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7 %ng lnltiplicitg tuo) can be pattitionod 1nto n' Bamiltoajam

2 nsrnct I
In this thesis we show that if the edges of the conpleteff' ‘ O

&

lultigtaph on n vettices (in which each edge bas lultxplicxty .

tvo) .can be partitxoned into n ﬂaliltonian paths having the ‘}i,

property that any. t-o paths interlect il exactly one edgg,;then .

: the—COIplete—lﬂitig:&phronfn'=n15~437115},1ert1ces,4each7¢dgevfﬁmwm;g,f,

P

paths having the same intersectios ptoporty.r(ﬂere a, b apd‘c

.)

We also show tﬁht~it the edges'o) the conplote,lditigraph :

on n'vgttidqg.(in phiqh each edge has msultiplicity tvo) can be

'pattit;onad into n Ba?iltouiai paths havingﬁfhe'prOPQtty Eiat

ahy tvo paths i;tetaec({in exactiy onc'cdgc, thcn‘tie arcs of

the couplcte syllotiic directed gtnpi on ia;!t:tices,caa be

pattitioned into #n directcd cycles of 1ength &n-1 so that any

v t'o cycles intersect in exactly one cdge (unditccted atc).

13
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1. Istrodsction Lo r Rt
In this thesis we will investigateAtheif0110iing,thiée e
- - guestions, - < I ‘lx -

1.  then can the edges of 2K be pattitioned into Haliltoniai

2. ihen can the edqes of DK, be partitiomned inmnto directed ' \

Y ~ ° T
. . < ; .. t
L, e e e i e i S\ e e e
e R " -
\

paths so that any tvo paths intersect in exactly one edge%

qycles;offlength n-1 so that,any two cycles intersect in

éiictii OBG\QPPOSitelylditected edge?

It is not always possible to direct the cycles, and so in this.

case we vill ldok at the undirected counterpart to'question 2.

. Clearly, any sointion to qneﬁlion 2 will alsc_bd'afsolution'to

vertices, and 2K, denotes the complete multigraph on n vertices

qnestion 3.

'3.. When can the edges of 2K be partitioned into cycles of

length n-1 so that any tvo cycles intergpct in exactly one

edge?

Here DK, denotes fie coaplete syl-etric directed graph oan n

in which there are tvo edges between every paif otrdistinctb

vertices. Sinilarly, ve denote by ukq thc cosplete lnltigraph on

I vertxces 1n uhich there are s edges bet'ocn cvery pait of.

“distinct vettices, ‘When »=1 ve silply vrite K.

|
3



o subgraphs belonging to a given falxl], sayxi, of snbgraphs of G

”'then ve say that G can be deco.posed into snhgraphs belonqing to

44. Many people have looked at the proble- of partitlonlng tﬁe

edges of a graph into isolorphlc copies of a’ fized huhgraph, the

case vhere the fanilygjicontains only one lelber. In particular, “ l

Berlond and Paber [6]) have stndied the ptoblel 6I'patfitioning

the edges of DKn into dlrected cyclesz Froas thel ve getkthe

LI

folloving theorem. - &

*.,

) ,, can be patf}tioned :

In ptovihg this theoren ve need to look at the'cases for n

even and n odd separately. Bouever, before doing so e need to -

S, — — ! ;

give the following definxtxon. Let C-(v oV, ,...,vr,v ) he a-

circuit in"'DK, and let S\Q:hso-e set of -n sylbols. If the .
- vertices of DK—'ate Tabelled with elelents of 2, us then ve
define C+k.to be the c1rcnit (;}+k v, +k,...,vr+k,v +k), vhere
N

addition 1s performed lodnlorn on ihose elelents in Z, only

(elements in S remain’ unchanged). ' -

B

__Proof. (n even). Label ;heive;gsleglojinnm, sjilj:;gxe elements of

an[u}, vhere n»is'a neyv sglhol satisfying veozo fof\all veEZ .

Define a ‘circuit, D,, of length n by - T

' D -(U 0 3‘1 1 n"2,.--,n/2*1 n/2-1,¢°). 7 N .



, thgnAhx%Dk#D-*k. for -
? kﬂ,?,.,-.,-n—;l. Hotlce that in the above cu:cuits, o "'

,_,/‘ },,v, ,...,' M, ), the d1f£erences v —v ('I<i<n-1) and

o,/

) B A v“ o taken lOdUlO n, are precxsely the 1ntege1:s 2, 3,...,n 1

_' K .va‘%dm. That 1s, no circuit contazns an edge of the fora . (1,1*1).

! ~,Therefore the union of these n circuits is DKM, Dn, vhere

. Dy —(0 1 2,...,n 1, 0), and t]:e nff cxrcnits of leniﬂi n,

D‘:,,Dl ,...,Dn. for:l a deéonposition of DK,\,...
) v

(n odd). As be_fore, label the vertices of D'KM with the

”*%*'*j:_;ji’** ‘elements o szfﬁftnﬂlﬁffiﬁre—a—d”" = ﬂcvfhtrﬂffewﬂrnﬁnr*

o D —(a,o n-1, 1,n—2,...,a 1,c+1,a,c-1 a01,...,h-1 b,°) |
vhere a |_n/lu, b=|_n/2_| and c=[_3n/3_j (nhete Lx} is the greatest
xntegerrnot larger than x). Def1ne .am addxtional n-1 cn:cuts of
length n by Dy =D, *k, for k=1 2,...,n 1.vlotice that in the above

' circui.ts. D «-(v oV geaced, \,vo) v the differences v, -v_ (151511-'1)

Vo v takea* lodulo n, are precisely the 1nteqers

1 2, 3....,11 1, except h+1, and o, Ihat is, mo circait contaihs
an eﬂge of the forl (i, L*bﬂ). 'rherefore the onion of these n
circuits is l')!(“ﬂ —Dn, where <

D,=(0,b+1, 2(b+1) 3(h01),..., (n-1) (b+1),0), and the n+l cu:c:uts }

of length n, D ,D, seaesDoy fotl a.deconposition ckal{n...

B ,,,,,,,,,AlspacLandJatlaMhngJooLeLnJhg pmhlﬂljf

o= pattitionan the edges of Kn into cycles of length - 1, vhere A

n—2p +1, p is a px:ile and e is a positive 1ntege:. The folloving

is a corollary to 'rheorel 1 of their papet.

. .
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g

‘Corollary 1,2 Let p be a'ptine and e bg any positive ihtgger.i

i}ﬁi;iﬁg:i;tﬁénlxﬁ can be decomposed into cycles of length n41

fof every n. | | | ) ) | o
Decompositions of the coipleéelﬁltipartite graph have also

been studied. In particular, Sotteau_t]j] and COQkﬁyne and L |

Hartnell [ 11] have;looked at partitioning the edges of the

complete ;ultipattité’gtiphuinto cycles. : o : o
As it is not possihle'to'lentidn a;liof the work dome in |

this area, ve refer thzrgeader'to "Becent Results in Graph &

Decompositions?, a comprehensive sarvey by C§qng and Grahas

" [10]. The aﬁthofg discuss, among other things, partitioning the
edgesrof'cOlplq;e graphs, iultigrﬁphs, lnitipaftite grapha ahd. vv -
hypergtaphs. In add;;ton to this, Chuiq’anﬂ Graham list many
conjectufeSVas vell as open problems and guestioné in-this area.

'*'“”**"figile"lany4anthorswhatefiootedjat_thé~ptobiei~0f—f4———****4*~W**””ﬂ;m
| paititioning_@he edges of a graph into iscmorphic copies of a - |
 fixed subgraph, few have attempted to place fnrthef testfiétions.

on these subgraphs. In 1972, Hell and Rosa [16i’inttoduced

(n,k,m) G-designs. These are partitions of aK, into subgtaphs on

k vertices vhose adjacency matrices are eqaiialeqfl}p the

symmetric (0, N=matrix, G. Thé design is balanced 1fﬁevery

{ ) . ‘
vertex appears in t e same nuaber, say r, of subgraphs. ’Ute &

that if G is the'adjgcency'litri;vof a regular graph then thei

4
£l
4
:
i
3
+
-5
A
%
N
-
i

design is automatically balanced. Hell and Rosa vere mainmly

concerned vith balanced P—designs, the case vhere G is the

a

S\ ‘ 7




fget the'follovlng.

,;nninfllzaoinodw2kywandelin:JJEiﬂinodezl,eﬂeilond,eﬂuam;qmulL,ﬁfﬁemww,W

*

Vi

ad]acency natrxx of a sxnple path on k vertlces. Pron thel Ve

Theorems 1.3: A balanced P-design with'v=k and m=2 exists for

every k.

1

Tarsi [32]'was also intetested in pattitioning the'edges of the T

conplete nuitigraph into 51lgle paths, however he only looked at-

the weakef/unbalanced case. That is, where it is not necessary

a

that every vertex appears in the same number of suhgraphs.

‘ Pollouxng the vork done by Hell and Rosa, balanced
G-designs received a lot of attention; Rosa and Huang [29]
looked at’balaneed C-designs ghere Cis the adiacency matrix of
a Silpie cycle of length k. The easi}y derived neeesSaij

conditions for a balanced (n,k,m) C-design to exist are n2k,

Sotteau [7] have conjectured that these necessary conditibns are
also sufficient.
Another interesting graph deconposition'problel is the

Oberwolfach problen vhlch vas first mentioned by R1ngel. "Let

. n—k +k +...+k, be an odd integer, wvhere k; 23 for 1<i<s. Is 1t

p0551b1e to decompose K, into 2-factors so that each 2-factor of

" the decompositicn contains exactly one cycle of length k; iorv

et et

(P IR SRS TOA LS ‘

il

b g e SHES

every i, 1<i<s?" Slnce this problem was f1rst put forth it has

beldiz

been generallzed to include the case wvhere n is even. "Let

n=k,+k14-;.fk$ be an even integer, where k; 23 for 1€i<s. Is it

AN
‘ O



- . . . o . . . . S
possible to deeoppose K.~P, vhere P is a 'fattor of K,, into

2-factors so that inAtherdecoipdeitiOn‘there,is exactly pne

chcle of each length k,;kl,;..;kg?' llspach_add Haggkvist {2]

have come up with the fellowing results.

1. Let n= 2(-dd»u) and let n=k, +k, t... ¢k vhere‘edcﬂ’ri is
'even. Then if P is a‘1-tacter of K, we know that vaI can be

partitioned into 2- £actors, each cortalning cycles,of,length,”

;‘k for 1<1<s. ; | -

2. Snppose k divides m, vkere both k and n are eve;; rhen‘ve S

can deconpose Kh-l into. 2-factors each of which contains

Acycles of 1ength | ¢ only.

k

For a survey of work done on the Obervolfach Problem the reader
L Y

is referred to Rosa [27].

Recently, Hering [17] and Als%qeh; Heinrich and Rosenfeld

[3] bave looked at the probles of paftir;onihg a cosplete graph

“into cycles, and they bave imposed yet a differemt type of

%

restrietion on the subgraphs. Hering was the first to ask if the
edges of 2K; cculd be partitioned into cycles of iength n-1 so
that any two cycles intersect in exactly one edge. 1f such a
partit16n1ng exists we write ZK“-—QC“‘. In 1979, Rering and
\Rosenfeld [19] asked the same gquestion, .except this time for the
directed case. That is, for which valﬁes of n car the edges of

Al

DK, be partitioned into dinected cycles of length n-1, DC._., SO

that any two directed-cycles intersect in exactly one oppositely

directedredge. If such a partitioning exists we write
DK, —>»DC., .. This problea has been studied by Alspach, Heiarich



and Rosenfeld. In addition, these auth&fs*ﬁive alsovinrestigated

the problem of pattxtxoning the edges of. DK, ilto antidirected

cycles of length n-1 so that any tvo cyclos intetaect in exactly

one oppositely directed edge. It 1s cleat that in this case n
{

lust be 0dd. The follo'ing theoresn appeats in their paper, '!dqe'.

- Partitxons of the Complete Sysmetric Ditected Graph and Related
A
!

nesigns' . S U e

—
L)

Theores 1,84: If nzp ®>3 where p is a prime and e is a positive

Lnte94; then DK -—-)IJL:,}(k

- 2

-

Proof. label the vertices of DK, wvith the elements ofjéx f{,
vhere GF(n) is the Galois field h#ving,nip‘ elements. Let b be a
generator of the multiplicative cyclic group of GF(n). Define a

circuit D, by

a2 a-\

D, >(1,b, B‘,....b b=
Define an additional n-1 citcnits_of length a-1 by D‘=ﬁ50bk for
k=1.2.'¢6."n-1. N V ’ V | V r .

Suppose D, and ;. have two oppositelf directed edgeé kn

comson. Say (b%,b*") amnd (b°,b°") are the two edges of D, which

intersect with two edges, say (brﬁhL,b”‘bef gnd (HtﬁbL.5“'0bL).
of D, . Then. | .

b =t™ +b" ana b° b +b

and

c 0 pTap™ et and b=t el |
Thus, b -p b(b -b ) and b(b -b* )=b -bt and so we qet

]

~J



i, 8
4

o -

bt (b -b3)= b -h - rhus either b -1 (nhich is IIPOSSIDIG since h

is a generator ot the lultiplicative cyclic gton; of GF (n) and
n>3) or b =p® . We thetefOte get'k-s, uhich contradicts our
assusption that D° and D, have tvo distinct edges in COBBOD.
rhus D° and D have at lost one edge in COoRRORn. -’ 51nce we can !
generalxze this argulent to obtain the case !hete the two cycles

’ .
in guestion are D, and Dj,;le gge,;hat,gnxﬁxggmcgglgsb;n,pxwﬁ§,W_f” S

14

‘hayerai most one edé&Mii coason. it'thétefote'toiloiswfﬁiifinjf:

oLl

1

tvo cycles must’ have exactly one edge iﬁ coRBOR. -

The folloving corcllary to Theorea 1.8 clearly answers ﬂatt%iyf
of neting'é«briginal §nest;an and is scleuhatfsggenger‘than
Proposition 9 in his paper, *Block Designs viihftyélicbalock‘

'Structure'. Here C, is a siample cycle with k edges.

\

o W*Mrﬁ *lrxp‘*>3*ﬂ&rrf’frthWT'wm%*W** -
integer then 2an—>é;q. | :
\ | o
In’this thésis ve‘uili'eipagf on the results found by
' Klspach, Heinrxch and Rosenfeld, namely Theorea 1.4 and
) COtollary 1. 5. Because ot the method that will be used to do
this, ve will first require ﬁirtitiqhs of the edges of 2aninto

Baliltoniii paths'so‘that anj two paths have exacily one'edge_iw

coulbn. If such a decomposition existg_ne write 2K, —/>P, . vhere

7§K is a simple path with k vertices. ¥e 'say this path has length

k-1. Briefly, we have the following results in this thesis.

——

k/'r ‘_8
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1., If 2K, ,—>P, then ZK -—)P forrr35;13 andv17.l .l '

. 20 If 2K <3P, then DK, —>DCyp, =
. We also know that 2K —7?P for n-2 3,5 6,.;.,20{7(It is
ilposclble to- partition 2K, into paths of length three so that‘ o
; any tvo paths ha ve exactly one edge in COIIOD-) A conputer was

used to solve many of these cases. In [18] Her1ng shoved that

- _ — o g _

’ . 2K, —>C,, f,,@,t,,n—,,“,.,,S.,,';,- <236,

fiéﬁﬁé§ib"§lahWOf‘tﬂis thesis is as follais;”ﬁé begidiih”'”
Chﬁbter I§‘with a discussion on the,telationship betveen graph

deconposxtlons and block desxgns, latin squares and graph

enbeddlngs. In Chapter III ve 1ntroduce some useful deflnltlons

e,also present three lemmas which wvill be used throughout.

'this-thesis,'Chaptet IV contains the results on déconéositions

-~ of 2K - into intersecting Hamiltonian pathé, and Chapter V

ST Y

¢ -
: contains the results on decompositions of DK, and 2K ihto :
f~w~rm>Awf~intefsectinqweyeles—efwlength~ﬂ—4—¥1ﬂ—the—A?penéix—ve—pfesea%~a;—hﬁ—~”Wg

ligt of the- paths vhick glve use 2K, ——9? for n 2 3, L 6,...,20
and a few other isolated cases. He also glve outlines of the | .

conputer prograls used. in this vork,




'nany new definitions, ho-e!er only tho:e dafiﬁitionﬁicﬁi&n:ningm mAw,W

II. Chapter 2

In this chapteﬁ=ﬁb will discnss the relatiolships that
.

:graph decolpositions have with three othe; ‘areas of

~

7

conhinatorial lathelntics. In each section we. vill introduce

A

rfv/;ﬁt1n squares. uill be used 1n 1atet chaptcrs qf'this thesis-

“Brock Desia ]

T to wvr=bk

R

A design is a way of seleciing'suBSQts (hlocké) fton'a

_non~empty finite set of objects so that cettain conditions are

m . .
satisfied. In particulat, a (v,b,r k,l)-balanced inconplete ; o

s block design (a BIBD) is an arrangelent of a finite set of v

objects.into b blocks so that- A | <

1. every ohject appeats inr hlocks : ; - "  B

2. every hlock contains exactly k objects 'f " | 0q |

3. every pair of distinct objects appeats togethet 1n exactly [ ]
h;ocks.’ - | R .

Simple counting arguments give the foll&tinq.tuo”necessa;y

conditions for tpé existence of a '(v,b,r,k,n)~BIBD.

L1
£

(

by ]
&
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Y
%
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Thus if we know v,k and m, we can find b and r uailgrthe'ahqve'

necessary conditions. e vill refer to such a desigl as a
(v,k,l)-BIBD. * A
In fact, 1if we let the \h paths in a deconposition 2%—-)1’

-

" be the points and think ‘of the (%) edges in K as the ‘blocks
then this deconyosition defines. an (n,27|) BIBD sincﬁ every tvo}

~points (p&ths) appcarftn—exactiy~oae'block (cdgera Sili%&ti’*‘i

P S R

deconpositxon 2! -;9C also detines an. (n.z 1) BIBD.r o~
It has long beenyknqvn that_the problen of finding values = = .

subgraﬁhs, gaéhféf vﬁich‘is iSOIOIps%C.tO kg; iSVSQuivilen;’to -
finding ialneq éf k for Ihich,af(v;k,l)-BIBD éxists.vi;is?h,téﬁ]

' has shoih thatsfor a fixed lland'k,rik; caﬁihe decolposgd into
coﬁies of K, provided the neéossaty cdnditi@ns are satisfied andl

v is sufficiently large. . : S . "

In a BIBD. ‘the blocks of the design are simply suhsets of a

. set and hence the order in-uhich the elenents of a block are

listed 1s nninportant. Hany authors have stndied BIBD's 1n vhich

the elenments of}block have been given a specificmorder (seg,»fog“
exasple, [#], [13], [14] , [21], [25] and [30]). These designs -
. are- ,ailed ’directed BIRD's,. 'and a (vwk, I)- dAirected BIBD <1s} Aan'":‘
- artangelent,of v elements into bloﬁks of<siz;:;Tso that each

~ ordered pair of elenents‘app&ars in ® blocks.!For example, given

a block 1 2 ... k-1 Kk, the cyclic order givcs the ordoted paira

.2, (2,3), ...,(l-i,k) and (k 1) and tho transitive order -
gives thc ordetea pairs (1 2), (2,3), ....(k-l.;) amd (V,k). It {

RN

£

1n

\
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is easy to see that the existe;ée\af a (v.k.l) directed BIBD im

| ehich the order essigned to the ele.ents eithin a block is ﬂLf_

| cyclic is eqnivalent to a decelposition of DK, into directed

o cyclesrof length k. !hus hy rheorel 1.1 ve see thlt a cyclicelly

| directed (v,v- P BIBD exists for ell v23.

nering [17] also looked at (v,v1, 1) directed BIBD's in

ordering and in lhich every peir of blecks in the design has theu
same nniber d of adjacent eleleets in common. If a directed BIBD

_with a cyclic ordering on the elements satistied this property

_which the,elelents,of,each hieckghad_heen,gilen,a c;clic, ,,,,,,,,,,,,,,,,,,,,,, o

; W,u;mw‘a};g&\b;;:kg‘%, S m , “ﬁéi‘fl TRy 1ok T e

T T ®0 L. D

_then he called it a har-oric design. Ihes if:9=1, the existence

of a harlonic‘deeign on n>3fe1eientsfieplies }:g—-ac&r- In

roposition 9 of hiS“paper L17] Heriig'dieplais a comstruction

for harlonic designs on n elelents, uhere nnp e P is an odd -

prile and e is a positive inteqer.irhis constrnction (attriheted

1.4. ‘ o
Hell and Rosa [16] have looiedwet (v,k,l)-BIBD's, end

instead of restrictinq thelselves to only cyclic or transitive
'orderings of the elelents in.these blocks, they alloe any tuo
elements of a block to be either 'related' or 'nnrelated' (rhns
it is pot nécessary tLet related elelenta occur beside each s

ether in the cyclic representation of a. block, as in the cases

iéf)‘ittﬁiii]*qifﬁs’HB4DI“‘?DC‘“‘HB‘FtUYGﬁ‘iH‘TEUUIEI‘“‘*”

-

vhere the elelents iithin the hlocks had been: given a cyclic or

transitive ordering )’ This relationship heteeen certain peirs of

elelents in ‘block defimes an adjecency‘{?trix Gx(gﬂ) of a qraph,

12

s




ihere g;=1 if elesents { &nd 3 ate related and 0 otherwise. A

baianced (n,k,l) G-deaign is an (n,k, l)-lxlb in shich ovcry
hlock defines aa adjaceucy lattix eqtivaleat to the kxk lattxx

G, every elenant in thea@esign occurs in the. sasme nnlbcr af ‘uf N
blocks (this 1s the haljice requitennnt) and evn:y tvo distinct L
ohjects are related in » blocks. Hell ana Rosa 1oot¢d at the

case nhere,thn,adjaccnc; nntrix, G,,is the,nd;nccncy lajtix,cf a’

path. rhey showed that a- balamced Pfdcsign vith -?k exists,if

.and only if k or & is even. This problea was laﬁer éolplcteiy '

solved;tnde?endentiy by‘nﬁpq and Hendelsohn [ 22] and Huang [20]

=2 . . R .. - - e : .
'~ summarized by saying that a balanced (n,k,m) P-design exists if
. 4 . . R 4

1 o
vho shoved that. the noceSQaty conditions for a balanced (n,k,n)

p-design to Qxist ire'@lao’sufficient. Ih@irvteénlts gan bé

and only if mk(p-1)= 0 mod (2(k-1)) (see [9)- Lat\ér,‘ Huang and

S T U

nos7flooked-at balanced (n;k,u)fs-designs in which G is the

~ adjacency matrix of a cyGr"41hfiﬁrifi‘tiiiﬁﬁfbiI‘iCéﬂ“CifC]itf‘w”;f***é

designs and are denoted by Bcn(n,k,l). In 1979 Alspach [1] asked
the- follouing “two guestions. ‘
1. Is it true that thete exists a Bcn(n.k,I) if and only if R

is odd, nzk and- kl( )?.

2. _Is it true that there exists a Bcn(n,k,l) 1f and only 1f

nzk, -n(n-1)! 0(l0d 2k) and'l(n-l)E-O{lod,Z)?

' The first question vas partially ansvered by Alspach and '&tll'

(5] vho showed that if k=2p® thgn the necessary conditiomas are

also sufficient, and by Rosa [28] vho showed that if k=p° then

‘the necessary conditions are sufficient. Question 2 vas looked

B
»

13



it by Beriond, Huang and Sottéau,[51 and iornond and~50¢te&¢'[8]L;, o

who stoaed, rcspectivelj, that the’ nece-saty conditio-s are

snfficient for all evem k pet.eqn 2 and 16 and all =, and for
k=3,5 and 7 and for dll;l.

a

4 ) - ;. . v . . T ., N

. An nxddanraywlytdﬁl;uith gnttieswtrglm{J;Z;;l;.gl,ismggllgé;wam”,

a latin aquate ‘of order n if it has tho property that for
1<j<k<n auﬁau;and a; da . We say that two’ latin sSquares ls(aq)
_and B=(bu), both of order n, are otthogonal if [(ag,bh)|151 j<€n}

= {(i,j)|1$1,j5n}. Aklatin square is called self-orthogonal if
it ig drthogonal to ifsﬁtranséoég.,Iinally,fa,ﬁatip’sgnage is Q 
,calledvhorizontillyoconpl§t94if dvet}?o:detod pair of distimct
ele;ents appears exactly once ad adjacent elements in scse tO'.

of the sguare. .

n defines a 1-factorization of Kmn, the co-plete bipartite graph-

on 2n elements. Let the vertices of xgg

subsets X={X, ,X;,...,X.} and Y={y ,¥ ,--,Y,} SO thdt eiery edge

be piftitibhéd’ihto tvo

of K“n'is‘indidedt vith one vertex fros X dnduonéfvettexifrdq'i;

The n T-factors are dbfinéd»xéjfolloié:lGiven a latin square
' A‘(a ) let the edge x.y; -be in tKe k 1—factot; | if'anddonlj'

if ah-k. Por exalple, rigure 2 1 shovs a latin square of ordet

~~¥e begin wmmdnﬁowmtfhﬁrsgmem e

four,'and Figure 2.2 shows the 1- factorxzation of Ky defined ‘by

this latin square. In general, ‘we note that any}nxn “array wvith

_ elements froa {1,2,...,k} defines a decosposition of Knﬁ into k

2

14



subgraphs.

2
,
L]

- N W
N -

W -

.- Mgure 2.1

Latin square of order &

»Fignqe 2.2

A 1-factorizatioa of K., v

1)

Alspach, Beinrich and Bosenfeld have'also recognized'the'
relationshlp between graph deconpos1tions and latin sguates [3].

 The. foI//;ing theoren is dne to thes.

lgheo;en 2.1: If DK -—)Dc .’ then there exiﬁts a self-o:thoqonal |

-

latin square of order n.

 The proof of this theorem is sisple and is based on the fact
that every vertex -is missed by exactly one cycle. Lahel the

vertices of DK, with the integers 1 2,...,n. Let the latxn

15



' sqnarecg?ﬁined by the deconposition of DK, be A= (a ), and let

ay w=i. If ij is an edge ‘of the cycle that mjsses vertek k then\'
7let a;=k. The latinm sqnare 1s self—orthogonal since every two
cycles intersect along exactly one edge. ror 1nsta-ce, DKs-)DC
 (Pignre 2 3! and thls there exists a sélt-orthogonal latin »
sqnare of ordet five (pigure 2. Q). rhe converse of this theorem .~
is not alvays truve as the latxn square lazfdefzne some cycles 7;;71
~ whose lenqths are 1ess than n-I, Figure 2.5 shows a | |
selt-orthogonal latln sqnare of order, seven while Pzgnre 2. 6

gpous-thqgﬁthis latin square defipes two directed cycles of

length three instead of one directed.cycle of length six.

1243 15432

2354 3215 %

34815 54321

8521 21543

5,132 43215 )
rigure 2. 3 ," rlgnre 2.8

st-—anc

13572486
7246135
6 135724
5S724613
46 "3572
., 35724 61
2461357 .
- Pigure 2.5 h ‘_, ' Pigp}e 2.6 .
7 7; hiéfi;ﬂgaggigwagﬂ;}d;t 7 | Two directed cycles im K,

16 -
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Althongh the converse to- Theorem 2.1 does not, 1n geneigl,

hold, ue can use the folloilng theoren (see Denes ‘and Keedvell
\[12]) to obtaln,rfron horlzontally conplete latln squares,

decompositions of the conplete\slfnetr1e_dlrected graph into
N

\ .
It 1s known that horlzontally conplete latln squares e11st

Batiltonian paths'and’cycles;

Lfor all even n_ (see [12) . hovever not as nuch 1nfornat10n 15 - ;;

avallablek?a; odd n. ﬂonetheless, hotlzontally conplete latin

i

squares of'odd order are known to e11st in at least one 1nf1n1te
Y 4

fanxly see [23]) and a few isclated cases. v - \\“
Theore! 242: If a horizootaily conplete'latinusquare,of“o:der‘ﬁ
ex1sts then '
1« DK, can be pattltloned 1nto B Han11ton1an paths, and

r

24 bxnﬂ can be part1t10oed,1nto D Han;ltonlan cycles.

N
 proof.  (part one) Label the élrtices of DK, vith the n elements

of the latin sguare and let xy be an arc in the iﬁ Hal1lton1an

-path 1f and only if the elelent ‘X occurs xlnedlately béfore the.“

A

elelent Yy in the i row of the latln square. Since the latln

_5.‘ . . - r o . . ) . > .. . . . )
square is horizontally ‘complete the union of the- Haamiltonian

| ~paths will give us DK, .~

(patt tvo) Lahel the vertices of DKM* with the n elenents

of the latin square and one additional element, cay v,‘and

s =

define n paths of length n-1 as‘above. FOr i=1,.ae.,N, addvthe

arcs va and bv to the i“‘path if a and b are the elements in the

L~

A7 . N‘
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first and last columns, respectively, of,thejiﬁ‘rdn:of the ‘latin

square. Thas #heSqfifdwarés;ltégéiﬂét vith the n-1 arcs in the
path, form a directed ga-iltonian‘cycle in DK, . Since the
square is latin, we know that these additional 2m arcs are all

distinct. Hence we have a deconpositioh'of Dxm.finto Hamiltonian R

Although horizontally cosplete latin sQuarésApf oddvorder“'

cycles.

" are only known to exist in a few cases, Tillsom { 33], using a
co-biﬁation of direct construction and induction, has shown that
the deconposiiions -éntio;;d in.Theorel 2.2 exist for all oddrn;
These decqnpositioﬁs, hovever, do not give rise to horizoptally

complete latin squares. ' . , . T

4 o B R

 be i
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With the recent (1974) solution by Ringel and Youngs of

Heavood's Conjecture [26] and the proof of the Pour Colour

S

Theorem by Appel and Haken in 191§:4§§e [35] for a survey 6:

this problen), graph elbeddingsmha!zjheen enjoying ihc:eased _—
attention. It turns out that some graph embeddings pfovide ‘
,deconpositioﬂs of 2K, into cycles of length n-1. We will briefly

discuss this cannection.

HERR

First ve will giQe a,fewrdefiﬁziidhé{ K rotation of a ' 3

2
iy
%

&

vertex v of a graph G is an oriented cyclic permutation of all
vertices adjacént to v. This permutation assigns an orientation

—_

18
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.{clockvise or counterclockwise) to the vertex v. If we are given
a rotation for every wertex v in G then we have a rotation of

the graph G. It is easy to see that if G=K, then every cyclic

perautation in'the rotation of G has length n-1. If the graph G

N [ .
can be drawn on the surface S with no edges crossing then ve say

that G can be embedded into the surface S.

If in an embedding of G into a surface S‘every region is a

vtriangle, then this is a triangular embedding of G into S. If we

have a triangular embedding of K, in scme surface then every
p;ir of distinct vertices u and v are in exactly two triahgles
of the gmbedding,kéay avx a;d uvy. Thus u énq v are adjaéegt:in'
tﬁé rotation of véftex x and they are also adjaceht in the
rotation of vertex .y. Figure 2.7 is a trianqular embedding of K,
in the torus; identify the fpairs of opposite edges as inditafed
by the verterx 1abeiiings;'Inmfhis~embed&iﬁqweverywvertex~hasﬂ*~W~~*~~"
been assigned a counterclockvise oriéntation.‘Figuré 2.8 gives
us the rotation of K, defined by this;embéddingv(uhere d. hijees

means that wvhen we rotate counterclockwise around the vertex a,

-

o we meet the vertices h,i,§,-.-. 1in that order).

19



Figure 2.7

Triangular embedding of K, in the torus

132645
1. 283056 ,
2. 358160
3.465201
’ 4. 506 3 12
5. 6 108 23
6. 021534
"Pi'q’n’féfaz;gﬁﬁ'77'7" e e e e
. : . :

A rotation of K,

If ve let every tvwo adjacent elements in d/éyclic
permutation define an edge, then a tr;angnlat-elbedding of K, in
some surface gives us a partition of the .edges of 2K, into

cycles of length n-1. We have fourd in [26] two rotations of

complete graphs which give 2K,—>C, . One of them is 2K, —>C_

and is given in Pigure 2.8, ahd ihq,;fﬁéfﬁis 2K, —>C; and is = -

given in Figure 2.9.

20



0. 31582
1. 4 250 3
2. 03514 -
3. 14520
'8.20 531 ,
5. 01 2 3 8-
o { . v - .
Figure 2.9 ' )
A rotation of K, ' . L

7.

- In gemeral, hduevet;ftriangulatLelheddings~offxﬁfﬂa—not~f——f~'”'*f~**

give rise to 2K,—>C,, as some of the cycles Egs,,lsé)g have mo
edges in common while others‘lay have more than one edge in .
common. “ | |
| RingelAalsd t&}rqdnced the :Pqtdprobie; as a means to
simplify the calculation of a triangnlar el?gdding~of a graph

into a Sdrfaée. Basiéglly, the chord problenm is to find a —-

Hamiltonian path in'xgﬁmsuch'thatffur”aiifeﬂgeS”tj‘in“tﬁe;*'”*ﬁ””fWﬂ”i'
Hamiltonian path ot )

; (1ENI=(1,1,2,2,2-2,5,8)

vhefe l(ij)=liﬂ{|};j|,2s*1-|irj|]. His solution to this ptéble-‘
‘gives:a decomposition of K,;,, into Hamiltonian paths, because if
bi ‘and jk are two edges in the path suéh that 1(hi)=1 jk)'then.,‘
either 1j-il=jk-h|=s or |j-hi=1k-i|=s. Below wve Eiii/{hediagrdl

for s=6. This is just anothetbexalple of a patticﬁiér path

decomposition prcﬁlel and it should be clear fros Pigure 2.10

how one obtains a solution to the chord problem for any value of

S. - '\ ’ i .
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IIT. Defimitions

Recali{that 2K, denotes the. complete sultigraph on n

verticks in which every edge occurs twice. If e is an edge in
2K, that is incident with the vertices x and y then we will ~~;ilf;:f”'

often vn.te xy instead of& Ile till indicate a path by its

sequence of vertices, and the path vbv‘...vnqu,has length ke Ie

-

write E{m to denote IWUfTGHfﬁFT. me W
a cycle by its sequence of vertices, and the cycle v‘vlf..v_\vn
has length k. We write éK to denote a cycle of length k. - |
If the ve:tices:of 2K, are labelled with the integens_
1,2,...,n,.then tne length of an edge xy is |
siniz-yl, n-1x-vi}- | : \.;

Thns the lengths of the edges of 2! belong to {1, 2,...,-} vhete

==ln/2) . |

" We will now imtroduce the concept of :ofatinéxan edge. It:’
must be noted here that this definition of rotation is different
from the rotation described in the section on Blbeddinés ia

Chapter IL. If xy is an edge in ZR“ with vertices labelled

w

1,2,...,0, then by rotating xy k tiles ‘'we mean that ve incr ase

each laktel by k,Auhexefaxxxh.etlcglsAdonegnodnlogn_ongthe .

residues 1,2,...,n. The edge xy rotated k tiles qives us the

edge uv, where x+k= u(mod n) and Y¥k=v(mod n). C].early rotating

an edge doe not change its length. If the edge xy is rotated k '

times to give wus the edge uv then the distance betwveen Xy and uv

23
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3.1 and 3.2 give, respectively, rotational decompositions of 2Kg

"1s def1ned to be lln(k n-k}.

As vell a§ rotating edges, ve can rotate cycles and paths.
By rotating a cycle k tiles ue mRean that ve. silnltanQOEslyk
rotate each edge in the cycle k tiles (see rigure 3. 1).

Sililarly, by rotating a path k tiles ve mean that ie& o e

, 'silultaneonsly ,rot ate each edge in the path Jt, _times ,(,59@,,!19!59 o

3.2).

The rotation of a fixed cycle C in ZK is the set of cyfles

Vfo;led vhen C 1s rotated k tines. for k-o,l....,n 1. Sililarly,

the rotation of a fixed path P in: 2!(n 13 the set of paths forled
wvhen P is rotated k tiles, fot k=0, 1,...yn—1. Thus a :otational

deconpositmon of 2K, “into cycles of length n~-1 is a

decomposition obtained by the rotation of a fized cycle, and the

rotational doconpoéition of 2Kn into‘pathsrof length n-1 is a

'j'Qeco:positionhohtainequy4ttewrotation¥of—a*fiieﬂ—path:—rigntés—4f¥ﬂ¥b~

-

~into cycles of length & and paths of length 4.

- 24
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Figure 3.1
Rotational Decompositiod of 2K;—>C, ,
—/\
)
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"note that if n is evesn fhen any edgé'of‘leigth n/2-in ixﬂ will

rigure 3.2

Rotational Decomposition of 2K.—>P:

”7iéf§{iigiouaéive iflelna vhichfindicatea vhen a rotationai

'deco.position ot ZK into cycles of 1eath n—1 exists. '1th the

additional prdperty that any tIO cycles intersect in exactly one

‘edge. This lenla is used in Theorem 5.4. We ‘will then give an-

equivalent lesna for paths that is used extensively in the
Appendix ‘as a means of finding a rotational path decomposition

of 2K, with the afore-entioned intetsection property. Pirst we

alvais coincide liih ttselt after n/2 rotations. rhu3-ve can,

onit this fact frons the statelent of this leama and 1ts

snbsequent applications.‘
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ng;g .la: Let n be even. Then 2K -—9C“\ by rotating a fixed

cycle'C iI agd only if

» 1; There are two edges of every length 1, 2,...(n/2) 1 and one

edge of length n/2 inc. - \” IR : B -

7 : v ‘ Co o :
: 2. The integers 1, 2,...(5/2)-1 each occur exactly once as the . .

distance between tIO e&ges of the sa-e 1ongth*in Ca

g;ggg Let C be a cycle»of length n-1 in 2xn, and suppose this

cycle satisfies conditions 1 ind 2 of tha lelua. Let uv and xy

be two edqes of C that are distance k apart, and suppose that we

; can toé;te uv k times to get xy (as opposed to rptatinq xy k
times to get uv). If C' is the cyclevobtained hy/éqthting Ck
times then Cc and‘cf have exactly the‘édgerxy in coamon.

no:eove:.:itne:o;;tgén-kjingstnggt;hnc;nlac',lthanc'%

and C" have the edge av in cosmon. IPus_for 15k$(q/2)-1, ve see :
tﬁat for'eacﬁ k there are exactlj 2'cyglcs fabtginqd hy rotating \ "

C either k or n-k tiwes) wvhich ;nteraéct C exactly oﬁée. Proa

the comment preceding this lemma, we also know that the cycle o
obtained by rotating C n/2 times intersects C alonglthe edge“of“
length n/2. Thus, in its rotation, C intersects each other cycle

exactly once. Since tike choice of C vas. arhitra:y (all other

‘cycles in the rotation of C also satisfy the conditions of the

lemma) ve see that any th cycles in the rotation of C intersect
in ekactly one edge. Thus 2K,—>C, , by rotating the fixed cycle

. \
C. '
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7lo}75up§o§o that 2K,—>C,_, by rotating a fixed cycle c.
Suppose there is scne k 1$k_(n/2) 1, snch that there are ati 
’_ileast three edges of length k in C. rhen vhen .ve look at the

rotation of c, evety edge of lenqth kroppearg at least thtee
7 tinés and this contradicts our assnnptioa that ttis is a
deconpositlon of 2Kn. USing a sililar argulent it 19 easy\to see
" that there~13*3130‘no~k, 15k<(n/2rqj, such that there is at lost R
" one edge of length k im C. Thus the;o nnst,be exactly two odges X

of evary length 1,2,...(n/2) -1 in C) and hence one edge of

T == = =

lenqth n/2. N \ - § 7 ‘
Now let uv and xy be two edges tn C of 1&%§th‘s'that'ate
) d%stance k,apart, and }et‘n'v"onda{:gfkbe too odgos_inkc of
" length 8! that are also distance k_opirt..then the cycle
obtainegrby rotatiog é k timses viii have tno'edqosoin'colnonf
. with_ .’ since this. cootradigtg,Qﬁ;;gngg!ptiggfthgggzx -—9cw4iwgg7;, ,,,,,, ,
see that eachlpossihle distance occurs at most once as the ~ >\
& distance betteen tno edges of the same. length. Since the edge of -
’,lenqth n/2 intéresects itself after n/2 rotations, all relaining :
possiblevdistances each occur exactly once as the distance
botioen tvo edges of'the sase length. Thus if ZKn-écmd hyﬁ
rotating a fized c;¢1e C, then this cycle satisfies conditions 1
and 2 of the lemsa. L ’ SR R o

'i*""'*? T o -,‘ ". 3
IEIiI’QEIEA“tét““b!‘oda"Ih6h‘2I‘;=§C“‘hy‘totxtiny‘x‘ttx§a

e

*

cycle C if and only if

\N\1. There are'tvo'edqes of every length 1,2,c:.; (Y72 inm €3
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"2, The integers 142,..., (n-1) /2 each occur exactly once as the

'tdistince‘betveen'tuq_edges of ﬁhe,saye length in C.

Lg;;g _&g_ Let n.be even. Then 2K, —>P_ _by’rptating h,fixed4.
path P if and cnly 1f | |

1. There are:- two edges of every leﬁgth 1 2,...,(n/é)—1 and one
edge of length n/2 in P. :

2. The 1ntegers 1 2,...,(n/2)-1 each occur exactly once as the

dlstance betveen two edges- of the same length in P.

~

Lemama 3,2b: Let n be odd. Then 2K.,—>P, byktotating a fixgd_ﬁath

P if and only if

1. There are two edges of every length 1,2,...,(n-1)/2 in P.

2. T@e intege;s-1,2,...,(n-1)/2 each occur exactly once as the
distance betvween tvo edges of the same length in P. “

The proofs of the above three lemmas are esSentially the
sape‘as'that of Lemma 3.7a and have therefore been omitted.

Using the proof of Theorem 1.4 ve séefthat_the

décdhposifiéhwfiﬁ;;§é ; where n is ‘a power of a prime, is

‘Gfifionat‘67@‘*Tnfnn"1§6Ié‘6f‘tﬁé‘§Ii11ér‘vi1UéS‘bf‘n‘fbr‘vhicﬁr““‘*

2K, —>P, usxng a rotatlonal deconPOSLt;on are listed in the

Appendix. It is. interesting to note that there is no rotational

29



Sec019051t1on of 2K -—9? ThlS can e351ly be Seen by Looxlﬁq‘it““‘*

all paths of length six on seven vwertices that have tvo edges of

i

“length one, tvo edges of length tuo and tvo edges of length

a »

three and seelng that none of these paths sat1sf1es condltlon 2
-of Lelna 3.2b., -¥e used a conputer to search for a set of seven

paths of length six in 2K1 any tvo of which 1ntersect along

exactly. yne edge. The progranm used actually found hundreds of

such non—150norph1c deconp051t10ns, and the algorlthm for thlS

program is given in the Appendlx, along with one of the

deconpoqlxlons found. | ' - ' ' A IR
The follouxng lexma glves us sone 1nfornat1¢n concernlng
the 1abell1ng of the end vertlées of each path in a path

decbnp051tlon and 1s used in the proofs of Theorems 4.1, 4.2,

4.3 and 5. - - S ‘ o, ,

Lemna 3J3: If 2K, has E‘path deconposition with the property

— n

that any tvo paths have exactIy one edge in ccmmon, then each
path ﬂust have length n1. Moreover, it is p0551b1e to assignm a

direction to each path so that every vertex in 2K  is the

initial vertex of a path and the terminal vertex of a path.

Proof. In ofdervfor every path to ha#e;éxactly one édge in

common vith each of the remaining paths it is necessary that the’

'nUlher'of’paths*xu*the‘decouposrtton*be*one*nore*than*the*nutber******
of edges in &ach path. Since there are n{n-1) edges in 2K, it

%
follovs that each path aust have length n-1. '
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‘Since each vertex im 2K, hggldegreeVZh-Z;apd eaéh ofrthé‘ﬁ
paths in the decomposition contributes either 1 or 2 to'tﬁe
‘degree of each vertex uelgge th@t/each ;e;te1 iS_a§ end~ierté;;;
7‘of.éiactly_t§o péths. Thé fdlloui;q algdfithi d95cribe$ hov to ™
aésign a'direCtion to each path (By labélling its'eﬁd yerticég)
S0 that:eVery véttex ig 2K, isithe initiai vertex of a path and
 the terminal vertex of a path. - ool
1. Let k=1. '

2. Choose any path in the decbnposition that has not'yet been

labelled and call it Q,. Arbitrarily label its end vertices

s, (initial) and ik {terminal). Let i=k+1. : |
3. Let -Q, be the path that’has the vertex labelled‘ttq'as an

end vertex. Label this.end vertex of QL»sitb s;; Now this

veftex has two labels attached to it. Label the other end :

vertex of Q. with t;.

4. If the vertex labelled t, has received on;y'one label ’
u"(nalely t.) thén let i=i;1 and go to 3, otherwvise go to 5.
5. The vertex labelled t; ﬁas received two labels;bs"and f;.;
If i=n then the terminal vertex of Q. coincides with the
initial vertex of Q,, and the labelling is complete. If i<n
then i vertices in 2K, have received two labels and n-i

vertices have received no labels. In this case, let k=i+1

and go to 2.

It iS“éHijfd‘SéE‘fﬁEt‘fﬁi§4?Iﬁééﬁ?‘f@fiiﬁifﬁﬁ‘iﬁﬂ‘fﬁat it
does, in fact, result in every vertex being the imitial vertex

of one path and the terminal vertex of another paths ——
o .

=4
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IV. Path Decompositionss

. In this chapter we present three theoress and a cq:olléry‘
, vhich, together with the decospositions ZKn“’R{ that ate'listed
exp;icitli in the Appendix, qive‘sevei&lrinfinite faliliés of
conpléte multigraphs thgyihg multiplicity two) which éan be 
decomposed into ﬂaliltcnien paths having the propérty thaé ahy
tvo paths have exactly on; edge in cdllon. A

All of the work in this chapter is qfiginai; and the
multiplication method used in the proofs.of the theorems in this

chapter is again used fn Chapter V.

Theorem 4.1: If 2K, —>EF then 2K, —>P,.

Proof. Label the vertiées of 2K, uifh‘the integers 1, 2, -ee, n
and let thé paths in the deconposifioﬁ bé labelled Q,, Ql,v...,
Q.. Thus for any i and j, with 1<i<j<m, Q; éhd Q;- intersect in
exactly one edge. Associated uithveachlpath Q; there is g§
ipitial vertex s; and a terminal vertei t;, 30'§hat'every vertex

- in 2K, is the impitial vertex of a path and the terminal vertex

of a path. (This follows f}o- Le-ia 3.3f) Thpsrygﬂhgyg!ggs;gneqi

a direction to each path Q; (directed from s; to t;) so that it :

nov consists of arcs ab. ie will use the word edge instead of

arc when ve wish to ignore the direction assighed to the paths.
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Label all arcs cf 0, vith 0. Now look at @, for j=2, 3,
'..., n. If the aré abvof'Qj has*already been labelled 0 in fhe;
labélling of Q\,...(Q&‘fthgn nov label it 1. If the arc ab has
'npt yet been labelled then label it O;'In doing this we see that
if the arc aﬁ is on two paths then itjis once labelledlo énd |
once labelled 1. If, hoveyer,'thefarc ab is,op one path epd-thgv_‘
arc ba is on ancther path then tﬁeylare both labelled 0.

Let A=(ag) be the self-o;thogqnal latin squaré of order 5
defined by ag=2j—i (sée‘?igu;e 6.1),.uhete arithmetic is

performed modulo 5 on the residues 1,2,...,5.

T

13524~
524 13
4 1352 ¢
35241
24135

Figure 4.1 - L

Self-crthogonal latin square of order 5

?f

Ihis latin square defipmes five permutations, «., %, %;, % and s,
on five symbols each by og(i)=j if and only if a;; =s, 1<ss5. For
example, ®,=(2453). In addition, this latin square defines a

1-factorization qf Kig. The five ‘1-factors, Fo. 2, B, B and

F, are shown in Figure 4.2.



X, Y2
X, Ys
o Xy Ty
X )
P S X% B, S
M | N Pigure’u.Z
The 1-factorization of Kss defined-by A

,\\\
.

‘Bach 1-factor Psris felated to the periutation *s, 1<s<5,
X, {1)=3 1if Qnd only if in P; there is an edge from x| fq Y -
The five 1-factors defined .by the transposé of A, which we will
denote by A?, aré cailedvrf, PR, B, R, and g?. The J—fac%o: P!
is related to the permutation <, 1%s$5, by o,(J)=i if and omly © '+ '-
if in P! there is an edge from x, to !;.irhe 14factogs Qefinedﬁ L

E

by A' are given in Figure 4.3.



X, ) § X, Y,
K Y. X, Y.
X, ) £ X f3
Xy YH Xy i\
Ys L 3 Ys
X P! 3 R R

Pigure 4.3 | : R ,

[N

The 1-factorization of K, éefipea by A*

BN
Arrange the vertxces of Ksn in a S5xn array called G;/and
let G(i,J) he the vettex in the im row and jJfk column of/G. For
each path Q, we vill define,S.paths; Qs e 9y o Ty ¢ 9y and 9s;
eéch of length 5n-1, with vertices in G.

To get the first path, q, ié”iill”téplé@é*é&Ch”afé”af”oj'WW
vith one of the subgraphs of K.s def:ned ptevlonsly. Ve dﬁ*this
as follovs. Por each arc xy inm Q;: | |
1* If xy is labelled 0 then g, contains the edgé§~

\,‘* , G(1,x)6(1,y), G(25!I§(“41)1«G(3}!)G(2a!)- G(4,x)6 (5,y) and
: G(5,x)6(3,y) - These eages are those defined by F, . Ne say
that the arc xy of Q' is reglaced h}fthe 1-factor F, in G.

2% If xy is labelled 1 then q‘J contains the edges

~

G (1, I)G(iol)- G(2-1)9(3 Y. G(3.!)G(5-!)- G(4, !)9(2-!) and

G(5,x)G(4,y) . 1hese edges are those defgued by the 1- tactot
P'. We say that the arc xy of Q; is replaced by the i-factor

P; in G.
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| This défines five suhpatts;’each”bf‘itl@tﬁ‘tff;‘tf4q§4*‘*f4*4*4ﬂ*”*
ihidh'lust be connected by fohr e§gés to give us 9 - Pirst ve -
note that 1% and 2¢ can be restatedyaé follo's.'rdr each arc xy‘
in Qj: 7 | 7 |
1. If xy is labelled 0, then g contains the edges
| G(a,x)G(b,y) if and only if «,(a)=b, where 1<as5.
2. If xy is lahelled 1, then 9y contains the edges “
G(a,x)G(b,y) if and only Lﬁ‘u.(b)=a, uher%K]ShSS.f ' i;
Now ve must look at the subpaths of g defined above. )

Suppose the subpath of g, starting at vertex G(a,s;), a#l,

at vertex G(b,tj). Then for some r, a?(a)=b. Since «:=e,
is the identity permutatiomn, we may assuue,tipt 1<r<4. This
allows us to coipute the térlinal vertices of each of the -
subpaths in q,; - Thus instead of looking at the snbpaths, ve

need look only at the edges G(a,s-)G(b,tjj of Kss,ivhere b~ (a)
and 1<a<5 ngure 4.4 shows what “these subgraphs look like for

the variosus values of I. lote that the path starting at G(1 s; )

alvays ends at G(I,tJ).

s . t; s, t.i s; . tj S- t:

J 3 J
*—e *——e *—e *——@
) ———e
_ , - e o
- o——o
) *———eo
.
r=% r=2 S T=3 - I . I S
: rigure 4.4 T -
Possible start and end vertices of the subpaths of 9y
> v
N . -
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If thetE'IS'ﬁ set of*eﬁges“ihtch—can—be—ad&ed—to—&ny—ef—the————e*
subgraphs of Kgs glven in Plgure 4.4 to fora a pathaof length 9,
then these edges can beeadded to the subpaths of . 'q‘J to form a
path of length Sp~1. - ,”
Flgure Q 5 belov shoss the subgraphs cf FPigare 4 4 with a
set of four additional edges uhich form a path of length 9 in

each case. (He comment that the add1t10na1 edges forl a path in

a deCOIPOSLtLOD ct 2K, —>P..) .
Sp0Y s oM. st R
r=1 r= r=3 r=4
Figure 4.5

C1051ng edges to be used thh graphs 1n Plgure 4.4

It is clear that replacing each of the five edges between

s: and t; with their corresponding sutpaths will not fotl any

o J
cycles. Thus if the edges G(!,EJ)G(Z,ej), G(3,sj)G(0,sJ),

'G(2,tj)G(u,t3) and G(3,tJ)G(5,t-) are added to the five subpaths

4
B - .
of qj ve get a path of length 5(r-1) +4=5n-1. This path is‘qﬂ -

+ To get qq s 2%1i%5, 'e“ﬁO'thewf0110iingiﬁf0t:E£Chgafcmtrgiﬂ444*4;4*7

9

Q:: N . : e
1. If xy is labelled 0 then 9, contains the.edges
G(i,x)G(i,¥), G(it1,Xx)G(i*3,7), G(i+2,X)G(i+1,y),

&

37



‘ - - ) ) -7 T ; . : -  ” 77 : 7. - - ,,,7,,,,7,,,:,,;
Gft+3;tf@f1+ﬂh1}‘and“611+h71rGft+2—yf—~%hat—is——ve—fepiaee - |

the arc xy of Q; by the 1- factor ? in G.

2.”~If xy is labelled 1 then qg contains the edges
G(i,X)G(i,¥) s G(it1,X)G(i*2,Y), G(i+2, X)G(ul.x).
G(1+3 x)G(1+1,y) and G (i+4,x)G(i+3,y). That 15, we replace'
<~ the arc xy of Qj byxthe i-factor F! in G.
This definesfivetzlbpaths 6f gg which ibét ﬁéﬂcdﬁneciéd:f
by féur edges to give us 9 - Thése four edées are e

N\ G(1 s, )G (i+1, s, } o Q/;)Z s; JG(i+3, S; ) o G(101 tJ)G(103 t ) and

G(1+2,t )C(1+R t ) « 5ince t?e edges of qﬂ' are obtained fron fE* T
edges of 9y by relabelling the rows of G i vollovs ‘that the |
four edges added above do indeed\giréﬂus‘a th of length 5n-1.

Thus for each path Q; . 1<j<n, ve have Aefinéd five‘pafhs; -

1y ,»qﬁ ‘ qﬁ . qﬂ _and sy of length 5n~1 on the vertices -of G.

Moreover, all edges in,ZKQ\ have %een used. - //f

- We must now check.that any two paths have exactly one edge
in common. - |
Suppose the tweo paths are Jq and Qb (1<a<h<5); these
paths are both obtalned from Q . If xy is an arc of QJ then qﬂ
and qu -do not 1n;ersect ;n any edge,of the form G(r,x)G(t,y)-
.This is becadSéithe arc xy uasbteplaCed, in qél and é‘d
respectively, by either k. and B, (xy is labelleq_O) or by F§
and Py (xy is labelled 1), and P, and P  are edge disjoint, as
are B} anﬂ_zé.;,,{ﬁ .

 Since the "closing®™ edges come frcm the decomposition

2K; —>P, , and anj tvo of these paths have exactly ong:gdge in

. ,
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.€Oliﬂn;'ie“*n0?“ﬂﬁﬂffﬁy aﬂﬁkq; ﬁhave—efaetly—aaeke&ge—%&%ymnunk———————g

(Figure u.e). e A B 4 ‘ =

SJ t'J SJ ' tJ SJ -
‘\"’," =

L.- - . _ ;

B {[,Ji - - -

Figure 4.6

- The different closing edges required for qg, 151<H

B

o s

i
%
i
1
I
i
S
=
b

Nov suppose the two paths are %57 and q“., Hherp 1Sa h<5.

Since these paths vere deflned by Q5 and 9 “k,,respectlvely, w2

sée»that.qﬁ vand_dbn dc not intersect in any edge of the fora
'S;; t. or t,. (These are the closing

G(r,v)G (t,v), vhere v=s; 3

J [
.edges.) We know QS and 0, have exactly one edge in comnmon, say
' b}
XY. Then either xy is ai arc in bcth Qj and Qs OT XY is an arc .

of Qj apd yx is ap arc of Q;.

In the first case, assuming 3j<k, the arc xy is labelled 0

LB A, Seb s B

in Q and 3 in- Q‘fﬂmwpepiawit uthla Msmmw

%ﬁ and,ﬁg,:gglaggdhxjggigh,jg ;nggggggxgg;igg;g*i._S1nce A is.

self-orthogonal, |/ and.Pg have exactly one edge in common.

it At ot AP wmiwlm

Hence da; and g, BgJe exactly one edge in comsmon.




| equxvalent to replacing the arc xy vith l’b', and sincefl' »and £ 3

4

" "Theorem 4.1, except

- arc yx is labelled 0 in Qy. Here wve replaced the arc xy with F,

in constructing go; and ve replaced the arc yx with P, in

" constructing- Que Since%eplacing ‘the arc yx with r, is -

<

have exactly one edge in conlon, e see t.hat gQJ and 3 Y have‘ _

exactly one’ edge, in ccllon.

\

Thus any two paths have exactly one edge in counon.

LIS
=

ﬂig. ores 4,2: If 2?,\-—)7?“ ‘then 2K, . —>P,. . T T/

Proof: The proof of this theorem is idehtical to the proof of :
- ( . .

1. Ihe matrix A=(ayj) is of order 13 and is defined by

aij = j—Si vhere arithletic is done lodnlo 13 on theA

residues 1 2,...,13. The perlutations AL dofined by thj.s
1 txn square are such that o, =e,’ 151513.

tvelve cdges that are roqnited to connect the 13
'subpaths of q, are Gv(;i,s_,)G(Z,sj), G(a,sJ)G(ﬂ,’sd),
6(9,5;)6(5,8,), 6(3,8;)6(6,5)), G(11,8;)G(12,5;),
G(10,8;)6(7,8;), G2,t,)6(8,t,), G(&, t;)6(9,¢,),
G(5,t;)6 (3, t i) e G(G,t )G(11,¢, 3) e G(12,t )6 (10, ) aad

G{l,t %m that the union nt_tleu_edgcs_is_the—

path Mgﬂ_t;e Appendix that gives us ZKE---)P% under

rotatton.'
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‘ !ign;ehuflf helon1,;sftheflax;ngsqna;egAgthatgisgﬂefinﬂﬂghggggg,44
l =6j 5i. Figure 4.8 shows three subgraphs of Ky obtained ‘by |
letting (x,s) (y,t) be an edge in the_subgtaph (c=b) if and&only
if a“(x)sy. Pigure 4&. 9 sho-s that le»do indeed get paths on 5

addinq the tvelve closing edges.

I 2 3 & S5 6 17 8 9 10 11 12 13
11 713 612 511 410 3 9 2 8
29 2 8 1 713 6122 5 11 &10 3]

3] 410 3 9 2 8 1 713 612 5 1N
/12 511 410 3 9 2 8 1 713 6
5] 7213 €12 511 410 3 9 2 8 1
6/ 2.8 1 713 612 511 &4 10 3 9.
7170 3 9 2 8 1 713 612 S 11 &
B S ¥ %10 3 9 228 ¥ T 13 €& ¥27°
9/13 "6 12 511 410 3 9 2 8 1 7
10,8 1 713 612 511 410 3 9 2
MM 3 9 2 8 1 713 612 5 11 & 10
12{1Y 410 3 9 2 8 1 713 612 5
13 612 S 11- 410 3 9 2 8 1 713
Pigure 4.7 -

“Self-orthogonal latin square of order 13
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Figure 8.8

Possible start and-end vertices of the subpaths of qy

|
VoSN s W -

. . rMigure 4.9

Closing edqes‘to be used with graphs in Pigure 4.8

Theores 4,3: If 2K, —>P, them 2K ,—>P.,.
Proof. Again, the froof of fhis theorem follous from the proof
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ef fheefei—w.%. However, verh&reuthe—follouing—changesgxognote'f S

1.

rhe matrix A=(a ) is of order 17 and is defined by

j -73-61, vhere wve are wvorking sodulo 17 on the tesidues
1,2,...,17. The permutations, d;, dqtined by this matrix are

>

all of order four:

~ The sixteenAghges that are required to commect the 17

snbpaths'of qﬂ aré'giveh by‘c(i;sl)e(j;s-); o
G(13,5;)6(5,8,), 6(8,8;)6(7,8,). Gt2.s )G(G.S )e
6(16,s;)G(14,s,), 6(11,8,)6(15,s; Yo G(9 s;)6 (10, s..ﬁ'
Gﬂ.SJ)GﬁI.Sﬂ. 6(3,t,)6{(13,t,), Gﬁ.tJ)Gtﬁ.tﬂ.
é('ll,tJ)G(Zr,tJ-)', G(6,t;)G(16,t;), G148, )6(11,t;),
G(15,t;)G(9,¢,), cno,t_-,)c(d,i\-l") and G(12,t;)6(17,t;). Note
that the upicn of these edges is a path P of length 16 whose

rotation gives ZKH—QOPH, ?nd this path appears in the

Appendix.

Pigure 4.10, belou, gives the 1at1n square A of ordet 17

defined previously. rigute 4.1 shovs four subgraphs of Kwn-,

vhere (x, s)(q,t) is an edge in the subgtaph (tzb) if and only if

d‘(x)-y. Pigure 8.12 sho-s these same subgraphs togeth&t vxth

the closing edges. It is easy to check thnt no cycles are

4

forned.
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self-orthogonal

Possible start apnd end vertices of the Sﬁﬁiiﬁiﬁ'éfmﬁﬁ’:'m

Figure 4.10

_latin square of order 17

FPigure 4.11

4y

1 2 3 4 5 6 7 8 910 11 12 13 16 17
1.815 5 12 2 916 6 13 3 10 17 7 1% 4 11|
2 2 916 613 31017 7 1 &11 1 815 5
613 31017 7 1% & 11 1 815 512 2 916
17 714 811 1 815 512 2 916 6 13 3 10
11 '+ 815 512 2 916 613 3 1017 7 14 4
512 2 916 613 31017 714 11 1 8 15|,
16 613 31017 716 4 1 1 815 512 2 9|
1017 718 & 11 1 815 512 2 916 6 13 3| "
411 1 815 512 2 916- 6 13 310 17 7 14
15 512 2 916 613 31017 718 & 11 1 8
916 613 3 1017 7148 411 1 8 15,5 12 2|
31017 716 411 1 815 512 2 9 16 6 13|
1 411 1 815 512 2 916 613 3 1017 17
815 512.2 916 613 31017 7 14 4 11 1
2 916 613 31017 7 14 & 11 1 815 5 12
13 31017 7 1 411 1 815 512 2 916 6
714 411 1 815 512 2 916 613 310 17






Corollary 4.4: If 2K,—>P, then 2K, ——>P, , where a=513"17° and

a, b and c are natural nuambers.

Proof. This follows from Theoreas 4.1, 4.2 and &.3.

3
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Y. Cycle neconposiiiols

In this chapter ve will expand on the vork docne bj-‘lépach,
' Heinrich and BRosenfeld in [3] by using the multiplication method
of the previous chapter. We will first show that the existence
of a decomposition of 2K;‘into;ﬂanillonian pqths‘ﬁaving thé '
proéerty that any tvo paths intefsect in exactly one edge

"implies the existencéﬁbf a decomposition of DK, , into direc;ed

T

cyélés of ;enéth 4o-1 hi;inq the fproperty that any two cycles
‘intersect in exéctly oneloppogitely.directed edge. This gives us
' several infinite falilié§ of values of n so that DK, can be |
decomposed intoc direcfed cycles having the required inter;ection

property. ~—

Theorem 5.1: If 2K_—>P,  then DK, —DC,,_, -

We will prove this theoremin two parts. Pirst we vill show
that if 2K,—>P, then 2K,, —>C,,,, and then ve will show that it
is possible to orient the edges in each cycle so that‘vhat ve

get is actually DK,, —>DC.,_, -

Proof (Part One). Label the vertices of 2K_. with the integers 1,
2, ... ,0 and let the paths in the decomposition be labelled Q,,.
Qyp oo« »Qn- Thus for any i and j, vigh 1si<j5n,.QL and q) s

intersect in exactly one edge. Associated with eéchvpath Q,
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;here islan initial véxtéx s, qnﬂ,Avtngiini zg:tgx.pi4 so that
© every vertex in 2K, is the ipitial vertei of a path amd the
teraminal vertex of a path. (rh;s‘follgis from Leamma 3.3.) ihus
ve have assigned a directicn to each path.QJ (ditéctedrftOl s,
t; tJ) so that it nov cdnsiStS‘of_atcs,aS. Ve will again use the
vord edge instead of arc vfgh ve Iiéh to ignoré the aitection
assigned to the ;aihs. |

Label all arcs of Q, with Of Now look gt_éj, for j§=2, 3,
«-es 0. If the arc ab of Q; has already been labelled Ovtﬁen now
label it 1. If the arc ab has mot yet been labelled tt;en"iabex

it 0. In doing this ve see that if the arc ab is on two paths

then it is once‘iabelléd 0 and once labelled 1.,if, instead, the

arc ab is on one path and the arc ba is on another path then
they are both labelled 0. This labelling scheme was also used in
the proof of Theorel 4.1, ‘“

The self- orthogonal satrix A-(aks) (Pigure S. 1) defxnes
four subgraphs, P, F,, P, and -r,, vhich partition the edges df

Kyu (PFigure 5.2). ' ..

14 8 2
3 213
24 32
3114
Pigure 5.1

Self-orthogonal matrix-of order &
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I, Y. I, Y.
\
10 ’3' X, ey
/ ’ N
x, oY, Xye Y, X.é ey,
r, r, . N r,
Figure ‘5.2

Subgraphs of K., defined by A

If P, P}, B and P! (Pigure 5.3) are the four sab§£aghsao£
K, defined by A° (the tramspose of A), then forﬁ1$j,k$u wve see

that P, and P' have exactly one edge in coamon.

I, o—a0)
X, ‘_,/.’1
13q>§\ o),
I.e \\V\L
X r; r! X
Figure 5.3

Subgraphs of Key defined by A':

A

.

Arrange the vertices of K,, in a 4xn array, G, and let:

ih

G(i;j) be the vertex in the i rov asd jﬂ‘coluln of G. For each

path Q wve define four cycles, C, v €y » €3 and c,, , each of

o
3
length 4p-1 with vertices inm G.

\ - | | ~
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rmt we show hom to ggLQ,T . Begin by replacing each arc
. of dj'uith one aiazhegggbgtaphs of K, defined above. We do this
las follows. Por each ardxiiiing;: o
1. If xy is labelled‘o then c;K contains the edges
(LTG0, 1), 62, DE(.1), A, XG(2 1), and G(A,1)6(3,1).

These edges are those defined by P . We say fﬁat the arc xy

-

of Qj is replaced by the syhgraph P in G. -
2. 1f xy-f§ labelled 1 £hem--‘c‘J contgins tﬁe edges>A
, G(R,x)6(1,¥)., G(Z.!)GIZ.Y)f G(1,x)G(3,7), agd 9(5.1)6(3.1,-
. These e&qaskafe those defined by I!. iﬁ#"frtif that t##*afe
”xy of Q; is reglaced hy the subgraph P! in G.
.This defines two subpaths of C\ vhich-nuét be connected by
threé_édgés to give ué cd . iote‘that tﬁe'subpath vhichlgtatts'

=

) at vertex G{1,5j) alvays ends at vertex G(1,tj), and the subpath
- @& that starts at vertex G(2,§;y alvays emds at vertex G(2,t;).
Thus the initial and tquinai vdtiiéés.qf eachisuﬁpagg dérnof W
depend on the length of Q or the labelling of the edges in Q.
In forming the Cjcie Cy we will omit the vertex G (8,t,)
and add the three edges Gk1.sJ)Gj3,s;y, G(3isJ)G(2,sJ) and
G(1,t;)G(2,¢t;). These edges cose fros the deco-positidn
2K,——9C3,'and the reascm they vere chosem vill be explained
later. | | | o f
fhus cy is given as:
G(1,8;)---6(1,t)G(2,t)...6(2,5,)G(3,5,)G(1,5)).
To get C;; ve do the follouing. Por each arc xy of Q=

<«

1. If xy is labelled 0 them replace xy by F, in G. -
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2. I1f xy is labelled 1 then reflace q' by P! in G.
This defines two subpaths of c;y which have the same
property'as.the two shbpaths,of c, - that.is, zhe subpath that
starts at G(I,si) ends at G(1,tj) and1the subpath tha; starts at

G(2,sj) ends at G(2.fj). '
In forming thg cycle'Cﬂn ve will owmit theyygrtex G(3,€3f
‘and qdd the three edges 611;33)é(l;§j); G(2,sS)GfB,SS) and
G(1,t)G(2,t]) - . | o
fhuchg is given as: -
Gflfsj¥a§r5%iit3¥9£2.tj¥c*i9£2153¥9£4155¥éi¥r53%e | ’
To get 9& ;o do the following. Por each arc xy of Q;: ‘
1. If xy i§ labelled 0 thep replace xy by P, in G.
2. 1t iy is labéligd 1 then teplice ;y'by P! in G.
This defines two subpaths as before. In coupleting ihe
cycle éq ve vill‘onitvthe vertex G(Z,tj) and add thg thrae.
" edges c;(1,35)6(3,sj);"6(1,sj)c(g,sj«’)’?”anc’i”c(j}’t:)"c’(d;tji’".’"'
Thaus c“' is given as: ‘ |
G(3,8))+--6(3,t))G(4,t,)...G(N,8,)G(1,5;)G(3,s)).
Finally, to get c, we do the foiloving- Por each QIC~ij of
9 | .
1. If xy is labelled 0 then replace xy by I, in G.
i. If xy is labelled 1 thenm reflace xy by F' in é;
Again, this defines twc subpaths as before. In completiag
the cycle cy we vill omit the vertex G(1,t;) and add the three

edges 6(2,85)3(3,83), G(Z,Qj)s(n,sjlxand G(3,tj)c(§,tJ).
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~ Thus Qﬁ is given as: ,
G(3,8])-c-6(3,t;)G(4,t;)...G(4,s J)c;(;z 33)6(3,3 ).

e nov note that sxnce every vertex is the terlinal vertex of
sone path Q) then evety vertex of G is 1e{t out of exactly one
cycle. . - o |

Now vevl;st check to see that any,tlo‘cygles'ﬁgve exactly
6ne edée in comsmon. | B

Snppose the tvo cycles afe cﬁ) and Chj - (1%a<b<8) ; these
cycles are obtained fron the sanme path Q- Iflx’ is an arc of Qj
. them cg amd cy; &emi%afseﬁﬁﬂfam'a%ﬁ&fafr
G(t,x)é(t;yf-vrhis is because the'arc Xy vas replaced, in Coy
and Co, respectively, by either r’<and r; (xy is lahélled 0), or
P! and ql.(xy 1s>1abelied 1, and hoth a. and b are even), or r'

o

‘and P

P! (xy is labelled 1, a is even anmd b is'odd), or P! and»r'

(xy is 1ahelled 5 a is odd and b is cven). In ailrfive of theg?fwwmmw

caées th paxrs of subgraphs are edge dzsjoint.

However, since the “closing® edges comse froam the
deco?positidn 2K, —>C,, 3pd any‘tlo of these triangles have
‘exactly ope edge io ccsson, we know that Coy and c!; bave

exactly one edge in common (Pigure 5.8).
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S; t, s, t; s; t, .S L S
eo e I k—o.. [ ]
e » | .'.L‘,'
o-»o\ -...‘I
#..‘. . -e e
C|J ClJ C‘sj C‘J
rigure 5.4% )
The closing edges for the cycles .
If co and ¢, were définedfhy tvo differemt paths, say Q;

and dg, then éﬁ /aid C, do not intersect in any edge of the

forl'G(:;v)G(t,v), -herq v=s ,. 85, tj,'Ot t.- (These are_tké

closing edges.) ‘We know that Q and ¢, bhave exactly one edge in

'connou, say xy. Then eithet £y i8 an a:c in both Q and Q  or xy

is am arc of Q; and yx is an arc of QK.
. In the first case, assuming j<k,$the arc xy is labelled O
in Q, and 1 in Q.- Here ve replaced ky'lith P, in conmstructing
Ca, and ve replaced'xy'uith either P! or P!  (depending on
vhether b is even or add) im constracting c, - Ve know that 2,
has exactly one edga in common with P'  and exactly one edQc_@n
common with P;H . SO ct’,and c,.. bave exaéti’ on édqé'in ¢onlon.

In the second case, the arc xy is labelled 0 im Q. amd the
arc yz is labelled 0 in Q Here we teplaced the arc xy with P, .

in constructing S and ve replaced the arc yx uith P in

constructan c,k. It is easy to see thd' replacxng the arc X
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vith 7, is equivalent to replacing the arc xy vith F', and since
fm and P' have exactly?one‘edgg ir common it follows that CQSV
and c, have exactlj’One edge in comsmol.,

Thus any tvo cycles have exactly one edge in common.

(Part two). The above construction actually gives us

DK, —>DC,,, as follows. Assign a direction to each of the four '

‘subgraphs of K,, as shown in Pigure 5.5.

®
. °
*—)—@
r, r oy r,
rigures.s f
- 'Difecting the snhgraphs‘ot_rignre 5.2

® 2

By assigning directions to r , P , P, and P, ve also get

directions for P/, r;,’r;, and P*. These are shown in Pigure

5.6.
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Pigure 5.6

Directing the subgraphs of iigure 5.3

As in the undirected case, it is easy to see that the

T—factdrs P, and %L (a is even) and P, and {Ll(a is odd) can be -

joined together to create four subpaths of amy length. Also note

that if F, and P’ intersect then they intersect in onme”

oppositely directed arc as required. Given the directions

assigned to the edges in the 1-factors of Pigures 5.5 and 5.6 we .

r

are forced to direct the closing edges as in Pigures 5.7 and 5.8

‘.F{ 2 3 ’ 4

Figure 5.7 _
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. P

either 0 or

Figure 5.8

Directing the closing edges

Since the closing edges that were added to the 1-factors

- give directed cycles of length nine it is cleéf'that, asAin the

undirected case, the subgraphs shown in Pigures 5.5 and 5.6 can
'ﬁe joined togetherfio get dirgcted cycles of.léhgthwanf1.

Now wve must check thét any two of these directed cycles
intersect in exactly ome oppositely directed edge. If the tvo
cycles are Caj and ¢, , 1<a<b<4, then,t;ése cycles were obtained
froi.the.sane path Qi and hénce‘lhey must intersect in the
clo§ing edges. Sinc‘ the first edge: ixﬂl( the path Q; is labelled

1 (but not both) as is the lﬁétredge of this pafh ve
must only cﬁeck that the closing edges shoin for the 1—factoré'
ih Pigu:e 5.7 intersect in e;actly:one:opposifgly directed edge
as dq-tgé c¥%sin§ edgeS'showﬁ for fhe 1-factots;}n figurers.a;
This can eéﬁily be checked by observation. Bx'the'preceﬁing
statement ve see that it isfnot,neceésaxyrthat the closing edges
for the 1-factors, F., intersect ih exactly one oppositely

directed edge wvith the closing edges for the 1-factors, F!.
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If ‘the two cycles are Cyy amd Cex theﬁ these‘rere7defiﬁe&,
by Q; and Q.. Let xy be an edge in both Q; ahd‘Q“. Then we have
tvo cases. | |

In the first'casé, suppose the arc xyxis lahelledrd in Q
and 1 in Q.. Here ve~re§1ace the arc xy with F, in comstructing

C,. and ve replace the arc xy vithhg;\ (b is even) or with | A

R
(b is odd) in constructing c, . A quick check of tﬁe graphs in
figures 5.7 and 5.8 shovw that c.  and cy« will, in fact,
V‘intersect‘in exactly one oppositély'diréctéd edge.

vIn fhe second case, suppose‘that the arc Xy is labélled 0
kin Q; and the arc yx is labelled 0 in Q.. Since replacing the
arc yx with P, is equivalent to replacing the arc Xy iith P} rand
since P, and LN have exactly one oppositely directed edge in
common, és can be seen from Pigures 5.7 and 5.8, it follovévthat
Cq) and c“; intersect in exac@ly”ope opppSitely dirgptgd edgef, |
Thus ve see that if 2K —>P then‘DK“\——éncm_ .

| B

‘The follovwing example shovs that we can find a

g

decomposition of DK, into directed cycles of leagth eleven
(Figure 5.10) since we can find a decomposition of 2K, into

paths of lengthrtio (Pigure 5.9) .
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2 3 1
C;, 0—-o0o——0
1 -0

Figure 5.9

2K, —>P,
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ggggllg;x 5.23 Dxdni“)DCEN(fAiﬁete n isfan*fntegerﬂsuchftﬁat"ve'ﬂ
already have a decomposition 6f‘25“-—9Pn, d=5“13517° and a, b

- and c are any natural numbers.

~

Proof. This follows from Corollary 4.4, Theorem 5.1 and the path

Corollary 5.3: 2K, —>»C,4,, vhere n is an integer such that we
. : : . .

déconpositions given in the appendix.

already have a deccmposition of 2K —>P_, a=5>13 17‘ gn§ a, b

and c are any natural numbers.

Proof. Replace each directed edge in gorollarj_5.2'vith an';

- Thus Corollary 5.2 gives us several infinite families of

undirected edge.

conpléte symmetric directedrgraphs vhich can be decomposed intb
directed cycles having the property that any two of tﬁeu

iﬁtersect in exactiy one oppositely di:ectediedée. Siliiariy,'
‘Corollaty 5.3 givés us several<infinite faiifiesJSf coipleie

graphs uhich'éan be decomposed into cycles having the property

| that aﬂ; tvo cyclgs interéect in exactly one edge; This -

undirected case has also been looked at by Hering [ 18] aho"

recéntiy found thatfzxﬂ——%cﬂq 'for Q$ﬁ$364'The'foiioviHQ‘ThEOIEI* ********

can be used to supplement the work donme on this problem -~ -
Theorem 5,4: Suppose 2K —>C _ by rotating a fixed cycle C. If
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this cycle contains two edges of length k that are distance k S

apart, where k and n are relatively prime, then ZK““-—>C“.

Proof. Label the vertices of 2K, with the integers 1, 2, ...,'i
and let the edges (1) (1+¢k) and (1+k) (1+42k) be the edgeéﬂof a RN
cycle C satisfying the conditions of the theorem. Add a vertex
labelled v* to 2K, and replace the edge (1)(1«k) 6f C with the
- tvo edges (1) (v¥) 3nd4(10k)(v') to get a new cycle C' of length
n. We say that v* is i fixed point in the rotation of C°. Thai
is, when wve rotate C* r times, the edge i} beCeses’(iir)(j%t) ‘ =
vhile the edée (i) (v*) becomes (itr) (v*). (Here ve afe vorking ﬁ
sodulo n on the residues 1,2,<..,0.) |

Pros Lesma 3.1 ve kmowv that the integers 1, 2, ..., m each
occur exactly once in C as the distance between tvé edges'of the
sase length, vhére =] (n-1) /2). Since C' qontains twvo edges of
the same lengthvthat are distance r apart, for £=1, 2y eeey .H,
(recall thaf the edges (i) (v*) and (i+¢k) (v*) are distance k
apart) we can see by Leamma 3.1 that the rotation “of C' givesinl
cycles of length n that =satisfy the property that any two cycles
intersect in exactly ope edge. Since each of these cycles has
~éxactly one edge of length k, and since k and n are'rélatitely

prise, these edges form a cycle of length n that intersects each

Although the method of using differences tb:find DK_—>DC__,

other cycle exactly once.

(and hence 2K, -—>C,_ ) in Theores 1.4 will alvays give a
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rotational decomposition, it is easy to see that these
particular decompositions will nmever sétisty the conditions of
Theorem 5.4. Thus this theofelnis useful only 1f a rotational
deconposition is obtained some other way. Pigure 5.11 gives an
exalfie of this thecren ihen n=7 and k=2 (although ie could just

~as wvell use k=1 or k=3 in this case).

-

Figure 5,11

2K8-—-)C7 using Theores 5.4

It is alfc kncwn that we can use Theorem 5.8 to get

ZKg—>C, from the decomposition 2K, —/C;.
£ .
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S | APPEEDIX
lan this sectic;'of the thesis we wvill jJive éxplicitly thé
decdlpositions of 2X, into Hasiltonian péfhs‘uithﬁthe p:opert;
that any tvo paths intersect in exactiy one edge,rfor ali Valﬁes
of n as known up to n=26. It is easy to see that such a |
decomposition is impossible for a=8. Tie p;oblen of, finding
2#;——»2\ for n betveen 2 and 20, as -eli as n=25 and pn=26, vas

relatively easy in all cases but one because all but this one

are either rotationmal or are obtained trdl Theorem 4.1. For n=7
a rotational decomposition of 2K, —>P does not exist, and we
cannot apply any of the theoreas in Cﬁagte: IV. Thus it wsas
necgssaéy to find a set of seven faths of length six in 255 such

that any tvo paths intersect along exactly\one edge. This task

broved to be too hard to do by hamd, so a computer was used. (A '

/

computer was also ugsed to find the paths'vhich give a rotational
decomposition for 2K _-—>P  for hz!u, 16, 18, 19 and 20.) The
algorithms used is given here for both- the particular case seven

and the five cases mertioned above.
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12:
13:
14:
15:
16 :
17:
18:
19:
20:
25:

26:

&K _—>p
12

1 2 3

1 2 4 3
T3 & 2
1 % 5 7
1z 5 1
r 31 93 2
111 4 6
1T 1 6 3
1 2 8

13 11 5 9

by rotating the given path

or by applying Thecrem .1

s

5 6
o
3 .
7 8
9 10
2 8
3 5
2

¥

8 3
9 .‘6
5 &
2 8
107
3. 6
6 12

12
11

3

\

N
10

7 5

4 5 9
12 10 7 13
4 3 14 10

8

2K, —>P, and so by Theores #.1 2K, ——P,

M7 1 2
1 3 13 5
15 B8 16 5
17 12-‘ 16 5

11" 6 & 3

—
10 15
8 7
17 9
2 1
1 2

6 8
VZ 6
13 18
10 8
12 9

14

16

14
14

18

5 3 4 9
14 11 15 9
112 1 3

7 15 19 13

520 14 10

12

10

4

3

17

16 13

6" 12

" 12

17

4-18 ‘6 9 11

2Kk, —>»P, and so b\y Theorea 4.1 2K,  —>P,o

5 2217 9 13 25 23 12 11 2115 8 4

6 24 19 10

7 26
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fe will now describe the algoriths that was used to find -
the roéﬁtional déco-posifiﬁn 2[$——9Pﬂ fdr n= 14, 16,‘18; i9 &ﬁd

20. Pirst recall Leama 3.2a which states that 2K.—>P. by

rotating a fixed path P if amd only if

1. Thére are tﬁo edgesyof évéty length 1,2,..., {n/2)~1 andvone
edge of length n/2 in P.v o o

2. fhe integers 1,2,...,(n/2) -1 eaéh occur exach; onée as the

‘ distance‘betugen_t-o edges qf the saie‘lenqtb in P.

This lesma vas used-in creating the algoriths for the evéu

valves of n, and Lesma 3.29’vas aéed to create the algorithms for

the case n=19. Since the two algorithms are very sisilar we will
ﬁnly give the algoriths for n even.

1. Por i=1,2,.-.,(8s/2)-1 and for Je{V,2,---,(n/2)-1) let tbe
two edges of length i be distance j apart so that this
function is a biiectioﬁ. The assignment of a distance to two
edqes‘of the same length was not randoam, but ias obtained
from the obset;ation of a patfern that existed for ssaller
values of n.

‘2. Por each 1=1,2,...,(n/2)-1 let x; vary ft;l 1 to n. Lét the

edges of length i be (x.) (x, +i) and (x +j) (x_+i+j)l If using

this valde of x . does not create anybvertices of degree |
three then proceed uitthhe next value of 1i. Par i=n/2 also

let x; vary from 1 to n and let the edge cf length i be

(x;) (x *+i).
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’ d /‘
3. f the union of these edges is a path of length n{1 then ve.

¥ : : - . T
have finished, otherwise the union of these edges \contains a

€§cle. In this case, conmtinve with step 2. {

Since a rotational decomposition of 2K,—>P, does not
exist, and we could not apply any of the theorels:i; Ch;pterwlv;
it vas natural to ask if a decosposition of 2#,——99% existed at
all Aﬁd_if so, were there many such écconpoéitiqnsQ Be{gpérq
trying the case for n=7,‘§‘ich required a co-pufef progras, wve
lookedufor non-totatiohai decospositions of 2K, —>Ps and
2K, 3P, . |

The f;lloiing ines five paths of length four that give a

- decomposition of 2K, —>P_ that is not rotational.

12385 N
28531
& 3521
4 31 5/;
S 14 273

The following gives six paths of leagth five that give a

decosposition of 2K, —>P, that is not rotational.

OWVE W -
sWwnB 0N
‘..c«a«n..w‘
WEN—o .~
[ S VRN S TRE
Wi N ON

The following is ome of the sany non-rotational

decompositions of 2K, —>P, fﬁat vere found by couputét, and the

E

algoriths used is given below. | . ' - :
/
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7.

Q(1) ,e++,Q(x). (Since the paths are undirected, the path

1234567
1357648 2
2364715
3 T4 7265
3724516
8352617
41257736

‘Label the vertices of 2K§ vith the integers 1,...,7 and

assume that 1234567 is a path in the decomposition of

2K, P, . |
find all paths of length six in 2K, that have exactly §he
edge in common with the path 1234567, and call thea

V.V, ec.v, is the same as the path vivb...v,.) y

Let i =1. / .

ASsunme okt') is a path in the deco-pcsiiionxand‘}ét~11=i.+1;
If Q(i;) has exactly one edqé}inICOInén with d(i‘) then let
Q(i,) be a path in the decomposition and let i3=i2¢1.
Otheiuise lét il=1l+yﬁapd go Eo stép 5.

If Q(i;y)has exactly‘one edge in common with each of the
previously chosen phfhs then let 0(i,) be a path in the
déconﬁositibn and let i~=15+1. Otherwise let i,=iy+1 and qgo
to step 6. |

* o0
- 4

1f (i) has exactly one edge.in comsmon with each of the

. previously chosen paths then we have a decomposition of

/21{4—995.‘0therui§e let ib=it+1‘and qo to step 7,
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