe that the point estimates produced via
the LBPS perform worse than that for MLE and the MH algorithm, while the latter two
methods perform similarly.

x1 x2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Computed Quantile

T
he

or
et

ic
al

 Q
ua

nt
ile

Method

MLE

MH

LBPS

Coverage Probability Plot for the Simulation Study II

Figure 3.7: The CP of CIs for MLE and CIs for both MH and the LBPS resulting from
the synthetic data in Simulation Design II. The black dashed line is used as a benchmark
indicating where theoretical quantile is equal to the computed quantile.

3.2.2 Simulation Design II

Experiment Design I

Figure 3.8 illustrates the CP of a set of CIs ranging from 10% to 95% for the MH and LBPS
algorithms given by the fixed computation cost. The synthetic datasets were generated
by different values of n. Compare to both algorithms, the LBPS performs more efficiently
for n = 200, while it performs less efficiently for n = 500. Both algorithms have similar
performance for n = 100, and they all perform poorly for n = 30, suggesting that n = 30 is
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to small too acquire accurate estimates. Therefore, it is difficult to conclude which algorithm
works efficiently in the given circumstances. Instead, we discover the model efficiency in large
sparse data.
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Figure 3.8: The CP of CIs of both the MH (red line) and LBPS (blue line) resulting from
the synthetic data in Experiment I of Simulation Design II. The black dashed line is used
as a benchmark indicating where theoretical quantile is equal to the computed quantile.

Experiment Design II

Figure 3.9 illustrates the CP of a set of CIs ranging from 10% to 95% for the MH and LBPS
algorithms given by the fixed computation cost. The synthetic datasets were generated by
different values of α. The value of α controls the level of sparsity. The smaller the α, the
sparser the data. As the data become sparser, the efficiency of using the LBPS increases
relative to using the MH for the large dataset.
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Figure 3.9: The CP of CIs of both the MH (red line) and LBPS (blue line) resulting from
the synthetic data in Experiment II of Simulation Design II. The black dashed line is used
as a benchmark indicating where theoretical quantile is equal to the computed quantile.
The value of α controls the level of sparsity. The smaller the α, the sparser the data.
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Chapter 4

Application to COVID-19 Data

4.1 Dataset Overview

The original dataset contains 125 patients who have tested positive for COVID-19 in Tianjin,
China over the period of January 5, 2020 to February 17, 2020. The data were available
on the Tianjin health commission official website ( http://wsjk.tj.gov.cn/) and other
online resources such as Weibo. It took mathematicians in MAGPIE Research Group several
days to collect the data. Finally, the specialist generated an aggregated dataset from each
patient. The COVID-19 Tianjin data has been released on the GitHub ( https://github

.com/EpiCoronaHack) at EpiCoronaHack workshop, which was organized by Dr. Caroline
Colijn. We then manually added the data points from online resources including China Daily
( http://global.chinadaily.com.cn/) and other local newspapers like the Beijing News
and Tianjin Daily. Up to now, we have 137 patients who have tested positive for COVID-19
in Tianjin, China since January 5, 2020: 11 patients from February 17, 2020 to February
27, 2020; 1 patient from From February 27, 2020 to June 17, 2020; and no exposure after
June 17, 2020.

4.2 Variables of Interest

In this study, the responses are whether each patient was either “normal” or “severe” in a
severity test. In addition, we consider four predictors: age, sex, Wuhan-related exposures,
and symptom_type (with three levels). Specifically, symptom_type can be classified as fol-
lows:

• Level 1: None, which means the patient has no symptoms;
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• Level 2: RTI. The patient who has some respiratory tract infection (RTI) symptoms,
such as fever, sore throat, running nose; fatigue, etc.;

• Level 3: Others. The patient has suffered from other symptoms, which are excluded
from the above.

Let Yijkl be the response (0 = “normal”, 1 = “severe”) of the l-th patient of sex i (1 =
“female”, 2 = “male”), Wuhan-related exposures j (1 = “no”, 2 = “yes”), symptom_type

k (1 = “none”, 2 = “rti”, and 3 = “others”). In addition, we define zijkl as the age of the
l-th patient of sex i, Wuhan-related exposures j, and symptom_type k.

Moreover, we assume Yijkl ∼ Bernoulli(πijkl) and that the Yijkl’s are independent. Addi-
tionally, we use the logit link. The model is thus:

logit(πijkl) = x0 + x1zijkl + αi + βj + γk, (4.1)

where we need to set the baseline constraints to 0; that is, α1 = β1 = γ1 ≡ 0. The next
section will describe how we estimate the following model parameters:

xxx = [x0, x1, α2, β2, γ2, γ3] .

4.3 Parameters Estimation

The MLEs were derived by the Fisher scoring method described in Algorithm 1.

The MH algorithm was executed by using N = 30, 000 MCMC iterations and a burn-in of
3,000 iterations to ensure that the Markov chain has converged. We assumed one multivari-
ate prior on xxx with 0 means and variance-covariance = σ2I6 = diag = [1, 1, 1, 1, 1, 1]′, where
σ2 = 0.04. Moreover, the initial values for xxx were set to their corresponding MLE values.

The LBPS algorithm was executed by using N = 30, 000 iterations. We assume the standard
normal prior for x0, x1, α2, β2, γ2, and γ3, respectively. Additionally, we set the values
for λref = 0.5, ∆ = 0.5. The initial values were set to be [−4, 3, 1, 2,−1, 0]′ with v(0) =
[−1.23,−0.42,−0.57,−0.78,−0.56]′.

4.4 Results

The Fisher scoring method converged after six iterations. In the Bayesian framework, we
confirmed that the Markov chain for each model parameter estimate converges to a station-
ary distribution after the specified MCMC iterations.
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Figure A.2 and Figure A.3 illustrate the trace and density plots of x1, α2, β2, γ2, and γ3

posteriors that were drawn from each MCMC iteration of the MH algorithm. The acceptance
rate for the proposed parameters was 0.24.

Figure B.2 and Figure B.3 display the trace and density plots of x1, α2, β2, γ2, and γ3

posteriors that were drawn from each MCMC iteration of the LBPS algorithm. After per-
forming Geweke’s diagnostic for each chain, all the p-values from the Z tests (Table 4.1) are
greater than 0.05. Thus, we may need to treat the first 10% samples as burn-in.

x0 x1 α2 β2 γ2 γ3

p-value 0.62 0.97 0.17 0.78 0.83 0.18

Table 4.1: P-values resulting from Geweke’s diagnostic for each chain. Note that x0, x1,
α2, β2, γ2, γ3 are the coefficients for intercept, age, male, Wuhan-related exposures,
Sympton_RTI, and Sympton_Others, respectively.

Finally, all parameter estimations for MLE, the MH algorithm and the LBPS are summa-
rized in Table 4.2. Based on the table, all moment estimations are tend to be similar among
all methods.

MLE MH LBPS

Mean SD P-value Empirical
Mean

Empirical
SD

Empirical
Mean

Empirical
SD

x0 -3.74 1.22 0.00 -3.76 1.18 -3.65 1.21
x1 2.57 1.22 0.04 2.41 1.18 2.40 1.24
α2 0.81 0.52 0.11 0.82 0.52 0.84 0.50
β2 1.54 0.59 0.01 1.55 0.60 1.59 0.51
γ2 -1.44 1.29 0.69 -1.77 1.35 -1.80 1.20
γ3 0.32 0.80 0.26 0.35 0.80 0.30 0.75

Table 4.2: Summary of parameter estimation resulting from MLE, the posterior parameter
estimation resulting from the MH algorithm and the LBPS for COVID-19 Tianjin data.
Note that “Std.Error” calculates the standard deviation of each coefficient point estimate
in Equation (4.1). Also note that x0, x1, α2, β2, γ2, γ3 are the coefficients for intercept,
age, male, Wuhan-related exposures, Sympton_RTI, and Sympton_Others, respectively.

Next, we use a likelihood ratio test (LRT) to examine whether there is an non-zero coefficient
in Equation (4.1). In this study, the null hypothesis is that all coefficients are 0, and the
alternative hypothesis is that at least one coefficient term is not 0. As a result of this study,
the test statistics are: 2.57 (p-value is 0.04) for x1; 1.54 (p-value is 0.01) for β2; while the
other p-values are greater than 0.05. Hence, there is sufficient evidence to conclude that the
effects of age and Wuhan-related exposures are non-zero in the model. Also, these 95%
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CIs in Table 4.3 never overlap 0 in both MH and LBPS. Therefore, we can conclude that
age and Wuhan-related exposures are two important factors in a COVID-19 severity test
based on our dataset.

x0 x1 α2 β2 γ2 γ3

MLE [-6.35, -1.50] [0.25, 5.10] [-0.18, 1.87] [0.39, 2.72] [-1.16, 2.05] [-4.60, 0.93]
MH [-6.21 -1.58] [0.13 4.81] [-0.15 1.89] [0.38, 2.75] [-1.15, 2.03] [-4.62, 0.63]
LBPS [-6.02, -1.28] [0.49, 4.88] [-0.16, 2.13] [0.19, 3.23] [-0.90, 1.59] [-4.26, 0.45]

Table 4.3: Confidence/Credible intervals (CI) resulting from MLE, the MH algorithm and
the LBPS for COVID-19 Tianjin data.

When holding other covariates constant (i.e., same age, sex, and sympton_type), we can
conclude that the estimated odds of patients who have lived or travelled from Wuhan for
indicating a “serve” status are 4.66 times the estimated odds for indicating a “normal”
status. Moreover, we have 95% confidence to say that the estimated odds that patients who
have lived or travelled from Wuhan indicated “severe” on a severity test ranges from 1.48
to 15.18 times those of indicating “normal” in a severity test. Using the quantiles of the
posterior distribution, we have 95% confidence to conclude that those empirical means lie
in the CI 1 [1.46, 15.64] for the LBPS, and [1.21, 25.28] for the MH algorithm.

1 The 95% equal-tailed interval is used to compute 95% CI for the MH and LBPS algorithms.

33



Chapter 5

Conclusion and Future work

5.1 Discussion and conclusion

In this project, we described the Bouncy Particle Sampler (BPS) and Local Bouncy Particle
Sampler (LBPS) and applied the techniques to estimate model parameters in the logistics
regression setting. We also compared the model performance among the LBPS and other
commonly used methods like maximum likelihood estimation (MLE) and the Metropo-
lis–Hastings (MH) algorithm.

To improve the performance of the LBPS, the value of λref does affect the implementation
results even though the BPS has been proved in theory to be ergodic for a positive rate
parameter. However, as we increase the value of λref, ESS increases and the Markov chain
more slowly mixes. Furthermore, the LBPS samplers will produce Markov chains that poorly
approximate our target distribution for either extremely large or small values of λref. Apart
from that, we can apply the alias sampling method [19] to greatly reduce computation
time. Some partial Python code can be found at the website [1]. Another challenge involves
how to simulate τ in the non-homogeneous Poisson process setting efficiently. In general,
the simulation of τ is based on the thinning and superposition algorithms in the BPS and
LBPS. The upper bound of the intensity function χ(t) is important since it would directly
affect the efficiency. In fact, we would prefer a tighter upper bound.

In simulation studies, computational time and accuracy are two metrics that can directly
reflect model performance. The MH samplers perform better in a smaller dataset, while the
LBPS is more efficient in a larger and sparser dataset. Moreover, naive sub-sampling in the
BPS assigns equal weight on each observation and then randomly selects one observation to
run the algorithm. This method is appealing due to its fast computational time, while it sac-
rifices the accuracy of parameter estimation since this method only accesses one observation
rather than the whole dataset. Therefore, the BPS with naive subsampling cannot compete
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in parameter estimation since it does not offer the best trade-off between computation time
and accuracy. Finally, there is evidence to conclude age and Wuhan-related exposures

are important factors in COVID-19 severity according to 137 Tianjin COVID-19 patients,
which confirms the results reported in [32]. However, this data set is not a large data set. In
order to verify our conclusion, we need need larger data sets that contain more COVID-19
cases and their information.

5.2 Future work

Firstly, the majority of papers such as [12, 26, 30] have considered that model parameters
follow normal distributions, while other popular priors such as Cauchy priors suggested
by [16], a generalized double Pareto prior [2], and a Laplace prior (also known as double
exponential prior) [2, 29] have not been applied in the BPS and LBPS algorithms.

Secondly, we have shown that the LBPS can draw samples from our target distribution
efficiently. To improve this method, we can borrow the control variate ideas suggested
by [3, 7]. This method applies on the assumption that the gradient of each component’s
energy function satisfies the Lipschitz condition. The Lipschitz bounds can be used for a
logistics regression model, while the LBPS uses the bounds on the intensity function in a
non-homogeneous Poisson process.

Next the value of λref can be sensitive in the LBPS and BPS algorithms. So on the one
hand, other methods in the PDMP family such as the Zig-Zag sampler and the GBPS might
be alternatives without the tuning process. On the other hand, we can try Boomerang
samplers with a sound tuning process. For all the specified methods, we need to compare
model performance in terms of the efficiency and accuracy with various numerical simulation
settings. For example, we can try a more challenging data setting, such as high-dmensional
sparse data. In this case, the number of predictors and number of observations are relatively
large, and we choose the level of sparsity.

Finally, there are limited R packages that implement PDMP methods. RZigZag is the only
available package, and it can only implement limited PDMP methods. Indeed, we can write
our own R package with general functions to implement the BPS, LBPS, Zig-Zag sampler,
GBPS, and Boomerang since they all have something in common.
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Appendix A

Further Model Assessment in MH

2000 4000 6000 8000 10000

0.
5

1.
5

2.
5

Iterations

Trace of X_1

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
6

1.
2

Density of X_1

N = 10000   Bandwidth = 0.04885

2000 4000 6000 8000 10000

−
1

1
3

5

Iterations

Trace of X_2

0 2 4 6

0.
0

0.
2

0.
4

Density of X_2

N = 10000   Bandwidth = 0.157

Figure A.1: The trace and density plots for X1 and X2 resulting from the synthetic data in
Simulation Design I with the MH algorithm.

Figure A.2 and A.3 display the trace plots (the values generated from the Markov chain
versus the iteration number we specified) and the distribution of x1 (age), α2 (male), β2
(Wuhan-related exposures), γ2 (Symptom_RTI), and γ3 (Sympton_Others) posterior that
draw from the MH algorithm. Based on the trace plots, they all show random scatter around
one mean value, suggesting that the chain mixed well and the sample of 10,000 values is
adequate to produce accurate parameter approximations of the posterior distribution.
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Figure A.2: The trace and density plots of the standard MCMC samplers for x1, α2, and
β2 from COVID-19 Tianjin data.
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Figure A.3: The trace and density plots of the standard MCMC samplers for γ2 and γ3 from
COVID-19 Tianjin data.
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Appendix B

Further Model Assessment in
LBPS
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Figure B.1: The trace and density plots for X1 and X2 resulting from the synthetic data in
Simulation Design I with the LBPS Algorithm.

Figure B.2 and B.3 display the trace plots (the values generated from the Markov chain
versus each travel time) and the distribution of x1 (age), α2 (male), β2 (Wuhan-related
exposures), γ2 (Symptom_RTI), and γ3 (Sympton_Others) posterior that draw from the
LBPS. Based on the trace plots, they all show random scatter around one mean value,
suggesting that the chain mixed well and the sample of 30,000 values is adequate to produce
accurate parameter approximations of the posterior distribution.
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Figure B.2: The trace and density plots of the LBPS for x1, α2, and β2 from COVID-19
Tianjin data.
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Figure B.3: The trace and density plots of the LBPS for γ2 and γ3 from COVID-19 Tianjin
Data.

43



Appendix C

Code

1 # R Version : 4.0.2 (2020 -06 -22)
2 # LBPS algorithm
3
4 # Functions
5 expit = function (k) 1 - 1/(1+ exp(k))
6
7 chi_bar_fun = function (v, i, j, z){
8 if (z[i,j]>0){
9 result = abs(v[j]) * (v[j] * (-1)^(y[i]) >= 0) * z[i,j]

10 } else{
11 result = abs(v[j]) * (v[j] * (-1)^(y[i]) < 0) * (-z[i,j])
12 }
13 return ( result )
14 }
15
16 Gaussian _PP <- function (z,v){
17 z = as. matrix (z)
18 a = as. numeric (v %*% t(z))
19 b = sum(v^2)
20 V = runif (1, 0, 1)
21 result = (1/b) * (-a + sqrt(a^2 - 2* b * log(V)))
22 return ( result )
23 }
24
25 local_BPS_fun = function (N, n, z, Delta , Time , T_bar , sigma , lambda _ref){
26 Time_vec = chi_bar_i = chi_bar_j = k = c()
27 x_mat = matrix (0, nrow = N + 1 , ncol = p)
28 v_mat = matrix (0, nrow = N + 1 , ncol = p)
29 chi_bar_mat = matrix (0, nrow = n, ncol = p)
30
31 # Record the initial value
32 x_mat [1, ] = x_0; v_mat [1, ] = v_0; Time_vec [1] = Time
33
34 v = v_0
35 x = x_0
36
37 # (a) local -in -time upper bound on the data points
38 for (i in 1:N){
39
40 chi_bar_mat = sapply (1:p, function (d)
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41 sapply (1:n, function (r) chi_bar_fun(v=v,r,ind ,z)))
42
43 chi_bar_i = rowSums (chi_bar_mat)
44 chi_bar_j = colSums (chi_bar_mat)
45 chi_bar = sum(chi_bar_i)
46
47 # (b) Simulate tau
48 tau = rexp (1, chi_bar + Chi_bar_p + lambda _ref)
49
50 # When the global time and time of travel reach the local time upper -

bound
51 if (Time + tau > T_bar){
52 ## i. Position update :
53 x = x + v*(T_bar - Time)
54
55 ## ii. Velocity update :
56 v = v
57
58 ## iii. Local -in -time upper bound on the prior factor update :
59 Chi_bar_p = (1/(sigma ^2)) * max (0, sum ((x + v * Delta)*v))
60
61 ## iv. Travel time update
62 Time = T_bar
63 T_bar = T_bar + Delta
64 }
65 else{
66 ## i. Position update :
67 x = x + v*tau
68
69 ## ii. Velocity update : generate a random integer k from
70 k = sample (1:3 , size = 1, prob = c(chi_bar , lambda _ref , Chi_bar_p))
71
72 ## k = 1, based on the data points
73 if (k == 1){
74 ### i. Sample j~ q_j(.)
75 j_ind = sample (p, size = 1, prob = chi_bar_j)
76
77 ### ii. Sample i ~ q_i|j(.|j)
78 i_ind = sample (n, size = 1, prob = chi_bar_mat[, j_ind ])
79
80 ### Thinning algorithm
81 gU = (as. numeric (z[i_ind ,]) *
82 (expit(sum(as. numeric (z[i_ind ,]) * x)) - y[i_ind ]))
83 if (runif (1) < max (0, sum(gU*v)) / chi_bar_i[i_ind ]){
84 v = v - 2 * sum(gU*v) / sum(gU ^2) * gU
85 }
86 else v = v
87 }
88
89 ## k = 2, based on the velocity refreshment
90 if (k == 2) v = rnorm(p)
91
92 ## k = 3, based on the prior
93 if (k == 3){
94 tau_sim = c()
95 for(ind in 1:n){
96 tau_sim[ind] = Gaussian _PP(z = z[ind ,],v = v)
97 }
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98
99 ### i. b be the position where minimize tau_{*}

100 b = which.min(tau_sim)
101
102 ### Thinning algorithm
103 gU_prior = (as. numeric (z[b ,]) * (expit(sum(as. numeric (z[b ,]) * x)) -

y[b]))
104 if (runif (1) < max (0, sum(x*v)) / (Chi_bar_p)){
105 v = v - 2 * sum(gU_prior*v) / sum(gU_prior ^2) * gU_prior
106 }
107 else v = v
108 }
109
110 # iii. Local -in -time upper bound on the prior factor update :
111 Chi_bar_p = (1/(sigma ^2)) * max (0, sum ((x + v * (T_bar - Time - tau))*

v))
112
113 # iv. Travel time update :
114 Time = Time + tau
115 }
116
117 # Record into matrix
118 Time_vec[i+1] = Time
119 x_mat[i+1, ] = x
120 v_mat[i+1, ] = v
121 }
122 return (list(x = x_mat , v = v_mat , Time = Time_vec))
123 }
124 # --------------------------------------------------------------------------
125 # Simulated Data
126 n = 100
127 x1 = runif(n, min = 0.1, max = 1)
128 x2 = runif(n, min = 0.1, max = 1)
129
130 ## True values
131 true = c(0.5 , 1, 1)
132 y_0 = true [1] + true [2]*x1 + true [3]*x2
133
134 ## Inverse -logit function
135 Pr = 1/(1+ exp(-y_0))
136 ## The simulate response
137 y = rbinom (n, 1, Pr)
138
139 ## The simulate data
140 data_sim = data.frame(y,x1 ,x2)
141 z = as.data.frame(model. matrix (~ x1 + x2 , data = data_sim))
142 p = dim(z)[2]
143 # --------------------------------------------------------------------------
144 # Initialization
145 fit = glm(y ~ ., family = binomial (link = logit), data = data_sim)
146
147 ## (a)
148 x_0 = coef(fit) # position
149 v_0 = rnorm(p) # velocity
150
151 ## (b)
152 Time = 0 # Global travel Time
153
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154 ## (c)
155 Delta = 0.5 # Local upper bounds
156
157 ## The prior variance
158 sigma = 1
159
160 ## Lambda refreshment
161 lambda _ref = 0.5
162
163 ## (d) local -in -time upper bound on prior
164 Chi_bar_p = (1/(sigma ^2)) * max (0, sum ((x_0 + v_0 * Delta)*v_0))
165
166 ## Number of MCMC iterations
167 N = 10000
168 # --------------------------------------------------------------------------
169 # LBPS
170 # return : x^{(i)}, v^{(i)}, and Time
171 local_BPS = local_BPS_fun(N = N, n = n, z = z, Delta = Delta , Time = Time ,
172 T_bar = Delta , sigma = sigma , lambda _ref = lambda _ref)
173
174 # Trace plot and density plot
175 par(mfrow = c(p ,2))
176 x_lab = c("x0", "x1", "x2")
177 for (k in 2:p){
178 new_tau = approx (x = local_BPS$Time , y =local_BPS$x[,k], n = N)
179 # Trace plot
180 plot(x = (local_BPS$Time [1:N]), y = local_BPS$x[1:N,k],
181 type="l",main = paste0 ("Trace of ", x_lab[k]),
182 ylab = " Position ", xlab = "Time of Travel ")
183 # Density plot
184 plot( density (new_tau$y, adjust =2))
185 abline (v = true[k], col = "red")
186 }
187
188 # Calculate the posterior mean and SD
189 first_mom = second _mom = c()
190 t = tail(local_BPS$Time [1:N], n = 1)
191 Lag_time = diff(local_BPS$Time [1:N], 1)
192
193 for (k in 2:p){
194 first_mom[k] =
195 (1/t) * (sum(Lag_time * local_BPS$x[1:N-1,k])+
196 0.5 * sum(Lag_time ^ 2 * local_BPS$v[1:N-1,k]))
197
198 second _mom[k] =
199 (1/t) * (sum(Lag_time * (local_BPS$x[1:N-1,k]^2)) +
200 sum(Lag_time ^2 * (local_BPS$x[1:N-1,k]*local_BPS$v[1:N-1,k]))

+
201 (1/3) * sum (( Lag_time ^3) * (local_BPS$v[1:N-1,k]^2)))
202 }
203
204 mean = first_mom
205 sd = sqrt( second _mom - first_mom ^2)
206 parp_est = data.frame(Mean = mean , SD = sd)
207 rownames (parp_est) = x_lab
208 parp_est
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