
July 7, 2019

Dr. Craig Scratchley
Dr. Andrew Rawicz
School of Engineering Science
Simon Fraser University
Burnaby, British Columbia
V5A 1S6

RE: ENSC 405W/440 Design Specifications for Arkriveia Beacon

Dear Dr. Scratchley and Dr. Rawicz,

The following document contains the Design Specification for Akriveia Beacon - The Indoor Location
Rescue System created by TRIWAVE SYSTEMS. The Akriveia Beacon focuses on locating personnel
trapped in buildings during small scale disasters such as fires and low magnitude earthquakes. This
is achieved by incorporating combinations of advanced Ultra-wide-band radio modules and microcon-
trollers to create a dependable indoor positioning system using trilateration. We believe our system
allows search and rescue operator to safely and reliably locate victims during an emergency or disaster.

The purpose of this document is to provide low and high-level design specifications regarding the overall
system architecture, functionality and implementation of the Akriveia Beacon system. The system will
be presented according to three different development stages: proof-of-concept, prototype, and final
product. This document consists of system overview, system design, hardware design, electrical design,
software design and as well as a detailed test plans for the Alpha and Beta products.

TRIWAVE SYSTEMS is composed of five dedicated and talented senior engineering students. The
members include Keith Leung, Jeffrey Yeung, Scott Checko, Ryne Watterson, and Jerry Liu. Each
member came from various engineering concentrations and with a diverse set of skills and experiences,
we believe that our product will truly provide a layer of safety and reliability to emergency search and
rescue operations.

Thank you for taking the time to review our design specifications document. If there are any further
questions or comments, please direct them to our Chief Communications Officer Jeffrey Yeung at
zjyeung@sfu.ca

Sincerely,
Jerry Liu
Chief Executive Officer

Enclosed: Design Specification for Arkriveia Beacon

ENSC 405W

Akriveia Beacon

Design Specification
 Team 5

07/07/2019

Project Team Jeffery Yeung CCO
 Keith Leung CTO
 Scott Checko COO
 Ryne Waterson CIO
 Jerry Liu CEO

Contact Jeffery Yeung
 zjyeung@sfu.ca

Submitted to Dr. Craig Scratchley
 Dr. Andrew Rawicz
 School of Engineering Science
 Simon Fraser University

Issue Date July 07, 2019

SFU

Abstract

The Akriveia Beacon by TRIWAVE SYSTEMS focuses on improving the locating and rescue
process of personnel trapped in buildings during and after small scale disasters such as fires and
low magnitude earthquakes. The Akriveia Beacon system allows search and rescue operations to
safely and reliably locate trapped victims in a disaster situation confined within complex urban
environments. By pinpointing the exact location of any victim wearing an ID tag, the search and
rescue time for first responders is minimized; which is crucial in any disaster rescue operations.

The Akriveia Beacon consists of various hardware, electrical and software components in order
to create a product that can accurately and reliably to locate and identify ID tags within com-
mercial building structure in near real time. This is achieved by incorporating a combination of
advanced Ultra-wideband radio modules, microcontroller units, data processing units, and reli-
able trilateration techniques to create a dependable indoor location positioning system.

The design specifications outlined in this document details the specifications of design elements
such as the high-level system architecture, functionality, and implementation for each critical
section of the Akriveia Beacon. Sections include design for the System Components, Hardware,
Electrical, and Software components of the product. The specifications will also cover the three
phases of product development: Proof-of-concept (PoC) phase, Prototype phase, and Final Prod-
uct phase. Additional appendices for the user interface design and test plans are included at the
end of this document. These appendices outlines the intended development time line and task
assignment breakdown for the development of the Akriveia Beacon.

TRIWAVE SYSTEMS is dedicated to creating a reliable and robust system design to improve
disaster search and rescue operations with human safety as the pivotal focus.

3

Glossary

Actix An implementation of the Actor Model in Rust. 38

Actix Web A webserver library built ontop of Actix. 38

Actor A class that contains message handling callbacks. 38

Actor Model A concurrency managment paradigm that uses message passing between objects
rather than locks or atomics. 38

Aptitude A debian package manager that automatically manages updates and installation of
software and dependencies. 37

Arbitor A thread pool, where each thread is an event loop. 40

ARM64 Advanced RISC Machine, A family of RISC based processors. 37

Babel A scripting language similar to Javascript with the ability to directly construct HTML
snippets. 48

Borrow Checker A component of the Rust compiler to prevent data races by enforcing data
ownership rules. 38

CSA Canadian Standards Association is a standards development organization. 70

DC Direct current voltage. 24

Debian A Linux based operating system. 37

DHCP Dynamic Host Configuration Protocol. 27

ETSI European Telecommunications Standards Institute. 23

FCC Federal Communications Commission. 23

FM Frequency modulation. 15

Garbage Collector A runtime component of some programming languages that detects and
cleans up unused memory.. 38

GPIO General Purpose Input Output. 22

Hostapd Host access point daemon. 27

HTTP HyperText Transfer Protocol. 39

ID Identification. 8

IEC International Electrotechnical Commission. 70

IEEE Institute of Electrical and Electronics Engineers. 70

ISO the International Organization for Standardization.. 70

JQuery A Javascript library designed to manipulate HTML. 49

4

MAC Media Access Control. 28

MPSC Multiple Producer Single Consumer Queue. 42

MVC Model View Controller, a method of orgnanization for GUI implementations. 42

OS operating system. 37

OSI Model Open Systems Interconnection model. 26

PCB Printed circuit board. 14

PLA Polylactic acid or polylactide. 29, 31

PoC Proof of concept is the sample product assembled to explore project feasibility. 12

React A Javascript framework to dynamically generate HTML. 48

RF Radio Frequency. 15

Rolling Release Frequent updates of software, without versions. 37

RSSI Received Signal Strength Indicator. 8, 12

Rust A systems language that focuses on reliability and performance. 38

Server Side Rendering Creating HTML files on the server, which can then be directly con-
sumed by the browser without modification to render a GUI. 44

ToF Time-of-Flight is a method for measuring the distance between a sensor and an object. 11

UDP User Datagram Protocol. 11

UWB Ultra wide band. 8

x86-64 Intel designed CISC family of processors. 37

5

Contents

Contents 6

List of Figures 8

List of Tables 9

1 Introduction 10
1.1 Background . 10
1.2 Scope . 11
1.3 Intended Audience . 11
1.4 Design Classification . 12

2 System Overview 13
2.1 Proof of Concept . 14
2.2 Prototype . 15
2.3 Final Product . 16
2.4 RF Fundamentals . 17
2.5 Received Signal Strength Indicator . 19
2.6 Ultra-Wideband and Time-of-Flight . 19
2.7 Trilateration Methods . 20
2.8 System Design Specification . 22

3 System Components 23
3.1 MCU - ESP32 . 23
3.2 Transceiver - DWM1000 . 25
3.3 DPU - Raspberry Pi . 26

4 Hardware Design 27
4.1 System Operation Modes . 27
4.2 Communication Protocol . 28

4.2.1 Beacon to ID Tag Communication . 28
4.2.2 Beacon to DPU Communication . 29

4.3 Beacon Design . 30
4.4 ID Tag Design . 32
4.5 Hardware Design Specification . 34

5 Electrical Design 35
5.1 Power Management . 35
5.2 RF Harvester . 37
5.3 Electrical Design Specification . 38

6 Software Design 39
6.1 Software Overview . 39
6.2 Software Stack . 39

6.2.1 Software Environments . 39
6.2.2 Software Languages . 40
6.2.3 Software Standards . 40
6.2.4 Frameworks . 40
6.2.5 Libraries . 41

6

6.3 Model-View-Controller . 41
6.4 Threading Model . 42
6.5 Data Processor Software Architecture . 44

6.5.1 Webserver Subsystem . 46
6.5.2 Beacon Manager Subsystem . 46
6.5.3 Serial Beacon Communication Subsystem . 46
6.5.4 Trilateration Processing Subsystem . 47
6.5.5 UDP Beacon Communication Subsystem . 47

6.6 Database . 47
6.7 Models . 47
6.8 Controllers . 49
6.9 View . 49
6.10 Security . 50
6.11 Software Design Requirements . 51

7 Conclusion 52

8 References 53

9 Appendix A: Supporting Test Plans 55
9.1 PoC Test Plan . 56
9.2 Prototype Test Plan . 58
9.3 Final Product Test Plan . 60
9.4 Usability Test Plan . 62

10 Appendix B: User Interface and Appearance 64
10.1 Introduction . 64

10.1.1 Purpose . 64
10.1.2 Scope . 64

10.2 User Analysis . 65
10.3 Technical Analysis . 66

10.3.1 Discoverability . 66
10.3.2 Feedback . 66
10.3.3 Conceptual models . 67
10.3.4 Affordances . 67
10.3.5 Signifiers . 67
10.3.6 Mappings . 67
10.3.7 Constraint . 67

10.4 Graphical Representation . 68
10.4.1 UI State Diagrams . 68
10.4.2 UI Mock-Ups . 69

10.5 Engineering Standards . 73
10.6 Analytical Usability Testing . 74
10.7 Empirical Usability Testing . 75
10.8 Conclusion . 76

11 Appendix References 77

7

List of Figures

1 Development Cycle . 11
2 High Level System Layout . 13
3 PoC System Block Diagram . 14
4 Prototype System Block Diagram . 15
5 Final System Block Diagram . 16
6 Relationship Between Signal Strength and Distance 17
7 Effects of Different Frequencies on Distance Propagation 18
8 An Example of Multipath . 18
9 Trilateration Diagram . 20
10 ESP32 Architect Block Diagram . 23
11 ESP32 Development Board . 23
12 Circuit Diagram of ESP32 & DWM1000 . 24
13 ESP32 Pin Layout . 24
14 Decawave DWM1000 Modules . 25
15 DWM1000 Internal Block Diagram . 25
16 Raspberry Pi 3 B+ Model . 26
17 Akriveia Beacon System State Diagram . 27
18 Common Signal Power spectral Density VS Frequency 28
19 UDP Communication Network . 29
20 Beacon System Flow Diagram . 30
21 CAD representation of Beacon . 31
22 ID Tag System Flow Diagram . 32
23 CAD representation of ID Tag . 33
24 ESP32 Active Mode Power Usage . 35
25 ESP32 Deep Sleep Mode Power Usage . 36
26 RF Harvester Block Diagram . 37
27 RF Harvester Circuit Diagram . 37
28 Actix Thread Model . 43
29 Actix Message Passing . 43
30 Proof of Concept Software Architecture . 45
31 Final Software Architecture . 45
32 UI State Diagram - Primary User . 68
33 UI State Diagram - Secondary User . 68
34 PoC Console UI . 69
35 Prototype Box Map Layout View . 69
36 Primary User Map View . 70
37 Primary User System Status View . 70
38 Secondary User System Status View . 71
39 Add Map View . 71
40 Add Beacon View . 72
41 Add User View . 72

8

List of Tables

1 Design Requirement Encoding . 12
2 Design Domain Abbreviation Code . 12
3 Development Stage Encoding . 12
4 System Design Specification . 22
5 Hardware Design Specification . 34
6 Electrical Design Specification . 38
7 Akriveia Beacon Dependencies - Rust . 41
8 Akriveia Beacon Dependencies - Arduino . 41
9 User Model . 48
10 Beacon Model . 48
11 Map Model . 48
12 Controllers list . 49
13 Software Design Specification . 51
14 Test Case Encoding . 55
15 Planning Stage Abbreviation Code . 55
16 PoC System (General) Test Plans - Part 1 . 56
17 PoC System (General) Test Plans - Part 2 . 57
18 Prototype Test Plans - Part 1 . 58
19 Prototype Test Plans - Part 2 . 59
20 Final Product Test Plans - Part 1 . 60
21 Final Product Test Plans - Part 2 . 61
22 PoC Software Requirement Test Plans - Part 1 . 62
23 PoC Software Requirement Test Plans - Part 2 . 63
24 Engineering Standards . 73
25 Usability Test Results . 74

9

1 Introduction

1.1 Background

Over the past couple of decades, urban centers around the world have faced substantial popu-
lation growth. As a result, the number of large and complex structures in dense urban areas
around the world is rapidly increasing. In Canada alone there are approximating 500,000 com-
mercial buildings [1]. A large population combined with massively complex buildings in rela-
tively dense areas leads to higher risk for damage and casualties in the event of a disaster. Due
to increased urbanization and complexity of urban structures, search and rescue operations in in-
door urban environments face various complications and uncertainties. According to Statistics
Canada, an average of 135 fire related deaths occur with commercial structures each year from
2010 to 2014 [2].

In current practices, first responders know little about the severity of the disaster until arriving
on scene. Once responders are on scene, emergency management have to quickly evaluate the sit-
uation and take appropriate actions [3]. Assessments of the structure are conducted with readily
available blueprints of buildings along with limited information of last known location of possible
trapped victims, usually derived from witness reports. Situational data are created dynamically
during this process and the actual rescue process heavily depends on the situational awareness of
the first line of emergency response operators [4].

An important issue that must be considered is how emergency first responders should be dis-
patched inside the building in the event of a disaster in order to minimize search and rescue time
as well as to ensure their safety. In order to pinpoint locations of trapped victims quickly and ac-
curately it is critical to have precise location data. Proper emergency planning and organization
takes a substantial amount of time, and having additional quick and accurate information on the
locations of trapped, incapacitated or immobile personnel would greatly improve first responders
situational awareness; which would improve safety for first responders and possibly increases the
victims chances of rescue and survival.

As such, the need for a distinct indoor positioning rescue system is crucial in getting fast and
reliable information that allows first responders to be dispatched within the builds in the most
optimal and efficient manner. The Akriveia Beacon by TRIWAVE SYSTEMS focuses on improv-
ing the locating and rescue process of personnel trapped in buildings during or after small scale
disasters such as fires and low magnitude earthquakes. This is done through a system of Ultra
Wide-Band (UWB) Beacons and ID tags, and data processing unit for accurate, near real-time
pin point location of trapped personnel.

Ultra-Wideband radio modules are small radio transceivers using radio spectrum within the ultra-
wide band to communicate with one another. Each ID tag uses a UWB transceiver module to
communicate with the beacon system configured with similar UWB transceivers. Given the time
between sending and receiving transmission data, the distance can be estimated via RSSI or time
of flight. The Beacons will then forward these distance estimations to a data processing unit us-
ing a closed WiFi network, where it can use trilateration methods to calculate the near real time
location of each individual ID tag. The system design allows for multiple ID tags as well as more
than three anchor beacons to provide more accuracy through redundancy, making it modular,
extendible and reliable.

10

1.2 Scope

The Akriveia Beacon system is developed through three different phases of development as shown
in Figure 1. The three different phases includes: the proof-of-concept phase, prototype phase,
and final product phase. A high-level design of the system hardware and software is presented in
this document to demonstrate the overall system architecture and functionality of the Akriveia
beacon product. The design section of this document is divided into four main sections, overall
system design, hardware design, electrical design, and software design. These design specification
will indicate the components, implementations, requirements, and constraints that must be met
and satisfied within the project time frame.

Figure 1: Development Cycle

1.3 Intended Audience

This document is presented by engineers at TRIWAVE SYSTEMS as a guide for the design and
system overview of the Akriveia Beacon product. The intended audience of this document in-
cludes but not limited to, potential clients and/or partners, the supervising professors Dr. Craig
Scratchley and Dr. Andrew Rawicz, associated teaching assistants and fellow TRIWAVE SYS-
TEMS members. The hardware and software engineers of the project can reference this docu-
ment during the various stages of development and testing stages of the project for clarification.
Near the completion of the prototype development phase the product will be tested against the
cases specified in the test plan. Engineers responsible for performing quality assurance can refer
to the Appendix of this document to ensure all safety concerns have been addressed and that the
product fulfils all requirements and meets all expectations for proper usage.

11

1.4 Design Classification

For consistency purposes, the following design classification code convention is used to describe
and organize design requirements listed throughout this document.

[DES.SE.# - X]

Code Definition

DES Design abbreviation.

SE
Design Domain Abbreviation Code correspond with each Design require-
ments. (see Table 2)

Design number ID

X Development Stage Encoding (see Table 3)

Table 1: Design Requirement Encoding

Requirement Domain Abbreviation Code

System SY

Hardware HW

Electrical EC

Software SW

Table 2: Design Domain Abbreviation Code

Development Stage Encoding

Proof of Concept C

Prototype P

Final Product F

Table 3: Development Stage Encoding

12

2 System Overview

The Akriveia Beacon indoor locating rescue system combines hardware, electrical, and software
systems to detect and locate multiple occupants within a building during an emergency disaster
situation. Each individual component of the system is developed separately in the PoC (Proof
of Concept) phase; then partially integrated in the Prototype phase and fully integrated in the
Final Product phase.

A high-level system overview presents three Locator Beacons, an ID tag, a data processing unit,
and a graphical user interface (Figure 2). Using ultra-wideband (3.5-6.5GHz) wireless communi-
cation the Locator Beacons transmit signals to the ID tag to acquire a response. When the re-
sponse returns back to the Beacon a time of flight measurement is acquired. The Time-of-Flight
principle (ToF) is a method for measuring the distance between a sensor and an object, based
on the time difference between the emission of a signal and its return to the sensor, after being
reflected by an object. [5]. The ToF data will be forwarded to the portable data processing unit
via a closed Wi-Fi network with UDP. Then the processing unit will calculate the distance and
coordinates of the ID tags using trilateration algorithm. Afterwards, the coordinates results are
displayed on a GUI for operators.

Figure 2: High Level System Layout

13

2.1 Proof of Concept

The Proof of concept phase demonstrates the feasibility and functionality of an indoor location
determination system. The PoC system will evaluate how effective the trilateration method is for
determining the distance and location of a mobile ID tag in two dimensional space as well as to
establish initial feasibility for the system. The PoC will be developed similar to the system block
diagram shown in figure 3.

ESP32 micro-controllers are used as the main controller units of the Beacon and ID Tags in PoC
and further on. The ESP32 is an off the shelf, low-cost, low-power system on a chip micro-controllers
with integrated WiFi and dual-mode Bluetooth. In the PoC, the system is designed to use Re-
ceived Signal Strength Indicator (RSSI) from Bluetooth Low Energy (BLE) modules of the ESP32
to estimate distance between each beacon and ID tag. Each beacon determines the MAC ad-
dress and a RSSI measurement from the advertising ID Tag and creates a data packet. The data
packet is forwarded to the data processing unit - Raspberry Pi, via USB serial communications.
The RSSI is then used to estimate distance between each ID Tag and the associating Beacon and
the results of the trilateration method are output to a simple UI.

Figure 3: PoC System Block Diagram

14

2.2 Prototype

In the Prototype development phase the transceivers will be incorporated with Decawave DWM1000
UWB modules. The DWM1000 UWB uses radio frequencies in the range of 3.5 to 6.5GHz; this
would significantly reduce issues of signal interference or multipath propagation which would oc-
cur by using RSSI with BLE. The DWM1000 will be incorporated as the transceiver with the
ESP32 as the main MCU as shown in figure 4 below. RF data communication functions will be
established between four UWB modules with one as the ID Tag and three as the Locator Bea-
cons to demonstrate distance estimation with DWM1000 UWB modules. This will be achieved
by using signal fingerprinting to determine transmitter properties such as ToF and unique Tag
identifier. Furthermore, trilateration algorithms will be implemented on data processing unit to
determine near real time location and coordinates of ID Tags. Initial Implementation of software
stack on the data processing unit and development of GUI will occur during this phase as well.

Figure 4: Prototype System Block Diagram

15

2.3 Final Product

The final product will demonstrate the fully functional indoor rescue system that detects the lo-
cation of the ID tags and displays it accordingly on a GUI. Here the addition of ESP32’s WiFi
modules for Beacon to DPU communications can be seen (Figure 5), as the Beacon will commu-
nicate via WiFi communication with the data processing unit. The WiFi network will be a closed
private network meaning that the network is only share between beacons and the data process-
ing unit to ensure security, reliability and stability. Furthermore, implementation of a RF har-
vesting circuit for charging the ID Tag device during deep sleep mode will occur throughout this
stage. All the components of the systems will be fully integrated as a close-to-production prod-
uct. Component circuits and PCB footprint will be minimized and proper casing will be made to
house all electronics. The data processing unit will provide the user with a full GUI to interact
with along with fully implemented features such as importable blueprints and system configura-
tions.

Figure 5: Final System Block Diagram

16

2.4 RF Fundamentals

Radio Frequencies (RF) is a common electromagnetic medium for communication systems to de-
liver digital information over the air from one point to another. Today, RF is used in many daily
applications, such as FM radios and telecommunications. In fact, it is the discovery of RF signals
that enables the deployment of many commercial wireless networks [6].

On the electromagnetic spectrum, RF spans from 30Hz to 300GHz in frequency. More specifi-
cally, Bluetooth ranges from 2.40 to 2.48GHz and UWB ranges from 3.1 to 10.6GHz. RF has two
main attributes: amplitude and frequency [6]. The amplitude represents the strength of an RF
signal. The measurement of amplitude is power which indicates the amount of energy required
for a signal to propagate over a given distance. The amplitude of an RF signal is susceptible to
degradation as it travels over a distance in air [6]. The rate at which an RF signal degrades fol-
lows the inverse square law shown in Figure 6 , which states that generally signal strength de-
creases exponentially as distance increases. In theory, the degree of strength loss can be miti-
gated by having a more powerful signal to begin with provided that there is minimal obstacle
against the signal on the way to its destination [7].

Figure 6: Relationship Between Signal Strength and Distance

Another factor of RF that influences distance propagation is signal frequency. In RF, frequency
describes the number of signal repetition per second. RF frequency is measured in Hertz (Hz),
which is the number of cycles occurring each second. For instance, an RF radio operating at
2.4GHz means that the signal includes 2,400,000,000 cycles per second [6]. The effects of differ-
ent frequencies on distance propagation is illustrated in a Free Space Path Loss graph shown in
Figure 7 below. The graph shows that there is positive correlation between signal strength degra-
dation and frequency, where the higher the frequency, the more quickly signal-strength falls over
distance [7]. In fact, this relationship is reasonable since the higher the frequency of a signal, the
lower its wavelength.

17

Figure 7: Effects of Different Frequencies on Distance Propagation

Besides RF signal attributes, environmental factors can also influence the integrity of an RF
signal. Multipath is one of the most common and inevitable factor that can delay and distort a
travelling RF signal. Mutipath propogation is a phenomenon where an RF signal takes different
paths when propagating from the source to the destination. As illustrated in Figure 8, contact
with surfaces such as a desk or a ceiling contribute to the division of a signal into multiple signal
portions to arrive at the destination at different times. This induces another phenomenon called
multipath delay which causes the distortion of a signal’s information. Since a signal is arriving as
components, the receiver will not be able to interpret the information of the original signal dur-
ing demodulation [6].

Figure 8: An Example of Multipath

18

2.5 Received Signal Strength Indicator

Received Signal Strength Indicator, or RSSI describes the amount of power detected by the re-
ceiver during the reception of a packet. It is a metric measured in dBm and can be acquired
through BLE API of the ESP32 module. Signal strength is influenced by the inverse square law
from the previous section, which states that signal strength decreases exponentially as the dis-
tance from the transmitter increases, hence it is possible to estimate the proximity of the re-
ceiver from the transmitter based on the changes in measured RSSI value. The distance conver-
sion formula from RSSI to distance is shown below. In the PoC phase, Akriveia uses RSSI as the
distance-related metric [8].

Distance = 10(Measured Power−RSSI)/(10∗N)

Measured power is the expected RSSI at a distance of one meter. This constant value can be ac-
quired by calibration through averaging sufficient number of RSSI values between transceivers
placed at one meter apart [9].

N, is the environmental factor constant that ranges from values 2 to 4. It is a value set to adapt
to the degree of indoor attenuation, interference and multipath [9].

2.6 Ultra-Wideband and Time-of-Flight

Time of flight, or ToF is a distance related metric that describes the propagation time of a ra-
dio signal between a sender and a receiver. Precisely, it is the time it takes for a radio signal to
travel from a sender to receiver and back to the sender. Since radio waves are a type of electro-
magnetic radiation, the travel speed of a radio signal is the speed of light, which is approximately
thirty centimeters per nanosecond. Given the speed of light constant and a ToF value, the dis-
tance between a sender and a receiver can be computed using the Distance Speed Time formula
as shown below [8]. To measure ToF in the nanosecond scale, Akriveia will employ the Ultra-
Wideband (UWB) technology by using the DWM1000 module in the prototype and final product
phase.

Distance = Speed of light ∗ ToF

In narrowband systems, measuring signal arrival times with accuracy is a difficult task without
complex algorithms. Due to bandwidth limitations, radios in narrowband systems cannot resolve
signals influenced by multipath and may assume all received subpath signals arrived at the same
time [10]. Fortunately, multipath components can be resolved using UWB radios due to larger
signal bandwidth. UWB radios are formerly known as pulse radios as they send signals in short
bursts called chips. The chips are radio energy pulses that carry information over a large band-
width to counter the effects of multipath fading and interference that are present in conventional
narrowband signals such as 2.4G/5G WiFi. Due to the short duration of chips, the effects of mul-
tipath are also received as echoes that do not interfere with the original signal [8]. As a result,
UWB provides a great solution to indoor localization by allowing high precision ToF measuring
capabilities.

19

2.7 Trilateration Methods

The Akriveia 2-D indoor localization solution determines the x-y coordinates of ID tags by tri-
lateration. The method follows a lateration scheme with absolute distances, which uses distance-
related metrics such as RSSI or ToF to determine the distance between a sender and a receiver.
In the case where there is a single beacon and ID tag, the distance between the two entities can
be interpreted as the radius of a circle traced with the beacon centered as shown in figure 9.

Figure 9: Trilateration Diagram

Such a circle takes on a standard mathematical form as shown in the equation below, where the
variables x0 and y0 are the 2-D coordinates of the beacon position relative to its environment,
and r0 is the distance between the beacon and the ID tag.

(x− x0)
2 + (y − y0)

2 = r20

The same concept applies to the scenario with three beacons and an ID tag. Given the 2-D coor-
dinates the three beacons and their individual distance with respect to the ID tag, three circles
can be traced to form an intersection point at the location of the ID tag. Hence, three standard
form circle equations are generated to form a system of equations with two unknowns as shown
below. The solution to the unknowns, or the intersection coordinates of the ID tag can be ob-
tained by solving such a system.

(x− x1)
2 + (y − y1)

2 = r1
2

(x− x2)
2 + (y − y2)

2 = r2
2

(x− x3)
2 + (y − y3)

2 = r3
2

20

The system of three equations can be ultimately simplified to the two equations shown below by
expanding and equation elimination,

Ax+By = C

Dx+ Ey = F

where the representation of constants A, B, C, D, E and F are as follows,

A = −2x1 + 2x2

B = −2y1 + 2y2

C = r1
2 − r2

2 − x1
2 + x2

2 − y1
2 + y2

2

D = −2x2 + 2x3

E = −2y2 + 2y3

F = r2
2 − r3

2 − x2
2 + x3

2 − y2
2 + y3

2

The system of two equations and two unknowns has the solution as shown below for the 2-D co-
ordinates of an ID tag.

x =
CE − FB

EA−BD

y =
CD −AF

BD −AE

21

2.8 System Design Specification

The Akriveia Beacon consists of three main components: the Beacons, ID Tags, and the Data
processing unit. The detailed specifications for each system will be outlined in their correspond-
ing sections throughout the document. General system and performance specifications of Akriveia
Beacon are listed in the table below.

REQ.SY.1 - C
The system must have two access modes: Emergency (for first respon-
ders), and Admin (for IT services)

REQ.SY.2 - P Beacons and ID Tag must communicate with each other using BLE

REQ.SY.3 - P
Administrator must be able to access the system to perform health
checks on the Beacons and ID tags

REQ.SY.4 - P
Administrator must be able to access the system to add/remove ID tags
in the system database

REQ.SY.5 - P The Beacons must use a WiFi mesh for forwarding data to DPU

REQ.SY.6 - P
The Beacons must contain a rolling buffer for ToF data for each id tag
transmitted to

REQ.SY.7 - P
Each Beacons must use median of previous 10 samples of ToF data to
sent to data processing unit

REQ.SY.8 - P
Beacons and ID Tag must communicate with each other using UWB (3.5-
6.5GHz)

REQ.SY.9 - F The System shall be easy to set up and tear down

REQ.SY.10 - F
The System must remain operational during/after small scale disasters
such a small fires and earthquakes with magnitude less than 6.9

Table 4: System Design Specification

22

3 System Components

3.1 MCU - ESP32

ESP32 is a series of low-cost, low-power system on a chip microcontrollers with integrated Wi-Fi
and dual-mode Bluetooth. Created and developed by Espressif, the ESP32 contains a Tensilica
Xtensa LX6 microprocessor in both dual-core and single-core variations and includes a in-built
antenna, power amplifier, low-noise receive amplifier, filters, and power-management modules (As
shown in figure 10) [11].

Figure 10: ESP32 Architect Block Diagram

For the proof of concept, the Bluetooth modules on the ESP32 will be used as the communica-
tion interface between the Beacon and the ID tags. Using BLE advertising, the ID Tags ESP32
broadcasts a unique MAC address. The Beacon ESP32 can collect all assicating ID Tag ESP32s
and capture the RSSI and MAC of these devices. These information are forwarded to the DPU
for distances estimation and location plotting.

Figure 11: ESP32 Development Board

23

In the Final design both the Beacon and ID tags will use the ESP32 as the main controller unit
but they will be also be incorporated with Decawave DWM1000 UWB modules as the transceivers.
The ESP32’s Serial Peripheral Interface (SPI) will be used to interact with the Decawave DWM1000
UWB modules for sending and receiving data. A mock-up circuit diagram presenting the SPI
interface between the ESP32 and a breakout board for DWM1000 is shown in figure 12. In ad-
dition, the ESP32 features a deep sleep mode which reduces power consumption to about 10uA
from 260mA (active operations), thus drastically increasing the battery life time which is an im-
portant constraint for the portable ID tags. In the event of an emergency, the ESP32 can be wo-
ken from deep sleep to start transmission by activating a touch pin (GPIO 26-23 shown in Figure
13). Furthermore, by utilizing the ESP32’s wide range of capabilities such as WiFi or Bluetooth,
a mesh network and be implemented to extend the communication range of the Beacons.

Figure 12: Circuit Diagram of ESP32 & DWM1000

Figure 13: ESP32 Pin Layout

24

3.2 Transceiver - DWM1000

The Beacon and ID Tag communication will be done using ultra-wideband wireless communica-
tion in the prototype phase and beyond. The most optimal transceiver available on the market
that best fits the needs and scope of this project is the Decawave DWM1000 UWB module (Fig-
ure 14). The DWM1000 is an IEEE 802.15.4-2011 UWB compliant and FCC/ETSI certified wire-
less transceiver module based on Decawave’s DW1000 IC [12]. This module is a combination of
DW1000 IC, a built in antenna, power management system, and clock control which allows for
simple integrations into any system (Figure 15).

Figure 14: Decawave DWM1000 Modules

The module enables the location tracking of objects in real time location systems (RTLS) down
to a precision of 10 cm indoors. It supports high range of communications data rates from 110
Kbps to 6.8 Mbps, with excellent communication ranges of up to 300m. The frequencies of oper-
ation in the range of 3.5 to 6.5GHz with seven distinct channels which would significantly reduce
issues of signal interference or multipath propagation. Its small physical size allows the module
to be implemented in highly cost-effective solutions. By using this module, integration with the
Akriveia Beacon system is intuitive and simple; since the DWM1000 also offers a wide range of
MCU support such as Arduino MCUs or the ESP32 MCUs.

Figure 15: DWM1000 Internal Block Diagram

25

3.3 DPU - Raspberry Pi

The Data Processing Unit is a stand alone single board computer (SBC). For the demonstration
of this project a Raspberry Pi 3 B+ is used as the DPU since it is an affordable and robust SBC,
but the DPU in theory should be any electrical computer device that is capable of running a ba-
sic linux operating system; as the software stack is designed to operate on any linux based sys-
tem. The Raspberry Pi product is cheap, portable and designed with an Cortex-A53 processor it
meets the minimum requirements for the DPU.

The Raspberry Pi 3 B+ is a single board computer with a 1.4GHz 64-bit quad-core processor,
dual-band wireless LAN, and Bluetooth 4.2/BLE [13]. The Broadcom BCM2837B0, Cortex-A53
(ARMv8) 64-bit SoC at 1.4GHz quad-core processor allows complex tri or multilateration calcu-
lations done simultaneously for multiple ID Tags. With dual-band 2.4G and 5G IEEE 802.11.b/g/n/ac
wireless LAN, the Pi can create a reliable network access for multiple ESP32 for data forwarding.
At a power rating of 5V/2.5A DC the Pi requires minimal power to operate, which allows for a
variety of power options during emergency disasters. Furthermore, the Pi is configurable with
any linux based OS, such as Debian OS which is compatible with the software stack developed in
Rust that will create a layer of user interface between the user and the Akriveia Beacon system.

Figure 16: Raspberry Pi 3 B+ Model

26

4 Hardware Design

4.1 System Operation Modes

The Akrievia Beacon system will have two modes of operations, idle mode and emergency mode.
Idle mode occurs during every day operation that is not under an emergency disaster. An emer-
gency disaster is defined as a situation that poses an immediate risk to health, life, property, or
environment. Most emergency disasters require urgent intervention to prevent a worsening of the
situation. In emergency disaster situations the system will be triggered on to operate under the
emergency mode following the system state diagram as shown in figure 17.

When system is under idle mode, the beacon system does not attempt to transmit location in-
formation from ID Tags to the DPU, as the ID Tags will be under deep sleep mode with the
transceiver powered off. In idle mode the system is available for configurations such as adding,
editing, and deleting ID Tags, beacons and blueprints. In the Event of an emergency, a trigger
such as one that could be associated with a fire alarm will trigger the Akriveia Beacon system
state into the emergency mode.

When system is under emergency mode, the beacons will attempt to establish a data pipeline
using the UWB modules. And the ID Tags are triggered on by personnel carrying the device
that are in need of rescue or assistance. Under emergency mode the DPU triggers the Beacons
to start sending and receiving packets to determine ToF data from the ID Tags. The ID tags
will receive request packet from beacon and transmit location data back to the beacon. Once the
emergency situation is resolved the system can be switched back into idle mode by privileged ad-
ministers.

Figure 17: Akriveia Beacon System State Diagram

27

4.2 Communication Protocol

4.2.1 Beacon to ID Tag Communication

Communication between beacon and ID tag is facilitated on layer 1 the Physical (PHY) layer of
the Open Systems Interconnection model (OSI Model model). The Physical layer is responsible
for converting data into bits for transmission and converting received bits back into data. The
logical connection formed between the two entities are the radio channels that are present in air.
In the proof of concept phase, 2MHz wide BLE advertising channels 37, 38 and 39 with center
frequencies at 2402MHz, 2426MHz and 2480MHz respectively can be used [14]. In the engineer-
ing prototype and final product phase, 500MHz wide UWB channels 1, 2, 3 and 5 with center
frequencies at 3494MHz, 3993MHz, 4492MHz and 6489MHz respectively can be used [15]. The
difference in frequency and power spectral density can be observed by the plot below (figure 18).
The radio channels will be used at full duplex to allow simultaneous transmission in both send-
ing and receiving directions. Digital data such as RSSI measurements, ToF measurements and
MAC address are encoded into analog signals by means of modulation to represent the data with
continuously varying electromagnetic waves. Modulation in both BLE and UWB form pulses of
analog signals prior to transmission [14]. The process of sending and receiving these analog sig-
nals are handled by the integrated chip antenna of the ESP32 and DWM1000 modules. Upon
reception of the analog signals, the receiver’s demodulator and decoder will reverse the work of
the sender to retrieve the digital data.

Figure 18: Common Signal Power spectral Density VS Frequency

28

4.2.2 Beacon to DPU Communication

For the proof of concept and prototype, data-pipeline is a simple implementation with the serial
interface. The Beacons will receive and send data with the data processing unit over the USB se-
rial read and write interface. In the Final design the Beacons will use the WiFi module on the
ESP32 to join a privately hosted access point created by a hostapd on the data processing unit
(Raspberry Pi). Hostapd (Host access point daemon) is a user space software access point ca-
pable of turning normal network interface cards into access points and authentication servers.
The current version supports Linux (Host AP, madwifi, mac80211-based drivers) and FreeBSD
(net80211) [16]. Once each beacon is connected to the access point they will be assigned an IP
by the Dynamic Host Configuration Protocol (DHCP) server. A one-to-many network will be
created as shown in figure 2. Using User Datagram Protocol (UDP) communication over the net-
working layer (layer 2-3 on OSI model), the DPU can bind on the gateway IP and a specific port
to listen for forwarded beacon data. To initiate control with the beacons, the DPU will bind to
each beacon IP at a specified port and send commands via UDP.

Figure 19: UDP Communication Network

29

4.3 Beacon Design

To control the beacons the DPU will send a command to the beacon and the ESP32 will evaluate
the command and execute accordingly as shown in the beacon flow diagram in figure 20. When
system is under emergency mode, the DPU initiates a start command to the Beacons. Once the
Beacons acknowledges the start request, it attempts to establish data pipelines to each of the ID
Tags in range of the UWB transceiver. After a successful connection, ToF data between beacon
and ID tag will be collected and forwarded to the data processing unit for trilateration calcula-
tion and error processing before displaying to the user via GUI. On the DPU data of each id tag
encountered will be stored in a hash table entry, with the MAC address of each ID tag as the
key. The distance measurement are store a rolling buffer for each id tag so that data points can
be averaged, reducing estimation error.

Figure 20: Beacon System Flow Diagram

30

A 3D appearance mock-ups of the ID Tag was done in Solidworks and can be seen in the Com-
puter Aided Design (CAD) representation, figure 21. The Beacon units, which will relay loca-
tion data from the ID Tags to the Data Processing Unit (DPU), consist of an ESP32 module, a
DWM1000 UWB transceiver, a 9V lithium ion battery, and a power cable. These components
of the device will be contained in an encasing made from PLA plastic. Each beacons will have
LEDs indicating the power and transmission state, and a reset button for resetting the device
state.

Figure 21: CAD representation of Beacon

31

4.4 ID Tag Design

The ESP32 is used in the ID tag as it contains a function called deep sleep mode, in which the
ID Tag has minimum power consumption and does not transmit data for location tracking. Dur-
ing idle mode, the ID tags are operating under deep sleep mode for power conservation drawing
only 10uA of current. Therefore, real time tracking outside of emergency mode is not possible
as insufficient power is provided to the DWM1000 modules. The ID Tag will be activated in an
emergency situation via capacitive touch button located on the device. As user wake the ID tags
by triggering the touch button the ID tags will attempt to connect to the Beacons. If the sys-
tem is not in an emergency state, the ID Tag will fail to establish a connection and briefly show
the charge level before returning to deep sleep mode. If system is under the emergency mode,
the MCU on ID tags will be able to establish a data pipeline with the beacons on specified UWB
channel, and the ID tag will then transmit an acknowledge packet back to the beacon to produce
location data as described in the system flow diagram in figure 22. Only during active emergency
mode will the beacons be requesting for establishment of data pipeline and to initiate DWM1000
Ranging state.

Figure 22: ID Tag System Flow Diagram

32

A 3D appearance mock-ups of the ID Tag was done in Solidworks and can be seen in the CAD
representation, figure 23. The ID Tags, the part of the system being tracked by the Beacons, will
be powered by a rechargeable 4-5 V battery with minimal 3000mAH, which will be charged over
time by a RF harvester (see sec. 5.2). The ID Tag will consist of an ESP32 MCU module, and a
DWM1000 UWB transceiver chip. The internal components of the ID Tag will be contained in a
PLA plastic shell with LEDs indicating the power state and transmission activity of the ID Tag.

Figure 23: CAD representation of ID Tag

33

4.5 Hardware Design Specification

TRIWAVE SYSTEMS has chosen to develop the proof-of-concept prototype using 2.4GHz Blue-
tooth radio modules for initial testing of the overall system feasibility and the accuracy of the tri-
lateration method. The system will then be improved upon by incorporating Decawave DWM1000
Ultra-Wideband (UWB) modules for further prototyping. ESP32 Micro-controller Units (MCUs)
will be used to control the beacons and ID tags and a Raspberry Pi 3 B+ will be used as a data
processing unit. The requirements below detail the requirement for hardware functionality of the
Akrivia Beacon system.

REQ.HW.1 - C The Beacons must use ESP32 as the microcontroller unit and transceiver

REQ.HW.2 - C The ID Tag must use ESP32 as the microcontroller unit and transceiver

REQ.HW.3 - P ID tag broadcast duration must be at least 1 hour long upon activation

REQ.HW.4 - P ID tag must return to deep sleep mode after broadcasting period

REQ.HW.5 - P
The Beacons must use Decawave DWM1000 UWB modules as
transceivers

REQ.HW.6 - P The Beacons must use ESP32 as the controller units

REQ.HW.7 - P
The ID tags must use Decawave DWM1000 UWB modules as
transceivers

REQ.HW.8 - P The ID tags must use ESP32 as the controller units

Table 5: Hardware Design Specification

34

5 Electrical Design

5.1 Power Management

Developing a product that operates in emergency and disaster situations means that each compo-
nent will have to operate in an extremely wide range of conditions. For this reason, each compo-
nent of the system will include a backup power supply. Since size is not as much of a constraint
for the beacons and data processing unit components of the system, it is easier to be more liberal
with the size of the backup battery. The beacons and data processing unit is allowed an addi-
tional 9V 4000mAH rechargeable lithium ion battery backup.

Power consumption will be an important aspect to focus on because the ID Tags are a wearable
electronic device, therefore, the device battery has to maintain charge over very long periods of
time. One of the restrictions that must be considered is related to the size of the ID Tags; if an
employee must wear their ID tag over long periods of time, as would be expected by users of this
system, a large and heavy ID Tag is not an option. During prototype phase of the development
stage, a 5V rechargeable lithium ion battery at 4000mAh will provide sufficient in power delivery
and size for the ID tags.

The ESP32 chip is a Dual-Core 32-bit microprocessor along with 448 KB of ROM, 520 KB of
SRAM and 4MB of Flash memory. It also contains WiFi module, Bluetooth Module, Crypto-
graphic Accelerator (a co-processor designed specifically to perform cryptographic operations),
the RTC module, and other peripherals as shown in figure 24 [17]. During normal active mode
of operation where the ESP32 is sending and receiving data, the power consumption requires be-
tween 160-260mA. Under the assumption that the ESP32 is on and transmitting at all times and
with a 5V, 4000mAH battery, the ID Tag device can achieve a lifetime of only 15 hours as calcu-
lated in the equation below.

BatteryLifeT ime = 4000mAH/260mA = 15.38Hours (1)

Figure 24: ESP32 Active Mode Power Usage

35

To optimize the battery life time when not under emergency mode, the ESP32 has an advanced
power saving mode called Deep Sleep mode. Power consumption for ID tags can be cut back by
utilizing ESP32’s Deep Sleep Modes and dramatically extending the battery life. In deep sleep
mode, the CPU, most of the RAM and all the digital peripherals are powered off. The only parts
of the chip that remains powered on are: RTC controller, RTC peripherals (including ULP co-
processor), and RTC memories (slow and fast) as shown in figure 25 [17]. The chip consumes
around 10µA under deep sleep mode and using calculation shown in equation (2) the battery life
time can be extended up to 400,000 hours. In the event of an emergency disaster, the ESP32 can
then transition from deep sleep mode to active mode using the ESP32 Wake-up source by touch
configuration. The ESP32 consists of touch GPIOs that can be used to trigger wake up by an in-
terrupt at the RTC module during deep sleep mode. The touch button sensor of the ID tags are
connected to a touch GPIO on the chip to enable the feature.

BatteryLifeT ime = 4000mAH/10uA = 400, 000Hours (2)

Figure 25: ESP32 Deep Sleep Mode Power Usage

36

5.2 RF Harvester

Radio Frequency is an abundant source for energy harvesting especially in a radio wave rich en-
vironment. When Radio Waves reach an antenna it causes a changing potential difference across
the antenna. The potential difference causes charge carriers to move along the length of the an-
tenna in an attempt to equalize the field, and the RF-to-DC integrated circuit (Figure 26) is able
to capture energy from the movement of those charge carriers. The energy is stored temporarily
in a capacitor and then used to create a desired potential difference at the load [18].

Figure 26: RF Harvester Block Diagram

There will be a demonstrable RF harvester circuit similar to Figure 27 that would convert ambi-
ent radio signal to DC voltage to charge the ID tag under deep sleep mode. During initial test-
ing, the harvesting was able to collect up to 100 mV, however the ESP32 deep sleep mode re-
quires 10 uA. Load calculation and capacitance optimization will need to be performed to further
improve the reliability of the harvester. Once RF harvester test circuit produces adequate results
in the prototype phase, the circuit will be implemented onto the ID Tag devices as PCB compo-
nents. The RF harvester circuit designed for charging the ID tags will be collecting ambient RF
power created from ambient WiFi and cellular signals to maintain charge for the ESP32 during
deep sleep mode.

Figure 27: RF Harvester Circuit Diagram

37

5.3 Electrical Design Specification

The Akriveia Beacon system is designed to operate under emergency disaster situations, it is cru-
cial that sufficient power is provided to each device at any given time. In order for the system to
be reliable and, the electrical systems must be robust and efficient. TRIWAVE SYSTEMS has
compiled a strict set of electrical requirements that ensures the beacons and ID tags will operate
in a safe and efficient way.

REQ.EC.1 - C
Each beacon shall be powered through standard North American power
outlets (120V AC, 60Hz, type A/B)

REQ.EC.2 - C
The Data Processing Unit (DPU) will be powered over USB by the de-
vice that it is plugged in to

REQ.EC.3 - P The ID tags must have a manual switch to toggle power on

REQ.EC.4 - P The ID Tags must be powered by 5V rechargeable lithium ion battery

REQ.EC.5 - P
The ID tags must be under deep sleep mode drawing no more than 10 uA
when not in emergency mode

REQ.EC.6 - F
The beacons must use rechargeable 9V lithium battery as a backup power
supply

Table 6: Electrical Design Specification

38

6 Software Design

6.1 Software Overview

The Akriveia system is comprised of 3 different devices, namely: the data processor, beacons,
and ID tags; this device diversity plays a large role in the software choice for the beacons and ID
tags. The Akriveia data processor is the primary access point for Administrators and First Re-
sponders, of whom will be presented a Graphical User Interface served by the data processor in
addition to handling commands from the client. The software on the Data Processing Unit(DPU)
is written entirely in Rust, including the static client side webpage. The requirements for each
device are different, however the ID tags and beacons are able to share a similar environment;
as such the Akriveia Beacon System will require two different software environments, one for the
DPU and one for the ID tags and beacons.

6.2 Software Stack

Akrivia Beacon is composed of two primary languages, the DPU is implemented entirely in Rust
while the beacons and ID tags use the Arduino language.

6.2.1 Software Environments

The data processing unit requires an operating system (OS) to perform CPU scheduling for the
multi-threaded application, WiFi drivers, and a proper file system to handle a database. As such,
Linux or more specifically the Debian distribution of Linux was chosen as the DPU operating
system.

Debian is widely praised for its stability, which makes it ideal for a data processing as the Akriveia
Beacon System is designed to operate under emergency situations. Debian brings in the Aptitude
package manager for dependency management, which allows for quick installation of required
driver updates, operating system updates, and any additional packages required. Debian’s Ap-
titude has the advantage compared to other package managers because it removes the need to
worry about dependencies, manual installation, and even installation of sub dependencies. As
Debian is a Linux distribution, it has widespread hardware adoption across many different hard-
ware architectures - primarily X86-64 and ARM64 - giving Akriveia the flexibility to run on the
most basic single board computers.

Linux has many different flavors, such as the Arch Linux which uses a different package man-
agement paradigm called Rolling Release, favouring earlier adoption of newer packages to more
quickly introduce features at the cost of stability. Rolling Release are unsuitable for production
servers due to their instability. Another alternative to Debian is Windows, however Windows suf-
fers from high power usage, poor package management, and heavy reliance on proprietary soft-
ware, whereas Linux is open source, free of cost, and has a more inclusive licence.

39

6.2.2 Software Languages

The DPU is written in Rust. Rust is a relatively new language as it was created in 2006 [19] and
its first stable version was released in 2015 [20]. Taking inspiration from C++ and Haskell in its
design, Rust is a systems language designed for stability and robustness. Rust eliminates entire
classes of errors using the borrow checking system, a feature unique to this language. The bor-
row checking system defines a strict set of rules to follow, and fails to compile if these rules are
broken - even if the application is otherwise logically and syntactically correct. As a systems lan-
guage, Rust is compiled to binary rather than executed as a script through an interpreter, how-
ever, this does not stop it from being a higher order language. Rust does not expect developers
to manage allocation and deallocation of memory directly, nor does it have a runtime Garbage
Collector; rust relies on the Borrow Checker and lifetime system at compile time to statically an-
alyze memory usage and automatically places the allocations and deallocations as needed. The
benefits of the Borrow Checker do come at a cost, resulting in slow compile time and high learn-
ing curve. The features of Rust will be used throughout the DPU, as the backend webserver, the
data processor, as well as the on the browser in the form of webassembly.

The beacons and ID tags are written in Arduino language. The Arduino language is merely a
set of C/C++ functions and is specifically designed for embedded programming, allowing use
of higher level features when desired while also giving the developer absolute control over how
memory is managed. The Arduino environment performs a few transformations to the Arduino
sketch before passing it to the avr-gcc compiler. On Arduinos, memory is very limited so control
is key to fit the program within the small space constraints.

6.2.3 Software Standards

Rust code will follow the the Rustfmt standard of source layouts, Rustfmt is a tool provided by
the Rust project that automatically formats all source in the standard format. The Rust com-
piler also provides a few warnings for common formatting issues builtin, which will be heeded.
Arduino language will follow the ISO C/C++ programming standards [21]. The Arduino style
guide [22] presented are more ad hoc than a full style guide.

6.2.4 Frameworks

Akriveia Beacons’ main DPU framework is called Actix. Actix is an Actor Framework that fol-
lows the Actor Model paradigm of multi-threaded workloads. The Actor Model operates on ob-
jects called actors to orchestrate concurrent computations, it does this by treating actors as sep-
arate entities that execute on an event loop on one or more threads, where the event loop simply
looks at a list of events generated by actors and executes each event in order as long as it is not
blocked by other events. Events are generated when actors pass messages to each other, in re-
sponse the actor that receives the message can modify its local state, create other actors, send
messages to other actors, execute arbitrary logic, and finally send a response to the message.
This programming paradigm prevents the need for locks (and by extension, deadlocks) because
the message passing mechanism alleviates the need to manually manage concurrency, opting to
use the abstractions instead.

Actix was chosen primarily to give the flexibility of multi-threading without incurring the typical
thought process overhead associated with multi-threading. Additionally, as a framework rather
than a library, Actix serves as the basis to make REST webservers through the package Actix
Web, which is further discussed under the sections 6.2.5 and 6.5.1.

40

6.2.5 Libraries

The Akriveia Beacon system will contain the following libraries.

Actix Web
The Actix Web library is a crate that extends the functionality of the
Actix framework to create HTTP webservers.

Yew
Yew is a crate that extends Rusts ability to compile to Web Assembly by
adding the ability to dynamically generate html on the client in response
to user events and DPU responses.

Serial Port Enables serial communication over USB between the DPU and beacons.

Rust Standard
Libraries

This is the standard Rust runtime library, and contains many useful boil-
erplate functions and generic types. This library is included with the ba-
sic installation of Rustc.

Table 7: Akriveia Beacon Dependencies - Rust

Arduino
The standard set of Arduino libraries based off of the standard C library
tailored specifically for Atmel Atmega AVR microcontroller chips.

ESP32 WiFi Arduino core for ESP32 WiFi/BLE chip

DWM1000
A library that offers basic functionality to use Decawave’s DW1000
chips/modules with Arduino

Table 8: Akriveia Beacon Dependencies - Arduino

6.3 Model-View-Controller

The model-view-controller (MVC) paradigm is a common method of separating concerns between
modules. It is an architectural pattern that separates concerns in a general way, allowing for code
reuse and improving parallel development, it is also a common practice which allows others famil-
iar with the paradigm to ramp up quickly on new projects. Unsurprisingly, the MVC is split into
three components, the model, controller and view. The model describes data, data manipulation,
as well as data storage. The view describes how to view the model. The controller acts as the
means to communicate between the view and model based on data inputs, and is also capable of
higher order operations such as between multiple models.

As the Actix Web library is less mature than frameworks in other languages such as Python’s
Django or Ruby’s Rails, the DPU implementation will contain larger portion of boilerplate when
compared to those other libraries. This allows for greater flexibility in implementation, at the
cost of marginally higher development time. A benefit to writing a more tailored implementation,
is that MVC and frameworks that closely follow MVC do not have a good answer for organizing
functionality that falls outside of the architectures coverage such as background tasks. Akriveia is
required to maintain communication with many beacons and perform calculations asynchronously
from web requests, which is the perfect use case for the actor framework which fills the void of
the model-view-controller.

41

6.4 Threading Model

The purpose of multi-threading the DPU is to make use of the hardware provided, since all mod-
ern server and desktop processors have at least two dedicated hardware cores. Additionally, it
is important for the DPU to have realtime responsiveness on the webserver, requiring that large
computations such as trilateration for many beacons must be offloaded to other threads, keep-
ing responsiveness high since the webserver thread is not blocked on computation while a request
comes in. An additional consideration specifically for the proof of concept which uses blocking
serial communication to communicate to the beacons, meaning that each beacon requires a dedi-
cated thread to communicate with the DPU.

Rust and Actix make multi-threaded development easier by using message passing for inter-thread
communication, at the cost of performance when compared to traditional mutexes and atom-
ics. The implementation of message passing is a thread safe queue using mutexes and atomics
to ensure data integrity, where multiple threads are able to send commands to another thread,
which receive the message without blocking either thread. To further discuss the Actix threading
model, some definitions are required:

1. Actor: A class that contains message handler callbacks.

2. Arbitor: A thread pool, where each thread in the pool is an event loop.

Once instantiated, the Arbitor spawns as many threads as indicated by its constructor and waits
for actors to be spawned within the thread pool. By default, the number of threads in the pool
is the number of cores on the CPU. The Arbitor is an environment for actors to execute, and as
actors are spawned into the thread pool, they can send messages to other actors, or create other
actors in response to external events such as from the file system or HTTP requests. As shown
in Figure 28, the arbitor manages its own threads, which are all spawned at startup rather than
on demand. Within each thread, the arbitor executes the event loop, which polls its queue, and
acts on any messages in the queue by delegating the task to the actor the message is bound to.
To pass a message to another actor, the sender must have the address of the recipient so that
the arbitor can determine the destination, rather than a broadcasting system; this is shown in
Figure 29.

The beacons and ID tags do not have a full operating system, so they can only rely on single
threaded interrupt handling to ”multitask”. Interrupt handling does not provide full concurrency,
instead it time slices the single core to provide the illusion of multitasking. The basics of Inter-
rupt handling is that it calls a function as a result of an event such as an external device raising
a bit high on the CPU, or when a timer goes off. In the Proof concept, the bluetooth library uses
this functionality to handle connections. When transitioning to WiFi and UWB, similar function-
ality will be implemented in each respective technology’s library.

42

Figure 28: Actix Thread Model

Figure 29: Actix Message Passing

43

6.5 Data Processor Software Architecture

In the proof of concept, the DPU creates an HTTP server actor and a beacon manager actor.
The HTTP server waits on web requests, delegating tasks to the beacon manager and polling it
for the necessary information. On startup, the beacon manager queries the number of serial ar-
duino devices, spawning a thread for each device. Each thread spawned by the beacon manager
represents a serial connection to a beacon. The beacon manager sends messages using a tradi-
tional Multiple Producer Single Consumer Message Queue (MPSC) defined in the Rust standard
library, while each serial communcation thread returns messages back to the manager through
the actix message passing system. Figure 30 gives a graphical representation of the previous de-
scription. Actix uses MPSC internally for its message passing system.

The prototype and final versions bring in major changes to the software design. As shown in fig-
ure 31, a major change is the removal of the serial connection actor which is replaced with the
UDP actor. The beacon manager remains, but instead controls the UDP actor rather than the
serial connections. An additional role of the beacon manager is to delegate computation of tri-
lateration to the trilateration processor actor, which will save data in memory until there are
at least 3 data points for a single ID tag to determine its position. The trilateration processor
makes the positional calculation and saves new position to disk via the ID tag model, which ab-
stracts the database query. The beacon and map models perform a similar role, abstracting their
associated database queries into a single location following MVC. Controllers mainly handle the
model they were paired with, however the ID tag controller will also query the trilateration pro-
cessor for real-time positional data and the beacon controller commands beacons indirectly through
the beacon manager.

By design, the DPU is a client-server architecture, where the DPU is the server for a browser
based client. The client-server architecture lends itself to be very flexible and is a very heavily
used model for both consumer systems and emergency response systems alike. Once the backend
starts executing, any computer able to access the IP of the DPU will have access to the system
assuming the network is configured in such a way to allow this, and that the user has the correct
credentials. Conversely with no additional development work the same DPU when hooked up
to a monitor can act like a client based application by simply accessing localhost on a browser.
Variations and alternatives to the client server-architecture were considered, but did not meet the
needs of the Akriveia Beacon System, below are some of the choices considered and why they do
not fit the role.

An electron application that utilizes browser technologies merges the backend and frontend to-
gether, behaving like a client based application, which will reduce deployment flexibility because
a monitor connected directly to the DPU will be the only access point to the GUI, however the
display will potentially need to be accessed by multiple users at a time, and will introduce high
coupling between the frontend display and backend computation. Electron applications are also
highly single threaded, meaning that they will have higher difficulty in utilizing all cores on the
CPU, wasting money on hardware that could otherwise be used. Electron applications are also
fixed to using a single language, Javascript, for both processing and display, whereas a webserver
fixes the GUI implementation to Javascript however leaves the backend to a much broader range
of languages where processing performance is more critical.

44

Compared to a GUI implemented using graphics driver interfaces such as OpenGL, Vulkan, Di-
rectX, or any higher level libraries that provide interfaces to graphics drivers, a GUI implemented
in HTML and Javascript will take much less time to implement because both Javascript and
HTML abstract away memory concerns such as pointers, and will never have memory related
runtime errors, as guaranteed by the browser. Browsers have widespread adoption, in every GUI
based operating system at least one browser is installed by default, making them widespread and
widely used. Due to widespread adoption, browsers provide the flexibility to display the GUI ei-
ther on the computer hosting the server itself, or just as easily the GUI can be accessed through
another computer at the customers discretion.

Figure 30: Proof of Concept Software Architecture

Figure 31: Final Software Architecture

45

6.5.1 Webserver Subsystem

The purpose of the Webserver Subsystem is to bridge the GUI and backend by providing a data
transfer interface in the form of HTTP REST calls. A Webserver architecture is chosen because
of its simplicity to implement, widespread adoption, and flexibility. The view is discussed further
in Section 6.9: View.

The Webserver Subsystem will be designed to serve data to a browser, including the the HTML
and Javascript files (GUI files) that are displayed by the browser. Once the browser has the GUI
files, it will make additional requests to the backend to keep updated information displayed on
the GUI. The Webserver Subsystem will only allow logged in users to access sensitive data, and
only if they have the correct access rights. Electron applications and traditional rendering APIs
were also considered, however they each have trade-offs that do not fit with the design require-
ments of Akrievia.

A direct alternative to Actix Web is a web framework called Rocket. Rocket behaves more like a
traditional web server: supporting Server Side Rendering and json parsing out of the box. This
functionality comes at a cost in multiple ways, first rocket is primarily single threaded, second
Rocket adds new features at the cost of reducing flexibility, and third rocket does not directly
support the Actix Actor system, leaving all non-webserver code up to the developer to implement
on their own. In comparison, Actix Web does support and extend the Actor system which makes
for a more integrated and unified codebase, and by using the Actor system within the webserver,
multithreadability is easily added as needed on a per endpoint basis. Rocket’s additional out-
of-the-box features are really just Rust crates in disguise, and so by using Cargo(Rusts package
manager for crates) the same functonality can be quickly implemented within an Actix webserver
at very little additional time cost.

6.5.2 Beacon Manager Subsystem

The role of the beacon manager is to commands to and from the individual beacon connections,
and to give an abstraction for external systems that need not concern themselves with commu-
nication details, or how many beacons there actually are. The Beacon Manager is a singleton,
which means there is only one of them in the entire system, and has implications on the design of
the rest of the system. The most notable design influence is that the beacon manager can quickly
become a bottleneck if it performs too much processing directly, and so to prevent this the bea-
con manager offloads as much work as it can to other subsystems.

6.5.3 Serial Beacon Communication Subsystem

In the proof of concept design, this actor deals with blocking serial communication with dedi-
cated threads to keep the connection alive and to prevent web requests from blocking. This sub-
system will remain as bare bones as possible, because it only serves the purpose of quickly creat-
ing a working system and will be discarded in future iterations of the DPU.

46

6.5.4 Trilateration Processing Subsystem

In the final design, the trilateration processing subsystem takes in time of flight data messages
from the beacon manager. The trilateration processor waits until it receives enough data points,
and once it has 3 data points from 3 different beacons for one id tag it can perform a location
calculation. While waiting for a full set of data, the incomplete set of data will be stored in a
hash table where the mac address of each ID tag is the key and the contents are the array of
data points. Once the array of data points hits the threshold size of 3 from adding a new data
point, the processor can perform the trilateration calculation. The trilateration calculation can
then be used to update the database entry for the corresponding ID tag by the processor.

To avoid going to the database for real-time updates of the ID tag locations, the ID tag con-
troller will directly query the Trilateration Processor for the most up to date location informa-
tion, reducing latency. The existence of the Trilateration Processing subsystem is necessary, be-
cause the beacon manager will quickly become a bottleneck due to the fact that it is a singleton
in a multithreaded system. As such, the manager should do as little direct processing and block-
ing operations itself and instead favour offloading the tasks to other subsystems.

6.5.5 UDP Beacon Communication Subsystem

In the final design, the UDP Beacon Communication Subsystem actor will communicate with the
beacons over the UDP networking protocol. UDP was chosen because it has less overhead than
TCP, and is more suited for real-time applications such as Akriveia.

6.6 Database

Akrievia Beacon System requires a database to persist map, beacon, and user information. In
the time constraints of Capstone, the database will be a central location for data. Ideally a pro-
duction system would support replication of the database to another location, but this is out of
scope for the purposes of this project. SQLite was chosen primarily because of its simplicity to
set up and minimal footprint. Most commonly used in phones and packaged alongside python,
SQLite has a stable file format and large userbase, and because of this has built a reputation for
not failing.

SQLite is open source, and because of this issues can directly be brought up to the developers
along with help from a large amount of experience from the internet due to the large userbase.
Open source projects are also freely available to browse to learn directly from the codebase when
necessary. In Akriveia, the database is accessed through model objects to keep concerns local to
a single set of similarly structured files, and to keep re-usability up in the codebase.

6.7 Models

Models are used to group database queries and model operations into a single file for each model,
increasing reusability of the system. Akrievia is expected to maintain three different types of
models: maps, ID tags, and beacons. The following tables 9, 10, and 11 show expected data en-
tries and their type for each model, along with the purpose of each entry.

47

User Model

Data Name Type Explanation

User Type String
Indicates the type of user, either admin, employee,
emergency contact, or first responder.

Employee Id String
Employee ID for each user, for internal housekeeping of
the company that purchases Akriveia Beacon.

Full Name String Human readable name to identify the user on lists.

Phone Number String Phone number to contact the user.

Emergency Con-
tact

ref:User
Reference to another user as emergency contact. Emer-
gency contacts will not have an employee id or tag id.

Notes String Notes about the user, i.e. allergies or disabilities, etc.

Id Tag Number 64 bit Integer table key, unique, id for each user.

Coordinates 2D Vector Last known location of the user within the map.

Last Seen Times-
tamps

Unix Timestamps
To identify the ID tag data is stale. Used to determine
if the employee is at work while the disaster occurs.

Map ID ref:Map Last known map the user was located at.

Table 9: User Model

Beacon Model

Data Name Type Explanation

MAV address String unique device identifier for beacon, table key.

Name String Human readable String for the device.

Map ID ref:Map
Reference to a floor/map - this is really just the floor
number. Shows the many-to-one relationship between
beacons and floors.

Notes String Additional Beacon information (i.e. floor and location).

Table 10: Beacon Model

Map Model

Data Name Type Explanation

Name String Human readable floor name for gui.

Floor ID String
Table key, unique floor number of the map, this is not
an integer to accomodate the possibility of odd floor
naming conventions. e.g. floor 1A, or basement.

Bitmap data Binary Bitmap for the floor blueprints to view on the gui.

Table 11: Map Model

48

6.8 Controllers

Controllers are part of the MVC philosophy, unfortunately Actix does not directly support the
controller concept, however this functionality can be implemented manually using Actix Web
primitives. Each controller exposes available operations for the frontend to manipulate data in
a controlled and secure manner. The controller manages data using the models to perform direct
manipulations and can aggregate data that cannot otherwise be done by models. Table 12 shows
the list of expected controllers in the DPU, one to match each model.

Map Model

Controller Name Explanation

Maps
Handles requests for map operations such as to create,
update, delete the map instances.

Beacons
Handles requests for beacon operations such as to cre-
ate, update, delete beacon the model instances.

Users
Handles requests for user(id tag) operations such as to
create, update and delete user instances.

Table 12: Controllers list

6.9 View

The view is part of the MVC philosophy, since its main job is to display data to the GUI in an
intuitive way. In Akriveia Beacon, the view is a static webpage served by the Actix Webserver,
and compiled from the backend. Traditionally, browsers render HTML and Javascript served by
the backend webserver, however, in this project the frontend is written entirely in Rust and com-
piled to a small HTML stub and webassembly which then dynamically generates more HTML
for the browser to render. The benefit of this approach is that it creates strong separation be-
tween the view and controller, and also greatly reduces the number of endpoints that need to be
implemented on the controller. This way it can reduce code duplication and surface area of the
webserver, which lower the possibility of exploitation by reducing exposure to a small set of well
defined operations.

Client side Rust is possible via the Yew crate, which is a Rust package that leverage the web as-
sembly LLVM backend for Rust. Yew adds additional facilities to Rust for webassembly gener-
ation such as macros that allow HTML to be written in lined to Rust, similar to Reacts JSX.
Yew also supports the concept of Agents, which is their version of Actors inspired by Actix and
Erlang. Yew also has the ability to interact with npm packages, in case the functionality is not
already implemented in Rust. As Yew is influenced by React, it is very possible to simply write
the GUI using React.

49

The drawback of using React is that it is written in Javascript, meaning that an implementation
using React would make the language of the backend different from the language of the frontend
creating overhead in development. Furthermore, react contains strict definitions and interfaces
which would need to be implemented twice, once in each language adding tedious boilerplate.
The modern Javascript development environment as a whole is also getting fairly unwieldy, as of
2019 more packages are being added which each introduce transformation steps of the code. An
example of this workflow could involve writing typescript which is transformed into Javascript,
then minimizing the Javascript into unreadable but more performant minimized Javascript. Ad-
ditional steps would similarly be added for Babel scripts. In the example both of the steps are
added to the build manually using webpack which incurs more development overhead to under-
stand and configuration.

Yew on the other hand has an opaque compilation step that transforms Rust code into webassem-
bly, which does not require any additional build steps to configure other than installing the pack-
age. One of the downsides to using Rust compiled to webassebly is that it simply cannot be de-
bugged since it is more similar to binary, but this issue has not arisen yet since framework is very
simple to use. It does seem, in theory, possible to compile Rust to Javascript which can be de-
bugged in the browser, but debugging Javascript which was generated from another language will
likely not be a very fruitful exercise.

Server Side rendering of templates using libraries such as Askama and Tera were also considered
instead of creating a single page website. This method of rendering is fantastic for form submis-
sions, however real time and dynamic pages strain the abilities of server side rendering. Akrievia
will require real time updates of maps, which will look and perform much better when rendered
on the client side rather than having the backend needlessly re-render the same page with differ-
ent data. Typically, when real time functionality is required for server side rendered applications,
some pages are converted to using client side rendering while others remain server side rendered,
requiring libraries like React or JQuery. By simply using client side rendering, the frontend is
consistently implemented throughout, rather than requiring more than one type of rendering.
Please see Appendix B: User Interface and Appearance for additional details on the UI layout.

6.10 Security

Due to the properties of Rust, many security concerns regarding bad input data and memory is-
sues are mitigated. One such migitation is built in bounds checking of all array accesses, meaning
that its not possible to read or write memory that has not been properly allocated by the exe-
cuting process. An additional level of security is that rust reduces the number of invalid compu-
tational state, removing the burden from the programmer which could potentially get it wrong,
which would create vulnerabilities. As rust is a strongly typed language, it also benefits from
static type checking which eliminates entire classes of bugs that also could lead to vulnerabilities.

All stored user data will be encrypted using the latest encryption algorithms, namely the sha3-
512 algorithm. In memory data will be unencrypted for as short of a time as possible to reduce
the surface area of potential attacks.

50

6.11 Software Design Requirements

The Akriveia Beacon system is composed of an intricate software stack developed in rust. The
data processing unit is the main computational unit and will be implemented with trilateration
algorithms to locate ID tag positions in near real time. In order for the software system to be
reliable, secure and accurate the following design specifications were made.

REQ.SW.1 - C The DPU software stack must be implemented using Rust

REQ.SW.2 - C The DPU must contain a Linux based operating system

REQ.SW.3 - C
Each beacon must acknowledge a stop receiving command to stop send-
ing ID tag location data to data processing unit

REQ.SW.4 - C
Each beacon must acknowledge a start sending command to start sending
ID tag location data to data processing unit

REQ.SW.5 - P
The admin must login through credential verification system before be-
fore accessing system data

Table 13: Software Design Specification

51

7 Conclusion

As urban centers around the world experience rapid growth and changes so does the risk of be-
ing potentially trapped within buildings during disasters. The time period right after a disaster
strikes is the most critical time for saving victims lives. In current practices, first responders have
limited time to evaluate the situations when they arrive on the scene of disaster and must take
crucial actions accordingly. Searching the incident building for possible victims is one of the ma-
jor tasks undertaken by first responders after an incident occurs. The lack of timely information
could be the difference between life and death in such situations.

As such, a reliable and accurate indoor location rescue system is needed to aid first responders
in locating trapped personnel. The Akriveia Beacon is a system of anchor beacons and ID tags
controlled by ESP32 micro-controllers and communicating via Decowave DWM1000 UWB mod-
ules, along with trilateration algorithm to accurately obtain near real time location of trapped
personnel within buildings during the event of a disaster. The location data is then reported to
a portable data processing unit via a closed WiFi network, which can be interacted with directly
by emergency first responders and operators to provide accurate and reliable information for the
search and rescue effort.

The system overview, design, and constraints of the Akriveia Beacon system are clearly estab-
lished in this document, as well as presenting the complete system design specifications. By pro-
vided a detailed outline of the design specifications this document is intended to be used as a
design reference for the engineers at TRIWAVE SYSTEMS, as well as to provide detailed insight
for the hardware and software designs required for the Akriveia Beacon product. These design
specification outlines high level system architectures, system functions and implementation of the
Akriveia Beacon product through three different phases of development including: the proof-of-
concept (completed August 2019), prototype, and final product (completed December 2019).

As a product that could potentially affect the outcome of disaster relief operations, the Akriveia
Beacon is designed with the utmost care. As aforementioned, TRIWAVE SYSTEMS is dedicated
to creating a reliable and robust system design to improve disaster search and rescue operations
with human safety as the pivotal focus.

52

8 References

[1] Statistics-Canada. Interview on Rust, a Systems Programming Language Developed by Mozilla[online].
Aug. 2014. url: Available%20at:%20https://www150.statcan.gc.ca/n1/daily-
quotidien/160916/dq160916c-eng.htm%20[Accessed%208%20June.%202019]..

[2] Statistics-Canada. Fire-related deaths and persons injured, by type of structure. 2019. url:
[Online].%20Available:%20150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=

3510019501.[Accessed:%2021-May-2019]..

[3] A. Rajabifard H. Tashakkori and Mas Kalantari. A new 3D indoor/outdoor spatial model
for indoor emergency response facilitation. 2015. url: Available:%2010.1016/j.buildenv.
2015.02.036..

[4] A. Rajabifard H. Tashakkori and M. Kalantari. FACILITATING THE 3D INDOOR SEARCH
AND RESCUE PROBLEM: AN OVERVIEW OF THE PROBLEM AND AN ANT COLONY
SOLUTION APPROACH. 2016. url: Available:%2010.5194/isprs-annals-iv-2-w1-
233-2016..

[5] Terabee. Time-of-Flight principle: Technologies and advantages - Terabee. 2019. url: [Online]
.%20Available:%20https://www.terabee.com/time- of- flight- principle/.%

20[Accessed:%2022-Jun-2019]..

[6] eTutorials.org. Understanding RF Signals. 2018. url: [Online].%20Available:%20http:
//etutorials.org/Networking/wn/Chapter+3.+Radio+Frequency+and+Light+Signal+

Fundamentals+The+Invisible+Medium/Understanding+RF+Signals/.%20[Accessed:

%2025-Jun-2019].

[7] H. Wolverson. Path Loss. 2015. url: [Online].%20Available:%20http://wisptools.
net/book/bookc3s1.php.[Accessed:%2025-Jun-2019].

[8] E. Farella D. Giovanelli. RSSI or Time-of-flight for Bluetooth Low Energy based localiza-
tion? An experimental evaluation. 2018. url: [Online].%20Available:%20https://hal.
inria.fr/hal-01995171/document.%20[Accessed:%2025-Jun-2019].

[9] iotbymukund. How to Calculate Distance from the RSSI value of the BLE Beacon. 2016.
url: [Online].%20Available:%20https://iotandelectronics.wordpress.com/
2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-

beacon/.%20[Accessed:%2025-Jun-2019].

[10] spirent. Fading Basics. 2018. url: [Online].%20Available:%20http://www.spirent.cn/
gui/~/media/fc29acc7f9934903a6cf7dbc809249ae.ashx.%20[Accessed:%2028-Jun-

2019].

[11] espressif. Development Board Espressif Systems. 2019. url: Available%20at:%20https:
//www.espressif.com/en/products/hardware/development-boards%20[Accessed%

2028%20Jun.%202019]..

[12] Decawave. DWM1000 Module - Decawave. 2019. url: [Online].%20Available:%20https:
//www.decawave.com/product/dwm1000-module/.%20[Accessed:%2022-Jun-2019]..

[13] Raspberrypi.org. 2019. url: [Online].%20Available:%20https://www.raspberrypi.
org/products/raspberry- pi- 3- model- b- plus/.%20[Accessed:%2028- %20Jun-

%202019]..

[14] R. Heydon. An Introduction to Bluetooth low energy. 2016. url: [Online].%20Available:
%20https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/

slides-interim-2016-t2trg-2-7.%20[Accessed:%2028-Jun-2019].

53

Available%20at:%20https://www150.statcan.gc.ca/n1/daily-quotidien/160916/dq160916c-eng.htm%20[Accessed%208%20June.%202019].
Available%20at:%20https://www150.statcan.gc.ca/n1/daily-quotidien/160916/dq160916c-eng.htm%20[Accessed%208%20June.%202019].
[Online].%20Available:%20150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3510019501.[Accessed:%2021-May-2019].
[Online].%20Available:%20150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3510019501.[Accessed:%2021-May-2019].
Available:%2010.1016/j.buildenv.2015.02.036.
Available:%2010.1016/j.buildenv.2015.02.036.
Available:%2010.5194/isprs-annals-iv-2-w1-233-2016.
Available:%2010.5194/isprs-annals-iv-2-w1-233-2016.
[Online].%20Available:%20https://www.terabee.com/time-of-flight-principle/.%20[Accessed:%2022-Jun-2019].
[Online].%20Available:%20https://www.terabee.com/time-of-flight-principle/.%20[Accessed:%2022-Jun-2019].
[Online].%20Available:%20https://www.terabee.com/time-of-flight-principle/.%20[Accessed:%2022-Jun-2019].
[Online].%20Available:%20http://etutorials.org/Networking/wn/Chapter+3.+Radio+Frequency+and+Light+Signal+Fundamentals+The+Invisible+Medium/Understanding+RF+Signals/.%20[Accessed:%2025-Jun-2019]
[Online].%20Available:%20http://etutorials.org/Networking/wn/Chapter+3.+Radio+Frequency+and+Light+Signal+Fundamentals+The+Invisible+Medium/Understanding+RF+Signals/.%20[Accessed:%2025-Jun-2019]
[Online].%20Available:%20http://etutorials.org/Networking/wn/Chapter+3.+Radio+Frequency+and+Light+Signal+Fundamentals+The+Invisible+Medium/Understanding+RF+Signals/.%20[Accessed:%2025-Jun-2019]
[Online].%20Available:%20http://etutorials.org/Networking/wn/Chapter+3.+Radio+Frequency+and+Light+Signal+Fundamentals+The+Invisible+Medium/Understanding+RF+Signals/.%20[Accessed:%2025-Jun-2019]
[Online].%20Available:%20http://wisptools.net/book/bookc3s1.php.[Accessed:%2025-Jun-2019]
[Online].%20Available:%20http://wisptools.net/book/bookc3s1.php.[Accessed:%2025-Jun-2019]
[Online].%20Available:%20https://hal.inria.fr/hal-01995171/document.%20[Accessed:%2025-Jun-2019]
[Online].%20Available:%20https://hal.inria.fr/hal-01995171/document.%20[Accessed:%2025-Jun-2019]
[Online].%20Available:%20https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/.%20[Accessed:%2025-Jun-2019]
[Online].%20Available:%20https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/.%20[Accessed:%2025-Jun-2019]
[Online].%20Available:%20https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/.%20[Accessed:%2025-Jun-2019]
[Online].%20Available:%20http://www.spirent.cn/gui/~/media/fc29acc7f9934903a6cf7dbc809249ae.ashx.%20[Accessed:%2028-Jun-2019]
[Online].%20Available:%20http://www.spirent.cn/gui/~/media/fc29acc7f9934903a6cf7dbc809249ae.ashx.%20[Accessed:%2028-Jun-2019]
[Online].%20Available:%20http://www.spirent.cn/gui/~/media/fc29acc7f9934903a6cf7dbc809249ae.ashx.%20[Accessed:%2028-Jun-2019]
Available%20at:%20https://www.espressif.com/en/products/hardware/development-boards%20[Accessed%2028%20Jun.%202019].
Available%20at:%20https://www.espressif.com/en/products/hardware/development-boards%20[Accessed%2028%20Jun.%202019].
Available%20at:%20https://www.espressif.com/en/products/hardware/development-boards%20[Accessed%2028%20Jun.%202019].
[Online].%20Available:%20https://www.decawave.com/product/dwm1000-module/.%20[Accessed:%2022-Jun-2019].
[Online].%20Available:%20https://www.decawave.com/product/dwm1000-module/.%20[Accessed:%2022-Jun-2019].
[Online].%20Available:%20https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.%20[Accessed:%2028-%20Jun-%202019].
[Online].%20Available:%20https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.%20[Accessed:%2028-%20Jun-%202019].
[Online].%20Available:%20https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.%20[Accessed:%2028-%20Jun-%202019].
[Online].%20Available:%20https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7.%20[Accessed:%2028-Jun-2019]
[Online].%20Available:%20https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7.%20[Accessed:%2028-Jun-2019]
[Online].%20Available:%20https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7.%20[Accessed:%2028-Jun-2019]

[15] Sewio. UWB Technology. 2018. url: [Online].%20Available:%20https://www.sewio.
net/uwb-technology/.%20[Accessed:%2028-Jun-2019].

[16] W1.fi. hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS Authentica-
tor. 2019. url: [Online].%20Available:%20http://w1.fi/hostapd/.%20[Accessed:
%2003-%20Jul-%202019]..

[17] lastminuteengineers. Insight Into ESP32 Sleep Modes & Their Power Consumption. 2019.
url: Available%20at:%20https://lastminuteengineers.com/esp32-sleep-modes-
power-consumption/%20[Accessed%2028%20Jun.%202019]..

[18] T. ARTICLES et al. Wireless RF Energy Harvesting: RF-to-DC Conversion and a Look at
Powercast Hardware. 2019. url: [Online].%20Allaboutcircuits.com,%20Available:
%20https://www.allaboutcircuits.com/technical-articles/wireless-rf-energy-

harvesting-rf-to-dc-conversion-powercast-hardware/.%20[Accessed:%2031-May-

2019]..

[19] Abel Avram. Interview on Rust, a Systems Programming Language Developed by Mozilla.
Aug. 2012. url: https://www.infoq.com/news/2012/08/Interview-Rust/%20[Accessed:
%2021-June-2019]..

[20] Graydon Hoare et al. Releases.md. May 2015. url: https://github.com/rust-lang/
rust/blob/master/RELEASES.md%20[Accessed:%2021-June-2019]..

[21] Bjarne Stroustrup and Herb Sutter. C++ Core guidelines. May 2019. url: https : / /
github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md%

20[Accessed:%2021-June-2019]..

[22] Arduino Style Guide. May 2019. url: https : / / www . arduino . cc / en / Reference /
StyleGuide%20[Accessed:%2021-June-2019]..

54

[Online].%20Available:%20https://www.sewio.net/uwb-technology/.%20[Accessed:%2028-Jun-2019]
[Online].%20Available:%20https://www.sewio.net/uwb-technology/.%20[Accessed:%2028-Jun-2019]
[Online].%20Available:%20http://w1.fi/hostapd/.%20[Accessed:%2003-%20Jul-%202019].
[Online].%20Available:%20http://w1.fi/hostapd/.%20[Accessed:%2003-%20Jul-%202019].
Available%20at:%20https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/%20[Accessed%2028%20Jun.%202019].
Available%20at:%20https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/%20[Accessed%2028%20Jun.%202019].
[Online].%20Allaboutcircuits.com,%20Available:%20https://www.allaboutcircuits.com/technical-articles/wireless-rf-energy-harvesting-rf-to-dc-conversion-powercast-hardware/.%20[Accessed:%2031-May-2019].
[Online].%20Allaboutcircuits.com,%20Available:%20https://www.allaboutcircuits.com/technical-articles/wireless-rf-energy-harvesting-rf-to-dc-conversion-powercast-hardware/.%20[Accessed:%2031-May-2019].
[Online].%20Allaboutcircuits.com,%20Available:%20https://www.allaboutcircuits.com/technical-articles/wireless-rf-energy-harvesting-rf-to-dc-conversion-powercast-hardware/.%20[Accessed:%2031-May-2019].
[Online].%20Allaboutcircuits.com,%20Available:%20https://www.allaboutcircuits.com/technical-articles/wireless-rf-energy-harvesting-rf-to-dc-conversion-powercast-hardware/.%20[Accessed:%2031-May-2019].
https://www.infoq.com/news/2012/08/Interview-Rust/%20[Accessed:%2021-June-2019].
https://www.infoq.com/news/2012/08/Interview-Rust/%20[Accessed:%2021-June-2019].
https://github.com/rust-lang/rust/blob/master/RELEASES.md%20[Accessed:%2021-June-2019].
https://github.com/rust-lang/rust/blob/master/RELEASES.md%20[Accessed:%2021-June-2019].
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md%20[Accessed:%2021-June-2019].
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md%20[Accessed:%2021-June-2019].
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md%20[Accessed:%2021-June-2019].
https://www.arduino.cc/en/Reference/StyleGuide%20[Accessed:%2021-June-2019].
https://www.arduino.cc/en/Reference/StyleGuide%20[Accessed:%2021-June-2019].

9 Appendix A: Supporting Test Plans

All test cases for each of the four test plans follows the below format. These test cases are de-
rived from the requirements of the Design Specifications.

[TEST-#]

Code Definition

TEST Test Plan abbreviation.

Test Case ID

Table 14: Test Case Encoding

Planning Stage Abbreviation Code

Proof of Concept C

Prototype P

Final Product F

Usability U

Table 15: Planning Stage Abbreviation Code

Each test case is grouped into these four sections and their IDs start with a letter representing
the group. These letters are shown in bold above. The Design Specifications test plans con-
sists of Test cases with expected results. These test cases have been modified from the previous
test plans from the Requirements Specifications to reflect current project progress.

55

9.1 PoC Test Plan

The Proof of Concept (PoC) Test Plan includes testing procedures for verifying and validating
the Design Specifications under a formal test environment. The goal of the PoC Test Plan
is to ensure the basic requirements stated in the Requirement Specifications are refined and
developed into test cases. Three main goals for the PoC testing are as follows:

1. 2.4 GHz chips are able to receive and transmit data accurately

2. ESP32 (MCU) receives the transmission data

3. Raspberry Pi receives data serially from ESP32 MCU

PoC Test Plan

ID Test Cases Expected Results

P-01
ESP32 bluetooth modules detects bluetooth
servers in the proximity.

Console Serial output shows all nearby
bluetooth devices with MAC addresses.

P-02
ESP32 uses the RSSI formula to output
values of nearby bluetooth devices.

ESP serial out displays RSSI of surround-
ing bluetooth devices by MAC addresses.

P-03
RSSI measurements on serial output should
vary at different distances.

RSSI measurements at 0.1m, 0.5m, 1m and
2m. The RSSI measurements should be-
come more negative as distance increases.

P-04
Measure RSSI measurements at 1m to get
measured power

Log the average RSSI at 1m at different lo-
cations. The average measurements at each
location is the measured power at specific
location.

P-05
ESP32 beacon should only output ESP32
ID tag MAC address.

Serial output should output RSSI of ID
tags. Beacon programming filters out all
RSSI measurements besides ID tags.

P-06
ESP32 deep sleep mode activates after
2min period of inactivity.

ESP32 shuts off main processor and periph-
erals. MCU consumes only 10uA in sleep
mode.

P-07
DPU transfers data through serial to a
ESP32 beacon.

”Start” command sent serially by the DPU
and received serially by the ESP32 beacon.

P-08
Raspberry Pi (DPU) should receive RSSI
measurements through serial communica-
tion from all 3 ESP32 beacons

Console output of the received RSSI mea-
surements from 3 beacons.

P-09
RSSI measurements are taken from all 3
beacons and converted into distances by
Distance-RSSI formula

Console output of approximate distances of
the 3 beacons to the ID tag.

Table 16: PoC System (General) Test Plans - Part 1

56

PoC Test Plan

ID Test Cases Expected Results

P-10
Distances from the Distance-RSSI formula
are used in the Trilateration algorithm to
calculate approximate location

Location of the ID tag is given as (x, y)
coordinates with (0, 0) being the location
of the bottom left beacon.

P-11
Real-time tracking of the ID tag is calcu-
lated and displayed on the Raspberry Pi
console output

Location of the ID tags in (x, y) are con-
stantly displayed on the serial output of
DPU.

Table 17: PoC System (General) Test Plans - Part 2

57

9.2 Prototype Test Plan

The Prototype Test Plan includes testing procedures for verifying and validating the Design
Specifications under formal test environment. The goal of the Prototype Test Plan is to ensure
the requirements stated in the Requirement Specifications are meet. Three main goals for the
Prototype testing are as follows:

1. UWB chips are able to receive and transmit data accurately

2. ESP32(MCU) integrates with the UWB modules and receives transmission data

3. Raspberry Pi (DPU) calculates the location coordinates from Time of Flight (ToF)

Prototype Test Plan

ID Testing Criteria Observations

T-01
UWB chip and breakout board are soldered
properly. SPI Bus Pins are operating as
expected

MISO/MOSI pins are outputting expected
values. SCLK is receiving proper clock sig-
nals. IRQ pin is generating interrupts and
CS pin remains at the correct active-low
state.

T-02
UWB chip and breakout board are soldered
properly. Pins are operating as expected

Device sleep activate by EXTON.
GPIO7 transmits data. RSTn pin resets
DWM1000. WAKEUP pin trigger DW1000
to wake.

T-03
ESP32 transfers data from the UWB mod-
ule via SPI communications.

ESP32 receive expected data from SPI and
output to console. pins are functioning as
expected.

T-04
UWB chips receive and transmit simple
messages to and from other UWB chips
through UWB frequencies of 3.5-6.5 GHz.

Received data is shown serially on the con-
soles for the chips.

T-05
ESP32 are woken out of deep sleep by the
GPIO #26 pin. ESP32 should wake the
UWB through the WAKEUP pin.

ESP32 and UWB are in active state; Start
operating as programmed.

T-06
ESP32 go into sleep after 2 minutues of
inactivity. UWB module is sent to sleep
though the EXTON pin.

ESP32 and UWB are in deep sleep mode.

T-07
ID tag receives ”emergency” signal from
beacons. UWB chip ensure ESP32 remains
awake through the EXTON pin.

ESP32 and UWB remains in active state.
ESP32s are awake and do not go back to
sleep.

T-08 ID tags are to be powered by the battery. ID tags are functional using battery power.

T-09
MCU receives timestamps from UWB and
calculates ToF from sent and received data.

Serial output of ToF measurement. There
should be manual verification of calcula-
tion.

Table 18: Prototype Test Plans - Part 1

58

Prototype Test Plan

ID Testing Criteria Observations

T-10
ToF are taken and used in the distance-
ToF formulas to generate coordinates.

Distances are displayed on serial output.
Require manual verification of calculations.

T-11
Distances estimation from ToF is sent to
DPU for trilateration calculation

Serial output from Raspberry Pi showing
the x-y coordinates from trilateration algo-
rithm.

T-12
DPU should display x-y coordinates on
webpage.

Console output of x-y coordinates of the ID
tag in reference to the bottom left beacon
as (0, 0).

T-13
Real-time tracking of the ID tag in x-y co-
ordinates on the console

Webpage should show real-time changes in
the x-y coordinates of the ID tag.

T-14
DPU hosts the web server. Webpage can be
accessed through DPU’s wifi network.

Devices can access the webpage browser.

Table 19: Prototype Test Plans - Part 2

59

9.3 Final Product Test Plan

The Final Product Test Plan includes all the testing procedures for verifying and validating the
Design Specifications under a formal test environment. The goal of the Final Product Test
Plan is to ensure the basic requirements stated in the Requirement Specifications are refined
and developed into test cases. Three main goals for the Final Product testing are as follows:

1. 2.4 GHz chips are able to receive and transmit data accurately

2. Arduino micro-controllers(MCU) receives the transmission data

3. Raspberry Pi receives data serially from Arduino M

Final Product Test Plan

ID Testcases Observations

F-01
Test for the accuracy of UWB ToF to en-
sure accuracy is within ≤1m.

Different distances set up to test ToF esti-
mation accurate within error range of 1m.

F-02
Emergency signal initiates emergency mode
for all beacons and ID tags.

All beacons are now in emergency mode.
ID tags woken up will go into emergency
state and stay woken up.

F-03
Beacons forward data from farthest ID tags
to the Raspberry Pi (DPU) so that all ID
tags can be displayed on the map.

All ID tags distances are received by the
DPU.

F-04
ID tags should drain minimal amount of
power (≤10uA) when in deep sleep mode.

Measured current drawn by ID tag in deep
sleep is less than 10uA.

F-05
ID tags are woken up by a button press
and checks for emergency signals from bea-
cons.

ID tags should go into emergency mode
if beacons are sending emergency signals.
Otherwise, ID tags should go into deep
sleep mode after 2 minutes of inactivity

F-06
Beacon uses UDP protocol for communi-
cation to send out packets of data continu-
ously without handshaking.

Beacons should continue to send and re-
ceive timestamped packets of data.

F-07
The ID tag’s components, ESP32 wifi and
MCU module, UWB module and housing
LED, are all powered by the battery.

All 3 components are operational and can
all be powered by the battery.

F-08
The beacon’s components, ESP32 wifi and
MCU module, UWB module and housing
LED, are powered through AC outlet.

All 3 components are operational and no
issues occur.

Table 20: Final Product Test Plans - Part 1

60

Final Product Test Plan

ID Testcases Observations

F-09

All the components of the ID tag are in-
tegrated together: ESP32 (MCU) and wifi
modules, UWB modules , the battery and
ID tag housing.

ID tag is functional and all components are
working together.

F-10
Beacons use UDP protocol for communica-
tion to the Raspberry Pi (DPU) for real-
time tracking.

Raspberry Pi updates the ID tags location
in real-time to provide up-to-date tracking.

F-11
Beacons run on emergency battery power
when A/C power supply is unavailable.

When power is disconnected, Beacons run
no battery power until A/C power is avail-
able.

F-12
Raspberry Pi (DPU) displays the ID tag
locations on a scaled map GUI.

All ID tags are shown on the scaled map
with an accuracy of ≤1m.

F-13
Move the ID tags around the floor to check
for real-time tracking.

GUI map shows ID tags current location
with ≤ 5s delay between location.

F-14
Check if the MAC address and status in
the GUI match with the devices.

ID tags/Beacon statuses in the GUI are
accurate and reflect the current situation.

F-15
Test for any bugs or possible unauthorized
access to data in the system.

Automated tests to look for any bugs or is-
sues that arise. Manual testing is required.

Table 21: Final Product Test Plans - Part 2

61

9.4 Usability Test Plan

The Usability Test Plan includes all the testing procedures for verifying and validating the Us-
ability Specifications under a formal test environment. The goal of the Usability Test Plan is to
ensure the basic requirements stated in the Appendix B: User Interface and Appearance
section of the document are met. Three main goals for the Usability testing are as follows:

1. ID tags and Beacons are intuintive to use and implement

2. GUI is easy to navigate and access information for Primary Users

3. GUI is easy to edit and customize configuration for Secondary Users

Usability Test Plan

ID Test Cases Observations

U-01
Connecting to the Beacons’ wifi network
should be simple and quick.

Select the network on the device’s available
wifi network. Input the password and the
device should be connected.

U-02
Test if webpage address is correct and on-
line.

Inputting the webpage address should bring
up the login page for Triwave Systems
Akriveia.

U-03
Test if the login credentials entered
matches the one in the system database.
Give an appropriate response.

Entering the incorrect login credentials
gives an login error. Prompts the user to
try again. Entering the correct login cre-
dentials goes to the System Status or user
homepage.

U-04
Test if primary users sees only the Primary
User Map View and Status View.

Primary user should not have access to any
system configurations, adding map views or
adding user views.

U-05
Test if secondary users can see Add Map
View, Beacon View and Add User Views.

Secondary user should have access to any
system configurations, adding map views or
adding user views.

U-06
Adding maps, beacons or editing user infor-
mation should be intuitive and simple.

IT personnel with minimal training can
add maps, beacons or edit user information
without frustration or difficulty.

U-07
Installing new beacons should be intuintive
and straight-forward.

Adding beacon page is easy to navigate
and form is simple to fill out. IT personnel
without any training of Akriveia system
should fill out the form without difficulty.

Table 22: PoC Software Requirement Test Plans - Part 1

62

Usability Test Plan

ID Test Cases Observations

U-08
ID tag design has clear indication where
the button is pressed.

Users with no training understands intu-
itively where to press on the ID tag.

U-09
In emergency state, ID tag button when
pressed will flash green continuously.

ID Tags LED light will continue to flash
green in emergencies.

U-10
ID tags LED flashes the correct light in
non-emergency mode

LED will flash green for 1 sec if ID tag is
operational and has no problems LED will
blink yellow for 3 sec if ID tag battery is
low and need replacement. LED will blink
red for 3 sec if ID tag is not operational or
has issues. Battery is on critical low power.

U-11
In emergency state, beacons will flash green
continuously.

Beacons LED light will continue to flash
green in emergencies.

U-12
Beacons LED flashes the correct light in
non-emergency mode

LED will flash green for 1 sec if Beacon is
operational and has no problems LED will
blink yellow for 3 sec if Beacon has been
reset. LED will blink red for 3 sec if ID tag
is not operational or has issues.

Table 23: PoC Software Requirement Test Plans - Part 2

63

10 Appendix B: User Interface and Appearance

10.1 Introduction

The User Interface Design Appendix provides a detailed description and analysis of the Akriveia
Beacon System in terms of the design, communication, and operations with the intended users.
The Akriveia Beacon system is an advanced indoor location rescue system designed to aid first
responders during an emergency search and rescue situation by providing accurate location of
trapped victims within commercial buildings. The primary users to interact with the Akrievia
Beacon system will be first responders such as fire fighters or emergency management person-
nel. The secondary users to interact with the system would be administrators or IT technicians
that would utilize or perform maintenance and upkeep of the system. Lastly, the tertiary users
would be the employees of the company using the Akriveia Beacon system. The employee will
only interact with the system by turning the ID tags on during an emergency. Since the system
is intended to operate under extremely stressful environments and situations, the user interface
must be as clear and intuitive to use as possible to ensure that first responders can operate at
peak efficiency along side the Akriveia Beacon system.

10.1.1 Purpose

The focus of this user interface design appendix is to act as a reference for engineers at TRI-
WAVE SYSTEMS throughout development. In order to create an interface that is both clear
and intuitive for the intended user, the hardware and software interfaces must follow strict de-
sign standards and requirements. Such standards and requirements will ensure that during the
intended operating scenario, the system would not cause users unexpected error due to implica-
tions of insufficient operating knowledge or unforeseeable circumstances. These design require-
ments will be presented in conjunction with the three specific development phases: the proof-of-
concept phase, prototype phase, and the Final product phase.

10.1.2 Scope

This document section includes detailed overview of user and technical analysis, engineering safety
and standards, and usability testing in order to provide sufficient understanding of the user inter-
face for the Akriveia Beacon system. As a system to be operating under disaster or emergency
situations, the Akriveia Beacon must require some form of basic user knowledge in order for dif-
ferent parties of the user base to operate the system sufficiently. Outline of the required user
knowledge allowing basic usage of the Akriveia Beacon system will be presented. As well as the
following seven fundamental technical analysis principles will be considered when making design
choices for the user interface: discoverability, feedback, conceptual models, affordances, signifiers,
mappings, and constraints; as outlined from Don Norman’s The Design of Everyday Things [23].
Finally, the appendix will include analytical and empirical system test plans with different sce-
narios that is aimed at testing how the Akriveia Beacon system would operate under each spec-
ified condition during each stage of the development cycle. The test cases covered will provide
additional quality assurance of the final product to ensure that the Akriveia Beacon system is
both accurate and reliable for its intended purpose.

64

10.2 User Analysis

The Akriveia Beacon system has three levels of targeted users: emergency first responders, IT
or systems administrators, and company employees. Emergency first responders are considered
to be the primary users, the system will provide high level layer interaction where only the most
necessary elements are provided allowing intuitive access, decreasing the possibility of mistakes.
The IT/system administrators are secondary users, who provides maintenance and upkeep of the
system. Tasks such as managing ID tags, accounts, performing system wide maintenance, and
perform potential upgrade, repair, and replacement procedures. Lastly, the tertiary users would
be employees of the company using the Akriveia Beacon system. Employees would wear the ID
tags alongside their everyday carry items such as mobile phones or access cards. The different
levels of users will require different levels of interaction between them and the system. As such,
each level of users will have requirements, access and control of the system. This section of the
document will outline the different levels of user interactions, user background requirements, and
detail some of the basic use cases for the primary, secondary, and tertiary users of the Akriveia
Beacon system.

The primary users of the Akriveia system are the emergency first responders who are the first to
arrive and provide assistance at the scene of an emergency, accident or disaster. First responders
typically include paramedics, emergency medical technicians, police officers, firefighters, rescuers,
and other trained professionals. In the intended situation where a search and rescue operation
will be performed, the targeted primary user to be interacting with the system will be considered
to be the person who is the top executive rank or commanding officer (Fire Chief) of the fire de-
partment on scene. The fire chief will cover the standard operating guidelines (SOGs) include ba-
sic communications with firefighter units deployed into buildings [24]. For the primary user, brief
background knowledge on the operation of basic electronic equipment such as laptops and tablets
are essential. Since user interaction between the primary user and the Akriveia Beacon system is
through a graphical user interface hosted on basic electronic equipment, the user is required to
have some form of familiarity with such devices. Once the system is incorporated more into cur-
rent infrastructure, training could also be provided to the primary users if needed. Furthermore,
basic comprehension of blueprint reading and ability to recognition and understanding of simple
legends, icons, and other associated information on the UI is required. In addition, the primary
users should have the grammatical prowess to understand the English language. Having fulfilled
these user requirements, primary users can optimally benefit from the Akriveia Beacon system.

The secondary users of the Akriveia system are system administrators or IT technician that will
be performing registration, and maintenance of the system. For secondary users, formal techni-
cal background is required; since the secondary users will be performing tasks such as installation
and configuration of appropriate software and functions according to specifications. As well as
to ensure the security and privacy of the networks and computing systems. Their primary tasks
include managing ID tag accounts associated with employees, perform inspection of equipment
such as beacons, ID tags, and data processing unit. As well as to ensure functionality of the sys-
tem by enabling and operating the system during disaster drills.

Lastly, the tertiary users are considered to be the employees of the company that will be incor-
porating the Akriveia beacon system into their infrastructure. The tertiary users require mini-
mal interaction with the system during normal every day operation since they will only need to
carry the ID tags on them while on company grounds. However, during emergencies or disaster,
if needed the tertiary user must be able to enable the ID beacons to enable broadcasting of their
location so that the primary users are able to locate them through the GUI provided by the sys-
tem.

65

10.3 Technical Analysis

This section will analyze the consideration for Seven Elements of UI Interface as outlined by Don
Norman for the Akriveia Beacon system; which includes the following design factors, discover-
ability, feedback, conceptual models, affordances, signifiers, mappings, and constraints [23]. By
incorporating these design element in to the system, the usability and quality of the final product
can be substantially improved.

10.3.1 Discoverability

Discoverability: Is it possible to even figure out what actions are possible and where and how
to perform them? In the context of product and interface design, discoverability is the degree of
ease with which the user can find all the elements and features of a new system when they first
encounter it [25]. The Akrivia beacon system is designed to operate under emergency situations
and disasters, which means that it is paramount that the UI creates discoverability for its users.
The overall interaction should be simple enough for each level of users to comprehend and under-
stand without the need for much interpretation.

Primary user - First Responders’ main point of interaction with the Akriveia Beacon system is
through the GUI. The GUI will be simple with intuitive design allowing for quick understanding
of the system and any relating concepts. For prototype UI design, the interface will be quick to
access and contains a scaled blueprint of the structure with colored indicators will conveying the
location of victims on the map view (similar to figure 36).

Secondary user - system and IT administrators will have more in depth access to the system.
Since they are required to manage profiles related to each employee and their associated ID tag,
the GUI needs to be simple and robust (see section 10.4.2 UI Mock-Ups). Actions such as adding,
removing, and editing profiles or system configuration must be intuitive.

Tertiary users - The ID tags are small in design and resembles an access card so the user know
how to wear the device. In the case of an emergency the employees must trigger a simple touch
button to enable broadcasting of current location to the beacons. Otherwise the user must re-
member to keep ID tag on person while on company property.

10.3.2 Feedback

Feedback - There is full and continuous information about the results of actions and the current
state of the product or service. After an action has been executed, it is easy to determine the
new state. As the main layer of interaction between the users and the system, the GUI must pro-
vide visual indicators for any actions performed. Indicators such as confirmation messages and
UI element state changes will be shown. Most importantly, during an emergency the system will
be in active mode, icons and indicators on the GUI must be updated in near real time to provide
constant visual feedback to the users. Furthermore, beacons and ID tags will also provide visual
feedback to its users via simple LEDs indicate active or inactive system; as well as other informa-
tion such as battery level or state of data transmission.

66

10.3.3 Conceptual models

Conceptual Models - The design projects all the information needed to create a good conceptual
model of the system, leading to understanding and a feeling of control. The conceptual model en-
hances both discoverability and evaluation of results. The Akriveia Beacon system for primary
users creates a conceptual model in the form of a floor plan represented through the GUI. Pri-
mary users will easily be able to relate the model to the real life layout of the building and oper-
ate accordingly. For secondary users, the system model function much like any web application
that they have previously encountered allow them to easily navigate the UI and perform neces-
sary tasks. For tertiary users the ID tag device only has one button and a few status indicating
LEDs for clear interactions.

10.3.4 Affordances

Affordances - The proper affordances exist to make the desired actions possible. Clarity of the
design creates a relationship between the look and intended use of the product which allows users
to quickly understand the correct operations for the system. Some affordances of Akriveia Bea-
con are: Beacons and ID tags have clear LED indicators to display system status; The ID tags
have bright colored button to indicate the interaction point for the user; The GUI have clear and
concise labels, text, and color to simplify interactions with the user; The GUI will show location
of ID tags clearly with colored indicators to identify location.

10.3.5 Signifiers

Signifiers - Effective use of signifiers ensures discoverability and that the feedback is well commu-
nicated and intelligible. Basic colors such as green, amber, and red are used to indicate system
status such as good, okay, and bad. These three basic colors will be used throughout the prod-
uct to indicate system status. LEDs on the Beacon and ID tags will use indication colors to show
device status. The GUI will use initiation colors to show system status and ID tag last ping time.

10.3.6 Mappings

Mappings - The relationship between controls and their actions follows the principles of good
mapping, enhanced as much as possible through spatial layout and temporal Contiguity. Some
examples on the system include: activated tabs on the GUI are underlined with a bold color to
show users the current selected tab. Pop up messages and text box will be provided when users
interact with the GUI to show the UI element that they are interacting with. The ID tags and
Beacons will output device status using LEDs whenever a system change occurs due to user in-
teraction. This allows the user to receive feedback from the devices.

10.3.7 Constraint

Constraints - Providing physical, logical, semantic, and cultural constraints guides actions and
eases interpretation. Adding constraints to the design will limit the number of actions that the
user can perform with the device. One major constraint is that once the Akriveia Beacon sys-
tem is activated it can not be deactivated until the situation is resolved. Only a high level system
administrator will be able to access and disable the system. This constraint prevents having the
system shutdown accidentally or unexpectedly. Another constraint is ensuring the system GUI
is accessible on a tablet device. Mobile devices actions have to be limited inorder to provide an
intuitive user interaction since the only input are through a touchscreen. This constraint creates
intuitive interaction between the GUI and the users.

67

10.4 Graphical Representation

10.4.1 UI State Diagrams

The graphical user interface will be designed for two distinct users interacting with the system.
The first is primary user, the emergency first responder. This user will only need access to the
map view and system status overview, their user interaction state diagram is shown below.

Figure 32: UI State Diagram - Primary User

The secondary user will be the administrator of the system. For secondary users the interaction
is much more complex and require a more in depth level of user interaction. The secondary user
interaction state diagram is shown below.

Figure 33: UI State Diagram - Secondary User

68

10.4.2 UI Mock-Ups

In the Proof of concept a simple console output displaying only the basic information such as the
MAC address, RSSI and distance calculations between each beacon and id tag would be shown.
Similar to the figure presented below. This UI is just to demonstrate the feasibility of the initial
beacon systems.

Figure 34: PoC Console UI

In the prototype phase of development, the user interface would resemble a wireframe of the final
implementation. A simple box map is used to display user location in near real time similar to
the figure below.

Figure 35: Prototype Box Map Layout View

69

In the Final phase of development the user interface would be complete, resulting in a UI that
would fulfil the necessary needs of all users of the system. The primary user would have access to
the map view and the system status view shown in figure 36 and 37.

Figure 36: Primary User Map View

Figure 37: Primary User System Status View

70

The secondary user, the system administrator will be interacting with the system configurations.
The administrator will be performing tasks such as adding/edit beacons, users, and maps or floor
plans. The GUI for secondary users are shown in the below figures.

Figure 38: Secondary User System Status View

Figure 39: Add Map View

71

Figure 40: Add Beacon View

Figure 41: Add User View

72

10.5 Engineering Standards

To create an intuitive user interface for optimal user experience, the team at TRIWAVE SYS-
TEMS will be following several Engineering Standards throughout the development of for the
Akriveia Beacon system user interface. The proposed user interface features two branch of com-
ponents, hardware and software. The hardware components comprising of electronic components
such as DWM1000 UWB radio modules and ESP32 micro-controllers for the device. The soft-
ware components is split up between data collection from the hardware and data processing.
The software also serves as a point of communication and control for the user. The two branches
should always inform the user of system operations with easy to understand and highly visible
status displayed through the user interface. Interface should also designed in a way that potential
errors are kept to a minimum.

These engineering standards published by the IEEE, the IEC, the ISO, and the CSA Group will
ensure an intuitive, safe and reliable user interface. Note that some of the standards pertain to
the user interface while others pertain to general safety guidelines. The Akriveia Beacon UI de-
sign will be built by and tested against the engineering standards listed in the following table.

Standard Code Description

CSA-C22.2 NO.61508-1:17 Functional safety of electrical/electronic/programmableelectronic
safety-related systems - Part 1: General requirements [26]

IEEE 1621-2004 User Interface Elements in Power Control of Electronic Devices
Employed in Office/Consumer Environments [27]

IEC TR 61997 Guidelines for the user interface and accompanying word choices
[28]

ISO 20282 Ease of operation for everyday products [29]

IEC TR 61997 Guidelines for the User Interface in Multimedia Equipment for
General Purpose Use [30]

IEEE P360 Standard for wearable consumer electronic devices [31]

C22.2 NO.0.23-15 General Requirements for Battery-Powered Appliances [32]

IEC 60417 Graphical symbols for use on equipment [33]

IEC 62366-1 Guidance on Usability engineering for software [34]

ISO/IEC 26907:2009 Information technology – Telecommunications and information
exchange between systems – High-rate ultra-wideband PHY and
MAC standard [35]

ISO/IEC 24730-62:2013 Information technology – Real time locating systems (RTLS) – Part
62: High rate pulse repetition frequency Ultra Wide Band (UWB)
air interface [36]

Table 24: Engineering Standards

73

10.6 Analytical Usability Testing

The Akriveia beacon user interface will be tested to determine the state of its usability at vari-
ous stages of development. The analytical testing phase outlines testing procedure that will be
done by the engineering and design team using heuristic usability evaluations. Each evaluator
will independently examine the UI and check for compliance and usability. After collecting the
results the team will discuss and compile possible solutions to usability issues and generate a list
of solutions. Finally, the redesign will be implemented and regression testing will be done. The
analytical usability testing will take place during the prototype and final product phases of devel-
opment as the user interface is well defined during these two stages. The testing procedure will
follow the steps described below.

Step 1: Usability Research Data Collection

The first step is to collect data generated by the usability test. Each evaluator will perform tasks
outlined in the analytical usability testing procedure under Appendix A. From the procedures
performed issues will be highlighted and documented. Each issue will have the following:

• An issue identification (ID).

• Note where it happened (screen, module, UI widget, flow, etc.).

• Task the user was engaging in.

• Concise description of the issue.

Data collected will be shown in a table similar to the table below:

ID Where Task Description P1 P2 P3

1 Login Page Login with wrong Password No error message for wrong
user name input

X - -

2 Map View Click on beacon icon Beacon info text too small - X X

Table 25: Usability Test Results

Step 2: Issue prioritization

Once sufficient testing has been performed by evaluators of the team, issues must be prioritized
as time and resources are limited for this project. Each usability issue receives a grade of sever-
ity, influenced by factors such as:

• Task criticality: Impact on user if the task is not accomplished.

• Issue frequency: How many times an issue has occurred with various participants.

• Issue impact: How much has it impacted the user trying to accomplish the task.

Step 3: Solution Generation

With the combined feedback and evaluations, the engineers at TRIWAVE SYSTEMS will re-
evaluate possible UI designs for each usability issue that occurred during testing to determine
the best and optional solution. A list of recommendations and solutions will be generated with
usability test results. For each design decision several alternative solutions must be generated to
include other possible ways to address the issue.

74

10.7 Empirical Usability Testing

This section details the completed empirical usability testing with users and outlines the meth-
ods of testing required for future implementations. Empirical usability testing will be carried out
by the engineers at TRIWAVE SYSTEMS to systematically determine the usability of the user
interface design of the Akriveia Beacon System.

During empirical usability testing, testing will be carried out in cycles with real users consists of
volunteer participants. The first cycle occurs near the end of the Prototype phase and the second
cycle occurs near the end of the Final Product phase. Testing will be done with two small groups
of participants that are unfamiliar with project development environment. First group will be
asked to perform usability test cases outlined in Appendix A. An observer will document actions
and observations of the testing process as well as to keep note of average time to complete each
task, the amount of errors and error rate, number of tasks completed, and perform a sequence
analysis. Issues will be represented similar to the method mentions in 10.6 Analytical usability
testing. With the collected data the designers will re-evaluate the user interface for possible solu-
tions for issues. After re-design and implementation a second small group of participants will be
asked to perform the same tasks as the first group

From the results generated by participants the following usability elements will be addressed
throughout the two testing cycles and development stages.

• Easability: The familiarity and intuitiveness of the system and how comfortable the users
are with the user interfaces in general.

• Navigation: The reliability of the navigation sequences are, how easy is it for the users to
understand paths, and/or short cuts. Can the users easily retrace their steps or go back to
previous states if they have made a mistake?

• Responsiveness: Does the users receive sufficient feedback from interacting with the sys-
tem?

• Intuitiveness: How quickly can a new user familiarize themselves with the user interface?
Whether or not the users are able to perform tasks within a certain amount of time?

• Robustness: Safety and reliability of the device and system are addressed by eliminating
or minimizing potential error (slips and mistakes) and enabling error recovery.

By following these usability testing methods mentioned above for the Akriveia Beacon, the engi-
neers and designers at TRIWAVES SYSTEMS can ensure a reliable and intuitive user interface
will be produced to meet the needs of its end users.

75

10.8 Conclusion

The User Interface design for the proof-of-concept, prototype, and the final product of the Akrieva
Beacon system developed by TRIWAVE SYSTEMS is detailed in this appendix section. Cur-
rently the conceptual framework of the Akriveia Beacon system is under development, with the
primary circuitry and initial interfaces under design and early implementations. The major fea-
ture to be implemented is the wireless communication interfaces and protocols between anchor
beacons and ID tags; the control and data processing unit are also in parallel development. The
final project goal is to showcase the Akriveia as an accurate, reliable, modular, and simple so-
lution in providing automated indoor location tracking with near real time and multi-tracking
capabilities.

This appendix outlines a study of the user analysis, and technical analysis for interaction be-
tween the system and its intended users. As well as an overview of engineering safety and stan-
dards to ensure that the Akriveia Beacon system is safe and reliable for its designated users. An-
alytical usability testing and empirical usability testing will be performed to ensure that the ba-
sic system functionality, aesthetics, stability, and reliability are completely sufficient with of all
planned requirements satisfied.

With the help of the Akriveia Beacon system, under the intended scenario, primary users of the
system such as fire fighters and first responders will be able to locate trapped personnel with
minimized search time; therefore, lowering rescue time and allowing for higher survival rate for
trapped victims during the event of disasters.

76

11 Appendix References

[23] D Norman. The design of everyday things. 2013. url: New%20York:%20Basic%20Books..

[24] Mick M Dugan. Home. [online]. 2019. url: Available%20at:%20https://www.firerescuemagazine.
com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-

search-a-fire-building.htmlhttps://www.firerescuemagazine.com/articles/

print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-

fire-building.html%20[Accessed%2021%20Jun.%202019]..

[25] M Rouse. What is discoverability (in UX design)? - Definition from WhatIs.com. 2019.
url: Available%20at:%20https://whatis.techtarget.com/definition/discoverability-
in-UX-design%20[Accessed%2021%20Jun.%202019]..

[26] Store.csagroup.org. CAN/CSA-C22.2 NO. 61508-1:17 — Product General Requirements
- Canadian Electrical Code Part II — CSA. 2019. url: [online]%20Available%20at:
%20https://store.csagroup.org/ccrz-ProductDetails?sku=2704154%20[Accessed%

2021%20Jun.%202019]..

[27] Standards.ieee.org. IEEE 1621-2004 - IEEE Standard for User Interface Elements in Power
Control of Electronic Devices Employed in Office/Consumer Environments. 2019. url:
[online]%20Available%20at:%20https://standards.ieee.org/standard/1621-

2004.html%20[Accessed%2021%20Jun.%202019]..

[28] Webstore.iec.ch. IEC TR 61997:2001 — IEC Webstore. 2019. url: Available % 20at :
%20https://webstore.iec.ch/publication/6269%20[Accessed%2021%20Jun.%202019]..

[29] ISO. ISO 20282-1:2006. 2019. url: [online]%20ISO.%20Available%20at:%20https:
//www.iso.org/standard/34122.html%20[Accessed%2021%20Jun.%202019]..

[30] Shop.bsigroup.com. PD IEC TR 61997:2001, IEC TR 61997:2001 - Guidelines for the user
interface in multimedia equipment for general purpose use. 2019. url: [online]%20Available%
20at:%20https://shop.bsigroup.com/ProductDetail/%20[Accessed%2021%20Jun.

%202019]..

[31] Standards.ieee.org. P360 - Standard for Wearable Consumer Electronic Devices - Overview
and Architecture. 2019. url: [online]%20Available%20at:%20https://standards.ieee.
org/project/360.html%20[Accessed%2021%20Jun.%202019]..

[32] Scc.ca. CSA C22.2 No. 0.23-15 — Standards Council of Canada - Conseil canadien des
normes. 2019. url: [online] %20Available % 20at : %20https : / / www . scc . ca / en /
standardsdb/standards/28121%20[Accessed%2021%20Jun.%202019]..

[33] Shop.bsigroup.com. PD IEC TR 61997:2001, IEC TR 61997:2001 - Guidelines for the user
interface in multimedia equipment for general purpose use. 2019. url: [online]%20Available%
20at:%20https://shop.bsigroup.com/ProductDetail/%20[Accessed%2021%20Jun.

%202019]..

[34] Blog.cm-dm.com. IEC 62366-1 and Usability engineering for software - Software in Medical
Devices, by MD101 Consulting. 2019. url: [online]%20Available%20at:%20https:
//blog.cm-dm.com/post/2018/07/06/IEC-62366-1-and-Usability-engineering-for-

software%20[Accessed%2021%20Jun.%202019]..

[35] ISO/IEC. ISO/IEC 26907:2009. 2019. url: [online] %20ISO . %20Available % 20at :
%20https://www.iso.org/standard/53426.html%20[Accessed%2021%20Jun.%202019]..

[36] ISO/IEC. ISO/IEC 24730-62:2013. 2019. url: [online]%20ISO.%20Available%20at:
%20https://www.iso.org/standard/60379.html%20[Accessed%2021%20Jun.%202019]..

77

New%20York:%20Basic%20Books.
Available%20at:%20https://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.htmlhttps://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.html%20[Accessed%2021%20Jun.%202019].
Available%20at:%20https://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.htmlhttps://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.html%20[Accessed%2021%20Jun.%202019].
Available%20at:%20https://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.htmlhttps://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.html%20[Accessed%2021%20Jun.%202019].
Available%20at:%20https://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.htmlhttps://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.html%20[Accessed%2021%20Jun.%202019].
Available%20at:%20https://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.htmlhttps://www.firerescuemagazine.com/articles/print/volume-3/issue-9/firefighting-operations/how-to-properly-search-a-fire-building.html%20[Accessed%2021%20Jun.%202019].
Available%20at:%20https://whatis.techtarget.com/definition/discoverability-in-UX-design%20[Accessed%2021%20Jun.%202019].
Available%20at:%20https://whatis.techtarget.com/definition/discoverability-in-UX-design%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://store.csagroup.org/ccrz-ProductDetails?sku=2704154%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://store.csagroup.org/ccrz-ProductDetails?sku=2704154%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://store.csagroup.org/ccrz-ProductDetails?sku=2704154%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://standards.ieee.org/standard/1621-2004.html%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://standards.ieee.org/standard/1621-2004.html%20[Accessed%2021%20Jun.%202019].
Available%20at:%20https://webstore.iec.ch/publication/6269%20[Accessed%2021%20Jun.%202019].
Available%20at:%20https://webstore.iec.ch/publication/6269%20[Accessed%2021%20Jun.%202019].
[online]%20ISO.%20Available%20at:%20https://www.iso.org/standard/34122.html%20[Accessed%2021%20Jun.%202019].
[online]%20ISO.%20Available%20at:%20https://www.iso.org/standard/34122.html%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://shop.bsigroup.com/ProductDetail/%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://shop.bsigroup.com/ProductDetail/%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://shop.bsigroup.com/ProductDetail/%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://standards.ieee.org/project/360.html%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://standards.ieee.org/project/360.html%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://www.scc.ca/en/standardsdb/standards/28121%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://www.scc.ca/en/standardsdb/standards/28121%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://shop.bsigroup.com/ProductDetail/%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://shop.bsigroup.com/ProductDetail/%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://shop.bsigroup.com/ProductDetail/%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://blog.cm-dm.com/post/2018/07/06/IEC-62366-1-and-Usability-engineering-for-software%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://blog.cm-dm.com/post/2018/07/06/IEC-62366-1-and-Usability-engineering-for-software%20[Accessed%2021%20Jun.%202019].
[online]%20Available%20at:%20https://blog.cm-dm.com/post/2018/07/06/IEC-62366-1-and-Usability-engineering-for-software%20[Accessed%2021%20Jun.%202019].
[online]%20ISO.%20Available%20at:%20https://www.iso.org/standard/53426.html%20[Accessed%2021%20Jun.%202019].
[online]%20ISO.%20Available%20at:%20https://www.iso.org/standard/53426.html%20[Accessed%2021%20Jun.%202019].
[online]%20ISO.%20Available%20at:%20https://www.iso.org/standard/60379.html%20[Accessed%2021%20Jun.%202019].
[online]%20ISO.%20Available%20at:%20https://www.iso.org/standard/60379.html%20[Accessed%2021%20Jun.%202019].

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Scope
	Intended Audience
	Design Classification

	System Overview
	Proof of Concept
	Prototype
	Final Product
	RF Fundamentals
	Received Signal Strength Indicator
	Ultra-Wideband and Time-of-Flight
	Trilateration Methods
	System Design Specification

	System Components
	MCU - ESP32
	Transceiver - DWM1000
	DPU - Raspberry Pi

	Hardware Design
	System Operation Modes
	Communication Protocol
	Beacon to ID Tag Communication
	Beacon to DPU Communication

	Beacon Design
	ID Tag Design
	Hardware Design Specification

	Electrical Design
	Power Management
	RF Harvester
	Electrical Design Specification

	Software Design
	Software Overview
	Software Stack
	Software Environments
	Software Languages
	Software Standards
	Frameworks
	Libraries

	Model-View-Controller
	Threading Model
	Data Processor Software Architecture
	Webserver Subsystem
	Beacon Manager Subsystem
	Serial Beacon Communication Subsystem
	Trilateration Processing Subsystem
	UDP Beacon Communication Subsystem

	Database
	Models
	Controllers
	View
	Security
	Software Design Requirements

	Conclusion
	References
	Appendix A: Supporting Test Plans
	PoC Test Plan
	Prototype Test Plan
	Final Product Test Plan
	Usability Test Plan

	Appendix B: User Interface and Appearance
	Introduction
	Purpose
	Scope

	User Analysis
	Technical Analysis
	Discoverability
	Feedback
	Conceptual models
	Affordances
	Signifiers
	Mappings
	Constraint

	Graphical Representation
	UI State Diagrams
	UI Mock-Ups

	Engineering Standards
	Analytical Usability Testing
	Empirical Usability Testing
	Conclusion

	Appendix References

