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' Abstract

-

Rd
B v
=
K

This thesis r‘epbr‘ts a study of some- new méthods_

of con:iputing perfect hash =~ functions. After

‘ stating the pr‘éblem and briefiy ™ discussingj

previous solutions, we present Cichelli's

algorithm, which introduced the form ‘of the

solutions we have pursued in this research. An

“informal analysis of the problem is given,

followed by a presentation of three algorithms

7

which refime and generalize Cichelli's method in

different ways. We next ‘r'epor';cr the results of

applying programmed versions of thvese algorithms

to problem sets* drawn from artificial and

natural Jlanguages. A discussion of " conceptual

&

designs for °"the application of perfect- ha:s"h’

b -3

. functions to small and large computer lexicons is

followed by a ‘summary -of our npesearch and

suggestions for further work.



"...pataphysics will be, above all, the science of t’he
',particular*, despite the common opinion that the only science
is that of the general. Pataphysics will 7e\x:amine the laws
governing exceptions..., since ther laws that are suppoéed to
have been discovered in the traditilonal universe are also
correlations of exceptions, albeit more frequént ones..."

- Alfred Jarry, Exploits and

- Opinions of Dr. Faustroti,

Pataphysician
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’\;“b 1. INTRODUCTION
Perfect hash functions, a refinement of key-—to—address transformation.
techniques, provide single probe retrieval of keys from a static table.
By single probe r‘etvrieval'wre meant direct, random access to items in a
‘database or table. This technique will be useful in any language

processing application which has a fixed vocabulary of fhequently used

words.

1S

Given a set of N keys and a hash table of size r > N, a perfect

.

hash function maps the keys into the hash tablie with no collisions.

The loading factor LF of a hash table is the ratio of a. number of
keys to table size, N/r. A minimal perfect hash function maps N keys
into N continguous locations for a loading factor of 1. We call a perfect

hash function with a loading factor greater than or equal to 0.8 almost

minimal.
e .
Wiederhold [1977, .p. 122] distinguishes deterministic and probabilistic

direct access methods. A per‘fec;i hash function is a deter‘ministib
procedure which Iocatei_\eaph key at a distinct table address. Unlike

probabilistic key-to-address  transformations, perfect hash functions do

not allow collisions. This guarantees single probe retrieval and
eliminates the need for collision resoclution.
Three criteria of a good hash function are

1. :the hash address is easily calculated;

2. the loading factor of the hash table is high (for .a given set
of keys); and, ' '

2. the hash addresses of a given set of keys are distributed

uniform!y in the hash table.

-

A perfect hash function is optimal with respect to criterion 3; a minimal
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' G, . . l. -, . ..‘ l
perfect hash function is also optimal with respect to criterion 2 . .

-Hash functions for applications which allow inse\{ion of new keys

assume uniform random occurrence of members of the key space. They

°
-

are therefore designed to transform these keys into addresses Whiéh are
‘s%cattér*ed randomiy but evenly in thve ‘ad,dr*ess space. Per‘,ﬁeét hash
functions are feasible only for static sets of keys.’ The addition of one
new key‘will usually require that/Aa new functionAbe‘ defined for th:e

- entire set. When we are given a static _set of keys, however, we cant_/

1

consider searching for a hash function which provides optimal

[N

distr*ibuti~on of the keys in the address space.
Perfect hash functions are difficult to find, even when v;/e ‘acﬁcebt

an almost minimél solution. Knuth [1973] estimates that IOnly one in

about ten million fuhctions is a perfect hash function for rhappfng the

31 most frequent English words into 41 addresses. Functions which

produce a minimal hash tabfle further complicate the search.

1.1 Previous Work on Perfect Hash Functiohs

. In this section, H is the name of a haéh function, H(ki) is the
hash address of the i~th key in K,v the set of keys, and A,B,C,D
>r*epr*esent constants.
= The earliest published work on perfect hésh functions appeared
nearly twenty years ago. M. Greniewski and N. Turski [1963] used a
perfect hash function of the form | |

H(k‘i) = A *k +B

to m{ap the operation codes of the KLIPA assembler into a nearly minimal

B3

Morris [1968] provides an excellent survey on the use of hash functions.

T

~ ‘
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hash table. The authors did not provide an algorithmic method for
finding such a mapping, but their idea led to more recent .investigations -
by R.* Sprugnoli and by/ G. Jaeschke.

Sprugnoli [1978] presents two algorithmic methods for Qducing

perfect hash functions. The Quotient Reduction method yields a function

of the form . ' S

Hg (ki) = floor((k.+A)/B), =
The second method, called Remainder Reducti}on, fihds a perfect hash |

function with the form

B

. 4’ g
Hr(ki) = floor( ((A + ki*B) mod C)/D).

~

Sprugnoli's methods have limited utility; for sets of more than, ten.k_eys,-
the resulting hash tables are much 'Iar‘ger*v than the number of keys.

The author shows that this can be overcome to some extent by par‘ti'tioning

larger sets into -segmehts o% aboLift ten” kéys and computing a per‘fect hasﬁ
function :for each segment. Applyingvthis idea to ’the 31 most frquent
‘English words, Spfu'gn.oli produces a minimal berfect hash table in two
hours of hand compufc.ation by partitioning the- keys into four segments.

The most recent publication on the topic of perfect hésh functions,
by G. Jaeschke [1-9;81—],“_'deﬁihe,§:\'§ method which he calls Reciprocal
Hashing. The f\or‘mr of Jaeschke's hash function is

J
The strategy used here is similar'to Sprugnoli's in that number theoretic

H.(ki) = floor‘(A/(B*ki + g)) mod D..

properties of the machine chér‘actef'code representation of the keys are
used to guide’ the search for appropriate values of the constants.
Recip'r:ocal hashing produces minimal hash tables, but only fér‘ sets
of fewer than fifteen keys.. Jaeschke, like Sprugnoli, accommodates
larger sets by par‘titioning.. He reports producing a minimal perfect

hash table for 1003 identifiers partitioned into 163 groups.

03 B T s bt e Db S 0 e
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"All three of these 'numerical' solutions have two undesirable

features: ‘ .
.. the maximum. size of the problem set for a single hash function
is fifteen keys; and,
2. the solution to thé& problem is machine dependent: character

code representations of the kexé are transformed into hash

addresses.’
' Y

A different appr‘oacr‘w to the problem, based 6n the assignment of

integers to the letters of 'keys, eliminates both faults.

1.2- Statement of the Problem

viThe pEobl‘em we haQe setl ou‘r‘selvesv in this research is to develop
f;ster' and more Qeneral algorithms for finding perfect hash functiornis of
the form suggested by Richard Cichelli [1980]. “

G. Jaeschke [1980] points‘out several conditions under which
Cichelli's method is inapplicabl'e to 'g-iven sets of keys. Th,esg: conditions
are a‘H related to ’the fact tl'.wat‘Cichell.i uses a fixed set of characteristics
to Lc!istinguish keys. We set out to find ways of choosing a é,et of- key '
characteristics so that our methods can be applied to any set of keys. .

Three characteristics distinguish different keys:

1. the rletter‘s which appear in a key;
2. the ordering of those letters; and,

3. the length of a key.
We wish to generalize Cichelli's method by méking the choice .of the.set
of key' pr‘ope;‘ti’es used by the hash function depend oﬁ the keys given
in the problem set. |

The p-r‘ocess which dominates the ;:ost of using Cichelli's method is
the combinatorial search of a large so!ution space. The cost of thisr

search dictates the upper limit on the size of key sets which can be



processed. We investigate several heuristic search methods in an effort

»

to speed up the search, yet produce hash tables which are nearly

optimal. The.object of a faster search is to raise the upper bound on

- &

tHe &ize of the key sets for which perfect hash functjons can be found.

" Our motivation for undertaking this research is to‘use perfect
hash functions to organize large dictionaries (50 - 70,000 items) for
use in computational studies of natural language. Affificial languages
for programming and conversatioffal terminal interactions, for example,
will also be provided with efficient access to their smaller lexicons

. N
using perfect hash tables.

In this thesis we report an experimental -study of three algorithms
we deve_leped for computing perfect hash functions. We give an. im(é;r*mal
analysis of -our approaéh to the problem of finding such functionsjﬁ and
then outline the three algorithms we‘have developed. This is follovy/ed
by the presentgtion of experimental results obtained when eagw algorithm
was applied to several sets of keys from natural and artificial languages.

. - L2
These experimental results illustr‘éte the successes and Iimitg’iions of

each algorithm with respect to two factors:

.

1. the speed with which a solution is found, which determines
the upper limit on the number of keys which can be processed
by each algorithm; .

2. the minimality of thé-: resulting hash tables.

Following the presentation of experimental results, we present conceptual
designs for the use of these algorithms for hash tables for large and

small key sets in practical systems.

1.3 Cichelli's Method

The research reported in this pa‘per‘ is based on an algorithm

recently presented by Cichelli (1980) for computing machine-independent,
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minimal perfect hash functions of the form:

~

hashval = hash key length +
: s

the associated value of the key's first letter +

- =

the associated value of the key's last letter
C.icﬁéili’s hash function is m‘achine—indepéndént because the chaﬁactgr
code used by a par‘ti‘cula:“ machine never enters into the. Hésh calculation.

Cicheﬂlli'é algdfithm (Algorithm 0), uses a sfmpJe backtracking |
- process to find an as§ignment ‘of non-negative integers to letters which
‘results in a perfect minimal has‘h'function. Cichelli employs a two-fold
ordering process tow arrange the static set of Keys |r1 such a way'that-"
hash value collisions will occur andr be resolved as éarly as possible
during the backtracking. pr‘t;cess. This double‘or"dering;; provides a
nécessary reduction in thef size of the potentially large search space,
thus considerably speeding th-e computation ofrassvociated vatlues.

In spite of Cichelli's ordering strategies, his method is found to
require excessive computation to find perfect hash fuhqtions for sgts of
more than about 40 keys. Cichelli's method is also limited since two
keys with the same first and last letters and the same length are not
permitted.

Cichelli's t\&o—step order}ng» heuristic first arranges the static'set

of keys in decreasing order of the sum of frequencies of occurrence of

~ -

thﬁr‘ first and last Iet/ters. Note that by sorting the keys we are

. - - . /.\‘../ . | ‘ N

implicitly sorting 'the letters in such a way that letters which occur
~most frequently are the first to be assigned integer values. In his
second step, the order of the key list is modified so that any key whose
hash value is determined (because its first and last letters have both
occurred in keys which precede the current one) is placed next in .the

list. Cichelli's double ordering has the effect of forcing the maximum

=
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number of collisions to occur near the root of the backtrack: search tree,

where pruning eliminates the largest subtrees and':ther*efor‘e gives the

greatest reduction in the cost of finding a solution. et o ' .
The following is an olUtline of Cichelli's algorithm: '

ALGORITHM 0 . .o o .

stepl: compare each key against the rest. If tWo key% have the
same first and last letters and the same length, report ‘:A?‘

conflict and stop; otherwise, continue.

step2: ordér the keys by non-increasing sum of frequencies of

occurrence of first and last letters.

step3; reorder the keys from the beg’inning of the list so that
' if a key has first and last letters which have ap)pe§1r~éd
previously in the list, then that key is placed next in the
fist. ’ ]
s,tepl;: add one. word at a time._.to the s’ol‘ution,‘ checking for hash
value cohflicts at each step. I‘f a conflict occurs, go back
to the previous word and vary its associated values until
it is placed in the hash table successfuily, then add the
next word. | _
| ™~
We now give an informal analysis of the complexity of Cichelli's

aigorithm. » : ¢

stepl: ‘asvfor‘mulated here, this is an O(NZ) compufation. The

same check can be made by isolating and sorting the first
and Iast.letter“ for eath key, then sér'ting the N kéys Vinto «
lexicographic order on these sets of isolated letters. We can
then make one pass through the keys comparing neigﬁboring
keys for matching groups of isolated letters. The cost of
this procedure would then be dominated by the cost of the
lexicographic sort, which can be done in time proportional

to N log2 N.



stepZZ: fhis initial ordering. tallies the frequency of occurrence
of first and last letters, which requires one pass through
the N keys. A second pass is then made to calculate the’
sum of fr'equencieé for eactl key. SoAr'ting the kéys into
descending order of "this sum, the: dominant cost of this

1

step, requires time proportional to N I'og2 N.

step3: the second or‘der'i_ﬁg is an O(Nz) heuristic. As each key
is added to the new ordering, the remaining keys in the
old ordering are scanned to decide which, if any, of them
now have their hash values determined. This may require

(N=1)*(N=2)/2 oper‘étions.

step4: despite the tendency of the two orderings. to reduce the
search, for most sets of keys the backtracking phase of
this algorithm is the most expensive. An average-case
complexity measure is dif‘fi'cult.to calcutate; Simon and :
Kadane {1976) estimate an a.ver‘age search to include about
dne;half the tota! search space, giving a loose estimate of
0(m°/2), where m is the size of the domain of values for |
reach letter and s is the number of letters which occur in
first or last position. V

o

We have found that the time required to find a perfect hash function

using this meth%c.i varies greatly, depending less.on the number of keys in

the problem set than on the relationships among keys in terms of shared

letters, A-‘goluti'on for one set of 61 keys was found in 135 milliseconds
of CPU time%(for the search), while no solution was found for another set
- of 64 keys after running the algorithm for over one hour of elapsed time.

These trials lend credibility to Knuth's (1975) observation that

"Sometimes a backtrack program will run to completionﬂin
less than a second, while other applications seem to go on
forever...A 'slight increase' in one of the parameters of a

backtrack routine might slow down the total running time



by a factor of a thousand...These great discrepancies in
execution time are characteristic of backtrack programs, yet
it is .usually not obvious what will happen until“‘the 'algoriAthm

has been coded and run on a machine."

Fa)

. v /
'Cichel_li's algor:ithm represents a significant improvement on previous
work on computing perfect hash fl..mctions‘. Algorithm O ca»lculétes machine
indeper"\den’t perfect hash functions for sets of \‘Jp to about forty ke'y‘s,
while the methods of Spr‘ugn‘bli' and Jaeschke‘.\\?ﬁe machiﬁe dependeht
character codes and can find solutions for no more than fiftéen keys in
_a'r'easorjable amgunt of computing time. Cichelli's aigorithm does, however,
have some serious limitations. Although Cichelli cleverly chose as
identifying properties the on’ly\' two Ietter;positions to be found in every

key (the first and last), making this a fixed choice severely limits the

number of sets of keys which can *be accommodated by this algorithm.’

o,
[}

Although he mentions the problem in his 1980 article, Cichelli makes'i’n%
cleér* statement on how he. chooses a value of m, the size :of t.he domain

of associated letter values. This is an important parameter of ‘the problem
since m is the br*an'chin‘g factor of the backtrack sear:ch treé.

Because Cichelli's algorithm relies on a relatively uninformed

)

exhaustive search of the solution space, the cost of finding a solution

~

can be quite high. This in turn Iirhits the maximum size of the pr*oblemv
sets to which the algortihm can be applied when we set a reasonable

upper bound on the amount of computational effort to be expended in the

search.

The next chapter pr*esenté an informal analysis of the nature of the
_—

problem of searching for a perfect hash function. This analysis leads to

some methods for overcoming the limitations of Cichelli's strategy while

retaining its important benefits.
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2. AN INFORMAL ANALYSIS OF THE PROBLEM

In this chapter we present an overview of the problem of calculating
perfect hash functions for sets of lexical keys. We identify four main

sub-problems:

1

1. choosing a set of formal 'pr'oper'ties of the keys to be used in
the hashing function; 7 ' : .
choosing a methog of searching the spacé of possible soyl'u’tvion,é;

3. ordering the sear'c\:h variables to improve the per‘formgné'e of the
search method; and v '

4. finding ways of enforcing or attaining a reasonable degree of

minimality of the solution.
Each of the algorithms we have developed uses a different combination of

methods to solve these sub-problems.

2.1 Choosing Hash Identifiers

in order for a hash function to place each_ key in a different hash

table location, the function must work with a uniquely identifying set of
key properties. We discuss the structure of lexical keys and a method
of choosing an identifying set of properties, which we call a hash ;

identifier.

F

2.1.'1 Combinatorial Properties of Lexical Keys

The data objects utilised in the algorithms r‘epor‘ted ih this thesis
‘are assumed to be pr‘eéented as strings of characters drawn from an
alphabet Ai. FUnIesrs other‘wise‘&’\@tated, we Qill assume that this alphabet
consists of the twenty-six lower-case English letters. These strings are
stored as character arrays in both Pascal and APL {(the Ie‘mguages in

which our algorithms are implemented). A key is defined to be a sequence

10
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of length no greater than P, made up of symbols_fr‘om the alphabet A.

We assume also that A has an or‘der/‘ing defined ‘on it, which_allows us

o

&

to define a' lexicoygr‘aphié ordering on the. set of ke;/s.
A given r;néxim/um'. key length P and ’—a'lphabet A determine a space

T of possible’k'eys’. Af T' = card(T) and A' = car‘d(A),. then we can
express the 9:ar‘8inal-ity of the set of all possible’ keys as th_e sum of the
numlber‘ of key§ of length P p[Us the number of keys of'length P-1 plus
the number of keys of the lengths P-2...1.

U SN L LY
VSUM(A'i), 1<i P |

At F (AT /(A

OMEGA(A'P) as A' becbmes large - &L2.17”

When A' becorﬁes arbitrarily large, the limit .of A'/(A'T1) approaches 1.

The resultant factory A'P-—1, reduces to ‘A'P. Thus T' grows at a rate

1

pblynomial in A' and exponential in P.

As an example, consider counting the nuimber of lexical items which

are possible when letters are drawn from an. alphabet consisting of’
t\"qzénty—six upper case and twenty-six lower case Roman Iett»er‘s plus the
hyphen, apostrophe, and, in a different category, t‘he blank. B‘lanks
are used str‘ictly as word delimiters, neveﬁ as part of a word. »Upper‘
case letters may abpear‘ anywhere in a key (e.g. a name such as
LaVerne 'Boom-Boom' 0'Grady); hypens mra}il not appear in first or last
position. The apostrophe, or‘»s‘ivngle quote, will be removed if it occurs
in both first an‘d last positions; otherw.isé, it may appear anywhere.

Lower case letters may appear anywhere. With these restrictions, if

P=10 we can determine T' as follows:

A' =26 + 26 + 2 =54, P =10

1]

Al

; number of letters which can appear in keys of length i

-
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Ti'= the number of keys of length i ’ ( ‘
A '= 52, T,' = 52 o . ' | o
A-z": 53, T, = 5321 , ' - - <
1= o vox gy N2
A '=54, 2 n &P, T =T, 5%
The size of the key space T for this example is then
8 2 '8 | :
t o= [ = _ *
Tio T, 54 .(53 1) 54
= 203,023,907, 440,293, 888 ’ ,
) = approximately 2 ¥ 1017 keys . {2.2) s,

‘As another example, consider an alphabet of only the 26 lower case

Roman letters and & maximum key length of six, with no restrictions on

where Ietters may appear. The size of the key—;;z-ﬁke, T', for this -

example is

SUM(26') = 321,272,407 where 1 £ i { 6

'éppr‘oximately 3.2 % 108. | 2.3 ‘
These examples demohst;‘ate, using the ordinary alphabet, that
even a \small max»imum. key léngth defines a very large space df p»osisib‘le

key§.

2.1.2 Letter Order in Keys : -’

In order to completely distinguish keys, we must treat the occurrences
of the same alphabetic symbol a, in different positions j and k as

occurrences of different letters, aij and a5 The number of letters which

can occur :in each position remains the same, although, in a sense, we
have changed the number of. letters in the alphabet from A' = card (A)
to A" = P * A'. Even with a larger alphabet, the number of possible keys

is no larger, .since each letter aij can appear only in position b of a'key.

1

The number of keys which can be disti\nguighed when positions of occurrence

»

are taken into account is then exactly the number of keys, T', in tl"we'
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space of keys T. : ‘ ‘ ‘ ‘ ' . .
Algorithm 0 ar-mdv‘Algor‘ithms 1 and 2 (described later) all use hash
functions which as;ign the same wvalue to g letter indépendent of thAe>_
Iette,r'_'s‘position in the key. Keys are tl;wen distinguished by the Vunor'deAr‘ed.
sé,t (i.e., combinatien) of letters which‘occur' in chosen positions.
Throughout this theSi§ we shall call the identifying properties of av k‘.ey
irbts‘hashi identif?er'. Keys which can be distinguished when the po_sitions'

of occurrence of letters are taken into account may not be distinguishable

by unordered sets of letters; exarples are the pairs of keys ('on', 'ne')

‘ and\('loop',’ 'pogl'). Given the same alphabet A and maximum word

>

length P, using unordered sets of the forma! properties of keys-

distinguishes fewer keys-than does the use of ordered sets of key

pr'ope‘r't'rés.

The frwumbelf,of kéys'iwhic‘:h can be bistin.guished when the sets of °
pr‘oper‘tie‘s which ar{e' used as hash idJe‘-n»tifier's are not ordered is g.iven
by t‘n¢ expr‘_essipn | |

CH(A'+i-1,i), 1 L i ¢ P

—~—

where CH(n,m) is the familiar "choose" function, defined as

CH(‘n,m) = ﬁ!/(m!*(n'—r_n)!).

. ¥
If A'=26 and P=6, then the size of the ‘key space is: )
CH(A"+i-1,i), 1 ¢ i & P - o
- = CH(26,1) + CH(27,2) +...+ CH(31,6) |
- 906,091
- N # 5
= approximately 9 100 . . {2.4Y

Compare this number with the 3.2 *. 108‘ distinguishable keys for the same
: - :

values of "A' and P when order of occurrence is taken into account (See

(2;3)).' Without ordering, only about one in 350 keys in this example

key space can be distinguished.
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The duesAtio-n of how we will distinguiléh keys is most i‘mpér'tant,;

a perfect hash function. is‘ 4i’mp§ssible unless every key!is distiﬁnrgf_uisthed

. , e :
Wfr‘om%all others. -

Cichelli's algor‘ithm (Algorithm 0) and Alggr‘i'thm 2 use a, static
specification of key properties to be uSea Vinat}‘;e hash fUn.cti'én; for both_
: _algorithmé, the key ien‘éth‘and the first aﬁd last letters ’;r‘e emp'loyéd
to distinguish keys. As we'have. ju..st shown, vt.his r‘éstr‘icts. the number
of keys which can .b'e di'stinig'uis}"ied by these two algorithm‘s\to CH(A',2)
for each key length. |If the maximum key length is b, ‘then. at mést
LP*CH(A',Z) keys can be accémmodated by‘ef.ther algorithm.

2.1.3 Hash lIdentifiers

Algorithm 1 incorporates a procedure which automatically chooses;

for each subset of- keys of the same length, the smailest set of letter

3

positions which dis-tiﬁgui’shes each key, when 'the order of occurrence of
letters within a key is cﬁsr‘egar‘ded. Sinc,‘e‘"'each‘ letter has ome associated

value regardless of its position of occuf‘r‘en_ce, a key's hash addre_ss is

1

determined by the combination of letters in chosen posit}onsc. " The

-

number of diffé}‘ent (unordered) subsets: of Iettér‘é is much smaller than
‘the key space ;v«igh the same maximum 'Ier;gth, as discussed above, so the
number of subsétg o% the key space which cém be processed usihg this
algorithm is restricted.

In order tol keep the. search for (and, later, the use of) é perfect
.hash function as ‘_simple as 'possible, we sellectv, in Algorithm 1, the
smallest subset of the Pr~letter‘ positions in’keys of Ie{mgth P- which
distinguishes each of the given keys. When the.set of‘ keys ié small

only one letter position may be required. The limit on the number of

keys which can be discriminated using only one letter position..ig Al

X
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-1t may be possible to distinguish up to A'2 keys with .two chosen

fetter positions, but-onty if 'ab;"ba'. In Algorithm 1 this distinction
is not made, which reduces the number of distinct keys which can be

recognised by this method to A'(A'-1)/2 when two letter positions are

chosen.

In a set of keys of length P, there are ZP different subsets of
letter positions which can be used to discriminate keysz. We can also

choose whether or not to use the key length, giving us a total of 2 *'ZP =

'_+_ =
ZP 1 possible forms of the hash function. We assume that for sets of keys
of varied length, we can fill to the right with either '@ dummy symbol
or one of the symbols from the key, say the last. Note, however, that

any s§mbo| found in a selected position must have an associated integer
value in order for the hash functien to be defined for all keys in the
problem set.

~The aligor‘ithm~which makes the choice of letter positions generates
triatl comb/i’nations of one.posit/igp/, then two positions, up to all P
positions. When each trial co?hbination is generated, it is tested for its

ability to discriminate members of the set of keys. If no two keys have

the same letter occurrences in the p selected bgsitions, then the algorithm
returns this ‘trial combination \\as the solution and terminates; otherwise,
the next combination is generated. The details of this method will be
discussed with Algorithm 1.

Algorithm 3 relies on human judgment to choose & set of
chaf‘acteristics for the hash function. Interactivetly, the user specifies
a set of letter positions and whether-or not to include the key length in

/

PR

2 This number includes choosing none of the positions, which can be a

solution only in case we have no more than one key.
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. the hash function. The program then tests the user's selection for key

discrimirtation, inviting the user to try again{ if any two keys cannot

be diftﬂinguishecd. We will see later that Algorithm 3 takes into account
i‘(\/ v, - - .

the p%siti‘on of occurrence of Iett}er's and therefore has the greatest

poss‘igle discriminatory power.

2.1.4 Direct Hash Functions

The si_mpw‘lest method of defining a perfect hash function for sets
of keys such as those described above is to treat each Ietter"as a digit
in a card (S) base nUmI:;er' system, then convert tl?e 7k7ey from é str‘ingI
of letters to a string ofy digits which can b,eqinterp\:greted as a hash
address. This is a direct hash function. Because all kéys afe distinct,
all addresses éomputéd by such a hash function will also be distinct.‘

In general, the key space is toé large and too sparsely popUI-ated
with keys for any pr‘a(_:tical proBlem set to justify the use of a direct
hash function. If the keys in a given problem set K ar'eA uniformly
distributed in the key space T, then theil;' hash: addresses will be spread
vﬁdely through the memory space of any computer (if, in fact, our
comp@ter‘ has a large enough memory space to accommodate _sucI:1
astronomically large hash addresses at all). ‘Since most key épaces of
practical interest are wvery large, and in the inter‘est of portability and
parsimony we want a compact hash table, dir‘qét Ha#h functions are

. . 3
generally impractical .

Direct hash functions are a subset of the class of perfect hash

!

If we are in a position to create a set of identifiers for some purpose
without demanding that these identifiers express any particular
meaning except. as internal identifiers for a mach_in'e,r it may be
practical to construct the set so that we can use a direct hdsh
function.

&Y A
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functions. Direct hash functions are advantageous when compared to.
other perfect hash functions only because they are easy to find. In
general, finding a perfect hash function involves searching ‘a very large

space of possible functions, a process which may require a great deal

v Hi
of computation when we demand reasonably compact® hash tables.

2.2 Assignment"of Associated Letter Values

Oﬁce a set of letter positions has been selected and it has been
decided whether to use the key ‘Iength as part of the hash function, we
consider how to or‘gaﬁise the search for an aséignment of integer values
to the letters which will map the keys-into the hash _tabl'e with no
collisions. Although most randomly chdsén assignments are unacceptable,
many combjnations of integer assign_menté will give us a perfect hash
function which is either minimal or aimost rhinimal. An efficient search
is necessary to find an acceptable solution in a reasonable amount of

time for any but the smallest set of keys.
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2.2.1 A Model of the Search Space
If we view the search spécé as a ir‘ée, illustrated in Figure 2.1,
there is a path of polynomial cost from the root (the initial state of the

search) to each of an exponentia! number of possible solutions. -

14

<a,b?

{0,b)

) }

0,0 Q©, 0,25 a,00 Q,1) Q,2% 2,00 (2,1 2,2
* * % * * * % * .
Small example search space where the set of keys is

(aa,ab,bb), L = 2, M = N = 3, and the letters are

ordered {a,by. The leaf nodes are the m° = 32 =9
possible cpmbinations of associated values. Minimal
%1 non-minimal ones

solutions ‘are marked VEREL

<

FIGURE 2.1

In Figure 2.1 we have a set of three keys (N=3), two letters from

chosen positions (s=2), and a maximum associated value of two

{m=3,M=[0,1,2]). The number of different assignments of integers to

letters is ms, the number of leaf nodes in the tree. At tree depth one,

1 1

the letter 'a' is assigned a value which determines the hash address

of the key 'aa At depth two, the assignment of a value to 'b'

determines the hash addr‘essesv.of the k-eys 'bb' and ‘'ab'.
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Our problem is to find a path which leads to an acceptable

solution while geher‘ating as little of the. search tree as. possible. °

Problems of this type are often attacked using a backtrack search.

Our problem has the form of an assignment of values <x1, 'xz,...,xr? to

variables (,a1 )89 .‘..,aan7, where each variable corréesponds tc)_é' letter
which appears in a selected letter position. An acceptable solution must
satisfy the criterion that the hash- function maps each key into a

different hash address. ‘

2.2 Importance of Variable Ordering

When the keys are ordered splely according to the sum of Iettet;‘
frequencies, as at the termination of the first ordering in Algo’r‘ithms 0
and 1, then we may find that a key'sr /hash address ié determined early
in the search pr‘dcess, yet that key's sum of letter frequencies is small
enough to aIIVOW sgvéal ‘other keys to occur in the ordéring bétween the
point in the search where the hash value of the key Ais deter‘mined‘and
the point where its address is tested for a éollisioh 'w:ith another key.

Suppose, for examp!e,‘ that we’are'given fhe set of keys -

K = (aa,ab,ac,ad,ae,af,ag,bd,cd,ce;de,fg).

Both -first and second letter position;s are necessary to distinguish each

‘key; length can ‘be ignor‘ed' since all keys are of the same length.

Sorting the keys on the 'sdm of the frequencies of their respective first

and Ibast !(eitters produces the follox;/ing ordering:
aa,ad,ac,ae,'ab;af,ag,cd,de,bd,ce,f‘g

Such an dr‘der‘inQ of the keys induces an ordering of the lettetrs from

chosen 'positibns. In this example, the order of first occurrence of the

letters in the above vector of keys is

<a’ d,c’e7 b7f) g>



This is the order in which assoc'i',ated letter values will be assigned if
the keys are taken in the ab0ve order for placement in the hash table.

Note that although the hash. address of 'cd' is determined as soon

o

as the key 'ac' is placed in the hash table, the placement of 'cd' is

'ag') have been

not tested until four intervening keys ('ae', 'ab', 'af’,

assigned hash addresses. If 'ed' is found to_colli'd.e with any of the
keys preceding it, then the effort expended between the placement of 'ac'
and the attempted placement of 'cd' is wésted. In this situation we are
forced to ba‘cktrack to pla‘ce:'ag' in a new location. The remedy for this
problem is to order the sear‘ch‘variables‘and the‘ keys irj such a way
that all possible.failure conditions are tested as early as possibie,during
the search. | '

Thié example illustrates tHe problem with using only the first -
ordering é‘trategy: ordering the keys by sum of Iétter‘ frequenciés doe*s
6ot, in generat, produce a strict ordering of the letters in chosen
positions. In order to minimise the search e_-xpen.se, we must group the
keys relative to the letters so that whén ‘each letter ai is as§igned a
value, all the tests necessary to decide whether that value is acceptable(
with respect to the current state of the hash table will be performed
before values are assigned to any further letters.

We now conéide-r a more detailed modéI of‘our' search for an
assignment of integers to letters, followed by a discussion of the effect
of different search vw\ar'iable orderings on the cost of the search.

The criterion for backtracking; call it predicate Q, can be defined

»,

in the following way:

given an assignment of values (x],...,xr> to the variables

<a]‘, .. ;,an), define
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QX ooy x ) = FALSE nf there exist k; ,kJ. , i # i,
in K such that for both keys, all letters
—’in chosen positions are in (ai,l..},an)
and H(ki‘) = H(Kj)’
= TRUE otherwise. :
When Q(Xl,...,xn) is TRUE, then (x1,...,xn) represents a perfect‘ hash

function for the subset of keys in K for which H now has a value (those
. 1

for which all letters in selected positions have been assigned a value).
The backtrack condition Q(x1,...,xn) demands that no two keys have
the same hash address. in order to test the predicate efficientiy we

keep an array ofgathe possible hash addresses where we record which

addresses are occupied by keys whose chosen letters have been assigned

Y

values previously. When no letter values .have beénvassigned, Q.is
vacuously true. Suppose that Q(xl,...,xi_1) is. satisfied; extendiné the
solution to Q(x1,...,xi_1,xi) involves two steps:
stepl: a value X, is assigned to a.;
sfep2: the set of '""mew'" keys, whose hash addresses are
dependent on letters which are all found in a,,...,a

1’ i
must have their hash addresses cailculated and compared

with the present state of the -hash table.

If we let di denote the number of keys for which a, is the last chosen

letter to be assigned a value, then each ordering of the letters will in
general produce a different vector of values <d‘l""’ds>' The sum of
these di’ 1< i s, is N, the number of keys in the pr‘bblem set. |If

we assign unit cost to generating the next trial value for a variable,
then the cost of generating the entire tree is the number of nodes in
the tree.

The number of nodes in a complete tree with depth s and branching
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factor m is the sum of the number. of nodes at each level in. the tree,

where the root is at level O:

C
max

SuM(m'), 0< i ¢ s

m * (m° -1 )/(m-1)

s+1 )

OMEGA(m®) as m = infimity <2.5Y

O(m

In our application, s is the number of letters to be assigned values
and m represents the number of values in the domain of eaéh variable,
M = [O.',.m—1’].
Since the size, of the domain from which a,ssAoci.‘ated values are
chosen determines ithe branching factor‘bofi the éear‘ch tree, it is essential
that we cH®ose a ;/a_lue of m car‘efglly._ If m.is set to too small a value,
there may be no solu‘tion for the given problém set4. 7. If we set m's
value high enough, e.g. infinity, th’er;n we are assured a solution exists;
this certainty incurs a much _larger search space and a lower pr‘oba»bili'ty

of finding a minimal perfect hash function before finding a non-minimal

one. Although a search space of infinite size will undoubtedly contain

a minimal solution, there is little reason to expect that it will be the

first solution found. There must be a smallest value of ‘m such that

the search space contains a minimal solution; this value also minimises
. ) &

the size of the search space, so it is important to the efficiency of the

backtrack search that we make a wise choice of m. We know of no

analytic' method of determining the optimum value of m for a given set

of keys, although we have obtained impressive results by setting m to N,

For example, if only one letter position is chosen for a set of ten keys,
then it is clear that any value of m less than ten prevents us from
finding a solution.
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the number of keys in the -problem set. This ‘heuristic _consistently
teads to finding a minimat or almosjt—minimal solution, when a solut'ion
is found. |

If, for example, s=10 and m=10, -we Have a search space of

100 + 101 + ...+ 109 + 1010
nodes, where there are 1010 leaf nodes representing complete assignments
of values. The size of the tree is the sum of these terms: 11,1‘11,1]1,111
nodes. Given :the assumptibn of one time unit to generate, a new '\'/al)ue
fdr‘ a variable, ‘t,his number represents the cost of generating all the
poséible solutions. This numbe‘r‘ remains the same r‘eéardless of which
OPdéring is given the gea'rch variables.

In 6r‘der‘ to (jetermine whether the current partial solution satisfies
thg' backtrack predicate Q, one must pérform dj tests at each attempt to |
extend the solution to the j-th letter; dj represents the number of keys
whose hash addresses are determined by <x1,...,xj) but not by the
assignment (x1,..v.‘x. 1). We can therefore assign to each node at depth

j a cost ?f dj+|, the.cost of generatiné this 'next' value for aj plrus dj
times the (unit) cost of testing the hash _addr‘ess for a key against the‘
present state of the hash table. If Cj is defined as dj+1', then the cost
.of visiting every nodé in the tree is

'SUM(cJ. * mly, bg i {s
We propgse to consider (2.6), the weighted tree cost [WT'C],_ as a m‘easur‘e
of the number of basic operations needed to visit the entire tree,
satisfying the predicate Q at each step. Each ordering of the variables
determines a (possibly different) value of WIC; we consider that ordering

ofvthe variables which give the minimum WTC as the best ordering.
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2.3 Ordering Search Variables

We now consider how to chopse the best ordering of the s search .

variables, a s ag. Given a permutation B = <a1,...,as> of the search

1
variables, we define D(B) = <d1,...,d's) to give the number of keys di '

whose hash addresses are newly determined when ai is assigned a value.

»

C(B) = <c1,...,cs> is D{(B) with one added to each d, so that c, is the

cost of visiting any node at level i in the search tree.
We can regard C(B) as a vector of coefficients for the series of
terms m1,'0 { i ¢s, which make up WTC.

WTC = SUM(c, * m'), 0¢ i <'s

=c Yc, *m+ ...+c *m® 2.7
_ , 0 1 s
The initial term, with CO defined to be one {(unit time ‘expen'se), is the
cost of generating the root node of the search tree. Expanding this root

to generate the next level in the tr*ée incurs a cost’ of m time units, one
to generate ea‘ch_ of the m'vaiues which we assume each variable has in
its domai'ns.- We ddd to this tqtai one unit of cost for testing each of
the d1 keys which must be examined to prove that the hash function

produces no collisions. This node cost is added to the total cost m times,

-+

once for egch descendent of the current node, so the cost of visiting all

® m1. The m factor in each of the terms in the

nodes at depth one is <,

total cost is growing exponentially with its distance from the root.
Examination of {2.7» should soon convince us that we want the
smalilest possible values assigned to the coefficients in the order

c_,c s+ +9CysCps where . is as small as possible and ¢, is as large

s’ s-1 ]

as possible. We cannot have ds < 1, since at least one key has the last

We are only counting in a breadth~first manner; the backtrack search
is done depth-first. ‘ '
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letter in the ordering as its last letter to be assigned a value. The '

best we can do is to find a letter aS which has a fr‘eqvuency' count of

4
L 4

one so that it can be the determining value of only one key, giving..(:S
} "

a value of two
v ¥ .

We can show that m> is Iar'ger' ‘than thebsum of the remaining
: =

terms in the polynomial! which descr‘i.b'e's'the size of the search tree:

1. SUM(m1) = m“l’a< (ms-1—1)/(m—1), 1 € i £ s-1;

s . s-1
2. m =m * m ;

3. m * mS! >m * (ms—1—1)/(m;1);
4, ms‘_1 > (ms—1—1)/(m—1);

| Since m° will contribute most of the cost of the tree, its coefficient
\\(in the tree of minimum cost) _rpu_st_ be the smallest which occurs in any
;\f\the s! péssibl'e' permutations of the variables. We therefore want to
find a key which h.as at least one uniqgue Iettér‘ ‘occurrence since it lis
only such a letter which can come las:t in the ordering and still placé a
single key in the hash table. As a consequence, the optimal ordering
will have all the keys which contain a unique letter occurrence at the
ena of tHe key ordering; this follows from the necessity of placing letter:s
which have a unique occurrence at the end of the ordering of sletteur‘s.‘

A heuristic ordering strategy for the ‘Ietter‘s based on this- |

observation would order the letters by fr‘é,qgency in non—increasing" order,
so that ar would have the highest frequericy of occurrence and a_ would

1
have the lowest. We find that ,this arrangement tends ‘to occur when we
a4
first order the keys by sum of letter frequencies, then from each key

choose the letters which have not occurred before in decreasing order of

frequency of occurrence. The second ordering has the effect of making

6 Algorithm 3 uses this strategy explicitly to order the keys. Unique
letter occurrences also aid in making the hash table compact.
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the coefficients of ‘the m facto;*s of the cost equation increase for the
smaller factors and qécr‘ease for the Iér‘ger‘ m factors. Another way of
mzodelling this process is to regard moving a key forward in .the ordering
ﬂas shifting its 'weight' toward the root of the sear‘cﬁ tree. This tends
to’ reduce ‘the WTC for that tree if thé order of Ietfer‘s induced by the
new key order has larger weights néar the root7.

. The 6ptimal or‘Ader‘ing. of the search variables, Bmin = <al’62”"'a‘s>’
is that for which WTC is a 'minimum.‘ .'f we were to generate all s! ¢
per‘mu'—tationS of the I‘etter‘s, we would find that the optimal or“d_er‘ihg is
that for which D(B), and therefore C(B), has the largest .lexicographic
sort value,. |

We can approach the optimal ordering by examining \fér feweﬁ than
s! permutations. This is accomplished by appiying a r*efinerﬁent to the |
second ordering, published by Slingerfland and Waugh- [1980]. . The two

authors suggest modifying the key reordering process and, ultimately,

[N

the ordering of the s letters which occur in chosen positions, shqh that:

"each sublist. of words which have equal.frequency counts
be ordered such that:the 'words that will have the
greatest second ordering effect, that is, wor‘d.s that will
'expo"se' the most words from the restof the list, occur

first." e
‘Slingeriand a;'1d Waugh ..r*epor*t.tha'.t a program which added their refinement
to CicFueIIi's second ordering shoyved a consistent improvement in the speed
of computation of sqlution‘s éver‘ Ci.chell‘i's second ;>rdering alone. This vis

explained by our model, since, at each stage in the reordering process,

Remember that the sum of these coefficients along any root-to-leaf path
in the search tree is the sum of the number of keys and the number
of letters which occur in chosen positions, N + s; this is a constant
for a given problem instance.



we select the next key whose new letter will determine the gr‘éatest
number of hash addresses among those keys which have the highest .
current sum of frequencies. This strategy tends to increase the

coefficients of small m ~factor‘s'and therefore decrease the coefficients of
tfarge m factors, In turn, this str‘ategy'r,jeduces the weighted cost of

1

the search tr‘ee,. which serves as a good indicatori) of the relative ,
optimality of the arrangement of search variables. |

~ Note thé;t the WTC indicates only the size of the tree wé are
seér‘ching;‘ it 'is"'a méasure of the wbr‘st case complexity of our problem

i

when we seek only one acceptable solution. The great value of the

2
»

backtracking approach is' that if we test the validity of all partial
.so'lutions, when we fi_nd'that a partial solution <x1,...,xi) does not

satisfy the predicate Q, then we can 'prune' the subtree which has this

yélue of xi' as its root. We thus avoid’ generating, for a value r‘ejectg:l
at level i, ‘ ‘

sumim?), 1 ¢ ¢ s-1 | <2.8»
full and partial solutions which have (xl,xz,...,xi> as an initial
éegment. The cost of this rejected subtree is

suM(c, . * m), 1T ¢ s o (.9

This pruning process, usually called preclusion in a backtrack
search, is valuable becausé the subtree of eliminated cases is growing
at an exponential‘ rate. In order for preciusion to have its greatest
effect, wé'want to discover at minimal tree depth that somé value for

a variable is pr‘ohibiteds.

8
See ‘page 28.
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For*tunaltely, t.he 'fr*eéuencyl'of occurrence of a letter‘ lai is an
excellent .heuristic Yalue for vprédicting how likely i.t is tAhat.airoccupS'
in a ke‘y which may collidevwithr other keys. The s;'ufr; of letter
6ccurrr*ences fof' one key is I"il'<ewise an excellent predictor of how Iikel‘y
vit is that that key will collidé.w%th oth»e'r* keys.
- In general, we may cqnclude/ that any polynomial;cost analysis

.fhat can be per*;‘or*med dynamically fn fheidepth—first search which allows
us to exclude %r*om consideration yalues in the domain of a search

variable will be worth pursuing since an exponentially-growing subtree

will be pruned for each potential value we eliminate.

2.4 A Different Search Method

The ideal backtrack search is one which never backtracks. In
order to achieve this level of performance, the search must be organised

in such a way that a choice made at any stage in the search is known -

¥
- ) ) L d

[}

We can show greater advantage of preclusion at d'epth i over preclusion
at depth i+l in the following way: ' )
Define PR(x) as the number of nodes descendent from a node at
level x in the complete search tree. Then we have, from $2.8)

8

above: .
PR(i) = suM(ml), 1 ¢ j ¢ r (r = s-1)
=mr‘+mr:__1 +...+ m o
PR(i+1) = SUM(ml), 1 <jgrt (= s—(i+1) | o
= mr‘”1 +.mr‘—2 +...+ m ' -
r s-1 ‘

PR(i) - PR(i+1) = m = m

Fx%call that for the above sums

r r-1 r-
. m >m +m2+...+m.

i Minimising the depth | where a preclusion is made maximises the size

of the subtree whjch is pruned.



to be ultimately acceptable..

( Blind backtr‘ac!;ing (systemétically enumer‘atingl all] possible
-solutions) performs a small amount of work at each node, but may visit
a great number of tl';e n'odes in the search tlh"ee.A The _non—t;acktr‘acking
approach we are discussing as an a!ter*}na.ti:/e visits oh!‘y the minimum .
n\umber of nodes",‘ equal to the number of search var‘iab'les, but per‘forrhs
a considerable amount of work at each node to Vasc‘er‘tai’n thé the value
being assigned next meets a set‘ of global requiremenvts which guarantee
that an acceptable solution lies at the leaf levél of the .chvosen path.

) Backtracking can involve_v.isiting a nurr:ber of node$ exponenti.al
in- s, the number of search vari'ables.i At each node a constant amou-nt .

of computation, say s is performed. 1£/a number of possible values

at each stage is another constant, m, then the cost of the backtrack

serach can be expre%@ as

- . % S
Cback approximately <, m

The cost of per‘for‘m.ing a non-backtracking search .is the sum 'of the costs
of s iter‘ations- of 'looking ahead' and assigning a value. Thus we
consider how the hasl% valués of the keys which contain the clrrent
letter are related to each other and to those’hash vaILJes which have
been assigned (the ’cu;r‘ren‘t. state of the hash taBIe). For simplicity,
assume that at each stage in the search the hash values of N/s keys. are
determined (i.e., d’i = N/s for all 1 £ i ¢ s.),A
An optimal solution would simbly assign to the ordered set of

search variables a series of values from some integer sequencen which can

be calculated independently of which letters actually occur in the set

of keys.. A large set of integer sequences which can Be assigned to

produce a perfect hash function is all those of the form F(n) = bn,

i.é., the powers of some integer base b. One drawbacK is that nearly . u



all these sequences are made up of very Iar‘ge/yalues which promotes
production of sparse hash tables.

Although’this method g%ves hash tables which are unacceptably

spa,rse for mos’f sets of keys, such a series of values can be assigned
to .letters as upper bounds 05;"“ their associated values. For the i-th.

letter in fhe ordering, f‘this";ﬁ;ppert bound is set to F(i). In the .wo/r'st‘

case, this method will utilise all F(i) possible values for éach naia»,‘ 1S|5 S.

The use of a series which guarantees distinct sums of pairs ofyelements
does, however, guarantee that this worst case will produce a pépgfect
hash function, although it is generally far from minimal. ..

2.5 Minimality of Resulting Hash Tables : B

3

A minimal perfect hash function for a set of N keys m‘éps those
keys [i@o a range of exactly N hash addressés. The loading factor LF
of a hash table is defined as the ratio of keys to hash addresses, N/E,
for N keys placed in a rahge of r hash addresses. The loading factor
for a minimal I;wash tablé is 1. Useful perfect hash functions must pr‘ésum}e
some lower bound on the loading factor. We have selecteq '0.8 as the T
smallest acceptable loading factor, )

One heuristic which is applied in all our aBor'ithh'ls attempts’ to

assign the smallest associated values to those letters which occur most

’

i

fr'equenth; iﬁ chosen letter positions. The .use of this\?\\e\.‘misti'c promotes
small hash addresses for many keys.” |

All Hash addresses fall within the range [least..least (N/0.8)]; - .
we can alwélys map the‘keys‘ into addresses [O..N./O.B]'. . .

For the methods which empldy backtrack search to assign letter

values, Adgorithm O and Algorithm 1, we can ensure that we achieve a

loading factor of at least L by simply limiting the g,iz

of the hash
\v ’
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table to r = N/L. The search procedure will then .fail on any
combination of letter values (x1,x2,:..,xi) such that for some kj'in K
H(kj) > N/L

When such a failure occurs, the search procedure is forced to backtrack;
all values smaller than X in the domain of a, have been excluded and»
any larger values of x. will surely make H(kj) greater than N/L. A
variable which occurs earlier in the orderirng must have its-value

altered to allow »smalter values for at Ieasf one of the letters in kj which
precede a. in the ordering of letters.

CIn vthose methods which do not use ther backtrack search par‘adigr‘n,t
we. must rely on the beneficial effects of the ordering of the search
variables and careful selection and testing of associated letter values
during the course of the assignment of values to letters :Eo achieve the
highest feasible loading factor. In practice these non-backtracking
atgorithms produce soilutions relatively quickly, but as the anber of
keys in the problem set increases, the loading factor tends to beecome
smaller. -

In an effort to improve this performance factor, Algorithm 3 uses
backtracking whenever the hash table is becomiﬁg too sparsely populated
with keys. This will be described in Chapte: 3.

TN
2.6 Approach_és Employed by Each Algorithm

)

Each of the four aligorithms we will discuss in this thesis employs

a different combination of methods for the four subproblems involved in

finding perfect hash functions of the form we seek.

Algorithm 0
1. Cicheili makes a fixed choice of key properties to be used
by the hash function: first and last letters and key

length.
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2. The keys are first ordered by sum of chosen letter
~ frequencies, then by a second ordering which moves keys -
\\ forward to the position where they are first determined.
3. ,The letter assignment is.done by a blind backtﬁack search.
4. A minimal solution can be found by rejecting any non-minimal
soluti;)n or by limiting the size of the hash table to the

number of keys in the problem set.

Algorithm 1

1. The problem set is partitioned into subsets by key length
in order to reduce the size of the problem for each
invocation of the backtrack search.

2. Krause algorithmically chooses a combination of letter ’
positions whicH distinguishes each key in the problem set
by the combination of letters from chosen positions.

3. The letters are ordered as in Algorithm O, but ties between
words with equal sums of letter frequen;:ies are broken using
a refinement due to Slingerlahd and Waugh.

4, A le'Eter assignment is calculated using a backtrack search
‘which has been‘ étreamlined for this pr*oblem'.

5.. Minimality is not‘guab;‘énteed, but ah'hi,gh loading factor is
obtained by making a good Heuristic choice of domain size
for the associated letter values and by aHow"i-r"i’g the ranges

of hash addresses for the subsets to overiap to some extent.

Algortihm 2 -

1. Cercone's algorithm uses the same fixed choice of key
properties as Algorithm 0, i.e. first and tast letters and -
key length, |

2. The keys are ordered by sum of letter freguencies.

3. A non—backtrackfng; search atlgorithm is used.

4. Solutions are in géneral non-minimal, due to the search

method employed.

Aigorithm 3

1. Boates' algorithm prompts the user to make a choice of key

properties, including letter positions and key length if
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Ldesir‘ed. "This choice is sensitive to position of occurrence
of letters. :

2. Keys are ordered according to sum or p‘ronct of letter
frequencies, then gr‘o'uped in a way which pr‘ombtesAefficient

search.

3. The seabc_h is non-backtracking, an improved version of that
invented by Cercone for Algorithm 2.

4, The minimality of the hash table is dependent on the
effectiveness of the anaiysis of the way in which Reys shére

letters. -

In the next chapter we outline algorithms 1, 2, and 3.

TRV P
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3. DESCRIPTION OF THE ALGORITHMS
In this chapter we describe three algorithms for finding perfect
hash functions. For each algorithm, we present a short outline of the

processing steps, followed by an informal analysis of the complexity

of the algorithm. i ~

x

3.1 Algorithm 1

Algorithm 1 partitions the original set of keys in such a way that:*

.per'fect hash' functions can be calculated for each subset, then combined
to form one perfect hash function for the ent_ir'é set. The complex;ty of
e/ach subproblem is at least Iingar'ly and often e*ponentially sm‘aliler
than that of the overall problem,\ while the increase in the number of
problems sets is linear, resulting in a marked rr‘eduction in computation.
THe keys are partitioned into subsets by their length. We ’
calculate a separate hash function for each subset, and fit each of these

hash functions into the hash table by providing an offset for each

subset which keeps its hash addresses sepépéte from those of any of the

other hash functions. We can do this for the following reason: if
Fi(x) is a perfect hash function for keys of length i, then so is Gi(x) ‘=
Fi(X) + c, where c. is some constant. If we make the pl;oper choice of
c, for each subset i, then Gi(x) can be made n?arly minimal b}/

alltowing the range of hash addresses for neighboring subsets to overiap.
The form of the function is given by the following fragment of Pascal

code, where 'offset" corresponds to c;:

34
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FUNCTION hashaddress (key: ARRAY OF CHAR): INTEGER;
VAR ilen, addr, i : INTEGER; -
BEGIN .
len := length(key); ) .
WITH subset[len] DO
BEGIN
addr : = offset;
FOR i : = 1 TO len DO
IF chosen [i] E
THEN. addr : = addr + assoclkey[i]]
END; (* WITH *) '
hashaddress : = addr
END; «(* hashaddress ¥)

This program assumes that, for each subset,v we record w'hfch letter
posi-ti,ons are chosen {a vector of tgoolearj vaiues),v an integer offset, . -
and a table‘w:hich associates an integer value with each letter in the
alphabet. Thg calculation of each hash address requires time
proportional to the number of chosen letter posi'tions.- Becagse ,é table
of associated letter values is stored for each subset, kthe ih(\fr‘eaise in
storage :r‘equir‘ed is proportional to the number"of.rs.ubsets igd}lced by
the par‘tition;

v N

In addition to this partitioning of the original problem set, the.

implementation of Algorithm 1 includes several of the improvements to
Cichelli's algorithm discussed in Chapter 2. These improvements
include:

1. the addition of a general algorithm for the selection of a
minimal set of letter positions (done for each subset, in
Algorithm 1) which distinguishes each key from the rest;

2. choosing the cardinality of a subset as the upper bound on
the range of associated values for the symbols which occur
in chosen positions in that subset;

3. Slingeriand and Waugh's improvement to Cicheili's second
ordering of the keys.

4, incorporating a method of'pr‘ecluding the generation and

testing of inadmissable combinations of associated values

during the backtrack search process.



Algorithm "1 is an informal outline of this modified version of
Cichelli's algorithng

ALGORITHM 1

step 1:  Sort the keys into ascending order; 5}/ Iength,jin'
order .to partition the keys into subsets of keys which
share the same length. With each of these subsets,

perform the following steps.

step2: Choose the smallest set of letter positions such that
no two keys of the subset have the same set of letters

in the chosep positions.
1

step3: =~ Employ Cichelli's two ordering strategies, with
Slingerland jand Waugh's refinement, to produce an
(appr‘oxvima;tely.) optimal ordering of the keys and,
therefore, of the letters which occur in chosen

positions.

step4: Assign the cardinality of the current subset as the
upper bound on the range of associated values for

symbols which appear in chosen positions in members

of this subset. The lower bound of this range is set
to zero.
step5: Use a modified version of Cichelli's backtrack search

procedure to assign associated integer values to

P symbols such that each key is assigned a different
hash address in the subrange -of the hash table defined
by [offset...(p*m)], where offset is the integer offset
for the current subset of keys, p is the number of
chosen positions, and m .is the upper bound of the range

of associated lietter values.

9
The Pasca! program embodying Algorithm 1 is Appendix D to this

document.
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stepb: If* any unproccessed subﬁsets remain, adjuét the 6ffse_t'
of thd next subset in the following way: ‘initialise
the offget to t.he number of keys which have already
been placed in/ the hash table, say n; then find the
first open po/s#tion r, r > n. This.>allows the hash
addresses for different subsets to overlap somewhat,

encouraging the minimality of the final hash table.

step7: If any unprocessed su ts remain, réturn to step2; .
otherwise, all! keys f’mave been pI’aced in the hésh
table and the algorithm terminates.

We now consider the complexity of this algorithm, describing some ofvthe
details o.f each step.

Sorting the keys into order by length is an O(N Iog2 N) operatibn
since we determine the rlength of "each key as it is added to the list of
keys initially. We employ a recursive version of Qufcksor‘t té order the
keys within the array 'keys'. This partition of the keys by length
could be done in O(N) time by a bucket sort since the maximum key
length is known to be small (usually no mére than 15 or 20 letters).
This sort is performed once for the entire ,sét of keys.

A general method for cHoosing a set of letter positions which

serves to distfnguish each key in a subset requires that we ‘test each of

N
.

the 2P memberé of the power set of the set of letter positions for keys
of Jength P. Each of these subsets r‘ep_r‘esenté a different combination
of letter positioﬁs. The‘Pascal function 'findcombo' generates these
subsets in asc.ending order of number of chosen letter positions since

we wish to fiind .that combination which has the fewest elements, - yet

distinguishes each key. This function returns a vector of boolean values
which characterises the chosen positions. This function operates in

two phases:
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(1) generate the next combination of positions;
(2) test this set 1;or~ unique iden‘tifiéation of keys.
.

In or‘deé to generate these combinations in sequence withoﬁt
stor‘i‘ngn them alli, we b‘egin by creating a queue of combinations which
are not candidates, but which can be expanded to produce candidates
which have one more chosen position than the combination at the head
of the queue. Initially, tHe queue contains only the f&fll combination,
i‘.e., {000) for P ="3. \Unless the subset of keys has only one member,
this is not;a candidate. The algbrithm proceeds by generating a series
of new combinations by substituting a 1 for each 0 to the left of all 1's
in the combination at ‘the head of the queue. As each of these candidate
combinations is generated it is tested for its distinguishing powér. I f
it fails this test and ihere exi‘sts at Iéast one Q to’ the left of the first
1 in the -sequence, then this combination is placed at the endof the
queue, to be expanded tater if no suitable candidate is found by
expanding and testing combinations which precede it in the queue. As
soon as a combination is found which meets our requirements, it is
returned as the value of the functilor) '.findcombo'. This method amounts
to the breédth—fir‘st search of a rather peculiar sort of tree, called an

1 :
Sk tree O, a ‘small example of which is illustrated in Figure 3.1,

10 See Baase [1978], p.247.

s’
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Note that the second phase of 'findcombo' tests only whether two
keys have different sets of symbols in chosen positions, wittht regard
to the order of occurrence of these symbols within the key. Therefore
there may be no way of distinguishing two (or more) of the keys in the
subset, gig. 'on' and 'no'; findcombo may fail. When né combination
of positions exists which meets our requirement, 'findcombof will
eventually encounter a situation where there are no expandable nodes in
the queue. Whén this occurs, 'findcombo' returns a:vector 6f boolean
FALSE elements, indicating that no solution exists.

The test of phase 2 is carried out in the following manner by the

J
Pascal function 'check':

-

1. for each key of length p, isolate those]symbols which appear

in chosen positions according to the current trial combination.

2. for each key, sort that key's selected symbols into ascending
order.
3. sort the keys lexicographically using their ordered sets of

selected letters as the 'sort key.

4. make one pass through the set of keys comparing neighboring
sets of selected letters. Any sets that match will be
neighbors after the sorts in steps 3 and 4, allowing us to

test all possible matches in a single pass.

TN S T S S SIS
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[f a match is found in step 4, 'check' will immediately return

)

FALSE, or failurjj ‘Assuming random uniform distribution of conflicting
letter combinations, we estimate that approximately n/2 comparisons will
be executed on the average unsuccessful set of a subset of n keys of

?

length p. The cost of isolating fhe selected letters is simply the

" number of keys multiplied by’ the number‘ of letters in each key. Sin;e
the number of seiected letter positions cannot exceed the length of the
key, sor'ting‘. the selected letters is done using a sin:]ple exchaﬁge sort.
This adds a term of p¥n to the cost.

The lexicographic sort in Step 3 i;. done for n keys in time
pr‘opor‘tional‘ to n log2 n, .on the average, by a recursive quicﬂks.or‘t
routine which uses the array of selected- symbols as the sbrfc key.

Each unsuccessful test of a combination of letter positions incurs

8

the following estimated cost:

stepl: n¥*p.
’ stepZ: n*k*(k-])/z), 1 _(_ k < P //.,,(‘
step3: g} 1092 n - J

step4s approximately n/z-,?‘
Since we may have;to try 2p—1 combinations, the total cost of executing
"findcombo' can be.
SUM(CH(P,k)*n*(k*((k-J)/2)+Iogzn+1/2)), 1< k¢P

= n(2P-1) + n*SUM(CH(P,k)*(k*(k(k—l)/’2)+Iogzn+1/2), 1 { k {P.

The cost of this process is proportional to n*ZP for each subset. This

search for a minimal ‘uniquely identifying set of letter positions can be

very time-consuming whenever the set of keys share many letters. Fo-r V :
those few examples we have tried, however, this algorithm produced a

solution in time proportional rto the number of keys in the problem set.

the largest of these sets consisted of 61 keys sharing 23 letters. The
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key length P is generally small for even large sets of ‘keys and the
likelihood of ff_nding a solution increases rapidly as the number of
selected position rises.

The method employed in 'findcombo' is not guaranteed to find a
distinguishing set of positions since there are cas?e Where only fhe
ordering of letter‘s‘ from selected positions can distinguish all keys (in
éonjuncffon with the occurrence of different symbols). Consider, for
exémple, the set of keys of length two ‘consis.ting of (in,‘ it, on, no).
The possible combinations of chosen positions are (<002, 07, 01>,
{11%). The null vector cannot be a solution for a key set whose

cardinality is greater than one. The keys 'in' and 'it' conflict in

position‘ one, 'on"and in' conflict in position two, and 'on' and 'no
‘conflict in the unordered combination of positions one and two. No
splution exists for this set, under the assumptior; that we will héve only
one value assigned to each symbol fovr~ eaph subset. Greater generality '
of the algorithm, which would distinguish the occurrence of one symbol

in different phositions, entails stor‘iun_g an associated integer value for
each position in which it is foun4dn. Although our method in 'findcombo'
does not guarantee a solution, it seldom fails to find one.

Once we have chosén a set of Ietterlposition's which provide
unique hash identifiers for all keys in the current subset, we consider
how best to organise the search of the solution space. In a-manner'
similar to Cichelli, we have used the sum (or product, at times) of
frequencies of occurrence of symbols which: make up hash identifiers

in the current subset. vThe keys are ordered so that the sum (products)

of frequencies are non-increasing, corresponding to Cichelli's first

11 . . .
This more general method which recognizes order of occurrence of

symbols has been implemented by John Boates in Algorithm 3, to be
discussed beiow.

iy
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ordering. The cost of performing this ordering is at most
-‘\

(p*n)+(n log’2 n) = n,”‘(p+log2 n).
The second part of step. 3 in Algorithm 1 corresponds tvoA Cichelli's

second ordering with Slingerland and Waugh's optimising modification
. \ .
added. Since the keys are ordéred by decreasing sum (or product) of

tetter frequencies, we can 'think.' of this a's‘ inducing a par‘Atition of the
keys of this length into subsets, where the members of each subset
have the same sum or product of frequency counts. The action of the

algorithm is as follows: v ’ -

i

1. a. each element of the boolean ar‘r‘éy used [1..A'] is’get to false,
sig}wifying that none of the A' letters in the alphabet have been
added to the ordering of search variabies. .
b. a queue whi¢h will contain the keys in their finél order is
initially set to NIL. .
c. '"remkeys'" is, initially, a list of all the keys sgrted by
descending sum .of Ietter: frequencies. This represents the set -

of keys which have not yet been placed in the final ordering.

2. a lisy called "céndidates" is formed of all keys which have the
hiﬁyst frequency Acount. While thi's list is not empty, we per‘for‘r’%\

the following steps: ' | ,. '

a. for each member of candidates make a list of the keys whose "
hash address will be deter‘mined% the unused Iettehs in the
candidate are assigned values. , '

b. choose the candidate with the Ionéest list of determined keys;
add it to the final ordéring, along with its list of determined
keys. Remove the candidate- and the members of its list from
both candidates and remkeys. Mér‘k the letters from selected

positions in the newly-chosen keys are used.

Part 2 is repéated until remkeys is empty, i.e. until all the keys have
been added to the final ordering.  The keys are.now inserted in their

proper order in the r*a'n'ge of the array keys which corresponds to this

subset.
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. When adding the ith key to the final ordering, we havev_to
examine the possibi_lity of the hash add;:esses of all remaining i keys
being newly determined. The cost of.‘part (a) is suM(n-1), 1 < i < n,

or C = n*(n=1)/2. The cost of part (b) is simply that of removing each

key from the list of candidates and remkeys and adding. it to the final

ordering, or 3 * N in all. The dominant term in this cost expression
’ .

. 2 . , T, .

is 0(n°). When we consider that the resul® of this reordering process,

a nearly optimal ordering of the variables for the backtrack search, can
help us to prune branches from a search tree which is growing at a rate

exponential in the ordinal position of the sear‘c}f/var‘iables, this O(nz)

cost is well worth considering. .

In the Pascal program of Algorithm 1. we now invoke the procedure

'setunused' which prepares the keys for the backtrack search. 'Satunused'
scans the keys in the order determined in the previous procedure. For
each key, 'setunused' determines which symbols in chosen positions in

v

this key have appeared in no key which precedes the current one. These
symbols are recorded in the array 'unused' associated with each key.
The number of symbols in 'unused' is .then recorded for“ each key in the
integer variable ‘numun’'. If a key ki has no uhused symbols, thg ¥
‘symbols which appear in chosen positions must have occurred eariier in
the ordering of keys; each ki for which 'vnumun' = 0 has a determined
hash address when its predecessor's address has-been determined.

The complexity of 'setunused' is proportional to p*n when we keep
the array 'used', indexed by symbols of the alphabet. ) 'Used' is updated
as we move through the list of keys, scanning at most p symbols to
determine whether this key contains any unu§ed symbols, The cost of

'setunused' is then (p¥*n) + A', roughly. If we order ihe k'éys as we

z
>

have done, but do not make this record of new symbol occurrences, we

-
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have to isolate these new letters at each trial of each key in a backtrack

search, possibly thousands of times12

We sugges"t that the proper method of approaching this entire
pr‘QbIem i{s 'trobexpvlicitly recognize the pr‘ini\ar'y importance ’of the
ordering of the search var'iablés, in our case those symbols which occur
in chdseﬁ positions. We should program our ordering strategies to choose
a heuristically good per‘mutation“of-,tkhe symbols which in turn induceé an
.or'der‘ing of the keys.‘ This’ would certainly promote’ elegance and likely
th(f efficiency of the progr'am]

These ordering functions precede the backtrack search. In
Algorithm 1, the search is initiated. by invoking the procedure
'assignvalues', which sets the size of the domain from which associated
letter values can be chosen before calling the pr'ocedur‘gs which actua'lly
carry out the search. In Algorithm 1, this domain -size m is assigned
the number n of keys in the subset for which we are currently fiﬁding
a perfect ha-sh fu;nction. We r‘éasoﬁ that the largest value of m will be
required when placing the last key in a subset beyond all other keys in
the hash table if aill its letters but the last have been assigﬁed the

3

value 0. In this case, there must be an open hash table address
- , ,

somewhere within the range {0...n] since only n=1 keys fr‘on{ this subset

have been placed in that range so far. This is not str‘ictl/y true, since

a previous subset may have overlapped the current range somewhat; in

2This applies only to hash functions which use a variable set of
identifying properties. For Algorithms 0 and 2 which both have a fixed
set of key properties defined for their hash functions, this selection
process can be simply specified in the form of the hash address
calculation, e.g. first and last lettef positions. k

13- . . . . . .
This is corroborated by a study which came to our attention just as this

thesis was completed [Cook and Oldehoeft, 1982]. The authors have
implemented algorithms which are '"letter oriented", with good results.
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-

practice, we have obtained very good results using the number 'n.
There are three search procedures, 'addword'; 'vary', and 'try';
these routines perform the recursive search through the space of partial

solutions. __ , .

'Addword' is the top-level procedure. It is passed the index i
of the next key to be placed in the hash table. I f ki has no unused
. /1;;;;?

letters, then its hash address is fixed by vaAlu‘es assigned to letters
previously; therefore 'try' is called. If at least one of ki's choseh
letters has ,not:' yet been- aséigned a value, "'var'y' is called.

'Vary' is the heart of the backtrack search because it assigns
values to the.search variables in a systematic way, ensuring that aI“I'
partial solutions of interest are, éener‘atedﬁ. Since the numbef of ‘unused
letters is not fixed it was found most naturél to program . this as a
recursive pr'ocedLJr'e, allowing backtra/cking by exhéﬁsting all the
possibvilities for each invocation's search variable. When 'addwér‘d'
c\a\H/s 'vary', the number -of unu‘sveéd- symbols is passed. This parameter,
'u', determines which of the uﬁused letters is assigned a value by an
invocation of tHe pr‘ocedl..lr'e;' v;/hen vary >(j) is invoked, t.he j—th. symbol
in the array of unused letters for the current key is given a tr‘fal
value. If j=0, then .the current key'bs hash addr‘es‘s, is determined and
"try' is invoked; otherwise, we invoke vary(j-1).

. e

The procedure 'try' attempts to place the current key in the
hash table. If its hash address is open, thelj_;',tr'y' marks the address
taken and calls addword on the index of the nest key in the ordering.
If the hash addr‘ess‘ was taken by a previous key, then 'try' fails.and
control returns to the calling procedure. When this previous procedure

was 'vary', the next larger integer is assigned to the symbol being

considered by the latest invocation of 'vary'. If the, calling procedure
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was 'addword', then the current key's hash address was deterniined with
no unused letters, so control reverts to the previous invocation of 'try!'
which must have called 'addword'.

The worst-case cost of this apbr‘oach is the cqst of searchfng the
entire tree of v;)ar'tial and complete solu‘tions. We direct our preprocessing
efforts to finding an or'_;jer'ing of the sear'{:ﬁ var‘ira!.ales which minimises
“the sizelof the search tree (the total AWeighted cost over all ;ver'tic.es).
Ofice the Searéh has begun, we can perform. an additional’ improvement;
we maintain a global index value 'firstopen' which is initially thé offset |
for this subset of kéys. Whenever a hash address j is newly cléime‘d by
some key, firstopen is upda';ed thus:

’ if j = firstopen
then fir‘stqpen := nextopen (j) s

When the last unused Ietvter‘ for a key is assigned zero as its.
initial vassocriateAd value many 'doomed! vallues may be generated. and
rejected before an acceptabie value is disco;/eréd for this symbol (one
which places the key in the first open hash address beyond the sum of
all thé associated values for the other symbols in this key, pILJs the

offset). We can look at this situation on the number line for non-~negative

integers:

O——————— O—— e O~ —— e — Owmmm e Om— = — -

0 offset b1 firstopen b2
. o
Figure 3.2

Suppose we have a set of symbols (a1,a2,a3) which make up the hash
identifier for some key ki and ai is_ the only symbol in the set without

O

an associated integer value:

<
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assocval[al] = undefined X )
éssocval[.az] = %,
assocval[a3] = x4

The prdblem is to make the optimal choice for the associated value Xq
If the partial sum‘of associated valuesdb1 = X, + X35 where offset { bl <

firstopen, then we want to set X, so that

X, + X3 + offset = firstopen,.

The

+ offset).

x

.= firstopen - (x2 + X

This value of- X4 is our best choice since it immediately places the key in

1 3

the open hash address most likely to lead to a minimal range of hash
addresses, given the values assigned to the othg letters.
Alternatively, suppose the partial sum of associated values.

Xa T X

2 - isrequal to bz, where b2 >_ firstopen. Then we set X4 to the

3

following value in order to place it in the first available hash addreSS:

x, := nextopen(x, + X

: 2 3 + offset_) .

+ gffs§t) '— (x2 + ’x3

This is just a streamlined way of searching for tBe smallest value of X4
. which places the key in an open hash address, but it does eliminate
many procedure calls. We still generate the same number of trial values

for x but they are tested in a tight loop in the function 'nextopen',

‘]7

which can be defined recursively -as:
p nextopen(j) := j, if not taken [j],

:= nextopen(j+1) otherwise, j {table size.

-

The Pascal version *of 'nextopen' is a 3-statement WHILE loop which

replaces at least one invocation of 'try'., This eliminates the overhead

associated with invoking 'try' for each rejected value. Note that this

improvement is possible‘ only in the case where the last letter which is
~ —
>

unused for some key is being assigned a new value; where the associated
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value of an unused letter dees not determing the hash address of a key,
we must simply assign an initial value of 0 to _thellett%er'. This
mod.ification to the search reduced its time of exec-ution by about twenty
percent. ‘

.When a perfect hash fuﬁction has been calculated for Si’ the keys
of I_ength i, we seek the next subset_ which hasn't been pr‘ocesseAd.’
Su;ﬁbéée. the;t Sj’ j > 1, is the next subset. When the keys .were first
bartitioned into subsets byrblengt\h, the smallest array index containiﬁg
a key of Iengyth k, 0 ¢ k £ P, was recorded for each subset Sk' The‘
original value of offset for each. subset is the number of keys which will
have been placecujv.in the hash tab‘lve prior to blacing tl'__\at subset. Since
we place the keys in order of Ieln'gt\l"fwt,‘kthis also is a cbunt of the number
of keys wHich are shorter than those in the cqrrerjt subset, Sj'

When we rad_'iust the offset of Sj’ o%\fset has the value which
anticipates that all previous hash functions have been not only perfect
but atlso mini‘mal. While A!gor‘ithm. 1 often fvinds a minimal perfect
function for reasonably small sets, our search algorithm does not
guarantee minimal solutions. We may find that this or‘»igihal value of
offset de_notes a hash address which has been taken by a key from the
preceding subset, Si,\ preventing us from using one of the possible

combinations of values which could otherwise place a key from SJ in the

hash table. In .order to avoid unnecessarily restricting the space of
possible solutions, we set the new offset to the smallest index i such
that

offset‘<_ i < r AND not - taken[i],
where 'taken' is an array which records for each hash address in the

range R[1...°r‘] whether some key has occupied that lotation. This is

done by calculating nextopen{offset).. It is quite possible that some
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hash addresses with indices greater than the new offset are occupied, : u,
but w"ev employ our backtr‘éck séarch to fit the new subset Sj around any
stragglers from Si'

This heuristic (setting tHe éffsét to the number of pr‘eviou'sl’y—piaced
keys) promotes ;the minimality (;f the hash table by allowing the ranges

‘of the hash functions for’ neighboring sets to overlapalthough they must

naturally remain disjoint. Algorithm ;1 tends to produce hasH ta’bles witﬁ
very high loading factors. The‘ smallest loading factor so far produced
by this algorithm was 0.97 for the two hundred most frequent English
words (200 keys placed in a range of 207 addresses).

il The cost ofnper‘for‘ming 'adjustnextoffset' is the sum of the costs
of finding the next subsetrand then fingiﬁg' the next open hash address.

The cost of this operation is negligible, less than N for the entire

original set of keys.

RETR.

3.2 Algorithm 2

Algorithm 2 performs an enumerative search of a limited solution H

space (as do Algorithms 0 and 1). For the backtracking search which

Ay

was used in Algorithm 1 we assigned a maximum associated value, m,

ERTSER AT NIRRT S e

so that for every symbol a'i member of A, _ the aésociate:ﬂ—v.alue of a,

etiig B

is greater than or equal to zero and less than or equal to m. This -
upper bound limits the number of possibilities tried for each search

variable, Algorithm 2 chooses an upper bound for each search variable

btz i

from a series which has no pairwise sums among its elements. This

property of the upper bounds for the associated values ensures that ' ;

i

a solution will be found, but makes no guarantee that the loading factor

of the resulting hash table will be acceptable (though it usualiy is

for small sets of. keys).

i Y AL o
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Thg essentiél problem in all the methods of comput'ing pérfect
hash functiops Aescribed in this doéument"fis the choice of a method for
assigning integers to symbols of the alphabet. In order to calculate.
solutions for large sets of identifiers, the assignment must be done

efficiently and must maintain the '""mon equal" relation between ‘hash

"addr‘esses of pairs of keys. »

neqli,j] =1 if H(k.) # H(k.)
0 otherwise. 4

We consider 'the possibility of an easily-calculated series of integer

values which guarantees distinct~sums. If such a serié‘of integers couldb
- .

be assigned to the search variables in‘or'der',' then no unsuccessful
" candidate values would have to be tried and rejected. The difficulty
with this app_Foach is to mairjtain an acceptable Ioad-ihg fact‘or' in the
hash table. In érder to .achieve a compact hash address space we seek
a series which grows slowly and produced diétinct addresses. Consider
the assignment of the integers 0,1,2,...,25 to the alphabet 'a,b,c,..,z',

. . .
respectively. The hash function applied to the word 'program', for

example, returns: - : e

hashval('program') = length('program') + assocval('p') +_assocval('m')

' =7 4+ 15 + 12

"

34 “ : .

't is clear that if the word 'program' dppears ‘in a set of fewer than

| 1

twenty-seven keys and this hash function is used, then the hash -table
cannot be minimal or even almost-minimal. In addition, many’
combinations of associated values and word length return a hash

a

address of 34:

an B-letter word whose first and last letters are 'n'; or, a

4-letter word whose first letter is 'r' and whose last letter is
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'n', for instance.
We conclude that a randomiy-chosen simple —assignmenAt of a series of
distinct values to letters will not provide a good solution to our problem.

. : . $
"We have investigated some natural series \Prhich produce distinct

integer values and whose ‘elements, when added in pairs, produce

distinct sums. One such series is the following:

F (1) =0 ', 3 : :
F(2) = m
a .
Fa(3)_= 3m
- 2 % F (e - (-
Fa(n) 2 Fa(n 1) + Fa(n 2), n > 3. .
The series is 0,.m, 3m, 7m, 17m, 4Im,... If we choose 'm to be the length

of the longest word and assign the values to letters in 'decFeasing order
of their fr‘equency'of c;ccuﬁrence in the list of keys, we obtain a series
of distinét values, as desired. This assignment method ensures that all.
pairwise sums éf associated values are distinct as well.' The difficult.y
with qssigning associated values.in this way is that the magnitude of
the series elements rises ve:y rapidly, even if the multiplicative vgactor
m is small; with m=1, the tenth most f‘r'equent letter will have an
associated value of 1731, which obviously defeats our purpose of producing
almost-minimal sized hash tables.

We consider two other series which produce distinct pariwise sums.
The first of these is the "powers of 2". Given an integer b greater
than oné, the series Fb of ‘integers produced by raising this base b to
the powers E, ‘i = 0,1,2,..., bas éH distinct elements bo,b1,b2,.:. We
cah show that different elements in the series produce distinct sums by

~simply noting that b forms the basis of a number system; any two

numbers ‘in the base b can be equal only if they are the sum of the -
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same powers of b when their coefficients are 1. When a key has the

~same first and last letter, then the coefficient of that letter is 2;

-

but we have already determined that no other key ha.s the same f{ir‘s\t
and last letter and the same length., These are the only nén-zer*o
coefficients possible when two letter positions are chasen as is the case
in Algorithm 2, ,
Even for‘ the smallest base, b‘ = 2, this sequence grows rapidly:
the tenth letter value wil‘l b? 210 = 1024, This technique might be
useful for very large sets of keys wher‘eﬂth‘e number of letter éombin?a‘t_ions
which actually occur is appr‘oach\ing the-theoreticél limit, i.e. the key
space is densely populated. For small sets of keys, however, assigning
values from such a sequence ;s not practicaf beca‘use of the exponen‘tiarl
growth éf succeeding '»e!'ements, which leads to very poor loading factors.

N . . ’ ¥
In considering additive ir}’éger‘ sequences we looked at using a

suitably modified version of the Fibonacci sequence, thus:

Fd

Ff(1) =0
Ff(Z) =1
Fe(3) = 2

. Ff(n) = 'Ff(n—1) + Ff(n—Z) +1, n> 3.

This sequence is 0, 1, 2, 4, 7, 12, 20, 33, 54, 88,.... The growth rate
of this ‘seqderﬂqe for n > 3 is, a[:;pr‘oximately:

. _ .

Fe(ntl) = 1.62 Ff(n}.

This low growth rate means that the associated letter values stay
considerably smaller than they do for the powers of 2: Ff(IO) = 88 while
F2(10) = 1024. Nevertheless, we cannot make use of this series to simply

i

assign the values of letters; with two chosen letter positions (first and

g
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last for Algorithm 2) and ten letters which occur in a chosen position
there can be no more than ten chooge two [CH(10,2)], or forty-five,

different keys. The maximum hash address which would occur if we

assigned assoaated/va/kfés directly from the series Ff(n) would be

e

Ff(m)' + F(9) = 88 + 54,= 142 |
The Ioad~in’g factor in this c!-ase will clearly be far too low' to qualify
the hash function as aImos&minima!.’ If we employ the key length as
part of the hash function, then the loading factor could be somewha;t'
better, but not enough to make this a viable method for handling most
sets of key; where the numb‘er' of Iette~r~s which occur in chosen positions
is“Usually nearer twenty than ten. . '

It would be highly gratifying to find & series of integer values
‘which fits ourﬁiteria and produced compact hash tablés By_ just
assigning the elements of the series to the letters in order. Unfe’r*tunately,
this séries elude us, and may not-exist. Instead, we use the elements
of one of. the a,bo’vé series to provide an upper bound on the associated
values of the letters which occur in chosen positions in the set of_key’s;
This allows us to test all 'Iower assoc;ated values, hoping to find an
.acceptable'one, lfnow.ing that the upper bound. is a solution (altthgh
not nece;sar‘ily a bést solution overall). We can therefore avoid all
backtracking, leading a faster séar‘;:h algorithm.

Algorithm 2, which uses the same set of‘keﬂy characteristics as
Cichelli's algorithm (first and last letters and key length) can be
despcr‘ibAed informally as follows:

ALGORITHM 2 X\

o)

stepl: count the fregquency eof occurr‘encg‘ of each tetter which
/
appears in either firsly or last /position in the set of

7
/



step2:

step4:

step5:
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keys. Order the letters by decreasing frequency of

occurrence.

Iy

h:3

to each a, in the‘or‘d‘er‘ed set of letters assign the

upper bound F(i), where;';i:(n) is one of the above J

series. This assigns the smallest Iimiting values to

the most frequenity occurring letters, promoting the

minimality of the resulting hash table.

for each key k., 0Ci¢N, calculate tval[i], the sum of

’
the temporary 3a|ues of first and last letters plus the
length of ‘the key. Sort the keys on this sum, producing

a list of keys ordered by the sum of the frequencies of
their first and last letters; keys with the séme combination
of letters in these positions willi be orderd by increasing
length. If any two keys have all characteristics in
common, Algori'c_hm 2 cannot be applied to the current set

of keys.

for each key ki’ 0<i<KN, do the following:

(a) if both the first and last letters in k. have been
assigned values, continue with the next key: ki has_‘
b.een placed in the hash table pre\(iousiy;

(b) if neither letter }was been assigned a value, set the

- most frequent of them to zero; |

(c) if only one letter"aj has no assigned value, vary
its associated value from zero to the upper bound
until all the keys whose hash addresses are

‘determined by this letter have beeh placed in dpenf
hash table locations. Each time the associated value
is incremented, the function 'check' is called which
first cha‘ﬁges aill hash values which are affected
by the current letter, then makes an O(Nz) pass

< through the set of keys to determine whether any

pair of keys have the same hash address.

mark the current letter 'tried' and continue at step 4
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with the next key in the ordering. |If there ,is none,

we have a solution and the algorithm terminates.

Alg_c'>r~ithm.2 is not a backtracking algorithm in the classical
sense, but an intel|i‘gentl'y—cc‘)ntr~olled éhume’r‘a_tive one. This élgor‘ithm
Vis designed to.have a speedy search which, hopefully, gi‘v'es almost-
minimal perfect hash tables. The search relies- éntir‘ely on the ‘good
effects of t.he o;der.ing of search #;var‘iables to _achi'eve a comvpact solutioh;
unlike backtracking search, this method ﬁever‘ "undoes" partial results.

- Once a key is placgd in the haéh tébl—e, its addsress ‘never‘ changes.

The‘cost C of‘Algorfthm 2 applied to a set :Of N keys of maximum
length P which contain s letters which occur in first or last position is

calculated by summing the costs of steps 1 through 3 and s instances of

steps 4 and 5. The number of keys dealt with in each instance of steps

4

4 and 5 varies, but the total must be N.
Counting the letter T’r‘quencies entails accessing all 2*N characters

which appear in chosen letter posjtions in thé se't of \k\(-l-ys, plus 2*N

additions. Ordering the letters by frequency incurs a eoét of

O(N Iog2 N) using a recursive Heapsort.: The total cost of stepl is

O(N * ((log, N) + 4)).

s

Calculating the temporary. values from the series F(n) is simple .

4
no matter which series is chosen. This incurs a cost of 0(s). "

Calculation of sort values for N keys costs two additions per keys
énd is therefore O(N). The sort is an O(Nz) exchange sort. This could
béf(mpr‘oved by first sorting the keys using any O(N Iog2 N) sort, then
comparing neighbors for equal sort values whi‘cH would indicate possible
irresolvable conflict. Two keys may have the same sort value without

having the same corrbination of letters, but only those -which have the

same sort value can have %fching letters and lengths. We can testy for
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conflict by comparing ohly those keys which have the samé sort: - value

. . . . P :
(and therefore must lie in sequential array. locations when the sort is-

e

‘done). As given, the cost of step3 is O(iZ*N»}-FNz).

For a letter a, whigh is the last to determine the hash address

of a key (or keys), this step may try from one to F(i) associated!

o

values, where i is the ordinal position of this‘igtter‘ ig the_br‘der‘*iri\g of

s search variables. Each of tHese letters may deter‘inine the plaéement

of from zero to N-s+1 kéys; let us call di the number Pf*keys pla(:ed \/a\
by letter a, - " We know that no more and no. fewpr than N keys must be .

placed, so N = SUM(di), '0<i£s.l The present imple'mentatilon of "this
algorithm makes N*(N-1)/2 comparisons of hash vallues to verify that no.
two keys are mapped .into the sa’me hash address each ‘time a n;w v‘value‘

is tried for a letter. The maximum step4 cost is As’*N* (N-1)/2 ¥ SUM(F(i)),
Ov<i"£s. The running timee of the‘ algorithm 1, oncer the or‘derf of the vlett(—-:‘rs“
is established we also. knbw in which order the keys will be plac;éd in

the hash table. For each letter we can then maintain a list of those

keys whose hash'addr‘esses are determined when that letter is assigned

a value. If 'we also maintain an array of taken hash addresses, then

i3

we need only compare the hash values of the keys in the curr‘en't Ietter"s.,
list against the corresponding array elements i;'l 'taken' to determine
whether a c&‘vflict exists. Simce‘we are not interested in solutions with
a loading factor of less than 0.8 the. size of the array 'taken' need ‘be
no greater than 1.25*%N; the lists associated with 'Ietteqrs must contain
a total of N keys. S ' “w

The cost of marking s letters as 'tried' is s. The total cost o‘f

performing Algorithm 2 is
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3.3 Algorithm 3
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O(N * ’(nogz N + 4)

0(s)

2

0(2 * N)A+ (N ))

O(s * N'* (N-1)/2 * SUM(F(i))), 0<i<s

Algortihm 3 was prdgrammed in the APL language on the

MTS/APL system by John Boates. This algorithm finds perfect hash

functions rapidly for large sets of keys.

Algorithm 3 incorporates a development and refinement of the - =

non-backtracking enumerative search procedure used in Algorithm 2. No _ Y

*

upper bound is placed on the size of associated letter values.

Algorithm 3 tends to produce sparse hash tables for the same reasons

as for Algorithm 214.

Algorithm 3 embodies three improvemeénts over previous attempts:.

1. Alfhough the letter posftidn}s to‘,kbe used in the hashing
function arev not chosen algbrithnﬁicall*y ( the user is prompted ,
to name a set of positions), this program does distinguish
letters by position of occurrence in the assignment of
associated values. There is no sE—:;t‘ of distinct lexical keys
which cannot be distinguished in this way. X

2. The process of ordering the search variables has been
refined and considerably adapted to this pr‘oblem.>

3. The search process is managed ibn a way which eliminates
many .doomed choices of ’assoc.iated values by analysing

relationships among keys in terms of shared letters.

The following is an informal outline of Algorithm 3: :

14

~John has now programmed an improved version of this approach which °
performs a limited amount of backtracking when a solution has a low
loading factor. This promises to retain much of the speed of the
current version while reducing the size of the hash tables.

-
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Algorithm 3

stepl:

step2:

step3:

stepé:

step5:

stepb:

58

the user is prompted to supply two specifications:

(a) the set of letter positions to be used in the hashing,
el _ ST
and (b) whether or not the ktey length is to be part of

the' hash function.

If any two words cannot be distinguished with the hash
function as specified by, the user, then report conflicting
keys and return to stepl; if the hash function is
acceptable, then continue with step3. >
count the number of occurrences of each letter in each

position, then subtract one from each sum. For each word,

-assign a value which is the product of the occurrence

" counts for the selected letters in this key. Those keys

=

whose assigned wvalues ér‘e zero must have at least one
unique occurrence of a letter in some choseh ‘position.
Place these keys at the head of a list of keys with
unique occurrences. Repeat step3 for the non-zero keys
until no more keys with unique letter occurrences are
found. Keys selected in this process will follow all keys

with no unique letter occurrences in the final ordering.

order fhe remaining keys, those with no unique letter
occur'r'er;i&s, by decreasing product of their letter

frequency counts.

form a group ‘by first choosing thé key nearest the héad
of the list which has the fewest letters with no assigned
value ('"new" letters); next, find all the keys whose
hash addresses will be‘detehmi‘ned when the chosen key's
new letters are aséigned integer{ values. | Repeat stepb

8 —

until all kéys have been chosen.

order the keys within each group so that for any two
keys ki and kj’ if we calculate the set differences '
between the letters from chosen positions in each key

(D, =Lk - L‘(k'J.), D;i := L(k;) - L(k,), where L{k )
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is the set of letters in chosen positions for km), ‘then if , K_
ki precedes kJ. in the ordering, all letters in Dij will be -

assigned values before the last letter in Dji is assigned

a value. '
step?: for each key, determine which of its chosen letters will
be the last to-be assigned a value in the search. This

letter's value can be manipulated to place the key in an

open hash address. in cases where length is the only

o - . .
difference between neighboring keys, the distance back to

a key which differs in letters is noted.

step8: taking these noted letters in order, we determine for the , {

next letter which of its possible values are precluded

by conflict with the hash addresses assigned to previous

keys.

T BT LI T WO

step9: assign letter values. If a single key is being ‘placed,

~ i,

its determining letter value is just the one which places
it iQ the. lowest possible open hash address. If the key

T : is part of a group whose hash addresses are d&r‘mined ‘ i
by assigning the current key's hash address, then we ?
must choose the smallest possible value that maps all the,

keys into open hash addresses.

step10: if no letters (and therefore no keys).remain, then the

algorithm terminates. Otherwise, continue with step 8.

There is a description of the original version of this algorithm
which permitted né backtracking. A second kver‘sion of this algorithm
has been'wr'itten which allows backtracking whenever we discover, at
step 10, that the hash tabile has‘ become too spar‘se. Step 10 is replaced

by the following two steps:

b e e s i

step10: the loading factor LF of the partial solution ‘generated

to this point is calculated. If the present value of LF

L4
o «Kl-‘m.uﬁmaumm.
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is acceptable, continue with step 8. If LF is too small
and the number of allowable backtracks (set by the user
in step 1 in response to a prompt is not exceeded, then

proceed to step 11).

stepll: for the latest group added to the table, determine which

—

kKeys have the highest and lowest hash addresses; call

them k and kK . . Choose a letter from k . , say
max min min’

' a., which does not affect the hash address of k and
. . i - max

increment the associated values of all letters which were

v

assigned after a;. Remove from the table all keys'

which were placed after the value of a, was assigned,
and” adjust the sum of assigned letter values for each
affected key. Place these keys at the head of the list

of keys which Have not yet been assigned a hash address.
Adjusf the order of letters which determine the hash ’

addresses of groups of keys and return to step 8.

-

%

Since this algo'rithm’a'ssi'gns different values to the same letter

m different ‘posi'tions, i_t has the effect of multiplying the size of the

alphabet, A, by the number of selected letter positions. We can therefore

regard an 'e' in position one as a different letter from an 'e' in

Coe

position three, for example. As suggested in Chapter 2, this distinction
allo/ws us many >mor‘e possible combinations of integer values which can
serve as partitions of the integers which represent hash addresses.

We will also find more keys which have at least one unique
occurrence of a letter in a selected position. These unique letter

occurrences allow us to place the keys in which they appear anywhere in

the hash table beginning at the sum of the values associated with their

- other selected letters. For this reason, these kéys are the last to be
placed in the hash table; they can be used to fill hash addresses which
were left open during the placement of the preceding keys. The result
is a more nearly minimal hash fable. We give an informal analysis
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of the complexity of each step of Algorithm 3. - | _ 5\\
_ lnitially, the program ih,teractfvely prompts the user to name-a

set of letter pdsiiions wrhich will be used in the hash function

calcu'lation. Thé user is also asked to decide whether the key length

should be used in the hash function.v Step 2 of the algorifhm tests
this éombination of key éharactér‘is_tics to det.er'mine whether all keys
~in the problem set can be disting'uished.. - Potentially, step 1 is repeated
until a 'suitable' cc;mbination o‘f characteristics is specified by- the user.

Each iteration of step 1 requires I/O operations, two prompts (letter

bosition% and. key length) and two reads of the user's input. We ignore
this expense as part of the overall cost.

In order to test the distinguishing power of the hash function

S s e

specified by the user in step 1, the keys are sorted Iexicogr‘aphically‘
on the chosen letter positions. One pass is made through the sorted /( 4
array to compare neighbors for Amatching length (if length is part of the
hash_ function} and matching sets of lettér‘s in chosen positiohs.  If 7‘
such a:match is found, the pr‘esént form of the hash function is rejected |
and sfep 1 is executed again. If we assume that only half the keys

will be examined on the avetrage in an unsuccessful test, the cost of

testing each unsu.ccessful choice of ’key properties which define a set .
of hash identifiers will be: 3
C' = (f))+(N log, N)J+(N/2) B 5
= N (p + log2 N + 1/2) , .
The cost of. the final itergﬁon of this test, the fir‘sf successful one, will
be:
C"=N*(p+l092N+1) _. ;

because all keys will be examined, not half of them.,

-



.The minimum cost of this step, which occurs when the user's first

choice of identifying properties is successful, is C". Theor‘eticja*lly, the

maximum cost is inf.in‘ite since the user may repeatedly spéf€fify

unaccebtable hash functions., The maxirnum number of di /r‘entxhas"h
functions for a set of keys.c;f maximum length P is ZPH,» takin;vidnto
account whether or not the key length is made part 'ofv the hash function.
If each of these possible choices is made once and. only the final éhoice
is found to be acceptable (the worst likely casg), then the cost C of

step 2 would be

P+1 -1 ) #¥CH )+C"

O
I

((2
c . =¢"

The user normally'find‘s a suitable set of key properties within a fewA

iterations of steps 1 and 2. -

In step 3 all keys which hav<‘e aunique occurrence of a letter
in one of the chosen positions are extracted frorﬁ'the set of keys‘.. In
:the j-th iteration of this step, counting the occurrences kof'{.ﬁeach letter.
entails performing p * nj a\dd‘itions, where p is the number .of chosenA
positions ana nj is defined to. be the number of keys yvhié:h remain
éf'ﬁer‘ the previous j-1 steps. If we define u. as the number of keys
extracted at the i-th iteration, trhen

nj=N—SUM(ui), 0 Li (i

Decrementing the count for each letter involves performing AJ.' subtraction

operations, where

Aj = AT - SUM(u), 0< i< -
For each key we now C?Culate a temporary value t at a cost of p * n,
multiplications. Keys with unique letter occurrences will have £=0.
These keys are each added to a new list, call it U, combrising all those

which have at least one unique occurrence of a letter in a chosen position.
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If u' ='car~d(U)',‘ then the cost of this scan of the keys is n, + (2 % ’uj)
in the j-th step. The second term represents the cost.of deleting keys
from the list K and adding them to U. The total cost of k iterations

of step 3 is then

where

J J J J J

= (hj ¥ (2 % p)+1) + AJ.' + 2 % Upe e

Completion of step 3 feaves two disjoint sets of keys, U and W.%he

C. = (p * n.) +AJ.' + (‘p *n) +n, + (2 *ou,)

set U contairpé those keys with unique letter occurrences, and W contains
those which have no such unique letterr*s..

In step 4, the W' members of W are sorted into 'non—incfeasing
order of their values of t (thé product of letter frequencies), so that
the keys with the highest-frequency Iettérs will occur early in the final
ordering. The cost of ste; 4 is O(W! l092 W'). This step corresp-onds
to Cic‘helli's first or‘der‘ing.b |

Steps 5, 6, and 7 taken together perform Cichelli's second
ordering for W. These three steps move keys from W to a new ordering
Y which, with U appended, will form the finél ordering of the keys.

In stép 5, we choose the next key in the ordering, mark its

new letters '"used", and finally scan the remaining keys for those whose
hash addresses will be newly determined by the choice of values for
the‘chose’n key's new letters. These keys are deleted from the old

oﬁdering and plated in the new ordering Y as a group. This step is
repeated until W is empty.
B

The next ke\ry chosen widl be that with the smallest number n of

"

"new letters which occurs earliest in the old order. This can be done

in no more than p*W' operations by .beginning at the head of the oid

o

ST
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order and, for each key in tur;n, calcdlatirnlgr;'trhe number n of new letters
in the key. If n=ﬁ, thenrchoose thié key15. Otherwise, if the value of
n for tf;e'cur‘r‘ent kgy is less than the minimum value -found in thetlist
so far, set the new minimum value to n and note the location of the - ©

key which has this value. If we exhaust -the list ‘W. and found no key

with n=1, we select the key whose value of n was the minimum as

noted in scanning the  list. In eifher‘ case, at least one key must be
exah‘fn/e::lm. No more thah W' keys will be examined.

The selected key will now have eac;h 6f its n new letters marfked
'used', at a maximum cost of p assignments. This key is removed from
t}";e list W leaving W'-1 keys. The remaining kéys in W ar‘e‘examined
to find any whose hash addr‘esse% are determined. This r“equir‘esv time

to test p*¥(W'-1) Iet}gr‘s to see whether they are now ‘used. Those keys

in which all letters are used are associated with the key chosen in the

)

first part of this iteration of step 5 to form a group Gi if this is the i-th

° -

iteration; anywhere from zero to W'-i keys may be selected in this

process. Each of the keys selected for this group must be deletéd from

1

W and added to Gi.'
The number of iterations of this step (i.e., the number of groups

formed) varies, depending on how letf‘érs ‘are shared among the keys.

Let us say that k iterations are required to. group all W! k‘eys from the

. - . . . 17
original ordering W |rj)o’—G\ groups, Gi’ 1 i<k . In the worst case,

)

15 . . . . .
At this point every key must have n)0, otherwise its hash address is

determined, so the key should have been made part of some group at.
an earlier stage. The minimum value of n is therefore one, allowing
us to immediately select the first key which has n=1. ‘
16 .
We can simply choose the key at the head of the list since all keys
.have p new letters before the first key is chosen.

Note that k keys chosen because they add the fewest new letters must
contain all the letters in A; therefore N > k » (A'/p).

1
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k=W'; only one key is selected at each iteration, implying that we "

search the remaining W'-i keys each time without removing any of them
from the list because of having all their letters used. This leaves the
maximum number, W'-i, to be searched at the next iteration.

Fino’?ng the key with the minimum number of new letters has
 been facilitatéd by placing keys containing frequently occurring letters
near the beginning of the list. In the worst case, the process would

~consistently find the next key after scanning W, at a cost of SUM(i),

1 i € W'. ’This cost is then

C_ = SuM(i), 1¢ i ¢ k

k*(k+1)/2

i

0(k?).
It seems quite likely that the key at the beginning of the list will often
be chosen immedi‘ately because it has only one new letter, due to the

beneficial effect of the first ordering of W. If that fails, it will often

happen that we find a key somewhere before the end of the list which

has a single new letter, allowing us to stop the scan at that point. We
conclude that selecting all the initial .keys for the k groups requires

time Ca’ which is proportional to at least W' and at most W‘2.

The &econd part of this step has a time cost Cb proportional to

2 . " . .
W' in the worst case since we must scan all W'-I keys after the i-th

selection step, 1 < i < k. When none of the k iterations removes a key

from W, then k=W' and we have the cost

C, = SUM(i), 1<igk
= k*(k+1)/2
- 0(k?).

If this scanning operation finds j keys with determined hash

addresses, then the size of W will be reduced to W'-j for the next

3
:
B!
4
=]
1
7
i
i

4

S
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iteration, and there will also be | fewer iterations required. We can

say that the cost of pairt b is proportional to at least W' and at most-

v

W'2. The cases where Cb approaches W'2 appear to be those where the

number of keys is about equal to the number of letters which occur ivn .
chosen positions, li.é. the keys in the:pr‘oblem -set share féw fetters.
These are also small sets of keys where few positioﬁs need be u‘sed to
distinguish all keys. When the set of keys is large, we tend ‘bto fin‘d
that keys share more of ‘the available letters, which tencjs to reduce the
d:ime: r‘equ.ir"ed for step 5. The computing time for step 5 is -t}';en O(W'yz).
In step 6'we perform G' iterations of the basic process, oné for
each group in G, the set of groups. There are k = 0(s) groups with
an averége of Wv'/k keys in each gr;oup. A Wi.thin each group, we compare
eacl’: key ‘rwith all others for a cost of (W'/s)2/2.4 The basic obération
in each comparison is to find, for: two keys I<i and ,kj’ the set differences
Dij and ‘Dji ‘between the respective sets of letters from chosen positions.
Af thesemsets have cardinality p, then the cost of each set difference
calculation is O(pz). For each pair of keys, this differernce must be

: 4
calculated twice. The total cost of this step is roughly

“0(s *1/2 % (W/k)2 * p2) '

s p .

o(1/2 * |o2 * W‘Z/k)

¥ o(p * W)Z

/(2 * k)).

Since W' { N and k { s, we say that for step 6

Cooral = OU(P * N)2/s).

The task of step 7 is to find, ‘for each key, in what or‘der‘v the

®

letters which are previously used have their associated values assigned.

If the key ki contains one new letter aj, then that letter will

v

necessarily be the last of the letters in I<i to be assigned an integer

value. When the key contains more than one new letter,. we must choose

N
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‘an order in which they will be assigned values.- This step provides
us with a strict o:‘der‘ing of the search variables, the Ietter“s.‘ With
each letter a, a certain number “of keys are associated; for these keyS\ak
a. s the last variable to receive a value when a perfect hash function
is being calculated.

In order to perform this step we reduire an array of boolean
values, 'used’, indexe}d by the symbols of the alphabet A, which allows
us to make one pass thro_ug; the ordered set of keys. We first record
for each key which of its letters are new. We then .order the new

letters and update‘the array 'used'. Fbr'.p chosen positions and N keys,

the cost of this part of step 7 is O(p*N).

Another function performed by step 7 is to note for each key@

far back we will have to return alor% the path we have taken toward
a solution if the pr‘eseni key is found in a situation of. inevitable
cpnflict with some<oth‘er‘ key. This is aone by choosing the nearest
previous key which differs in a letter or in length. The cost of this
part of step 7 is negligible.\ ) :

v In step 8 we analyse the way in(wb_ich keys from the current
® .

S group share Ietter‘s’and the constraints this. puts on the choice of
associated values'. Suppose we have a function L(kx) defined as in
step 6 of the outline of the algorithm:

L(kx) i=1 Lx“::: (ai : a, appears in a chosen position in kx).
Suppose that set difference of two sets of letters is defined as
D(Lk, ), L(k D) 525 B =t Llk ) ~ Lik,)
Assume two keys ki and kJ ar'“e‘ in the san{e\g‘réup' and a, is, for both

keys, the last letter to be as/signed an integer value. _Before attempting

to choose a value qu a, we must determine whether the current partial

Ed

assignment of values produced equal hash addresses of the two keys.

)

ket

e M b Sl i

L b e

i A a1

e e e b g e



68

“For two I;eys which share a # H(kj) if and only if .

k’

). - If H(L -~a, ) = H(L.-a, ) then a hash address

H(L.-a ) # H(LJ.—a|< H(L -a %k

collision is mevutable because a, must contribute the same integer value

to the hash function calculaﬂ{n for both xeys. When this sntuat|on occurs

the computation backs up to the nearést previous different key chosen. in

=

‘step 7 in order to change an associated value which can avoid this

-

collision.

Because this type of analysis is not done for the ‘set of keys as -

-

a whole, a certain amount of the computatio;ﬁ may have to be undone in

the above manner. A more complete analysis of these ‘inter'r'elatio‘ns v '
among ke;/s could avoid all backing up at the cost of a considerable

amount of preproce§sing timels. This can happen when the st of values
associa-fed with members of. Dij is equal' to the sum for members of Dji’

for two keys ‘ki and kj’ i # ], whér‘e_

5 . D.. U (L. N L.v)g/*
i i ij i j

and L, = L(k.) D.. U (L.N L.).x
J J J1 ! J

When this situation occurs, the only way ‘to create a .difference

-
H
—
A
Il

between the two hash addr':es'sves is to alter the associated value for one

of the letters in

SD.. =D = L. + L.
zl/J .l [N J

where '+' represents theisymmetr‘ic difference of two sets.

In order to leave as much of the partial solution intact as possible,

Y

8 \ ‘ . 1 : \
! The problem we are likely to encounter when doing a more complete

analysis of these r‘elatuonshnps is that the number of facts deductlble

from t nstraints grows very large for large problem sets.
ackworth [1977] gives a method for maintaining consistency in

networks of relations which addresses problems like the one we face

here. I't.is intended as a method of optnmuzmg combinatorial. search
procedures by domg polynomial-cost preprocessnng to eliminate
inconsistent values from the domains of the search variables. A

recent article by E. Freuder [1982] gives a sufficient condition for

backtr‘acgfr‘ee search.

‘v‘v
oy
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we choose to alter the associated value of that Iet\tg_ﬁ ak in SDij‘ ”
which was most recently assigned a valuer When we alter this vatue,
we must regroup all keys which have been placed in the hash table

since a

K was aésigned a value; these groups are placed at the head

of the queue of groups which are ‘'waiting to be mapped into Hash'
addresses. A new value is a.s'signed to'lt’he‘ letter a, and the sear‘cﬂ?\'
© continues.
JH'Je pr‘oceduré described here is a specialised sort of ‘back‘tr'acking.

I f \&e were to perform a ;Iight'ly more sdphis@icatéd analysis of the
relationships among keys, it would‘ be possible to avoid even.this
6imit,ed~ degree of backtracking. Some expense would be .incur'rjed for

both ardded time and space, but it is bossible to pr‘edict where such
conflicts might occur and to avoid them by simply considering which_

letters are he_ld in commen by 'ev‘ery pair of keys in the problem set.

It is essential that Algorithm 3 test for the conditigﬂn

before tyﬁing to assign values to the letters in the intersection Liﬂ Lj

of the sets of letters fromp chosen positions in the two keys. 'Ifo such

B

a test is not ma.de,l this algorithm can enter an infinite loop since there
is no uppér‘ bound on the values which can be associated with letters.
. o /

Since no value assigned t6 the ‘me}nber‘s of Liﬂ Lj can create a
difference between the hash a_dd-res',ses of ki and kj’ this algorithm
\(Vduld simply try farger and I/a/[:ger' values for these letters until the -
computer runs out of larger inte;;er‘s.

As a small example, suppose we have a group of keys whose
letters from chosen positions are the following: {rig, fig, fog? where

'g' is the last unused key for: this group and the letters are assigned

associated values in the following relative order: {r, f, i, o, g).
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This agrees with the ordering of the combinations of letters abbve.

Some reflection should convince us that before we come to consider a

value for 'g' we must see that none of the partial sums of associated .

values for the subsets of letters <ri, fi, fo» create collisions. If

©

any pair of these subsets have equal sums of associated values, then
a hash address conflict is inevitable, if the three keys have the same

length, no matter what value we assign to the letter 'g'. We must
H .

therefore look ahead and be certain that when the tetter 'f' is being

a'ssigned a value that 'r' and 'f' do not have the same associated

»

value)('rig' and 'fig' would otherwise be indistinguishablé). When an

“assignment is made to 'o' we must make it different from the value of

'i' to avoid'a conflict between 'fig' and 'fog'. For each letter,

information about relationships between letter values must be preserved

in order to preclude choices of associated values which lead to hash
value collisions.
J

This confiict condition must be tested. The question is whether

it is ,@ne before associated values are assigned, or dynamically during

the search process. In either case, -only ke<s which are in‘ the same
J
group are tested in this way by Al'goﬁithm 3. If we assume that the
N keys are spread evenly over I< groups G1""’Gk’ whehe n, = card (Gi)’

then the estimated cost is

C

SUM(n . *(n.-1)/2), 1L i £ k : . '

1/(2k) * sUM(n *(n.-1)), 1 < i { k'

approximately N 2/2I< . ¥

The total cost for step 7 is 0((p*h{32).

The common characteristic of keys within a group is that the same ! -

letter, say a., is the tast of the letters in chosen positions from these

keys to be assigned a value. Step 8 records information which ensures
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z

. ‘ - : -
that the ‘contribgtio'ns of the™other terms of the hash function are

-

different for each key within a group. - e S

T

v

In step-9 we acf_ually choose the least value for letter 'ai vyhi'ch

will map all di members of Gi into open hash table locations. This is

essentially Mf pattern-matching step. _In step 8 we recorded the

relative values of th pa'r‘tia‘| .sums for the keys -in “each gr‘oup.\ The
¥

“aim is to find the firs angeme'nt of Qp,en hﬁsh. addresses in»t'he table

which fits the relative hash values of the keys in the c'ur:'rje_,’nt group‘f.'

cor

Consider the set of hash identifiers
(abc, adc, abe) ' : : o

= .
. E .

which haw common letter 'a'. Suppose that the current state of the. -

e

solution is: ' - .. S v
assocval('b') = 4 N ’ ‘assocval('dc') = 7
assocval('c') = 5 assocval('bc') =9
assocval('d') = 2 ~ assocval('be') = 10 o
assocval('e') = 6 ' . ' - - '
, ’ HASH TABLE } li‘“
...5 6 7 8.9 10 1T 12 13 14 15..
h ’ « A
....0 0 1- 0 O© o 1 "0 0 Q 0...
If assocval('é‘) = 0, then H('adc') = 7; but ghat hash address islak‘en e

by some’ previously-placed key. |If lh(ﬁaﬂ'):‘,:,,],, then H{'abe') = 11,

which is likewise taken. - The value 2 is alsd excluded for 'a', so 3 is .

, , . N ‘
the least value which can be assigned to 'a' which places all three keys

. in open hash table locations:
[}

When considering a value for 'a' in this example, if we are going

1

to place 'abc' at H('abc') = x, .then we know from the above relations

\
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between the partial sums of hasrh values for the keys in 'a''s group

that we must also find open addresses at x+2 and x+3 to place all-
‘/sihree/{}geys. If "X" represents a "’don't.car‘e" condition, then rour* -

problem is to match the ‘pafter:n "Ooxoo agarinstﬁ the érr‘ay éf Boolean

values representing the 'taken' property for each hash table location.



4, EXPER IMENTAL RESULTS

»

> In this chapter we report the performance of each algorithm
discussed in Chapter 3 when applied to several problem sets whi‘ch are
of interest to us. We compare the relative utility of our prbgramé when

applied to these selected problem sets.

Performance comparisons of the different algorithms demand that

4.1. -Measures -of Performance

we define useful measures of cost and benefit.

We consider as measures of trle benefit of an algoriithm the
Enaxil;num numbe;" of keys that can be pr()>cessed in a reasonable amount
‘of ‘time‘ and the loading factor of the ha;sh tabl.e. The‘ larger these
numbers are, the better the algorithm.

Three measures of the cost of an algorithm are:

1. execution time of a program embodying the algorithm;

2. the number of basic operations for a given pr‘obrlem set;

(3

storage costs, the amount of memory required.

The cost of using an algorithm is most easily obtained by simply
timing the execution of the algorithm's implementation when applied to
various problem instances. This measure compares the relative utility

of our four algorithms.

To make an analytical comparigon of the relative performance of

our various methods, we compare estimates.of how many times certain basic

operatfons are performed. These estimates, which were given in Chapter

Three, are only order-of-magnitude measures which indicate how much

time the algorithm may have to use to compute an acceptable solution for

-/
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problem instance of a given size.

" An important element in thé cost of using any algorithm is the
amount of memory necessary fof its exe(;ution. In order to make an
estimate of theA r‘ealvié'o/s/t of uéing any hash flanction ovf the type
discus:l‘\s}c\ed in this fhesis, the size of the table of associated letter values
must be \Bne term in the cost calculation.

The itoading factor .measures only the memory used in‘ stor‘invg
the dic\tli'onar'y\«'ktself. A realistic measure of the amount of memory
needed for impl_e;nenting bthis 'st'or'ag%scheme must include the cosy of '
storing the 'assqciat;d\ value fables since fhey are essential to calculaie
} N
perfect hésh functions.\\T\he Effectivev Loading Factor [ELF] of a perfect
hash function is calculate\(\j\\fhus: |

ELF = N/(r+t),
where r is.the range of calculated hash addresses and t is the number -
of associated letter values ;st,or'ed.

It is possible to estimate from ‘a particular solution andA knowiedge
of- the ordering ‘of the search variables how many basic operations wel;'e
performed to find that solution. This information can be used to
determine "after the fact" a minimum and maximum amount of work that
was done to reach that solution. : - , //«h

We propose a further relative measure of thé benefit of' an f

algorithm which we call the utility U of the solution found by a program.

When applied to a problem set of size N, we define the utility: gf the

19 Methods do exist for estimating the computing time of backtracking

~algorithms, such as the Monte Carlo method [Knuth, 1975]; these are
generally defined in terms of estimating the actual size of a search
space (as opposed to the theoretical size of the search space). What
we wish to determine is not how many solutions exist but the amount
of time (or ‘the number of basic operations) necessary to find the
first acceptable solution.
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u=N*LF /T

where LF is the ioading factor and T is the search time in milliseconds.
A relatively large value of U represents a high degree of thility for

ah algorithm applied‘tb a key set. We recognize that this is an
arbitrary measure, since U represents no concrete cost or benefit; it
does, however, reward gompact solutions to large problem sets and.
penalizes the use of a large amount of execution time. The measure U

calculated for each of the problem. sets and each algorithm is given in
/

Table 4.2 (below). [ ' )

o

4.2 Computing Environment * }

Three of the programs reported here, Algbr‘ithms 0, 1, and 2, are
written as Pascal programs [Pascal/UBC]; the fourth, Algorithm 3, is
written in APL. All of these programs have been run on an IBM 4341
computer under the Michigan Terminal System [MTS] time-sharing
operat'ing environmentl. " MTS provides a systemﬂ subroutine which allows
one to measure the amount of cpu time, in milliseconds, which has been
used>between calls to. the subroutine. Only cpu time is inclluded in this

total; ti'me—shar‘ing costs such as time to swap programs in and out of

memory are excluded. We believe this measure gives a good ‘indication

of the amount of time actually used to execute our algorithms. VI
. n .

Algorithm 0 and Algorithm 2 were originally written in UCSD

Pascal. in order to compare their performance with that of the APL

program for Algorithm 3, ‘algorithms C and 2 were translated to Pascal/UBC

{the Pascal ‘compiler available on our system). Algorithm 3 was written

in MTS/APL and Algorithm 1 in Pascal/uBC.
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4.3 Example Problem Sets

In Chapter 2 we showed that the number. of sets of k'eys t;) which
thel algorithms discussed can be applied is huge, éven for relatively
small alphabets and key Iengths.-We have,ma.de no attempt to find
solutions for a targe sample of the members of this probiem doma:'rn.

We have instead chosen a few examples because they are applitations

where a perfect hash function is usefuf.
\y . _ 1 ' P
Several of the examples were first chosen by Cichelli; we have
.used them as well in order to compare our results with his (although:

a

his programs ran on a different machine, a PDP 11/45).
Cichelli reported the results of applying his algorithm

(Algorithm 0) to five sets of keys: '

1. the 36 Pascal Reserved Words (including‘ 'otherwise'); ,qi
2. 39.Pascal Predefined Identifier‘s-(excl'uding 'odd!'); ‘ \y
3. " the 31 mvost frequently occurring English words;

4., 12 three-letter month abbreviations;

)

5. the 34 ASCI| control codes
One of the obvious appljcations for a perfect hash function is
a table of the keywords in a compiler. Because Pascal was desigr?éd to

have an efficient compiler, the number of key words in the language is

small: there are 35 reserved words (e.g., 'for', 'begin', 'integer') and
40 predefined identifiers (e.g., 'maxint', 'ord', 'new'). For his first
example, Cichelli augments the 35 reserved words with 'otherwise',

-

which he hoped would be added to the standard language as a name

for the unfversal default condition f@ a 'case' vstétement. We retain

'otherwife' in our examples, giving us a total of 36 reserved wordé.
The 40 predefined identifiers fot;nna inﬁ ’Pascal include two

which conflict for both Algorithm 0 and Algorithm 2: ‘'odd' and ‘'ord'
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have the( same length and the same pair of first and last Ietter‘s.-'All
algorithms were given the set of 39 bkeys which remain when 'odd' is
‘(;_Ieleted‘ from the original éet. Aléorithms 1 and 3 have both found
§olrutic'ms’for* thé ‘set of 40 predéfined' identifiers and“for‘ the set of all
76 keywords of Pas_cal (the 'union of fhe sets of reserved words and
predefined identifiers). '

In the case of the 12 three-letter month abbreviations, Cichelli
found that he could not use first and'lasf letter positionsrto -disting:_l.ish
tl:me keys 'jan' and 'jun'; instead he used letter positions two and tHree.
Algorithm 0 and Algorithm 2 both follow this course. Algorithm 1
discovers th‘is,co_rfnbination when it selecté a miﬁin;,a! hash ident.ifier',
while the user of Algorithm 3 should soon find it as well (if he/she had
not already selected all three positions, which. is a solution as. well).

M %

The ‘ASCLL control codes represent another interesting possible
applicatioh of perfect ’hash functions. Four of tHe codes contain non-
alphabetic chaziacter's which\a\rﬁlacéd for ’our algor“itl.ﬁms by letters
which do not occur in Dir*st or last positvion in any of the original

i

'codes. The codes -[,)CI?- DC2, DC3, and DCA become DCJ,E’DCP, (DCW, and
DCZ, respectively. In principle, it would be easy enough to avoid
these substitutions by including the decimal diéits in the alphabet A;
this has not been done yet, however. .
Many of our examples are taken from lists of .the mlost
frequent|y‘ occurring words in written English text [Dewey, 1923; Carroll,
1971]. /Knuth and}l‘chelli use the fir‘sit 31 words from these lists, as
do we. Our interest in applying perfect hash functions to the design
of natural language Iexi-cons for computer ';ext processing and language

understanding programs has led us to draw most of our large problem

sets from the words which occur with the highest frequencies in the
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English language. Thus we have used the 64, 100, 200, and 500 most‘

-

" frequently ®ccuﬁfin§ English words as data when trying to e>~<pand the
usefulness of Q'LJP algor;ithms. | |
We have used Algoriihms 1 and 3 to find perfect hash functions
for the kéy words of three programming Ianguaées other than Pascal:

these are Lisp, Basic, and Algo'l w.

. 4.4 Programming Results

We present a discussion of our experiences using t‘.he: three
algorithms developed in this r‘gsear‘ch. Table ll&.l shows tHe S:ear‘ch times
and loading factor‘s'obtained using each algorithm on a variety of key'

7 ;
‘sets. Weé set the upper limit of one hour of cpu time on the amount
of computing ;:énsfdered r‘eason;{g,Le for finding a perfect hash function.

¢

4,4,1 Results Using Algorithm 1

: According to our informal analysis of the complexity of Algorithm
/1 in Chapter 3, there are three sections of the algorithm which may
require a great deal of computing time. These are
1. choosing a set of letter positions which prbduces unigue hash
identifiers; -
2.7 ordering the keys to produce a beneficial ordering of the letters
- which apbear‘ in chosen positions; and

3. the backtrack search process which assigns associated values to

letters.
V In those cases undertaken so far, the process of, choosing a
set of letter positions which gives unique hash identifiers has required

~execution time linear with respect to the size N of the problem set,

although the cost in the worst case is exponential in the key length.
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[-4

r - - I (S
, , .
|  Key Set Algorithm O Algorithm 1 Algorithm 2 Algorithm 3 |
| }
F . _ !
' i31 Most Frequent T = 290 T = 23 T = 2466 T =-1763 !
| English Words LF =0.97 LF =10  LF =0.94 LF=1.0 l
33 Basic T =.16 T = 0.669
I Keywords N/A LF = 1.0 N/A LF = 1.0 i
|34 ASCII T = 1833 T = 41 T =6916 T = 1993 {
Codes LF = 1.0 LF = 1.0 LF = 1.0 LF = 1.0 |
36 Pascal T =349 T =29 T = 5712 T = 2609 }
| Reserved Words  LF = 1.0 LF = 1.0 LF = 0.88 LF = 1.0 |
'|T40 Pascal T = 360641. T = 30 T = 6242. T = 3060 } -
. Predefined IDs  LF = 1.0 LF = 1.0 _ LF =0.89 LF =1.0 |
|42 Algol W _ N/A T =18 T = 6046 T = 616 {
Reserved Words — LF = 1.0 LF = 0.91 LF = 1.0 |
61 Lisp no T = 30 o o i
Identifiers sults LF = 0.98 results resul ts - |
. N
|64 Mo;t Freq. e T = 383 T = 26619 T = 2933 }
Engllsh Words T 1 hr LF = 1.0 LF = 0.69 LF = 1.0 I
| 76 Pascal Keys no T =68 no T = 3414 ;
Res. P'US IDs results LF = 1.0 results LF = 0.98 |
|100 Most Freg. ' no T = 10062 T = 125973 T = 5190 !
| English Words - results LF = 1.0 LF = 0.70 LF = 0.96 |
}200 Most Freq. no T = 62035 T = 1505328 T = 8986 %
i English Words  results LF = 0.97 LF = 0.42 LF = 0.70 |
JISOOMOSt Freq. no - no A no T = 33505 }
| English Words results results results LF = 0.61 B
! Table 4.1

Comparison of time [T] (im milliseconds) and
loading factor [LF] for all four algorithms
. on some representative sets:of keys.\f

The time used for this operation has been, at worst, approximately 3% N
milliseconds. Since’Algor‘ithﬁpaﬁtitiqns the keys into subsets by length,
the ltargest set of keys it has had to find a uniquely identifying set of

positions for has beeﬁ the 61 keys of length 3 in the set of two hundred
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“

most frequently occurring English words (MFEW)., This v:Jas' a(ﬁ:cbfnplish'ed‘ V

b

in 113 milliseconds. : - , ‘ . ,,,,,,,,,;,,?,,i,,

2
H

. - . v . %‘hﬁ .
Our analytical estimate for the ~worst-case time réguirement of the
process of reordering the keys to reflect the order of searfth®.variables was

O(Nz). In practice, for the relatively small sets we uh:a:ve encountered

£

using A!gorithm' 1, the vtime used in r*eor*der*iné nlljas been linear fn the -
number of keys: in‘thge problem set. For subsets é)f"oﬁe key, where only "
the overhead of the process is measur‘ed,. the time r_'equfr‘ed is.5 millisec;oricis. ‘
As the size of the sets grows, thé timé increases no faster than 3 * N |

and. seldom more than 5 + (2 * N). The Iar*ges"t cost, 103 milliseconds,

occurred for the largest set of keys, where N = 61, - _ .

A counterintuitive result was that for most sets of less than 61

keys the backtrack search was performed in time proportional to N. Thg -

(38
subset which consumed the largest amount of search time (30,735 ¥

]

milliseconds) for this algorithm was 42 keys of length 3 in the 200 MFEW. o

The next subset processed was the set of 61 keys of length 4, Whic_h

-

required only 42 milliseconds. The contrast in search itimes for these
( :

8

; ‘
two sets illustrates the high degree to which. the complexity of these

problems is dependent on the wéy in which letters are shared among the
Although Algorithm 1 does nét é‘uar;antee minimal hash tables,

it almost always pr*odcheS minimal results for the set of keys as a
whole. Allowing the ranges of_the .subsets to over‘lab means that séver‘al
almost minimal hash tables can i‘o.le;f:ombi‘ned to give a table for'.the
entire problem sét which is minimal. In all cases wheNr'erAlgor*ithm‘ T

found a solution, the loading factor was well within our criteria for

an almost minimal -state.
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Algorithm 1 appears to be the bést for'ﬁsmall sets.of idehtifier's;
that is, for sets of one hundred or fev;/er' keys.. It ‘st.illAper'for'msr wel b
for"l'ar'g_er' sets when it finds a solution, but it-oftén 'isAiunabI‘e to Hﬁd ,
a solution for larger sets within a r'easo'na.ble agount of time. THe |
per‘fOr'maﬁce of Algorithm 1 begi/ns to ndeter‘igr‘ater when tk;e s\’i’zé of_thé
largest subset in the partition of the,key set co‘ntains> more than about
AAO,élements. It is at this point ti‘\at theﬁ pattern of sharing letters
émbng the keys of the.sgbsets begins to affect the nurﬁber' of nodes in

the backtrack search tree which must be examined.

4.4.2 Results-Using Algorithm 2 ' -
Algorithm V2 performs well for sets of up tp one I';‘undr'-ed keys.

When the problem sets<becomle Iarger;', the amount'of 'seér‘ch time r‘equir‘ed‘ :

increases qu‘ickly. The nﬁajor objec'tions>4t0' usiqg this algorithm are: .

1. the lpading factors of the' solutions produced degenerate quickiy for'.
sets of more than about sixty keys, and ,

2. like CI:Che“i'é algorithm, the mechanism used 'for' distinguishing kgysl
is not adequate for a gk‘éat number of potential data sets.

The largest set of keys for which we have results using Algorithm 2 is

= -

the 200 MFEW. This required erE 25 minutes of cpu time and the
-r'esulting hash table had a loading factor of oﬁly 0.42. This loading
—~factor is far lower than‘we are ’Willing to accept. |

For the smaller problem sets we‘have tried wfiﬂthis algor‘ithm,“

the solutions were produced ih a reasonable MOf time (geqérally

less than one minute of cpu time).

4.4.3 Results Using Algorithm 3

As descFibed earlier, Algorithm 3 is a refinement of the method .

’
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used in Algorithm 2. The improvements included in Algorithm 3 have

-

led to reduced execution time for a- given problem set of size N; this

in turn allows us to apply Algorithm 3 to problems which are too large

¢

for any .of the other algorithms dichssed, in this document. Aflgorithm 3

is by far the fastest of our algorithms for sets of one hundred or more

"keys. Like Algor"ithm 2, however, this program produces hagh tables

er' large sets of keys whichAar'e'r'eIative'Iy sparse. The4u’pper- limit

on the number of keys for which the algorithm produces sqlutions with

accep‘table toading factors has been raised to about tvw hundred. For

the. 200 MFITEW,V AIgor*Ai‘thm 3 finds a solution -with a loading factor of 0.71

in just over 5 seconds of cpu tfme. Fo/r'.sm’alller' se-ts, the loading factors %

are ~near;ly optimal, although Algorithm 1 pé%‘for‘ms c'om‘par'ably in less

time for these small problem sets. , -
Algorithm 3 shows the greatest 'pr‘omise for further development,

sin.ce it has the most general method of distinguishing the keys and -the

slowest rate qf ‘inérease in the time required tb lfind a solution aé ‘the

size of the problem set increases. Further work Blgs necessary to enhance

[y

this algorithm. y

% .

~

4.5 Summary of Results

-

Table 4.2 illvust-r'a\tes the relative measures of the utility of the
four algorithms di'scussed in this wor‘k.r Algorithm 1 produc;es spec.t_a;:ular'
values of U for problem sets of up to 100 keys. When the sizes of ‘the
subsets produced by partitioning reach the neighborhood of fifty keys,
however, these vaiues decline. .The u<tility of Algor“ithm 3 remains

nearly constant for all problem sizes.

There can be little doubt that Algorithm 3 promises to be the most
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N ALG 0 ALG 1 . ALCLZ ALG 3
12 ; 1333.33 2000.00 : 65;93 - 50.42
31 103.69 3100.00 16l71 . 70.62
133 , N/A 2062.51 N/A  49.33
34 . 0.037 . 1789.47 7.00 - 59.96
36 61.22 2571.43 -~ ©  7.63 7 60.50
39 . t.14 N/A 8.95  N/A
40 ‘ - N/A 2857.14 N/A 56.02
.42 o N/A 7. 1888.89 - . 6.34 68.18+«"
A -~ N/A 1466.67 ~ .N/A 53.04 B
61 _ N/A 1992.67 - N/A N/A
64 N/A 344,09 2.33 59.73
76 N/A - 2533.33 N/A- - 62.97
100 : "~ N/A 20.26 0.78 66.10
200 - - N/A 6.26 0.00785 42.25

500 N/A N/A . N/A 20.82

"Table 4.2
Table of relative utility for four algorithms.
Utility is defined as N*LF/T, where N is .

the number of keys, LF is the loading
"~ factor, and T is the time in milliseconds.

i
S

useful of the four algorithms implemented in this redearch. The one
difficulty with this algorithm has been small loading factors for large
sets of keys. We believe it is possible to improve the loading factors

by sligh'tly modifying the search to enforce a certain degree of

minimality; this can b<.a effected by Iimifing the siz¢ of the haéh ‘table,

expanding .it slightly as each gr‘oupro-f\ 'wqr‘ds is adr ed to the solution.

Limited backtracking éan also have Vthe samé results. Preliminary results
. . ) -

indicate'\iﬁj\%\’f‘ar‘moder‘ate increase in computing costs will produce

significant impr‘ovement‘in' the loading facters of the solutions found by

Algorithm 3. o S o
/One of the most important :adyantages .c;f Algorithm 3 is the‘_

guarantee that any set of keys for which the program has an alphabet

can be distinguished. This program canﬁherefore find a perfect hash

-

et i
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function fqr_ any set of keys, give»n enough computiné time. ther Cbgt

| of this‘ generality is the storage r‘équifr'ed for up _té * AT a’S’sT)ci”até’GL»' :
Iettefﬁ values, instead of just A"_va’lu‘es wheen Iettér ou;:def'ing is not taken
into)account: The benefit"is dgingk away with t’he\»necessi_"ty for edilting

lists of keys to remove conflicting words.
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5. APPLICATIONS OF PERFECT HASH FUNCTIONS; LEXICON DESIGN

Perfect hash fl,dnct-ions witl be useful -in applications which have
C ’ [
a fixed vocabulary and are frequently used. Lexicons for artificial and

o

natural lan'guages meet both criteria.

- ey \\/// o,

5.1 The Small Lexicon

o

e .
» © For the purposés of this discussion, we differentiate”candidates

for the application of perfect hash functions according to the size of the
sets of keys involved.
< _
We consider a small lexicon as%ne for which we can calculate

a single per‘fectv hash function in a reasonable amount of time.

Anticipating the impr‘ovement/ﬁ the loading faétors achieved by Algorithm
. .

—

‘3, we can say that any sg{ of one thousand or fewer" keys qualifies as
!
small. ‘

Although small lexicons can be dealt with by many other methods ‘
which nd;guir'e less initial or‘ganisationai effort than perfeﬁt hash functions,
these other methods will require consider‘abIAy more time for? retrieving
infarmation over the Iife of the lexicon. The one Aébj‘ectiorn to using the
method of ‘Algor'ithm 3, in particutar, is“; that for-very small dictioﬁafies
the amountl of storage required to maintain the table of assczciated[ Iette‘:r' ‘
values in main memory may be of the same 6rder of magnitudé as the
size of the dictionary itself. The potlrential user of this mefhod \;\/i'|| have
to decidé lw'hether' thé increased storage costs outweigh the ben:efit of

reduced search time for his or her ap'plicat‘ion, or whether a reduced

loading factor would be ai:ceptable.~



®
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5.1.1 Examples of Smali Lexicons ~ ’ &

The earliest example of tHe use of a per‘fe’ct hash function which
we are awaré of was reported by Gr‘eniewski apd Turski [Greni wski, .
1963]. Their method of computing a per‘fe(;t hash function “i‘s\fundamentally
different from ours, but the application achieves: single probe retrieval.
The above authors hanqd\ ;:alculateT -a perfect hash function for a set of

i

identifiers for the,a”s‘sfé?fé)ler‘ Janguage of a‘ pr‘ogr‘amrr;ing system called
S
KLIPA, with .appar‘ently good results. . .

Cichelli r‘e;borts [Cijchelli, “1980ajxusing a perfect hash functignz
for the ke’ywor‘ds of Pascal in a compiler for that language, which |
resulted in a ten per‘csnt -reduction in compilation time, on the average.

It seems clear that the compiler (or interpreter, for langua(ges
like LISP and BASIC) for any language would be an ideal application
of perfect hashing functions. The number of keywords found in computer
languages is usually small (even PL/Il has pnly about thr‘gé ‘hundr‘ed)
and usage'is very high. - 7 .

Another- application area which meets the requil:'ements for the
use -~ of perfect hash functions is command Iénguages. JAn;/ system
‘which conducts highly structured convver‘sat"ion's with a h‘Lvaan user,

/"‘\

Nam -
:such as the terminal handiing part of an operating system, would benefit

from the quick retrieval of information related to the fixed set of

keywords wHich have some meaning to the system.

5.2 The Large Lexicon

If we cannot compute a perfect hash function for a set of keys

in a reasonable amount of time, then we will consider that set large.

P

N
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5.2.1 Hierarchical Organization of the Lexicon

Our Qlan. for‘ldealing_ with ﬂla,r'ge set‘s;/,of keys is to par'titvion
them into n gi:e"iling‘(N/mOO)A subsets, each of a size manageable with
enhanced versions of our present aIgoriths (Algorithm 3, in par;icular).
We propose to use an ordinary division type hash fu‘nction to partition
the N keys (nearily) e‘vénly into n subsets, then compute a pélr'fect hash
function for each subset.
- Given é particular set of N keysi, the prospective user would
need to devise a division type hash vfurﬁmction Which distributes the keys
evenly into the n buckets. In order to maintain the machine ‘independence
.of our method, we could require that this initial hashing use the sum of

the ordinal alphabetic positions of the letters of the key, where 'a'=1,

'2'=26 (with appropriate values for other symbols which may

be included in the alphabet, such as hyphen and quote). We assume
that fir;din initial hash function of this type“will be relatively easy,
although it will ave to be done anew for each probiem set to ensure
that the distribution is even for that set.

In some cases, a Iargé lexicon mabie‘ ’kept entirély in men;l('or'y.
Each acces\s\ would require performing an init’ia[ hashing to ch‘oose one
of the n perfect h‘ash functions, then performing an access-of primary
memory using the value returned by the second hash function as a
memory add'r'ess.

When the lexicon is large enough to demand the use of a
secondary storage medium (magnetic disk, for'.example), then the same
.basic organisation can be maintained but the second hash function would
have to calculate a disk address rather than a primary memory address.

The number of disk accesses is always one. The high cost of secondary

memory access dictates that we keep the number of such operations te
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-

5.2.2 Natural Language Lexicons

The need for dealing with very large :_St_atic sets of lexical items

o

arises in many applications which deal with natural languages.

. . r
Text processing applications, such as spelling correction, require

fast access to largé numbers of words. A perfect hash function provides

guaranteed single probe retrieval.
- _ S

Compu‘tional _Lingu’isticé will some4 require large English

language dictionaries for 'natur'al_' language understanding programs. A
computer model of language under;tanding will require access to a large
data .base.of syntactic ind semantic information whi'ch is accéss'ed‘
primarily through words.j

Mostaretrieval techniques assume that all keys are equally -
likely to be requested.. Research in Iexicogr'aphy has eétablished that
in English (and, presumably, arnS/ nétural tfanguage) a Smallc number of
words’ occur" very fr‘enquehtly, wh;le most words occur ver‘ybse‘ldom.

To‘ illustrate this, we refer to the 'computer;‘ assisted study of a
corpus ofvfive million words of English written textzo‘conducted by
Carroll, Davies, and Richman [Carroli, 1971]. Over 85,000 different *
words occur in the .corpus, but 25% of all occurrences are aécounted for
by the fourteen mést fr‘eduently occurring gvor'ds.

In a similar study by G. Dewey [Dewey, 1923], 50% of the

occurrences in the corpus are instances of the first 64 words; only 732

words account for 75% of the tota! of 78,6733 occurrences.

‘We can m.ake use of this information in the design of a lexicon

20 The samples are drawn from materials used in U.S. schools in grades

three through twelve.

“

2N

-
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for a large natural language vocabulary which supports very efficient

retrievat. The first step is to calculéte a perfect hash function for
) . -

the thousand most frequently'occurririg words. The table of associated

-

values and a file containing the records associated with these ‘words cap

be kept in main memory. We can then use the scheme described earlieé;

to partition the remaining words into buckets containing fewer than one

-

thousand keys each. We then compute a pérféct hash 'functi;on for each
bucket and keep the tables of associated values in main memor'y.'

If a wbrd ki is in the thousand most frequently occurring, as

over 75% of word occurrences in typical English text (and’ speech [French, |

1930]) are, we will simply calculate the first perfect hash function Hl'

and retrieve the related information from the file in primary memory. |f

the word at Hl(ki) is not ki then we use a second (non-perfect) hash

function to select one of the n buckets, thus: Hb(ki) = x, where x

A

denotes one of the buckets. This selects 'a table of associated values,

resident in main memory, for perfect hash function fo. The hash function

for this buckéi is used to calculate ‘-a disk addfess_ y = Hx(ki.)’l al'low'ing
us to retrieve the'information at that disk location with one disk éccess.
if the word r‘étrieved from the disk is né&t ki’ then kri is not in the
dictionary.

We believe that this method, when implemented, will ‘ach'ieve results
that are as good as possible. We might consider the addition of a

Bloom filter type of spelling checker [Nix, 1981] to be applied before

making the secondary memory access; this would save the considerable time

r‘ezquir‘ed to discover that a key is not in the dictionary 9t all. A difficulty

. 3 . .
with doing this may be the amount of memory required for such statistical
recognizers, given the amount used for the associated integer values

for our n perfect hash functions and a file of one thousand records.

*,

i



6. CONCLUSIONS

Cichelli's Algorithm provides a useful ‘alternative to numerical
approaches to the search for perfect hash functions. We have found

methods of extending the apblication of this "simple" approach to larger

).

problem sets.

).

6.1 Improvements on Cichelli's Algorithm , i
One of the major stumbling blocks to the application of Cichelli's
methods to practical problems is the fixed choice of properties used in

the hash function.

6.1.1 Hash ldentifier Choice

Wheh using Cichelti's form of the hash function, it is essential
that we find for each key a untie set of properties which contribute
values to the hash address calculation. We have implemented an algor‘ithmfc
method for choosing a set of properties which is adequate foE distinrguishing
the members of any set of iexical items. -

Many sets of keys contain greups of words which'cannot be
distinguished without associating different values with letters depending

L3N

on their position of occurrence. We have implemented this approach in T
¥

Algorithm 3, giving it the maximum possible power for distinguishing keys.

6.1,2 Partitioning the Problem Set

>

Algorithm 1 extends the number of words which can be processed
»
during Cichelli's enumerative ‘search method by partitioning the keys

into subsets by length. For a given set of keys, this modification reduces

s

a0
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the search time by a linear factor. -Improvements to the seérch

method itself also coﬁtr*ibute to the efficiency of the algorithm. .

Partitioning the pﬁoblem set is helpful only when the lar'gest subsets

obtained consist of no more than abbut six%y wordé, however, because

of the expo'n’ential. complexity of the search method appiied to those

subsets, ' ' ‘ .

6.1.3 Improved Search Methods

The non-backtracking enumerative search method introduced in
Algoﬁithm 2 and further developed in Algorithm 3 has allowed us t‘o
fi.nd perfect hash f'unctions for some very .large sets of keys (up to 500) .
The key to making this method practical is pe‘r’fo‘r*mbing an adquaﬂfe
an‘alysis of the rélations among keys in terms of shared Iett‘er*bs. We
find that polynomial cost analysis of the way in which keys share
letters allows us to reduce the com;.DIexit-y of the search process from:
exponential to polynomial (with potentially large coefficients).
yhfortunately, the improvement m the speed of search 'is ac¢ompanied

by a degradation of the loéding factor of the resulting hash table for

sets of more than about one hundred keys.

-

6.2  Limitations of the Method

We find that there is a trade-off in this problem between the

~

time complexity of the search algorithm and the minimality of the

" resulting hash tables. We are continuing research into methods of

‘balan'c,ing these costs and benefits. Introducing the option of a limited
amount of backtracking for Ailgorithm 3 is a promising direction for

further work.
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Our extensions to.Cichelli's algorithm seem to involve trading
generality for increased memory requirements. - In order to.distinguish

all keys, for example, we must store associated values for each letter

corresponding to each selected position in which that letter occurs.

s

This is a serious limitation, since for smali and medium. sized dictionaries

the number of integer valueé to be stored in associated value tables may
B . - '

well be as high as the number of keys in the dictionary. This

emphasizes the importance of considering the effective loading factor

of the hash tables produced using our methods,'where the memory cost

includes the Amount of storage for these tables.

-

6.3 PrX&ctical Applications

distinguish two types of applications for perfect hash

Y

functions, aMgificial and natural languages. The size of the vocabulary
for‘ an ar‘itifi‘cial language, suchcﬂas a programming language, is-
typically on the order of one hundred wbrds. :Perfect haéh functions
seem well suited for use in such \s\ystems since the high initial cost

will be amortized  quickly by frequent use.

‘ Natural languages have lexicons <;f thousands of words; We
envision that the hierarchical organisation of‘perfectl hash tables
discussed in Chapter 5 will provide efficient access to such large
dictionaries.

6.4 Directions for Further Work v . )

Algorithm 3 appears at this point to have the greatest potential

f%r‘ improbemeht. Two parts of this algorithm need further work. The

4

analysis of relations between lgeys and letters done during the search

»

procedure to preclude choices of associated letter values which lead to
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conflict could be made more complete; this would eliminate all backing

>
v *

up in: the course of:finding a solution. ' .
A second possiBle improvement to th?s algor'ithm', “mentioned
ear‘lier, would be to per‘for'rﬁ a limited degree of backtrackipg when thév
loading factor of the solution falls below the accep.tagbble Iirﬁit. V!’e
believe it is possible to improve the Ioavding factors by slightcly
modifying the search to enforce a given degree of minimality; this can-_-
be effected by limiting t?ﬁe size of the‘ havsh table, expanding it
slightly as each gr‘oup'of words is added to the solution. Limited
b;lcktr'acl;ing can also have the same results. Préliminary results
indicate that a moderate increase in computing costs will pr‘od:%
significant f;nprovement in the loading factors of the solutions found by
Algor'ithmv3. An in-itial attempt has been made to implement this
approach, with encouraging improvement in the results. Further analysis
of thé problem may reveal a better way of performing this limited
backtracking. ' . T L
Three mathematical\pr‘oblems are closely related to the search

for perfect hash functions of the féorm we have used:

(1) Haﬁrﬁoniou{\\abel\ing of Graphs .

(2) Graceful Labeling of Gr‘abhé

(3) Additive Bases
A br‘ief‘.discussion of how these are related to -this work is folund in

Appendix B.
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Appendix A: Notation

Here. we give a list of notational conventions used in this

¥

thesis. The symbol ':=:' denotes 'defined tc? be'.
(e1,...,en) :=: an unordered (but indexed) set of n elemehts.
€15 - s € :=: an ordered n-tuple of elements.
floor (x). :=: the largest integer less than or equal to x. .
ceiling (x) :=: the smallest integer greater than or equaAI to x.
x mod. vy = the remainder of integer division of x by vy.
o(f(n)) :=: the asymptotic upper bound on f(n). - )
OMEGA(f(n)) :=: asymptotic lower bound on f(n).

(=i the null set. N ’ - o ‘
A = (a1, ,aA') P= the alphabe;t,, where A' is the cardinality of A.
B ) :=: a permutation of the search variables.
c t=: cost. ‘
D :=: vector of integers which represent the Aeriumber' of - ®

keys whose’ hash addresses are newly-determined
when a corresponding letter is assigned an
associated value. .
D.. :=: set difference of letters in chosen po§itions..fr~orh
keys k. and kj’ in that order. 7 ;
:=: names a sequence or a function, -
:=: a hash function, H:K3 R. g \
) :=: the set-of keys, whose’A cardinality is N.
:=:  the set of‘} letters from chosen positions in key Qki.
domain of associated integer;values, 0...m.
:=: cardinality of the set of keys.
:=: the maximum length of a key. ‘

:=: the number of chosen letter positions.

©O U TV Z X2 r X I M
1]

:=: predicate denoti‘ng that no two keys have the same
hash address.
R :=: the r‘ang\g of hash addresses in the table, O...
maxhashaddr,
T :=: the key space, whose cardinality is T'.

i
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Appendix B: Related Mathematicaf} Pr‘ob‘ylems

S

~Graham and Sloane [1980] present some results on three problems

%

which are closely related to ‘finding perfect hash functions:
(1) additive bases; } a

(2) harmonious graphs; and

(3) v_."g‘r‘aceful gr‘aphs:
’In order to ‘r’elaﬁté theée p‘r‘ob}ems to perfect hash anctions, werrmust
first consider the 'gr‘éph r:epr‘esé‘n_t}ation of  our pr‘o.blem.'r

‘Sinc‘e a hasl% func;(ion of the type we are considering involves
- combinations ‘of.‘lett“er‘s from chosen positions, our‘jfir‘st concern is how - N
to represent the coincidenc‘é of letters when p letter positions are useci‘
to form a hasl:w identifier. Each, vert.e;< in such a graph ‘répres’ents a

letter which occurs in a chosen position of some key in the problem set.

When *p=1, the graph of the problem is just a seét of N isolated vertices

b % w

(1;or~ a .set of N kéys), because each key must have a‘ different letter

in the chosen position. AA minimal perfect hash function in this case

is an assignment of the integers 0,...,N-1 to the vertices in any order.
When p=2k we can ;“epresent a kéy as an undirected edge whose

endpoints ar‘e'lthe ve}“tices representing tk{e letters in the chosen

positions of th&it key21. Each edge is Iahb_eled with the sum of the

values éssociated :with its endpoints. A perfect hash function corresponds

té a IabeHng.of the s vertices with integers which induces a labeling

of the N edges with distinct integers. ?

-A harmonious labeling of a graph assigns distinct integers to

21 : Cof o i i
. When p> 2, a hypergraph whose edges are sets of a vertices is
required to represent our problem set. .We assume without proof
that the results for graphs with p=2 can be generalized to  the

more complex case of hypergraphs.

Sm—
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#he vgr‘tices in such a way th%t‘he induced ed(“ge tlabeling covers the N
integer‘s‘ [O...N—1]. This corresponds to a min‘i“mal' perfect hash fuvnction
with the added constraint (unnecessary for our problem) that all
associated letter valués be distinct. We also ‘allow the possibility that
the range of edge labels include more than vaalues (an almost-minimal
perfect hash functiqn)’.

A g:‘aceful labeling associates distin.qt imtegers with each vertex
of a gr‘aph in such a way that the édge |ab%ls induced by ;takiﬁg the‘
difference of the endpoint labels produces "di‘;‘;stinf:t labels for each edge.
Moreover, for:‘ N edges, these edge labels must céver‘ the irjteger'é
[0...N-1]. Graceful labelings again corresp‘énd to minimal perfect hash
furnctioAns. i ’ : _ .

The paper by Graham and Sloane enumerates some classes of
graphs which are or are not graceful or‘,h&“ir‘moﬁnioujs. The authors
theorize that almost all graphs are nof ha%mon.ious (p.400) and not
graceful (\p.401).. Since our problem r‘ellax““es some of the restrictions
imposed on harmonious and.gr‘aceful labeli“ng.s {(vertex labels neecj not
be distinct and thé rahge of edge Iabels heed only be‘ nearly minimai),
we conjecture that almost all graphs r‘epr‘ésenting key sets can be given
labe‘lings which satisfy AOJ;‘( conditions.

We note with inter"est that Gr‘ah'am'and' Sloane believe harmonious
labeling to be considerably more compllicated than graceful labelings. If
this is true of the simp‘ler‘ ver‘sions\; of these preblems which model perfect
hash functions, then graceful Iabeli\r:gs may prove to give eﬁas'ier‘ solutions

to our problem. This requires further study.

The third problem discussed in Graham and Sloane is additive
bases. For our problem, we want a set of integers which covers thé

s vertices in the graph of the probiem set which gives distinct pairwise



" Sloane up to the first six elements (p.384, Table i, Va(k), k=2 through

S \ 100

sums. This is one type of additive base considered in the ak\icle.

in the discussion of Algorithm -2 in Chapter 3, we mention seeking a

>

sequence of integers which meets this criterion. In fact, we discovered

one (FC) which matches one of the sets of integers given by Graham and

N

k=6).

This seried, a modified version of the Fibonacci numbeérs, grows

i

slowly and guarantees pair-wise distinct sums of elements.
The integgr‘ sequence Fc is for‘mallyl defined as:

‘E (1) =0 .

F(2) =1

F (n) = Fc(n—1) + Fc(n—Z) +1, n 2 2.

This seé;,gence is number 397 in Sloa‘ne"[1973]. The fir;st few members ofr

this se?:}uence are

. ,b o, 1, 2, 4, 7, 12, 20, 33, 54, 88,...

’

The following are two examples of sets of keys whose graphs are

Y
complete::
~ .
a a<>-f————?b
b c 46— 0oc
K=(ab, ac, bc) K=(ab, ac, ad, bc, bd, cd)
1 . f

Figure B.1

§ :

For a complete graph on n tetters the ordering of variables is immaterial

because all letters in the graph have the same frequency of occurrence

/



(all vertices in the complete graph have the same degree, n-1).
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At

is worth noting that no two letters which are both in the same complete,

graph of more than two vertices can have the same associated value.

The series FC, when assigned to the vertices in any order,

forms minimal hash functions for complete (sub)graphs on n verﬁifs for

n=3 and né&:

this method declines qscause the loading factor decreases rapidly.

= FCH) =0 alo0]
= F (2) =1
c
c := FC(3) = 2
H(ab,bc,ac) = (1,3,2) bl1] cl[2]
Perfect minimal solution foruK3
a:= F (1) =0 : alo] - b[1)
b‘:= FC(Z) =1
c := FC(3) = 2
d := FC(A) = 4
dl4] cl2]
H(ab, ac,ad,bc,bd,cd) = (1,2,4,3,5,6)

Perfect minimal sdlution for KA
Figure B.2

As the number of letters Involvedlgrows farger, the utility of %;
If

we assign values from FC when n=5 (five letters shared among ten keys),

the resulting mapping places the ten keys into a range of eleven hash

addresses for a loading factor of 0.90808. For n=6, fifteen keys are

mapped

into a range of eighteen addresses for a barely acceptable )

laoding factor of 0.7884.

Grahame and Sloane give the following result:
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"The complete'g'r*aph on v nodes is harmonious if.
and only if v. { 4." :

'
8

This‘conclusion is stated in a different form by Jaeschke [1980] in

showing that Cichelli's method cannot .find a minimal perfect hash-
function for every set of keys. We acknowledge that this is true, but

complete graphs are relatively rare. .
L)

For small sets of keys, - an interesting method of approaching the

e

problem of performing associated vaiue assignments would beito search
out the. maximal clique (complete subgraph) of the gf‘aph of‘.,\r*elations
,,b‘etween4keys, then assign ~v”a.lues f_rqm theJ<ser*ies Fc if the clique is of
degree less than seven. ‘I have not tried tL‘: i‘mplerri,enAt such an
algorithm, so there may be'unfor*eéeen problems, but :irt‘_ seems to be a
reasonable. approach until. we consider the complexity of 'finding the
ma»@mjl c‘lique in a graph. This problem turns out to Se difficult. :
Given“an integer k, the problem of finding a k-clique in a grpah

3

G = (V,E), 0 < k-< card(V), is NP—comp!ete.1

Garey, Michael R. and David S. Johnson, Computers and Intractability,
W.H. Freeman and Company, San Francisco, 1979.

o~
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Starting at 15:39:08 on Oct, 30, 1981

THIRTY SiX PASCAL RESERVED
Starting search at 15:39:08 .
FIRST '/ SECOND
HASH. ASSOC ASSOC
KEY ‘VALUE VALUE VAL UE
T - f
1 DO 2 0 0
) 2 END 3 0 0
3 ELSE 4 0 0
4 TO 5 - 3 0
5 DOWNTO 6 0 0
6 TYPE 7 3 0
7 WHILE 8 3 0
8 OTHERWISE 9 0 0
9 OF 10 0 8
10 OR 1 0 9
11 FILE 12, 8 0
12 'NOT “13 7 3
13- THEN 14 3 7
14 RECORD 15 9 0
15 PACKED 16 10 0
16 AND 17 14 0
17 REPEAT 18 9 3
18 PROCEDURE 19 10 0
19 FOR. - %‘ ’ 20 8 9
20 MOD v 21 18 0
21 GOTO 22 18 0
22 FUNCTION 23 8. 7
23 D1V 24 0 21
24 CASE 25 21° 0
25 NIL 26 7 16
26 SET 27 21 3
27 WITH 28 3 21
28 CONST 29 21 3
29 IN 30 21 7
309 31 21 8
31 BEGIN 32 ™, 20 7
32 VAR 33~ 21 9
33 UNTIL 34 13 16
34 PROGRAM 35 / 10 18
35 ARRAY 3% 14 17
36 LABEL 37 16 16
PRINTING AT 15:39:10 OCT 30, 1981
addword called 1087 times.
try called 5086 times.

588 milliseconds of CPU time elapsed.

Y
P

" ALGORITHM 0

ORDS

)
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ALGORITHM 1

number of keys: 36
number of subsets: 8

105

total search .time: 29 msecs.
key length 2 3 4 5 6 7 8. 9
number of keys 6 .9 7 6 4 1 1 2
chosen position 1,2 1,2 1,2 1 4 1 1 1
offset 0 6 15 22 28 32 33 34
search time (msecs) 4 6 7 5 3 1 B 2
HA SH CHOSEN ' ' '
KEY , VALUE LETTERS ASSOCIATED VALUES
OF 0 FO subset .
TO 1 oT 2 3 4 5 6 7 8 9
QR 2 OR ‘
|F 3 Fi A - 3 4 3 - - - -
DO 4 DO B - - - 4 - - - -
IN ) 5 IN c - - 0 5 - - - -
W 6 NO b4 5 - - - - - -
" EN 7 EN E -1 5 -2 - - -
NIL © @ 8 N F o0 4 0 - - - 0 -
AND & 9 AN G - - 6 - - - - -
FOR ™ 10 FO A G S
mMoD 11 MO b3 2 0 - - - - -
VAR 12 AV b - - - - = -
DIV 13 DI K- - = -3 - - -
SET: 14 ES L - -0 0o - - - -
FILE 15 Fl M- 5 - 0 - - - -
THEN 16 HT N 2 0 - o0 O - - -
TYPE. 17 TY O o o0 o0 o 1 - - 1
WITH 18 W P - - - 0 - 0 - 0
CASE 19 AC Q - - - 0 - - - =
ELSE 20 EL R 2 - - 0o - - - -
GOTO 21 GO S - - 0 - - - -
LABEL 22 L T 1 - 0 0 - - - -
UNTIL 23 u u-- - - - - - -
WHILE 24 W V. - 3 - 0 - - - -
ARRAY 25 A w - - 3 2 - - - -
BEGIN 26 B X - - - - - - - -
CONST 27 C Yo - - 2 - - - - -
DOWNTO 28 N Z - - - - - - - =
RECORD 29 0
REPEAT 30 E
PACKED 31 K
PROGRAM 32 P
FUNCTION 33 F
PROCEDURE’ ‘34 P
OTHERWISE 35 0



ALGORITHM 2
Thirty-six PASCAL Reserved Words

Calling 'try' at 01:57:37 on Oct. 16, 1981
Fini ‘at 01:57:54

5712 milliseconds of CPU time elapsed.

FIRST SECOND

HA SH ASSOC ASSOC -
KEY VALUE VALUE VALUE
—_—— ///’/
DO 2z 0 0
END - 3 0 0
ELSE 4 0- 0
TO 5 3 0
DOWNTO 6 0 0
TYPE 7 3 0
OR 8 0 6
OTHERWISE 9 0 0
NOT 10 4 3
THEN 11 3. 4
RECORD 12 6 0
NIL 13 4 6
OF 14 0 12
REPEAT 15 6 3
FILE 16 12 0
LABEL 17 6 6
WHILE 18 13 0
PACKED 19 13 0
AND 20 17 0
FOR 21 12 6
PROCEDURE 22 13 0
CASE 23 19 0
FUNCTION 24 12 4
MOD 25 22 0
IN .26 20 4
CONST - 27 19 = 3
GOTO 28 24 0
D1V 29 0 <;gs
ARRAY 30 17 8
UNTIL 31 20 6
SET 32 26 3
WITH ' 33 13 16
IF 34 20 12
VAR 35 26 6
BEGIN 36 27 4
PROGRAM 42 13 22

106
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ALGORITHM 3

WORDS TO BE HASHED

RECORD DO REPEAT IF OF TO FOR FILE DOWNTO IN OR NIL THEN AND END
NOT CASE WHILE PROCEDURE DIV MOD SET VAR ELSE GOTO TYPE WITH
ARRAY BEGIN CONST LABEL UNTIL PACKED PROGRAM FUNCTION OTHERWISE

LETTERS TO BE USED. [I.E. 1 2 FOR'FIRST AND SECOND LETTERS
12 4 ' :

IS BLANK TO BE A CHARACTER Y/N? : N

IS LENGTH TO BE:PART OF FUNCTION Y/N? : Y

ORDER BY PRODUCT OR MINIMUM P/M? : P

CPU SECONDS USED IN HASH 1S 1.624

LASHING STARTED AT 1981 10 15 16 44 16 193
CPU SECONDS USED IN LASH IS 1.085

LETTERS USED 1* 2 4

LETTER VALUES

‘Al 0 13 20

‘B! 0 0 0

c! 0 0 7

'D'. 0 0, 7

'E! 1 0 1

'F 0 0 1"

G 22 0 23

'H! 0 3 15

vpo 0 A 25

'K! 0 0 14

et 13 19 6

™! 12 0 0

N 0 5 4 :

? Lol 1 o) 0

‘P! 0 0 0

'R 0 4 5

'St 6 0 26

T 3 26 14

u' 0 21 0

AV 3 0 14

w! 5 0 0

ry 0 19 0

HASH TABLE

2 DO 3 IF 4 OF 5 TO 6 RECORD |
7 REPEAT 8 FOR 9 FILE 10 DOWNTO 11 IN __//
12 OR 13 NIL £14 THEN 15 AND 16 END
17 NOT 18 CASE 19 WHILE 20 PROCEDURE 2T DIV
22 MOD 23 SET 24 VAR 25 ELSE 26 GOTO
27 TYPE 28 WITH 29 ARRAY 30 BEGIN 31 CONST
32 LABEL 33 PACKED 34 PROGRAM 35 UNTIL 36 FUNCTION

L4

37 OTHERWISE
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APPENDIX D

Programs for Algorithm 1 and Algorithm 3

—
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This PASCAL/UBC program is an” implementation of our
Algorithm 1. The user should note that two features

‘not found in all versions of PASCAL are employed in

our program:

(1) McCar'_thy'evaluation of boolean expressions,
which terminates evaluation as soon as the
value of the expression is determined;

(2) functions are allowed to return a value of
any defined type, not just scalar values.

The user must provide the name of an

« MTS file as the value of the constant fnamefile.

The MTS file of this name must contain .the name of
the MTS file which contains the data set (keys).
This first file name, which will be identified with
the siandard system file INPUT, must begin in column
one of line one of fnamefile. On line two we must
place the name of the MTS file which will be ident-
ified with the standard file OUTPUT.

. Before using this program one must verify that
the constants maskeylength, maxnumberofkeys, and
maxtableloc are large enough for the intended set of
keys. At present, the keys must be provided in
upper case English letters, one to a line, starting.

in column one: A more sophisticated version of
the procedure getkeys is needed. '
It will be somewhat difficult to change the!:

alphabet for this program. Because we ‘are. working

IBM equipment with the EBCDIC character code, the
pr‘efer‘r‘ed method of indexing for letter mfor'matlbn
{ (using the PASCAL transfer functions) would reqluure
every array so indexed to contain over 150 elements
of which only 26 would be used. We defined our own
transfer functions, chartonum and numtochar, to get
around this, although rather clumsily.

The main data structures are keys, an array

of information on each key, and subset, an array of
information on each set of keys of equal length.:
The array taken represents the hash table; taken[i]
is true just in case for some key keys[j], ‘

keys[j].hashval = i. :
The output of this program is a list of letters
and their associated values. It also prints a list
of keys and their hash addresses, calculated by the
the form: :

" keys[j].hashval =:assoc[keys[j].word[r]] +
assoc[keys[j].word[s]] +...+
assoclkeys[j].word[t]]

where r,s,...,t are the chosen letter positions..

L B A
L LI 1
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CONST maxkeylength = 20; ~

(* maximum key ‘length *)
maxnumberofkeys = 300;- (* 1imit to number. of keys ¥)
maxtableloc =- 400; (* maximum size of hash. table *)
blank = ' '; (* name that symbol *) = .
fnamefile = 'FNAMES.ALG1 '; (* 1/0 file'names in this file *)

TYPE aword = ARRAY[1. maxkeylength] OF CHAR; L
keyinfo = RECORD . :
word : aword; (* the key *) :
hashlets : aword; (* letters from chosen pos'ns *).
length : INTEGER; (* key length ¥) “
sortval: *INTEGER; (* used for sorting keys ¥)
link : INTEGER; (* for threading lists *)
unused : aword; (¥ letters with no assigned values *)
numun : INTEGER (* number of unused letters *)
END;

lettervalues = ‘ARRAY[1+.26] OF INTEGER; :
boolposn = ARRAY[1..maxkeylength] OF BOOLEAN; (* chosen pos'ns *)

bo#larray = ARRAY[1..26] OF BOOLEAN; (%* propertwl,etters )
tistrecord = RECORD first, last : INTEGER END; K
setinfo = RECORD. . - , |
. ‘exists : BOOLEAN; {(* any keys of this length? ¥*)
highest, lowest : INTEGER; (* array bnds of this set *)
queue : listrecord; (* threaded list.of rsubset *) :
) : chosen : boolposn; (* 'letter pos'ns for this set *)
7 . offset : INTEGER; (* low bound of hash addresses *)
: assoc : lettervalues (* array of letter values *)
END; : - '
filename = ARRAY[1..12] OF CHAR; ' : *\l
alfal = ARRAY[1..8] OF CHAR;
alfa2 = ARRAY[ .12] OF CHAR . .

VAR keys : ARRAY [1..maxnumberofkeys] OF keyinfo;
subset : ARRAY[1..maxkeylength] OF setinfo;

freq, zfreq, zassoc : lettervalues;
queue : listrecord; v
used, zuesed :, boolarray,

chartonum : ARRAY['A' .'2'] oF INTEGER (*like PASCAL ord fcn *)
numtochar : ARRAY[l..ZG] OF CHAR; (% llke PASCAL chr function *)
maxlen, numkeys : INTEGER; (* max key length, number of keys *)
infile, outfile : filename; (* names of MTS I/0 files *) '

ptime : alfal; (* for MTS TIME function *)

pdate : alfa2; (* for MTS TIME function *)

fx, fpr, msecs : INTEGER; (* for MTS TIME function *)

zboo! : bgolposn;
taken : ARRAY[0..maxtableloc] OF BOOLEAN; (* prop. hash addr's *)
i.: INTEGER;
wordcount trycount ag‘écount varycount : INTEGER; (*: counters *)
- done : BOOLEAN, (*triggers recursive ascent when sol'n found *)
totmsecs : INTEGER; (* total search time *)
allblank : aword; (* an array of blanks *) '
firstopen : INTEGER; (* first untaken hash addr. = offset *) )
maxcharval : INTEGER; (* upper bound on assoc. letter values *)

linecount : INTEGER;



P ,
‘ | - 11

(* , *)
(* ‘A procedure which reads the names of .the input *)
(* and output files. and then opens them. *)
(* *)

I

PROCEDURE initio;
BEGIN S

RESET(INPUT, fnamefile);
READLN(infife); §
READLN(outfile);,
RESET( INPUT, infile):
REWRITE(OUTPUT, outfile);

© REWRITE(screen, ' *MSINK* ')

END; (* initio *)

(*_ —————————— N - ‘ ’ . e ) *')
(* A set of procedures which call MTS (FORTRAN) .routines *)
(* for, respectively, the time, date and elapsed cpu time *)
A(* ) - R > *)
PROCEDURE time (fx,for : INTEGER; VAR ptime : alfal); -

'FORTRAN 'TIME'; .
PROCEDURE- date '(fx,fbr' : INTEGER; VAR pdate :®alfa2);
FORTRAN 'TIME'; ) ’

PROCEDURE cpu (fx,fpr : INTEGER; VAR msecs : INTEGER);
FORTRAN 'TIME'; |
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PROCEDURE
VAR ]
ch
&BEGIN
S (* start firstopen at 0 *)
firstopen 0; )
(* initialise allblank *) :
FOR i
(* initialise chartonum
o 0;
. FOR ch
‘ BEGIN
ioi= i+
chartonum|[ch]
numtochar[i]
END
FOR ch
BEGIN

initialise;
INTEGER; -
CHAR;

*)

'AY TO 'I' DO

IJI TO |R'
i+1;
chartonum{ch]
numtochar[i]
END '
"FOR ch

- BEGIN

i3

ch

'S* TO 'Z' DO
i+1;
chartonum|[ch]
numtochar[i]
END
fotmsecs : 0;
(* initialise ZBOOL *)
FOR i 1 TO maxkeylength DO zbool[i]
(* initialise TAKEN *)
FOR 0 TO maxtabteloc DP taken][i]
(* initialise ZUSED,ZFREQ and ZASSOC *)
FOR 1 TO 26 DO °
BEGIN
zused[i]
zfreq[i]
zassoc|[i]
END ’

(*

?
ch

i o=
i =

:= FALSE;
0

)
0

END; initialise *)
CF

1 TO maxkeylength DO aHbIankLﬁk;= blank;

A

3

i

~

FALSE;

FALSE;
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(* *)

(* Prints the names of the chosen positions for a subset *)

(= e — S *)
PROCEDURE.princhospos “(chos : boolposn);
TYPE ptr = @pos;
pos = RECORD ‘
ord : INTEGER;
next : ptr
: END;
VAR index,numchosen, temp : INTEGER
arrow, poslist, tail : ptr;
BEGIN

(* empty list *)

.poslist := NIL;

(* print first part of line *)

- WRITE (' Letter position');
(* locate first chosen position *)
_ index := 0;

REPEAT index := index+1

UNTIL index maxlen OR chos[index];

IF index maxkeylength _
THEN WRITELN('s were not chosen. WHY?')
ELSE BEGI '

nuﬁhosen =13 ‘{

‘NEW(poslist); (///

poslist@.ord := index; -

poslist@.next := NIL;

tail := poslist;

(* add remaining chosen positions to the list *)

WHILE index maxien DO
BEGIN *
index := index+1;
IF chos[index]
THEN BEGIN
numchosen := numchosen+;
NEW (arrow);
arrow@.ord := index;
arrow@.next := NIL;
tall@.next := arrow;
tail := arrow
END (* then *)
END (* while *)
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3

we now have a list of chosen positions :¥)
(* if only one chosen, the subject NP of *)
(* our output is singular. *)
IF numchosen = 1
THEN BEGIN
WRITE(' ');
WRITE (postist@.ord:1);
WRITELN (' was chosen.')
END (* then *Wg
ELSE BEGIN
WRITE ('s ');
WRITE(poslist@.ord:1);
poslist := poslist@.next;
WHILE poslist tail DO
BEGIN .
WRITE (', '); - t
~ WRITE(poslist@.ord:1);
poslist := poslist@.next \

END (* while *)
(* handle last item in ‘list *)
WRITE (' and ');
WRITE(poslist@.ord:1);
WRITELN (' were chosen.')
END . (* if *)
END (* if *)
END; (* princhospos *)



PROCEDURE printkeys (len : INTEGER);
VAR index,gap,j : INTEGER;
BEGIN
WITH subset[ien] DO
BEGIN
WRITELN;
WRITE (' Keys of length ');
WRITE(len:1);
WRITELN ('.');
princhospos(chosen);
WRITELN:
WRITELN (' ':maxien+2,'HASH CHOSEN');
WRITELN (' KEY':maxlen,' VALUE LETTERS');
) WRITELN (' —==':maxlen,' ————oae oo ')
e : gap := maxlen - len; . '
FOR index := lowest TO highest DO
WITH keys[index] DO
BEGIN
WRI"f’E(wor‘d:Ien); .
IF gap 0 THEN WRITE(' ':gap);
WRITE(sortval:6,' '); :
Joi= 1
REPEAT :
WRITE(hashlets{J]);
j o= I
"UNTIL hashlets[j] = blank;
WRITELN .
END (* for *)
END (* with *)
END; (* printkeys *)
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(* print value of offset and associated *
(* values .of letters in chosen positions  *)
N S *)

PROCEDURE showletvalues (len : INTEGER);
VAR 1 : INTEGER;
BEGIN
WITH subset[len] DO
BEGIN
WRITELN('The offset is ', offset:3);
WRITELN;
WRITELN(' Letter Value');
WRITELN(' ————- — )5
FOR i := 1 TO 26 DO
IF used[i]
THEN WRITELN(' ', numtochar[i],"
WRITELN; »
END (* with *)

END; (* showletvalues *)

—_
)
|
1
|
|

FUNCTION allfalse (bvector : boolposn) : BOOLEAN;
VAR i : INTEGER; ,
result : BOOLEAN;
BEGIN )
i 1= 0y
result := TRUE;
WHILE 1 maxkeylength AND result DO
BEGIN
o= i+
IF bvector[i] THEN result := FALSE
END (* while *)
allfalse := result
END; (* allfalse *)-

116
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(* ‘A function which returns the number *)
(* of characters in a left-justified *)
(* array of them. *)
(e - S *)
FUNCTION findlen (letters : aword) : INTEGER;
VAR i : INTEGER; “
BEGIN
i = 0; :
WHILE i maxkeylength AND let:cer*s[iﬁl] blank DO
i = i+l
findlen := i

END; (* findlen *)

( < U *)
(* Read the set of keys from input file, set length value, *)
(* set sortval to length, and determine maximum length *)
(>."__ e e e e e i >.‘<)

PROCEDURE getkeys;

VAR i : INTEGER;
BEGIN
maxlen := 0;
i = 0; .
. WHILE (NOT EOF) AND (i maxnumberofkeys) DO
BEGIN
i = i+t
WITH keysf[i] DO
BEGIN
READLN(word);
length := findlen(word);
sortval := length;
IF length maxlen
THEN maxlen := length;

link = MAXINT
END (* with *)
END (* while *)
numkeys :=i
END: (* getkeys *)
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(*

(* Quicksort, useful for sorting subranges of arrays in place *)
(*

PROCEDURE quicksort (fow,high : INTEGER);

PROCEDURE sort (l,r : INTEGER);
VAR i,] : INTEGER;
x,w : keyinfo;
BEGIN (* sort *)
i =1

H

J=r;
x := keys[(l+r) DIV 2];
REPEAT '
WHILE keys[i].sortval x.sortval DO i := i+1;
WHILE x.sortval keys[j].sortval DO j := j-1;
IF i = , v ,
THEN BEG!N &
~_ w := keys[il];
keys[i] := keys[j]; o
( keys[j] = w; ’
i o= i+
oo j o= g1
END
UNTIL
LF | j THEN sort(l,]);
IF i r THEN sort(i,r)
END; (* sort *)
BEGIN (* quicksort *)
sort(low,high)
END; (¥ quicksort®) )
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(* Partition keys into subsets by length. *
(* Link lists within subsets. *)
(R . *)

PROCEDURE partitiory:
VAR index,next,len : INTEGER;
BEGIN
FOR index := 1 TO maxkeylength DO subset[index].exists := FALSE;
(* set up first subset *) .
index := 1; ;
len := keys[index].length; ] .
WITH subset[len] DO ‘
BEGIN ;
exists := TRUE;
lowest index; ’
queue.first := index;
offset := O
END (* with *)
(* scan sorted keys, *comparing neighbors *) .
WHILE index numkeys DO
BEGIN
NEXT := index + 1;
IF keys[next].length = len
THEN keys[index].link := next
ELSE (* end this subset and start new one
BEGIN
' keys[index].link := MAXINT;
subset{ len].queue.last := index;
subset{len].highest := index;
len := keys[next].length;
WITH subset[len] DO
BEGIN
offset := index;
lowest := next;
queue.first := next;
exists := TRUE
END (¥ with *)
END (* if *)

*)

index := next 3
END  (* while *) &
subset|len].queue.last := index;
subset[len].highest := index -

END; (* partition *)
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(% %)

(* A version of quicksort using hashiets *)

(% e %)

FUNCTION sortalpha (list : ‘listrecord) : listrecord;

VAR low,high,index : INTEGER; ’

PROCEDURE sorta (I,r : INTEGER); . -
VAR i,j : INTEGER; 0
T x,w : keyinfo; »

BEGIN
=1y
j = r;

b
- x := keys[(l+r) DIV 2];
REPEAT

]

WHILE keys[i].hashlets x.hashlets DO i := i+1;
WHILE x.hashlets keys[j].hashlets DO j := j-1;
IF i =] T
THEN BEGIN
w o= keys[i];
keys[i] := keys[j];
keys[j] := w;
o= i+l
j o= j-1
END
UNTIL i j;
IF | j THEN sortal(tl,j);
IF i r THEN ‘sortal(i,r)
END; (* sorta *)
BEGIN (* sortalpha *)
low := list.first; .
high := list.last; : -
sorta(low,high); '
index := low;
WHILE index high DO.
BEGIN
keys[index].link := index+1;
index := index+l

END (* while *)
keys[high].link := MAXINT;

“list.first := low;
list.last := high;
sortalpha := list

END; -(* sortalpha *)



( - e )
(* Sort selected letters for one word *)

(% e

3 3¢

*
3*

FUNCTION bubblesort (hlets : aword; num : INTEGER)
VAR posn : INTEGER; :
. temp : CHAR; '
" unsorted : BOOLEAN;
BEGIN
unsorted := TRUE;
WHILE unsorted DO

BEGIN -
unsorted := FALSE;
posn := 1;
WHILE posn num DO
BEGIN

IF hlets[posn] hlets[posn+1]
THEN (* switch *)

BEGIN
'temp 1= hlets[posn];
hlets[posn] := hlets[posn+1];
hiets[posn+1] := temp;
unsorted := TRUE
END
posn := posn+l

END (* while *)
END (* while *)
bubblesort := hlets
END; (* bubblesort *)

s

aword;
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__________________ e ———————————— —— e ] _—

Extracts chosen letters for this subset, then sorts the
subset lexicographically on chosen letters; returns TRUE
if no neigboring keys have the: same set of chosen letters

EE
U ¥

R o g

"
£

FUNCTION check (len : INTEGER; vector : boolposn). : BOOLEAN
VAR i, j,ptr,next,numpos : INTEGER;
nomatch : BOOLEAN;
- BEGIN
WIiTH subset[len] DO
B BEGIN
Chosen := vector;
(* extract hashlets *)
ptr := queue,first;
WHILE ptr MAXINT DO
WITH keys[ptr] DO

BEGIN )

s j = 0;
hashlets := allblank; (¥ clean slate to start *)
_FOR i := TO len DO T :

IF vector[i] .
THEN (* add letter to hashlets’ *)

BEGIN
b= gy
hashlets[j] := word[i]
END
numpos := j; (* number of positions used *)

(* sonrt selected letters *)
hashlets := bubblespr't(hash'lets,numpés);
(¥ go on to next key ¥)
ptr := link
END (* while ¥)
(* sort queue on hashlets
queue := sortalphal(queue);
(* make one pass comparing neighbors for conflicts
ptr := queue.first;
next := keys[ptr].link;
nomatch := TRUE:
WHILE nomatch AND next MAXINT DO
IF keys[ptr].hashlets = keys[next].hashlets

*)

+

*)

THEN noematch := FALSE
ELSE BEGIN
ptr := next;
next := keys[ptr].link
END (* while *)
check := nomatch

. END (* with *)
END; (* check *) ‘



(*- - -7)
(* A method for finding independent *)
(* letter positions/ which ensures finding the )
(* combination with the fewest chosen pOSItIOhS :;
(%~ e - |
£
FUNCTION findcombo (len : INTEGER) : boolposn
TYPE rootptr = @rootnode; - '
rootnode = RECORD jS
- BITS : boolposn;
! minpower : INTEGER;
next : rootptr
END; . _
listrec = RECORD head, last : rootptr END;
VAR rootlist : listrec; )
arrow : rootptr;
(* A function which returns *)
(* 2 to the x power in *)
(* binary, reversed. *)
NCTION binpower (x : INTEGER) : boolposn;
EGIN
binpower := zbool, .
binpower(x+1) := TRUE
END; (* binpower *)

(¥ A function which returns the boolean sum of two véctor's *)

FUNCTION booisum (terml,term2 : boolposn) : boolposn;

VAR i : INTEGER; .
BEGIN ]
FOR i := TO maxkeylength DO
boolsum[i] := term1[i] OR term2[i]

END; (* boolsum ¥*)

S VA S——
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(* - - ———— - *)
(* A function which tries each descendent of the nodes on ¥)
" (* roots, the list of candidates, until a solution is F)
(* found Or no more candidates exist.. )
(% _ . _ %)
FUNCTION testlist (lenth : INTEGER; roots : listrec) : boolposn;
VAR i : INTEGER; )
trial : boolposn; . .
found : BOOLEAN;
( Femmmm—mm—=m—=—==——cz=—o——mit——=———=—————=—=========z===S============z ¥ )
(F e -— -—- *)
(* A procedure which adds a new candidate to the end *)
(* of the gueue of candidate combinations. *)
(L S . . *)

PROCEDURE “addroot (combo : boolposn; x : INTEGER);
VAR rptr : rootptr;
BEGIN

NEW(rptr);
WITH rptr@ DO
BEGIN
bits := combo;
minpower := x;
next := NIL
END. (* with *)
roots.last@.next := rptr;
roots.last := rptr /
END; (* addroot *)



BEGIN (* testlist *) ..
found := FALSE; ' ‘ : .
WHILE NOT found and roots.kead NIL DO
"BEGIN - )
(* expand node at head of queue ¥)
WITH roots.head@ DO

BEGIN . o
i = 0; SN
WHILE NOT found AND i  minpower DO
BEGIN )
trial := boolsum(binpower(i),bits);
found := check(lenth,trial);
IF found
" THEN . testlist := trial ‘
ELSE IF i 0 THEN addroot(trial,i);
im = i+ ’

END (¥ while *)
END (* with ¥*)
roots.head := roots.head@.next
END (* while *) »
- IF NOT found THEN testlist := zbool -
END; (* testlist ¥)

T S T N T S T S S S S S ST S oo TS o ST ===

BEGIN (* findcombo *)

(* create initial root of tree *)
NEW(arrow);

rootiist.head := arrow;
rootlist.last := arrow;

WITH arrow@ DO

BEGIN o . '
bits := zbool; . .

minpower := len;
next := NIL
END (¥ with *)
findcombo := testlist(len,rootlist)
END; (¥ findcombo *)
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L

Count letter frequencies in chosen positions for this

PROCEDURE countfreq (lenth : INTEGER);
VAR index,posn : INTEGER;.
BEGI@ :
- freq : = zfreq; (¥ zero frequency array *)
WITH subset(lenth) DO ’
BEGIN
index :="queue.first;
REPEAT
- WITH keys[index] DO
FOR posn := 1 TO. ienth DO
IF chosen[posn] '
THEN freqg[chartonum|[word[posn]]]
freq[chartonum|[word[posn]]]
cindex := keys[index].link
UNTIL index = MAXINT
END (* with *)
END; (¥ countfreq *

36 3k

—

- PROCEDURE firstorder (ledd : INTEGER);
VAR index,posn,sym : INTEGER;
BEGIN )

WITH subset[len] DO -

BEGIN (* calculate product of frequencies for eac

FOR. index := lowest TO highest DO
WITH keys[index] DO
BEGIN

sortval := 1;

posn := 1;

REPEAT
sym :=’chartonum|[hashlets[posn]];
sortval..:= sortval * freq[sym];
posn := posn+l

UNTIL hashiets[posn] = blank;
(* want decreasing order *)
sortval := —(sortval)
END (* for *)
quicksort(lowest, highest)
END (* with *)
END; (* firstorder *)

h key *)
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(*- - e *)
(* A function which sorts letters in an array - ¥)
(* into order of increasing frequency. o *)
(* - -—-*)
FUNCTION fregsort (letts : aword; numlets : INTEGER) : aword;*®’
" VAR posn : INTEGER; : '
temp: CHAR;.
unsorted : BOOLEAN;
BEGIN
unsorted := TRUE;
WHILE unsorted DO
BEGIN
unsorted := FALSE; «
posn := 1;
WHILE posn numlets DO
BEGIN .
IF freq[chartonum[letts[pdsn]]]
freq[chartonum[letts[posn+1]]]
'THEN BEGIN (* switch *)
temp := letts[posn];
letts[posn] := letts[posn+1];
lettIPposn+1 ] := temp;

‘END; (* freqgsort *)

unsomted := TRUE
END (* then *) ‘ B
posn := posn+l]
END (¥ while *)
END (* while *)
fregsort := letts
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ordlist,ordptr,ordend : knodeptr;

&

.

% % W O % %

% # ¥

o — e _
(* This procedure receives the length of the subset which is to
(* be re-ordered. The keys are in order by decreasing sortval at
(* this point. Here we see that keys whose hash values are deter-
(* mined by addition of some other key get inserted in the order
(* ds soon as all their letters are determined. We will finish
(* with the keys in order in the array KEYS. This includes the
(* Slingeriand and Waugh ordering. This procedure calls the sub-
(* routines DETFINDER, MAXDETCARD, ADDTOORDER, DELREMKEYS,
(* and DELCANDLIST. - ,
(% e e
PROCEDURE reorder (ien INTEGER) ;
TYPE knodeptr = @knode; '
knode = RECORD
kinfo : keyinfo; (* key and assoc. information *)
nextnode knodeptr; (* link to next key ¥*)
prevnode. : knodeptr (* link to preceding key *)
END;
detptr = @detnode;
detnode = RECORD
keyaddr knodeptr
nextdet detptr
END; '
i candptr = @candnode;
candnode = RECORD
kaddr knodeptr;
prevcand,
»  nextcand candptr;
card : INTEGER:
detlist detptr
END;
VAR index,sval,mark INTEGER;
candlist,cptr,prevc : candptr;
remkeys, rptr, prevr knodeptr;



(*_____________*_____________'_______________r _____________ *)
(* A function which takes as parameters a candidate *)
(* record and a current copy of USED and finds and #)
(* counts keys whose values are determined if this key ¥*)
(* is chosen next for inclusion in the solution set. *)
(* It-returns the updated candidate record. *)
(* -— e *)
FUNCTION detfinder (candrec : candptr; letsused : boolar‘r‘ay)
VAR index,ch : INTEGER; .
dtptr, listptr,endptr : detptr;
remptr : knodeptr; :
(%o I %)
: (* A Boolean function which returns TRUE when all hashlets are *)
g (* marked USED. Returns FALSE when first unused letter is found®)
(F e _ o %)
FUNCTION allused (VAR hiletters : aword) : BOOLEAN;
VAR i : INTEGER;
ok : BOOLEAN;
BEGIN
=1y 1
ok := TRUE;
REPEAT

IF letsused(chartonum(hletters[i]))
THEN ok := TRUE
ELSE ok := FALSE;
i o= i+t
UNTIL (NOT ok) OR (i maxlen) OR (hletters[i]s= blank);
allused := ok
END; (* allused *)
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BEGIN (* detfinder *)
WITH candrec@ DO
BEGIN
listptr := NIL;
(* update used letters to include those in candidate *)
index := 1; ' '
WITH kaddr@.kinfo DO
REPEAT :
ch := chartonum[hashlets[index]]; ' k.
letsused(ch) := TRUE; g
index := index +1 ) 3
UNTIL index maxlen OR hashlets[index] = blank; : g
(* scan REMKEYS for determined hash values *) %
remptr := remkeys; _ ’ : , 2
WHILE remptr NIL DO ' P
IF remptr kaddr AND allused(remptr@.kinfo.hashlets)
THEN BEGIN (* found one! *) E
card := card+l; , 5
NEW (dtptr); ‘ . 3
IF listptr = NIL - )
THEN listptr := dtptr .
ELSE endptr@.nextdet := dtptr;
endptr -:= dtptr;
dtptr@.keyaddr := remptr;
dtptr@.nextdet := NIL;
remptr := remptr@.nextnode -
END (¥ then *)
ELSE remptr := remptr@.nextnode . =
END (* with *) ' i
detfinder := listptr ‘ 4
END; (* detfinder *)

U st e
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(* A function which returns a pointer to the candidate *)
(* which will bring in with it the largest number of words *) .

(* _____________________________________________________________

FUNCT ION maxdetcard (cand : candptr) . :
VAR max : INTEGER;
select : candptr;
BEGIN
max := 0;
select := cand;
WHILE cand NIL DO
BEGIN : )
IF cand@.card max ,
THEN BEGIN
- select := cand;
ol max := select@.card ;
END ' )
cand := cand@.nextcand
END (* while *) ’
maxdetcard := select
END; (* maxdetcard *)

candptr;

(*________________________f ________________ *)
(* Add the contents of kptr@ to ordlist. *

(*

PROCEDURE add (kptr : knodeptr);

(* global : ordptr,ordend,ordlist *)
BEGIN
NEW (ordptr);
IF ordlist = NIL
THEN ordlist := ordptr

ELSE ordend@.nextnode := ordptr;
WITH ordptr@ DO
BEGIN
nextnode := NIiL;
prevnode := ordend;

kinfo := kptr@.kinfo
" END

ordend := ordptr
END; (* add *)

\ c



(¥ e *)
(* A procedure to delete a key from the list of remaining keys *)
( A e e e aen * )
PROCEDURE delremkeys (rmptr : knodeptr);
" BEGIN- ‘ -
WITH rmptr@ DO
BEGIN
IF prevnode = NIL
THEN remkeys := nextnode ‘
ELSE prevnode@.nextnode := nextnode;
"IF nextnode = NIL
THEN nextnode@.prevnode := prevnode
END (* with *) ‘
END; (* delremkeys *)
(>‘< __________________________________ _ _ - *)
(* A procedure to delete a node from the list of candidates *)
( i *)
PROCEDURE delcandlist (cdptr : candptr);
" BEGIN '
WITH cdptr@ DO
BEGIN
IF prevcand = NIL
THEN candlist := nextcand
ELSE prevcand@.nextcand := nextcand;
IF nextcand NIL _ _
" THEN nextcand@.prevcand := prevcand
END (1* with *)
END; (* delcandlist *)
( >:::=:=:::.—:::___.'::===:.=::'::::.::’.:::::::::w:.:—_'========’_—.====:..'::::::.::::'.:::< )
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Adds a candidate and its determined keys to the ordering.

o~ updates the set of used letters.

(*

(*

(* deleting each key's ‘occurrence in various Ilsts Also
(*

(*

PROCEDURE addtoorder (cand : candptr);
VAR index,ch : INTEGER;
dptr : detptr;
cptr,prevc : candptr;
BEGIN
(* mark numun to show this is a candidate *)
cand@.kaddr@.kinfo.numun := 1;
(* place candidate in ordering
add(cand@.kaddr);

*)

(* place detlist keys in ordering *)
dptr := cand@.detlist;‘
" WHILE dptr NIL DO
BEGIN
(* mark numun = 0 to sbo\vgg no new letters *)

dptr@.keyaddr@.kinfo.numun := 0;
add(dptr@.keyaddr);
dptr := dptr@.nextdet
END (* while *)
(* update used ¥*)

index := 1; y
WITH cand@.kaddr@.kinfo DO
REPEAT
ch := chartonum[hashlets[mdex]],
used(ch) := TRUE;
index := index+1 °

UNTIL index maxlen OR hashlets[index] = blank;
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(* remove candidate from remkeys *)
delremkeys(cand@.kaddr);
_ (* remove keys in detlist from *)
(* both remkeys and candlist *)
dptr := cand@.detlist;
WHILE dptr NiL DO
~ BEGIN )
delremkeys(dptr@.keyaddr);
cptr := candlist;
prevc := NIL )
(* scan candlist -for match “*)
WHILE cptr NIL DO .
IF cptr@.kaddr = dptr@.keyaddr
THEN BEGIN ~
delcandlist{cptr);
cptr := NIL
END
ELSE BEGIN
prevc := cptr;
cptr := cptr@.nextcand
. END
dptr := dptr@.nextdet

(* white *)
(*”wD *)

remove candidate from candlist
delcandlist(cand)
END; (* addtoorder *)
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BEGIN (* reorder *)
WRITELN; WRITELN(
used := zused; (¥

'reordering subset ', len:2);

no letters used yet ¥)

(* create linked list of remaining‘h_ys *)
WITH subset[len] DO :

BEGIN

index. := lowest;

NEW(remkeys);
prevr := NIL;
WITH remkeys@
BEGIN
prevnode
nextnode

DO / '

:= prevr;
:= NIL;

kinfo := keys[index]
END - (* with -¥) '
rptr := remkeys;

(* add the res

t of the keys to the list *)

WHILE index highest DO
BEGIN , '

index := index+1;

prevr := rptr;

NEW(rptr);

prevr@.nextnode := rptr;

WITH rptr®@ DO

BEGIN .
prevnode := prevr;
nextnode := NIL;
“kinfo := keys[index]

END (* with *)

END (* whi
END (* with *)
(* start the reor
ordlist := NIL;
WHILE remkeys

BEGIN
(* create a
(* inclusion

(* which have the largest sortvalue).

le *)

dering process *)
NtL DO

*)
a*)
b

)

list of the next candidates for
in the ordering (all those

(* add the first key *)
NEW(candlist);
WITH candiist@ DO

BEGIN
kaddr
prevcan

:= remkeys;

d := NIL;

nextcand := NIL;

detlist
card :=

= NIL;
0

END (¥ with ¥)
sval := remkeys@.kinfo.sortval;
rptr := remkeys@.nextnode;
prevr := remkeys; :
prevc := candlist;
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(* now add all keys with the same sortval as the *)
(* first candidate to the candlist. \ . *)
WHILE rptr NIL AND sval = rptr@.kinfo.sortval DO

BEGIN
" NEW(cptr);
WITH cptr@ DO
BEGIN
kaddr := rptr; o
prevcand := prevc; . '
nextcand := NIL;
detlist := NIL;
card := 0
END (* with *)
prevc@.nextcand := cptr;
prevc = cptr;
rptr := rptr@.nextnode

END (* while *)
(* process each member of candlist to *)

(* find those keys each determines. *)
cptr := candlist; ‘
WHILE candlist NIL DO
BEGIN
cptr := candlist;
REPEAT
cptr@.detlist := detfinder(cptr,used);
cptr := cptr@.nextcand :

UNTIL cptr = NIL;
(* choose candidate with largest detlist *)

_cptr := maxdetcard(candlist);
(* add candidate and dependents to ordering *)
(* and remove them from other lists. *)
addtoorder(cptr)

END (* while candlist *)
END (* while remkeys *)
(* all keys are now in ordlist ¥)
(* put them into array 'keys' *)
mark := subset[len].lowest—— 1;
REPEAT
mark := mark+1;
keys(mark) := ordlist@.kinfo;
ordlist := ordlist@.nextnode
UNTIL ordlist = NIL OR mark = subset[len].highest
END: (* reorder *) ’
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(J* This function deletes those letters in the array which
(* already have the condition that USED(letter) = TRUE. *)

(*

FUNCTION delused (hletters : aword) : aword;
VAR i,j,k : INTEGER; :
present : BOOLEAN;

newlets : sword;
BEGIN N
newlets := allblank; (* clean slate *)
ii= 1,
i=1
REPEAT
k =1,

present := FALSE; ,
WHILE k j AND NOT present DO
IF hletters[i] = newlets [k]
THEN present := -TRUE
ELSE k := k+1;
[F NOT present AND. NOT used(chartonum(hletters|[i]))

THEN BEGIN , o
newlets[j] := hletters[i];
o=
“END
| i= it -
UNTIL 1 maxlen OR-hletters[i] = blank;
delused := newlets

CEND;  (* delused *)

, )
(* This function returns the index of the ¥)
(* next open.hash table location after x. *)

- )

FUNCTION nextopen (x : INTEGER) : INTEGER;
BEGIN .
While x  maxtableloc AND taken[x] DO I
X = oxH
IF taken [x] THEN nextopen := MAXINT
' ELSE nextopen X
"END; (* nextopen *)

i
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(% lll £ _¥)
(* For each key in the subset which introduced a new letter, ¥)
(* isolate and count the new letters. If numun = 0 then *)
(* there are no new. letters; assign allblanks to unused. *)
(o _— S IR *)
PROCEDURE setunused (len : INTEGER);
VAR i,j : INTEGER;
BEGIN ’ | |
used := zused; : ~
WITH subset[len] D
FOR. i := lowest :TO highest
WITH keys[i], DO
IF n’umum2= 0
THEN ubused := allblank
ELSE BEGIN
(* isolate new letters *) .
unused := delused(hashlets); .
(* count new letters *)
- numun := findlen(unused);
- (* mark new letters used *)
FOR j := 1 TO numun DO c
used[chartonum[unused[j]]] := TRUE;
_ (* sort letters by decreasing frequency *)
! unused := fregsort(unused, numury)
, END (% with *) -
END; (* setunused *) '
S ——
(* returns a copy of lets with symbol deléted *) : ' /(
FUNCTION delsym (symbol : INTEGER; VAR lets : aword) : aword;
VAR newlets : aword; ’
ch : CHAR;_$ -~
i,j : INTEGER;
BEGIN ‘
"~ ch := numtochar[symbol];
i =1
=1
newlets := allblank; B
WHILE lets[i] biank DO
BEGIN
IF lets{i] ch
THEN BEGIN
newlets[j] := lets[i];
j o= jr1 -
END (* if *) f
ioi= it
END (* while ¥)
delsym := newlets
END; (* delsym *)
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-

(* —— -
(* Addword is the’ procedure which varies the associated values *)
(* for untried letters. For each possible assignment of values, *)
(* the procedure TRY is called. TRY attempts to place the current *)
(* key in the hash table, given the current offset and associated *)
(* letter values. |f the key is successfully placed, then TRY *)
(* calls ADDWORD. Actually, ADDWORD calls VARY, which calls TRY. *)
(% e : , e %)
PROCEDURE .addword {wcount : INT»EGER)’;

- . e )

(* TRY calls ADDWORD if the current *)

(* key creates no hash value conflict. *)

[ ——— *)

R

PROCEDURE try {(wdcount : INTEGER);

VAR hsh,i,sym : I[N
BEGIN
trycount := tryco

TEGER;

unt+1;

WITH keys[wdcount], subset[length] DO

BEGIN (* calculate key's hash value

*)

hsh := offset;

i =1,
WHILE i
BEGIN

sym

maxlen AND hashlets[i] ‘blank DO .

chartonum[hashlets[i]];

hsh := hsh + assoc[Sym];

ioi= i+

END (* while *)
IF NOT taken[hsh] THEN

BEGIN (* add key to hash table *)
taken[hsh] := TRUE;
IF hsh = firstopen
THEN firstopen := nextopen(firstopen);
sortval := hsh;
IF wdcount = highest
THEN done := TRUE
ELSE addword(wdcount+1);
IF NOT done THEN
BEGIN (* backtrack *)
taken[hsh] := FALSE;
firstopen := MIN(firstopen,hsh)
END (* if *)

END (* if *7
END (* with *)

END; (* try ¥)



140

3k
it
]
I
I
1]
1]
1l
Il
Il
1]
1]
Il
Il
Il
1]
l
1]
1l
1]
1]
]
I
1]
Il
1]
It
1]
1]
1]
1]
1]
Il
|
]
Il
1
i
1]
1l
Il
n
"
It
Il
I
]
l
]
1]
1]
Il
n
]
1]
1]
1l
[l
1
i
H
]
il
It
3
N

)
VARY modifies the associated value in position COUNT. *)
If there are no letters left, then TRY is called. *)
Otherwise, VARY is called (recursively) to deal with *)
the next unused letter. - *)

: )

3 3 3¢ 3% 3 ¥

PROCEDURE vary (posn,wrdcount : INTEGER);
VAR sym,subtotal,i,x : INTEGER; '
sublets ': aword; - )
BEGIN
varycount := varycount+l;
WITH keys[wrdcount], subset[length] DO
BEGIN
sym := chartonum[unused[posn]];
IF posn = 1 '
THEN (* adjust initial value ¥)
BEGIN
sublets := delsym(sym,hashlets);
subtotal := offset;
i= 1, :
-WHILE sublets [i]s blank DO
BEGIN ’
x := chartonum[sublets[i]];
subtotal := subtotal + assoc[x];
i = i+
END (* while *)
IF subtotal firstopen :
THEN assoc[sym] := (firstopen - subtotal) - 1 )//
ELSE assoc[sym] := -1
END (* then *)
ELSE assoc[sym] := -1; S
WHILE NOT done AND assoc[sym] & maxcharval D)
BEGIN : o
assec[sym] := assoc[sym] + 1;
IF posn = 1
THEN try(wrdcount)
ELSE vary(posn-1,wrdcount) .
END (* while *) '
END (¥ with *)
END; (* vary *)

>

]
{

BEGIN (* addword %)
addcount :=" addcount+1;
WITH keys[wcount] DO
'ZF numun = 0
THEN try(wcount)
ELSE vary{(numun|wcount)
T END;« (* addword *)
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o

(* This procedure calls the others which carry out the trial *)
(* integer assignments to letters until a solution is found. *)
(% oo e ——————— )
PROCEDURE assignvalues (len : INTEGER);
BEGIN
linecount := 0O; _ .
WITH subset[len] DO ‘
 BEGIN . T
maxcharval := highest-iowest+1; f’
WRITELN('AFTER REORDER'); .
wordcount := lowest;

END;

WRITE('start with ',wordcount:3,'th item in keys,);
WRITELN(keys[wordcount].word:len);

- done := FALSE; '

addcount := 0;
trycount := 0;

- varycount := 0;
assoc := ZassoCy

date(5,0,pdate);

time(4,0,ptime) ;

WRITELN('Beginning search at ',ptime,' on ', pdate);
cpu{0,0, msecs) ; ,

addword(wordcount); (* plunge into black hole!
cpu(1,0,msecs);

time(4,0,ptime);

WRITELN(' Search completed at ',ptime,'.');
WRITELN(msecs,' milliseconds of elapsed cpu time.');

totmsecs := totmsecs + msecs;

*)

141

b
WRITELN('Addword called ',addcount:1,' times. Try called ',

trycount:1,' times.'); o
WRITELN('Vary called ',varycount:1,' times.')

END (* with *)

(* assignvalues *)

ol
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This procedure adjusts the offset values for the subset
whose associated values have just been calculated and
then sets offset for the next existent subset so that its
first element will follow the last of the current set.

PN N p— p— p— p—
¥ 3% * ¥ 3 3¢

PROCEDURE adjustnextoffset (len : INTEGER); .
VAR 1 : INTEGER; | "
BEGIN

(* sort current su&;gbt *) ’ Y
WITH subset|len] quicksort(Igwest, highest) ;
(* find next subset *) . :
WHILE len maxlen DO
IF subset[len+1].exists
THEN WITH subset[len+1] DO
BEGIN :
WHILE taken[offset] DO
offset := offset+1;
firstopen := offset;
¢t len := maxlen
END
ELSE len := len+l
END; (* adjustnextoffset *)

PROCEDURE letorder (len : INTEGER);
VAR i,],count : INTEGER;
BEGIN
WRITELN;
WRITELN("' Letter order for subset ',len:1);
WRITELN; :
WRITE(" ');
count := 0; ,
WITH subset[len] DO
FOR i := lowest TO highest DO
WITH keys[i] DO
'F numun 0
THEN BEGIN ‘ ' ' .
count := count + numun;
FOR j := numun DOWNTO 1 DO
WRITE(unused[j],"' ')
END |
WRITELN(' ', count:1,' letters');
WRITELN
END; (* letorder *)



143

BEGIN (* main program *) .
initio; ' -
initialise; '
getkeys; :
quicksort(1, numkeys); (* increasing by length *)
partition; (* create subsets by length *) :
FOR i := TO maxkeylength DO -
IF subset[i].exists '
THEN BEGIN
subset[i].chosen := findcombo(i);
IF allfalse(subset[i].chosen)
THEN BEGIN
WRITELN;
WRITE(' The keys in subset ',i:1);

WRITE(' cannot be distinguished');
WRITELN(' by our method.');
WRITELN(' BAIL OUT ');
HALT
END; (* if *)
countfreq(i); '
firstorder(i);
reorder(i);
setunused(i);
letorder(i);
assignvalues(i);
adjustnextoffset(i);
princhospos(subset[i].chosen);
printkeys(i);
showletvalues(i); :
WRITELN('TOTAL SEARCH TIME: ', totmsecs);
END (* then ¥*)
END. (* of the whole thing *)

/"‘\
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VHASH; AT ; ANS; LCOMP 3 LENGTH ; NSYMBOL S ROWS 3 F3 FTOL s Ly EX 3 S;ONE 3 STCK 3 C
(11 & HASH IS THE MAIN PROCEDURE THAT CALLS ALL THE OTHER FUNCTIONS.
(271 =n
(31 A SET UP THE CONSTANTS FOR USE IN THE FUNCTIONS.
(4]  ALPH«'ABCDEFGHIJKIMNOPQRSTUVWXYZ'' '
(51 START:0PA 'WORDS TO BE HASHED'
-[617  >STARTx10=14pDATA«IN [
(71 ATHIAT(2]
[8] RTE:OPA ' LETTERS TO BE USED. I.E. 1 2 FOR FIRST AND SECOND LETTERS'
(91 LENGTH+,14pDATA ‘ .
[10] LETTER«,2O0PA ' ', ¥LENGTHL1TL,O .
(111 TRB:M«EX«' IS BLANK TO BE A CHARACTER. Y/N? : !
r21 +TRBx13=0NE+'YN'1’1+0PA EX, 140
(131 LENGTHeL[ LENGTHxONE-1
riy] INPOPM+LFWMFRS SET DATA
[157 TRL:M<FX<' TS LENGTH TO BE PART OF FUNCTION Y/N? :
[167 - >TRLx13=LOOMP«'YN'1 " 140PA EX, 1401
(171 -»>TCTx12| LCOMP
r181 INFORMI ;37«1
[19] ™CL: INFORM«(COR INFORM
(207 PSSx1(14pINFORM)=14pDATA
(2171 M«EX«' WOULD YOU LIKE TO TRY A DIFFERENT ROUTE? : '
(227 >ROUTEx1'Y'="140PA EX, 141
[23] PSS:L+10 ’ -
(241 PFe114pINFORM '
[25] NSYMBOLS«COUNT INFORM
[26] a NSYMBOLS IS A COUNT OF THE USE OF FACH SYMBOL.
(271 a WSYM INDICATES WHEN THE SYMBOL IS FIRST USED.
(281 WSYM«(pNSYMBOLS)p0 :
[29] PM:M«EX<«' ORDER BY PRODUCT OR MINIMUM P/M? : ' .
[30] +>PMx12=0NE« 1+'PM'1 140PA EX, 141
(311 DROP:INFORM[F;1«INFORMLF;] VAL -NSYMBOLS
(321 ->DOWNx1(pF)=+/~FTOL«0=INFORM( ;1]
(331 [L[«(EX<(~FXeL)/FX«FTOL/\pFTOL),L
[34] NSYMBOLS+NSYMBOLS-COUNT INFORM[EX;)]
[35] =+>DROPx10<pF«(~FTOL)/1pFTOL
r36] a ALL WORDS ARE FILLERS
(371 INFORM«INFORMLL;1
(381 CHECK«STCK«(0 ~3 +pINFORM)p0O .
‘1397 %0
T40l >DOWN2
(417 DOWN: INFORM«INFORMLF,L;]
r421 a SORT TH% NONFE FILLERS BY VALUE
‘T43]1 INFORM[1oF; 1« INFORMININFORMC10F311;]
(4471 a PUT THE NON-FILLERS IN PRRORDER FORM
(4571 INFORM[1\pF;1«INFORMUPRED INFORM;]
(467 DOWN2: , '
(471 a FINISH MAKING THE STCK FOR THF FILLERS
(487 PUSH INFORM
(497 OPA ' CPU SECONDS USED IN HASH IS ',¥0. 0014341[2] -AT
(501 OPA ' THE DATA IN CORRECTED PREORDER FORM'
(517 OPA.' !
(521 OPA PF. DATACINFORML ;23]



VAY«N SET AR
(11 a CREATES AN ARRAY OF INFDHVATION ABOUT THE-DATA
(27 n VALUE  INDEX  LENGTH  LETTERS TO BE USED

(37 & 0 1 3 3 20
41 AY«AEPAA((AR+.=' '")OAR,AR[ ;LENGTHoLENGTH])[ ;N1
(57 a CHANGES ' cAT' TO ! CATTTTTTT! TO 'CATTTTTTT '

(6] a AND PULLS OFF THE NEEDED LRTTERS.
(71 AY«0,(114pAR),(4R+.=' '), AY

/

VARRAY<COR AR; J VEC
17
[2] n
(3] ~a
A
A

R OF THE WORDS WILT BE RFMOVED FROM THE LIST.

(4] HE WORDS BY LENGTH AND THEN ALPHABETICALLY

(51 ONE IF NOT IMPORTANT.

- (61  ARRAY«AR<«AR[CA(pALPH)1§ 1+ 0 2 ¥AR;]

- [71 a COMPARE EACH WORD TO THE NEXT ONE

(81 *0x\~V/VECeA/J=18J« O 2 +AR ‘

[91 » REMOVE CONFLICTING WORDS

(101 J*DATALVEC/104R(327;1 .

(111 O«DATALVEC/ARC 32131, ({((+/VEC) 16)p' CONFLICTS WITH '),J
(12 ARRAY«(~VEC)/AR

VARRAY«DUNT INFORM; T3 VALIR
(1] a COUNTS THE NUMBER OF OCCURENCES OF EACH
(21 a LETTER IN EACH POSITION.
(3] ARRAY«((I«pALPH),pLETTERS)p0
(41 VALUR« 0 3 YINFORM
(53-G0: ARRAY(I;)«I+.=VALUE
(671 +(0=I«I-1)/G0

VAR<ARRAY VAL CNT3I;T
(11 WGIVES 4 VALUR TO EACH WORD WHICH TS THE PRODUCT OF ONE LESS
[21 s THEN THE NUMBER OF TIMES EACH LETTRR IN THE WORD IS USED.
[31  AR«ARRAY
(4]  CNTeCNT-1 _
(51 a IF ONE OF THE LETTERS IN THE WORD IS ONLY USED ONCE
(6) /n THEN A ZERO RESULTS INDICATING A FILLER. A WORD THAT CAN
(71 w BE PLACED ANYWHERE WITHOUT AFFECTING OTHER WORDS.
(81 S«pLETTERS , f
(97  AR(;11«1+0NEx14oINFORM
(101 +Mx\ONE
T11] P:AR[31)«AR[ ;1 1% ,0NTLAR( 33+5);5)
[12] +Px10<8«S-1
. [131 =0
(14] M:AR(;11«AR(; 1]L PNT[4R[ 3+51; 5]
[15) +MXL§ES+S 1

¢

F ANY 2 WORDS IN THE LIST WILL. HAVF AN UNAVOIDABLE FOLLISION
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f17
(21
(3]
(4]
(5]
(61
(7]
[sl

197

(101
(117
(121

137

(141
(151
(16]
(171
(181
(191
[20]

-[21]

rz221
r231
(241
(251
[26]
(271
(281
[29]
(301
[31]

S [321

[33]
[34]
(351
[36.]
(371
[38]
[391
Nl
(417
(421
(431
Ty
(451
(461

VPORD«PRED INFORM;I;J3VEC:EX3S;GROUP;P;LINE
A PRED SET INFORM IN AN ORDER THAT AS FEW NEW
a LETTERS ARE USED IN EACH SUCCESSIVE WORD
INFORM« 0 3 vINFORM
A P AND L[INE ARE CONSTANTS
P«pLETTERS
LINEe«\ 14 pINFORM
a STCK KEEPS TRACK OF WHEN THE LETTERS IN THE
R WORDS ARE FIRST USED
A EACH ROW OF CHECK HAS THE SAMFE ELFEMENTS AS THE SAME
a ROW IN STACK BUT TN DESCENDING ORDER.
FEX++/STCK«INFORM=(p INFORM) p INFORM[ 1]
(CHECK«STCK+STCKx ( p INFORM) p$1 P
a EX PREVENTS THE SAME WORD FROM BEING USE TWICE
a THE INDICES TO FILLERS ARE FLAGED FOR NO USE
FXT (pF)+1pL«-P
a PORD IS THF ORDERING INDICES
PORD+(EX=P)/LINE
a FLAG PORD OF EX -
EX[ PORD1«"1
a ¢ IS THE NEW LETTER INDICE
S«(pP
LOOP: WSYML INFORM[ 1 ;813 S1+S
*>[00Px10<5«S5-1 .
NEXT:>ENDx1(pPORD)=pF
a FIND THE WORD CONTAINING THE LEAST NFW LETTERS
A SET THE NEW LETTERS TO THE VALUE OF C
T«EX \J+[ /EX
S¢STCKI T3 T 0
MwsmwmmammwtﬂzmmMrm
Ce«+1 )
WSYMLINFORML I351351«(
STCK[ 3 81« STCKI ; S1+CXVEC
>NEXTS*x1P25«STCK[I3110 o '
a FIND THE NEW GROUP :
GROUP«+(P=FEX)/LINE ‘
A ENSURE THE NEW GROUP WILL NOT BE USED AGAIN
EX[GROUP 1«1
S+pGROUP
A SORT EACH MEMBER OF THE GROUP
NS:CHECK[ GROUP[S] 3 1« VECIVVEC+,STCX[ GROUP[S13 1]
+NSx10<S5¢S5-1
A ORDFER THE GROUPS INDICES AND ADD TO PORD
PORD«PORD GROUP[AC’J.Q 0 1 ¥CHECKLGROUP;1]
>NEXT
END:STCK[ \pPORD; 1«STCK[PORD; 1
CHRECKI \p PORD; 1«CHECK [ PORD; ]
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(1]
(2]
(31
(4]
[s51
r61
(71
(8]
ral
(101
111
(121
(131

(11
(2]
(31
(4]
(517
(6]
(71
(81
(97
(10]
(117
(121
(31
(24]

[11
[21
[31
(4]
[57
6]
[7]
[8]
[97
[107
(111
[12]
[137
[14]
(1517
[167

VPUSH INFORM:S;VEC ;T3

A PUSH FINISHES THE STCK FOR THE FILLERS.
A ALL GROUPS ARE SINGLE WORDS

+0x10=p[

INFORM« 0 3 YINFORM

Je(I«1+pINFORM)-pL

L«J+1pL -

NEXTJ : S« ( ,STCKL J«J+1 ])10
NEXTS: C«+1

STCKL 3 S1«STCK( L3 S1+Cx INFORM( 1,3 S 1= INFUEM[J 3]
WSYM[ INFORML J:S1;S1«C
+NFXTSX1(pLETmE?S)>S+(,SmﬂK[J 1o
CHECK[J 3 1+STCKL T3V, STFY[J 11
SNEXTIx\I>J

VA<PF D;C;F;S;VEC

A PRINT FORMAT CREATES AN ARRAY WITH ONE SPACE BETWEEN
a RACH WORD AND NO WORDS SPLIT AT THE END OF THE LINE.
De(~A«De' ')/De,D,' !

Ae+\1+(A=20)/ A«A-1+0, 1+4«A/1pA

Sl :

Fer 0
NEXT: S«S+[1PW

FeF , (~VEC+S<A)/ A _
Pe(T14F) , (T1AF)+ 1410¢S-"14F

A«VEC/A+C-1

+>NEXTx1 024

VPF«((pF)+pD)p1
VECTLF1«0

A«(((pVEC):MPW) ,~PW) pVEC\D

VARCIN D34
a IN TAKES VECTOR D WHICH CONTAINS A LIST OF WORDS AND
a PLATES THESE WORDS INTO A RIGHT JUSTIFIED' ARRAY.
A
a GET RID OF UNWANTED CHARACTERS BY CHANGING THFM TO.BLANKS.
+>PASSx1 2#4INC 'ALPH'
D<(ALPH,' ')[ALPHAD]
@ '4' IS A CHARACTERISTIC VECTOR WITH ONES INDICATING BLAWKS.
a 'D' IS THE DATA WITH BLANKS REMOVED.
PASS: De(~A«De' ')/De,D," !
a 'A' BECOMES A LIST OF THE LENGTHS OF THE WORDS.
A(A20)/ 4A-1+0 , "1+ 4«4/ 1pA
a '4' BECOMES AN ARRAY WITH '1'S TO THE RIGHT
Acdo. 2011+ /0,4
a WHICH IS USED TO IMAGE THE WORDS INTO THE ARRAY,
a WITH A BLANK FOR EACH O AND A LETTER FOR EACH 1.
AR+(pA)p(,A\D
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VLASH; BFUNCT
(11 A THIS IS A NONE BAﬂKm?ACKING VERSION.
[2] FUNCT«' LASH!
(371 e CALL MAIN AND INDICATE NO BACKTRACKING.
(41 BFUNCT«1
rs1 MAIN
(61 PRINT

VBASH 3 BFUNCT; LFE; COL

(11 e THIS FUNCTION BACKTRACKS WHEN THE SPECIFIED

(2] a LOADING FACTOR IS NOT BEING OBTAINED.
£3] FUNCT«' BASH!'

(41 7ID:SM«' LOADING FACTOR 0.5 TO 1 RANGE :

53 >ILDx\[F=0 .5 1+ L P« . []
(6] S«0OPA S,¥LF

(71 LF«[ (14pINFORM)+LF
81 = '

(8] BT:5«M«' NUMBRR OF ALLOWABLE BACKTRACKS :

(107 9BTx11=2p 0L+« ,0]

(111 S«OPA S,¥COL

r121 a

T1371 a 7TALL MAIN INDICATING BACKTRACKING.
T141  BFUNCT0

r1571 MAIN

r161 PRINT -
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(11 & THIS FUNCTION BACKTRACKS WHEN THE SPECIFIED
(2] =

31 7S107S

(4] AT1AT[21

[5] =n .

[67  TABLE«(2x[ /pDATA)pO

[71  VI«((oALPH),pLTTERS)p0

[8] K«(C«(COLS+O :

[9] n

[101 co<l/ ,WSYM

(111 n '

[121 HSTCK+CHECKL 311

[13] INFORML ;1)«INFORMI ;3]

T1471 n

(151 SETINCR

[16] n

[(17] NEXTC:>STOPx\C0<(C«(+1
(1871 K«K+1

(197 INCRe,-/INFORMINCITNCS[C311+\NCS[C321;37;31]
(201 INCR«(INCR=0)/INCR

[21]1 CHARNCS[C33]

[221 S«NCSICsu]

[231 +STEPx102NCS[C;6 ]

(247 Me«[/0,INCR

[25] Me"1+((0,1M)eINCR) 0

(261 VLICHAR;S1«VLI[CHAR;S1+M

(271 INFORML ;1 1«INFORML ;1 1+MxCHAR=INFORMI ;3+5]
(28] ->NEXTC

(297 n

(301 STEP:GROUP«NCSLC351+\NCS[C;6]

[31] a

(321 VALUES«INFORML GROUP;1]

[33] a TERMINATE IF VALU®S ARE EQUAL, BUG)

(343 ->STOPx112[ /,+/VALUESe .=VALUES

[35] a LOOK FOR AN OPEWING FOR THE SMALLEST VALUE.
(361 Mel /VALUES

1371 meM-1

[387 NT:T«T+(T+TABLE)10

7391 a LOOP UNTIL THE INCREMENT ALLOWS ALL WORDS
401 a IN THE GROUP TO FALL INTO FREE SPACES.
T411  >NTx10V.2TABLE[ VALURS+T-M]

T4271 a LOOP WHILE T-M IS A NONE ACCEPTABLE INCREMENT.
T437 >NTx\(T-M)eI%CR

Tuyl s TNCRIMENT THE (HARACTER VALUE.

T4W51 VLICHAR;S1+VLICHAR; S1+MeT-M

T4571 TABLE[ VALURS+M1«GROUP

{4771 a 4DD M TO THE AFFECTED WORDS VALUES

T481 INPORMT ;1 1«INFORML ;1 1+MxCHAR= INFORMT ;3+5]
T487 a LOOP IF BEUNCT«1 THDICATING LASA

r507 >NTXTOx\BFUNAT

1511 s LOOP IF THYT TABLE IS NOT GETTING TO LARGE.
7527 SNEXTOX\LP> ([ /INFORMT 311)-(02TABLE)11

7531 BACKTRACK

T547 »yEXTO

7557 STOP: ATL1AT[2]-AT

7361 TS240TS



%

r1]
r2]
[3]
(4]
(5]
(61
(71
(8]
r9l
[10]
(111
(121

r13l]

[14]
(157
[16]
[(17]

18]

[19]
[20]
r211
[22]
r23]
r2u]
(251
(261
[271
(28]
(291

r3ol-

(311
[32]
r33?
r3y]
rss]
[367
(371
(381
r39]
(401
(411
421
31
447

VSETINCR3L3S3S0:3 T3 R; (3 BCK; CH3 LT
THIS FUNCTION PREPFROCESS SOME OF THE CALCULATIONS

A

A REQUIRED ONLY ONCE FOR NO BACKTRACKING AND REQUIRED

A FOR EACH BACKTRACKING BUT NEED ONLY BE DONE ONCE.

a o

A FOR ANY LETTER (C

A NNS[C3;1] AND NCS[C32] GIVEN INDEXES INTO NCI -

A NCI WILL REFERENCE INFORM VALUES FOR SUBSTRACTIONS
A IN FINDING NON USABLE INCREMENTS.

A NCS[C3;3] IS THE LETTER

A NCS[C3;4] IS THE LETTER POSITION

A Nﬂstn 5 61 INDICATE STA?m AND SIZE OF ‘LETTERS GROUP
A

NCS«((Co«T / ,WSYM) ,6 )p0

NCI«< 0 2 pO

L«pL.ETTERS

LT«14p INFORM

S«\pALPH

LOOPL: NCS[ 50«50/, stv[ L1331« (50« ,WSYML ;L120)/S
NCS[S0341«L

+>LOOPLx102[«L[~1
A

CH«[ /CHRCKxCHECK=" 16CHECK

BCK<(pCH) p0

RESET: BCK«BCKI (0=CH)x1+ 106BCK
>RESETx1 0V, =CH«CHI (T10CH)x0=CH

a- ¢

<0 :‘1
NEXTC:>BOTTOMX 1 (C< 00+~

WoS[os1 1«14 oNCT

NSl o35«

Te[«L+NCS[ 736 1«C+ . =HSTCX

A
NEXTTs>NEXTCX\ [LT< T« T+ ( T+CHI\C
S«(T™BCK)I10 ‘

ReBCKLT-17+1 ; ’
NCI«NCI,[11(,8(S,R)p(T-1R)),[1.57,(R,S)pT+ 1+1S
A

BCK[“]+1

BCK[T+9-1]+9+BCK[T-1]

CHIT+S-1 1«CHIT-1]

TeT+S

>NEXTT

A i
BOTTOM: NCS[ 321« ((1+NCS[311),14pNCI)-NCS[ 1]

150



(1]
(2]
(3]
[4]
£5]
(6]
£71
£8]
(91
(101
[11]

VBAC'KTRAC’K

A INCREASE COLISION coz)NT
+0x1BFUNCT«COL<COLS«COLS+1

A TYPE DETERMINES HOW FAR BACK TO GO.
TYPE1L

A RESET MORE RESENT LETTER VALUES TO ZERO.

VL+VLxWSYM=<C

a REMOVE MORE RESENT WORDS F§5§'§§§ TABLE.

TABLE«TABLExNCS[ 35 12TABLE
INFORM[ 31 1« INFORMI ;3]
D«pLETTERS .
A RESET WORD VALUFES.

(127 NEXTD: INFORM[ 31 1« INFORML ;1 1+, VLI INFORMI ;3+D1; D]

(13]
[14]

(1
(21
£31
(4]
[s1
(61
£7]
- [8]
(97
(10]
[11]
(12]

(1]
(21
(31
(4]
(5]
[s]
71
(81
(a1
[101
[11]
(121
r131
L1y1
[15]
(167
171
(181
(191
r201
r211]
£221]
(23]

. A

*NEXTDx10<DeD-1
C-1

vmypEL AES CHAR
o DETERMIN® HOW FAR BACK TO BACKTRACK.'

A FIND THE HIGHEST VALUE WORD.
A«INFORMT ;1 Ih[ / ,INFORMI ;1]

%

A FIND THE T.OWEST VALUE WORD IN THE GROUP.

B«GROUP[ VALURS\\ /VALUES]
A FIND A LETTER IN B MOT IN A.
A INCREMENT IT BY ONE

c«l / , (~CHECKL B3 1e CHECRER; ])/C'HE'C’K[B ]
CHARCNCS[ (33 ]

SeNCSI 3]

VLLCHAR; S1« VLI CHAR; S1+1

VPRINT; A3 P3 ROWS ; WORDSACROSS
A PRINTS THE INFORMATION

e

A OPA SEND THE LINES TO A FILE IF A FILE HAS BEEN
a SPECIFIED. THE LINES ARE STILL PRINTED.

OPA FUNCT,'ING STARTED AT ',¥TS1
Pe0>A«T52-T51

OPA ' TIME DURATION WAS U ¢ 1¢P)+A+Px 012 31 24 60 60 1000

OPA ' CPU SECONDS USED IN',FUNCT,' IS ',¥0.001xAT

OPA ' NUMBER OF TIMES 7’HOU'GH' FUNCT ! MMIN LooP IS ',¥K

OPA ' !

OPA( (T17+L0PW:2)p!' '), 'mFPMINATION AFTER BACKTRACK ',¥COLS

OPA( (L(OPW-2+pA)22)p"' ') ,A«'LETTERS USED ' ,¥LETTERS

A+ (P+<WSYMV .20 )/ALPH - .
P<P£VL

OPA ' !

OPA( (T8+|L00PW22)p" '),'LETTER VALUES'
OPA( ((pd),L(APW-5x1+1+pP)22)p" "), "' 1!
OPA ' !

OPA(("8+|L0PW2)p" '),'HASH TABLE'
OPA ' !

A«(P«TABLE=0)/1p TABLE

Pe(¥({pA),1)pA),(T1+P+.=' ")P«DATAUINFORML (P/TABLE);2];]

ROWS+«[ (14pP)+WORDSACROSS«0PW+1+pP
OPA( ROWS ,¥ORDSACROSS*x1+¥pP)p( ,P) ,[JPWp!

A ll'l

A

;

50 vB

/-

/
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