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A brief description of various types of boamdary value

problens }nd initial value probless is givea. Existeace aad

z

unigueness thnorals:and stability properties of thea are

considered. One of our main purposes is to survey the well-kmown

nnietical methods such as initial valoe appréqcﬁea;ﬂtinite

difference methods,. and finite elemeat methods for solving the

probleas . Then, various equivalences between the methods are

shown. Lastly, the high order finite differemce lethoﬁg“

13

051ng B-spllnes and Gauss points is treated.

considered by Doedel and by Lynch-Rice are discussed from a
dlfferentépbint of view. A relationship betveen the highk order

finite diff

Comparison gf opetatlon counts aand nnnerical results for:

Doedel' s methods, Lynch—ﬁice's methods, and collocation’zethods

frence lethods and collocation methods is presented..
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1. Iatrodection . . T

Por solving bdﬁndary value problelé'(B'P§£3t§r o:dihaty
diffetential equations (onns), the nost CORROR nu-crical methods
are: xnxtial value approaches; finite diffetance lethods; and
fipite elesent methods. One of the areas of considerable '7% '7§;¥

interest to nuserical analysts is the relationshxps betveen %
/iﬁ
these methods. Once somse equivalence has been found, properties

fwﬁfwé"iéfrﬁﬂ”té;g. the ptopetty of being vell—conditioned for a.

s ':‘,{a .

iultipié shoqtipg method) can thnzthé shown to apply to the
eqnivalent ones;' |

rhe main pn:poses of this thesis are to show eqnivalences
between some well-known. nulerical methods "and to give a clear

view of the hxgh o:der finxte dittetence lethods of Doedel [9])

and Lynch-nice {16]. o

 In Chapter 2, general foras for bb!s,are given to pelp‘ el
maintain basic understanding. Before initodicinq numerical
methods, existence and‘uniqneness theoreas for the #61utio;s of
géneral~initial value problemss (IVPs) and linear:B'Ps are s
“mentioned. Since it is extremely difticnlt\to estiﬁlish
existence and unlqneaess theoreas for general BYPs,{ there ate

—oniyfsﬁme—fet—restricted—B1?s—1tﬁspecia1“cases**0n94of‘t3614ttat*“““‘

L W)
~ 2

stability properties of Ortega [ 18] for limear I¥Ps and BVYPs are

provided. It is shown in Lentini-Osborae-Russell [ 15) that the -
r .
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vell-conaitio#ing of a BYP»ié?teiated to two bo;ﬁding
quaétities: one involving the boundary Qonditions and the other
involving the Greem’s fuaction. rheif.teéﬁl; is described also.
Having ve}liyosed'ﬁtrs in hand, we consider nunericﬁ; methods
for solving them. In Chapter 3, to ptgpare the groundvork needed
in the snbsqugng_chapters, th?k-ell-kndyp iet&ods are
introduced, viz Snpetfositiénf simple shooting, lultipieirb
shooting, and invariant imbedding for initial value aﬁproaches;

- L}

S _
trapezoidal rule, midpoint rule, and Runge-KuttaBschemes for"

finiié aiffétégégmiefho&§; colid&iiioﬁ;méaiérkii.Vleigirgqhate,

and Ritz methods for finite element methods. Whem presenting the
~ methods, séle?eqnivalences between them are easily seen as they

are introdqced; e.g. eqnivalgncé betveen discreté Galerkin and

.collocation and equivalence between discrete least square and

_collocation. ] e

Since finite difference methods involve unknowns which
c@rtespond directiy to appfozilate solations at'lgsh points, in
~Chapferru equivalences between finite qifferdnce methods and
some other methods are elghasized. Tﬁey include the trapezoidal
tn;e and collocation; the ;idpoint rule and collocation; N
Bnﬁge-xntta’lethodé and collocation; the Box schelé and sultiple

shdqfing: lhltipie shooting and collocation; multiple shooting -

and invariant isbedding; and the simple Ritz and fimite

\/7‘

" difference methods. While all of thea are probably knowa, some
~are not in thé“literatnre. Altbough in theory, two methods are
shown to be eguivalent mathematically, i.e. they have the same

——

-



solution set, iﬁJpracticeltbeir properties (e.g.rorder of ‘—‘f
accuracy) Ean be. different. This différence is particularlyit‘
isportant from a ccaputational point of viev. - .
An inveséigation vas lade forihigh order finite differencé
~methods considered by Doedel [9] and by Lynch-nice.[16]. The
aain‘iifference betveen their lethéds is that Doedel's methods
include noncospact approximations while Lynék#nice do not. 1In
cha-tertiiﬂﬁhe constraction of high order finite difference

methods derived by Doedel is presented. ‘Order of consistency and

tfsgabillty of the scheles are also dlscnssed. Por a general n-th

?',order linear differential equatiom, choice of a set of auxiliary

points which gives one higher crder of accuracy is given. For
the special n-th order differential equation l=Dn, formulae are

ptovided_to evaluate the uniguely determined right-hand-side

‘coefficients of the approxisations, andulo_flndAtheglocation,ofngWWWQ

the special auxiliary points which give the order of accuracy as
bigh as possible. An obvious equivalence between these methods
_ and collocation lethods is given in Sectibn 5.5. This
eguivalence appears to have not been pgéviously observed and not
shown in either Doedel [9] or in Lynch-Rice [16].

VOrk estimates for the finite difference lefgods for

general n-th order differential egquations are provided.

Cdiﬁétiébhﬂbfwéonputatinnal work of Doedel's schemes and of

- Lynch-Rice's scheames is offered for general secomd order o
differential equat1ons. Lynch- Rlce [16] also compared their

lethods with five other methods, but the conparlson here is



= J

based on the Langrange polynomial interpolation basis functions

rather than the set of basis functions they considered. Prom the

operation counts, we conclude that Doedel's methods are more
efficient than Lynch-Rice's schemes for same ordg;s of accuracy
if ore takes as fewv auxiliary points as possiblé. In Section
5.8, numerical e:alple§~shov that Doedel’s schemes with one
auxiliary point are competive with Lynch-Rice's schemes. Hence,
met hods using one auxiliatyrpoint are the most eff}cient of the
high order finite difference methods. Conpafing some n?'é:§¢§;,,
resuits of the fi&ite difference methods with that of
collocation methods using B-splines and Gauss points, one finds
that ihe finite difference methods can require a large number of

subintervals to achieve any significant accuracy.

The last Chapter of the thesis is Chapter 6, the

conclusion. T




2. IVPs ahd BVPs

We begin with a brief account of some of the basic
prerequisites: general IVPs and BVPs, existénce and uniqueness

theoreas, and problem stability.

‘

2.1. Standard Problems for ODBs

In tﬂis section, éoie standard,problens which cortéSpondr£o'
the most coamon foras of BVPs aie pregenfed. Since iays to
numerically solve BVPsS can be closely connected with -eghods for-’
solving IfPsﬂ and since the theorj of IVYPs is closely felated to

that for BVPs,a treatment of IVPs is considered also.

2.1.1. IV¥Ps

The general IVP can heg vritten as a first order systea

(2-12) 3 ()=E (L, 7 (V) t>a

(2.1 y(a)=gt " | ~
Vuhere Y E)=(Y (), Y (t)seceeerY (t))r is the unknown
function, f\(tl Y):(‘f"‘tIY)lfz(FOY) '...,.'fn {(t,y)) is the

nonlinear right hand side anmd A is a knovn n-vector of

initial conditions which completely determes y(t).

W

\
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A bhigh order ODE

(m) ' (»-1)
Y (t)=f(t, ¥, ¥'sece-,¥ )
B . VA ,
can be converted to the first order form (2.1a), by letting

ks

Y1(t)=1(t)

y (t)=y'(v)
P4

J‘oto

{a=1) —~
y (t)=¥ (¢) .
. ,

The ODE has the equivalent fors —

y'=f (t‘ol' ¢y geceerYy ) .
| B 1 2 ]

similarly, a systeam of high order ODEs can be reduced to a set

of first order equations in this wvay.

In the sispler case wvhere the IVP is limear, (2.17) is

simplified to

(2.2a) Y (E)=A(E) Y (2) +£ (¥) a0 v
(2. 2b) y(a)y= &

vhere A({t) is an n x n matrix amd f(t) is an n-vector valued

6)



function of t. L ,Q,f"”ﬂ,
The linear system (2.2a) is called hopogepeoys if f()y=0,

and jphomogeneows othervise,

P

2.1.2. BVPs

Unlike IVPs, solutions to BYPs are not completely
determined by initial informatiom; the information is given at

tvo or more points vhich normally correspond to the boundary of

some physical region of interest. One basic form is the linear
tvo point BYP

_{2.3a) y'(t¥=A(gAl(t)o£Jt) ast<b

(2.3b) B y(a)+B y(b)y=

vhere y (t) and‘g(t) are n-vectors, A(t) is an n x n matriz, a

and b are finite or infipite and o« is a constant n-vector, B,

|
6 it e oo
I

and B, are n x n -étripes corresponding to n boundary
conditioans.

Por {2.3) to have a ;niqne solution, it is necésspry but
not sufficient that these boundary comditions be lineéflyﬂ

independent, i.e. that the matrix(B; |B,) have n linearly

independent colusns or simply rank(B‘,Bb)=n.

BC of the general form (2.3b) are called poaseparated BC
since ggch,in1n1;es_intoIla1ion4ahontii}tygat—bqéh—ené—points.
If rani?Ba)<n or rank(Bb)<n, then the BC are called partislly
separated. The BC areicalledugggg;g;gg,it they can be siaplified

Al g A g Rt g bl
bt s o ; E

e aias h-‘-'«‘@‘“*ﬁif’i‘-{ﬁ”uﬁ LSy g

fih



C yla)=#
a” 1

C y(b)=ok | ) . 1 |
_ b~ 2. o , L
vhere T, isapzxn latfix o Cp is an (p-p)x n lattix » and

p=rank(8a).

A general linear multipoint BVP consists of the ODE (2.3a)

and multipoint BC

) o .
(2.30) = syfrede -
=133 :

vhere B/v-..-,B are p x n matrices, & i?n n-vector and a=f'<

{, <aee < =b.

A nonlinear two point BYP can nornaliy be expressed in the

fora 7
{2.48a) - ‘Ayi(tfffft711t11’:i - astsh——— o s e
(2. 4b) g(y(a),¥(b))=0

vhere g=(9§ ,...,9 ) and 0 is the zero n-vector.

1 n
ﬂ

A nonlinear mth order (scalar) BVP normally has the fora

(») (=1
(2. 5a) Y (t’=f(tc’(t)"'(t)'°0°ft’ A (t)) ast<b )
v (n-1) (n=1)
(2. 5b) g(y(a)seeeo,Y (a) o Y(D) yoeuory (b)):i
uhg:g'izLShL‘inxollesgn-xectorsgandOco::espoad%;qvtotke

BCS.

In the“limear case, (2.5a,b) siaplifies to



(») =1 ()

(2. 6a) y (t)y= a (t)y (t) +£(t) as<t<hb
3=t 3 ‘ o
a1 (L) (1)
(2. 6b) [b vy (a)#c Y (b) EY <4< .
- 1=0  3j1 b 3 , o

As in the IVP case, {2.5a,b) and (2.6a,b) can be converted to

the first order_systels (2.8a,b) aﬁd (2.3a,D), respectivelj,

vhere the unknovn solution is y(t)=(y,Y',...,

(=1 T : e e

) 4 bo.
The most genmeral BYP ve counsider involves a sjsten of ODEs

of different orders with nnltipoint@nc vhich is called a mixed

order system and can be written as

(n ) o (2 -1 (a =1)
i 1 « o a -~
(2.7a) 'y (t)=E (oY seeeY oY seesY ) ast<sh 0
i i 1 1 2 d -
=£ (t,z(y(%))
1 -,
(2.7b) g (z(Y(t ))=0 1<€i<n
i~ i !
T

vhere y(t)#(y1(t).....yd(t))

(m -1) - | (m -1)
1 2

Z(T()):=(F () 0X' () seucs] ()oY (£) youeol  (t) yenos
Al 1 1 1 2 2

d
Y t)) a=t <t <...€t =b and n:= = m .
a 1 2 n i=1 1



Before introducing nu-e;ical methods for solving thé above
ptoblels, existence and unigeeness theo:ens of the soittions of
the problems are givea in the follouing.
The 2.1: Let f(t,y) be continuous on D={(t,y): astsb, "y-aﬂsn; .
vhere || .|| is some vector norm, and satisfy a Lipschitz condition
vith respect to Y on D, that is, there is a constanfrl, such T
that for any {tyy)amd (trz im D

|£eceen-tee,) < "y-zg

If [f(t,y)|| s #on D and c=min{ b-a,R/N }, then (2.1) has a

unigue solution for astsa¢c (see Keller [12] ).
Dnfortunately, since it is extremely difficnlt to provide a

result like the above for gemeral BYPs, there are only existence

and uniqueness theorels testricted for BYPs in special cases.
Many of tbel relate to an importanst class, the second order BYP
(2. 8a) Yy (t)=f£{t,y,7") - . ast<h : P

(2.8b) y(a)=d » Y(b)=a .
: 1 2

Potrinstance: (Bailey-Shampine-Waltman [5] )
™e.2.2 : Suppose that f(t,y,y*) is 5pntinuons on D=[a,b] x (-0,
) x (-o0,0) and satisfies ihere a Lipschitz éondition, i.e. tﬂete

exist constants 1L and K such that for every (t,y,y') and

(t,z,z') in D
lf(t,y,y')-f(t,z,z')g < K [y-z| <1 Uy'—z'".

If b-a<2el{L,K) vhere

10 -



(
I 2 -1
——=——== COS L/72 K i1f &Kk-12 >0
(4K-L2) - A )
y
ot (L, K) = 2 - | S—
cosh L/2 K if BK~-L2 <0
(L2-4&K) L>0,K>0
2/L ' if 4K-12=0, L>0
At 00  othervise =,

then (2.8) has a unique soluotion. This result is the best =

*

possible.

ihile for general lilcar B'Ps, vhcn the ptoblol is expressed in

terss of an associated IVP, a gemeral theorea is possible:

+
s

7

Thp.2.3 Assume A (t) ind iit) are coatiawous ia (2.3a). The BYP

' (2.3a,c) has a unique solution if and only if the matrix

: r
£2.9) Q:=B + 2 B Y(T)
T 3=2"31 73

is nonsingular, in which case the solution is

-1 r fj -1
y(=1(t)Q @- X B 1({) M)t(!)dﬂ)*!(t)
~ | =2 3 1] a

~ t -1
vhere y (t) =Y (t) Y (t)i(n)du, and Y(t) is the fundamental
a )

solution of (2.3a) -chh satisfies Y' (t)=A(t) Y (t) aStSb

and t(a)“I (see Kelig?’f12] ).

g;gg_: Let Y(t) be the fundamental solution that satisfies
the above conditions. By direct substitution, it canm be

shown that

1



r(t)=!(t)[(‘5*j' Y (u)f(u)aul=r(£)2 ey (t)
- -~ a - R di o

is the unidne solntion of (2.3). To satisfy the BC (2.3¢c),
must be chosen such—that 7 7
| r . [f3 -1 |
ap+ Z BI(]) Y (u)£(9) du= o¢ .
~ 3=2 3 3J)a -
Hence (2.34,c) has a unigue solution if and only if Q is

nonsinjular.

In this section, we discuss the stability piopetties of

IYPs and BVPs. In genetal, vhen conputing a goantity y froa data‘

t by some nunerical method N, a pgéhle- is called unstable or.

111-condzt10ned if %samall” changes in the data t produce 'lnrge'

kil el v

changes in the solntion 1 even it the method H is execnted Iith
no rounding error. The method A is called n;letigally unstable
if small rounding errors introduced when using B produces large
errors iﬂ the solution y evea when the data are exact. is a
rule, one should mot try to compute nunericglly unstable
quantities, and one should not use nune:icnlly snstable sethods

(Pranklin {10] ).

,_Qggjgigig;;"consider4thegi:itiaiuvaine—ytoh}c;f

(2.103 YU(t)=f(t,y) tda
vhere !(ﬂ=(y1 (B eeery ()Y . T
- . n

12

by
k
5
i
E]
5
#
‘g
El
o



e ﬂ}.nﬁoﬂfﬂﬁsﬁcﬂiﬁm respect to cnnge in°

the initial conditions y(a)) if given any £ >0, there is a $>0. so

th;t any other solution y(t) of (2. 10a) for which

[r@-r@l <3

*

_ satisties
(2. 11) uy(t)-‘f(t)” €&  for all ®a . , |
The solnﬁon?;(g is gy r m if, i.n tddition to_ﬂ
(2. 11) : ' . ,
-~

. P o
(2120 fre)-y(v)]| -»0 as t -3

" and y(t) is relatively stable if, instead of (2. 1
(2-13) h(t’;i“’“ selyo]  for all tra
Por the séZciai case of the limear constast coefficient
probles | o “

(2. 10¢c) ' (t)=A y(t) t>a

W

Ihe 2.8 The unigue solutiom of (2. 10c,h) is stable if and oaly
if all eigenvalues of A have nolpositive teal part and any
eigenvalues with zero real part bélongs to a 1x1 Jordan block.
Purthermore, J(t) is asymptotically stable if and only if ail
eigenvalueé of) A have negative real part ( Ortega [ 18) and

rranklin [11] ). .

stabihty can ‘be fairly eggily characteti.ud (see Otteqa Ll&l).,,m

'"m;'rif’s*hrtm of elgeuﬁlus of A with saximsal real

- part, then the solution y(t} of (2-10c,b) 1is relatively stable

if and only if 2‘3': has a componant in the directioa of a principal

13
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- associated vith o (Ortega [18] ).

When A is a function of t, the eiggivalnes of the Jacobian
of A(t) can change sigm, so it is only «pbssibl_e to give a
characterization of ‘stability corresponding to The.2.8 which is

*local. .

Wow, consider the stability theory for B¥Ps. For

sri.lylicity,‘sonly the two *point linear BYP (2.3a,b) is

considered. _ ‘ ,
,-’a-—/ ‘\:
- Assuse (2.3 a,b) has a unique solutionm y(t) and also, t :

lafrices By and B,i, 1; (2.5!:) mare scalgd such that
SR LN R TN B

then (2.3 a,b) is stable if for anyg¢> 0, there exists af§>o

such that the fblioving is satisfied:

if l&!{l&%ﬂ '"B"-ﬂ' |s£u;ss there is a b’ >a (independdt of ¢ and

" § ) such that for any b2b* for which both (2.3 a,b) and the BYP
“ (2.3 a), |
(2.3b%) .B ;(apﬁ y(b) = & '
a“ b™ - .

vhere B =B +§B , B =B +§B ndéﬂf[ﬁ are vell~-posed, thea
: - . a a a b © b =

"the’fespective soluticn J(# and ?(t} satisfy

(2.15) | 1-7]| := max fro-Fw || <¢ .
-~ agep " =

If we express the solution y(t) of (2.3 a,b) as o

(2. 16) Y (E)=X () s+ v (t) asts<b
wvhere Y(t) is the o x n funda-ent'al solution msatrix which

satisfies - ’ - ' -

14



(2.17a) Y(a)=I | o
and :jt)»is a particular solution of (2.3 a) . _
Substituting (2.16) into tf; BC (2.3 b), ve find that s is

required to satisfy

(2.18) Qs=§

vhere Q=(B +B Y(b) [ LT
~ o
ol=d-B v {a)-B v{(b) -
- 7 a7 B e

*ﬁf?ﬂfgoﬁi'fﬁ differential equation (2.3 a) subject to

the perturbed .BC = \\\
’ ~ ~ Pa)
(2.19) B y(a)+B y(b)=« *
av b h
' A A
vhere SB :53 -B ,5B :=B -B .o and &d:=:-: are "sspall™,

a a a b b b

-Prom Tha.2.3, since the nomsimgularity of problew (2.3 a,b) is
| equivalent to the nomsinqgularity of the latrixvd defined ih
(2. 18) vhich is the special case of (2.9) with r=2 ,‘f,=¢, and

fzzb, it is tempting to take the condition namber of Q

'cond(Q):=’LQ“ “ 9-11‘

as an indication for the comditiom number of the BYP. This

-

- guantity hovever, turas out to be rather nisleading at timses.

Ihewzeasoawis—%hat—ereeh%tinséthemeffectsipf—tia‘fwnﬂzlilti1

matrix Y(t) which is the solutios of (2.17) subject to the

initial values (2.17a), rather than the BC (2.3b). Thus, if the

IVP behaves very differently than the BYP, Q may be

15



ill-conditioned evem whesn the problem (2.3a,b) i's not.

; In‘g?neraly write git) as ‘ \
T=1 (t)3hv (1) ast<b

and dé;ine Ss:=§?s. We get -

QSs- oA 1=l - "MSB y(a)+SB y(b) .
b‘

Now, the relevant gquantity is - o
, R , 7

y(t)-y(t)=t(t)58, not Js alone,
so an indication of the.condition of the problem (2.3 a,b) is

-~ ‘
the number , o "

(2.20)4 K := max ltmo-1”
1. ast<hb

rather than cond (Q).

The solution 1‘1t) of (Z.Ja,h) can also be expressed as

-1 b
“t=r(t)o « ’f G(t.s)t(syas _
-~ S a- A el

where Q0 is in (2.18), G(t,s) is the Green's functiomn for

(2.3a,b) . -

© The perturbatioms in the BCs give perturbed solutions which are
- related to Iy*(a)H y *(b)l » and hence to G(t,s). Thetefore;
condxtionxng of (2.3a,b) is also related to the boundedness of

the Green's fnnction G(t,s)

S r.21) k =(-a) 1w [ee,s]
2 _agt<h " S
as<s<h ’

({Lentini-Osborne-Russell [15)].

T

16



S It wobuonsthat—kl doesnt't depend on the particular
choice of fundamental satrix Y. If $(t) is any n x n fundamental
matrix satisfies (2.17), then there is a nomsingular n x n
matrix P such that 3(t)=Y(t)P . Hence,

00 = mas frencs y

k = max fY(t)o |[= max-[Y(t)[B ¥(a)*+B Y(D)
1 a<t<h' - a<t<b a ,

o= -1
max 1§(t)P [B §({a)P +B 3(b
t a

1

1 -1 °1

U}

v - ) - ) -1
T EIOT A fra» mamy |

= max |E(t)[B F(a)+B F(b) ] ” .
Tt a b

‘Therefore,to estimate the comdition number of (2.3 a,b), it

is tempting to use the bound

T T T *"7r*"*’;f:7
nax |§(t)” E[a §la) +3 F(0) ] ﬂ .
If we choose F(a)=I, i.e. F(t)=Y(t), then this bound will
N A ,
frequently be misleading. Indeed, if Y(t) increases
‘expomentially as t increases, then this bound is approximately

cond {Q) . To obtain a more realistic estimate, F(t) must be

propetiy scaled. In ,particula:,‘f"let

Ft)y={y (t) roe .,ﬂ;P Weﬂmﬁﬁfmlnuon matrix
1 ,

N L
2.22) ' _
max H@i(t)ﬂ = mx prj m} s

17



Then the conditiom number of (2.3 a,b) can be approxisated by

-

(2- 23 K =k (b):=“[8 F(a)+B ¥(b) ]
1 1 a b

Hence the result fcllows:

Snpp;;e the BYP (2.3 a,b) has a unique solution, then (2.3
a,b) is vell-conditioped if k'(b)=o(i) in (2.23) as b-»w, and
ill-conditioned if 1/kl(b)=o(1) as b -»w,

Bxasple: ( Lentini-Osborne-Russell [15] ) | ;
Consider the BYP |
T +7=0, Y (0 =0=y (bj ,

tben after some computation, k (b)=(1+cos b)/sin b,
1

vhich means that for b away from sultiple of T, thé solqtion is
not sensitive to small changes in the BCs. However, when b gets
close to a multiple of T, tke problem is upstable. |
Stability properties of B¥Ps can aiso*be*indtcated"byhfhe'
condi tion of the problels.i
After investigating the existence and uniqueness of the
solution of given problems and the stability of the problels,'ve

then consider nuserical methods for solving these probless.

18
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3. Numerical Bethods for 'Solviag BVPs

Most of the.interesting equations wvhich cccur in practice
require that their solutions be obtained by numerical means. In
this chapter, some well-knowh numerical methods fqt solving BVPs
are discussed. FPirst, initial value techniques, then finite
dif ference methods, and finally finite element methods are

_discnssed.

3.1 Initial value Approaches

Initial value techniques play an important role in the

numerical solution of BVPs. The basic process is to solve BVPs

'by solving IVPs with some arbitrary initial conditions, then

. : L3 ‘
find the solutions by satisfying the given BCs. In this section,
several initial approaches such as superposition, shooting,

stabilized march, and invariant imbedding are considered.

3.17.1. Superposition

Consider the linear BYP

(3. 1a) YU (t)=A () y (t) +£(t) ast<b
(3. 1b) B y(a)+B y(b)=« .
a~ b~ 7

Due to the linearity, the solutiom y(t} of (3.1) can be written

19



(3-2)  y(t)=7(tis)=Y (t)sey(t)
vhere !(£)=!(t;a)fis the fundamental solution matrix satisfying
T (t)=A (%) Y(P) aStsb
I{a) =1 vr , : ’ J
and 1(t) is a particular solution of (3.1).
Here, g is to be'detetlinéd so that the BC (3.1 b) are
satisfied, so ///

% =B [Y(a)s+v(a) J+B [Y(D)s+v (D) ]
a - b =T

=[B +B Y(b) }s+B v(a)+B v (b)
a b “ a” b™

or -
(3.3 os=d

wvhere Q=B +B Y (b) and
a

=)

£=d—B v (a)-B v{(b) . o o : I

If Q is nonsingular, then S can be obtained from (3.3) and
so the solution z}t) is constructed. The above procedure is
Acalled the method of superposition. Generally, initial value
lethods‘uhich involve solving the ODE over [a,b] as an IVP, as
the above does, are called shooting methods -{gee section 3.1.2).

When Q is formed, it is often ill—conditi?ned. Soaetiases,
this can be corrected by scaling, but nealizezihatuqﬁisw, _
nonetheless still ill-conditioned. Por instance,
conéider the problem

| : 100
y'*=10000y Y(0)=1, y(1)=e .



1 .0 0 0 cosh 100  (sinh 100) /100 }
Q=B +B Y(b)= BE
a b 0 0 1 0/\100(sins 100) cosh 100"

1 0 1 0

A short computation gives

~ 100 100
cosh 100 (simnh 100) ~ e e

100 2 200 .
» - ,
Q is ill-conditioned although by scaling (multiply row %} by

-1%°y | ve get a well-conditioned problena.
When the BCs are partially separated, a redyced
saperpositjon method as decribed below:can be used.

Suppose the partially separated BCs can be written as

(3. 4a) C y(a)=d
. a$ ‘1
(3. 4b) D y(a)+D"y(b)=al
av b~ 2
-where C is a p x n matrix of rank p, D and D are q x n
a L - L

L}

matrices with p*q=n, and o and d
: -1 =2

are p- and g- vectors.
#rite the solution of (3.1 a) and (3.4) as
T(t)=Y (t;S)=T(t) S+v(t)

vhere Y(t) is an n x g matrix of fundamental solutions

sastisf ying
(3. 5a) ¥ () =a () T () and
(3.5b) C Y(a)=[ 0 ] , - L
a ‘ ) PxX g i 2
and the particular solution l(t’ sagisfigs - e
{(3.6) C v{a)=d -
aw T

-

The q-vecior\i is determined so thqt'the q boundary conditions

£
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(3-4 b) are satisfied, i.e. L

(Y

0s=
D Y(a)+D Y(b)] is a q x q Satrix and
a b

vhere Q<
d=g =D v {a) -D v {b) a g-vector.
-T2 a” b~
%e need n linearly indepemdant inmnitial conditions to deteramine
v (t) and each coluan of Y]ti.‘uhile (3.5 b) or (3.6) only supply
wvith p conditions. Hence we augment C; by a g x n matrix 6 swuch
that
~ C
B =( a) is nonsingular.
a G
Then, require the initial coandition
0
o
A - 1 A
B v(a)= B Y{a)=/ 1I
a” 0 a q

where I is the g x g identity satrix. —— — -~ —
9

If we partition
B =[P | F ]
2

wvhere F has p columns and F has ¢ columms,
1 2

then ve have v (a)=F 4 and i}a)=r .
- 11 2

After 5 is obtained, tke—se%&t&ea—y{tffisfdeterltﬁed*

Although thgsnpgxpnsiiionnethndis~conceptsa1%1sﬁ?p}e'~

and works in many instances, it frequently gives very

ill-conditioned probless even when the BYP is well-conditioned.
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It has tvo major drawbacks: (Scott-!atts [23] )

1. due to the finite word length used by comsputers, the
solutions may lose their numerical independence. The
resulting matrix problem in (3.3) may be so poorly
condi tioned that s cannot be determined accurately,

2. related to the finite word length of the coamputer, a loss of
significance can occur even if the linear combination vector
s has been computed accurately. This 'ill normally occar if
the fundamental soluticn Y(t) is large\coqpare&‘to the

desired solution. - i , ) o S

"To overcome these difficulties. ohe can use l?ltiple
shooting (see section 3.1.3) or the stabilized latch method (see
section 3.1.4) to get a very well-conditioned matriz (Batthei
[nj) since they maintain stability by restricting the -

intergrations to ssaller intervals, or by keeping the solutions

nearly sutually orthogonal thus guaranteeing their independence =
over the entire interval. Also, norsalizing the vectors at the
jinitial point of each of the subintervals controls the growth of

solutions (Scott-Watts [23]).

3.1.2. Sisple Shootiag ,
K

r.

Simple shooting for solving — S

(3. 211‘ E'W . —astsh —
(3.7b) gly(a),y (b)) =0
is tbhe following: Pirat guess the unkanown jiamitial valwes at a,

23



8

say s. If ve denote y(t s) as the solution of (3.7) snbject to

the initial conditions y(a.s)-§! then the problem reduces to

finding a solution sY

equations:

P(s)=0  where P(s):=g (s, (bis)).

to a systes of n nonlinear algebraic

=]

One can solve the above systél by VWewton's method 1-g,rgiveni

So , then solve

(3.8)

J(g )AS =-5(§ ) s =8 +as |, k=0,1, 0.

k "k k

vhere J(s)j= 3P/ 33 -

Define
B = 29(s:iY(b,5))
a a’§_
B =ag(§:%(b.§)) .
b oY (L,8
By (3.7a),

) (u') af. - 2f ay

_i'—;S.

and by the definitxon of y({a:s),

Then

(3.9a)

(3.5b)

where

32(3;5) = J8 =1 .
a EXy

-

o

Y(t)= a;(t;g} satisfies
>8

LN

YU (t)= £ (L, (t:9))T (L)
T R

——

astshb

- Y{a)=1 ,

J(s)= 2F(s) = wg@_,!(b;gu
a8 )

i -

2%



=3g(S,7(big)) 35 + ogd(s.3(b;5)) 33(big)
. 28

28 98 ~ aY{b;is
_ = B I+8 Y(b) N
f i a b .
. = B +B Y(b) . -
a b

Thus, J(s) for the nonlinéar case is like Q invthe linear case.

Por this letﬁod and for snpe:position,‘one can use the
multiple shooting method to prevent the fundamental solntion'ri
fros beconing nnlérically depéndént 6r unbounded. fhié and

alternative methods are described below.

3.1.3. Bultiple Shooting

-

The multiple shooting msethod is a generalization of the

shooting method which is designed to avoid the build-up of

i errors arising from the computation of fundamental solutions . .

over large intervals ( Keller [12] ). IR

This is done by dividing {a,b] into J subintervals, solving
IvPs involving fundamental solutions and a particular solution
over each subinterval independently, and then taking the fimal
solutioﬁ as an appropriate combination of thgse solutioas vhich
satisfies the boundary conditiomns amd is coniinuous actgss

interior points connecting subintervals.

Lok e

A. Linear case:

Multiple shooting for sclving

(3. 10a) Y' (t)=A(t)y(t) +£(t) . astsSh §

™
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— (3v10br”"h“ﬁ5'11ﬂ1*3411b1=1ﬂ”*
avn b~

takes the foilouing general fori H

div1de [a b}l into J snhintetvals [t .t ] (1£j<J) wvhere
. i 3
v v . }

1 2 3 J J+1

The fundamental solution {i(t) and particular solution zj(t) on

‘ﬁj'tin ) are obtained by solving

S (3.12a) YT ()=A(Y)Y (B) e <kt
' 3 b] 3 L2
(3. 12b) Y (t)=F
j 3 3
for some given » x n matrix P , and
3
(3. 13a) VIR)=A ()Y () +E(Y t St<t
“j -3 3 1
_ e + T
(3. 13b) v (t )=v
~3 3 4]
) o . .
for some given vector v 1<3<3 -
Then constaut vectors c """CI are detersined so that ona{tj,
' tie ] the apptox1lation solution y(t) defined by
(3. 18) Y(t):=Y (t)c +v (t)  153SJ
™ 3 "33

is~continuous~ana”sztistiES”tE§WBC§.

B (Y (t )c +v (t ))+B (Y (t )c +v (t ))=¢o
a 1 1T~1+1 1 b J J¢e1 =J "I J+1 b

to be satisfied,
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(3.5 ° B P c+B Y (b)c =-B v -B v (b) |,

a1t b I 23T att bYg
and requiring continmuity at t  (2<4<J), i.e.
' 3
Y (t)cev (t )=pft )=Y (t )c +v (¢ )
SIS RS I B o B b o B o B
yields the conditions -
0 A ‘ )
(3.16) = Pcev =Y (t)c +v (t) .
37373 311 3731 vi-r 4
Writiny (3.15) and (3.16) in matrix form, we get

rBP ,,,,,,,B,,!'()-

Y (t) ©Fr

(3. 17 mc= -Y (t ),r

Sa

L.

B .0
«-B v -B v (b)
T 2%

0
v {(t }-v
1 2 "2
0
= Yy (t )-v *

v2 3 =3




.FPor the ”g@éﬁ&ardﬁ7;ui£ipiérsﬁ;oting case, F =I and v

7 b “3 -
(1<3J<J) (and therefore c =y(t )).
g “3 -~ 3
- The simplified form for this msethod is
. . -
B B Y (b
1. S | 23
-Y (t}) I
1 2
Ac= - (t ),1
e 2 3 B B
-Y  (t) 1
| -1 3 .
fa-5 v )
R |
v (t )
~t 2 (
vy (t) . =

B. Nomlinear case :

Consider the nomlinear BVP

T £ (e, y(e) astsh

X
gly(a,y(e=0 . |
As in case A, [a,b]) is divided into J subintervals [t .

3
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t ] 1<3<J , and the IVPs

I+ 1 ] - o e
(3.18a) . y' (t)=f(t,y (1)) t St<t
R RS R T 28
(3. 18b) ¥ (t )=c ©1€3<g
-3 3 -3

are solved independently.
The constants cj ¢ 1€J<J, are determined such that y (t) which is
defined by

y(t):=y (t) oaon [t ,t ] : 1<§<3
- -y s B 23

satisfies continuity agd the BCs, i.e.

Yy (t -y (t )=y (t )-c =0 1£j<J-1
3 3+ =341 P11~ J41 et T
“and |
g1 (a),y (b))=g(c .y (b))=0 .
-~ =1 =g -1 -3

Then the matrix fora -
‘

glc,y tbicy)y
T 71 a3 J

I

|

i
|

{3.19) *(c):= Y (t :c )-c =0

Y (t :c )-c

~J-1 J-=3-v 3} T

T
vhere 2=(Cc ,...,C ) amd y (t;c ) is a solution to. (3.18).
oM 3 -3 73
. 0o
¥e can solve (3.19) by Nevwton's sethod, i.e. given c , let

4
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SO T S 1 is1 1 i
' J(c Mc =~¢(c ), ¢ =c +ac i=0,1,...
W At -

- - -

wvhere the Jacobian matrix-J (c)= 34’/3 c-

Def iné

A 29(y (a3c )iy (b;c))
g (y{.,0))= _ " 1 1 ~J “J
a =~ = 2y (ai;c)
~1 1

29(y (ajc )iy (b;c))
g (yl.,c))= - i e e
b~w - 3y (bjc) .
~ -3 - g

From (3.18 a), we have

Yy ' 27 "' 2 foy
(=4) =_~3 =— =4
eC 2C o2y *

"3 ~3 37

and (3.18 b) gives

10

>Y (t 3¢ ) oc

-3 3°3="A=x

5 € ac 4 .
b ~3
2Y (tic )
Then Y (t3c )= 9 | satisfies
3 | 2 ©C
’ -3

' 2f(t,y (t;c)) ¢

Y (t;c )= T il | 5 Y (t:c ) t <t<t
) I | 27 : S | 3 3+

w3 .

Y (t ;c }= ' . 1€4<J ,

3 373 i} . -

and
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J(c)= 2 32

Y - (t ;ic) -1 1 .
J-1 J ~J :

Thus, to solve ¢(c)=0 by Newton's method, each iterationm

involves solving a linear multiple shooting problesa.
Indeed,’to get a stable problem, several multiple shooting
codes select the shooting points by‘attelpfing to satisfy
azjmtjﬂ )“ <k for some constant k. In wvhich case cond (N)=
ﬁ!ﬂl{H'Wl S{k+1) (k +k,J) where k, and k, are given in (2.20)
and (2.2%) . o o s S T S
~ The twvo sources of error using luitiple shooting are
1. approximating the fﬁndalental solution matrices and
barticular solutions, and

solving the linear system of algebraic equationms.

3.1.4. Stabilized March

The stabilized march procedure, like multiple shooting, is
designed to maintain numerical limear independence of

fundamental and particular solutions. While with multiple
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shooting the fundamental solution !j(t) and the garticular
solution lj(t’ are computed independently on each subinierval.
this is not done with the stabilized march. The stabilized march
also intends to economize on the multiple shooting method by
reducing the number of fundasental solution components which
sust be computed in the same way that reduced superposition
economizes on superposition { Scott-Watts [21]').

The pfocednre starts with Y (a) and v, (a) satisfying (3.5b)
and (3.6) giveh.*Suppose ve are given a fundamental solution
Y; (t) and a particular solution ¥ (v satisfying (3.5) and’(3.6)
for tth . Let !J(tj)={j, vhere P; is a n x ¢ matrix of rank q.
¥hen the solutions are becoming linearly dependent, say for
t=t.  , then a factorization o

J+i
3 i 2 0

| 0
(3.29) Y (t )=F =|r |F
P AR jerl p j+1) 41 P
j+ 1 i+ 1
1 2

is performed, where P . F . P are nx p, n x gq, and
J+1 G413

g ¥ g matrices. let

~ 1 ™
E
-1 j+1
E =P =
i+l 441 2
E .
L I
The initial data for v {t) is v (t ) = , Where v
3+ 3 hal i B S B L | ‘ 341

car be specified by B (v (t }-w })=0 and p additional
i+Y T3 d+1 T ia

coniitions.
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The process of computing a fundamental solution !;ft} and
initial values F; and ¥: atlii is continued for i=j+2,.p.. until
eventuallf the point t=b is reached. As for reduced
superposition, the computed solution is

(3.22 Y{t):=Y (t)c +v (t) t <t<t ) |
= “3 "3 3 g

If b=tJH . then requiring y(t) to satisfy continuity and the
BCs gives

Y (t Jc+v (t )=Y (t )c +v (t ) 1<§<I-1
j F+t 33 e &1 J+1 7441 it R0 B L3

0{' .
.0
(3.23) F c +v (t )=F c +w -
je1] P “3 -3 i9 Jj+173e1 » 541
i+ .
[ o
Noltiplying by 2 « then
E
i+
0 . 0 0
. c = : c - 2 (v (t )-v ) .
P b I: “3+1 | E “§ J+1 T e
3+ q AL
The last q BCs are D y(a)+D y{(b)=D (P ¢ +w )+D (Y c +

a p~ - a 1M1 71 b J°J

Y (b))=ol . In matrix form , wve have
3 -2

\
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~ - L
rD P D Y (b) c 5 -Dw -D v
a1 b J 1 2 a1 b J+1|
it &
-pP I c EJ% -y )
.2 2
Mc:= -P 1 c | = E(v -V )
3 ~3 3°3 73
2
-P I c E (v -w ) s
§ J Bl J‘ i J J 3
—d
shere v =v {t } {1<4<3) .
"3 v3-1 3

The stabilized march is not amenable to parallel processing
like multiple shooting. However, it does COlpuge.a smaller
solutions set and the multiple shooting points can be easily
selected automatically. It also has the advantage that rapidly‘
decaying fundamental sclution inforsation is Bnly needed in the
particalar solution, viz one may be able to adapt an initial
value solver such that it ignores these rapidly decreasing |
components in ilf?;ntegrations except thét for this one solution

vector (Lentini-Osborne-Russell [15).

3.1.5. Iavariant Isbedding

For simplicity, I only consider the BVP with linear

separated BC

34



4

(3. 24a) 7' (E)=H(t)y(t) +h(t)  a<t<hb

(3. 24b) B yla)=a , B y()=¢ .
a“” e b —

Suppose (3.28) can be reforaulated as

: sty B ] am £y
(3.25a) ( ) = " ) =( )
v(t) C(t) D(t) vy a(t)
wvith BC '
g (a) : u(b)
(3.25b) (K K )( )=« , (K ,K) (. )=(
0 1 v(a) 2 3 wpy o~

vhere 2 {t), f(t},g are p-vectors, :tt), g(ty, g are

g-vectors, n=p+q, A(t), X are p x p matrices, B(t), X are
0 1

p xr g smatrices, C(t), K are q x p matrices, and D(t), K
' 2 3

are g x q matrices.

The key idea in invariant‘ilbedding is to feplace ;\:>b
A@oint B¥P by a set of initial value probleas. 6ne standard vay
is to first express the solutionm of (3.25 a) in the form
(3.26) G{t)=B(t)y(t)+x(t) /
vhere R(t) is a p x ¢ matrix and x(t) is a p-vector.

Substitute (3.26) into (3.25 a)_ to get

- e
[B*+RCR+BD-AR~-B]v#H X' +RCX+Rg-AX-£f]=0

¥'=CRY+Cx+Dveg.
o~ L g . LBV

If ve require that the coefficienmts of v(t) vanish in the first
set above, and that (3.26) satisfies the BC (3.25 b) with the
coefficient of v(a) set to zero,

then the solutions are found by solving three IVPs
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R'=[ A (t)-BC (t) JR-RD (t) +B(t)

{3.27a) {

K R(a)+K =0 ) ’

0 1

© x*=[A(t)-BC (t) Jx-Rg (t) +f (t)

(3.27p) - - -

K x{a)=e : ’

o~ -
and

v'=[D(t) +C(t) R JveC(t) x+g(t)
(3.27c) { - == for ast<b .
[ K R(b)+K ]!(b)=@ ~K x (b)

2 3 ~ 27

The first equation of (3.27 a) ‘is called a matrix Riccati
ejuation (See Reid {19]) ).
Suppose Y (t) is a fundamental solution matrix of (3.24 a)

,that is

'=H (t) Y a<t<b det (Y (a) ) #0
, A(t) B(t)
where H (t) =/ - ;
C(t) D(t) »

If Ylt)/can be partitioned into submatrices as H(t) cam, i.e.

Y (t) Y (v))\}p
0 1

T(t)
Y (t) Y (t) /14
2 3 ’
P gq

and Y(¢¥) satisfies _
a) !3(t) if nonsingular on [a,b]}
(3.28) '
b) [K Y (a)+K Y (a) O .
91 13

then the solution R(t) of (3.27 a) may be taken as R(t)=
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Y, (), (t) ( Keller-Lentini [13] ).

After B(t),i(t), and»ljt) have been found, u(t) is easiiy
found,as‘a linear conhinition of thea, and the solution ljt) of
the BYP (3.24) is merely

a (t) .
y (t)=( ) .
=~ ¥ it)

Even though invar;ant imbedding has the disadvantage of
giving nonlinear ipitial value probleas (for the latr§x Riccati
equation), it may vell overcome the fblloving_tvo related |
difficulties of multiple shooting and stabilized march :

1. when the related IVPs are unstable, short subintervals are’
necessary, and | |

2. in the presence of rapidly growing/decreasing solutions,

scaling can be a constant prdblel.

3.2. Pinite Difference HMethods

Choose a mesh 1T zast <t,<....&t <t,,, =b. The basic idea

of theklethod‘involveé finding approximate éolntion values at

these mesh points t; by the following :

1. "form a set of algebraic equations for the approxisate
solution values by replacing derivatives with difference
quotients in the differential equations amd th?,b9PP§§£!ﬂ”,”,_,

conditions ,

2. solve the resulting system of equations for the approximate

solution. {Keller [12] }
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I start with a sisple example. ' e

3.2.1. A Siaple Scheme for a Second Order Problea
Consider the scalar BYP

(3. 29a) Lu(t)=-u'tea (t)u'far (t)u=b(t) o<t<1
1 -0

(3.29b)  uw(0)=at , u(N)=(}

wvhere a (t), a (t) and b(t) are continuous functions on
1 0 :

[0,1]- - -

Take a unifora mesh for this probles ,i.e. t:=(i-1)h,
i=1,2, 0000, 041, h=1/N.

Assuse the exact solution of (3.29)1exlsts. A mesh function

N+1

" {u } is sought such that 2 =uft ), i=1,2,...,08¢1,

j 3= , i i
The differential equation (3.29 a) is approximated by
a -2u +u Q -q

(3.30a) La(t )=L u =-_j+1 i _ji-1+a (t ) i+1 i-1
i Vi h2 1 i 28

%a (t ) #b(t ) ,
0 i i i , 2<iz<n,.

and the BCs (3.29 b) give

(3. 30b) g =, g = -
1 ’ ‘He l ﬁ

If (3.30) is written in matrix form, then therfol%ggiggiﬁi

tridiagonal system is obtained :
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/ I
2/hzea (t ), -1/h2+a (t )/2h
0 2 - 12 I —
-1/b2-a (t )/2h, 2/h2+a (t ), ~1/h2+a (t )/2h
13 0 3 1 3
-1/h2-a (¢t )/2h, 2/h2+a (t ), -1/hz+a (t )/2h
1 §-1 0 N-1 1 N1
=-1/h2-a (t )/2h, 2/h2+a (tr)
i 1 » 0 ¥ y
[ ] [ bt yeat(i/hzea (t )/20))
\ 2 2 1 2
A
g | b{t }
3 , 3
o - »
] b(t )
-1 -1
u | b(t )+(1/h2<a (t )/2h e
S R NS ARSI R A &
L J \ A

If a,(t) is positive, the approximate mesh function

Mt

. {u;} exists, the matrix is positive defimite, and the process

=t
of Gauss elimination without pivoting for tridiagomal satrices
is extremely simple anmd efficiént and stable (Ascher-Russell

(3n.

3.2.2. Ome Step Scheses :Trapezoidal Eule and Nidpoint Hule

Por a givem first order systesa of DEs, e.g. y'=f({t,y), if

one integrates both sides of the equations, then the left hand
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5
+

side of the integration directly gives the solations of

4

the DE.
Most finite difference methods imvolve converting to first order
sSystems and then selecting a discretization.

Comnsider the linear first order systen

(3. 31a) Ly (t)=3"' (t)=A(t) Y (t)=b(Y) astsb
(3.31Db) B (yla),yib) =B 7(a) *’anb) =0 -
[N av“ b —
shere A(}), B, and B are n ¥ n satrices.
a b

The two siaplest one step schemes, which use only
information about the approximate solution at t; to obtain the
approximate solution at t;,, rare the trapezoidal wethod and
midpoint iethgd. ‘ °

on a mesh M, a numerical solution [yi]z? is sonbht where

Y; is to approxisate componentvise the exact solution }(t) at :

t=t. and is required to satisfy the BCs

BlY .Y J*By +By =0 .
"1 -1 a2t prEdY

The trapezoidal method is defined as

b S { » o
LY = Ti+1 71 - 1/72[A(t )Y *A(t )y ] -
-i h ittt —ie i+-i : ,
. i IR
=1/2{b{(t )*b(t )]}, h =t -t , 15i<¥
i1t - | i ie1 i

and the midpoint method or the Box scheme is defiped by .

’ = [ — - e e ————— e —
Ly ="-is1"i - /2t Y 4y D=b(t )
i b iv1/2 =i+l i = iel/2
i ,
vhere h =t -t and't 1=t ¢h /2 ¢ 1€i<n.

i i+t 1 iv1/2 i i
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Por the nonlinear problem . - e L

{3.32a)

’ (3-0321") g (!\(a) I!_(b) )‘-’fc

the trapezoidal rule is givén by

Ny(t=y*(t)-£f({t;7)=0  ast<h

(3.33) g(y »,y =0
aalet Bt £ 2 B
3.34) | ’1 1- i /72[£(t f(t 1= 0
3. y =_1¢% - Y )* 2Y) :
¥-i T R “ il it i-i
i ,
¢

. 1<i<H ' ' e

and the amidpoint rﬁle is given by (3.33) and

- (3.35) "N_Yy = wi+l i -f (¢ t1/2(y +y })=0
W,i "_T_“"' Ev 1’1/2 -ivi+ ~
i
again h =t -t and t :=t +h /2 s 15i<H .

i i+t i is1y2 i i
P?r the nonlinear problél }3;3?5;71;Viéwgo£”51%fie;iﬁ to
fora the difference schemes (3.33)1(3.3&), and (3.35). The-ig
difficulty is in solving the resulting n(N#1) nonlinear !
algebraic equations, vhere n is the ordér of the first order
syste-(§.32a) and ¥ is the pnumber of subintervals. Por instance,

n=5 and N=200 gives more-than 1000 equations. We consider

Newton's method to solve the nonlinear problems. Prom (3.33) and

- (3. 38y, | I E
’ Ny =271 - 1720t .1 ,.m '.{Tl=o o
1

81
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. - l,’,! = "3 %2 - 12(£(t ,y }+f{t ¥ } 0
) -2 7 F® " 2w2 v 33 ot
2
(3.36) o~ ]
’n 1-’l 1/2[f(t ) +£ (t ) }=0
’ =" N+1 "W - Y + ) =
Tow = ®n l"‘l ~ N4t =Rl

g{y ,¥y )=0 .
S S P

Letting the systes of equations (3. 36) be P {(y)=0 where

T
P (l ) 4 l'“Y sreees ) o then
-1 =2 ,
. T
[ f.(t 28 ) A (t ,y)
=11 -1 nJ_I ‘1__.JL_2_
h 2 y 2 oy
1 - 1 -
‘ - L ]
SE(t,y )= . .
sY
- af(t ,¥) f(t  ,Y )
-1 1 -1 | el ,_1_1 -1 7 B¢l EHY
b * 2 aY 2 3y
» - !
231y oY ) ag(y Y )
=~ "1 “Eed ~1 - N+
ag_(a) 3 Y(b)
= J . -

Nevton's method becomes solving for v from the following



(3.37) aFw=J-| . =-F(y )

» v
“l+1J

- “~

if ¥ritten cosponent-wise, (3.37) gives

B
| -V n

(3.38) “i41 i -1/Z2[A(t  )vw  #A(t ) ¥ =M.y .
h i+l vi+t ivi -i
i
and
: R B
(3.39) B v 4B v ==g({y ,Y )
’ a~1 bTH+1 T 1 -H+
T R N+1 :
+ where (y } are known values fros a forser iteration,
“i i=z1
|
A(t )=2f(t ,y ),
i 3y 31+-3 :
(3.40) = )
' L BN R A
B = 29 (Y »Y ) ’ B= > (y .y ),
a  T3YTAY -1 T N+1 | b "3Y(B) -1 “H+1
T omed | > .
and the next iterate is given by y =Y ¢v , 1=V ,... 040,
-1 “ivi

The systen (3.38), (3.39), amd (3.40) is a linear systeas
of equationsrfor the correction vecto; {!;]:: ,¥hich looks like
a trapezoidal discretization of sonerlinear problems. In each
iierat@on ve have performed two operatiqns‘in’succession,

discretization and linearizaticn.
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Let y(m)(t) be an éppropriatelstgooth function satisfying
y""%t;)=y?, i=1,...,8+1. If we first linearize the differential

]

problenm
Ry=y'-£(t, ) =Dr-Lt.7),

Nevton's method is : ' ) .

0.
given y , solve
e 8 n
3.41) oNy wu=-¥y
&a_‘% -
r+] [ ] ’
and let y =y *¥, 2=0,1,2,cc.0. " .
Since d}=D-- 3§ v v .
2y a,!
(3.47) 1is
: 2 |
Du-~2f (t,y Jw=w'-af(t,¥y J v
. 2y 2y
] n »
==y 3-2 '-’i(tzZ) -

Now, if‘discretization(trapezoidal rule) fs applied to solve

these equations, f£01 linearizing the differegtial equation, ve
get (3.38) and {(3.39) . Thus, the two operations of linearization
and discretization are commutative for the trapezoidal schewme.

The iterative schese wvhere we first linearize and then
discretize is called guasilisearigatjion.

.

3.2.3. Runge-Kutta Schemes o : ¢



. The Runge-Kutta methods involverﬁsihé ;nly infof;atién
about the approxiyate solution at t; to obtaiq:the apéroxilate
solution at t; , . The generai form of a k-stage g!gggzggzsg
scheme for (3.32) on a mesh is. e |

.

(3.42) Y =y +h = [¢f
C-ittviioF=10 A5

3 ' 3
(3. 43) f =f(t ;;y+th = K f )
“ij = ij ~i i 1=1 41%il

(3.88) g(y .y J=0
halRadl Bl R 8

wherg'{t } are defined as t :=t +¢h f s 135k, 1<i<H
‘ ij ij i i'j

with 0<p <ﬂv<...<p €1, the "canonical points"™ .
12 k

The method is called gxplicjit if d3|=0 j21 and igplicit
otherwise. Both the trapezbidil“ruIE'ana‘iidpdiﬂt rule are
implicit Runge-Kutta schemes. The first is 2-stage and the

’

second is 1-stage.

3.3. Pinite Element Kethods

Like the finite difference methods, fimite element methods

attempt to find approxismate solutions of a BYP at a discrete set

of points‘by satisfying the BC and ODE simultaneously throughout

the interval. However, wvhen solved by finite element methods,
differential equations need not be converted to a first order

systes.
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Consider the scalar probles

. {m) a-1 (1)
(3.45a) Ly(ty:=y {t) - Zo a {(t)y (t)=q(t) as<ts<b
i= J ‘
B LR (1) (1)
{3.45b) Z {b ¥ {a)y +c ¥y {b) }=tr 1€ysm.
1=0 41 1 j

For finite element methods, the approximate soluotion is a spline
function s(t)ePy, ,; , vhere P, x, 15 a collection of spline
functions which are of order k (degree less than cr equal to
k-1) in each subinterval of T : a=t, <t ,<....<t, <t,, =b and are
~"1th crder continuous at every mesh point. The advantages of
selecting a spline space Py ,q1 are that high order methods
result and local basis representations produce banded matrix
equations. Por convenience, assume that s{t)é€ p:.ml . the
subspace of P y; consisting of spline functions which satisfy
the BC (3.45b). So the unknown solution parameters correspond to
V scme representaticn for s(t). Letting the approximate solution
be s(t)=,:§-‘ 9‘,%)- (t) where {¥;(t)} is a basis of p:,;,_l , M=dinm(

J

° ,ve determine dj r 3=1,+..,% by requiring st} to

x_ml)
satisfy the differential equations 1n one of several natural

P

ways. The basic types of finite element methods are collocation,
Galerkin, least squares, and Ritz methods which are described

below.

3.2.1 Zollocation Nethods
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For solving (3.45), the collocation solation s(t) is
required to satisfy the differential equation (3.45a) exactly at

B points {zi}:f| ( called the collocation points ) in [a,b],

ES

i.e.
; u
(3.486) Lsz )=L{ = ol 8 (z ))=q(z ) 1<i<N.
i =1 33 1 i
Thus collocation requires the residual r(t):=Ls(t)-q(t) be set

to zero at M peints. In matrix fora, (3.46) is

(3.47) Ccd =q
2] =]
vhere C:=(c ) ={LY (z))
i3 1,3=1 j o1 i,3=
T
$=(9(Z ) yee-0q(z2 ))
T
Bi={h yaes, el ) .
. 1 o

Suppose the collocation points 2z, are in the jth
subinterval and can be expressed as
h

z =7 =T + 37
kK i j+1s2 "2 i

where h =t -t , T =t +h /2 .
3 o3+ 3 /2 3 3
Let P (t) be the Gauss Legendre pclynomial of degree k. If
2 are chosen to be the zeros of P {t), t<i<l, and to
i . 1 H

satisfy -1(@ <) <...</)<1, themn z are called the causs
102 1 K

points. If p is the (i-1)st zero of [P (t)+P (t) }/ (t-1),
i 1-1 1
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2<i<1l, and -1=p <f <...<p <1, then z are called the Radau
: 12 1 ’

k

points. In the case that/O islfhe (i-1)st zero of P' (t),
i - 1-1

2<i<1-1, and -1=p <p <...ﬁ0 =1, then 2z are called’thé
1 72 1l :

k

-~

Lobatto points.

3.3.2. Galerkin Methods

Por the Galerkin method, the approximate solution S(t)=

H-
pA 05‘*j(t) is determined so that the differeatial equa tion

=l
{3.45a) is satisfied in the sense that

. o S
(3.48) Is(t)y (t)dt= g(t)y (t)dt 1<ism .
a i a i
That is, one requires the residual T(t)=LS(t)-g(t) to satisfy
b )
r(t)g(t)dt=0 for all 9(t)e? .
a k,m, 1

In matrix form, (3.48) is Ga=9q ,

] b |
vhere 3:=(3 ) =(J Ly (t)Y (t)dt)

l] i'j=1 a i'j=1
T
7:=(9 seee,9 )
- 1. H
(3.49)
[ [ !
= gty (dt,.a., (Y Y (L)dL)
S a 1 J a u
o T
ATF(X yeeesd ) .
- 1 o
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*  Unless the BYP is extremely simple, the elements of G and E
must be approximated by a numerical gquadrature. If the

gquadrature rule has the foras

b 0
(3.50) f(tyat = S w f(z) ,
a 1=1 1 1l
_ , : _%
the resulting discrete Galerkin method solution s (t)=
. | * .
S 4 ¥ (t) is obtained from the systea of equations
=1 3 3
#_t __t
{(3.51) G ok =g
* * H - H
vhere G =(3 ) =(Z v Lly(z )y (2))
ij i, =t 1=1 1 3§ 1 i 1 i,3=t
% % _* T ;
G =(F se0403)
—~ 1 |

: 5 | T
= 2 v 3@ I (2 )geees 20w q(z )Y (2 ))
1=1 1 1 1 i 1=1 1 1 8 1

E 3

»

* 7

(0 yeee,d ) .
1 |

—

§ 3\

The discrete Galerkin eguations (3.51) can be written as

-
(3.52) BDC« =BDg
", Q %,Q
vhere B:=(b ) =Y (z ))
i i=1,3=1 i3 i,i=1
P
D:=diag{wvw }
i 1=1

and C,q are in (3.47).
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3

If ¢=M and B is nonsingular, then the collocation and
discrete Galerkin methods are eéuivalent. Conpa;gd vith the
collocation method, the Galerkin method has the disadvantage
that the integral coefficients must be evaluated and the .
\advéntage th&t, for the sanme prdet of convetgenCe,"siootHer

spline functions can be used.

3.3.3. Least Sguares HMethod

A\ ”~
The Least squares method is to find s(t)= Z o 1 (t)
3

A
such that B(s)= min E(s) vhere
sep”’
k, 7,1
b
B(S)=B( ,ee0e,0k ) 1= [Ls(t)-q(t) ]2 At .
1 e a

2 E
By setting del; =0 1<i<®m ,

ve find this is equivalent to requiring
[
~
[Ls(t)-q(t)]L} (t)yde=0 1<i<n
a i
Ne}o

)
=

(3.33)

S

: b
{Lg(t) LY (t) dt= g(t)LY (t)dt 1€i<n .
a i a i

In aatrix fora, (3.53) 1is

AN
{3.54) Yu =g v here

- -



A n b ] N
B= (b ) =(| Ly (L)LY (t)ay)

ij i, 3= a i 3 i,§=1
T

(3.55) Q=(q 42eeed )

i b b | T
= LY (t)g(t)dt,..., LYy (t)q(t)dt)
a 1 , a M

! T
A A
A= (A seeerg ) .

As with the Galerkin method, the discrete least squares
method involves evaluating the integral coefficients in (3.55)
ty 2 numerical quadrature rule of the form (3.50).-

Al

The solution is s (t)= X a ¥ (t) if
=1 31

T * T
(3.56) C DCal =C Dg
-~ R +® °7
vhere D,C,and g are as in (3.52),(3.47) and « =(d\,...,dﬁ) .*
Clearly, if Q=M and the collocation matrix is noamsingular,

the discrete least squares and collocation methods are

equivalent.

3.3.4. Ritz Nethod

Consider the prdblel

82 i1 i '
(3.57a) Ly(t)=  Z (=1 D (O (t)D y(t))=q(t)
i=0 2i
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ast<h -

i-1 i-1 »
(3.57b) D y(a)=D y(b)=0 1<i<n/2

where Dy(t):=y'(t) and the fsnooth) coefficient functioﬁs
satisfy 0O (t) 20 1<iS<m/2-1 and 0 (v) 2)>0 for asts<b.

21 : B
The operator L is called a §g;§;ggjgiig 6perator, having fhe
ptoperty that it satisfies

Jb Jb

Lu(t)v(t)dt= u(t)Lv (t)dt
a a :

for any u,veCh[a,b], the space of functions in c™[a,b] which
satisfy the BC (3.57b).

The Ritz method involves choosing an approximate subspace
and letting the approximate solution be the function which ~
minimizes the variatiopnal formulatiom I (u) for (3.57) over that
subspﬁce. Here ‘

b n/2 i 2
I(u):= { Z 0 (t)(D u(t)) -2q(t)u(t)}dt.
a - i=0 21

~ ! [ gd
The Bitz solution s(t)= 2Z & ¥ (t) satisfies

=1 33
(3.58) I(s)= wmin I(s) .
0
Sep
k’"'l
Setting 2I(s) =0 and ,2I >0 1<i<m
ool ad}

the matrix fora is

—

(3.59) Ge=q vhere

oo
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~ N L
6=(g ) =(e(¥ (B), ¥ ()))
ij i,9=1 j i i,3=1

o b ay/2 i i ¢
{3..00) e(a,v):=| { 3 6 (t)D u(t)D v(t)}at
+ a 10 2i

=§b Lu (t)v(t);it
a \
and E'is in’(3,ﬁ9).
i It is clear that for solving (3.57), the Galerkin and Ritz
methods are mathematically equivalent, at least if ktlZl._
However, the discrete Ritz method fbr,yhich tbe integral
coefficients (3.60) are dpproxilqted by using a guadrature, is
generally different froa théndiscrete Galerkin amethod (3.51) and
has the advantage of preserviﬁg the matrix symmetry inm (3.59).
While certain me tholls havéztheir'barticular advantage in
special cases,bwe usually only épnsider £he collocation method
since it appears to be generally\the most efficient and since
softvére for this method has heenydeveioped. Por a conparison,'
see Russell-Varah [20].

- \
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i

3. ‘Equivaleaces Betwesen These Rethods

In this Chapter, various equivalences between the methods.

mentioned in Chapter 3 are presented.
L Y

~

4.1. Collocatjon and Pinite Difference Methods

4.1.1. Collocation, Trapezoidal, and Nidpoint BRules

- Consider the BYP (3.7). Thé collocation methods using 2
Lobatto points and 1 Gauss point relate to the trapezoidal rule
and the midpoint rule( or Box scheme), respectively.

In particular, vhen solving the BVP (3.7) by collocation

with approximate solution s(t) in B,)ﬂ“1 ,1f the Gauss points

are the colloéation points then we have

(4.1 s (t ) =f (t ,S{t )) 1<i<n .
- iv1/72 7 i+1/2 -~ i+1/2

(4.2) g(s(a),s(b))=0

vhere t ={t +t )/2 .

i+1/2 i i+
Since i}g.)=y{ 1<i<N+1, the Newton form of the interpolating

polynomial s{t) can be expressed as

s{t)=y +{y - -y )(t-t )/h '
S T TS IS i i

SO
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s*(t)=(y -y )/b -
A S R AL S |

(i) - Case I:

At the Gauss point t :
i+1/2 . : .

st (t )=(Y -y )/h
w4172 witl =i g

s(t . )=y + Yy -yt -t ) /h
“~ i+1/2 i “i+1 i it1/2 i i

=(y ty )/2 .

i+l i
Now (4.1) gives
Ry = -y)/h -f(t 172 (y ¢y ) )=0
RE SR U ol SRS SR ol €4 V2. Bt Siak €2 Iiihe

and (4.2) gives g(s{y ),sly ))=0,
SR T TRel

vhich are the midpoint rulé‘(3.33) and (3.35) , one of the most
videly used finite difference methods.

(ii) Cése I1: -

" When collocating at Lobatto points t ,and t ’
, i i+
st (t )=f(t ,s(t )), 1i.e.
b iy i= 1
(4. 3) (Y -Y )/bh=£(t ,7) ' , T
“idl i i i~i : :
and .
st (t y=£f (t .5 (t )), i.e. R
A i+ ™ is1 v i
(4.4) -y -y )/h=f£(t L,y ) .

“~i+¢1 -] 1Y il »ie
From (4.3) and {4.4), we get -

Ry =l -y )/h -1/72[£(t ,y )+£4t .y )]0
“i =i+t =i i I e SRRGRNE T3 I TY HERS

which is the trapezoidal rule in (3.34%).
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4.1.2. Collocation and Trapezoidal Rule

In the previous subsection, it has been shown that there is t
an equivalence between the trapezoidal rule and collocation

method for P, ; , . Here, the same result is obtained for P,

ma2 °
Suppose s(t ) =Y
i owi
and
s'(t )=y’ 1<i<sN+1 |,
i i

The Heuton fora of the 1nterpolat1ng polynonial s {t) gives

s(t)= 1 tytle-t )+(y -y -yth ) (-t )2/h 2 .

: : ~i i i “i+1 ~1i =i i i i
Hence
st ()= 7'*2(y -y -y'h ) (t-t )/h2
; “1i “i+1 ~i-i i i i
so
s'(t )=y'+2(y -y -y'h )/h =2(y -y )/h -y',
v oie1 i ~is+t -1 i i i “i+1 i ivi
and
s'(t )=y' .
A\ ad i -.i -

Since S(t) sa}ésfies the differential equation at collocation

points,i.e. /

s'(t )=f(t ,s(t )) and s'(t )=f£(t ,s(t)),
M TS AT TS B S ot i~ i i .

from above

2(ys -y )/h 'f(t Y )=f(t Y ) .
-1¢1‘~1 i i™~1i = i1+l ie

Yence, we have

N ¥ =y <Y )/B -1W/2hE (e 'Y y+£¢(t .,y ) 1=0

-

T ~i+¢1 " i i i-i i+l ~ie1 b

which is fhé trapezoidal rule in (3.34).
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Simple Ritgz ampd Finjte Di ence

4.2. and
Consider the Bitz method for the siaple second order BVP

(4.5a) ~yT(t) + T () y (L) =g (L) ast<b

{4.5L) y(a)=0 , Yy (b) =0

with S()&P, . 4 . For simplicity, consider a uniform mesh, i.e.
h;=(b-a)/N for 1S5ic<N. let the piecevise linear B-spline basis

fupnctions which satisfy (4.5) be

. .
(t-t ) /h tef t ot ]
p -1 3
é (t) = 4 {t -t)/h _ te[t Lt ] 2<3<N
3 i+ ' j 9
\ 0 o;bervise

(For the construction and evaluation of B-splines, see de Boor

[6] [7], and Ascher-Russell [2]).

~ 41 —~
Then G=(g ) q in (3.59) can be shown to be

[ t t
i t-t 2 1+1 t -t\2
2+ g‘(t)( ;,’-1) dt+ g(t)] i+1 Jdt
h t b t h
i-1 i
o~ =i
(4.0) g =
ij t
1 t -ty /t-t
=1+ T(t) _1 )( i-1) dt j=ist
h t h h ,
i<
\ 4] otherwvise

for 2%1,j<% and
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t _ t
_ i t-t i+ t -t
“.7y g = q(t) i-1)dt+ q(t)) is1 _jat 2<i<N .
it h t R

In this case (3.59) cap be expressed as

. i - t -t)/t-t '
{-1/h ¢+ qg () _er_ ___Ei:l dt}y + [2/h
t : i

i-1
i-1 )
t t
i t-t 2 i+ t -t\2
+ J%t)( 1-1) dt+ J1t)( i+ /) dtiy
t h t h i
i-1 i
(4.8)
t
i t -tifr-t L
+{~-1/h + G]t)(»i ‘}( iz{)dt}y
t h - h i+
i-1 '
t ' t
i t-t i+ t -
= 3{t i-1]dt+ q(t i+%‘)dt
t h t h
i-1 i
2<i<B® .

If the trapezoidal rule is used to approximate the
.coefficients ip (4.6) and (4.7), then (4.8) becomes

. /h +{2/h +h@(t )}y ~-Y /h=hg(t) .
i-1 i i i+ ' i

Dividing by h, we have
Yy -2y *y

- 141 i i-1 +#0(t )y =gq(t ),
he i i i

vhich is identical to a fipite difference scheme for solving

(3.5) (see Varah [22] ).
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4.3. Collocation and Implicit Runge-Kutta

Ubeﬁ DEs are solved by most finite difference methods, they
are converted to first order systea. To relate collocation
methods with Runge-Kutta meth'ods, ve consider the first order
nonlinear™~DE -
©.9)  p=E(n) .

The collocation schemes for (4.9) are

y(t )=y P Tl )EE(E LY(t )
w i wi -~ ij ~ ij-~ 1ij
vhere t are collocation points which satisfy -
ij
t =t *h P ' i=1'n--.'uv' j=1'-...’k '
ij i i'j
and p are canonical points in [0,1] osﬂ <p <...</) <1.
5 : 1 2 K
let £ =f(t ,y(t }) , 3=1,.e..,k , and expressil.in teras
“ij v oi1j v ij

of interpolation to the values v , £ ,...,f , i.e.

i ~i1 wik
k t-t
y(t)=y +h = f q»{___;_)
=~  wi i j=1+ij jln

i

vhere c{;l(t) j=1,+-..,k are polynonials of degree at most k
i ,

on [0,1] deterasined by interpolation conditions
(3.10) ¢ (0)=0 $r(p)=0 1=1,...,k
3 3 1 31
here } dAenotes the Kronecker delta function.
ik
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Let

(4.1 ( =¢ o =P L) -
3 3 31 1 3
~ Then ve get the equivalent implicit Runge-Kutta method
‘ K
(4.12) y =y +a = (¢ 1<i<H
~is1=1i i F1 37ij s
k
f =f(r ;y+h = A f ) b I IS |
~i1j 7 i3 71 1 1=1 3jl7il

-

where /] , 4 are given in (4.11) (Ascher~-Weiss [4]).

1 71
Not every RK schese is equivalent to a collocation scheame.
But, azong the most accurate RK schemes { using Gauss, Radau,
ani Lobatto points), the most i1mportant are in fact equivalent
to zollocation scheses.

Whea k=1, F =172 , then by (4.10) and (4.11)
1

A =a (1) =1
o ¢1

=3 (7)=1/2 ,
G'<11 ¢H 1

so (4.12) gives the midpoint rule, and the equivalence has been
showr 1in Seztion #.1.1.

iben k=2, A =), 0 =1, (4.10) and (4.11) give
12

D (t)=-t2/2 t
1

$ (t)=t2/2
2
and 4 ="

The equivalent trapezoidal rule was treated im Section 4.1.1 as
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vell.

4.4, Collocation apd Muoltiple Shooting

4

We now consider the collocation using msonomial basis

9

functions for solving the differential equation

R ¢ 3 a-1 (3 ,
(4. 13a) Ly(ty;=y (t1- 20 (t)y (t)=q(b) a<t<t
=0 3

vith the separated boundary conditions
2 {1-%) ] (i- b
(4.13by S bty @)=0 , 2 ¢ 3 (b)=0
1=1 41 . 1=1 jl
1€3<n/2.
We consider cclloca tion ;t Gaussian points with s(t€
Py m vhere k223, and ve assume tnatvthé order a of the DE is
even. |
" In jeneral, the spline solution is detersined by twe types

of copstraints,contingity conditions amd discretization

equiations (collocation equations and BCs).

tn [t ,t ]» the local monomial basis considered has the
1 1+
fora ‘ ‘
( {t-t‘)j’1! X
G- ) 3=

The collncation approximation s{tj can be writter as

] j-1 m k-= a+ij-1
(.14 s{t)= 2z (t-t ) *b 2 v ((t-t )/b )
j=1  ij i 1 3j=1 1ij i 1
(3-1)! (me3=1)!

£1



. T (s=1)} T
WRAET® Z (2 seeces22 ) (S (Lt J)senasygS t )) -
-1 i1t im 1 : i

- - N m -
The scaling in the first sum and hi in the second sum are *
onlv i1ntroduced for later notational conveanience. Now, both
con*irulty coniitions and discretization conditions aust be

-

satisfiel, Por the continuity conditions

ir=-13 + {r=1) —_
5 - [t ) =5 {t ) 1<r<m,1%1<N, (4.14) beconme
1+ i+1
(4,15} z =3 z +0 w
’ ~1+1 i-i %1
T
vhers W =(d  ,...,¥% ) ’
~1 11 i,k-=
i
B =(B )} 135 ac » X a upper triangular matrix -with
1 ri
ertries
1 i-r
{3.76) 3 =¢(h )/ {3~} ! j2r ’
oy i
i

azd C ={2 ) i35 an & x{k-m) matrix with entries .

i a+l-r
(4.7 2 =h /(m+3j-y! =0(h } .
ri 1 i
*ie collocation copditions in (t Lt ) give
: 1 i+l
B k-2 L (t -t )l+j-1 .
(3.13) Ls{t ) =h 17 L{' ir i ]
ir i =1 (m+j-1)1¢ b
i
: » (t -t }3-1
- 7 @t )y z _ir i =q(t )
i=1 1-1 ir j=i 13 (3-1)! ir
yheTe t are *the collocation goints in (t ,t )} for
ir ‘ i i+t
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1<r<k-=.

+

¥riting (4.18) 1n matrix fcrs, ve have

(4.19) 9 z ¢5 v =g
i1 1titi
T
where gq =(q(t ),...,9(t }) .
V‘i i’ i:k-.-
i
d =(H ) is a (k-m)x ® matrix with entries
i rj :
i 3 j-1
(4.29) H == = 0 (t ){(Lr) V-1 .
rj 1=1 1-1 ir ri
i .
apd G5 = (G )} 1is a (k-s)x(k-m) matrix with entries
i rj
’ 1 p j=-1 . = a+1-1 P 2+ 31
(3.2 5 =(r) - Z d (t )h r .
ri (3-9) ' 1=1 1-1 ir i (m+3-1)!

Thus the collocation matrix C corresponding to the unknowns

(Z W 4,7 oW yece,Z ¥ ,2 ) has the fora

Y Y1 T2 T2 H "X "N+
r ‘ '
v ’
0
v
1 ®
v 0
2 t
Z= A |
3 .
0 v
.}
Y
L N+ .
—
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The blocks v {121<¥) of the matrirxr consisting of collocation

an? coptinuity eguations are k x {k+a) and have the structure

[ ] k-»
= P———— Som—
B G g 1k~
(4.22) vV = i i '
- 1
-B -D 1 n ' ,

vhere I is the » x ® 1dentity matrix.
- Consider the case ¥Where condensation of .parameters is
perforsed on V. by resoving colusns m+! to k (corresponding to

the urknowns v.) and rows 1 to k-s. Prom (4.19), eliaminate w;
-1 -1 -

and substitute thils into the continuity equation (8.15)

to oktain

(4.23) z =r Z +g
Rt € 2 BERS RS R |
where
-1
(4.24) r =3 =D G H
i 1 11 1
-1
3 =D G g .
i 11"i
. N+1
The coefficient matrix for {z } corresponding to the BC
Tioien

" {(4.13) and (4.23) has the foram
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r

E)

0

s - I
PY
ct= -r I
2
LA ]
..}" T
N
v - &
lfu
3
et (A {(%:;* )} be the set of linearly independent
-j i j:?

solitions of Ly=D subject to the 1initial conditions

(-1
" ft ;t )=5 » 1%3,1¢m, and let y be the solutiocan to
i i 1 il
Ly=3 with z(y(t })} given, where z{y(t })):=(y(t ), y"(t },...
- i - i o i
{31 T
. 7 {t )) . Then ve have

{4.25) z{y(t ))=8(t ,t jz(yY(t})
i+ iv¢d 1™ i

voere Y (t;t ) 1s the fundasental matrix M(t;t )=(z(M (t;t
i ) i - i

Y)se-a2(® (t;t }). If s{t) is the collocation approrimation
s i ’

of y(v , then

’

zZ(s(t
[N i’

2(k-m}+1
ll” =0 (h } -
1+1 1 i

I

Yi-z(y{t
} L

1

Froax the anilysis of collocation, z(s(t )]=r Z(s({t ))
- i+ i7 i
2{k-um) +1
and z{(r (¢ )y =T z{(y(t ))+0O(h }. Prom (4.25), since
~ 141 bin i




2 {k-n) +1
et 2O (h o), 1.e.
i

z(y(t )}) vas arbitrary, [ =E(t
~ i i i+l

i
P' is an approximation to the fundamental matrix

' 2{k~umj +1

a(t;t') and c' is an O ¢{h }) perturbation of a

1

sul *iple shooting matrix (Ascher-ﬁussell'[J] ).

As stated before, after doing condensation, the collocation
aet hods jive multigle shooting like matrices uhigp have the

advantaje of being well-conditioned .

8.5. Hultiple 3hooting apgd the Box Schepe

e now consider the relationship between sultiple shooting
and the Box scheme. Suppose the mesh is uniform, and h is small.
The wmultirple shooting wmatrix (3.17) gives

0
-7 (t yC +P c =y (t ) ~-¥
o1+t R 1eTTReT L1 1T - die1

aT

{4.26) -Y (t ) +Y (t Yo  =v (t )-v (t )
L 1+1 1 iel 141 wiel T ie1 Cist je
1<i<J-1.

If we se* Y (t )=I-(hA y/2 , 1<i<J-t,

it i~1/2

tnen usi1ng a Taylor expansion and the fact that Y'=aY,

T (+ )=Y (t )+hY' (t )e0(h2) J~\\
I 141 T i i 1

=I-{(had )/2+hA Y (t ) +0(h?)
1-1/2 11 1
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=I-(hd  )/2+hA (I-(BA ) /2) +0(h2)
. i-1/2 i i-172

. =I- (hA ) /2+¢hA +0(h2)
i-1/2 i

=T-{h (A -haA ))/Zﬁhl'toth?)

it1/2  ie1,2 i

=I- (KA )/2¢hA  '¢0 (b2)
i+1/2 i

=I- {haA Y/ 2+h (A = (ha ) /2) #C (h?)
ist/2 iel/2 ° isl1y2

=T+ (hA })/2+40 (h ) .
i+1/2

Similarly, if v (t ) is a particular soluotion satsfying
~1i -1

- .
v {t })=0, then
-1 1

v (t  )=v (t )+hv'(t )}+0(h2)=h(A (t )v (t )+f )+0(h2)
“1i 1+l -1 1 -1 1 ' 1 1”1 1 +-i )

- =hf +0(h?)
i

=hf +C(h2).
vie 12

Herce (4.26). yjives

(4.27)  ~(I+(ha }/2) ¢ +(I-(hA y/2)c  =hf’  +0(h2) .
1+1/2 -1 iv1/2 i+l -~ is1/2
Since v is the sultifple shooting approximation solution,
-1
Yy :=Y (t }c ¢v (t )={I-(hA }/2)c .
“ 1 i i-171i 1 i-1,2 v i

and ¢ =y +0¢(h), {ﬂ.Z?)'gives
“1 ™1

-(I+(hA ) /2)y +(I-(hA )/2)y  =hf +0 (h)
i+1/2 =i i+1/2 ~14¢1 ~is1/2

vhich can be writtes as
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y -y RS ;
~hel~i =k - (-ie1 < i) +f tO (1)
h v 141/2 “is /2
=A y +f S *0() .

141/2-i¢1/2 “iel 2
Thus, the Box scheme gives a matrix which is a discrete

approxisation to a multiple shooting matrix.

4.6. Invagiant Isbeddjing 3pd Xultiple Shootigg

I+ 1s shown in Keller-Lentini [14] that there is an
ejulvalence between ipvariant isbeddiing and the box scheme in
the sense that)a specific adjorithm for solving the difference
eguations is valid if and only if an appropriate imbedding is
valid.3ut the ejJuivalence was not obvious. Recently,
Leﬁtipi-fsborné~Russell (15)] presented an easier way of getting
2 close relationship between multiple shooting and invariant
imbedding. The Keller-Lentini [18]) result 1s a special case of
th~1r pre=sentation. When solviog a BYP with separated BC, the
relationship between factorizations of the multijle shooting
matrix and invarianQvilbedding formulations of the BYP are shown
in [ 15}. The equivalenc% is described below.

Consider the problem (3.28). In (3.17}), converting each

- )
P Jto [-P_ Y .(t ) I} gives % similar to

block [=Y (t . ) F . _ ]

¢
tae "standard® sultiple shooting aatxi;} Therefore, it 1is
safficient to consider only the "standard® multiple shooting
2atrix. Suppose the fundameptal solutions Y, (t) and particular

s liations v;(t) at .

Dl cag be partitioned as
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~§h

For convenience, arrange the multiple shooting matrix so that it

has the fora

K K {0 0 i
) LI
2 3 b
S R S
AU B A O
3 1i |
-Y -y j I 0 |
1 L !
] 2 34
{4.28) 9 D {-1 ~-Y | O
el 2 21
/] ) i
- -Y {1
2 2]
\
\.
\
-Y
-Y
0
Or ~
(.29 wy=t,

P q
— T -
r 3 1
Y Y
' i 1
) =
2 3
Y Y
1 i
L p

Yoy |
1
vt )
1
u(t )
T2
I vt )
.3 R
J ukt )
P -3
2 3
-Y 10 I v(t )
_ N N g N
I N
-Y I 0 u(t )
] i p N+l
J K K w(t )
P 2 3117 R+
L

1
ip y
i
vt )=}
. <1 1+ ’
19 R
A1 =1

‘80w, zoarsider the factorizatiod of {4.28).If K

ip

}q .

is nonsingulary

pultiply the first plock by K; and perform the first Step of

elisimation,

then we have

69

-
J“



s

-7 I '
I K K i ut ) x
p 0 1 [ 1 1
3 2 -1 " 2
a -Y +Y K K | 0 I Wit )l =t v +Y x
e ___Y 1o 7] |— 1 117
IS R R 10
3 -Y «Y K K |} I 0 gt ) v +Y x
1 10 1 p -2 11
-1
where ¥ =K -
S F_1
¥ {t) X x
1 2 1 7
Let ¥V (t)= =Y {t) be the column of
1 3 1
v (%) -1
1 R
- / - - 2 2
coaplesentary function solutions and z =v +Y x .

<1 7Y 1

Tte second step of elisibation gives

N -

r . Sy
T =2(t )i u(t ) x{t )
P LI 1 -
3 |
9 v {t > 2 I vt ) z
1 24 q A 1
}
9 0 | I -R(t) alt ¥ =|x(t)
[ P 2 - 2 - 2
1 3 -1
vhere from section 3.1.5, R(t)=v (t)v (t) is the Riccati
1 1

¥3trCiY satisfying {3.27a) and x(t) satisfies (3.26). The

nex* step gives
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(' ( . \l ( .
!
- ! - | ’ -
T T ~B(t )} | tu(t )| x(t)
: P 2 | 2 w2
3 2 } E' i
2 -Y =Y R{*t }1 0 I Pt ) = z
A2 i _ o972 T2
T 0 ] i 2 0
-Y -Y B(t )i I 0 | |u(t ) v +Y x(t )
2 2 2 1 p 1 - 3 -2 27 2
where
J 1 A
=Y =Y E(t ) -RB{t )
2 2 2 2
(4. 32) " =Y (t )
2 ] 2 3
~Y =Y R{* ) -1
2 2 2 L |
b P B o~
-1
K K j 2 -1
=Y (£t )Y (t ) 0 1| (Y +Y B(t ))
2 3 1 2 1 1 1
-I
-1 7
K K 3 2 -1
=Y (¢t ) 3 V(Y +Y B(t))
1 3 1 1 1
_I -
. R
3 2 -1 v (t)
=y (t ) (Y +Y R{(t )) =v (t )= 2 3
1 3 1 1 1 - 2 3 3
vy{(t ).
L2 3]
Since {K K ]v {t )=0, v (t) is a transformed set of
Lo 1f=2 1 = =2
, : 1 3
compleaentary fupction soluticns; therefore, R(t )=v (¢t )v [
d 3 2 31 2

{
-1
}

t

i+.1

71

-« The process is continued until the stage that

) is singular or partial pivoting is perforsed on the



block

.

v

i

{t

i+1

1+1

)

J

. Then reimbedding is needed. Por this

purpose, introduce 2 permutation %' of W which preserves the
zero structure in {%.28) and leaves the differential equation
invariant {(i.e. 1f y'=Hy is modified by the change of variables

A ~ ~t ~
2=2y, then z'=Hz wvhere H=PAP ). Then P,Q in H'=PHQ must have

the farms
Cd b - ‘T
T I
D n
? 3
: 1 L
! . .
n = f 3: -
= ¢
N T
I d
3 N
L 4 “ J
vhere :P‘ :q, TN are 1dentity matrices of size p ¥ p, ¢ ¥ g, and
N x ¥, respectively, and 3, TP are N x ¥ perautation satrices

wo1-a satisfy

(3.3Y - 37 =d o J J:= g

e}

{(3se=2 Keller-Lentini{ 133, Lentini-Csborne-Russell{15])).

751233 the same argusent in {(4.30), the theores fcllows:

Thp.8.1 Surpose that the BYP (3.25) has a unigue solution.
, . ~ %
Assise K, 1s nonsinjular. Suppose further that the LU

- . - —~ .
factorization for PEQ exists where
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Here the N x N matrices p,,q' occur (n-i) times and satisfy
{4.31) . Then the factorization reduces (4.28) to the block upper

triangular fora

73



I -ptty; 0 g

{(4.33 I
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() ale) A RELY

Herae { yi=g | }oov {(t)=q Y (t) 3
T(t) 1wty , ] LS (I ,

™~ P (t ) —~ —~—

v {(t)=31 Y (t) 3 (1<€j<i), where R(t) and X (t)

~3 13 I

are the soluticns to the i1nvariant imbedding eguations

-

P

v u({t)
corresponding to {(3.27a,t) for the variables

(183
Proaf: see Lentini-Ssborne~Pussell [15].

The factorization ot ¥ to {4.33), when P=3=1, can be
interpreted as a forward elimination corresponding to findiag
solutions/?(t) and x(t) to the IVP (3.27a), (3.27b). The back
surstitution on (4.32) to find :j(jzu,...,O) then corresgonds to
finding the soluticr tc (3.27¢). For q.rl. it corresponds to
chaajing the invariant imbedd ing foraulation at t=t.,, . shen P,Q
bave ary nuaber 5f adjacent blocks of permutaton matrices which
are different, the matrix factorization corresponds to finding
solutiors for 1ifferent i!bedding formulations
(Lentini-Osborne-Russell [15] . The equivalence between multiple
sronting and iavariant imbedding is tberefqre shown, and the
Feller-Lentini [ 14 ] result concerning the equivalencé between
invariant iabedding and the Box scheme follovs using basically

3

the same arjument as in thqg section.
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S. Pinite Differences for Solving High Order Differemtial

Egeations

n this <ha

(3]

ter, t-e construction of finite difference

el

aet 5D1s which 3Jive high-accuracy approrximations to the solution
5% 3 hign order linear differerntial equation My=f subject to
ilnedar BCs 15 1lnvestijated.

Dezfine 2 mesh T: a=t <t <...<t,=b apd for apmy ruaction v (t)

T

>n T, let ujzu(tf). At mesh points, u; 1s the estimate of y and
g .

J

u satistres Hhuzf, *ojetner with appropriate BCs, vhere M u 1is a
lircoar comrination of values of u at stencil polipts {adjacent

A P~
aes. pornts) and £ 1s 3 linear ccmbination of wvalues of f at =
asriliary poiots close to the stencil points.

The constructics is based on a local coliocationm procedure
wit > onclyrnomials, which 1s equivalent to the methboi of
jriatermiced coefficiernts.

I:. sectior 1, the 1escription of the discretizationn
azoro2ximatlon is presented 1in the first part andl some examples
are jiver. In the seconi part the 3escription of the finite
iitference approximsaticnos to bcundary conditions follovs. In
sectina 2, +the order of the truncation error 1is given when the
iocatinn of the auxiliary points is independent of 4. Stability
3f the scheae 1is discussed 1n section 3. And in section 4,

me+«203s with higher order of accuracy obtained by Doedel [9] and

vy Lynch-Rice [ 16} using special auxiliary points are presented
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and followed by examples. An obvious equivalence between the
high order finite difference methods and collocation methods is
shown in section 5. Section 6 contains a comparison of the
coi;utational effort of Doedel's schemes and Lynch-Rice's
schemes. This was oot dogq 1o eifher (9] or [15]. Comparisoun

vi*n collocition methods 1s performed. Numerical results for

)

‘U3eiel's metnols, lymch-Bice's methods, and collccation methods
ar+ provided fcr ccmparisor.

5.1,

i -~

construction

f the H14h Srder FPigite Jifference

. -

In thi1ls section, the ccaostructionp of the anigh order finite

F's

(1)

1
Y

erernce zethcds 1s presented. #e consider the interior

sitintervalis first.

=.1.1 The Approrzisaticos fcr Interior Subintervals

com=ider *he nth crder lipear 1iffereatial eguation

(n) n-1 (k)

(5. 1) T t)=y (t)+ = a4 ({t)y (t)=f(t) a
k=0 X

A
o
1A
(e g

az4d the 3esh a=t <t <.,.<t =b.
| g

Lot uj be the approrisate solation 9f (S. Y at t=§j, and in the

sutinterval |t

t . . . . .
' J*Sj] vhere rJ and §; are positive

4=r;

constants. Let the 3difference operétor Hh be.

" /



3
*u = > 4 u
h 3 1=-r je.2 J*1 -
3
The right hand side of the approximation equation Hhujzfj is
/\/ ’
£o= e f(z )
3 i=1 g,: j.1
vhere (4 } and {e } are known coefficients and
3.1 bR!
p4 <z <...<z2 are 1n [t .t ] -
Jed 344 1,0 j-r J¢s
] ]
dic will show now (4 } and [e } are constructed below.
3.l jet '

F,r sisaplicity, we frequently Hmit the susscript j, e.g.

~

A ., . and s. becomse z-, 4., e., r, and s. Then
gt J, J. J J ! ¥ i
the fipnite differepce approrisations to (5.1) at mesh poilints

Rave the torsm

. . .
(5.1 ¥ 0= T du = 2 e f(z )=f r<ij<d-s

Since there are J-s-r+1 eguations in (5.2) and n BCs , and
tse nuaber of unkoowns 1s J+1, one requires that r+s2n and also
incorporates sore constraints if necessary.

The coefficients 4; and e; are determined sc¢ that the
ipprorimation 1s exact on 2, the space of all polynomials of
degree at sost L. i.e. if wl (¢t} (0<1<L) form a basis for P, then

L

d , e;,, are male to satisfy the eguations
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s 1 s 1
(5. 3) > 1 w (t )~ 5 e M¥ (z )=0
i=-r 1 f+1  i=1 i i
1=0,e..,L .

. «Therefore, 1in

The systes (5.3) 1s homggeneous 1n di' e;

addition to (5.3), we take some convenient norsalization

equation such as one of

3) e =1
1 v
(5. 4) %) 2%9 L =1, or
1 ii
=) 2. e =i .
i1

T3 uniguely deteraine the r+s+a+l unknovwns 4 apd e
i i

‘roa (5.3) and (5.4), 1L #ust be at least equal to r+s+a-1.
ZCs for u are c-ttained in a similar way, they are treated in the

axt saction.

rt

T

L=t p(t) pe the polynomial in P vhich interpolates

r¢5S+m-j
tne solution y(t) and satisfies
$5.9) Pt y =y -rfic<s )
1o i
{S.n) “pi{z )=t(z ) 1<i<n . .
i i

wgite p(t) as a1 linear combination of the basis functions
r+s+a-1 K
(5-7) pity= c ¥ (t) .
* x=0 4

Then (5.3), (5-6), and {5.7}) Jive

res+g 14
b LW (. )=u -r<€i<s
k=D 4 ;ii iti
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r+s+a-? | 3

2 c fw (z )=f(z)

' k=2 X 1 1
or det (D ) =9 vhere
" ;
r~ O 1
W Et } ¥ (t ) . .
)-r J-r
9 1
¥t y oW ( )
j-r+1 j-r+1
i . .
d) 1
J =] W (t } v (t )
b j+s i*+s
32 1 A
Mw (2 ) w (z ) . .
1 1
2 1
v {Z ) Mv {z2 )
2 2
0 1
v (2 ) oM (Z)
L a »
with the operator #® as in (5.1).

One way to £$nd di and e

the }ollouing: Evaluate the determinant by expanding in terms of

1<i<s

r+s+a-1
jt+s
reses-1

Mw (z }

r+s+n-1
My (z )
2

r+s+n-1
Mw (z )

for a-general set of z; can be

the last columt and compare 1t with ({5.2), introduce a

rorazalizing factor E, then d; and e
(5. 3a) d =cof [u J/E

i H el .
(5.3b) * =-cof {f(z ) VE

i " 1
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vhere cof [. ] is the cofactor of the given element in D

o}

.|

and a convenient norsalizing factor B can be chosen as

3

n
(5.9 E== 3 cof [f(z
‘ i=1 0 i
.|
J {n)
¥ith ¥ y(t)=y {t) .
1
If the w (t) are chosen so that
1
v o(t 1=6
j-r+k lk
5. 1%
1
v {t 1 =0
j-r+k
*hen from ({5.8) and (5.3}, 4
- 1
r+i .
Aw {z )
I
a
{> h i =g~1] .
i =
c+i
iv (z )
]
-r<i<s,

IR

0<l<r+s

r+s+1sls<r+s+a-1, Q0<k<r+s ,

and’'e can be calculated as

81

1

r+s+l

(z )
1

Ny

c+s+1

My {z )

r+s+m~-1

(z )
1

Bw

r+s+p-1

Mv {z )




‘>/f’/ﬂc§ r+s+d r+s+n-1
I Mv {(z ) e « Mvw {(z )
. T 1
res+] c+s+m-1
v (z ) v (z )
griel i-1 i-1
{(5.12) 2 = {-1)
‘ 1 ® r+s+l r+s+p-1
v (Z } Kw {2 )
1+1 - 1+l
r+s+1 rese+ép-1
v (z-) e (z)
. n |
1¢i<nm,
and
] 0 Cesed 0 resen-1|
1 9% (z) . . M« (z ) -
! 1 1
|
¥ - - -
2
15.13) g=(-1) . . .
0 ress+ D re+se+a-1
1 2w (z) . . 4w {(z ) .
E ]

[§]

I 3=1, then =-1 and e =1.

1
To satisry (5.13), ¥ (t), 0sl<r+s+m-1, can be chosen as
(t-t )

1 L*+S j=r+k

(5. 14a) v (%)= , 0<1<r+s ,
k=g,k#1 (t -t ) )
j-r+l J-r+k

eSS+l 1-1 r+s L+s+l

(5. 1u4b) ¥y (t)=(t-t ) T (t-t ) /h

3 k=0 J-r+k 5

1<1<-1
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If r=0 and s=a, then (5.2) 1is £be'bigher-order difference
qa%proxilationvuith identity expansions (HODIE) considered hy‘

[
Lynch-Rice _ 16].
0 0 0 O -
In the following, vwe use 4 ,e ,8 ,f for the
1 1 1
. ' n
coetficients and the operatcrs when %=D .

Erasple 5.1

. 2 1 3
Zonsider M=D #+a (t)D+a (t) for 0<t<1. -

Let r=s=a=1, suprose the mesh foints are ejunally spaced

-

and z =t . Fros (5. T4a},

.
] (t-t ) {t-t }
v (t)= j i+ ’
2h2
1 (t-t ) (-t )
W o (t) = hall j1 ’
-h?
2 (t-t ) (t-t )
¥ {ty= IT ] .
2h2
J 1
s> 1 =Mmw (z )=1/b?-a (t })/2h ’
-1 1 3
1 J
1 =%w (2 )=-2/h2¢a (t } R
) 1 i

2 1
1 =4y (& )=1/h%+a (t }/2hk .
1 1 3

and {5.2)y becomes
IV -2u *y - 1 u -3 - ¢}
1+ 1 § -1 +a j*+1° 3-1 +a u =¢f ’
h2 b 2h i3 3

whizh is the usual divided differeance approxisation for
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2 1 0
D +a (t)D+a (t).

Exasple 5.2

z =t , and z =¢t . Choose the basis functions

1 3 2 j+

0

v {(t)=-{t-t

1

v (t)=(t-t‘)/h‘

]

-

v (t)=(t-t ) (t-t

b
50
0
1 by
’:(‘1)2§
: J
A
2
My (2
1 =1/8
3 ; §)
% B {2
J
1
"W (z
i =1/8
1 1
“w {(Z )
2
e = (M

1 2

0
Now, consider X=D+a (t). Let r=0, s=1, a=2,

14

) /h? p
j+ J ‘
)
1 0 2 0 2
=4 v (z )-M w (2 )=2/h
E 2 x a
)
2
2
e (2 )
]
o ==1/h +a /2
2 : b
1w {z )i
2|
Z ;
v (z ),
1 0
[=1/h +a /2
2 f i g1
iy (z 7]
2 N

{(z })/E=1/2 ’
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n

2
e =(% {z }))/B=1/2 ,
2 1
then (5.2) becoaes
(u -u )/h +{au +a u  }/2=(f +f )/2
3913 3 33 getr 3ed J g1’

vhich’ is the trapozoidal rule.

1 m=1 amd z =t is taken, then
1 J+1,2
J Q
4 =8v (z )=-1/h +a /2 .
0 1 jooje1 2
1 2
d =Mw (z )= 1/h +a /2 .
! 1 j J+1/2

The difference aoprorimation is therefore

{1 -3 ) /h +a (a +u y/2=¢F
et 3 b j+1/2 3 e A+ 1/2

¥olZh 1S the 3¢cx schesme.

2.1.2. Thke Approxirmatiocn of Initial Conditions ard Boundary

Caniitiorns

Apprax124ation to 1nl1tial or boundary corditions are
rezii1r2d to complete the‘difference-schele. Here, only separated
3Cs are considered. Ipitial conditions can be considered as a
Scec1i1il case > separated 3Cs.

Suppose two BCs for (5.1) are jiven by

(k) k-1
1 1 {i)

(5. 1353) 3 7{a)=y (a) ¢+ > by (a)=A kK <n ,
a i=0 1 '
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(k ) k =1
2

b

2 (i) :
(5. 15b) B y(b)=y (b) + = by (b)=ﬁ kK <n .
. S i=0 i

The construction of a finite difference approximation to (5.15a)

irpsenbles that for (5.1) so we have

S

%

2

. N .
(5.16) B 0w =3 du=eo+ 3 e f(z) .

h,2a 0 i=0 11 0O 1=1 1

1

1

If the basis functions w (t) (0<1l<s+m) of P

¢
ire chasen as in (5.10) for r=0, then the

4 and o can be calculated as

1 1
! 1 5+1
‘B w (a) 3 v (a) . .
©a a
; i s+
"Hv (z) "w (z) . .
- 1 1
(3.17) 1 =17 . ' .
1 3
‘ i s+
M (z ) 3w (z) ..
i 2 B T
I<1€s
5+ 1 S+
v (z ) . . 4 (z2)
, 1 1
(5.123) e =1/% s
0 2 . .
s+ 1 s+a
Ay (z ) ee i My {z )
R 2

ge

S+a

coefficients

s+a

B w (a)

s+n
v (z ) |,

S+m ’
Mw (z )




(5.19)

where 7

(5.20)

i s+1
e = (-1 Hw (2 )
1 E i-1
0 .
s+1
Mw (z )
1+ 1
s+1
Mw (2 )
.
1<i<a
can be chosen as
] 0 s+1
N v (z )
1
. a+
E =(-1) .
3
0 s+1
1w (z )
|

o

S+m
B w (a)

Sth
Mw (2 )

0 s+m
N w (z)

0 s+n
Mw (z )

urless a=), in which-case, set E =1.
0

The BC (5.15b) is treated similarly. The finite difference
approxisation to (5.15h) is

0
0= =2 4du
Ly, J 1i==-r 1 J+i

o om
(5.21) B =e 0’ 2 e f(z)
0 i=1 i i

2nd the coeficients 4 ,e are
i 1

”
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H~‘ o _.
r+i r}ﬁ r}l
; "B e—Ab) B (b)) o BwW (b)
b b
r+i -r+ 1 ) jk 3 ]
, Ay (z ) iw  (z ) v (z )
. ’ 1 | 1.
(5.22) d =1/8 r '
N i 0 o . . .
- rei Cret - C+m-
q3v (z) Ay (z) - Bw (z)
; B {f R - a
-rsiso'
Efﬁ 7r0l 7
Mv {z ) - . L} (z)
oy 1 1
(5.23) e =1/8 . ‘ ' - , .
‘ 0 0
r+l C+R
Ny (2 ) Nwy ()
. .
. r+1 ) C+8
Bw (b)) . . B w {b} -
b
K £+t ‘roa
iy (z ) By (z-)
1 - N
r+ 1 rea ’
Av (2 ) By (z ) '
i-1 i-1
r+1 Lé*m
By (z ) B (z )
. N i+ i1
R + 1 > r;l
Ny (2 ) . = Hv (z )
2
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LS
. -
L B
S R ,, - o
1giga Q o
and B' " can be ci:osen ;; - ' J ™~
0 rel . .0 r+n d
v (z) . . B w (2)
) 1 - r 1 -
H
| | BB ) i
’5.. 25) B =(-1) . - .
0 TN
: . Lo ,
0 £+t s .0 r+n
Rvw (zP Nvw (z)
‘B B
Suppose the BCs for Example 5.1 are given by
(5.26a) B y(0)=y" (0) ¢b y{0)=u >
0 0 '
(5. 26b) B YN =rt (b y(N=4 - T
1
lLet m=1 and s=1 for (5.26a) and
o - L ‘, S, - e _
v (t)=- (t-t1)/h ’
1
v (t)=(t-t )/b ,
, -0 i
2 -
v (t)=(t-t ) (t-t )s/h2 ,
0 1 !
so that
02
E =K w (z)=2/h2 ,
0 1 ) :
¢ :
o 2 1 " :
(5.27a)- - -e-=8w(z }/B =1+a (z )h/2
0 0 1
(5.27b) e =-Bw (0)/B =k/2 , -
1 0 0 -
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(5.275)

{5. 2743¢

et e. A
Bw (0) B w (0)
o o |

2

0 of 0.
1M (2

!

1

==1/h-a (2 )ﬁbvtb a (z
, 1 ]

1

, 0
a =12}
1 of 1

-

)
1

0

B v (0

B (z )

2
= (z )
o1

0
0
2
L

B (0)

o |

2
Bw (z )
L

o 1 _
=1/h¢+a (z )+a
1

n
W

The approximation to (5.26a) is

(5.28)

If r=1 and ma=1 at the right end point, the

%o (S.Zﬁb)hisngnila:lyfgiteauby

(5.29)

Letting

{(z )h/2
o1 :

!
d u+d u =eclte f(z ).

00 11 0

ad u

~1J-1 0J O

0%

1

W (t)==(t-t ) »h

J
1
v (t)=(t-t
J-1
2
¥ (t)={t-t
: J-1

)/h

1

Yhr2
1

approximation

+d u =e ﬂfe f(z )
1

) (t-t ) /h2
J

by (5.22), (5.23), (5.28), and (5.25)

02
E =8 v (z )=2/n2
0 1 ,

' —
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e =fv (z )/2
_ 0N ‘ -

‘=1¢a (z )h/2

T v

2

v

e =B v (1)/F =hy2
0

¥ ——

s,

1 1
.0 2
. Bw (1) Buw ()
"1 1
d =1/E J .
-1 0 0 - 2 .
. B () Bw (z)}| -
. i N 1 1
1 0
=-1/h-a (2 )¢b +b a (z ) b/2 ’
. 1 1 1 1 :
and 1 2
Bw (0) B w (0)
1 N ’
d =1/E o
0 0 1 2 ' )
By (z ) Hw (2 ) - . )
1 1 :
1 0 .
=1/h+a (z )+a (z )h/2 .
1 1

o

5.2 The order of Consjistency

A

-

The local truncation error of (5.2) is defined as SN

f; where y;=y(t;),y(t) is the exact solution of (5.1) subject to

appropriate BCs. If ‘YJ ->»0, as hJ-

approximation to (5.1) is said to be consistent. If there is a

-»0, then the finite difference

&

~constant ¢ and p is the largest integer such’ that

‘ P
'7,5:!: , 23S h.-» 0 .
, 3 5
then the differesce approxisation is said to be comsistent of
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Let y(t) be the exact sélution of (5.1 sebject to
appropriate initial or boundary coaditioss and assume that y(t)

is uni que. Taking a Taylor expamsion. of y(t) at & , we get

J

s L k() = L o (x)

(=2 4 3 (t -t)y - 3 eff Z (-t) y )
3 i=-r 1 k=0 J¢i 3 _§ i=1 { x=0 i 3 _{1 o
S , T 3 S L I

s CLet (-1’1) " o ‘LOIK(I‘J»ﬂM R
+ 2 d(t -t) y (b)- Ten(z-t) y (3)]
i=-r i “Jei 3 i i=1 i i 9 1
- (LeT)? ) (L+1) 1

®

L s , kK » X (k)
=Z [ Z a(t -t) -3 en(z-~t) Jy sk ¢
k=0 di=-r i ‘§¢i 3§ Q=1 i i 4 3

s . CLet (1+1)  m (Le+1) . Let
+2 d(t -t) y (b)-Z ey (g)B(z-t)
i==r ‘i Jei 9§ 4 i=v i__ i i
- - (Let) t . (L+1) 1
for somebe{t ,t 1, gelt ,z ] .
: i 4 Jei i 3 i '
. S )
Since (5.2) is exact on P and (t-t )& P O0Sk<SL, the
L -3 L. -

quantity in square brackets is zero for eachk k. I£ we

make the assumption that h/c<h sh'(15jsa) for some ¢ (such

- Ed

.a family of meshes is called gwagiwnifors), thea froa

the calculation of d , e in (5.11), (5.12), and
« i i .

e e ——— " . l
(5.13) wvith the basis functions v (t) in (5.1§a), (5.18b),

it follows that there are comstants c ,c ,and c vhich are
independent of h such that ' o
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o e —— T .;nf*”{ - : .
| a 'lsc ' -rsi<s
il L . ,
,{c sc 15i<n . . ) [ % —
, it 2 - . V ‘ .
and \’ " h N ’ k" ' - ' -
. Le  L#t-n . v
ln(z-t ) Sc h  z SzSz . '
3 3 ’ 1 a I

Recallihg-that L is at least r¢s+a-1, ve have the

, follouxng theore-.; S

11];521 Let the coefficients d , e and the normalizing
) i i -

-

factor T be given by (5.1Y), (5.12), (5.13), respectively.

- tssurs‘tﬁit‘x?O’ and re¢s2n. If the lesh is qnaslunifo:l and b is
snall epough then at least n#1 ot the d; are moazero and the
order of consistency of the finite difference‘approximation
(5.2) is Qxeater than or equal to r+s+a-a (Doedel [8],[9] and

Lynch-Rice [16]).

o o ERasple 3.8 T

In Exaaple 5.1, r=1, s=1, =1, and n;z; thérefore,
the order of the scheme is at leist”rfs¥l¥n=itioi4i§i;
In fact, it is of order 2 as we uiilfaee in Sectioi 5. 4.
In‘Bxalpfe S.2, the order of'thevsche-e is 00102-1=2;
vhich is the order of the irdﬁezoidai rule.

Nov, consider the approxination for BCS.<the truncation

y

error of (5.16) is

a S
T =B Y(a)-ed- X e £(z)
3, h,a 0 i=1 i i
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" 'where z ard collocatiom points im [t ,t J..

3

i : : - 0 s

The trumcation error of (5.21) is T

P . - . '." s . . I
T =8 _,y(b)-eoe- 2 e f(z)
J  h,b ' =1 i i
vhere z are the collocation points {a [t 1.
i . ' ) J-c J ;

Ed

¥e have the follo-ing similar tcsnlt to !hl-5.1'

. ThB.S5.2 ASsuse mtx,m in (5.20) 4(5,25;;. 1€ nso}, Iet s>t.|

v(;Zkz). If >0, let s*qzn (t*lZl). Theg the order of consistency

of the finite difference approximation to ﬂCs (5-16) ((5.21)) is

*

‘at least egual to s+m-k +1 (r+m-k,+1) (Doedel [8][9]).
. It fol}ovs that the order of coasistency of (5.28),(5.29)

in Example 5.3 is at least 1¢1-1+1=2,

5.3. Stability of the Schepes

-

It is mentioned im Section 2.1.8 that onQ;shonld'not use
nnqexicgllyrnnstahierlethods.VOncefconsistency:of”a nev.
nuserical Rethod 1s established, for convergeacy it is necessary
to establish stahxlxty. In order to guarantee convetéhnce, ve

1111 nov exanine the stability of the schemes descriheJ and in

order to apply Kreiss' theory [1&], ve !111 assume that the mesh

'1s unlforn.

t

Consider the BYP (5.1) amd the BCs

o a ) |
(5.30a)° B (a)y(a)= = b (a)y (a)=b (a) JI<ksa
" k i=0 k,i -k ; 0

™~
!
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e | S .. ,
. k - (1) ) A - .
(5. 30b) B {b)y(b)= 2 b (b}y ~(b)y=b (b) m +isksw B

- k i=0 K,i k00

“ b
vhere n 21, n (a)<a, and B (b)<n .
R k k

r -

‘A finite différence approximation for {5.1) amd (5.30)
bas the form o

. - R A—
(5.31) Lou=2 d uwu = % e _ f(z )=f rSjSJ-s
. h'j i=-p :l. 1*1 i=1 Li o j,i 3T e
: - R ST PRV Cae e r(J(J- e o Ce s mr o ~ [
T s (a) ,
(5.32a) ° B (a)u= Z d (a)u =e L)b (a)
e h,k 0 i=0 'k,i i k,0
| | » () | ,
+ Z e (a)f(z (a))=b (a) 1<k<n
=1 Kk, 3 k3. .k 0
0 - 7
(5. 32b) B (b)u = = a4 (b)u =e (b)b (b)
kX J i=-r (b) X, i | J+i k,0 X
k _
- = (b) - - L«
’ ‘ + X e  (b)f(z (b))=b’'(b) . n +1SkSP. .-
. . =1 k.9 X, 3 x 0

If the appréxilation is not compact, thea r+¢s-n ettfn difference
equations are required to latch the nu-her of eqnatioas and the

_number of unknowns. Suppose these extta equations involve the

differential equation and are given by

s ‘
e , i K ~
(5.33a) Lu=243d u= Ze f(z )=f
kK <jSr-1  k 20 ’
0 0
95 | ’



S ET ** 2
0. X ,
(5-33b) L 3 = '
- b § i=-r 4,i J¢i k=1 3,k 3k 3
. j : -
) J-se+1S94<I-nek . -
' .. 0 ' . -
/5‘ . - r B ' : . . »
Lettiay u =(u ,...,u ).  , then (5.31), (5.32), and (5.33)
. ~h -0 3 :
can be exp:essed as
T O15.3%)  Luw=f A
h“h “h ‘.
" 7 . ‘
vhere f is the appropriate (J+1)-vector, amd L is a
“h . . » h
(3*T)x (J#1) matrix. S -
Let 7 z(T (a),-.,T (a), T ‘*0--07 c? “{b) yeoC (b))
n J-n+k -1 n
0 0 . 0 Oiu :
be the vector of the truacation errors with.
7 (a)=B  (a)y -b (a) 15k<m
xk  h,k 0 k 0"
| Y ... i » . ~ -
e — ¥ SL Yy -f K $I<I-aek _
3 k3 3 0 S -
and 7'u>;=;s ,(h;y -b (b)- n +1Sk€a .
bk 3k 0

The f1nite differeunce sche-e (5.36) is said to be gtable if

for all suff1c1ently smll h, L exists and satisfies
h " . 3‘
- 1 .
L sc for some constant c indepeadent of h.

. -
Here for any (J+1)-vector g=(g ,+...,9 ) , and for any
! RO ) J ,

(J+ 1) x(J+1) matrix A ,

Fol= o235 1%

[ ,,,/m . i . - S ; T_k : J— S
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Al = max Jag|l . . )
12 y
Let B denote the tmslation opetato:. i.e. R 8 =u -

Define b = (R~I)/h, and let Int © beitha polylo-ial of
. R i -

deéreesi -hichllnterpolates u'at @ L8 ,...8 .
: . 0o 1 i

¥Yor a cospact schese, we have - - - -

-

The.5.3 (RKreiss (18] Assese the homogensous probles

corresponding to (5.1) and (5.30) only has the trival

that for all solutions of (5.31) and (5.3_2) ‘an a priori

egstimate .

unnuusx(l |*|t§ ko(‘kl)

' holds: (Here we defime e ;=0 for_ 1:0.11,,,::14;nﬂ41444;14ftkfffﬂggngg;_g

«¢sdJ). If the Equations {5.,31) and (5.32) are consistent,

then ym eqnatibns-'htvé, for every ?nd’; “and all ' T A
sufficiently small h, a unique solution au, amd there is a %

i ' - T , : ;
constant k such that ;

2

. el s (dE) ¢ = | b ,) . !
2 k=0 k

Pur thermore, the interpolated fumction Iat a converges to ﬁ

the solution y of the differemtial eguatioa. i.e. L ’*

lia ,Int uy I=o . : o

h+»0
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¥

*'*fié’hbéféBSQEEQE the case vhen r+¢s>n. Por later pesrpose,

write (5.31) in the fors
4 ' n n-1 k ~
{(5.31y) L o =S(h)D u + gbDu =f
: b 3 + §-r k=0 k + §r 1 *
wvhere S (h) denotes a ﬁniforqu bounded diffeteaéé operator

of the form ' '
' L+s-n k

S(hy= 2 S (h)R .
S k=0 X - M
and g are limear cosbinations of 4 .
k s . . 3.1
. : ' . 1
Por example, in example 5.1, S(h)=1+a h/2 , *
s T == ,,,,,‘7,,7,,,,,,,,,,,,,,‘,,7,: = j 77. T
1 0 0 .

&

‘ n ,
Let x =D & e 3=0,1,.c.3-n, then {5.31) caa be written as
3 +3 ' o

(R-35) l$(h)x =g J=rsee.d-s .
: 3 r 3 ,

7”i£756§£”5§ﬁ1i¢a£{;;§ (5.35) has constant coefficients, i.e.

we cam write it as
s-n ™ i '
2 C'R x =g . J*r,e0.,3-8
i=-r 1 3 3 :

vhere c' are coastants. In this case, defime the
X k M .

characteristic bolynolial c(t) associated with (5.31) where

' | I i .
— c(t)=2Z c t vith ¥=r+s-n, and ¢ =c* .
i=0 i i i-r

If (5.38) is not compact, then ve need r¢s-n characteristic

e

polynomials associated with tke extra BCs (5.33). Let them have

the form
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P = )
_ o j i ~
{5. 36) c {(t)= T ¢ t k €jsr-1,J-3+1<3i<J-n+k
b i=0 9,i 0. 0
kK 20. .
o ) 3

' Also consider the homogeneous differemce eguations

N - '
{(5.37a) Z cv =0 J=r,r¥1,00.3,341 .. .
D i=0 i jei-r C T R e
~ ) B ) ~ B - \
vith BCs '
| | , v . ’
j o N o . \
,,@Jlb} —— Z_c kﬂL WfLsa&c = e T e T R e e
1-0 j.l l ) e
sep [v ls c_onstant . , IR
r<j<eo ‘ - ’ o o '
. . § , , o
(5.38) .2 c ¥ =0 -~ J=I=-5,3-S~1,04.,0,-1,...
o i=0 ¥-i jei-r * S
Cwith BCs e
, 3 | -
(5.38b) - S ¢ v =0 J=s+1<j<J-n+k -
. ‘i=0 F,% -i J-i 0
3 v
sup < constant .
s<j<pe | J-3 -
Then Kreiss {14 ] has also shown:
Thm.5.4 Suppose the howsogeneous probles corresponding to (5.1)
and (5.30) only has the trivial solution. ASsume the difference
‘scheme (5.38) is consistent and all roots t? of the
mc equation c(t)=0 satisfy |t;{71. If the difference
scheme is not compact, also suppose that the difference
equations (5«<37a,b) and ¢5.3Ba,b) have only the trivial - -
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. - ~ . .~ o

__soldtion. Then {5. 34) has4g4nn1gnggsnlnilnn4£or4a11¥sn££icientl}—k~—

small h and the diffetence schele is stable.

Consider the problea = ;71 o S | . -

v
(5.39a) yrit)=£(t) osts1r

{5. 39b) y(0)y=0 ,j>

“let r=a= s=1 and z

jft/Z
then : . }
‘ 0 00 2t -(t *t ) s
d =M w (z )=_j*+1/2  §  §+1 =0 o R
L=t e 2 X 22—

0 01 2t ~(t +t )
d =8 w (z )= 9J+1/2 j=1 j+1 =-1/h

0 1 ~hZ ,

0 0 2 2t -t et )
d =8vw (z )=_4+V/2 - 4-1 4 =1/h '

1 1 2h2

kence S(h)=R and c(t)= =t. Therefore, c(t) =0 has no toot -on

f&éfﬁnifréitcle. Sznce c =0 and c -1, (5.37a) and (5.38a)

: 0 1 |

| " | .01
only have the trivial solution and by (5.33a) and v ,¥ ip
, ) . : . 1
" example 5.2, 4 =-1/h, d =1/h, a =V. b
: 0,0 0,1 0,0

Hence (5.37b) only bas the trivial solution, and so does the
homogenéous problem corresponding to {5.39). Since noncompact

approximations to (5.39) with a=1 are always coansistent (sece

_Doedel; 9]), the scheme is stable.

Having some roots of cltLlngllegnn4thegnnit~ci;clegdoes—net——~——

necessarily imply that the finite difference approx;natzon is

unstable. By numerical experience,it.has been shown that such
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2-4. Improved Order iizh ésxsisslai Chojce of i

_are chosen'ptoperly, higher order

In (5.2), if the z
-1

accuracy can be obtained. Doedel [9] only considered the

choice of such 2 for which onme higher order accuracy is
. i e

obtained. The details of this apalysis are p:esented:belov.'

* " defined inm .
ce+s*a-1 )

2 1 reg+r—-1 o -
Let - W " 'nco" ’ be a DESiS of P

(5.18a) and (5.14b). This linearly independent set can be

extended to form a basis of P by adding a polynonsial
C+s+n ' '
C+S+n ) ' ‘
v (ErP which vanishes at the sesh points. The
E+S+n ' o

ertra polynomial can be of the form

r+s+a -1 C+s

v (t)y= T (t-x ) Tr (t-t )
k=1 - k k=0 J-rek
wvhere x are in [t ot ]. and satisfy |x -t |<ch,
-k J-r J+s k
- : e 1 ’
1<k<m-1. If ve expand y(t) in terms of w (t), i.e.
C+s+m | S Ce+sen+ |
y{t)= 3 c v (t)+0(h ) .
k=0 k

‘then the trumcation error cam be written in the form

-8 2 resen s k s
7 = dy - 2 ef(z)= Z cf dw (t )

§ i=-r i 4+¢i di=1 i i k=0 k di=-r i  J+i

101



k Lds+a-n+1

| | .
- S efu(z)poth )y .
ooi=r 1 i :

The quantity between square brackets v;hishes for

, : Lé+sen _
0<kgsr+sta-1, and since v (t })=0 (-r<i<s), ¢ becoses
, “yei -
» C+s+n r+s+m-n+1
T =<¢ Z e Hw (z )+0(h ).
j resem i=1 i i '

Hence, it is clear that if the z are chosen so that

4 i
Q0 resen i resen
M w (z )=0 1€i<a vhere v (t) is in P and - -
i : - S < -
‘ : r+s+n . : <
satisfies v (t )=0 0<i<s, then an extra order of
v Y

consistency can be obtained.

In Exaupfe 5.1, 1gt

v ()= (-t - ) (-t ) (t-t )
s bl J 0 jet
03

and z be the root of A w (t)=6(t-t ) ij.e. z =t ,

1 3 1 3
vhich is vhat.ve chose for z in Exaample 5.1. Then, as
' 1

staied in Example 5.8, the order of consistemcy of the

scheme is 1+1=2,

zZ; in (S.2) as unknowns, one could

Ho%ever,~ifvte treat the

expect that fot the special operator Hh » higher orders up to

v res+2m-n can be achieved. It is shown in Lynch-Bice [ 16] that

4

such 2!s exist and they also of fered the séecial choice of z;

for the case N=R°. This will be discussed next.
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For sinplicityirve pn;yrqpnsiqér compact schemes (r+s=n)
for #=d"=n° . ror the general case of the vafigﬂie coefficient
operator N apd sufficiently siall h, it cah’be shown that there
is a set of e's and a unigque set ofi; éuxiliatyvpoints z: with,
t r<$Zy <eoo<z, <t:, o such that the high order scheme is exact on
(see Lynch-nice [16]) . Bosever, it is not clear ‘how

) P2m+n-1

these z's can be found. Since their positions are ptoblel '

dependent, 1t vculd not be practical to construct a high order

. scheme which is exact on sz'ﬂ 1 for a general-N. In the

following, a gene:al;zed,rgsnii.gi L;nehalise:giﬁqfisfs%eva%f%hef*“*f*ff
basic process is the same as theirs, but r and s are;jg';onger -
restricted to 0 and n, respectively. ¥We now find thelspecial
locatidn_of z;s vhich would give the order of consistency a§~

bhigh as possib le. ‘

On the jth snbintetval,,since the vi(t) of (5. 18a) are in

& e

P,, their n-th derivatives are comstants. When applyinq thel to

{5.3), we have

0 n! | a 0 : '
(5. 40) a - s 2 e =0.
— i T (t -t ) 3=1 3
k=-r,k#i J+i Jek :

»

If (5.8c) is used, (5.480) gives

nt

N\ a = s ,
i T (t -t ) -

- X=-r,k#L  J¢i ek

vhich weans the operator li’is n! times the usual divi@gg

di fference approxisation to 8°=p". Thus
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.‘4‘
; 0 s s o -
(5.41) By(t)= 2 dy(t )H)=at Z y(t )/
ke 3 A=—r i J+i i==r i
' s - : .
Tr . (t ) A )Pn!’[t geeo 't ]'
k=-r,k7#i Jei J+k ; 3~ Jrs

i.e., H:;(ﬁi) is the nth derivative ofAthe unique deynoiial‘in‘

?n.vhich interpolates the values y(tj+;) at' ti*i-' i ryeeeyS. -
BY Taylo;'s Theores,. y{(t) can be expressed as .
-1 4 L it ' a-1an :
(5.82) y(t)=2 D y(t ) (t-t ) +{ {t-x) D y(t)dx
i=0 __ i-c i-c t (n~1) 1!
i j-r v
. .. (coldberg{1i1}. 4

Substituting (5.642) into (5.41), since the nth dividea
difference of an elesent of P, _, is zero, we get

t A .
0 j*+s - n
(5.83) B y(t )=n! B (t ;x)D y(x)dx
h 3 t a3
. = I-r
”vhere’B”fE’}f)'iS’iﬁé nth divided difference
] _ .

gt PP 4 ;X ] with respect to t of
n 3-r j+s

e

n-1  a-1 e
g (t:x)=(t-x) =} {(t-x) /{n-1)1 if t>x
. n " [ .
o 0 otherwise .

o

' " '
Hence B (t ;.) is the (n-1)st degree polymomial B-spline
n i ‘ '

vith joints at the stencil points. Therefore, the

truncation error is

0 ~
(5.48) T =4 y(t)-
s B N
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1

-

[t .t ], def
j-r JI*+s

ine the inmer product

t. o
J¢s - B s On -
- e — B (t ;x)D y(x)dx- 2. e D y(z )"
t n j i=1 i i )
3 |
0 n . ‘ S ’
=E [D ¥] :
b 3j L
On ;_V : LY —~ .
where E D y is the quadrature error 'in using £ as an
h - , : |
oy R - R T
approximation to the intergral of n!B (t ;x)D y. Let ‘
, a3 T
, i a-1 (t-t ) o
{5.45) v (t)= T0 j-r+k C 1i=04e0.,8-1 .
a0 k=0,kyi (£ -t ) R
(- 0
If e are choséen such that
i . .
.0 j+s - i-1
(5.46) e =n! S B ([t 3 x)v {x)dx 1i=1 e veeBd .
i t n :
‘ j-r R
o [t S —
a i-1 i*s - v
then since 23 v (t)=1 and B (t ;x)dx=1/nl R
i=1 t n J
: r T
B 0 , . :
we obtain 2 e =1. But for the e's in (5.86), and any
oi=1 i - i .
. ’ 0 n : -
yin P ¢ T Y=E [D Y)=0. Since B (t ;xX) is positive on
‘nem-1_  h h n j

t .
j+s - '

Let b ,by,... vith b;€P; be the norsalized orthogomal

t n 3
J-r ‘

5.8 (u.rﬁ) 7 Bt ;x)u(x)v(x)dx -
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polynonials vith respect to this inner ‘prodact (call thea the

‘B-spline orthogonal polynomials). Bach b; has i distinct real

zeros in (t (mll thea” B—-spune Gauss points). If the m

J‘r'tJ+S)
-»auxiliary points z. are the B-spline Gauss poiats for b , since
Ga¥ss quadraturé is exact on P am-1 for Gauss pgints, the high
ordet finite difteren,ge apptoxi-ation is exact on» P2m+n~1

A sequence .of o:thonoa:ul polynosials can be- gematm} b1 a-

3—terl recurrence rehtion ‘as follovs : L~
P
b (t)=0 , b
R e e ——
D o=,
0 1 4
(5. 48) ~ . :
b (t)=(t-B )b (t)-c Y (t) i=0,1,2,:.. v
. i+ i i it
,
Jrs L2 - _
vhere B = xb (x)B (t ;x)dx/s v -
AR S A i n 3 i
¥r
0 if i=0
c = ¢
i S /s if iy0 ¢
i i- :
t
J+s ‘__2 - . 2
s = b {x)B (t .ix)dx , -
i t i n J -
- r |
and b (t)zh (t) /s 1i20,1,2, .. .
X L L

" Since the z are roots of b (t)=0, it is obvious that
i N :
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Noudd . ’ . . ¥

eb (z ) =0

i=17 il i

and becaase (b ,b ) is positive, T in (5.484) isnot zero - -

» n |
for po]fynonlals in P , that is, the gpproximation is not
_ . 2aen : ) : .
exact on P . Bence the-high otder’ scheme has order at

2mén

g Iost 2:.7If only j of the ® Gauss points are used, them the

' hiqh order scheme is of order ﬁj-

Exassle 5.8 ,

Consider the operator B=D . Let l=2,t‘8=1.

Por convenience, coasider a nniforn mesh. then

Ed

r(x-t; )/2h?  t  <x<t
3-1 - -1 ° 3
B (t:m={(t -x)/2p2° ¢ <x<t
23 j¢1 7_ 3 je1, |
. \ */' . ‘\ o "~ otherwise
. and.(5.85) gives | , .
o -
. ¥ (t)=(t~t ) /~h .
. 3 . A . .,
. 1
v {(t)=(t-t )/h .
j1
" Fron (5;56), ve get . ’
ft
0 - 31 - .0
e =2 B (t ;x)v (x)dx=0 ’
S 1 t, 2 5
: J 31
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e =2 ' B E ;x) v (x) dx=1 v
2 3
”3'1
and by (5.48), ve have

P d
b =1
; 0
- ?:t_t : . - . o
S U S ) e
B =B ) (t-t )=¢ =(t=t ) (t-t )-h2/6
2 T3 3 .3
o= (- (t;h/f?n(t-'(tj-h/]?_n .
.7 Hence the schese — ' —
(@ <2u sn )/b2 =f(t +b/J6) 1=142,..,3-1
1.3 3 1 ~

for- y*=f (t) (vith aﬁptopriate BCs) is of order 4.

In this section, an eguivalence between the finite

dif ference methods and collocation methods is presented.

Consider the case a=1. Let wl(t) in (5.10) be the set

of basis functions for our collocation method. Then the

collocation solution s(t) is

L+s 1 s
————— s {)= 3 ¥ (Y
1=0 1
Since v (t - )=§  0S1l,k<c+s, 3}=0,.=.,d ,
' J-r+k 1k
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T 8[t | )y=c . If we write the collocation solution at
N o, jrr*l - l ; ) 7 ; A , ) .
t B as u .&,.then . > )
j-r+1 J-r+l '
, s{t)= Z w (t)u = T w (t)u .
1=0 J-r+l1 i=-r Jei

: : - 1
The collocation method for ome collocation point and w

~ in (5.10) requires u to satisfies

& -

- ,,jo,j,, N - _
‘ s v ~
(5.49) 2 Bv (t)u =f(z) .
_  i=-r Jei 1 -
,:jijgg.iiﬁé;uUuutfhand,fan (5.11)
A . rc+i _
d =8vw - (2 ) -rsiss - :
e i 1 R
- The left sum in (5.2) is . .
. : - &
- - 8 -8 r+i ,
(5.50) S du = Z B (z)u
iz=-r i j#i i=-r 1 Jei
. -‘ Vn N : N
~_and right sum in (5.2) gives - , .
» . R -
15.51) e f(z )=f(z ) . S
: i=1 i i 1 . - e
By (5.50) and (5.51) we have
s r+i :
'S mv (z)u =f(z )
i=-r 1 J+i 1
. vhich from (5.49) is collocation with one collocation poil{.7
109 .
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In this section, the conpntational aspécts of the higher
order fxnite difference scheles are cons1dered. Since the HODIE
lethods of Lynch-Rice [16] are sililar to the ahove -ethods

(call thel Doedel's lethods), conparison of the conpntational

work for the sale~gioba1 accnracy is*tade- COlparison of

eff1ciency uith that of collocation lethods n51ng B—splxne and

L.

Ganssian points- is also considered.

141g;e:eiiie;eat1;:e1aiﬂaxe:d::aﬁ&:e%;iaziéjiff‘ﬁﬂﬂfﬂﬂﬂF;—*;::*

find the coefficients by solving the linear nlgebrazc systen

(5-3) instead of calculatlng the determinents in (5.11) and

(5 12). This is how the’ HODIE lethods find the coeff1cients. If
Lf

the basis functions are chosen such that they satlsfy (5.10),

then 5. 3) gives

{5.53) Z: e Av (z )=0 ‘rosf15i$r0501—1
' =1 3 b | :

. for the interior subintervals.

then (5.53) becomes

It the normalization equation is chosen such that e =1,
' ' L

(5. 54) Ae=-b —

) - »-1  résti-t @ : T ,
where A=(a ) = (Mw z)) o, e=(e ,...e}) -, and
iji, =1 Jj 1,332 T 2 a -
r+s+l , c+sta~-1 T
b=(Bw Z2),...,8v  (z)) . -
e - ,k,#, - ﬁ),,,)f,k,,f/i,,, -
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H

After the e: are deteniined from (5.56); d: can be found easily

from (5.52),7and the finite difference approxinationghgt nesh
points are éhe solntions-uj of (5.2). )
Lynch-Rice [16] found that to obtain els it is‘
. co-pAntatiqnally more efficient to use a‘diftel':nt set of baéis -
functions ([16],9.363). AS a result, (5. SZiIis no longer valiad
for the basis they consi&ered, and so, one has ﬁo soIve a s;stel
of t+5*1 algehraic equations to find the d;. Their set of basis
functlons is therefore less efficient for evalaating d . and so,
fQll¥7hiS13jﬁﬂas£iQﬂ5:5ﬁ£iSf#i3g:%5?43%:a£0160ﬁ8iﬂ!ffﬁ:ﬁﬁf§:
Consider the ptoblel {5.1) snbject to (5.30a,b) at a

- uniform partxtxon t=kh, k=0,...d, and a general set of s .
auxiliafy'points. Let xr be a lnltiplicatiog/division time and F

' ‘ (
be a function"evaluatxon tine. Suppose that the values w?! (z )')

o 0%i<n, 0<l<r+s+a-1, 1<j<n, have—been'previansly computed and

- stored (they ‘do mot depend on the subintervals), then the sSetup.
"time for A and b ia (5.58) is ((|f1)(l—1)nfn(nft))g?fnlt. T@?,,}
function evaluation ié for a general'set'of z;. If zZj are’at .
mesh points for some i, function values at these points can be
stored beforehand and do not need to be reconpnte&. It (5.58) is
sqlved by Gaussian el{ginatlon vithout pivoting, the solntioa
time is [(i2+l-3)(-—1)/3]!1. In (5252), for a fixed i, it takes

JW'leinlﬂT time to evaluate uv'*'(z y { sincg41hn4a“411}4h31e/aixe&d}———/———

been calculated in (5 54)) . Since e,=1, it takes another (m-1) AT

time to find di' The total time required to evaluate d; s —TrSiss

and e; , 1<i<m, is therefore

"mr .



[nl(l-1)*(l=+l;3)(l~1)/3¢(:+s'1)(nn#n—li]ﬂlgln14

For sisplicity, ve only consider the case vhere there are
the same number of auxiliary poihts.in the consgchtiie‘ |
Snbintervalsrinvolveq in eacg'rOHvof_(5.3l). To get jn‘otdetk0f 
r+s+a-n for a complete schese, in (5.32a) (orr(5.32h)), 6nq has |
to fike i fron 0 to at leist v=r+s-nén (a)-1. (ot;-v'z—(ris—nfnk(

b) - 1 to'O) for each k. v (or v') is nonpositive only when £és=n
and n (a) 0 1 (or nx(b)-0,1) (recall that r+s2n) . For the case

nk(a)=0 (or nK(b)=0),'ho<ap§¢6§ilation equation is needed sipce'

,,g4ha1efbeehrgi;aa:thezexae%:séiatina;atéa:1af:b1:~i:*n;;ayz1f"“’**
‘for nk(b)=1), set v=1 (or v'=1) and pick »-1 anxiliafy points in
[tew t;] (OF [ty ,t ]). As in (5.52) and'(s 53), e; in (5.19)

can be calculated more efficiently by solving the systel of a

equations
L k a1 X '
(5.55) _eB w (a)¢+ 5 e Aw (z )=0, ;=;¢4,i. cvem,
0 k,a =t 3 3 ,
"and 4 in (5.17) can be evaluated by
i o
B i i -
(5.56) d =e B v (a)+ ZE e Mv (2 ) 0<i<v.
i 0 x,a F=1 73 » B E
Then e in (5.28) cam be calcn15te§ b1a501'ing
T : Xk .m ' 38 ,
(5.57) - e B «w (h)+ S e fw (z )30, k=y'+1,...v'#+n,
, 0 k,b =13 5 - '
“and’'d in (5. 22{75££u554;;;135235¥520l o
i
: r+i a T¢i ,
{(5.58) 2 =e B v (b)+ Z e v (z) -v?<i<0.

i 0 k,b 3=1 3 3

112



e . [ [ Y

stug the sale argulent as before, vhen nu(a) =1 (og;ngpl,gg;g,

-1), there are 2(:-1)+n(l-1)1n-1)*(l-1)(n20l-3)/302(lfn)
moltiplications to approximate the k-th boun?aty condition. If

;;b (v'>0), fhere are {nk(a)ttai#nlztl(lif3n-1)/3t(Vf1)(nK;a)

+n+a) (or (nK(h)+1)10nl20l(1203l-1)/3+(v'¥1r(nn(bffn0l) % -
lultiéiications to gpprpx;-ate k-th boundary condition. Denote
the'nHISQI'Of nultiplicatidﬁsfteqﬁired for approximating a Bc,bi,.
BTy. The hdiberréfﬁfnnction evaluatioﬁsrfor apéroxilating BCs

also depends on ny(a) and nk(bf, e.g. if all nK(a) are the same

“ and_not egual to 0 or. 1 for k=tpureny, t#enfow%ffnt?fis‘ﬁeedﬂd:’f::f‘
for the first n, BCs. Denote the nunber of fnnction evd#luations
for approximating the first n, BCs by F, and the last n-n, b! ‘

Pb. In (5.333) (or (5.33b)),"i has to éo from 0 to at leasfv}+s

(or from - (r+s) to 0) for each j. Since n, (a) (or nK(h)) is less

than n, t+s-n*nk(a) 1 (or r#s-n+nK(b)-1) is at most t05—2.

- Hence, ik and fh in (5. 3“) " have the form - T o
res-l o {7
n {f| C ¢t C }n
0 1 1,£] o
r-k { c - ic }r-k
0 2 2,f 0
{(5-59) ., B and | B - jq-r-s¢1
) | ¢ | o
C }k ¢s-n C - ‘In
3] 0 3,6 0
I N }n-n | }o-n
N e o L 4,f 0
T T T T - r¢s-1 =~ -

where B is a trapezoid of width r+s+1 and height J-r-s+1i.

Depending upon n (a) and n_(b), some elements 6f"C{”5i&’C#miayrrf
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L S e

~he ZE€ro. Hote that one has to take d1fferent r-k, sets of -

)

- R - -

auxiliary points for C, and different k,+s-n sets of auxziliary

points for C othervise, some rows of C5 or C3 will be

3'

identical and L, vill‘be'singnlar.'Thé setup time for L, and £,

is therefore

n .
‘o

c,c F+ > AT .-

1 1,f a k=1 X
C'B'C 'B

2 2,.f £
c ,C (J-n+1) {[g+(m-1) JAT+m(n+1) F}

3 3,¢t — e S - e
c ,C , F + Z ' NT

4 4,f b k=n +1 |

0
vhere g'nl(l-1)+(lz+l—3)(1-1)/34(r+s+1)(n-+l-1),

If- Pau351an elllxnatlon uithout pivoting is used to

N e

solve (5.33), then the solutlon tlie 1s L
n,-1 ¢ +2-r
-0 0 , N o
(o +rk )[ 2 (c+s-J) + = {r+s-n +j)¢ (res+1-n ) (J-2r-s
0 0 i=0 . - =2 0 0 :

“1-n 4k )s(Ces+l-n ) (20 +2r425-20-1)¢ = " §(3e2) JaT
0 0 0 o §=1

for gé;ting an upper tr;angular natrix and

. t"k' n ‘ : %
) 0 . 0 - .
{ Z j+n(j-r—s)+ Z (v+§)+* = (res-3j) ]Mr for back
~ 3=1 fﬁﬂ/f~f~u~—ﬂj~%——f——rffrﬁk
substitution, where u=s#l+k =n ~_
» R 0 0

Fote tha; the work estimates calculated are based\gh an n,x

'
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{r+s-1) matrix C4 and anm (n-no)x(r+s-1) matrix 93. Since some

AT Y
‘«;-u;;L;zL:t;amamanmm

elements of C1‘and C; smay be zefb, the ﬁdgﬁiim;gii required

should be no sore than the work calculated fros the formula.
Now consider the BODIE methods. Recall that in the HODIE

methods r=0 and s=n. Hence, to compare with Doedel's method

vhich gives the same global accuracy‘of order r+s+s-n, one amust

select p=r+s+a-n auxiliary points in each subinterval [t .t ]

J+n
for a HODIE method. .

Again, let e1=1 and assume all values of '1(25#5) are
already stored. Por approximating BCs, consider the case when p
points are collocated. Then in (5.32a) (or (5.32b)), i goes fros

0 to n,(a)-1 (or n (b)-1). As before, if D (a) =0, no
approxrimation is needed. If n.(a)=1, then onme finds d,,d, fros
em,e“...‘,ep'1 . Let {; and P} be tﬁe function evaluation time

for approximating BCs at a and b, respectively, and let AT be

the moltiplication time for each BC. Since the HODIE methods are

compact, no extra equations are required. L, and f, of (5.38)

then have the form

- n- 1 — P

n { C (o n

0 1 ' 1. f 0
{(5.60) B B }J-n+ 1

£
i C }n-n o }n-n
2 0 L 2,f] 0

- . .. n=% 3 . S

I

Wt bty oo

YT
BER T

o
vl

vhere B 1s a trapezoid of width n+¢1 and height J=-pn+1,

Jence, setup time for (5.38) is
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'n

. R S L

c,C F'+ 3 M '

t 1,£ -a k=1
B, B (3-n+1)[ p2n+p (p2+3p-1) /3) ET+pnP ]

£ . o
. | | |

c.,c - P's S AT® ,

& 4,f b k=n +1 k - - s

e . 0 X

.If Gaussian elimipation uiihout piioting is used to sblve
. (5.34) ,since some elements of C1 and 92 may be zero, the total

time for the second part of the inpleientatiqn is at ""’J

- —
o_ | ,

sost [ n EE {n~3J) +n {(n¢+2-n ) (J-n+1-n ) +{n+2-n ) (n¢+n -3)

0 §=0 0 0 0 0 o

©- n=3
+ Z (n-j+2) (n-j) ]8T to get an upper tr;angular matrix and
j=1

[ {r-n ) (n-n_+1)/2 +(n-B +1)(J-n+1)+(2n—n -1)n /2 ]8T to
o 0 o 0 0

i

obtain the solutions by back substitution.

The comparison below .is done for second-order differential -
equations Subject to Dirichletlaés since giey are the most
1lpottant case and are siagle. Cons1der the problea

YOItk e By (tY+a (£)y(t)  asts
0 }

T(@=o=y®) . )

Por this case, n-2, n =¥, n (a)=0=n (b), (L) -(L')
' o Ot 1 ——hT, h (I+#1), (3+7) ‘*
=1, and Lkafgifglr~—~—z0f¢1he—con?a£%sen—ts—ﬁtesented—tn A
h 1 {J+ 1)

Table 5.1 for three different orders of'accuracy (4,6,-and 8).

4
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" The data'fo:-col;qcatiQB,QSiEﬂ B-splines and Gauss points is

derived fros Russéll-Varah [20].

_ The first rov of Table 5 1 g1ves the conputat1ona1 vort for

the HODIE nethods (Lynch-axce [16]), and the first five rows

e

Iable 5.1
3 order
) , 4 6 8
C+s-%= ) '
0 {JI-1) (82M2+12P) | (J-1) (1868T+18F) | (J-1) (354NMT+24F)
1 (J-1)(605T+9!) (J—1)(1EQHT0152) (J-1)(2845T*21?)
2 (3-1) ('-l2H'l‘+6?) (,J-1) (110AT+12F) (J-1) (22651&18!)
3 ’ '(J 1) (278T+3P) (3-1) (83NT+9F) (3-1) (1798T+15F) |
4 (J=1) (60AT+6P) (3—1) (180NRT+12F)
collo- ‘ - —
cation J(328T+4P) J(82AT+6F) J(16GAT+8Y)

give operation counts for flve mRore general dxfferent Doedel's

schenes,

Lynch-Rice [16] picked t

auxiliary points. Since the central sesh point of an

odd-number-point difference operator is a zero of every

odd-degree generalized B-spline orthogonal polynomial, one

] as one of the

higher order of accuracy is obtained. In this case, ome would

expect that, for the same order of accuracy, the counts of the
HODIE regular case im Lynch-Bice [16] is smsaller than that of

the HODIE methods we consider here. Proa Table 5.1, it is

obvions that as r+s increases, the operation count for a given
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order decreases. It seems on the basis of operation counts that
one should pick as few auxiliary points as possible and let r+s

w

be larqe{rrhié'Viev is sgpported in the numerical examples givem

S,

in the next section.

It ue.Eélpare the first rov with the other rows of Table

5.1, Doedel's methods are more efficient than the HODIE methods

for large r+s-n. By comparing the data in Table 5.1 with that of
Table 9-2 in Lynch-Bice-[16 ], we coiclude that Doedel's methods

are coanparable even to the §0DIB Gauss-type case vhen r¢s-m is

vork for second-order differential equations.

z

5.7. Experimental Results

<.

Prom Table 5.1, we have seen that if the nnlbet of

auxiliary points is chosen as snall as possxble, Doedel's

LY
methods are much more efflcxent than the BODIB methods,

Bumerical experiments have been run to support both the theoreass

in the previous sections and the above éonclnsion. All
conputations were performed on the SPU IBHE 3033 using doﬁble
precision arithmetic. In e&ch experiment, the mesh considered is
equal spaced.. For the HODIE lethods, auxiliary points are chosén

such that z. »-1 (1,11h/df,!orlnoedel'sﬁaetheds,—onlyﬂanef

A ST T b A

R A

J.1

Ed

rd

au1111a:17291nt xs used, it being chosen as the midpoint of f.).

tips 1e j=0,...,J-s. Note that the matrix Lh obtained when r=r,,

s=s, ,is identical with the matrix L; obtained when r=0, S=I, *S, ,

Lo
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B - - ot T o T e ~~ .
and 2!WigmL;}1L5;r;f34J4axe*aL,ihe,saleglbcitiongcozzespending'———~———
o Bl L) [y & » .

to z:. in [t

{ =Yo

Since ve consiﬂer the case m=1, if the order of consisiencx 7
is required to be greater than onme for Doedel's methods then r+s
must be greater than n, and hence r+s-n extra finite difference
‘equat1ons are needed. In the experilents, they are divided into
two sets. If ros—n }greven, half of them are set to approxilate

the fzrst s+1 solutions Ugreseslg§ if r+s-n is odd, then

{r+s-n+1) /2 equations are defined for u seecelg. In both éases,

the others are set” fﬁf‘fﬁe‘iiif‘sz’prfaxiiate solutijons hJ -G e

.,.qJ. In [ta,ts], tﬁe auxiliary po;nt involved in the i-th
equation of these extra equations is takenvto be the (i+1)st
mesh point. In [t s,t )}, the auxiliary point is defined to be
the reflection of the corresponding one in [to,gs].

" In the folloving tables, nnner1ca1 resilts ate shown for a

'nnnber of cases. Orders of consistency considered are 2, 4, 6,
and 8. The results using Doedel's methods nityvn=1 are the rows
marked s=. The rows marked m= are the results usin§ the HODIE
methods. For collocation methods, numbers of collocation points
‘used are 2,3, and 4 for order 4,6,and 8, respectively. The '
fesuits vhich use collocation methods iith B-splines, Gaussian
points, and uniforas peshes (COLLO) are given in the iast _ |

columns. The notation .220-1 stands for .220 10 . In the first

colunmn, (0!W!gggggxhgggzdgx,ntgihg4schenasf,Jgisgthe—gniherfof

subintervals.

Exasple 5.9 | , L
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. 4

Consider thé DE

t
yh+y-2y=2(16t)e
Y{(0)=0=y(1). , _
The solution of this ptoblel is y(t)=2t(1-t)e « The problea

H
H

~has been used by Doedel [8] [9]. The results are givem in

Table 5¢2. i
Table 5.2
(o) J=8 | J=16 | J=32 | J=68 | J=128| coLLo
1 |w=2].220-1).558-2 | .180-2 |.351-3 | .877-0}
2"s=3 .137-1 |.388-2 | .876-3 |.219-3 |.548-4 _
a=t|.568-4 | .358-5 | .223-6 |.139-7|.862-9] J=64 -
) =51.537-4 |.623-5 | .%80~6 |.283-7 ﬁzﬂ79-8 .735-9
»=6|.608-7 |.958-9 |.158-10] xx xx | J=16
° $=7|.826-6 |.123-7 |.187-9 |.307-11|.306-13 .800-11
|w=8].398-10] xx | =xx | =xx xx =8
° $=9 -— «212-10}.626-13 xx xx «119-12

xx Contaminated by roundoff.

Exasple 5.10
Let the DE be given by

y*-4y=8cosh (1)

 y{0)=0=y (1).

The solutiénitc this problem is y=cosh(2t-1)-cosh (1) . The

probles has been used by Lynch-nice [16] (ﬁote that they had

a mistake in [ 16], f(t)zlcosh(1), not f(t)-2cosh(1)). The

.results are given in the folloving’table.
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T T B S :
- o I
(0) J=8 | J=16 | J=32 | J=68 | J=128 | cOLLO
| m=2].795~2 | . 198-2 |.496-3 |.1284-3 .'?ﬁ;i’ 7 b
ol .896-2 | .128-2 [.310-3 |.775-4 |.194-& )
a=8.320-4 | .203-5 |.127-6 |.79%-8 {.491-9 | J=64
“"‘"'""’”"""f'j???*iwfrfm -251-6 |.162-7 |.102-8 |.168-9 |
2=6(.751-7 | .118-8 |.181-10| xx xx 3=16
> s=7(.942-6 | .148-7 |.229-9 [.364-11|.282-13|.360-11
»=8}.103-9 1x xx ﬁix ' xx J=8
° s=9| -- .552-10{.188-12| xx xx .858-13
B - e
o The last example shown is

Eample 5,11 . ,
The DE y'-lo01=400cosznt+2w2c0821t. 

Y (0) =0=y (1)

-20 20t -20 =20t -20
has solution y=e e /{1+e ) te / (1+e ) -coszqt.
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(0) 3=8 | J=16 [ J=3z | J=64 | d-128 |coiLo | -
5 | m=2[.700¢0| .189¢0 | .296-1 | .665-2 .155-2 |
. *Toms]-720-1| a95-1] . 159-1 ] .370-2 oze-3| | .
'“/, m=4 213740 .128-1).723~3 | .427-4 | .253-5 | J=16

* [o=s|-270-1] -780-2 | .512-3 .522-8 | .431-5 | .219-3
’ | |m=6|-265-1] .736-3 J105-a | .502-6 | .230-8 | 3=16 | .
| ° 5=7/.208-1| .368-2 | .137-3 | .191-5 | .269-7 [ .182-5

n=8.380-2| .273-8 | .978-7 | .356-9 | 1xx 3=16 o

B B e o 173=2| . 27%=0 | .117-6 | . 2349 .891-8

From the results, the HODIE methods and;néfdel's,netﬁodg are
quite competitive with each other. Comparing their resnlts vith

that of COLLO, one requires larger values of J for the fimite

R /m~%§iffefeﬁcefiethodsWto~§chieve”cbipitthé”accuracy. Taking the
ratios of adjacent‘nnlbers in eéch row of?the~above‘tab1es. it
is evident thdt'both the HODIE methods and Ddédei'é léthods:givér
orders>of coﬁsistency as predicted and there is no nuner}cal
instability. Since the implimentation of the HODIE lethods.r
invol¥gs solving an (= 1) x(m-1) lattil'fot each rowv of (5.34),
the execution time of high order HODIE iethods is msuch longer

than of Doedel's methods for the»g&ié order of accuracy. Froas

-

‘Table 5.1, we see that, when m=1, Doedel's methods are much

cheaper than the HODIE methods.
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a ' 6. Comclusion

General foras of BYPs and{ivps have been'§$ven, existence

and uniqueness theoress for solutions of IVPs and BVPs have been

provided. Stability properties of IVPs and two point BYPS have

been diséﬁssed;'saie“iéll;khbiﬂ numerical methods for solviag
BVPs have been presented. |

Be have seen several eqnxvalences betveen the most common

S »

nulerical lethpds for solving differential-eqnations. Sone of

T F

then hold only in special c1rcnnstnnces. €.d. in Sectlon 5.5,
only one collocation point was considered. and there are many

cases vhich have not been taken into account. Comsequently, one

remsaining task vould be to find more relationships betneenﬁthese ,

m.ethodsm{efg— the—BOBIB—ietko&s~tnd‘coiiucattcn’iﬁir‘“)I)

¥e have dlscnssed the high order fimite diffetence lethods

thoroughly. As with fxnzte element methods, when solved by the' |

finltg dlfference methods differential eguations need not bhe.
converted to first order systess. Though ome can get

sﬁpe;convergence using general B-spline and Gauss points, it is

not practical for genmeral n~th order gliffe:ential _equatioti_s. ?'oxy:'

the case !°=D", one can find the B-spline Gauss points and the

'”Eight-hanq-siql_e coefficients easily by using the formulae

discussed before. ¥While for gemeral N, the location of the .

general B-spline Gauss points depeués on N and the ieshfpoints.

"Thus, it would be difficulfugaﬁii;;u;ﬂEEQEEical code for the
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finite difﬁgngncggnethndsgxh1ch;qéves—highlaféeflaeear&cy'——‘——'*g'gA'*

However, the lethods have been sholn to be conpntatxonally
efficient. OPetatlcns counts and numerical tesnlts have shown .
that, to{find the apptoxilations by Doedel®s sethods more 7
efficiently, one should use scheueé vhich only involve onerk

auxiliary point.
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