. LN

CANADIAN THESES ON MICROFICHE ’
]
R ;
I : T 1.S.B.N ’ ' .
THESES CANADIENNES SUR MICROFICHE ‘
I* Natronal Library of Canada Bibliothéque nationale du Canada : .)
¢ j Collections Development Branch Direction du développement des collections . ¢

X - 'f‘anadran Theseson . - 'Servi'ce des théses canadiennes . - ;) o o

T "MleOflche Servree ~-sur-microfiche - - - - . s s e

. Qttawa, Canada o
K1A ON4 .
- NOTICE AT AVIS "

Jhe quality of this microfiche is heavily dependent
“upan the quality of the>original thesis submitted for’
-+ microfilming. Every effort has been made to ensure
the hlghest quathy -0f reproduction possrbie
If- pages are missing, contact the umverslty whrch
granted the degree :

% Some pages may have indistin-ct‘ print especiaHy
-if the orlglnal pages were typed with a poor typewriter
rlbbon or if the umversrty sent us a poor photocopy

".i.' o N
E4 ’ o .

b Prév:ousiy copynghted materlals‘ (journal artrcles

publlshed tests, etc) are not filmed.

P - E
o
.

Reproduction in full or in part of this film is gov-
erned by the Canadian Copyright Act, R.S.C. 1970,
c. C-30. Please read the authorlzatron forms whrch
accompany thrs thesrs

! 'avec I’ umverslte qur a confere le grade

La quallte de cette mlcroflche depend grandement de

la qualité de la thése soumise au micrafilmage. Nous

avons tout fait pour assurer une quahte superreure

'de reproductlon

sl manque des pages, veurl|ez commumquer

»

La quallte dlmpressron de certaines pages peut
laisser a désirer, surtout si les - pages orlgmales ont été
dactylographiées a l'aide d’ un ruban usé ou si VPuniver-

sité nous a fait parvenir une photocopie de mauvaise

qualité.

¢ Les documents qui’ font déja l'objet d'un. droit

“d‘auteur. (articles de revue, examens publiés, etc) ne

sont pas mrcrofrlmes ‘
& 1

La reproduction, méme partielle, de ce microfilm

est soumise .3 la Loi canadienne sur le droit d’auteur,

' SRC 1970, c. C-30. Veuillez prendre connaissance des

fortnules d’autorisation qui accompagnent cette thése.

o

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

. LA THESE A ETE
- MICROFILMEE TELLE QUE
_NOUS L'AVONS RECUE

o Canad"'

Y. S V2 V22

8 — ;)
National Library Bibl,iotheme nationale ~ CANAD!AN THESES | THESES CANADIENNES

~. . 'Y ' -

’NA;AE OF AuTQog/m DE L"AUTEUR : ’/) ’ar/i,é A < (ﬁU)\.(iﬁ/ - R
TITLE OF T;-GESIS/TITRE DE LA THESE QQ/”. ,LTWDY "?;f(]/ Mﬁm X[jmuf /(AN ﬁi/ml /E"/},_
| L (}:21 m/ﬂ{m\ﬁ //n /A,/) ﬁui A((QJOM jﬁ A

fh/,,‘f',m, Quﬂfc/n(i '

[T

UNIVERSITY/UNIVERSITE _ g/,/"!ﬂﬁvf F,\ ,f]lg L’MLM.E&Z;V
S - '

'DEGREE FOR WHICH THESIS WAS PRESENTED/ : _ v /\JZ’
GRADE POUR LEQUEL CETTE THESE FUT mes.em.e.e ,

o LA
YEAR THIS' DEGREE CONFERRED/ANNEE D’OBTENTION DE CE' GRADE A g 2 - ‘
.) - . ‘/’ ’ /
NAME OF SUPERVISOR/NOM DU DIRECTEUR DE THESE — IF } K_¢ 71&‘{}_ INCa /‘{ 7 o

. - i . .V v
Permission is hereby granted to the NATIONAL LIBRARY OF L’autorisation est, par-la présente, accordée 3 la B/BL/OTHE—‘

CANADA to microfilm this thesis and to;lend or sell copies QUE NATIONALE DU VCANADA' de mr’cfofilmer_cette thése et ’

of thve film‘. :) . de préter ou de vendre des exemp)airgs du film, ‘ T

The aumof:reserves other phblication rights, and neither the: L'auteur se réserve les autres droits de pub/icafioﬂ; nila

thesig nor extensive extracts from itlmay .be printed o; other- Vthése ni de longs extraits de celle-ci ne doiveni étre /'rﬁpr/'mé?r 7
| wise reproduced without‘ the author’s written permission. ou a-utrement reprdduits‘ sans /'adtorisation écrite de I'auteur.

A . —
Saven oAt Sz il jf;/ﬁpsmmm

PERMANENT ADDRESS/RESIDENCE FIXE_

NL=91 {3~74) &

#

. . . - - :
t - B3 t 21

AN TMPROVED MULTI-VERSION SCHEME FOR CONIROLLING CONCURRENT

N\
ACCESSES TO A DATABASE SYQTEM

-~ (.
e
Y 5o
.) R by, ‘
0% e e .
ST Abdel Aziz Férrag .)
N N ‘B.Sc., Alexandria Uni\‘\lersity, 1978 (
s . - ~ - . k
. . Ut ~ ‘ .. ‘- - .7 A
SN e
. ¢ / L Y
T A THESIS SUBMITTED IN PARIIAL FULFILLMENT OF
. 'nlx-: REQUIRE'MENT FOR THE DE&EE OF - °
MASTER OF SCIENCE- ' ' °
’ - -) .o
| L in the Department ey
N) o : . . :\
;i' ’Of - B "“7” ﬂf'fi_'::';""" T T N T s = oo -
ST “* Computing Science ié Tl
CoL »
) @ Abdel Aziz Farrag 1982 C
) o . » %Q:
SIMON FRASER UNIVERSITY
v) . S a P
\ o Aug<ﬂ’st 1982 - R - o .
v - ' | o .
v S o - S
: ' All rights reserved. This thesis may not be :
e i‘ reproduced in whole or in part, by photocopy
: or other means, witho'utapermission of,the author.
- Il “ » - .
i ’ ‘, . . '

Name : Abdel Aziz A. H. Farrag

Degréev:’Mdstef of Science’

Titlgﬁqf Thgéis;'gn ImprqveQ'Multi?VersipnfsEHéme For
. . Controlling Céncurrent Accesses
To A Database System

Ky

~ Examining Committee: .
iChairperson:'Nick Cercone

+ Kameda " ‘ -
enior Supervisor

r

W. S. Luk

\vaéd@er

Toshimi Minoura
External Examiner
_professor =
University of Oregon

Aes L5 / A
Date Approved:-—- ;--J-__Zfi___

l hereby granf fo Simon Fraser Universify the right to lend y

g my fhesis, project or "extended essay (the title of which is shown below)

& to users of ‘the Simon Fraser ‘University Libfary, and to make pérflal or

5|ngle copnes only for such users or. in response fo a requesf fr5; the
library of any ofher untversufy, or ofher educaf.onal lnsf;fuflqn, on -
its own behalf or for one of Its users. | furfheryagreé thaf pérmissionA
for-mdlfiple‘copying of this work. for scholarly,purposes'méy be grahfeg
by me or the Dean of Graduate Sfudles. At s underﬁfoog that copying

or ‘publication of fﬁ}s work for f1nancfal gain shall nof’be aTTowed

without my written permission,

V4 7 .;f"l

Title of Thes:s/PrOJecf/Exfended Essay .

/z(?]{ _ A tmf)f m\éa/)MLZ/Z» de L@/}’l JCMM

Author:
(signafure)

o ﬁf/@/ 2791/9?3_

(daf

F5

- - ,S.fg

E -

S . . -
: € 4

zt") T P T T
An Improved Multi-Version Scheme For fontrolling 4

Concurrent AccEéBeS,EQHA Database; System

.+

> - Abstract -

-~

r

In many database system applicatiohs user - transactions

access the database concurrently. Since the operations‘ of these

of coordination to ensure database consistency. This thesis.
introduces a new scheme for controlling concurrent accesses to a’

database system. "Read" operations are alwéysf granted and each

e

"read" operation returns an appropriate version without causing

inconsistency. A Ywrite" operation creates én appropriate version '

provided it does notAcadée\inconsistency. An efficient algorithm

for Selecting the appropriate version is also introduced.

Unlike 'previously introduced .schemes, a "wri{g" operation
may be allowed to create an "earlier" version. It is “also shown
how this new concept will enlarge the set of executions to be

accepted by this scheme. A simple solution is proposed for the

cyclic restart problem.

v

: Acknowlédgement:

y - Lo P

I would like to théhk Professors W. $. Luk and L. Hafer for

‘their encouragement and helpful advice.

Professof T. Kameda has, greatly contributed' to this

fesearch, both through his initial arousal of my interest in the

- problem— of ,concurreney'~eontroi~in~datébasefsystemsﬂan&“{hroug}Ff

g

his criticél guidéncg-in;the developmepf of the dideas in thi;
thesis. His'.tirelessr'paﬁiéncevand'enébﬁragement'have made this-
task much easier. For all these things I express my mo%t sincere -
thanks. |
: . e B e
This thesis is dedicated t% myr mother,. without whose

continoﬁs support I would not have been able to study.

o

.i’” - . f 3 .) j

- N x .

e -y -
2 * '.\ ;
S \ o]
‘ o ' JE A j
* | “)v ' - BN
'Table of contents , 3

e ~ A) * - 2 ;
Approval page ...I..,!."I.l:‘.""ro‘t_{"’"l..;.‘....II.."';"‘...;ii ;
S ‘ o ,) , . :
Abstract '.'.....'..v.\'.......»I....‘...‘.;.".".v.I'V.S...V.'..'v"l.'.v..iii i ;
’) . - - '\ ~ . E
_ACkIlOW}?dgement ll..V-...V.l!.‘.;..‘...:..'.‘VV?.:,.'.'V..V..’.l'l....ivr E
ust'offi‘g‘ifes .f..‘...‘....;.;.‘....I..l.l........v....’."'.‘vi‘i _IE
1- Introd"lction.vi.:.'.ooo’oo’o.g:;'.,ojoooooo-’q,.."oojoo.o.o-o;i o " - E
1.1 Concurrency contfqi and consistency problem...ccoso.. %
A o R S I e —
2. Database syétem model and execution seseeesessenceeteacs8 ' N z
" 2.1 Database sysfem quel'.......;,.,......!............é E
2'2 Execution ...‘3l!.l.....‘....I......l....‘.‘!.(Q.A-"..]»O : j
I v T w ’ ,& . -3
2.2.1 Significance of ‘the two functions Fl and F2..10 E
2.2.2 Late operations,..;,.-..-...,,{.;,..11...,51.13, . :
\ 2.2.3 Normalized execution;...:.............:.13 E
2.2.4 Serial eXECULION eveseseivssssnensvnnsaasaessld
2.2.5 Two fictitious transactions.. ceceseseveseessld :
2.2.6 Augemented execution s..eecesssesesessnssenssl’ , |
< . . /
3. Flow graph and active flow graph cececesssscscscsscecselbd " ?
,3.1 Flo‘;’graph'....l.....-...............'..16 ::
“3.1.1 Live OpPerations eeceesssessessssccccasssssacel? ;
. < ‘-j
3.2 Multi-version serializability equivalence and the 5 g
active flow graph P ¥ . E
3-3 MVSR“EXECUtiOIJS .o;..ootoooo-o.n_.ooo.o’n"nooo.‘"oools 4"?
3'.3.1 Thé fjxpoint Set l.....’T:.......‘..'..........22 . j;

5. mVSR"SCHEdulei‘ ..‘...-.”;...;.........,........,..........40

“ 5.4 %rocéésiggﬂfﬁe commit operation .

- Vi -
<)) T TN T T - -
3 - 5 .
BN . ’ I, - . . -

4. iMVSR4éiecﬁiidﬁégéndViﬁéﬁaéﬁgﬂ&ency graph .v.eeeeecce.a24

4.1 The déﬁendency graph };;..«;.,,;................;;.247w

o

4.1.1 The depgiggncy gfap for a serial execution..27
. . & »’,‘“ . . ' - . .

4,2 SeiegtingAan appropriaté version .;........;.......33

s
-
v -~

5.1 Processing the begin operation sseecesssscssncsesssd
5.2 Processing the read operation esieescecessssssassossl

13
PO -

5-.\3 PI:OCeSSing the W'L‘ite Oper.ation ._.7...‘.....-.....".---'42

EEET S —

...)’...,.-......,.....43/
5.4,1;Thé:délétion CONALItION voseeenasennsnnecsocessld

» . < . B
N .

6. Cyclib rgs;aft and long trahsactions cesscscececenneresh]
6.1 bétecting a cyclic restart seecesesccccssssscascnsedb

[

7- CODCluSiODS .I..o.IV...U'll!lI.Io...l..o...5!......0..[-63

References ...'.l'..‘...'.Q""I..IOII;UOI.I..I...I.l..CIIIQQ‘.65'

A

- vii - : E
Sk e A
Listl’_o_f_-figur"és;:.; o r' %
”Figlur;a 1 Concux-‘re,nt,e{ecuitic:m q'fl T1 and, T2 réw‘ 3 - "
. Figure&z Flow-graph/'for e B \r 4 19 ‘
Figure 3 Fljow graph for,.','eil | : : o | 21 - . -
Fi’gurev 4 Dep'enderi’cyﬁgféph for e fa 30
Figure 5° A cycl»ivc restért R . A 48
Figure 6 "Ti is in§olvéd with VTj' in a”cyc’lici restartandr o
with Tk in ‘a:nv:dtheri é?’clic. res tar} , / q‘ - 50 ..
Figure 7 A cycl;{c restart iflvolViﬁg thre/e ttan:s’/af’c"ti'jbns N |
o Ti, rTj, and Tk o : o / v 52
qugiu‘e 8 Transéét?ibn,'l‘i af;d’Tréns;ction TJ/are "involved
| ifh a-cycdlic riasta-rt in which the .t‘wortransactions ‘ -
wiil ‘be aBor;gd §imultaneously atﬂt)imefz : , - .
; t/=_t1‘,2t‘1,3t_1,.. | S 54)
Figure 9 transaction Ti and transaction Tj are abqrﬁed
p due ‘to conflict with each ot't.l-er’ and they t
,sﬁbﬂsequently prjo_cc‘aedr to completion . 56
_Figtire:lo traé?a-c‘tﬁn ‘Ti is aborted because ..Of .;ransact-ion
Tj and transaction Tk . _ o “ 57
¢ o) ‘ S "77;") S
=& , ~ * ' N
.,,v . - .

w

data objécts §atisfy}d?set”of’e8tablished aésertipns.brsihtegrifi?"

. . =1 -
T 12 . - e
_ R RPY] o -
- . * ! R . o ED
. - - & . R T
[o : '_1/ 7 - . ’ . x ’
. B - K . l‘h, . ‘ J//Ar?-
. . .y 1. Introduction - . L
3} - & . . - Y -))
* » S . 5. . * .
‘ 7 7 LA . . .
B ' T ’ e N

1.1}Cdncurréﬁcy4contfbl and consistency problaﬁ'*

A ddtabase is said to be in a consistent state if all the - '
S . - - —— W AU B .

T -

econstraints. A database subject to 'multiple accesses requires -
that access -to it be properly qpordinated«in'order toipreSerﬁe

consistency.

Ini many database system applications it is desirable that

the database system be shared by a set of user transactions.i In |

such a system steps of transactions may occur in any interleaved

order. -) e e
2

Even if each transaction 1is correct in the sense that it

preserves the consistency of the .database when - executed by

itself, the concurrent execution of correct transactions in an

‘interleaved order may transform the Qatabasé from a consistent

state into an inconsistent state. ‘l !
Lo
ey — - R - Y
B »
o
.' & ,"
20 -

- ~*T%Simi%afy*~W1fx9:meaﬁsfa:wr%teWreqﬁestfﬁramfEr&nsagtten;¥¥%ﬁ

y) :

Example l(tdSt,update)
Suppose we ' have two transactions Tl and T2 accessing the
same dgﬁé object X, incrementing X by 1, "and writing. thes new
N .j(')', .) ’ ' " o

value of X. In the .absence - of "goncurrency control, these two
transactions may interleave in an unaéééptébleléfdér; so that the

net effect is incorrect asasﬁbwn in figure 1. -(Note that‘RI(X}g

means a read request from' transaction Tl for the data

L t
3 A

data item X).f -

B . .
.) *

item X. -

P

¢
1

‘
N

1Y

I
TRagr

FRC TV

“1;.

o, 2
[N -3 -
£
I)
z .

T

-~

qhét_thé'initia1~vaiue of X=5£ Then the finallvalue

- Suppose
: - t v ,)
of X=6, i.e., the database reflects only one of the two updates.
T \ . o . 7' .)
;}3 c_‘
T1 ‘I : :
RI(X)
T2 B —I—-
R2(X) . W2(X)

Sérializability still remdins the most populap approach for
ensuring -database consistency. Databases are intended to be
faith%ﬁl,models 6f somé.parts of ;he' real world and the user
transactions ' represent instantaneous‘changésfzh‘;he,world,ﬁSince”
ﬁhévuééf'Ef;ﬁéééf{dnsri;yA'ingeriéaQé “iﬁ' ahy érdgf;' thé 'bhly
acceptable interleavings are those that are "equivalent" to some

sequential execution of these transactions.

_..;\ S

It 1is the task of the concurrency control scheme "to

safeguard the database consistency by properly granting or
rejecting requests. A
Pi
Concurrency -control-has-been-actively-investigated —for-- the
-~ past several years and several schemes have been proposed. These-

schemes can .be broadly classified into two classes. The first

class contains all the single version schemes while the second

class %?ntains all the nmulti-version schemes.
%

In this thesis .we introduce a new multi-version scheme, or a

new memben in the second class.

™

The -idea of using multiple versions of data items in a

database system was first formalized by Stearns, et al.
, [STEA-76]. Im thei; model a transaction Ti must read a data item

in order to update it.

R

. Bayer, et ai, [BA&E—SO] end Kessels’[KESSfSO]vtook qg}ice of
'rhe fact that most'database sjstems maintain.itwo versions, the
old and the new versions, of each‘ooject for’recoveryireasons'
while a tramsaction ' is modifying‘it.\ln the 'concdrrency control

scheme of [BAYE-SO];'a'read operation reads either the oid or the

new version depending on the .state of the object wi?p~respect to

-8

u dating. This clearly increases_concurrency.
P ng y /f’xi cy | ¢)
, Ly
- Reed [REED—79] has also proposed a multi—version concurrency
control scheme for distribuced database;'systems based on(
- , . Y ’/“
timestamping. ¥
(ﬂ ‘@i‘ In §ec§§op 2, we describe the database system model used in
* i " *
this thesis. It is similar to the model wused by Muro, et al.

AR .
[MURO-81, - -MURO-82], but we may allow-a-write.operation to .create..

an earlier version.

In section 3, we introduce two important graphs, the flow

graph and the active flow graph. The latter is used in defining

\

multi-version equivalence of two executions.

In section 4, we introduce a wuseful tool called the

dependency graph [ESWA-76] used for recogdizing the IMVSR -

executions. We also show how the new concept of allowing a write,

~operation to create an earlier version (provided it does not
cause incongistency) enlarges the. fixpoint set (8et of all

executions accepted by the scheduler #thout aborting or delaying
r hals

~~. scheduler processes read and write operationms.

3

any operétion) of the IMVSR~scheduler ﬁithout' increasing
ovg rhead. . : . ' ‘ 5

In section '\5, we describe the new concurrency control

algorithm (IMVSR—gcheduler). In this - section we show how the

4

In section 6, we explarin' ,the "eyelic restart problem"

[STEA-76] and introduice a simple solution to this problenm.

_Section 7 contains conclusions.:

€
®

The main contributions of this thesis are.] o -

(

1- Introducing a new multi-version scheme for coﬁtroIling

4

A

éoncurrent accesses to a database system.
2- Proving that read requests can always be granfed.

3- Devising an efficient algorithm for selecting.the appropriate
version to Be read or to be c%eated;

4— Proving that the fixpoint set of our scheme contains the
fixpoint sets Of, previously introduéedr Tflti—version schemes
{STEA-76, REéD—79, MURO-81, MURO-82, PAPA-82].

5~ Proposing a simple solution for the '"cyclic restart problem'.

/

.

- .: [

-

==

2. Database system model and execution

.

2.1 Database system model

Our database system model consists of a set E_gf_déta items,

a set of transactions T={T1,T2,...,Tn}, and a scheduler.

" We consider a transaction as a sequence of steps. Each step

is either read(X) or write(X), where X is a data item in E. A ,

read operation Ri(X) by a transdction Ti returns an appropriate

version of X. A write operation Wi(X) by a transaction Ti creates
a new version of X. Each data item is accessed by at most one

read and one write operation of each transaction.

For each data item k, we maintain multiple versions of X,
each ofg‘qhich corresponds to a write operatio@:_§Ssociated with
each version of Xlis a version number which' represents a proper
order for this version among the other versions of X which
already exist in the system. For each data item X, its initial
value 1is defined to be X0 (versién 0 of X). Assuming we had n
versiéns/;f X {X0,X1,.4+.,Xn-1}, when the scheduler received a

read request for X, Ri(X), the scheduler would» assign an

appropriate version of X to the read request (not necessarily the

latest version Xn-1).

]
-~

If the scheduler receives a write operatidh , Wi(X), a new

version will be created (this version will be assigned a number

not necessarily larger than other numbers assigned to the
versions created before). When a transaction Ti creates a version

of- X and transaction Tj reads this version we say that

qiiransactiééa Ty reads X from Ti. When a transacfion'Tj reads a

data item from a transaction Ti then transaction Tj is said to be

strongly dépendent on Ti. Other transactions which read a data
item from Tj are also strongly dépendent on Ti. The dependency
relation among.transactions will be studied in detail in section

4-

A transacion Ti is said to be a read only transaction for X
if it reads X without updating it. Similarly, if Ti updates X
without reading it, we say that Ti is a write'only transaction

for X. However, if Ti reads and updates X, we say that Ti is a

read-write transaction for X.

- 10 -

7

2.2 ggecution'

-

— s e .

set of operations -of the transactions in T, F1 is a mapping fronm-
0(T) to the set of positive integers {(1,2,3,e2eee-4.}, and F2 is

~a mapping from O(T) to the set of nonnegative real numbers.

2.2.1 Significance of the two functions F1 and F2

The function F1 represents a permutation on the set of
operations O(T). If F1{oi) 1is less than F1(oj) we say that oi
greéedg§ oj. If there is no operation betwveen oi and oj, i.e., if

F1({oj) =F1(oi) +1 we say that oi immediately precedes oj.

For each read operation, F2 determines the version to be
returned by this aperation. If F2(Ri(i))=1 for example; ve say
that Ri(X) returns version 1 of X, i.e., X1. If F2(¥j(X))=2, wve
say tﬁat ¥j(X) creates version 2 of X. Different read operations
wvhich access the séne data item may return the same version while

different write operations always create different versions.

If F2(Ri(X))=F2(¥j(X)), then trgnsaétion Ti reads X from

transaction T

In our scheme, each read operation accessing a data item X
returns an appropriate version of X created before, not

necessarily the latest version of X. This means that

-11 -

1 F2(Ri(X))=F2(Wi(X)) then FI(Wj(X))FI(Ri(X)) .

A write operation creates a new version of X. This version
will be ag;;;ned a number not necessarily larger than other
) s : ' . :
numbers assigned to the versions created before.
The way we assign a version number to represent a versgion
created by a write request (or to be selected by a‘read request)

depends mainly on the relation between the transactions as we

explain later.

aF

. ‘ - - 12 -

Y - :
Example 2: - o
""\ |) N
Let e=(0(T),F1,F2), where
. o : '\, -
2- FI(RI(X))=1
F1(R3(X))=2
FIWI(X))=3 | N
F1(W2(Y))=4
FI(R1(Y))=5

F1(W2(X))=6

° 3- F2(Rl(X))=O.
F2(R3(X))=0
F2(W1(X))=1 ;
F2(W2(Y))=1
F2(R1(Y))=0

F2(W2(X))=2

We shall also write e in a compact form as follows.

e=R1(X0)R3(X0)W1(X1)W2(YL1)RI(YO)W2(X2)

The order of appearance of each operation represents the
function F1 and the number associated with each data item
represents the function F2. For example, the operation W1(X) is

the third operation and creates version 1 of X.

-13-

1

®

2.2.2 Late opefations

Suppose that the scheduler has received a ‘read opérétion
. ‘ \ ‘ . ‘
from a transaction Ti for the data item X, and suppose that the
selected version of X is k, i.e., the read operation returns Xk.

Then 1if k‘ is the largest version number of X, we say that the

read operation came in time and if k is not the largest version

number of X we say that this read operation came late.

Similary; if the write operation Wi(X) may create a new
veésion of i with a ﬂu;ber larger than any veréion number created
before, we say that the write operation came in time and if it
‘must create a new version with a number less than some version
number created before we sa& that the operation came late.. For
éxample, in the foilowing execution the last two operations R1(Y)
and W1(Y) came late.

2
e=R1(X0)W2(X1)W2(YL)RI(YO)WI(Y.5)

Here Y0.5 is a new version of Y with version number 0.5.

2.2.3.é normalized execution) ;
) i

An execution is said to be normalized [MURO-81] if the
following two conditions are satisfied
a- If FL(Wi(X))<F1(Wj(X)) then F2(Wi(X))<F2(wj(X)):

b- If F1(Wi(X))<F1(R3j(X)) then F2(Wi(X))<F2(Rj(X)).

';ﬁ

Condition a means that if Wi(X) precedes W3j(X) then ¥Wj(X)
creates a version of X with version number larger than -th&t' of
N . - . :

the version created by Wi (X).
Condition b means that each read operation Ri(X) in a

. C) g
normalized execution returns the latest version created before

this read operation.

It 1is not difficult to see that an execution 1in the
conventiona{sgsingle—version" database is actually a special case
of an execution in the multi-version database (ve refer to it as

a normalized execution).

2.2.4 Serial execution -) N
*r

An execution is said to be serial if it 1s normalized and

N

all the: operations of each transaction appear consecutively

(vit t interleaving with the operations of the other

transacéions). For example, the‘follouing execution es is serial..
es=w1(x1)R2(x1)Rz(YQ)w2(x2)R3(x2)=T1TZf§-

. 2.2.5 Two fictitious transactionms

a- Initial transaction To

This 1is a write only transaction, which writes the initial
~_ 5
version of each data itemnm. :

b- Final transaction Tf

This is a read only transaction which reads the final

version of each data item (i.e., the final result 5f the

-~

execution of all transactions).

2.2.6 AUgmeﬁted execution (ae)

An augmented execution ae consists of the - execution e
concatenated with the initial transaction TO=WO(X)WO(Y)... at the

. beginning and the final trénsaction Tf=Rf(X3Rf(Y).a; at the-end. :}

\

@

-16 -

3. Flow graph and active flow graph
3.1 Flow graph

We 4congtruct for an execution e=(O(T),Fl,F25, a difécted
grapﬁ'calied the ELQE;EEEBE’ The?éet of nodes "of this directed
graph 1is the set of ‘operations in 0(T) fégether with\the
operations of the two fictitious transactions To and‘Tf. Thegarcs‘

of this graph are given as follows {PAPA-82].

o ”

1- (Wj(X),Ri(X)) is an arc iff F2(R1(X))=F2(¥i(X)), i.e., Ri(X)
returns the version created by Wi(X).
2= (RL(Y),WL(X)) is an arc iff T}:._1;(/111('1{))<F1'(vzi(x)),' i.e., Ri(Y)

and Wi(X) belong to transaction Ti afid Ri(Y) precedes Wi(X).

We can simply construét the flow‘ graph FG(e) for an
execution e .aé follows. Represent each operation 0€60(T’) by ah
node(where T’=TU{To,Tf}). Joiq each read node Ri(X) with a write
node Wj(X) if Ri(X) returns the version‘éreated‘by Wiéx). Join
each write nodé Wi(X) with all 'the read operations which beloné

to transaction Ti and precede the write operation. .

a

Intuitively, an arc of typé 1 represents a read from

‘relation [PAPA-79, PAPA-82], i.e., if there is an arc from Wj(X)

’

to Ri(X) in FG(e) then transacion Ti reads X from transaction Tj.
An arc of type 2 indicates that the value to be created by a
write operation Wi(X) presumably depends on the values returned

by the previous read operations which precede Wi(X) in Ti.

3.1.1 Live operatidns [PAPA-82]

The live operations are defined as'foliqws

a- all the (read) operations of the fihal transaction -Tf are live

operations L

b- a write operation Wi(X) is 1live if there 1is an arc

(Wi(X),Rj(X)) where Rj(X) is a live read.
c- a read operation Ri(Y) is live if there is an - arc

(Ri(Y),Wi(X)) where Wi(X) is a live write.
-1

= e "An operation is said - to be dead if it is not ‘live.

Intuitively all the dead operations have no effect op the final
values of the data items (the values read by the final

transaction Tf).

3.2 Multi-version serializability equivaleﬁce and the active flow

graph 4

- We call the subgraph of the flow graph defined by the nodes

corresponding to the live operations actiVédflow graph AFG(e).

Two executions el=(0(T),F1,F2) and e2=(0(T),F1’,F2’) are

said to be multi-version equivalent'(MV—equivalent, for short) if

their active flow graphs are identical [PAPA-~-82]. Obwviously this
: . -

definition means that the two executions have the same set of

live operations and each live read in el returns the same value

as the corresponding read in e2.

Y

- 18 -

3.3 MVSR-executions

An execution e 1is said to be multi-version serializable

(MVSR for short) if it is HV—equivalent to a serial execution.

We define the set MVSR to be the set of all multi-version
serializable eg#®utions and the set SR to be the set of all

(single version) serializable executions [PAPA-82].

,_19-

Example 4

We construct the flow graph for the following execution and

determine the live operations and the dead operations.

e=W1(X1)R2(X1)W2(X2)R2(Y0)W2(Y1)WL(YO0.5)W3(Y2)
‘ g -

- R2(X)

Rf(X) Rf(Y‘)

Figure 3. Flow graph for e

=

- 20 -

The 1ive operations are -

W1(X), R2(X), W2(X), W3(Y).

The dead operations are
R2(Y), W2(Y), WI1(Y).
(Note that we did not mention the operations of the fictitious

transactions).

It is clear that the execution e: in this example is a
multi-version sgrializable execution since i;s active flow graph
is the same as thé activé flow graph of the serial exeéﬁtion es,
where

es=T1T2T3=W1(X1)W1(Y1)R2(X1)W2(X2)R2(Y1)W2(¥Y2)W3(Y3).

-21 =

Example 4 _
We construct the flow graph for the following execution and

show that it is an MVSR-execution.

el=R3(YO)W3(Y1)RI(Y1)W2(X1)R1(X1)W3(X2)R5(X2)W5(Z1)W1(Y2)W4(X3).

WO(Y) WO(X)* WO(Z)d*

L

WA(X)F W1(Y W5(Z) % & ,

b

()

-
K

Rf(XJ RE(Y)

Figure 3. Flow graph for el

It is clear that all the operafions of e are live
operations..It is also not difficult to see that the flow graph -
of the serial execution es=T3T5T2TIT4 is identical to the flow e

graph of e. This means that e is an MVSR-execution.

- 22 -

3.3.1 The fixpoint set -0

v

Associated with each scheduler S is a fixpoint set [KUNG-79]

F(S).. An execution e belongs to the fixpoint set F(S) of the
scheduler S 1if it can be aécepted without delaying,6 or rejecting

any operation of e.

A scheduler S may.be viewed as a mapping or a transformation‘
which receives as input any execution e, and pfbduces as output
an execution e'6F(S). However if the scheduler S is fed by a
member of F(S) it will leave it intact.

Obviousl? the larger the fixpoint set the better is the scheduler
in some sense. One would want to~have‘a scheduler S with the

fixpoint set F(S) as large as the set MVSR.

It Ohas been proved that serializability test (and therefore
. multi-;ersion serializability test) is NP;complete‘(see [PAPA-T79,
PAPA-82]), which implies that the implementation of the
ﬁVSR—scheduler (i.e., a scheduler which recognizes any
MVSR-execution) is impractical. In fact, all tﬁe schedulers
previously introduced (based on single version or multi-version)
[STEA-76, REED-79, PAPA-79, BAYE-80, MURO—81; BERN-81, MURO-82,
PAPA-82] which can be implemented in polynomial timé recognize

only a subset of the set MVSR for the multi-version case or the

set SR for the single version case.

—~
We are introducing 'an improved multi-version concurrency
control scheme (IMVSR-scheduler) which can bé implemenﬁed in
polynomial time and its fixpoint set F(S) contains the fixpoint~

setgiof previously introduced multi-version schemes [STEA-76,

MUR0-81, BERN-81, MURO-82].

In general, a concurrency control scheme (scheduler) is said

to be efficient if it can be implemented in polynomial time.

- 24 -

4. IMVSR-executions and the Dependency Graph

2 In this *sgction we define a new class (6r a set) of
executions called the IMVSR-executions and show that this class
represents a ‘subset‘of‘the set MVSR. We also introducé a useful
tool called the dependéncy graph ﬁsed in recognizing the

IMVSR~executions.

<

4.1 The dependency graph

We say that a transaction Ti conflicts with a transaction Tj
if both transactions access the same data item X and at least one

of them creates a new version of X.

u
\

We constkgct for an execution e, a directed graph called the

dependency graph DG(e) which represents the 'dependence" relation

among the transactions [ESWA-76]. The set of nodes of this "graph
is the set of transactions T={T1,T2,....,Tn} and the set of arcs

are defined as follows. .

An arc 1is directed from Ti to Tj (i%j) if any of the following
conditions holds for some X6V, where V is the set of data items

accessed by the the set of operations in O(T).

a- There exist two operations Wi(X) and Rj(X) in 0(T) such that
F2(Wi(X))<F2(Rj(X)) -
b~ There exist two operations Wi(X) and Wj(X) in O(T) such that

F2(Wi(X))<F2(Wj(X))

&

- 25 -

c- There exist two operations Ri(X) and Wj(X) in O(T) such that

F2(Ri(X))<F2(Wj(X))

If theré is an arc ffgm Ti to Tj then we say that Tj is
dependent on Ti. Other transactiong reachable in DG(e) from Tj

are also said to be dependent on Ti.

An arc from Ti to Tj which exists because
F2(Rj(X))=F2(Wi(X)) 1is called a primary arc [MURO-82]. It may

also satisfy conditioné b';nd/or ¢ in addition to a. If there is

a primary arc from Ti to Tj we say that Tj is strongly dépendent

on Ti.

We define strong dependence to be transitive. Intuitively,
-

if Tj is strongly dependent on Ti, then some information is

actually transfered from Ti to Tj.

In general, an execution e is said to be an IMVSR-execution

if its dependency graph is acyclic.

Note that an arc ffom Ti to Tj due to condition b in the
scheme introduced by Muro, et al. [MURO-81, MURO-82] or by
Papadimitriou, et al. [PAPA-82] implies that Wi(x)varrived Sefore
Wj(X). This is not the case in our scheme since we may allow a

write operation to create an earlier versioh.

- 26 -

Example 6

hY

We coanstruct the dependency graphs for the following

executions. .
e1=R1(X0)R3(X0)W1(X1)W2(Y1)W2(X2)R1(Y0)

€251 (X1 W2(X2)W2(Y1)WI(Y. 5)

DG(el)

DG(e2)

e

- 27 - -

4.1.1 The dependency graph for a serial execution

In a serial execution all the operations'of each trénsaction
appear consecutively. Suppose that e is éi serial -execution énd
without loss of generalitf ~ suppose ‘further that
e=T1T2.,..TiTi+l...Tn (i.e., the operatiomns of Tl first and then
the d;erations of T2 and so omn). If transéction Ti and
transaction Tj conflict and transaction Ti appear§‘ ‘before

*

transaction Tj (i.e., all the operations of Ti appea¥ béfqre all
the operations of Tj) then an arc will be directed'ffp;;Ti to Tj
in the dependency graph. This means that éll the arcs of DG(e)
will be directed from left to right if the nodes are arranged

from left to right in the order.T1,T2,...,Tn. It follows that

DG(e) cannot have a cycle if e is serial,”

Lemma 1

Any IMVSR-execution is also an MVSR-execution.
Proof

SuEpose that e is an IMVSR-execution. Then. by definition
DG(e) 1s acyclic, and therefore ény topological sort of the set
of nodes {T1,T2,..,Tn} yields a serial execution es. In orderr to
prove this lemma we will show that FG(e)=FG(es), i.e., the arcs
of type | and those of type 2 are the same for both flow graphs

-

FG(e) and FG(es) (refer to section 3.1).

‘>-28— o .

Suppose that there is an arc (Wi(X),Rj(X)) 4in FG(e). Then
there must be an arc (Ti,Tj) in DG(e). To\proverthat there must
be the corresponding arc (Wi(X),Rj(X)) in FG(es) we need- only
prove that there cannot be any other transaction, say Tk, where
Wk(X)6Tk between Ti and Tj (T;..Tk..Tj) in the previous sort. In
ordér to prove— this claim, assume the -existence of such a
transaction. This means that there is a.path in DG(e) from Ti to
Tk and a path from Tk to>Tj. If the version number of the version

of X created by Tk is larger than'that of the version created by

"Ti a pﬁ(h must exist from Tj to Tk (due to condition ¢ on page

24), and thefefoze, a cycle exists since there 1is another path
from Tk to Tj. If\it is smaller, on the other hand, then a path
must exist from Tk to Ti, and therefore, a cycle exists since
there 1is another path- f?%m Ti to Tk. In either case a cycle
exists in DG(e), which contradicts our assumption that DG(e) is
acyclic. Then such a transaction Tk cannot exist and therefore Tj
reads X from Ti in es, i.e., an arc (Wi(X),Rj(X)) is in FG(es).
Since the two executions havertﬁe same set of read operationms,

the arcs of type 1 are the same for FG(e) and FG(es).

Moreover, since the order of operations of the‘”same,
transaction does not change (i.e., 1if ol aﬂd 02 are two
operations belonging to transaction Ti and ol precedes 02 in e
then ol also prgcedes 02 in es) arcs of type 2 are also the same
for FG(e) and FG(es). This méans that the two flow graphs are

identical and therefore e is MV-equivalent to a serial eﬁfcution

~

g ‘ ,"29'. | .

©

es. It follows that e is an MVSR-execution. (Q.E.D.)

Corollary 1

Checking V whether an execution = e=(0(T),Fl,F2) 1is an
IMVSR-execution can be done in O(|V|*n**2) time, where V is the
set of data items accessed by the set of operations in O(T), and

n.-is the number of transactions.

A Proof

Given an execution e, we want to test if DG(e) is acyclic.
In order to construct DG(e), we check if the condition a,b, or c
is satisfied f&r each X6V. For each»XGV,‘theée conditions can be
tested in O(n**2) time. Therefore altogether, DG(e) can be
eonstructed in O(iVi*n**Z) time. Test‘ for acyclicity can be
performed in . time linear in the number of vertices and arcé.in

the dependency graph. (Q.E.D.)

N

¢

In order to show that IMVSR is a proper subset of the set
MVSR we shall give some execution which belongs to the set MVSR
but does not belong to. the set IMVSR.

Example 7

Ve construct the dependency graph for the following

1

execution

e=R3(Y0)W3(Yl)Rl(Y1)W2(Xl)Rl(Xl)W3(X2)R5(X2)WS(ZI)W1(Y2)W4(X3).

Figure 4. Dep?nggncy graph for e.

Since the dependency graph for e is cyclic, e 1is not an

IMVSR-execution, i.e., e$IMVSR.

Note that we have already proved in section 2 (Example. 3)

that e is a multi~version Serializable execution, i.e., eEMVSR.

Y

N

- 31 -

In the following two theorems (Theorem 1l and Theorem 2), we

assume that we have a set of versions of the data item X, say

X0,X1,..,Xk-1,%Xk created by a ‘ set of transactions
Dé{dO,dl,..,dk—l,dk} where di (OS;EF) denotes the transaction
which created version Xi. We will refer to the set D as the

destination set.

Theorem 1 [MURO-81]

Read operations can always be granted without creating a
cycle in the dependency graph. o

!
Proof s

The following set of arcs, among others, exist before
receiving the read request Ri(X)

(d1,d2),(d2,d3),ee.,(di,di+l),..,(dk-1,dk).

If there is no path from Ti to node dj or from dj to Ti for
all j (ISJSk), then Ri(X) can be assigned any version of. X

.

without creating a cycle in the dependency graph. KT

Otherwise, let j be the least version number of X such Athat
therer is a path from Ti to dj and let j’ be the largest version
number of x such there is a path from dj’ to Ti. We have i"<3,
since‘opherwise there would be a cycle.Then Ri(X) can be assigned
any version X1 (3'<I<j) without 'er%eting a cyele in the

dependeﬁcy graph. (Q.E.D.)

Y

- 32 -

‘Aécording to Theorem 1, if there is a path from Ti to each
node diﬂ(i;e,, if j=lj then Ri(X) can be assigned XO. However, if
there is a path from each 41 ‘to Ti (i.e.,if j’'=k) then Ri(X) can

be assigned Xk.

(.

33

4.3 Selecting an appropriate version € o

Although Theorem 1 ensures that read operations can always
be granted without creating a cycle in the dependency graph, it
does not specify how we can obtain the boundaries j and j’ (refer

to Theorem 1).

In this subsection we introduce an efficiént algorithm for
determining these boundaries by modiffing depth first search..‘Wé
only show how we can determine j, i.e., the least Qersion number
of X such that there is a path from Ti to dj, where dj is lthe
transaction which created Xj of X. In oraer to determine j’ we
can %ppiy the ;éﬁe algorithm for the converse graph. (Note tﬁat
the c;nverse graph of a &irected graph G=(V,E) can be obtained by
only reversing the directioﬁ of the arcs of E, i.e., (a,b) is an

arc in the converse graph iff (b,a) is an arc in G.).

Suppose that we have k+l1 versions of X {X0,X1,X2,.....,Xk}
at the time a read request for X is received and suppose these
" versions were created by a set of &ransactions D (the destination
set)={do,d1,d2,....V,éfk'}', where di (1=0,1,2,...,k) refers to the

transaction which created the version i of X. We call the node of

the transaction which issued the read request the origin node

(0).

We perform depth first search of DG starting at the origin
node (0), with the following modification. Each time a node' is

visited, this node is tested to see if it is a destination node.

- 34 -

)

If so; then we record this node énd immediately backtrack without
searching through it (it cannot lead us to another node which

created a smaller version).

N

The search algorithm can be described precisely by the

following recursive algorithm.

Algorithm SEARCH(O)

&

1- For each node vi adjacent to 0 do the following.
2~ Check to see if vi is marked.

3- If vi is marked, then select another node adjacent to O.

4 If vi is not marked, then mark it and check to see if it is a

.
\

destination node.

~

5- If vi 1s a destination node, then add it to the output set and
go to-step 1.

6- If vi is not a destination node, then call SEARCH(vi).

The above search finishes when all the paths starting from O
are explored. Each time a destination node is found we add it to
the output set. Suppose that the search 1is finished and the
output séé is,

D'={di11,d12,d13,...}

where 11<12<i3<.., Let j be as defined in the proof of Theorem 1.
Then j=il and therefore the read operation Ri(X) can return any
version of X Qith version number between j° and il, where 5’ is

the other bouddary to be obtained from the converse graph (refer

=35 -

to Theorem 1).

If the search is finished without getting any destination
then Ri(X) can retufn 'ahy version of X with version number
between j’ and k. Obviously, in the previous algorithm if the
deétination set D‘contains only one node, i.e., contains d0, we
do not need to search using the‘ previous algorithm. We ‘simply
select d0, i.e., the read operation returns version X0. This
clearly does not create a cycle in the dependency'graph.

Lemma‘g

Selecting the appropriate version can be done in time linear
in the number of arcs in the current dependency graph.

Proof-

Since in the previous search algorithm we do not search
through each'node more than once then this algorithm works in

time linear in the number of ares 1in the dependency graph.

(Q.E.D.)

]

- 36 -

The algorithm for determining the appropriate version number

for a new version to be created by a write operation’ Wi(X)g’is

/

quite similar to the algorithm used for the read operation. If Ti

is a write only transaction for X then we can determine j and j§’

as described previously. Otherwise, if Ti 1is a read-write

transaction for X and Ri(X) returned a version of X, say Xun,
before the write operation Wi(X), then there must be an are¢ from

each node dl (15p) to node Ti and from node Ti to each node d1l1’

. (1’>n) according to rules a and c mentioned on page 25. This

actually meahs that n is the largest version number of X such
that there 1is a path from dn to Ti and n+l is the least version
number of X such that there is a path from Ti to dnt+l where dn
and dnt+l are the transactions which created versions Xn and Xn+i,

respectively. In this case j'=n and j=n+l,

In either case, Wi(X) would create a version of X with
version number between j° and j. The following theorem (Tﬁeorem
2) shows the cases in which the'creation of such transaction will

(or will not) create a cycle in the dependency graph.

Theorem 2

Let Xj be the version of X with the least version number
such that there is a path from Ti to dj and there 1is no path from
Ti to any other transaction, if any, that read Xj-1 and let in
be the version of X:-with the largest version number such that

there is a path from dj’ to Ti, where dj and dj° refer to the

o
REh

- 37 -

transadtions which created versions Xj and Xj’, respectively.

A late write operation Wi(X) creating an earlier version of
X, say Xi’, directly before Xm (and after Xm-1) does not create a

cycle iff dm is a write only transaction for X where j’<idm<j.

Proof

Suppose that dm is a write only transactioﬁ for X. Then
creating Xi’ will introduce new arcs in the dependency graph as

follows (provided that those arcs do not already exist).

1- An aré is introduced from each node dl1 to node Ti where dl is
a transéctién which created (or returned) a version of - X with
version number less than or equal to m-l.

2~ An-arc is introduced from node Ti to each node d1° whe;e 41’
is a transaction which created (or returned) version of X with

version number greater tﬂan or equal to m.

The newly introduced arcs represent‘a path from each node 4l
to. a node d1’° through Ti, where dl1 and d1° are defined as above.
gut since there was no path from node Ti to any node dl1 or from
any gode d1l’ to node Ti and there was already a path from each
node dl to each node dl1’ before the'write operation Wi(X) then

the newly introduced arcs do not create a cycle in the dependency

graph.

- 38 -

£
Suppose that creating Xi’ (j'<i'<m<j) does not ‘create a

cycle, i.e., the newly introduced arcs due to the write>operation
do not create a éycle. In order to prove thét dm must be a write
only transaction for X we will éssume first that dm is a
read-write transaction for X. Since dm returned a version of X
Aol oy

with version number less than i’, therefore there must be an arc
from dm to Ti. But since Ti created a version of X with version
number less than the version number of the §ersion’created by dm,
therefore there must Se another arc from Ti to dm, 'i.e., - the
newiy introduced arcs create a cycle in the dependency graph
which contradicts our initial assumption that the newly

introduced arcs do not create a cycle in the dependency graph.

(Q.E.D.)

The above theorem implies that the set IMVSR contains all
the schedules (executions) which can be accepted by previously

introduced multi-version schgmes [STEA-76, MURO-81, MURO-82].

In the multi-version scheme introduced by Stearms, et al.
[STEA-76], a transaction Ti must read a data item X in order to
update it. We have removed this restriction and proved that the
removal of this restriction can iéad to accepting a class of

write operations which would otherwise not be accepted.

In the multi-version scheme introduced by Muro, et al.
[MURO-81, MURO-82], the write operations create version numbers

according to the arrival time, i.e., if Wi(X) precedes Wj(X) then

¢

F2(Wi(X))<F2(Wj(X)). It is easy to see that all the late write
operations would be rejectedr and any execution which can be

accepted by their scheme can also be dccepted by our scheme.

Papadimitriou, éf al. [PAPA-82] defines a set DMVSR of

-

multi~version schedules in terms of a polynomial time algorithm
for testing memebership in it. Since the input to the algorithq

1.

is an execution without the function F2, we cannot use their

algori;ﬁg”;;\\%\\scheduling algorithm. Here we shall 'show that

there /is an execution e in IMVSR whichvis not in DMVSR if F2 is

removed from e. Consider, for example, the following execution

‘(we express it without the function F2)

e=W1(Y)W2(Y)W2(X)RI(XIWI(X).

There would be a cycle due to arcs from Tl to T2 (since T2

t

creates the next version of Y after'Tl) and from T2 to Tl (since
Tl returns the version of X created by T2). However, this
execution can be accepted in our scheme in this way

e=W1(Y1)W2(Y2)W2(X1)R1(X0)W1(X.5).

If we constructed the dependency graph for this execution it

would be acyclic (only one érc from Tl to T2).

- 40 - ¢

5. IMVSR-Scheduler

In this section, we describe the IMVSR-schediuler and explain
. w the scHeduler responds to each input réquest. We will modify
the transaction model given in section 2 to 1include two
additionél operations.
1- Begin transaction, E(T).
2~ Commit transaction, C(T).

In the new model each transaction Ti begins with B(Ti)v and ends
’ -/

~

with C(Ti).

The input to the IMVSR-Scheduler is the sequence of arriving
requests from wuser transactions including the begin and the

commit operations.

5.1 Processing the begin operation

Processing the begin operation is trivial. The begin
operation indicates the arrival of a new transaction. In response
the each begin operation B(Ti) the scheduler creates a new node

for transaction Ti.

- 41 -

5.2 Processing the read operation

The read operations in our scheme are always granted and
each read operation returns an appropriate version without
causing inconsistency (creating a cycle in the dependency graph).
In response to each read request, ﬁi(X), the scheduler searches
the vefsions of X currently maintained in the system and selects
the appropriate version which can be-assigned to Ri(X) without

creating a cycle in the dependency graph‘(réfer to Theorem 1).

- 42 -

5.3 Processing the write operation

Processing a write operation is quite similar to processing
a read operation, but instead of choosing the appropriate version
the scheduler finds the version number of the new version to be

created by the write operation.

The new concept we are using in processing a write operation
is that version numbers do not correspond to the order of the
arrival times. Instead we may allow a late write Wi(X) to create

ENY

an earlier version of X provided it does not create a cycle 1in

the dependency graph.

When the scheduler receives a write request Wi(X), it
updates its dependency graph as if it granted the write
oberation. If the newly iﬁtroduced arcs do not create a cycle 1in
the dependency graph, then the scheduler officially grants this
operation and creétes,a new version of X. And if the new arcs
cause a cycle to be created then the partial execution received
so far is not an IMVSR-execution if Wi(X) is actually appended to
it. In this case the scheduler rejects the write opération>and
initiates the abortion process (aborting transactionx Ti which
issued Qi(X) and all transactions>strong1y dependent on Ti). The

abortion process may. propagate to include many other
3 :

transactions.

- 43 -

5.4 Processing the commit operation

The commit operation is the 1last operation of each
transaction. If the schedulér grants a commit requeét by a
transaction Ti, we . say that Ti %@s been com;IEted, which means
that all the operations of Ti have been successfﬁlly processed,
Ti Vwill not be aborted in‘the future, and the effects of Ti will ’
be made permanent. However, there is an impbrtant condition which
must be vsatisfied by any trangaction to be deleted from the
dependency graph. When the scheduler receives ‘a commit request
from a transaction Ti, it checks to see if Ti satisfies this
condition. If the,condition is not satisfied themn Ti must wait
(add it to a 3335_1155) until the condition is satisfied. if the
condition is satisfied then the écheduler delétes Tk from the

dependency graph together with all the arcs directed from it

(outgoing arcs). However, a transaction may be. committed before

it is deleted.) Yi;:;iy\\
i ~

A source node

We call a node v of a'directéd graph a source node if it has

no incoming arcs, i.e., there is no arc directed from any other

node to v.

Obviously from the previous definition if a node Tk is a

source node in the dependency graph then transaction Tk is not

Sa
R

dependent on any other transaction in the system.

- 4h -

5.4.1 The deletion condition

A transaction Tk is said to satisfy the deletion condition

after Commit(Tk) has been received by the scheduler if its node.

in the dependency graph is a source node.

Commit request by a transaction Tk may be grgnted if it is a
source node with’respect Fo the primary. arcs, before' it 1is
deleted. (

Aborting or deleting a‘J;ransaction Tk may make another
transaction Tj satisfy the deletioﬁ condition. In our scheme,
after a deletion or abortion the scheduler checks the wait 1list

to see 1if any transaction (or a set of transactioné) satisfies

the deletion condition.

Clearly, a source node in _the dependency graph cannot be
involved in a cycle since it has-only oﬁtgoing arcs. Moreover, if
a transaction Tk satisfies the deletion condition (i.e., its node
in the dependency graph is a source node and Commit(Tk) has been
received by the schedqler) iés node in the dépendency graph will
remain a source node since it will not issug any new request.
Thus, the deletion of transaction Tk satifying the deletion
condition will nét cause any problem in the future (i.e., Tk

cannot get involved in a cycle).

When we delete a transaction Tk we delete its node 1in the

dependency graph and all arcs going out of this node. If

-~ 45 -

trénsaction Tk created a version of a déta item X, say Xk;, we
also deléte any version of X with number less thén k. Obviéuély
there will be bnly.oﬁe version of X with number less than k’
(otherwise the node Tk'would not be a sourceAnode). This version
may have bgen created by the fictitious transaction TO or any

other previously committed transaction.

Theorem 1 was proved withrthe implicit assumption that all
versions are kept and the dependency graph contains all
transactions. Let Ti and dj be as defined in the proof of Theorem
1. Since _only source nodes are deleted, if there is ‘a path from
Ti to dj in the complete dependency graph, then the same lpath
must be 1in the current (pruned).dependency graph. Thereforé the
version Xj in the pfoof of Theorem 1 can be ‘found using the
current dependency -graph. We show here furthermore that each read
request can be granted a version that is still kept by the

system.

Let Tk and Xk’ be as defined above (i.e., transéction Tk
satisfies the deletiég condition and created version Xg' of X)
and let Xkl be a version of X created b? a previously deleted
transaction, 1i.e., k1'<k’. 1If a read operation can be assigned
Xk1l’ withdut éreating a cycle in the (complete unpruned)
dependency graph, then k1’ must satisfy the boundary constraints
of Theorem }, i.e., j'<kl1’<j, where j and j° are defined as in

the proof of Theorem 1. But since Tk is a source node in the

current dependency graph, there can be no path from Ti to Tk.

7

- 46 -

URNES

This implies k’<j. We thus have j'<kl’<k’<j, i.e., k' also
satisfiés the the constraints of Theorem 1. This implies that a
read operation which could be assigned a deleted version wifhout
creéting a cycle in the dependency graph can also be assigned Xk’

without creating a cycle in the dependency graph.

vf”\k

- 47 -

6. Cyclic restart and'longrtraﬁsactioné

Suppose that we have two transactions executing concurrently

as shown in figure 5, and also that the two transactions access

the data items X and Y according to the timing pattern.

Consider the data item X. Ti reads X0 and writes X!. Tj, on
the other hand, readE/XO and tries to write a new version of X at
‘time t=;1. Since granting Wj(X) will create a cycle iﬁvolving Ti-
and Tj, the scheduler will abort Tj. Assuming that the restart
for Tj beginscapproximately at . time t=tl, at time t=t2 the
scheduler will™ abort Ti, and subsequently at time t=t3 the
scheduier will abort Tj again. Tﬂe abortion of Ti and: Tj may
repeat itself forever without Ti or Tj being committed. This is

an example of the "cyclic restart problem'" [STEA-76].

Stearns, et al. have observed that minor changes in time may

not prevent cyclic restart. =

- 48 -

Ti -1I- e B

R1(X0) Wwi(x1) R1(YO0) Wi(Y#*)

Tj ~I-—=—=m===I=m=mmemmmmm e e=] === -—-

R§(Y0) Wi(YL) Rj(X0) Wj(X%)

R3(Y0) Wi(Y1) Rj(X0) Wj(X*)

Ti : —Jm—————) G

Ri(X0) Wi(X1)

------,..-...-..‘.....-*-o.--.----.-o-..-*.----..--*time

tl . t2 t3

Figure 5. A cyclic restart
(Note that * associated with é write operation means rejected
operation and a dashed line is drawn beginning at the start of a

tranaac;ion.)

- 49 -

v

‘A cyclic restart may take several forms. For example, a

transaction Ti may be involved in a cyclic restart with two or more

@

different transactions individually as shown in figure 6.

- 50 - .

Ri(LO) Wi(L1) Ri(Z0)
Ti -I-1 I-1 : I-1- I-—- -
Ri(X0)Wi(X1) Ri(YO) Wi(Y*)
g e) I-—— e

Rk(Z0) Wk(Z1) Rk(LO) Wk(L%*)

Tj =L=mmmmmmmm e o o ————- N

Rj(Y0) Wi(Yl) Rj(X0) Wj(X*)

Tj -I-——- I--- 1 -1---

Rj(YO) Wi(Y1) Ri(X0) Wj(X*)

Tk -1 I-—- -1 1-—-

Rk(Z0) Wk(Z1) Rk(L0O) Wk(L%*)

N,
Ti _ -I-I---=-I-I---=
Ri(LO)
lll.lll.l..l'!..l...-*u*........-......l .o.tocooo*o*lt
tit2 t3 t4t5s

Figure 6. Ti is involved with Tj in a cyclic restart

and with Tk in another cyclic restart.

- 51 -

It is also possible for a cyclic restart to involve a large number
of transactions. For example the three transactions Ti,Tj, and Tk are

'Envolved in a cyclic restart in figure 7.

T3

Ti

Tj

Ti

- 52 -

O, S 1 1—- B S A

R1(X0) Wwi(X1) Ri(Y0) Wi(Y*)

————1 S I-— S

R3(Y0) Wi(Yl) Rj(z0) Wi(z*)

>~
------- R G) O
™ Rk(Z0) Wk(Z1) Rk(X1) Wk (X*)
4
———— R [-——=——mm I--
Ri(X0) Wi(X1) R1(YO0) Wi(Y*)
_____ I_-.__.._.__'_I____._-
Rj(Y0) Wi(Yl)
N el I-—-
Rk(Z0)
>

tl t2 t3 t4

Figure 7. A cyclic restart idvolving

three transactions Ti, Tj, and Tk.°®

-~ 53 -

A cyclic restart does rnot necessarily mean aborting one
transaction at a time. In some cases two or movre transactions may
be 1involved in a cyclic restart in such a way that all the
transactions may be aborted at the same time. For example, in
figure '8 transaction Ti and transaction Tj are involved in a

cyclic restart in which the two transactions will be aborted

simultaneously at time t=t1,2t1,3t1,... (Note that when the

scheduler aborts Ti it “also aborts Tj since Tj is strongly

dependent on Ti).

- 54 -

Ti I-—-——v e —————— e ! -1

Ri(X0) Wi(X1) : Ri(YO)Wi(Y*)

Tj =mmmmmmmmm e I-—--- I----- I----- I mmmmmmmm e m e

R§(X1)W3 (X2)R3 (YOIW3 (Y1)

* *

s s T e s s e s e ..-....-.,--..-..-*-.-.-....-..-.*..-....time

e

tl

I tesesvot3eceanss

Figure 8. Transaction Ti and transaction Tj are involved
AN

in a cyclic restart in which the two transactioms will be
aborted simultaneously at time t=tl1,2t1,3tl,....

The bottom part of this figure will be used later.

55

\

From thé above examples we conclude that a transaction Ti
may be involved in one or more cfgjzé\restartsVsimultaneously. If
a transaction is involved in a cyclic restart then it may stay in

the system forever.

"We may also ask whether it 1s guaranteed for each
transaction to commiﬁ if it is not involved in a cyclic restarts
Unfortunately, the answer is no. For example a transaction Ti
{most likely, a long transaction) may étay in the system forever
without. being involved in a cyclic restart because it conflicts
with different transactions each time [KUNG-81]. Ti may be
aborted repeatedly without ever finishing. At the same time the
existence of such a transaction'méy cause severai transactions to.

be aborted.

Therefore the existence of a transaction which continually
gets aborted does not necessarily imply a cyclic restart.vThis
fact implies that the detection of a cyclic restart may be very
difficult, if not impossible. We thus must cure a "desease"

without khowing that it is there.

- 56 -

6.1 Detecting a cyclic restart

‘Since a .cyclic restart may take many different forms,
detecting a cyclic restart may not be an easy task. We shall give
some examples to show that detecting a cyclic restart 1is indeed

very difficult.

Transaction Ti and transaction Tj may be aborted due to
conflicts with each other one or mofe times and they ﬁay

subsequently proceed to completion as éﬁ;;; in figure 9.

T{ -I-—=mm=mm R I--———-- e ———

Ri(X0) Wi(X1l) Ri(Y0) Wi(Y*)

RF(Y0) WH(Y1)RI(X0) Wi(X*)

Ti ; S (R NS, S

Tj T o I--

tl ’ t2
Figure 9. Tranhsaction Ti and transaction Tj are aborted
due to conflict with each other and they subsequently .

proceed to completion.

Transaction Ti may be aborted due to conflict with more than

one transaction as shown in figure 10.
A long transaction may also be aborted due to conflict with one

-

or more . transactions and may cause other transactions. to be .

aborted and still this case may not be a é¢yclic restart.

Ti —~I—&—-ie S—— =T : -

Ri(X0) COWA(X*)

Tj =I—-—————m=T——m ' D

R3(X0) Wi(X1)

Tk e S I-— : -

Rk(X1) Wk(XZ)Y

tl

Figure 10. Transaction Ti is aborted because of

transaction Tj and transaction Tk,

4

_necessity, indirect.

-~ 58 -

-3

How can we prevent a cyclic restart from repeating itself

forever and guarantee long transactions to commit?

The major difficulty in coping with cyclic restart 1is our
inability to determine the cause of an abortion as cyclic
restart, as the aBove'examples illustrate. Therefore we cannot

directly deal with c¢yclic restarts. Our approach will bé, of

N

|
\

| - /
. One approach to solving this problem is to assign different

-

priorities to different transactions (Bernstein, et al.
[BERN-81], this method was proposed for solving cyclic restarts

due to deadlock) and to test priority to decide which of- the

conflicting transactions to abort. For example, we would abort Ti

. for Tj only if Tj had a higher priority than Ti (i.e.,

~

P(T1)<P(Tj), where P(Ti) is the priority assigned'to Ti).

One problem with this technique 1is that some unfortunate
transaction (most likely long transaction) may stay in the system

forever because it conflicts with a different transaction each

time.

¥

Another problem may arise when a trénsaction Ti is involved
in a cyclic restart with two transactions Tj and Tk where
P(Tj)(P(fi)<P(Tk). In this case we cannot easily apply the
previous policy f;r deciding which transaction to abort. This is

]

because if Tj and Tk are strongly dependent on Ti, the scheduier

T

Pr Y- Lol

59

will abort the three transactions. Note that selecting Tj for

abortion may lead to aborting Tk, which has a higher priority

thiji, if Tk is strongly dependent on Tj. N

Another approach is to use timestamp (cf [STEA-76]). In this

approach each transaction is given a unique timestamp when it

arrives. This timestamp is greater than any timestamp given to

_ previously received transaction. If two transagtions Ti and Tj

conflicf, the order of time stamps between Ti and Tj is I?sed to

determine whether Ti or Tj should be restarted.

This techinque is quite similar to the priority technique
except that we -are assigning a timestamp ihitead of a priority

(note, in the previous technique a new transaction may be given.a

' higher'prioriiy than an old transactioniwhich,arrived earlier).

As a result, it has the same disadvantages except that long

transactions are guaranteed to commit.

Another possibility for _solving the cyclié.‘r tart . problem
might be to use a random time delay. Whenever a transaction Ti is
aborted we randomly delay this transaction instead of restarting

it immediately. Obviously in this method if Ti and Tj are

involved in a cyclic restart it is not guaristeed to break this

cycle after the first delay and perhaps we may abort (and

randomly delay) Ti and Tj many times before breaking the cycle.

AN

- 60 -

In some cases this method may even fail to prevent the
cyclic restart from repeating itself forever. For example, in the
cyclic .restart shown in figure é, Ti and Tj will be aborted (and
randomly delayed) at the same time. If the difference between the
time delays of Ti and Tj is such that Wi(X) precedes Rj(X) anq ‘
Wi{Y) precedes Ri(Y) the two trén;actions may sfay fo;everv(;efer
to figuré 8).;fhat is bgcause the sa;é conflicts between Ti énd

Tj will occur again.

We may also delay transactions unnecessarily even if the
abortion is not due to a cyclic restart. Anothef problem with
this scheme 1is that long transactions may stay.in the system

forever. ‘

A giﬁple .solution fof',ther pre%ious 7prob1ems (a cyclic
restart and Iong‘transacfions)vis‘to assign each transaction a
counter (éborgion(couéter) which ipdicates the number of times
this transaction has beeﬁ aborted: When . this count exceeds a
specific 1limit, it will not be restérted again. This transacfion
will waitfuntifréll other transactions aboted before (presumably

because théy conflict with this transaction) will be exeéuted for

completion. After that this transaction will be executed without

abortions If during the time this transaction waits one of those - - =

. Lransactions,excéeds_thg limit, it is not restarted immédiatglx,
but will be executed after the execution of this transaction. The
scheduler will not allow two (or more) transactions which

eiceeaed i&g/ugbqrtion limit to execute together (otherwise they

kY

- 61 -

may conflict with each other). Executiﬁg this transaction without
abortion does not mean executing it alone. It simply means that
when this trahsaction,is executed, the scheduler will abort any

other transaction that conflicts with it.

This solution is not too restrictive compared to some other
methods of control. For example, in some variations of two-phase
~locking a transaction may hold all locks until termination (see

Bernstein, et al. [BERN-8P.

It is clear that this solution prevents cyclic restart and
guarantees long transactidns to commit. It can also deal wifh all
the differentiformsiof cyclic reétart mentionea before. A long
transaétion Ti inyqlved with one or more transactions in a cyclic
restarf is executed later (it is most likely for Ti to exceed the

limit before the other transactions).

Xung, et al. [KUNG-81] have introduced a solution ,for_ a
similar but different problem; i.e., ""starving" long
transactions, based,on keeping'track‘of the nhmberv o%- times a.
transaction is- restarted.l When this count exceeds a limit, the
corresponding transaction gets the highest priority and 1is.

_executed alone -while all other transactions wa t for its
completion. Obviously, their solution is the opposite .of ours.
Our justification is bgied on the idea of isolating the cause of
the problem (presumably the long transaction which exceeded ‘the

limit). Stated another wéy, it is Dbetter to make only one

- 62 -

transaction wait and to achieve as much concurrency as possible.

Unlike their method, we let a transaction which exceeds the

limit execute with other transactions.
. AT

~The disadvantage of our solution is -that conflicting
transactions may be ;ést;rfed several timés'béfore they proceed
to completiqn. But since detecting cyclié restarts 1is very
diffiiilt as we have shown, this problem may arise in most of the

other solutions.

e

‘_There is probably no single best method for resolving cyclic
restart and starving transactions. The performance of each method
will depeﬁd on characteristics, such as lengths or frequency of
the write operations of the transactions. A possible further
research would be to compare the different methods mentioned

above for various sets of tramsactions.

- 63 ~

7. Conclusions

We have presented a new multi-version scheme for controlling
concurrent accesses to a database system. Multiple versions of
each data item are maintained. When the scheduler receives a read
vopergtion for a data item X, Ri(X), it searches tﬁe versions of X
currently maintained in the system and selects the appropriate
version which can be assigned to Ri(X) without'creatiﬁg a cycle

in the dependency graph.

~

Processing a write operation is quite similar to processing
a read opération but instead of selecting the appropriate version
the scheduler finds an appropriate version number for ‘thée new

version to be created (refer to Theorem 2). ‘\‘—

Unlike previously introduced multi-version schemes [STEA-76,
MURO-81, MURO-82], a write operation may be allowed to créate an
earlier version. If the write operatiqn comes in time it creates:
a new version with the largest version number. However, if it
comes late it creates an "earlier" version, provided it does not
create a cycle; otherwise the issuing transaction is aborted. The

abortion process may propagate to include some other

transactions.

An efficient algorithm for selecting the'appropriate version
to be read or to be created was introduced. This algorithm works

in time linear 1n the number of arcs in the dependency graph.

- 64 ~

We have proved that the fixpoint set of our scheduler

contains those of the other schemes and therefore our scheme

achieves more concurrency.

We have also analyzed the cyclic restart problem [STEA~76]

and introduced a simple solution.

[BAYE-80]

[BERN-81]

[ESWA~76]

[KESS~80]

[KUNG-79]

{KUNG-81]

- 65 -~

References

Bayer, R., Heller, H., and Reiser, A., Parallelism
and recovery in database systems, ACM TODS éi_Z

(June 1980), 139~156.

Bernstein P.A. and Goodman -N., On concurrency

control in distributed database systems, ACM

- Computing Surveys 13 (June 1981), 185-221.

Eswaran, K. P., Gray, J.N.; lorie, R.A., and

\Traiger, I.L., The notions of consistency and

predicate locks in a database system; CACM 19, 11

(Nov. 1976), 624-633.

Kessels, J. L. W., The readers and writers problem

avoided, Info. Process. Letts. 10, 3 (April 1980),

159-162.

Kung, H. T., and Papadimitriou, C. H., An

optimality theory of concurrency control for

databases, Proc. ACM-SIGMOD, -Intl. conf. on

management of data, (May 1979), PP. 116~126.

Kung, H. T., and Robinson, J. T., On optimistic

methods for concurrency control, ACM TODS 6, 2

(june 1981), 213-226.

(MURO-81]

[MURO-82]

<

[PAPA-79]

[(PAPA-82]

[REED~79]

[STEA-76]

- 66 -

1

Muro, S., Minoura, T., and Kameda, = T.,
Multi-version concurrency control for a database

system, CCNG Report E-98, Computer Communications

Networks Group, University of Waterloo, (Aug.

1981).

Muro, S., -Kameda, T., and Minoura,>’ T.,
Multi-version concurrency control scheme for a
database system, TR 82-2, Department of Computing

Science, Simon Fraser University, (February,

1982).

Papadimitriou,-‘c. H., The serializability of

database updates, JACM 26, 4 (Oct. 1979), 631-653.

Papadimtriou, C.H. and Kanellakis; P.C., Omn
concurrency control by multiple versions, Proc.

ACM Symp. on Principles of Database Systems (March

1982), 76-82.

Reed, ﬁ.P., Implementing = atomic actions on

decentralized data,” Proc. 7th ACM Symp. on

Operating Systems Principles, (Dec.1979), 66-74.

Stearn, R., Lewis, P., and Rosenkrantz, °~ D.,

Concurrency control for database systems, Proc.

IEE&Z— Symp. Foundation of Comp. Sci. Houston,

Texas®’, (Oct. 1976), 19-32.

