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ABSTIRACTY

The structure of the lattice of all varieties of bands has
been éompletely determined (independently) bj Birjukov,
Fennemor2 and Gerhard. In this thesis the structure of this
latticef is used to determine the structure of two relatéd

lattices: the lattice LBM of varieties of banl monoids and the

lattice LFBM of pseudovarieties of finite band monoids.

Chapters I and II provide an introduction and background to

this proplem. This includes a discussion of varieties and

equational classes, seaigroups and monoids, and pseudovarieties
and jerneralized varieties of semigroups and monnids. Of special

iaportance - ire three theoreas ~ of Ash vhich relate

—

pseudovarieties, jJjeneralized varieties and varieties.

In Chapter III a function is defined from the lattice LB of

varieties of bands to the lattice LBM. This function is shown to

be a surjective lattice hoamororphism, and so by determining

exactly which varieties in LB are identified by the
homomorpiism, the shape of the image lattice LBM is determined.
Finaliy a function fros LBM to LEBM is defined, and shown to be

a lattice isomorphism, thus establishing that LBM and LFBM have

the same structure.

s
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I. Introduction

Vérietie§ ot btands hqve been studigd?ﬂy Kimura {10j, Yamada
{1&],'Pétficb (121 and‘pthers. The structure of the lat;igf of
‘all varieties of bandé ias'éonpletely detefminedlby Birjukov
[2], Fennemore [6] and Gerhard {é]. There are tvofothér;lattice5+u)f~~A~‘

élgsely' related to this one: the lattice of varieties of band

monoids, and the lattice of pseudovarieties of band monoids. The

main result of tﬁié thesis is the determination of the structure

of these tvollattices.

We begin in Chapter II with a study of varieties,
pseudovarieties and the related concept of generalized
varieties. Section 1 gives a brief introduction to the area of
universal algetbra, légding'up fo_aadisq?s;ion of varieties and
equational classes. Birkhoff's Theoren, sfating that va;ieties
“are‘in‘faét the same as egquational %éiaSSesi is then gquoted
without proof. Since the only algebras to’be studied here are
Vseaigronpé and monoids, Section 2 gives definitions, examples
and some facts about these two algebraic structures. The example

of particular interest here is that of a band, a semigroup vhich

sitisfies the identity ,x2=x. The class B of all bands is a

‘variety, and associated with it 1is the lattice LB of all

varieties of bands.
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In Section 3 tinitenmess conditions are considered, leading

to‘t@gdéfiﬁiﬁ%dﬂUfpseudovaraeties of finite algebras. The
interest in finite algebras comes from the field Af automata
theory, where there is a close correspondence rbetueen finiie
automata and finite w@momoids. This 'correspondence, and the
'resﬁltant algebraic automata theory, 1led Eilenberg to udefihe
pseudovarieties of finite monoids and semigroups [5]. This was «.

;hén extended to pseudovarieties cf arbiirary' algebrasﬂw&ﬁdwmtom—wééwﬁ

generalized varieties by Ash [1], vho .also proved several

theorems relating these various ‘concepts. These theorems are

rcdnsidered at the end of this section.

: Inr Chapter VIII wé turn to the specific éuestion of
varieties ,of,banaé‘and band monoids.‘Fennemore has shown in [6]
that there are a countably inf;nite number of varieties- of
} ba{ds. and that .ga,ch ,silch,,v,g;,i,e;y,, is defined by one identity.
bes ides xi=x; and he has given a complete picture-bf'the lattice

of such  varieties. Since semigroups and monoids are so closely

< S
[N

rélatei, it isrnaturai to try to use :-this lattice to obtain
infornat;on "about the 1lattice of varieties of band monoids.
Given any variety ¥V of senigrohps (bands), the collection of
monoids 1in ¥V is a variety of (pandy ﬁonoids; TﬁUS we may define

a function %on on the class of varieties of bands 'by taking

son(¥) to be the set of aonoids in V, for any variety V of

bands. In Section T it 1is shown “that Mon is a lattice
homomorphism from the lattice of varieties of bands (abbreviated



as LB} onto the lattice of varieties of band monc ids {LBM).

t . . -
Ther=fore in order to study the -structiure of LBM, we look at the

congruence induced on LB by Mon. This is done in Sections 2_and

3, first for the base of the lattice LB and then for the
inductively defined part of the 1lattice. By showing which
varietieslhre identified uﬂder Mon and which are not, we obtain

a picture of the lattice of all varieties of band monoids.

In the final section of Chapter III this‘proceés is taken

one step fnrther,'and pseudovarieties are looked at. One of the

theorems of KstnentidﬁéE’ééfiier siiiégwtyat a collectior of
finite'glgebrés is a pseudovariety if and bnly 1f it consists of
the finite members of a generalized variety. Since generalized
varieties are varieties, this says in-particular:that if ¥V is a
variety of (Sand) monoids, then the collection Fin(V) of- finite

This suggests

monolds in ¥ 1s 1 pseudovariety of (band) monoids.
the aefinition of a function Fin from the lattice LBM of §,
varieties of b;nd monoids to the lattice LFBM of pseudovarieties .
of band monoids. It is shown that this function is a lattice
isomorphism, thus establishing the structure of the lattice of

pseudovarieties cf band monoids.
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more specifically in terms of

— . . LN

II. Varieties, Pseudovarieties and Gemeralized Yarieties

]
N -
T
v

This chapter presekts the background necessary for a - study:

of the lattices 6f varieties and fpseudovarieties of band
¥

monoids. It begins with a brief survey of the wuniversal

algebfaiq~eoneeptswﬂeededft9~expressrBibkhofflszheoremwcelatingA;#wuﬂA

varieties and egquational classes. This is dome in general teras,

Gt

for abgtract algebrés. The concepts needed are then lpoked~at”

——= e = e

.senigroubéihgﬁd monoids,, sthe
algebras to be considered here, and some examples and properties
of these algebras are given. The fimal section then intpoducés

pseudovarieties and dJeneralized varieties, with theorems by

Eilenberg and Ash relating pseudovarieties and ‘ ultimately.

Section

This section presents some basic defipitions and results

from the area of universal algebra. Only enough background: for

_eguational  classes, and _ pseudovarieties, ‘varieties  and
generalized varieties. ' - o
i 1 s A .
ction 1: Varieties and Equational Classes .

later use in the discussion of Iattices of, varieties and

Vg§ggg9variéties is given bhere, and all results are stated

vithout proof. For a detailed study of this area, including

proots of t%éffesults here, the reader is referred to Burris and
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For apy non-eapty set A and any non-negative integer n, an

~

n-ary operation on A is a function froa A to A. An operation 1is

said to be finitary if it is n-ary for some iﬁteger n. A type of:-

-

algebras is a set J of function symbols, each of which has

associated with it a non-negative integer called its‘aritz-‘An

algebra A of type J is a pair (A;F) consisting of a non-empty

T

set A and a collecticn F of finitary operations on A indexed by

}. Thus for each n-ary function symbol f 1in >, F contains an

operation.

e .
n-ary operation £ . The elements of F are called the fundamental

operations of % while the set A is called the underlying set of

#. Whem no confusion can arise as to the underlying set
involved, the fundazentai operaiions are denoted by - f rather

than f&.

S S

We now define the four important concepts of subaigebra,

homomorpkism, iirect product and quotient algebra:\

Let % =(A;P) be an algebra, and let B be a non-empty subset

of A. Then & =(B:;F) 1is «called a subalgebra of R if each
funda:ental operation of & is the restriction to B of the

Corr onding operation of R, andB is closed under eachk such




" symbol in F ani A, g00esd,

Ed

Let f=(A;F) and & =(B;F) be two algepras of the same type.

A hoaomorphism from R to & is-a function @ from A to B, with -

>

. the property that for apy n—ary funcﬁicn sysbol £ in 7 and any

A,0eesd, in A,
: : 2
G(fﬁﬁaif---.aﬁ)) =f (B(a,),---, £(a,))-

1f the function @ is surjective, & is called a homomorphic ... .

. - i
imaje of . ‘

Suppose 1€E§€Ahf$i~£(K};F):igI} igja‘f;nilyi6fzélgéﬁfggigf

tne same type F for soae index set I.. The direct product of the..

f.'s is the algjektra ?[ﬂh =(77;A3;F), with underlying set the
[ . S

cartesian product of the sets A, . The operations on tiis set are

defined co-ordinate-wise; that 1is, for £ any n-ary function

in TTA., and for anmy i in I,
RS for amy 1 im I, =

e . - —

‘TT‘R" . ﬂ; ) . .
o £ (@ eeesa) (1) = £ 43 (i) yeemsa ().

A congruence on an -aljebra H =(A;F) is an eguivalehnce

relation 6 on A wnich satisfies the coapatibility property: for
any n-ary function f in F ard for all a., b in A, if (a.,,b;) 1is

in 8 for 1<ic<nm, then (£(a yee-s3,)sE(b, seea,b.)) is in 6. The

eguoivatence class of an eledent a of A under the equivalence

relation 0 will be derpoted by a5, and the collection of all the
= E Yy a5, ,

ejuivalence classes on A py A/8. when 8 is a congruence, and f a_//“

J
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, E T e et
an mn—ary CLunction 1in F, the relation £ ‘defined by

s

3

L o I~ S R ' S
fﬂ%al/e,...,an/e) = £ (aL,.-.,an)/B is a function. This allows
the definition of a new ralgebra R0 = (A/8;F), calléd‘ the

guotiehtralgeQra of ‘ﬂ'by 9, of the same:type as #.

i
¥

The concepts defined atove can nov be used to define the

Ve

three-claséfoperators H, S and P. For any class K of algebras of

the same type, -

P

= =

H(K)={R : KR is a’homomorphic image of an a%Q??EEWiE:KIng, -

S(X)={® :Ris a subalgebra of an algebra in K},

and
P(K)={# :fis a direct product of algebras in K}.
el - N LA

P

., Pinally, a - variety is defined as any class of algebras of

tbgfsaaé type—vhich~isr€lﬂsedfundef);ﬁemthree'oper&torS*ﬁ,”Siand‘W*”

P. It will henceforth be ‘a§§;med that any.class of algebras

under discussion contains only algebras of one type.

"Proposition 2..1.1: Any intersection of varieties is a variety.

Proposition 2.1.2: Por any givem type of algebra, the collection

of all algebras of that type is a variéty.

From these two fésﬁitsmit follows that for any class K of

algebras, the intersection of all varieties ‘containing K is the



unijue smallest variety which contains K. This variety is called

the variety generated by K, and will be denoted by V(K). Another
consequence 1s that "for_ any variety E,V the family 9f all
var;eties of the same typervhich are contained in V foras a
lattice, to be denoted by LY. In particular; thé'faiily of all
varieties of a given .type forms a lﬁttiée, using WnNnQ apd
V(XU U as ihe meet and join respeciijely of any tvb varieties §

-

and 0.

-

Theorem 2.1.3: For any.claés K of algebras, YV (K)=HSP(K). |

N -

In order to deve}op an egquivalent charpcterizatioﬁ_véf
variéties,a ué‘ now look at tera and free élgebfas. Let X Se a
' hon-eapty set of variables, and let F be a type of algebras.
. The set T(X) of terms of type > over X is defined as the
smallest set containing X-and-any O=-ary function syabols~f;om—},
and ha;ing the-propeffy that if £ is an n-ary funcfioh symbol in
3 and pf*&;;;pn‘are in T(X), then‘f(p ,...,p,) is in T(X). The
elemgnts of T(X)qare called terms. A terz p is called an n-ary
tern if n or fewver variaples ,appear \§n rp;’ %f the variables .,

appearing in p are among L SETERTS S then p 1s vwritten as

p(xl,..*,xn).

Thé tera algebra of tfﬁe % over X is J(X) = (T(X):¥%), vhere
. - Cermagn

-y

. .. . 2\ P i -
the operations in F =atisfy fJuﬁpl,...pn) = f(pi,...pn). This

algebra J(X) is called the free algebra of type JFover X; it has



o

the vuniversal smapping property over X for the class of all-

,algebzasfeirty?e7}. : L
i .

If f = (A;F) is any algebra of type F, then there is

associated with each n-ary ters p=p(il,...,xn) of type J"a term

furction p on A. This term function is the n-ary operation on X

inductively‘defined as follows: if p=x., for some 1<i<n, thep

]
»

A . ' :
P (& see-ra)) = 3; g if P=L (P, (X, geavsX }oonasP AX vecesX )) for———
sore k—-ary functiorn symbol X in ¥, . then p“(al,...,an)’z
A a B '
f(p,(al,.;.,aﬂ),...,pK(al,...,an)). Intuitively, -the term

. A . ; - ' . - T
furction p ®may be thought of as producing fro% any a,,---,a, in
A the element of A obtaided by replacing the variables X paearXy

of the term p by - respectively.

If p and § are n-ary terms of tyrpe F over a non-erpty set

¥, the expression §=gﬁés called an identity of tyge,3 over X. Ap _ _ .

algebra ® = (A;F) of type F is said to-satisfy the identity p=g

if for any eléments 3, ree=sa, of A,

. A ) ' _ A
P (311-/--03‘,\) = g (all‘-'lan),-

r

Proposition 2.1.4: Let R be an algebra of type‘g‘and let p=q be
( .

an identity of type F over X. Then # satisfies p=q if and omnly

if for any hoamomorphism @ froa J(X) to |, 2(p) = Fg(g).



- Informally, a homomorphism @ from J Xy to %FW'@ay””be"'"’ﬂ*f4
thought of as picking out éleménts,inwA,iofbewusedhas—¥aiues;£0£;——f——~
the variables in X. For n-ary terms p-and ¢, the condition thaf '
f+ satisfies p=q then means that fof any choice of éléméq;s
dl,;..,an from A, the elements of A obtainéd by Feplacingvx; by
a,, for 1<i<n, in each of p and g are the samé; In this sense we
usually say that H Satisfies tﬁe identity p=q 1if for any
substitution X, S8, 4---qX =a_, We havé P(@, re-n,a,) =
q(al.'...;an)- "

A class K of algébrés is said to satisfy the identity p=q
if every algebra in K does; K satisfies a set of identities iva
satisfies every identity in the set. Given a set X of var{ébles,
‘e may defiﬁe the set I&(K) of all identities over X which afef
satisfied by K. Conversely, given a set S of identities of tjpé

F over X, we let E(S) be the class of all algebras of type 3

wvhich satisfy S. A class K is called an equational class if
K=E (S) for some set S of identities. The relationship Dbetween
equational classes and varieties is the content of Birkhoff's

Theorem:

. D e

Theorem 2.1.5 (Birkhoff): A class K is an equational class if

and only if it is a variety.

10
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.emiqroupsrand Monoids

[192]

»

The algepbras to bDe considered in the rest of this thesis
are semigroups and monoids. .These are déIined, and some of their

basic prapertiés/presented, in this sec tion. .Further details may

be found in Clifford and Preston [4] or Petrich [11].

" A semigroup is a set S with a single binary operation . on.
5 which satisfies the associative law. FPormally, this is denoted
as  (S;({.}), but usually 1t 1is written as {8,.) and the

underlying set S is 1itself called the semigroup. ‘We allow the

‘trivial K semigroup, in which S is the empty set. A monoid is a
- semigroup ¥ with an identity element 1M for the operation .; we

speak of the monoid ¥4 or (M;.,1 and omit the subscript on

m)'
the 1 when no confusion 1is ©possible. In fact the binary
operation symbol . is usdallf omitted ’Qhenr3réfetrihg‘£d a
prroduct of elements in a semigroup or monoid: ab is used instead

of a.b for the product of elements a and .b. The notation for the

proiuct of an element a with itself n times is shortened to a“.

Some of the universal algebraic concepts introduced in the
previous section may now be intetpreted for semigroups and
monoids. A homomorphisa betveen two ,sggig:ggpsfﬁjagd,l,iswi
function @ from S to T such that g(rs) = @(r)g(s), for all r and
s 1in S. For a homomorphism of monoids, say @g:M-->N, it is also

necessary that ¢(1M) = 1,- A subset N of 'a monoid M is a

11
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\

submonoid of M if N is a monoid under the same binary operation

and with the same identity element as M. -

We now consider free ,seligroupé’ and monoids. Given any

non-eapty set I, x+ is defined to be the collection of all

elements X, ...X , for n>0 and X _,...,X, in X. The set X is then

L 9 i

called an alphabet, and the elements of X are called words on
X. Under the operation of concatenation of words, the set X

becomes a semigroup containing X. It is the free seligrodp on X,

and it has the univerSal'map?ing Froperty forr semigroups: for
any seamigroup S and any function f froa X to S, . there is-a
- anique homomorphism g. from i+Ato S vhich agrees with f on X. The
unique wvord df length zefo,¥denoted by 1, acts aé an identity on

+ * i . .
words from X , so X =i*U{1} is the free monoid on X.

An element ‘s of a semigroup S-which satisfies s.s=s-is

called an jidempotent. A band is a semigroup in which every

-

elesent is an ideampotent; that is, a semigroup which satisfies

the identity x2=x. Idempotent elements are in abundant supply in
J T ) ,
finite semigroups, as the next proposition shows. A fproof of

this proposition,léy be.found in'Eilenberg [5]-

Proposition 2.2.1: Let S be a finite semigroup, and let s be an

element of S. Then there is a positive integer k such that s is

an ideapotent. "
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We may use the free semigroup ¥ on a set % to produce the ~ -

free band omn X. This is done by defining a relation B as the set

: N ) .
of all pairs (x2,x), for x in X , and then taking 6 to be the
spallest congruence on i+ to coptain B. The gGuotient seaigroup

X+/8 is then a band, since for any x/9 in X /0,
(x/8)2 = x2/8 = x/8,

by the definition of €. This band is called the free band on X.
An important fact about the size of the free band is the
_following result, Eroven by Green and Rees [9]:

b

}
Proposition 2.2.2: %When X is a finite set, the free band on X is

also finite.

We now give some examples of varieties of semigroups and

monoids. From Proposition 2.1.2, the classes S of all semigroups

and 4 of all monoids are each varieties. For any set T of

ideantities for semigroups or monoids, the notation V(T) will be-

Ed

used for theAvariety of semigroups satisfying T, while VM(T) "

will denote the variety of monoids satisfying T. When T consists
of a single identity p=gq, this notation will be simpiified to

Y(p=g) or _ ¥M(p=q)-. Thus V(x=y) is the -trivial variety,

consisting only eof the semigroups {1} and the empty set; VM {x=x)

;

the varieties B=Y¥(x2=x) of bands,ﬁ and BM=¥M(x2=x) of band

13

is the variety H. Of particular importance in what follows are.
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monoids. We shall be interested in the associated- iattices?;§§~m~fwwm—

2

and LBN. ' . ‘ L

‘It is obvious that semigrohps and'monbids are very similar.
A sepmpigroup S5 may be a monoid; if it'fs‘nof; a monoid may be
formed fron it'by adjoihing to. S a new élement 1 whiéh is hof-
already in S, and extending the operation of S to SuU {1} by
specifying that a.l1=%1.a=a for éné ain SU (1}- fheh SV {1} u@ii .
be a monbid. Thusr'given any sémigfoup S, tgeré is associated
with it the monoid St defined asvfolloué:

| S, 1‘ if S is a monoid '~ |

St = - .
S U {1}, if S is nbt a monoid.

-Another method of producing a monoid from a semigroup

involves the use of idempotents. -

Proposiiion 2.2.3: Let S be a semigroupvand e an idempotent in
S. Then the set eSe ?gesei se S} is a subsemigroup of S which is

*

a monoid. ' - \

Varietie; of semigroups and monoids are also closely
related.! Given a variety‘!’of monoids, ihefe is a least ﬁariety
of semigroups which 'coﬁtains it: this ~is~'theh~¥afiety——e£——~———4—
semigroups generated by the collectionugf;Conxe:selyngilenraWﬁiffgggf
variety !fof Seiﬂgrcu;s, there are several associated varieties

/

14



of monoids.

Proposition 2.2.4: Let ¥ be any variety of semigroups. Then jr\g

is a variety of monoids. In particular, if ¥ is a variety of

bands, then Y¥NM is a variety of band monoids.

Pboof:-z{wg is the collection of all monoids in V. Because V is

“ v . S
a  variety, °‘a submonoid of a monoid in ¥ is a monoid in V; a

hemomorphic image of a monoid in ¥ is a monoid in Y¥; and any

direct product of monoids in ¥ is a monoid in Y. Hencérgr\grisra -

o
variety of monoids.

Proposition 2.2.5: Let T be any set of identi@ies'fot serigroups:

or monoids. Then V(T)n 4 = ¥A(T).
Proof: This follows from the definitions of- ¥(T) and VM(T)="

Another method of going ﬁrcﬁ'a v;riety V of semigroups to a
variety of monoids is- to form the collection A = [St:Se 1}.vThis
will.not be a variety, but He' may consider the variety of
monoids .generated by A, which iiil' be aenoted by vi. If a
semigroup S i; in a variety ¥, it is not in general;true that S~1

is also in V. However it will be shown later that for certain

~ varieties ¥ of bands, S in ¥ does imply that St is also in J.

15



Section 3: Pseudovarieties and Generalized Varieties

The motivation for the study of finite semigrdups
nonoids comes from the field of automata theory. The ‘connection
between finite automata and finite monoids, and an algebraid

view of automata - theory, is presehtéd Qery completely 1by

Eilenberg in [5]. Eilembery has defined * pseudovariéties of

finite monoids and finite semigroups, and proved a parallel.of
Birkhoff's Theorem for pseudovarieties. Ash [1] has extended

this to define pseudovarieties and generalized varieties of

arbitrary algebras, and proved several thecrenms _relating 

varieties, 'pseudovarieties -and generalized varieties. In this

@

- section we examine some ‘of these concepts and thebrems.'Detailed

verifications of all the results in this section may be found in

Eilenberg [5] and Ash [1). ~ © oo S

Let X be any finite non—empty set, and let A be any subset

. ) e ’ . ' ;

of the free monoid X . The set Aé}s called a reccgnizable subset
ks A ‘ ’ : - :

of ¥ if there is a finite automaton which recognizes A:

e . . A ,
Ass?cig}ed with A is a 'congruence on X~ called the syntactic

congruence of ﬁA, and denoted by ﬁ?. It is defined as follows:
for any.words s and t in 5, sa°t if and only if for all'u and v

in X*, usv is in A if and only if utv is in A. That this does

define a congruence on X is easily verified. The guotient

monoid x*/qr is then called the syntactic mcnoid for A. The

16



reldtionship between recognizability of A and the syntactic

mcnoid for A is givenfby the foIiovingm?rnpvsitfunii‘*f‘9474444444444**

Proposition 2.3.1: A subset of X< is recognizable ir and only 1if

its éyntactic monoid is finite. ) 'A .
Similar definitions may be made, for a subset A of the free

semigroup f+, of the syntaqiic congruence and/ the  syntactic . . .

‘ semigrcup of A; the analogue of Propositior 2.3.1 for seaigroups

will then hold. Thus from the field cf automata theory comes the

‘motivation for studying collections of finite semigroups and

monoids.

The operators H and S used 1in defining varieties preserve
finiteness, but thne product operator P does not. This leads to

the definition of the finite-product class operator P_: for amy
class K of algebras, PF(K) 1s the class of algetras formed by

taking direct products of finitely many members of K. Eilenberg

has defined a pseudovariety of semigroups (or an S-variety) ds a

collection of finite senigrbnps closed under H) 'S and P, .

Similarly, a pseudovariety of ﬁonqids (or an M-variety) 1is a

collection of finite monoids closed under H, S and P -

The tasic properties of pseudovarieties are analogous to.

those of varieties. Any ‘intersection of pseudovarieties of

semigroups 'is a pseudovariety, and the class FS of all finite

17
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semigroups is a pseudovar;éti. The empty set is .the Smallest

pseudovariety of semigroups, and FS is the largest. For any.

collection K of finite sénigroups; there is a smallest S-variety

containing X, called the S-variety genéfated by K and’denoted byf
-(K% . Jsing intersection and pseudovarietyvgénerated—by as meet
and join - operations respectively, the family of all

pseudovarieties of semigroups foras a lattice LFS. Similarly for

monoidsi" we have ‘the Zlattice LFR of all- pseudovarieties of .

“

finite monoids, with FM the largest amnd the eapty; set the

smallest such pseudovarieties. Again, ‘we will pe especially

interested in bands, looking at{}&E‘pseudovarieties F3 and EBM

of finite bands and finite band-monoids respectively, with their
associated lattices LFB and LFBM.

-

Pseundovarieties of semigroups and monoids are related'nmﬂ%
-as yarieties of ;heseﬂcbjectsﬁare‘ﬂfoi,any,,pseuﬂogagigﬁyﬂﬁiﬁfgﬁﬂﬁ
finite @monoids, there 1s a least pséudovariety (gg of finite
semigroups which contains it; for any pseudovariety ¥ of finite
semigroups (bands), ¥Y¥nX 1is »a pseudovarietfsof finite ({band) .
acnoids. Anotaer éay of produciny a [pseudovariety of ronoids
fros a pseﬁdovariety ) ot semigroups 1is to form Vthe
gseudovariety ¥1 jenerated by'}he collection {S!':5¢ ¥}. As with
varieties, a sesigroup S may bé in the pseudovariety ¥V while thef‘

S
monoid St is nct. Investigation of yi for various

pseudovarieties ¥ has recently been carried out Ly Pim [13].

a



Since Birkhoff*s Theorem shows that varieties are in fact

-egquational classes, it is natural to look for a way to relate

pseudovarieties to equations. Let x={x1,xi,.-.} be a set of

variables. For any words p and q in X , we let VYEM(p=gq) Dbe

set of all finite mopoids whick satisfy the identity p=q.

Proposition 2.3.2: VFM(p=q) 1s a pseudovariety of momoids.

How consider a seguence P, =q, of identities over X,

121. The collection

O

¥ = U N YEM(P, =g;)

POIRT Y S

consists of finite monoids which satisfy the ejuations p, =g;

t he

for

for

all 1 greater tharp or equal to scme integer x. Then ¥V is called

an ultisately eguatiopal Tiwss and is said to be ualtimately

efined by the egquaticns p; =g,, for i21.

:

Proposition 2.3.3: Any ultimately equational class is

'pseudovariety of monoids.

,Theores 2.3.4 (Eilenberg): iny non-empty pseudovariety

monoids is ultimately defined by a sequence of equations.

of




—

A siwilar dlscussion ®may be carried out for semxigroups,

with tue folldving ‘variation of the previous theorez as a

resualt:

Theorez 2.3.5 (Eilenper3j): Any pseudovariety of semigroups which

contains the sewsigrouz {1} 1is ultimately defined by a sequehce

of egquations.

ie note that the empty gseddovariety, of monoids or of

semigroups, and the pseudovariety of semigrougs containing only

the empty semijrouf cacnot ke defined by equations.

The concept of pseudovariety has been extended to any type

of algecra, and a related notion defined, by Ash {1]). We first

‘need some additional definitions and notation. The set of all

identities of the't?pe'ﬂBﬁGIVCODSidefitiOB wil]l  te-denoted by E. -
For any class X of algepras, FOx (K) 1is the «class of direct
poiers of neibers of K. A family of sets is said to be directed
if for any two sets A and B in the family, there is a set C inm

the ftamily with A€ C and B C. Finally, a filter over a set I 1s

a £amily of subseg§ of I closed wunder forzmation .of finite

intersections arndg sdpersets. With this background w¥we look at

three theorems of Ash, which are proved inm {1].

Theorea 2.3.6 {Ash): Fofkany ciagg K:éfrélgebréé, the following

are eguivalent conditions:

20
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(1) RK-1s closed under H,S,RF»and POW;

(2) K=HS?2_ POW {(K) ;
(3) K is the union of some directed family of varieties;
(4) There exists a filter F over E such that, for all

algebras #,

- is in K iff Id(&) is in F.

A gemeralized variety is tnerefore defined as any class of — -

algebras satisfying any one of the conditions*of Theorem 2.3.6.

“

From condition (2) of this theorem, it also follows that any

class K of algebras 1is corntained in a smallest generalized

variety, which is then called the generalized variety generdted//
by K, and denoted by Gen(k) = HSPgPOH(K). -

]

A pseudovariety is defined to be any class of algebras

closed under the operators i,-S andHBF. The :ela;ionship,hetupenﬂ
pseudovarieties and generalized varieties is given in the next

theoren.

Theorem 2.3.7 (Ash): A class of algebras is a pseudovariety if
and only if it consists of the finite members of some
jereralized variety. In fact, if ¥ is a pseudovariety, then v

consists of the finite members of Gen(V), the generalized

variety génefafedmby 1;

21



Theorem 2.3.8 (Ash): Let C be a countable class cf algektras. The

C:

(1) There is a generalized variety K with L = Kf\C;

bl

(2) There 1is a chain 115 XLE:... of varieties - with

L= (U ¥)nc;

wCy

(3) There is a sequence €, r€,  ema of identities such that
for amy algebra #® in C,

fis in L iff e  is in Id{#) for all but

finitely many n.

-

Corollary 2.3.9 (Ash): If C.is the class of all finite algebras

of some finite type, then the three conditions of Theorem 2.3.8

- are also equivalent to :

(4) L=HSP_(L).

In particular, Theorem 2.3.8 and 1its Corollary 2.3.9

generalize Theorems 2.3.4 and 2.3.5 ofinlenberg,'in'shOHing
that pseudovarieties are eyguivalent to ultimately equational
classes for any type of algebras. - Theorem 2.3.7 relating

pseundovarieties and generalized varieties will be of special

importance im Chapter III, vhen the lattice of pseudovarieties

of band monoids is discussed.

J
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III. Lattices of Varieties and Pseudovarieties of Band'uohdids

in this chapter we study the lattice of varieties of band
monoids and the lattice of pseudovarieties of band monoids. In
the notation of Chapter II, the class of All bands 1is  the
variety B = V{x2=x), and Lgldenotés the lattice of all varieties
of tands. Similarly we have the variety BH = ¥ (x2=x) ofy band
monoids, with the lattice ‘LBM. We begin by showing that the
mapping Mon taking ¥ to ¥NH, for ltﬂin LB, 1is a shriéciivé 7”7
lattice homomorphism from LB onto LBM. Since the structure of
the lattice Lg is known, this allows us to stddy the structure
of ng, by 1ooking at the iﬁage of LB under HMon. This is done in
r - Sections 2 and 3, with the result that the lattice of varieties
of Dband monoids is rdgtggmineda Finally in .Sectiog 4 Ash's
theorems are applied; to obtain the lattice bf pseudovarieties
of 5dnd monoids. i S

N

Section 1: The Lattice Homomorphism

/

Let ¥V Se any variety of bandé. From Proposifion 2.2.4, !rﬂﬁ
is then a variety of band sonoids. Thus tQEWmaPPiEﬂﬁ§§9,t@5i93;1ﬁ
to ¥nY, for ¥ in 1B, is indeed a function from LB. to LBA. Iﬁ
this section we show that Mon is a surjective lattice

hceromorphisn.

23



Proposition 3.1.1: Non 1s a latticelhomomorphism;'

Proof: Let V and ¥ Le-varieties in the lattice LB. Then

Mon(¥Nn¥H) = (¥nX) n 4

W
——,
fet
D
!E
>
™
D
=

i

Mon(V) N Mon (¥).

“e must further show that

Mon (¥ v ¥) Mon(¥) v Mon(H);
that is, that

(Y vE)n i v (5nH).

i
—
|
D
=
—

Since (V¥ v H)N M is a variety of monoids which contains all
monoids in ¥ v W, and (VNH) v (¥nM) is the least variety of

monoids to contain all the monoids in YU W, we have

(Y vENE 208 v (B0 .
Now 1let M be any monoid in (1 v ¥)n M. Bf Theorem 2.1.3, V v ¥
is equal to HSP(Y¥yU W)~ Thus there exist bands, A in ¥ and B in ¥, T
a sﬂbseaigfoup C of A x B, and a surjective haneaetphism~£ ffeé -

C onto M. Choose an element e of C such that f{e) 'is egqual to

24



the identity 1 of M. Since C 'is a band, e is an idempotent.

L}

Let D eCe = {ece : ce(}. From Propdsitién 2.2;3, D is a

subsemigroup of C, and D is a monoid. Also for any = in M, there )

is a ¢ in C such that f(c)=m: but then ece is in D, and

f (ece) =f(e)f(c)f(e)
=1m1.7

:m‘.

Therefore the restriction of f to D is a surjective homcmorphism

from D onto M.

Let p, and p, be the projections of A x B onto A and B

respectively. The 1images I?pl(D) and J=pZ(D) are monoids in A

and B respectively, so I is in ¥n M and J is in ¥n M. Further, D -

is easily seen to be a submonoid of I x J, so that M is a

homomorphic image of a submonoid of a product of monoids from

¥n A and Wn M. This establishes the inclusion

¥e conclude that

Mon(¥ v ¥) = Mon(¥) v Mon (W),

25



and so Mon is a lattice homomorphism. -

Proposition 3.1.2: The lattice homomorphism Mon from Lgrto LBy

is surjective.

o

roof: Let U vbe‘an&wvariety of band monoids. Regarding U as a

collection of semigroups, .we mdy consider Y(U), the least

variety of semigrcups to contain U. This variety will contain

oniy bands, so it will appear somevhere in the lattice LB.
. r _

. : \ . -
Clearly U is contained 1in Y (U)n M. For the opposite

inclusion, suppose that M 1is aay monoid in 1(g). Since Y (U) is
- equal to HSP(U), M must be a homomorphic image of a subsemigroup
of a product of members of UD. As a variety of  monoids, 0 1is

closed under the formation of products, so we may,take W in U, T

a subsemigroup of W, and g a surjective homomorphism from T to

M. Ther there‘is an element e in T such that g(e) = 1, and e is
an idempotent. The set eTe then;gorms a momnoid-contained 1in -T,
as in Propasition 2.2.3, and the restriction of g’to eTe_is a
§qrjective homomorphism rrom eTe to M. Thus‘ﬂ igr a homohorphic
imaje " of a  monoid ele  in W. 'Now eTe may not have the same

identity element as W, so it may not be a submoncid of W. If it

is, then eTe is alsc in U, and so 4 'is in H(U) = U. If not, then

’

eTe U {1} is a submonoid of W, and then eTe 'is a homomorphic

inége of 'eTe U {1 }. In this case, M is a homcmorphic image of a

homomorpnic image of a submonoid of W, so again M 1is in U.
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. bands. Hovever, we note that there are other situations in which

Therefore V(U)n 4 = U, or Mon (¥(O)) = U.
For the putposes of this discussion, we are interested in

applying the mapping taking V to V N M only to varieties ¥ of

this mapping Hill’definé a latticgwggmono;phism. In the pfoof of
Proposition 3.1.1, we ﬁsed the fact that the semigroQPS'i%volved
were’b;;as:oniy io one key step, to enable us rto proouce; an
i1deapotent e. Any hjpothesis about. the domaih of the mapping;
which enablos us to produce the nécessary idompotent at this
stage will allow ‘us to prove that the maéping 1;—>l(\gri$,a
lattice hcmomorphism cn that domain. i

,;l <

As an ‘example of this, we may consider the lattice LES of
pseudovarieties of finite'semigroups. Using Proposition 2.2.1 to
guarantee the existence of the necessary idempotent, we may

adhpt the proof of Proposition.3.1.1 to show that the mapping

. FMon taking V¥V to ¥N M4, for all pseudovarieties V -in LFS, 1is also

»

a lattice homomorphism.on the domain LFS.

1

Section 2: The Base of the Lattice of Varieties of Band Monoids

We now Dbegin our examination of the lattice LBM of
varieties of band monoids. We have seen that LBM is the image of

s

the lattice LB of varieties of bands, under the lattice
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hcmomorpnism Mon tgkingA-g ~to ¥N3, so our approdch novw is to

look at the structure of the lattice LB and determine which

varieties in it are identified under the action cfAani-that is,

to determine the congruence induced bn‘LQ by Mon.

The structufe of the lattice LB of vérieties of baqu.has
been éétablished by Birjukov '[2], Fennemorg [6] and Gerhard
.[8];In particular, Fennemore‘ﬁas showniin {7]~that’théfvariéties
of bandé in LB are each determined by one identity other than
. x?=x.» Because henceforth we will be considering only 6arieties
of bands, ‘“we will denoté by 1(p¥q) thef variety of <ban@s
satisfyin§ the additiona; identity §=g; wﬁere p-and gq are words
on the alpyabet x={a,d,x,y,x1,xz,...}.rFrom Proposition- 2.2.3,

the .image of '1(p=q)' under HMon is then the variety of band

monoids satisfying p q, which we will .denote from nowvw ,on by,

< e,

VM(p=q) . Following the notation of Fennemore [7], the words R_,

5, and Q _, for n22, ére defined a{ follows:

Rz = x3xle
Ry = X %%, i

Bﬁﬂxn, for n even, n4 :
R, = : }

annq, for n odd, 025

e
i
f J
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= X X_X
Qz 2.3 4
03 = xlxzxsxlx3 4 - T
’ >4 .
0., X Ry for n even, n24 ]

- g = -
_ E "o g R X C_ for n odd, n25

9]
i
»
L
"
e

2 37227
= X X X_X X_X_X
53 2 3 372 3
S ,x R for n even, n2y

R Z_S. for n odd, a25 i

For any word A,_K will denote the mirror image> of A; so for

R

exanmple, R, = LX X, .

{ -

The structure of the lattice LB is shown in Figure 1. The

" portion of the lattice above the variety V(axya=axaya) will be

referred to as the inductively ngiégg part of the ;attiég; the

portion below and including the variety 1{33d§;=Qsd§;) will be

calied thke base of the lattice. Identities for the vatieties notl

specifically labelled in Figure 1 may be found in Fennemore [7].

There are several ‘easily verified facts about the words and
identities  involved in LB which will be useful for later

analysis of LBM. For n23, the words R_, S, and Q. each have n

r

variables. If a word R isffbtméd by Ehe’ﬁéhéifénatlon'éf’tuo

‘vords P and U, that is B=PQ;.}hen-§ = PQ QP* alSO‘P“P for - any-

word P, and X=x for any variable x.
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Figure 1 L

The Lattice of Varieties of Bands
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An important property of LB is its synietfy:'fhé”rétfibé’ig”"h

" syametric about a vertival liae~thféﬂghd ¥Y{x=y);, in the sense

that the corresponding varieties on either side of the line are
¥ (P=Q) and 1(E¥63, for some identity P=Q. This synmetry uéans
that many of the results to be obtained in the foliouing

sectidns may, be *dualized": 1in any prodf' involving words

A

“P,0,..., Treplacing the words by their mirrot images P,Q,.-..

throughout will give a proof of the "mirrbr image® or dual

result.

For the repainder of this sécfion, the ilqge under HMon of
\ ; :

the base of . the laitice'Lg is examined. The first proposition

-

deals with the first two layers of the base.

Proposition 3.2.1:

(D) WA(ai=a) = V(xa=a) = (a=axa) = VA(x=1) = VE(x=).

]

. - - . i
(ii) ¥ (R, =0,) = ¥YM(xy=yx) = YM(R =Q,) = ¥M(axya=ayxa).

J;
Proof: (i) Clearly any monoid im V¥ (x=y) must be the trivial
. - A . ‘ .
moneid {1}, so VM (x=y) = VM(x=1). Suppose that M is a monoid in
., any of ¥(xa=a), V(ax=a) or ¥Y(a=axa) . Then forvany m in M, the

substitution x=a and a=1 results in each case inm 3;1, so that M

satisfies the identity x=1. Therefore ¥M(xa=a) = VN (ax=a) =’

¥8(a=axa) = VA(x=y) = WM(x=1), the trivial variety.

(1i) Since Y(xy=yx) is contained in 1{RL=Q1), it follows that
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¥i{xy=yx) 1s contained in Y (R, =0 ). Conversely, any momoid-in — -

LETE

=7
-~

satisfi i it = . n_ace
2 satisfies ;hew}dentlpxﬁgag X, = X X X, I1f % and

o)
any elements of %, then the substitution of xl=1, x =n and X, =n

into this identity gives nm=mn. Thus M is im VM (xy=yx), and

4

¥4(R,=0,) = V¥M(xy=yx). A dual a:éduent shows that ¥ ( 2=6;) =

Vi (xy=yx).

If % 1is any amonoid.in YM(axya=ayxa), and ® and n are any

elements of M, then the substitution x=a, y=n and a=1 in the

ideatity axya=ayxa gJives amn=nsa. Therefore !g(axya=ayxa): is

contained in ¥4 (xy=yx). Simce the opposite inclusion foilows
from that for varietieé of tands, we have that 1§(axya=ayxa) =

¥4 (xy=7x) .

Next we éonsider, the varieties ¥Y{xa=dxa), ¥(3,=5,) and
3(§;55;) which appear on the right side of the base of the

lattice LB, and their wmirror 1images YV ({ax=axa), g(E;=Sz) and

1(83:03) on the left side cf the base of the lattice.

Proposition 3.2.2: (1) ¥M(xa=axa) ='1;(RZ=SZ) = vyu{ 3=5;);
(ii) ¥a(ax=axa) = ¥4(R,=S,) = ¥A(8,= Q).

<

Proof: {i) 3ecause the correspondinj inclusions are: true for

varieties of hands, ve have .___ S

¥4 (xa=ara) S 7TA(B,=5,) = VA(B_ =

32



st

§o¥ let A be any sonoid in ¥M(K,=Q,); -So -that ~the -identity T

, _= : i _le , _ _elements of
13¥211‘151i¥3¥111 holds in M. Let 2 and n be any two of
%. The substitution X, =n, X, =8 and x,=1 produces  RO=DRD fron

this identity. Therefore 4 is in lg(xa=axa), and it follows that

V¥ (xa=axa) = VM(P_=5

— ra 2_)’.

= V(R,= Q).

(ii) The proof is dual to that of (i).

Becab§e of the pattern which will arise when the
indictively-defined portion of the lattice LB is comsidered, the
three varieties 1identified as equal im (i) above will be
referged fb as‘1§(52=51), and tae mirror image variety from (i1i)
as EQ(E;QE;). Froa the above fpropositions, we know that the

image of the base of LB under Mon is as shown in Figure 2.

It is clear that ¥ (x=1) is contained in b;£ not egual to
‘lg(xyﬁyx): The next proéos}tion will show tnat neither of the
varieties VM (B, =5,) andng(g;=§;) is contained in éhe other.
Proa this it villbfollou that these two wvarieties, their meet

and their Jjoip are all distinct.

Proposition 3.2.3: Xeither of gg(az=sz) and V3 (R =§—) is

—contained inp the others

- 2 2

\

|

|fU ‘
(]
O
O
Hh
(X ]
o
®
O
o
[
P
[ad

o8 |
w
‘+
'-d
o
——
w

N
]
n
N

A4
1}

¥4 (xa=axa), and ‘that VA (



I8 (xy=yx)

¥4 (x=1)

Pigure 2

The Image of the Base of LB under Mon

¥M(ax=axa). Since ¥ (xa=axa) is not contained in V({ax=axa), there

is 31 semigroup A vhich satisfies xa=axa but not ax=arxa. If A is

-

If A is pnot a monoid, let % be the a
not satisfy the identity ax=axa. VWe
satisfy the identity xa=axa. Let a and n
and cornsider the substitution x=n and
is 1, then nn=nn§. If w=1, then mn = n =

]n = ; = 121 = nan. Thus in each casé'iﬁ'

-

a monoid, then A is in ¥A(xa=axa) but not in ¥M(ax=axa).

onoid Al., Then M will

must show that M does
be any elements of N,
a=n. If neither m nor ﬂ

nip =nmn; if 'n=1, then

= nih, and iheriﬁehiiig W

xa=axa is satisfied in %. Therefore M is in ¥K(xa=axa) but not

in Y¥{(ax=axa).
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This completes the proof that the base of the lattice LBM

In this section we will consider the image under Mon of the,

inductively defined part of the lattice LB. In ihe p@ghﬁjhﬁqglm'
edge of the lattice, above the 'basé, the pattern 1f§n=§;);

_— i

V(__.=0...), Y(R_,=S_ ) and Eig;&f is repeated for n.odd and

- nri \n+2)

n23. -The left~hand edge of the lattice has the mifror image of

this pattern.

Three main results will be proved. in this Section. The

—

first is that for n23, ig(Rn=Qﬁ) = ¥YM(R__=5__): and dually, that

=20 n7

YA(R_=0_) = VYM(R =S5 _,)-. This shows that a certain amount of

coliapsing occurs in going from LB to LBM by Mon. Next we : show

that for n23, 13(5~1=5m4)7 is contained"in tut not equal to';
¥4(R,=S,), and dually, that 1§(RWi=SW1) is contained in but‘ not
ejual to J¥M(R =5,). A series of propositions 1is needed to
estatlish these results, and the proofs vili use 1induction.
Finally, ‘it will be shown that for n22, the #arieties iﬂ(Rn=Sn),

YM(R_=S.), together with their =zeet and their join are all

2

distinct. Combined _with the results of Section 2 for the base,

these results will then be used to determine the structure of

-~y
the complete lattice LBA.
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¥e begin now to show that'1§(3n=Qn)

The followihg'proposition establishes a rather technical result

Y4 (R, =

which will be the key to proving these varieties equal.

Proposition 3.3.1: Let n24. Let ¥4 be a monoid with identity

element 1,
b2=az, b3=1, bH=a1, and let bt
R (byseesrby)
and
0. (b se=ssbp)
Proof: Heruse D.

|
|

induction on

R, (b, sb,,by,b,)

and

0, (b, sb, 4b,,b,)

ThﬂS”thE’tESUit'hOiﬁS for n=4.

and let al,-..)aWLbe any elements cf M. Let b_=a

For n=4,

3

for 55t<n. Then

a4

- Rn_l(al,--.,an_l),

swl(ai"'.'anj).
we have

b, b, b, b,

a a_1la
NP

3 1

a3alal

R,(a, ,a;,a,)

blbzbsbibsbﬂbibzbabq

a L

3a21331a1a3321a

a.4a_Aa,a, a_a_a

372 3714737274

53(ai,a2,a5).

36
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Now assume that the result of the proposition is-- true- for -

and;b gessy b as.
X Y

all k such that 4<k<mn, and considér;al,,.,igmi

above. Then using the definitions for R_, and R and the

n-1 n?

v

induction hypothesis, we get that for n odd,

n n-1

Ro(b, seea,b) )

= aw1anjal,..i,an1)

)a

1

. Rnﬂjal,.-.,ahl n-1

R (a

n-1 '--n!an

1 - .’L)

and for o even,

Rn(bll"'lbn) ‘Rn-a_(bll""bv )b

n-1 n

Rn-)_(a 1#9°°= an-?.) A5

an_an_z(a gon~ ,an_z)

Rqﬂjal!.f,,anﬂ).

Now wusing the induction hypothesis again and the result just

established for R_, we get for n even

Q (b, seeerb) Qn'_‘i(bl,...,bh_l) b R (b,se=s,b)

= gvz(al,...,ani)amlﬂn_dal,...,anﬂ)

= Ro_(@4s=eapa a5, _(agse--,a )

L.

= sn_i(aj-‘r‘ﬁ-—-"—a*ﬁ_i} ' 2 . ‘ -
and for n odd,
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-

Q (bll"'l b.) Rn (blr- ..'b")) b,_;Q,.,-, (bﬂ_li'-- rbn_i_)

n

anjal,...,aml)amlsnﬂjal,...,amz)

Sml(al,...,and)f

Thus the proposition holds for all n24.

Theorem 3.3.2: For all n23, YM(R_ =0 ) = ¥YM(R, =S,

n

—

Proof: Since YM(R_ ,=S is contained in ¥YN(R =Q_ ), only the

n—:L)
_opposite inclusion need be proved. For n=3, ' this was done 1in
Proposition 3.2.2. Now let 4 be any monoid in VM (R,=Q,), where

n>4. We must show that if a,,s..,a , are any n-1 élements of M,

then -

‘ Rn_l(al,.,. ’an_i) = Sn’l(aﬂ_'. .-y an_;L).

b b.=1, b, =a

Now let b 2T, ) g =2,

=a_, and b =a for all 5<t<n.
ia 73 - t+ A Y -

1

Since n2>4%, Proposition 3.3.1 says that |

RnJ(aL,..f,anﬂ) Rn(bL,...,b_)

and

Sp-a{@, seeera, ) CINTHPR P

But since b, ,...,b, are all in ¥ which istin ¥ (R =09,
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1}

R (b, seeusbp) 9, (b, sevesb,)

~and thus ' , : : X

ARY"":\.(EL"'.'&

i
w
3
e
—
oY)
P
- N
[ ]
L[ ]
L]
-
oY)
3
[ el
[ ]

n-l)

Therefore for any n23, VA(R,=Q,) = VM(R =5 ,)-~

The preceeding two proofs can be dualized to give the

v

following dual of Theorem 3.3.2:

———— . g et ——— -1

Theorem 3.3.3: For any n23, VM(R =0_) = VM(R__=S_,)-

Because the <corresponding inclusion is true for Ltands, it

follows that YM(R_ _ =S_) is contained in VM(R_ =S ), for n23. The

goal of the mnext series of  propositions is to show that

!g(R“d?g;Z) is however not equal to VM(R,=S.), for n23. The

!

problem now is thus to produce a monoid in YM(R_=S ) which is

not in VM(R_,=S_,), for each n23.
Al

sincé for n23 Y(R,.,=5

..,) 1s contained in btut not equal to

V(R_=S_ ), there exists a semigroup A _ satisfying R_=S, but not

[}

S

|

[~e]

1S4 Let Hn=Anl; that is,

T
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- - 1f A, 1s a monoid

A

n

AU {1}, if A_ is mot a monoid,

wvhere in the latter case 1 will act as an identity for ¥ . Then

! does not satisfy K ,=S_ .. We will show that M_ does satisfy

n na

R =5.,. Gf course if M, =A,, this is obviously true. Therefore in

vhat follows it will be assumed that M_=A u {1}, where A_ is in

V(Rn=5n), for n23.

‘

Let 'a;,.-.,an be any‘elements of M . It must be shown that
Rn(al,;..,an) = Sn(al,..,,an). If alzal=;7;=§q=1, ' thenn
Rn(al,..;,a;) = 1 = Sn(ai,.;.,an), SO we mayﬁhenceforthigssume
that not all of a,,...,a  are equal to 1.‘He will examine two
cases: Ifirst when not all of a,s a, aﬁa a, are equal to 1,vand»
second.when.al=a2=a3=1 but not all of A rsee are'equal to 1.
Before stating tﬁe'propositibns which will deal with these two
Situations, we introduce some . notation to. shotten the
rexpressions involved. ﬁe will denote Rn(al,..b,an) by Rn(§3, and

—_— . ‘ .
Ro(f(a,),e--0f(a,)) by  R_(£(a)); R, (a,,e-s,a,,)  and’
Rnﬂjf(al),..;,f(aml)) will be represented by Rnﬂjgfanﬂ) and‘

—_— s ; B
R __,(f(a),f(a_,)) respectively; and.similarly for *S_ and S ,,-

Proposition 3.3.4: {Let n23, and let Agreeesdy be elements of a

monoid M such that not all of a,, a, and a are equal to 1.

2 © 3
Define a fumction f fron fa,r--.,3.1 to {al,.;.,an}—IT} as

follows:
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and

Then

and

Jf(al)

f(az)

f(al),

£(a,)

f(as)

f(a;)

]

Rn(ai’.‘c ,an)

,if a 71
if az=1, anI

i1f a_=a_=1, a, #1

if a371
'if7a3=1, al#I )
sl 7
if a3¢a2—1, a171

if aqf1 |
: _ 1
if aq-1

1f,a571

if a =1

5

if a . #1 for 6£i<n.
if a.=1.

= R (f(a,),---,E(a)))

Sn(ai I“'Ian) : Sn(f(al) PR 4 (an) ).
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i,

'3

Proof: The proof will be by induction on n. We first-verify that

the proposition holds foﬁtnfj. Sincegihe,ialné”of the,functionwﬁwﬁngﬁ

at a;, is determined according to whether or not a{fﬁ,‘onr method

{a, ,a,,a,} are egual to 1. We recall that

apd

There are tiree cases to consider.

Case 1: None of a,, a, or a is equal to 1.

2 3
Theg%f(a;) = a; for-lﬁis3,/aﬁd SO
7 A —_———
R, (@) = Rs(f(a))
and o
& . | .
S, (a) = s, (f(a))-

a_ and a, is equal to

Case 2: Exactly:one of a,, a, a

Theh there are three subcases to look at:

(1) a1=1, a2?1f a3f1.

Then f(al)=f(—a2):a2' and f{aa}:aji 50

!

42
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.is to check all Fpossible combinations of which nmenmbers of
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R_{(a) = V 1a?_a3

- 4,883 - ' e BN

= f(al)f(ai)f(aj)
— . :
= R3(f(a))l .-

and

4

1§1a3]a3ala

S, (a) 5

= d_a a a a_a_ a ' ! .~_
2 232 323 - v

= f(ai)f(az)f(aa)f(ai)f(as)f(al)f(as)
X , . :
Sj(f(a))-‘ ' f‘

I

i

T

(11) alfl, a2=1, a3f1.
Then f(él)=alja§d f(a2)=f(a3)=a3, sg

v

—
Rs(a) = al1a3
= a,a,a,
= f(ai)f(ai)f(aj) |
——
= R, (E)),
and '
—_
7 Sa(a) = a11a3aia31a3

= 4 a a.4d4 a_a_a
: a3 > 1 3 °3°3

= f(al)f(al)f(aj)f(dl)f(a3)f(a2)f(as)
—_—
5, (£(a)) .

W

(iii) a, #1, azfl, a,=1.

Then f(a )=a, and f(al)=f(aj)=a2, so
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L =D N
Rs(a) = a1311
= alalaz, - - S R
: —— oL i
=" R,{£(a)), -
and
__A - \ - . ) .
;ss(a) = a1a21a11§21v | : o - ; ’

= a'a a_ . ‘ :
24,27 1azaz i

= f(ai)f(azjf(aa)f(al)f(as)f(alyf(aéj
= ,
Sa(f(a)).

]

Case 3: Exactiy'tvo of al; a, and a, are equal’ to 1.

Suppose that giﬁaizl,‘ and a_71. Then f(ai)zf(aj)=f(ax)=ak;

therefore

‘—L .
83 (a) = 'aK »
= ?’K,'ak,at(,,, . S ! R I o - o
l = MAa)f(a)) f(a,)
' ——
= R (E(a)),
and
Sa(a)A = Ay : ',

"

aKaKaKaKaKaKaK »

R
b = Af(al)f(az)f(aJ)f(ai)f(a34f(az)f(as)
AN .
= 5,{t(a))-

This completes the proof for the inductive base n=3. We now
assume that RK(a)=RK(f(a)) and SK(a)=SK(f(a)) for any integer k

¥
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X

such that 3<k<n, and look _atg the words R ,, and Sn;i’"u'ii'dé’r'"'t'h’e"

substltut}on X, =2, gee- R SN S -

For n+l24, Rn”_and 5. are'inductively detined as followsf

a
. , _ Rnxml, - n+1 even, n+124
. Nyl
X .. B n+l odd, n+125
and
5 S, xmlle, n+1 even, n+124
P T . : :
R aXisSae n+1 odd, n+i125,

The cases n+1 even and n+1 cdd must be dealt with separately.

Suppose that n+1 is odd and n+125. Then

- —

R .(a, a_) = a_ R _(a) ] .\
. . ——— '
: = a_R_(f(a)),

by the indaction hypothesis. If a__ #1, then f(aml)?aml, and so

Roalaea ) = f(a, )R, (£(a))
Y ——
= Bml(f (a),£(a_ ) -
If however a_ =1, them R, (3,3, )=k (f(a)y). But if n+t=5, then —
—_—

f(and)=f(a5)=f(aﬂ_), and Rn‘(f(a)} begins with f(al); while 1f
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1

n+1>5, then f(aﬂﬂ}=f(awﬁ), and B_{f(a)) begi33~¥i£hwf1a;1+‘wThus~~—~—v

for any n+1 odd and n+125, when a =1 it follows that

N —_—
eafea ) = R _(f(a))
= £(a_ )R, (f(a)) -

R _(£(a),f(a_))-

Still assuminj that n+1 is odd and n+125, we have that

—_—

—
le(a,am:‘) amlsn (3)

CORLlE@LE@ YA S EGD M

——

{a,a

Nn+q r\f})

using the above result for B, and the induction hypothesis for

S,. If a ,#1, 'then £{(a  )=a and (*) becoaes

naa n+a’f
—_— —

R_,(£(a),£(a_))E(a, )S_(f(a}),

. —_
which is just Snn]f(a),f(aml)).

It a_ =1, then f(aml) 1s eitker f(al), if n+1=5, or f(anﬂ)
—
if n+1>5., But if n+1=5, then 5 ({r(a)) begins with f(al); while

—

if n+1>5 and n+1 is odd, 5_(f(a)) begins with f(a,,)- Thus when
4

a,.=1, f(a,, 'is always the sase as the first element of

S_{f£(a)); so in this case {* becomes ————

3




~ -

B ., (f@),f(a_ )15, Fay

]

—

S...lf(@).£(a_}).

[}

' when n+1 1s even, and n+124, a very similar argument shows
— — ~
first that R“d}a,anm)zanﬂjf(a),f(anﬂ)), and then using this,
h - )
——n

. N ‘
that Sﬂw_('a,‘aml):-s_ﬁz_(t {a),£(a__.))-

Therefore for any 623,

-

2 (ayseeesa) = B (Elap) seeesEla)
and : 3
S aysee-say) = Sn(figi).---,f(ap))-_

Corollary 3.3.5: Let a_,...,a_ De elements of » =A uU({l}, for
n23. If not all of a , a, and a, are ejual to 1, then

N

-~

" proof: Let the function f be defined as in Proposition 3.3.4.

Then f{a,),...,f(a_ ) are all in A_, which satisfies R _=5.;

n n*

therefore

) .

— N —_——
R . (fay, fa L))t )ySo(ftay)y

B, (3, sovera, ) B (£(3,) s-v-.E(a_))

S, TE(@, ) s E (@ ))

Sﬁ (aj-'- - 'ﬂ"r) -
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The other situation which will occur in showing that the

zonoid 1 does satisfy R_=5, tor n23 is the followirng: there

will be elements A, ge-esd of §_, where n24, with the jfroperty

that a,

z 2

a,=a,=1, tut not all of a,,...,a_  are equal to 1. The

next propositior provides a way to handie this situvation.

Proposition 3.3.6: Let 2, seeerd, be elements of a naonoid ¥, with

o2, such that a ,=a ,=a =1, tut mot all of aq,..;,én até“eéual to

1. 1let k(ai,-..,an)=ain{t:ast5n, a,#1}. Define a function h,

f;om {a;,..,{ac}thﬁ{a%,...,aﬁ}‘as follows:

f/-
' Poa ~~ r if i=11 2 or 3
- 3
e ] e
- fa., if 4<i<n.
(N '
Then - ' ] s
Rn(ai;.;;jag) ”z”'”*Eé(bh(ai);;-;;bg(an)y
and
S {(a,,i-e,a ) = S_(h_(a,)ye-erb_(a))- )
Lo} ¥ . 4 n

Proof: We use induction on n. when n=4, the hypothesis means

—
that ai=aﬂ=a1=1 and.aﬁ #1, so0 k{a)=4, and hﬂ(ai)=aq, for 1<i<y.

s

Then




R .
Rq(a) = 111aq -

= a,aaay 0 o
= huial)hq(al)hq(%)hqfaq)7

—_—
= B, (h,(a)),

and similarly,

—_—
! Sq(a) = a

s —————
= 5, (b, (@) -

Thus the'results hold for h=u;

We now assume that RK(aLzRK(hK(a)) and SK(a)=SK(hK(a)) for

all k such that 4<k<n, and look at Rnﬂ_and Sqe Again the odd

and even cases must be consideréd separately.

—

Suppose that n+1 is odd, and n+125, By definition,

N -— : — I — )

qﬂda,an”)éanuﬂn(a), and Snﬂja,ahq)=Rnﬂja,anﬂ)anusn(a)- If
S . . T f

k(a,a, )=n+1, this means that al=az=...=an=1, and a  #1; thus

h , (a;)=a,,, for i=Y,2,3 or>n+1, and hnﬂjaj)=aj=1 for 4<j<n. But

, N — -
then Rn(a)=1 and S_{(a)=1, so

aaf@ed Ly =A
—————————
= Q—n*i_fkﬁ_\fﬂ‘a‘}'% i)—):, — —
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“and

— ' ’ —_— —_—

S, (@ra_) = R .(h (a),h (a3, ))h  (a_)S (b (a))
R ———
=~ Sr\+1(hr\+1(a) 'hh+l (ann))'

, . )
Now suppose that k{(a;a ,)#nt1. This means that at least one

of'al,_...,an is not equal to 1, and therefore the function b is

‘definedr on *f{a, sece,a.l. - By the  induction  hypothesis,

e

Bn(a)=R6(hn(a)). But k(a) picks out the index of the first

element'of the list (a,,...,a,) which is not equal to 1, ~while

N ,
k(a,a_ ,) picks out/ the index of the first element of the list

: : - . . ) - —
(al,-..,and) which ¥s not equal to 1. <(learly k(a)zk(a,aml).
Therefore ‘ T

a . for i=1,2 or3
bn(a() = “ @ . .
' - S - - -for 4sigm, - -

so that hn(a;)=hﬂﬂ(ai) for 1<i<n. Proam this it follows that

. —
) = a,R _(a)
a_ B _(h_(a))
= 3nuRg (b, (@)
S =

= h_,(a M_)R (h_ \(a))

W

- - —c

(b, (@) ,h e

W

}) =

R
r\al‘ nbj_

N

\
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:?

Now using this result for R_,, and the‘induction hypothesis that
— — . L .

s {a)= S_(h_{a)), we get that , [

J—— —_— . ~w
S fdra ) = aea(@ara a5 (a) /
L —— . . . ..
i = R, @ ,h, (a, )10 (a )S (b (a))
= Rna—g_(hrul(a) 'hr\+]_(an+'g) )hn+ :\:’(anw\_) S (2} (hr\“ (a))
—_——
= Sh+1_ (hn*L (d) 'h-n+ l(gnfﬁ.). ) =

L

— )
(a,a

< -
When n+1 is even and n+126, we have R ) = K _{a)a.,
and s, (a,a_ ,) = S_ (a)a K JHaea ), and the ‘argumpent above fpr

n+i n-

nt+1 odd is easily adapted to prove this case too.

We are now able to prove

—

gh orem 3.3.7: For any n23, VM(R =S _,) 1s contained in but not

—a—aa == -4

equal to VM(R_=5)).

Proof: As discussed earlier, it will suffice to prove that the

monoid M_ =A U {1}, which is not in 1g(3n1=sz),‘is in YM(R =5 ),

for n23.

Let a ,.e5,8, be any elements of M . If §i=a2=...=an=1,

then Rn(al,...,an) =1 = Sh(alj..,,an). If not all of a, ,a, and

a, are egqual to 1, we .Caﬁ”’apply‘*C6f6113f7*3?3i5"“tﬁffqéf’”“

R (2 see-08 ) = S (@777-%,3)- For n=3, this proves that " is

in VM (R_ =S ), so ve need now only consider n24. Finaliy, suppose
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that a =a =a,¥1, but not all .of ﬁy,...;ag\ are equal to 1.

B, eeeray) = &n(hn(ai),..;nn(aa)) and Sé(aL,.-.,an)

1

Sn(hn(al),...hn‘an))f Now none of nh(al), h;(a;) or hn(a3) is.

equal to 1, so by Corollary 3.3.5 again, Rn(hﬁ(al),...,hn(an)) =

Sn(hn(al),...,hn(an)). Therefore Rn(al,...,an) = Sn(?L,.-.,an)

in this situation  too. ke conclude that ¥, does satisty the

=S, is contained in but not equal

n 5,0

identity Ra=S,+ Thus VH(T

to VM(F =S ).

Stabting with the proper containment of V{R,,=5,., 1in

—_— —

E(Rn=§;) tor bands, ve could produce ‘as betore a semigtOUp A,

anc a moroid M_=A_O{1} which satisty R _=S_ but not B (=S

n-f n-if for

n>3. Ev dualiziug each oL Propositions 3;3.4 and 3.3.6 and

[

Corollary 3.3.5, we could prove tle folluwing dual of Theoren

&
d

Theorem 3. 3.8: For any nz3, gg(ﬁ;ﬂfsni)‘is contained in Hut not
equal to V¥ (E_ =S ).
'The proof of Theorem 3.3.7 shows in fact that if A, is a

=

semigrouy which satisfies B =5,, for n23, then M_=A_ 1 also

‘satisfies R =5 . This result can be used again to give us nore

-

~Defining the function h_  as in Proposition 3.3.6, we get’

information about the lattice of varieties of band monoids.



3.3: For any n22, neither of the varieties

(B

M(R,=S,) and ¥ (R_=5_) is contained in the other.

»
5

]

Lg]

n23, there is a semigtoup B which satisfies R =S but “ not-

n

o

.;:E;. Let D be the monoid B, !. Just as in the proof of Theorenm

3.3.7, D

, ¥ill satisfy R =S,; but it does not satisfy '§n=§;,

since B_ does not. Therefore D_ is in ¥M(R_=S;) but not inm

N

VM(R_=S_. ). Dually, we can produce a monoid which is in YH( n=§—)

but not in VM (R _=3,).

Corollary 3.3.10: For n>2, the varieties VM(R,=S.), J¥M(R.=S.),

together with their meet and their join are all distinct.

The results we have obtained in this section  can now be
f

used to determine the structure of the lattice LBM of all

varieties of band mohoids.‘we look at a portion of the lattice

v will denote

LB, as shown in Figure 3. The symbols ¥ ,...,¥

various joins in the lattice, as indicated in Figure 3; and ¥M

will be used_forlg;nﬂ.

Proposition 3.3.11: (1) VM =VH =VN =VM

(ii) YM =VA(R =0 )= ¥M(R_ =S )

n-it
e, —

YB(R =S

-
X Wn
]
l<
1=
g
[}
]
(e
1]

and (1ii) neq) ®
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Figure 3

A Portion of The Lattice LB
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Proof: (i) 151— = VE(R =Q,) v VYA(R =Q,)

= H(Rn-lzsn-l) v E;H. (Rn-lzsn"')

= v . '

-
Since VM < VM < VM, and YA < VM < VM , therefore VA =
2 =3 - =<2 e —=q —a

yM =.yM_ = yAM. .
==, T-12, 7 13y

(ii) we know that YM(R__ =S..,) is contained in Y4 which in turn

is contained in lg(§;=5;). By Theorem 3.3.3, JYM(R =5

V#(R,=Q,) . Therefore YM(R_ =S ) = ¥M_= VYM(R =Q ).

-1

rd

(iii) This is just the dual of (ii).

For n23, therefore, the image of the portion of the lattice

14

LB shown in Figure 3 is as shown in'Figure 4.

 From Corollary 3.3.10, we know that the four varieties

shown in Figure 4 are all distinct. Oof course, dual arguments’

show 'that 1if we start with the mirror inége of the portion of
the lattice shown in Figure 3, then ve actually get the nmirror
image of the portion shown in Figure 4, where once again the

o . , . . ‘/
four varieties are distinct.
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.y

Figure 4

A Portion of The Lattice LB

.

Combining these results with those from Section 2 about the

base of the lattice, we have proved the following result:

Theorem 3.3.12 The structure of the lattice ngqu All,yarie;ies B

of band monoids is shown in Figure 5.

r

Section 4: The Lattice of Pseudovarieties of Bamd Monoid

Having determined the structure of the - lattice BM of

va;ieties of band monoids, we @may now use Ash's results to
relate this to pseudovérieties.ﬂggqm Theorem 2.3.7, we know that
any pseadovariety is precisely the class of finite members of

some generalized variety. In particular, if ¥ is a variety in
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VE{xy=yx)

[}

¥ (x=1)

Figure 5 .

The Lattice of varieties of Band Monoids
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LBY, then the collection Fin(¥) of finite monoids in ¥ is a

pseudovariety. ¥e denote by LFBNM the lattice of'”ﬁSéddB?EfféffEéwwm
of finite band momoids. fheh ve may definé a function»?in‘ffbl
ng‘to LFBM by letting fin take ¥ to Finm(V), for ;ny ¥ in LBHN.
In xhié. section we show that Fin is. in fadét a lattiée
isonorphisi,.thus deterlining the structure of the latticé LEBN.
We do‘tpis by showing that FPin is a bi jection vith-;heﬁptoperty

that both.it and its inverse are order-preserving.

{

,gtogosition 3.4.3: The function Fin is injective.
) ,

Proof: Let V and ¥ be varieties from LBM, with ¥V # ¥. If 1' is
1 , :

all of BM, then ¥ is properly contained in BM, and it follows
froms Proposition 2‘2ﬂ2 that Fin (§) is pfoperly éonfained in,
Pin(g), vhich - is all 6f FBA. A'siailar'argnment holds if ¥ isi
all of' BM and ¥ is not. Hehce,se,nay,nby,assune that both,l,,agd,w
¥ are proper subjariéiié; of BHM. Tﬁen there are distinct
equations P=Q and H=K such that ¥ = lg(P=Q) and ¥ = VM (H=K), and/
without loss of gen;rality we may choose a monoid M which
satisfies ?=Q'bdt not H=K. let n be the nuamber of vdriables in
the identity HB=K. Then there exist A, gewe,a, in X such‘that
H{a, ,+--,2,) # K(a,,e=-,2,)--Let S be the free band semigroup

génerated by {aL,..-,an}. By Proposition 2.2.2, S is a finite

semigroup. Let N be the momoid Si. This will be the free band

monoid on {ay4-+-s3,)}, SO  the submonoid L of N generated by

'{ai,...,an} will be a hononor?hic image of ¥, and hence is also

-
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3

finite. Thus L will be a fihite monoid which safisfiésrégd; but

does not satisff A=K. Therefore Fin(¥) is not equal to Fin (),
and Fin 1i1s injective.

. | - ,

This argument in fact shows that if ¥ is not contained in

8, then Fin(¥) is not contained in  Fin(W); that is, that if .

Fin(¥) 1is contained in Fin(¥), then V is contained in.g.vThe‘

converse implicatiom is obviously true, so

‘Ein(z)EEFin(ﬂ) if and only if V € H.

;o A ,
Proposition 3.4.2: The function Fin is surijective.

~.

Proof: Let ¥ be any péeudoiariety of 5and monoids iﬁ gggg; By
Thedfem 2.3.7, ¥ = Fin (¥), uhére ] is‘ fhe gengralized variety
gererated by V. Since i = HSQ?BOH(E),WE stiil,satisfigsfx3=x-;By
Théoré: 2.3.6, ¥ must be {he union of some directed fanily D .of

F1

varieties from the lattice LBM.
Suppose that the directed family D is a finite one. ~Then
the union W of members of D is just a variety U in LBM, and we
3 , [

have ¥ = Fin(g);

If D is "ﬂairé'fiﬁite"diigéiédwfaiilf;wiigié are only two

possibilities for the union W of members of D. This union may be

all of BA; in this case we have ¥ = Fin(§) = Pin(BM). Otherwise,

59



¥ 'must be the class of all bapd monoids which are contained in

-

some proper subfafietjfof gg; éiéériy then Pin(¥) 1is contained
\\

in Fin(BM). But also any finite band monoid is contained in some

proper subvariety of BN (Gerhard, private coasunication), and so

Fin (BM) is contained in Fin(d). Therefore Y = Fin(d) = Fin{BHM).

Thus for any pseudovariety ¥V in LFBM, there is some variety

Q in LBN for vhich V.= Fin(U), and Fin' is surjective.

Theorems 3.4.1 and 3.4.2, together with the remarks

folloving the proof of Theorea 3.4.1, give us the following

theoreng

Theorem 3.4.3: The function Pin is a lattice isomorphiss from

the lattice LBM of varieties of band monoids onto the lattice

LPBX of pseudovarieties of finite band monoids. - -

©

From this theorea we conclude that the structure’ of the
lattice of pseudovarieties of band monoids is the same as that
qf,thé lattice of varieties of band monoids, as shown in Pigure

5.
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