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ABSTRACT RPN
N o Linear models containing covariance parameters are -

Loty : - :
clasS?fied according to assumed structure.:- A generalized

v
bl

representation of balanced variance component models ig given, =¥

¢ .

a-

Pukelsheim's derived linear model, where thedcﬁyariance

parameters appear as means, is presented.
_Modern_techniques for estimating'variance ... ...}

components are reviewed. Methods cons;deréd include the

following: Henderson's use of analysis of variance quadratic .

~

forms and method of fitting constants; classical optimi}ation

by minimum variance (La Motte) and by minimum norm (Rao, C.R.);
) . ) i

Hartley and J.N.K. Rao's maximum likelihod&?ggnd Patterson
: L @
and-Tﬁompson“é marginal maximum iikélihood;%*’
Computing techniques are cons{deréé and algorithms
for .Henderson's method III and minimum ;orm‘methods are

)

presented. Some computational results are given.

' . A'logical Bayesian. analysis of generalized balanced

variance component models is developed, which agrees with the
L - o .

aﬁf_:
.approach ¢f Box and Tiao.
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R L . CHAPTER 1

when it is unsuitable, or ﬁndesirable, to assume that the effects can

'random effects’ invplves,estimating, or at least checking  a$sumptions. -

w . Intreduction

Linear models form the basis of the/ two most extensively used
7 . 7 - ~ S ;
techniques of data analysis: linear regression and the analysis of

’ '

variance. This prominent position stems from their intuitive appeal, - °

)
G

computatibnalﬂandwanalyticalgtractability and,ffequent,adequaéwaorbtheuf¢¢~£;~74~w
job at hand.

Linear models seek to express a résponse variable as a lin€ar

-

T - *

combination of effects. These effectsareg;ypﬁoged to 'explain' the’

- value of the response in some practical fa&hion. Complications ariSe

v

be represented by fixedﬂparametefs in the model. 1In this case, it-is -
sometimes possible to view them as realizations of some unobservable -

random. process. The analysis of linear models containing these

about, the vafiances and covariancés of the underlying process. These -

[

t

are the variarce compgnents.'

The objective.of this thesis, is to'review modefn'appr?achéslc_
to the estimation of variance cémpone?ts arising in linear modeis.

The éstimation of Qériance cémpbnents has two main direcfioﬁs
for applicatign.' The first is to provide estimates of the:covapiance

. \\ '» s 3 ]
matrix of the response variablqs._ This estimate can then be used with

the method of generalized least squares, to provide good estimates of

location'parameters in the linear model for prediction or estimation,

L

(Mitra and Moore, (1973)).__
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;‘The'second direction is‘to provide a break-down éf the coVariance‘of the

- = 4

response into components, having practlcal significance in their own rlght.

Examples ‘of t&ts/latter use are found 1n 1ndustry, where iE may be

w1

leportant to 1dent1fy the factor in a productlon process. whlch.ls cau51ng

r" . L

} undue var1ab111ty in a .product and An genet research, Where it’is

~ . .

iy
5

necessary to separate variablllty 1n a breedlng population 1nto components,;k

L] T “ ’ . . L]
due to env1ronmental and.varlous genetic facdtors. - - N

e 7

Sahai (1979) observes, 'Beforéfon; embafks on ‘a research pro;ect

RSN

- L3

% X
hundred entries. This, in 1tse1f, Ls an 1nd1ca§10h dﬁ/tﬁe complexlty of
and controversy surrounding the subject of varlance component~est1mat;on.

* . o
Q é;;\technlcal souxce of dlffxculty appears to-be ln tha ,? »

PN

"requlrement that the covarlance matrlx of the response varlables be p051t1ve

definite, or at least non—negatlve def1n1te. This requlrement Imposes

frequently complex and always compllcatlng c

straints on possibleﬂvalnés

for the variance components.

1.1. The Scope of the Thesis.

"Rao, C.R. and Kleffe, (1980) and Sahai (1979), refer to

numerous historical applications of and approaches to, variance component

estimation.

o

We startrby considering various forms of 1inear models, in which

T




methods are most advaneed. Three examples of reaI and generated deta.

are descrlbed Varlous estlmatlon techntques are later applled to thes

variance component estimation can‘be'importanf; “The’mostjgenq;al linear

R 4

moael is considered first. This medel assumes leest;knpwiedge'of'the“': T
, » o o v o N )
ﬁndetiying;random procesSee.__Then; because kheS?edge aboutﬁtheee
ptocessesAcan.ge,usedrinrvaridesiestimationrtégéhlques, more. spec1f1c
modele'are-eonsidered; Flnally, a general ggrm ofnbalanced varlance

: “
component modeIS“ls“developed‘ Thls~model 1neorporates important -

properties’of balanced classiflcatlon'models, for which estimation '§

= = o t— e = —=

examples. ’ , o ‘ _:_ . , 5 \Jf\\\

. 7
Estimation methods originated with analysis of variance applied
: ! £ - : ] e
to balanced classification models. We first consider Henderson's (1953)
- R - I . -

N

extensions pf these methods to unbelanced clagsificatioﬁ models. These

are known as the analy51s of variance method of estlmatlng variance

components and the method of,fitting constants. Searle (1968 and 1971),

consideredvthese methods in some detail and:they remain the most w1dely
used. For classificatioh»models, Hehderson's (1953) methods are easy
to compute, even hy hand; and we consider ah algorithm for thermethod of ,
fitting constants, which is applicable to more general structured'models.
Theee estimates are computed for the e%emple data sets.

Because of the lack of demonstrable,'desirable properties of -

these est%@etors, a variety of alternatives, based on different

optimality principles, have been developed. ) . " .

Rao, C.R. (1970, 1971a, b, and 1972), propdsed a general method




called minimum norm quadratic estimation. LaMotte (1973 a anhd b),
considered minimum mean square error’aS'a criterion of estimation- in

normal mbdéls. These approdches have beenrdevelogfd and:expandéd by

"Kleffe (1976 a, b, 1977 a, b, ¢ and 1980), Rao, P.S.R.S. and Chaubey

(1978) and Chaubey (1980). Their general applicability is a major

.

have;, so,far, limited their use. The adaptation of algorithms

developed for a maximal likelihood approach in structured models

. “having a residual error, is considéred and applied to the data examplgs.

_Aed Patterson and Thompson (1974) to consider maximization of a 'restricted

Hartley and Rao, J:N.K. (1967), considered the maximum
likeiihobd approach fof‘hormal models. This metﬂod overcomes the
theoreticai difficulties associated with ;he parameter space constraints,
which howevef remain a>éomputatigna1 préblém.

Severe bias-of the maximum likelihood estimates in some models

‘likelihood', which is the likelihood of a maximal invariant to

translations in the*location parameters.'vTﬁis approach has an appéaling
justification from the Bayesi#n point of view, where the bq#terior
distribution is marginal%zed over the ﬁuisance parametefs to yield an
'integrated' or ‘'marginal' likelihood. The techniqﬁe is therefore
referred to as the marginal maximum likelihood method. ' In the classical

approach of Patterson and Thompson (1974), integratioh is with respect to

squrgeﬁofmappealﬁfdruthesg,estimatorS.WBUt computational difficulties - ===~ =

& .
ordinary. Lebesgue measure, but in the Bayesian context, there 1is scope for

considering alternative measures over the parameter space. .



Harvilléri1977); reviews the*maximﬁm likelihood techniques
' with consideration of varioué’cémputatiOnai methods. .Theﬂavéilability.
of the éomputational algorithmé, (Dixon énd Brown (1977)), has led to
increased popularity of the téchnf&ue. A commercially available
programme was used to coﬁpﬁte.the*estimates’for the example.data sets.
7kTheF? pas beeﬁ'}iﬁitﬁ&'@évelopment of Béyesianrmgth9ds for

’variance component estimationf This is possibly dué'ﬁo difficulty in
choosiné prior distributions for(the.variancé components, which eithéi
reaiisticaiiy~rep;esentﬂsubjeétive¥§rier'knowiedger"or'convenienttyf;'”i~?‘“’?;4444*4¥
represent a state of igndrance.‘ | | |

The Subjective approach h;s been most generally develbped by

Rudolph (1976), but the applicability is limited. Kleffe and Pincus 4
(1974a)( conéider the identification of Bayes estimator; in reétricted
classes of estimating funcfions, for whichrthe Bayes risk depénds only

on the first two moments of the prior distribaution.
The state of the logical Bayesian(approach, us, Jeffreys'

rule to proviée a prior, is presented byr Box and o (1973), but is

restriqteé%gg simple balanced claésification models. A different logical

Bayesian‘viewpoint of Villedas (1977a, b and 1980), is used in thisrthesis,

to extend these methods to general balanced variance component models.

There is considerable difficulty in comparing and contrasting

- the various methods of variance component estimation. One approach, which .

appears promising in this respect, is to use the 'dispersion-mean

correspondence’ of Pukelsheim (1976), which relates quadratic functions




\",w’l . .o
i 6
in the samplé spéce to linear functions in an isomorphic space. This is
: used to re-parameterize the model, so ‘that the variance components
appear as location parameters. Use of this re-parameterization as a
comparative tool, relies on having an explicit expression for quadratic '
statistics used in the estimation procésses. This expression is not yet
available for Henderson's (1953) estimation methods. Finding such an
; ék;ﬁi:ession would be a desirable déve_lopment. '
E
Eﬁ .
| .
I
[F
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CHAPTER 2

Linear Models with Variance and Covariance Parameters.

We are interested in models'yhich represent observable
response -random vafiablesAas linear combinétions of fixed. parameters
and unobservable randoﬁ variables. The main aim is to consider &ays
of estiﬁating and,Aifbpossible, makihgvinferences,about the covariance

~structure of the unobservabie random variéblés. S

There are as many forms. to the linear mode there are
applications. The different fofms reflect gréater or lesser knowledge
about the distribution of the response. This knowledge can o%téﬁ be
exploited when making inferences about the covariance strucﬁure and

so we consider several general classes of linear models which involve

covariance parameters.

The model forms are presented, starting with the most general,

the one that assumes the least knowledge and progressing to the most
specific. This progression is in reverse to the historical development

of the methods of énalysis.'

Searle (1971), Kempthorne (1975), Harville (1977) and Rao, C.R.

and Kleffe (1980) give numerous examples and applications of linear Zv\\’

models. with covariance parameters.

o
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2.1.  The General Linear Model with Covariance Parameters.

The general linear model, or Gauss-Markov model, has model

equation:
LYy =XB+e o , ‘ ' _ (2.1)
)
where:
y is an n x 1 - observable response vector.
B8 is an uﬂ.ﬂown p x 1 vector of location. parameters.

X 1is a known n X p matrix of regressors, covariate
values or design vectors, called the structure

matrix associated with B8.

. :
€ is an n x 1 unobservable random vector.

Thé parameter space of 8% 5;\ is B’. X need not have
full column rank, but if it does not,Jt;;re is a re-parameterization
of the model to arfull rank médei, reducing tﬁeiaimensioﬁ ofr;gﬂ 7

The difference between various variance and covariance
models is in the assumptions on the distribﬁtipn of e. The most

general assumptions are:

%

"E{e} = O ' T
& q |
Cov{e) = V(8 = X+ 6, vV, ‘ (2.2)
= — . i i
i=1
. where: - 5
6 = (6,86 BQT’ is ‘an unknown g-vector -

5 -

of variance or covariance parameters. f e s

Vi’ i=1,2...g are known n x n symmetric

matrices.
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The parameter space for ;Q, Qe is restricted to an open

subset of RY ‘such that v(0) is positive definite, (p.d.) for

6 € Qe . No assumption is made about the sign of Gi nor are the
2 , -
Vi necessarily non-negative definite, (n.n.d.)

In genéral, any covariance matrix may be written in the form

(2.2), with g = n(n + 1)/2. 1In practical situations, howev r, q-

" is often small campared to the number of observatidns,ﬂn.

2.1.1. Identifiability

A linear combination, E}Q! of the cpvariance parameters is
;igsytifiable if and only if h'6, = h'8, whenever V(Qi) = V(Qé{
for -91’ 92 € QQ' Provided the distribution of the response dependé i
on 6 only thrégéh V(ED,Y this definition coincides witﬁ—;;;bnotion
‘of identifiability by distribution of Bunke and Bunke (1974).

Pincus (i974) reports the eéuivalencé ofr%aentifiébility of
h'® with the condition: .

h € R(H) or equivalently h € R(H(s)) (2.3)
where: ‘ | kN

R(H) denotes the column space of H
and H = (tr(ViVj)) i,j'= 1,2...q

(meaning that the i,j th element of H is the

crace of vyv)-

or | H(E)V= (tr(V(EjlviV(gjlvj)) for V(s) = Esivgmwp.d. B
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A proof of this result is as follows:

If h € R(H) there exists b such that \_\-/
h, = Z bj‘tr(vivj) = tr(v,v()). i=1,2...q where tr (.)

J ¢

denotes the trace of a matrix.

Thus h'6, = 814 "i:r:gviv(g)) = tr(v(8,)v(b))
and  1'0, = tr}\P{_Qz)V(E))\A .
Clearly if V(_Q_l) s V(gz)then 3'91 = “_".'92"

On the other hand we note that:

v(8) = V(&) or V(8 - 8,) = 0 if andonly if t =6, - 6, is

orthogonal to all columns of H. This follows because if

V(el - 62) = V(t) 0 then I t. tr(v,v,) = tr(v(t)v,) = 0. "
— —_— Y i 1 1 Jj . — J -
0 or tr(V(_i-:)Vj) =0, j=1,2...q then v

Conversely, if t' H

th tr(V(E)Vj) = tr(v(t)v(t)) = 0 and this only occurs if
v(t) = 0 since V(%) is symmetric and tr(aA') is the sum of squares

of elements of A. Thus if h'6 is identifiable, h is orthogonal to
t, whenever ¢t is orthogonal to R(H) or equivalently h € R(H). (
H can g’written‘as' TT' where T is q x n? with i th row

given by Vec' (Vi) (Appendix A.1l.).

.

If sp{V,, V ...Vq} “denotes the span of the set of Vi in

2
the space of n x n symmetric matrices, and dim sp{Vl...Vq}, its

4

dimension,’ thentank{H%—fTank(TF — dim SIvalf ?Tqu'f' T

In particular 8 is identifiable if and-only if — —

{v1 ’ v2

. ..Vq} is independant or equivalenfly rank (H) = q ,

A

s ow



2.1.2. Normal Distribution Assumptions.

Frequently additional distributional assumptions are required
for model (2.1). The usual assumption is that e has .a. central normal
distribution. In this case we ‘write:

Yy v N(XB,v(8)) . o : (2.4)
where: V() = ze.vi¥s pld. for 8 €@,

. it ' 8
The likelihood of Y is:

-n/2

£(8,8/y) = (2m ™ 2get(v(e)) /2

exp{4<1/2>‘lll xsllv(e) (2.5)

where: y - XBH XB) 'V(g) (X_ - XB)

Iy = @
.and s det(V(_Q_)) is the det 1nant of V(e)

a.-

Assuming X to have full colum‘ﬂ,_‘ f‘ank, the likelihood can be
factored since:-

Iy - xellv(e) ly - »@®)y + xB8(®) - xsllv(e)

= y'N(8)y - 2y'N(O)X(B(8) - B) + llg(g_) - xgf? x'v(0) X) -1
and the middle term vanishes. : 7 .

where: P(9) x@knglx;lx-ngl

it

il

N(©) = V(8T (T - 2(8))

&'ve) X kv ey y

B(B)
XB(8) =P (8)y.

The factgrization of (2.5) is then:

L o~ p;)/zdet (V(_e_))*l/zdet(X'V(_Q_.)_lx)—l/zexp{—(l/2)}y_'N(§_)‘y_}‘

-1/2

x (2m) p/zdet((X'V(e) X) ) exp{-—(l/Z)”é_(e_) -1 =1} (2.6)

—”uuzca
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2.2. Covariance Component Models,

-

The. first major specialization of the general model is to
assume a known structure for the random part, e, of'12.1):
: = XB + + +...+ U - S (2.
X =XB Uy Uy, o 2.7

where: - oo . -

'Y, X and are as..in (2.1),

Y

It

!i' for i '1,2...q are pnobéervable qi x 1 random vectors;

Ui' for i 1,2...q are known structure matrices associated

l

with the -v-i.’ Ui is nx qi 'fOr’*j: =- l’fZ’Tiq?"*—"g R 4” T ""’f’v—*’*"" = :

The most general distributional assumptions are:

E(v,) =0 for i=1,2...q,

It

' = i =
qui!i) Qov(!i) Zi for ; 1,2;..q,

and E(v.v') = 0 for i # j. : 7 o ' (2.8)
—i—j
The Zi matrices are qi X qi unknown covariance matrices called the
: ) . R N S
Covariance Components. . : s _ ' e
. . . . N -
Clearly, Cov(y) = ¢ U,z,U! . . ’ o
’ . z i=1 111 - - ‘ ; %ﬁli@

Model (2.7) may be referred to as the-Structured Covariance:?’

Component Model to emphasize the structure on e.

A convenient representation of this model is:
X =X8 + Uy
with E(v) = 0 and EB(ww') =1

so that - Cov(y) = ULU' — e R " 5




where:

0= (ul, Uz...Uq) is nxm mn= iqi

I = diag(Zi, i=1,2...q) (an mxm

matrix with blocks,rzi;‘on the diagonal. and

zeros elsewhere.{

The assumption of Normality for model (2.6) stipulates that: — T
v, ™~ N(O, Xi) Ai =1,2...9

(2.10)

or .y ~ N(x8, ‘UIU')

The flexibility in model (2.7) with assumptions (2.8)

follows from different forms of I

. One frequent form of model (2.6) has

-zi =2 iz1,2...g-1 and I = lex

then
q-1 ,
= 1 L]

Covly) (= F4U3 2 Ut + 00T , o (2.11) ]

Another frequent modification of (2.7) follows by taking
I3 = %Tqi i-=1,2...q-1 and B, = I, then

' ‘-1 ' - ~ : X

-— ¥ [ ] N
pov(x) = 151 6; U;U;" + U, I Uy , (2.12)

Structured Covariance Models may be represented as general

linear models with covariance parameters (2.1) by writing each

covariance component as a linear combination of symmetric matrices with

unknown coefficients. Some techniques, however, may utilise forms like

(2.11) to estimate I.
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2.2.1. Covariance Component Models with a Residual Error.

In structured models having model equation with the form
(2.7), it frequently happens that one of the structure matrices, Ui,
is the identi%y matrix. If we assume“that‘Uq = In, then the model
has form:

L = X+ U+ 0¥, ve S5 ) B
where: e is n x 1 and will be called the residual error effect.
The distributional assumptions (2.8) hold for (2.13) with U, = I and
;'**= . B R S e pEEa =
__q ——

I£f £ = R then:

q .
- 1}
Cov(y) = Z Uiziui + R
i w

or Cov(y) = U I U'+R (2.14)
where

U = (Ul' U2...Uq_r;3 - )

L o= diag(Zi, i=1,2...gq°1).

If any structure matrix Ui in (2.7) is n x n, with full
rank, then the model can be re-parameterized to have form (2.13).

The special forms (2.11) and (2.12) have useful versions
with residual errors, ( U_=1I_and v_= e)

) . q n -4 =

2.2.2. Random,ggg:essién Coefficient Models.

One common example of a covariance component model with
residual error component is the random regression coefficient model.

Yy F<XB + Xv +. e (2180 - -
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. - vwi't;h : E‘(_\_r)‘ = ~E’(_<'a_) = ;0, E'(E') = 0 . . o | e
E(vv') =1L .a1;1d ‘E(g_g') = R )
so ﬂ1a’t Cov(y) | = XIX' + R. '7 7 .
Frequently R = eI. .
. | | = |
. i s * e
.—%.3 Variance Component Mod,e}s‘. 5 )
. Vari;aﬁ;:‘e Compo;uentuodels have the same.structurg as (2.7v,
‘but  the covariénce con;pqnznts ‘ha,ve fbrm v‘éini, 1111-—11,2...q. .Hernce“ a
. variance component model. is: ¥ e e
| Y o= XB+ Uy + ..+’:Uql}q | | (2.16)
- = with .
E.(zi)' = 6, l;::(g_izj.) =0 i # 3 ‘ l _ ' .
E(zil_f_i') = eini , i = 1,2...q
so that Cov(y) = 8, U, U’ = 26, V, = V(). (2.17)
Alternatively, - N A :
Cov(y) = V() =UD U (2.18)
where: |
Y X, B, Ui, and v, are as in (2.6) -
v, are definéd as U.u', Vi n.n.d.
U = (U, U2...Uq)
and- D = aiag(e,I ;, i=1,2...q).
The Gi are variance components and model (2.16) may bé referred to
- aﬂ.sia str:n;crtiuxi'edmvariance compon;nt mod;al, to. emphasiée the struf:ture
" of the random components - o | i 5
A major d;.fference ‘between variance compo;lent models 'an‘d '
k ) ) '{; : ;. i
. PO »
? ‘ ; 'a/ = o

Je
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o, Ty ‘ : 16 *
‘ ~ general linear models with covariance parameters is that ei, i=1,2...q -
are non-negative. o “
=
Hence ;
: g+ “ - o
< . 5
, Qﬂ SR such that V(8) p.d forv 8 € QQ ’ (2.19)
QB remains as in (2.1) i ?
The normal distribution asgymptions frequently included in » ,""‘
model (2.16) are: : v S -
L ~ oy R ' . .
e e B NI, BT ) e — , -
or y  N(xB, V(8)). R (2.20) ‘
'%, ) - — @ X -
-~ . - %_?%;‘1—1 . V 'h——‘ ' . A '
% 2.3.1. Heteroscedastic Regression Models. ' T
. One common example of structured vari;.n’ce component models o «
is the heteroscedastic regression model where the :;esponse'y_‘
comprises q subvectors of léngth gqi,
Y = (11', 12'...%)'
Each subvector has model:
Y, = XB+ v, i=1,2...q (2.21) .
= ' = .
Bly) =0 Elyyw,") = &I,
or with X = (X', X,'...X ")' and U; being.the n xigi matrix of
zeros, except for the i th block (conforming to the partition of y)
which is I ., we have : o
d1 .
Y = x.§+'t?l_gl+ ..+U0 v ) (2.22y
- e ' &
with | E(v;) =0, ‘,E(zig_j') =0 1i#3 ‘ ] "
and | E(y_ilr_i), =" eini i,j =,l,2f..q. E
. - - L




_ i I
77777 - - - - - T B T 17/
, -~ E\\
Frequently Xl = X2 =...=Xé.
- -
2.3.2, Variance Component Models with a Residual Error.
As with covariance component models, if Uq = 1 then we write
g_foi zq and have a variance ccmponené model with a residual error
: effect: .. [T [ . - ' ‘ R e — - - -
y = X8 +'U1!i+"'+qq—13§;1'+‘9- (2.23)
with Cov(y) = 26,V, +6 I
: - S R an . - S — N
’ or Cov(y) = UDU' +Aeq1nrv
where v J
U = (U’l, U2"'Uq—1) |
D + diag (Gini, i=1,2...9-1).
Any variance component model haﬁing a non-singular structure -
LN . - ! )
,matrix, say'Uif'can'be*re~parameterized to have the form (2.23). N
An’ important class of structured variance cqmpoﬁent models 1

having residual -errors are the factorial classification models, which

include analysis of variance models for fixed, mixed and random effects.
; = ' ,
These models have structure matrices X and Ui with additional useful

properties.  The structure matrices are called design matrices and are

considered in the next section. : .

2.4 ___Classification Models- — ] -

EY

In many application54a4;e5pgnsﬁgiegtnrgcan_begyiewpd as a

collection of samples from a set of classified populttions. The

populatibns are classified according to levels of factors, which may be;

-
v
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treathents or attributes of the universe elements.
Linear models representing responses from such classified

populations have a parameter representing the overall mean response

- and parameter sets representing the main effects and interactions

associated with fixed effect factors. (Searle (1971) pp 145-159).

.. Where random.effect factors are involved (Seérle‘(iQ?lf pp 376-383) ... . ...

the model contains gsets of random deviations associated with the

random éffécts, together with a residual error effect representing

‘deviations in the response vector not accounted for through the

fixed or random effects.

‘Classification models are a class of variance component
models, where the struhture matrices of (2.16) have important
properties derived frqm the classification. The structure matrices

are called effect design matrices.

The model equatioh for classification models has the form:

Yy = X8, 4 x2§2 + ..t X B o+ UV, L+ Uq_lvq_1 +e

(2.24)
where:

y is the n x 1 observable response vector.

Xl is an n x 1 vector of 1,s. Xl is the mean

effect design matrix and may be written as 1. Xy

‘is always present.

‘Bl is the mean effect parameter.

Ei' i=2,3...r are p; X 1 vectors 6f,unknown

location parameters called fixed effects.

o



Xi, i=2,3...r are n x ps ‘known design

matriceS'associgted With the fixed effects.
v i=1,2...g-1 are q; x 1 vectors of
unobservable random deviations calledr;andom
effects.

Ui’ i=.l’2"'qfl, are ﬁ X gi knownvdesign o

matrices associated with the random effects.

e is an n x 1 vector of unobservable

random—variables, cai}ed:thEifésidual effect. —— rrmmEe T T T

e 1is always present.

If r=1 the model is a random effect model. If g =1

it is a fixed effect model and if r > 1 and q > 1 it is a mixed

effect classification model. T
The model equétion may be w;iﬁtgn as:
Yy = XB+Uv+e ‘ (2.25)
where:
&£
X = (Xl, Xz.;.Xr), B = (Bl, Eé"féé)'
and U= (U,....04) v = CATTER AN

‘ —-qg-
The basic distributional assumptions associated with model
(2.24) are:

E(!i) = E(e) = 0, i=1,2...9-1

H
:

il

e vemerir ook

E'(zig:'.l) = 0 for i’#’j',”ﬂgig') = 0, i=1,2...9°1,
By ¥ =631, i=1,2,..q-1, and E(ee’) = 6T, — (2.26)

As a consequence of these assumptions we see that Gi 20 -all i,

B S i e
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and eq > 0 to ensure that the covariance matrix is p.d. Hence

2, < &, (2.27)

Writing v, for U,U!, we obtain:
i ii

Cov(y) = V(8) = feivi + qun . (2.28)
or : Cov(y) = UDU' + qu'n from (2.25) - | (2.29) ,

where: D = diag(kei¥iqi' 7 7i=i,2.. .q—'1) o . -

The Normal distribution assumptions are the same as (2.20).

2.4.1. = vproperties of Effect Design Matrices.

The effect design matrices of (2.24), xi and Ui' are
matrices of zeros and ones. They have exactly one 1 in each row.

(searle (1971) p 166). A consequence of this is that:

x1=1 j=l.2..r ‘ | | (2.30)
and Cul=1, j=1,2...q@ (2.31)

Also since every row has exactly one 1, the columns within each
design matrix are orthogonal.

Each effect in the model represents a sub—classifiéafion of
the response according to some factorial comgination which should be
explained by that effect. One column of the effect design matrix is
associatedrwith each cell of the sub-classification. Each column has
Y

1l,s in positions cbrresponding to response elements in that cell. Thus

if the sub-classification associated with the j,th effect has n,

i, ] -
obsexrvations in the i,th cell, we obtaih:
X'X, = diag(n, ., i=1l,2...p.) )
i3 90,5 ! P37 T
or U'U, = diag(n, . i=1,2...q9.) (2.32)
i3 Iy ,gr Tyt ' 7
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\ o
a classificati?g)design isibalanced if and only if
ny =n, for all cells i and each effect j. , (2.33)°
’ ! .
sing: X; = 1 we have with (2.30) and (2.31) that

; (2.34)

R(Xl) c R(Xj) and R(Xl) c R\)\(U?X

}

2.4;2} Appropriateness of Classificati&n Models.

There is considerable contrové%sy over the appropriateness
of the model (2.24) ana distributional aéguﬁptions (2.26) to |
represent classified data sets. |

One aspect of the controversy centers on interpretationrof
the fixed effects in the light of constraints, which have to be
imposed on the p%rameter estimates to facilitate analysis. (Searle
(1971) p 204, ' Kempthorne (1975) and Urquhart and Weeks (1978)). We
are not directly concerned with this problem, as the fixed effect
parameters are largély viewed as nuisance parameters for thgi
purposes of variance compénent estimation. However, one aspect of
it spills over to the random effects, associated with interactions
involviﬁg‘fixed and random factors. If we assume that the constraints
on the parameter estimates also hold for the population values, then
the random deviations should alsovbe constrained OVQ{ their fixed
factor indices, (Kempthorne (1975)). This would mean that the
assumption of independence within random effect.vectors in (2.26) would

: -

not hold.- - e e

_Jennrich and Sampson (1978) suggest a :e—garameterization for

side—stepping this situation, since many computational procedures rely



» -",g ) ——— - - - R -
on the independence assumptééQ;H “Had -

2.4.3. Balanced Classification Models.

The property oé balance for classification models (2.33)
has important consequences for the design matrices.
Specifically in the mode1~(2.24), if the classifiéation is
balanced, then the matrices Vi =, UiUi' have two important properties:
a) {Vl""vq-l,In} is a subset of a commutative |
quadratic subspace of the vector space of
symmetric n x n matrices over the real field. (2.35)
b) R(Xi) i=1,2...r are invariant subspaces of R"

under the operators Vj’ j=1,2...q. (2.36)

The notion of quadratic subspaces and many properties are presented by
Seeley (1971). The defining property is:

S is a gquadratic subspace if and only if

A ¢ s=>a%c¢s. , (2.37)

The property of commutativity means that:

A, B € S> AMB=BA € S (2.38)

The notion of invariance of subspaces of R to linear
operators is defined as follows: ©
B a subspace of g is invariant under A

if and only if x € B > Ax € B (2.39)
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The invariance property (2.36) is equivalent to the
relationships:

PV, = V,P, = P,V.P =1,2...r, i = 1,2...

1 3 3749 3 ' -r :‘ q r
(2.40)
) ) - "l ] . - . .
where: P. = X.(X! X,) X, is the symmetric and
J 3 3 J

idempotent projectidn operator onto R(Xj){

This equivalence follows by noting that ﬁ(xj) = R(Pj) and
Pj is the identity operator on R(Xj). Hence, if R(Pj) is invariant

to V,, then V.,P, € R(P,) so P.V,P, = V,P, and the rest

1 113 -] J1r3 113
follows by symmetry of the matrices. On the other hand, if (2.40)
holds, thefl'given x € R‘(ij), there exists y € 8" .such that
X = P.y. Hence V,x = V,P,y = P,V,y € R(P,) so that
- 3L i= it3E s ML 5)
‘R(Xj) = R(Pj) is invariant to V.. -

Not only do balanced classification models possess the
properties of design matrices 2.4.1, and the properties of balance
(2.35) and (2.36), but these properties hold for all the structuré
matrices, irrespective of the fixed or random nature of the effects.
That is if Zj = ijé'- j=1,2...r, then Zj are also elements of
the commutative quadratic subspace and the column spaces R(Xj) and
R(Uj) are all invariant to all the operators Z, and Vi'

The properties (2.35) an%k (2.36) for balanced
s
classification models follow from results given by Searle and

fes

Henderson . (1979) .

We consider an s-factor classification with one

observation per cell and n k=1,2...s levels for each factor.

kl




~ Replication is treated as a factor nested within all others. There
s - )
will be n = 1 n observations.
k=1 ’
Searle and Henderson (1979) report that the matrices

%z, = X.X', j=1,2...r and V,*= U.U', i=1,2...q wi =1 a
j i3 =1l,2.. i i%i’ i=1, q with Uq In re a

subset of:
K{ .
K(s) = {Kif where i =l(lS’lS-l'..’ll) with i, = 1 or 0, j=1,2..s
and k, = 3> s @ a1 9L gt Th
. i n n n
= s s=1 , 1

where Ji_lj is the njrx nj matrix of 1l,s if i.=0,
or I if i,=1} (2.41)
nj j
K(s) has 2° elements corresponding to the 2° possible'values for the
binary index i. sp(K(s)), the subspace of symmetric n x n matriées

- spanned by the elements of K(s) is a commutative quadratic subspace.

This followsbfrom the definition of Ki since if Ki and Fi € K(s)

then: K.XK, = x K, . : (2.42)
: r 1 i-1
where: x € R and i.j is the Boolean addition of the binary vectors
i and 1{ Clearly gi:j_é sp(K(s)). « o &\

Purthermore, for Ki € K(s), R(Ki) is invariant to all gi € K(s)

since KK, = K, K, _ ' (2.43)
R 11 S
and the left hand matrix has columns in R(Ki)’7

Hence R(Xj) is invariant to 'Vi for i=1,2...q and j=1,2...r,
" since Zj =‘XjX3 = Ki' for some i and R(Zj) =‘R*X5}T‘ : (z.8¢4y ——————————

4

An important property of commutative gquadratic subspaces is

that they have a basis of symmetric, idempotent and mutually orthogonal -
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matrices (Seely (1971) lemma 6).
Thus, there is a basis. {Ql'Qz""QZS} for the space sp(K(s))
= 4 ' = = . . E
where Q4 Qi'_QiQi Qi, and .Qin 0 for i#j. | (2.45)

Hence we can write the covariance matrix in terms of this basis since:

m )
v.=7T1 t,.0. ,» j=1,2...q, where m=2"..  (2.46)
. ij=i : :
i=1 . .
The t,. coefficients are known, and in the case of balanced classification =~ ~

ij

models, Searle and Henderson (1979) show that the full m x m matrix

T = (tij) of coefficients for expressing the elements of K(s) in terms of

.symmetric, idempotéent and mutually orthogonal matrices is given by:'

=" " °%a.8|%° (2.47)
| 11 11 11 | :

where: ® denotes the Kroneker Product (2.76).
‘Since Vj € K(s), we can find the tij of (2.46) from the corresponding

rows of T. The covariance matrix V(f) can then be expressed as:

q . q m m
V(e) =2 B.V. = I 6, I t..0.= I 0Q =V(w (2.48)
=133 41 T i1 e

where is the i th eliment of  given by:

0y
w= T8 ) < (2.49)

and T, is the m x q matrix of tij's obtained from (2.47). Ti has

independent columns because of the independence of V , 3j=1,2...q.
. 7 ¥ :

Hence, in thg case éf balanced cla;sification models we can
re-parameterize the model in térms‘bf;”gr‘and‘Qi; i=1727T7ﬂh; e ——————
The model -becomes: S— R -

Y=Xg+e

m ,
with: Cov(y) = V(w) = I w0, i © (2.50)

JU. " y e TR



R T L el e AN PR RT3t e e

R

R R A I

Where: Qi are known n x n symmetric matrices satisfying Qi = Qi
o R ’
° and 0.0, = 0, i#j - (2.51)
i%j ,
and - R(X) is invariant to Qs v i=1,2...m (2.52)

The parameter space for w, Qw',' is however subject to
rather complicated constraints. If we complete Tl,of (2.49) to

a square non-singular matrix by adding m~q independent columns to

form T = ['?l,TZ], then:

w=T|O (2.53)
- ) e
Conversely, if [Bl'BZ] = T—l then
Bw=8 (2.54)
and BZQ=_Q ' ' (2.55)
9 was restricted (2.27) so that __Q_ € Rq+ and hénce w is restricted by:
'C: Bw>0 and Bw=0. : ' (2.56)
and 2@ ={w:w €¢R? and w satisfies C} . (2.57)

In many applications, (Box and Tiao (1973) Ch 5 and 6), the

I

and the constraints Bw = 0 are void.

constraints B.w > 0 have the form: 0 < ,mq = = .. = Wy e

The advantages of the properties (2.51) and (2.52) of
balance are so importani: ‘that we define a class of variance component
models which possess these properties but which are not necessarily

classification models.



2.5. Balanced Variance Component Models

‘Motivated by the properties of balanced classification models,
2.4.3., we consider gene{f}wmodels possessing some balance ‘properties

which have‘important consequences for methods of analysis.

y =X8 +e (2.58)
i q
Cov(y) = VI(w) = I 0;Q o (2.59)
i=1
and E(e) = 0
where: y, X, B and e . are in (2.1}

Q i=1,2...q are knownn x n symmetric matrices satisfying -

Ql = Qi' and Qin = 0, 1 # B _ (2.60)
R(X) is invariant to Qi' i=1,2...q (2.61)
) 1
and w is an unknown g-vector of parameters taking values in ?
Q .
w

The parameters of interest are some independent linear combinations

of w, say 6 where:

8=Buw (2.62) \

. + ] ‘ . . . .
Qm is a subspace of RY restricted by some linear constraints C such

that V(w) is p.d.

2.5.1. - Consequences of Balance for Variance Component Models..

The properties (2.60) and (2.61) have important consequences
for the balanced variance component model (2.58):

a) PQ, = QP = PQP, for i=1,2...q where P = X(X'X) X'

is the projection operator onto R(X). This follows from

the definition of invariant subspaces (2.40). (2.63)
Consequently, QiX = XBi for Bi = (X'XYX‘QiX, i=1,2...q9.
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b) N, = QN = NO.N, i
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]

1,2...q, where N=I -7P (2.64)

c) If A = ZaiQi then R(X) is invariant to A,

d)

e)

f)

qg)

h)

or equivalently, PA = AP = PAP. ‘ . (2.65) :

. - S :
If V(w = Iw;Q, with w, >0, then V()" = (1/w,)Q, (2.66)
This follows from (2.60) and is the basis for the method of

computihg V(g}l for balanced classification models which

7w}as suc_';g'e'stéd byigerazile and Hepderson (1979).

q : . '
T Qi = In' This follows since, we see from (2.60) that ‘ZQi
=] :

1 o
is idempotent, and being a sum of idempotent matrices we have

that: n 2 rank (ZQi) = I 'rank(Qi) .

On the other hand, we know that V(w) =’Zwini is p.d. for

some w € @  and hence that: n = rank (V(w)) = I rank (Qi).
Henée ZQi being full rank and idempotent is the identity. (2.67)
V(w) has eigen values wy with multiplicities m, , (2.68)
where m = rank(Qi),, i=1,2...9. . _. ) I

From (2.60), V((_u_)Qi = miQi, i=1,2...q, so w is an eigen

i

value with multiplicity m, . Also since I rank(Qi) = m =n,

by (2.67), we have all ‘the eigen’ values of V(w).

q

det(V(w)) = T m;_.ni where m, = rank(Qi) (2.69)
i=1 ' q

If X has full column rank, det(X'V(w) l'x) = det(X'%) I wirl

= det(X'X)det ((X'X) lXYV(_u_)_) lX), where r, = rank(PQi.) . (2.70)

This follows by observing that if B, = '(x'xflx'Qix, then

TS . :
= ! XB, = {/w,)} B, —and-also rank(B )} = tr(pQ,) = r,.
(X' X) X" Vw) XB, = (l/w;) By g =ty =T,

Also, (X'X) X'V(w)'X = ziumiuramxhemé

rank ( (X' X) lX'V(_ul-)-lX) s ‘Zri.

ST W, S
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2.5.2 The Normal Distribution Assumptions‘éor Balanced Variance .

“Component Models.

If in addition to the distributional assumptions (2.59) we

]

assume that

Y, " N(X8,V () s ' (2.71)
thenrthelikelihooa of y is given by (2.5). ‘-. ‘ v-

The properties ;frgéiéﬁ;ériéﬁd fo convenientvrépresehtafioﬁéﬁW'
of this likelihood. | |

___Firstly, the cross product terms in the expansion of

lg - 2y + %8 - Xﬁll.\z,(w) involve (B - _@)"X'V’(_ujluy_ which vanishes

~ because of the invariance, (2.64) and (2.65).

Where: B = (X'X)X'y, P = X(X'X)X' and N=1I-P
" 2 2 on2
Thus : y - xgllv@ = ”NXHV(@) + [Ix8 - xgnv(ﬁ) (2.72)
Secondly, froqﬂ(Z.G@) and (2.66),
. q,‘é :»4‘\‘, B
2 L 7 _
INgll gy = RO et o (2.73).
Thus with (2.69) we can write the liklihood as:
o 4 a -
2(B,w/y) = (2m) n/2 g w, m'l/zexp{-- z (1/2wi)y_'NQiNy_
i=1 i=1 '
- a/2lxeE - B2} (2.74)
where mi = rank(Qi). » e
2.6. Derived Models and the Dispersion-Mean Correspondénce.

- --- --Several techniques for estimating location parameters—in

--linear models,lead5togestimators~with;desirablegg_properties One

¥

approach to the estimation of variance components is to re-formulate

the model, so that the variance components appear as location

ik



i
«
3 .
H
1
+
i
:

,vl“

D

_—

I IMLISR St A men i mrs s s ss S s o mimsoos s S mm o sen e oste e o e e L SRR S R T T

'
S - \ 30
parameters and then to.use the known theory Aéf‘rlin’ear estix'nation‘ to
derive estimators with desirable - prqperties.’ | )
2.6.1. A General Deriv‘e_é Model. ’
For the general model,with covariance pafametefs (2.1) ,.'we
consider the nle aeiived responsé vect;r:'
R e e
whene'i | : \ . - o A s
. . ’ . )
“TUTTTT® denotes the Kronecker product defimed for— ¢ e
inatrices A and .B ill'l ™ ana & respéctivel;g S
! x
as: ASB = (aijB)' B is the pr x qs matrix
with i3 th block given by a;B for . :
— Ci=1,2)\.p, i=1,2...q. o ' (2.76)
| Iﬁtportan‘t relationships bétween the Kronecker;' product and 4 .
“\ne Vee( . ) operator (A.1) aré given in Pukelsheim (1976) and ¥

Henderson and Searle (1979). These follow from the definition (2.76). .
v . . . Q'

~ _For any matricés A,B,C for which the products’

are defined:

a).Ve‘c'(ABC) = (C'® A)Vec(B) o (2.77)
b) tr(aB) = Vec'(A')Vec(B) | : | T (2.78)
c)r For any \zectoré x and y, |
veclxy') = y®x | a - (2.79)

Hence Y = Vec((y - XB) (y_ - 2{"\ « -

0
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and E(y) = Vec(E(y - X8)(y - X8)")

= Vec(V(9))

q ' ~ - - .
= I 0,Vec(V,) = X0 (2.80)
=17 « |
Where: -
32 e e 2 >
X —‘(Vec(Vl),Yec(Vz)...Vec(Vq)? 1? n” x q.

- and Cov(i) = Cov(Vec(y - XE)(x_—‘XE)') =F, (2.81)

F is the. n%.x n2 ﬁatrix of fourth order ﬁoments for the vector of

- L . random vaxiables~f£x;—‘x§), with-ordering defined by the Vec( -;f’* - e
operator. S ' . ) o , g

‘ T@e dérived model is therefore: ‘ o o |

4 g=X4e | ' (2.82)

~

2

e witn E(e) =0 and Cov(y) = F.

Two difficulties—-with this derived model are that y is not

o

o a

T T observable since B is g%?@faily unknown, and F depends on both 8 ¢
and ‘g_ and is not usuallé of full rank. The sample space of y is
- 2 A

not the complete space

&}‘%
2.6.2. The Dispersion-Mean Correspondence. .

-
The advantage of the derived model is that the parameters of

= "2 - .
interest are now the loSE;ion parameters. Pukelsheim (1976) observed

that linear functions of y in the derived model correspond to

- quadratic functions of 'y in the original model (2.1). This follows

from isomorphism properties of the Vec( ) operator:
/ i , _

2 . : ;
- Clearly, to any n'-vector r there corresponds an n x n matrix R

]

such that Vec(R) = r. Vec(R') contains the same elements as r




'n x n, zero except that the i,j th block has a 1 in its j,i th position.

but in a ‘different order. Henderson and Searle (1979) define the n2 x n2

Vec~-permutation matrix I ( by the relationship:

n,n)

r = Vec(R) = I Vec(R') . (2.83)
= , (n,n) ‘

I(n n) has n2 blocks arranged 4in an n x n array with each block being
r .

Some properties of the Vec-permutation matrix given by

Henderson and Searle. (1979) are:

=1, - (2.84)

2) Ten,m ¥ (n,n) |
o b) I(n fﬁ,):Ve,c(A)m = Vec(n) . .when A is s‘ymetric_ (2.8,5,:);,,‘ o
c) Iv(n,n) (A @ B) = (B ® A)I(n,n) for any A and B. (2.86) »

With these results it is easy to demonstrate the correspondence

between linear functions in y and quadratic functions in (y - XB).

Pukelsheim calls this the dispersion mean correspondence.

With R and x as in (2.83), - .=
TOT T T emanoting Ehat TamiTy o
r'y = Vec'(R)y = Vec'((1/2)R)y + Vec'((1/2)R")1 y -
I . - (n,n) -
= Vec' ((1/2) (R + R'))y = tr(aly - X8) (y - XB)") o
_=(y - XB)'A(y - XB) v (2.87)
where: A= (1/2)(R + R') 1is symmetric.
2.6.3 £ Derived Model for Invariant Quadratic Estimation.

-iAiﬁiEvice frequently employed to reduce the effect of nuisance

parameters is to restrict attention to estimating functions which are

invariant to transformations of the nuisance parameters.

In model (2.1) 'Ny_, the projection of the response onto -

the orthogonal compliment of R(X) is invariant to translations in 8.

Hence Ny = N(y - XB) for B € QB since NX = 0. N



~

If we define Iy by:

£N=NX®N1=N(y_'~x§)®N(y__Fx§)=N®N§_ (72.v88)
then E(XN) = N3N Xg = XN_B_ ) _ | (2.*89) :
whe;e | XN = (Vec(NVlN),Vec(NVzN?,..Vec(NVqN)) using (2.77),
and COV(XN) = (N®N) F (NQRN) =F (2.90)

N
The derived model for invariant quadratic estimation is:

4

Yy = X2 Fey o (2.91)
with Eley) = 0 , ‘
and CbV(xN) = Fy -

In this derived model linear esti%tion corresponds to invariant quadratic

estimation in the original model. In this case the response Yy is

observable since it does not depend on 8.

2.6.4. A Derived Model for Mean and Dispersion.

Kleffe (1978) considers simultaneous estimation of £ and §
. ~* -
in a model derived from (2.1) by defining y
~% ‘ o . '
Yy = [y_@y_] ' : ) (2.92)
Y

X.®Y_ X®X§+X§®E+§_®X +3®§_-

xox o) (8] + (x) o | (2.93)
0o x| 0

where B= B®B and X is as in (2.80)

' ~ %
hence CE(Y)
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2.6.5, Covariance Structures in Derived Models.

A major difficulty with linear estimators in the derived -

models is that their distributions depend on the matrices F and Fo
(2.81), (2.90) of fourth order moments. As previously observed,
these matrices depend on the unknown parameters and may not have full

rank.
The most géneral model for which explicit forms are
available, is the structured vgriance component model»(2.16), with
assump#éons of independence hetween«aﬁd:within,randam«cempenents;:asf—ff: : —
we;} as Ehe‘assumptions of finite fourth order moments. qukeléheim
(19775, Gnéﬁk Xlonecki and Zmysloﬁy (1977), Drygas (1977) and Henderson
énd Searle (1979), giVe forms for this general covariance.
For normal models, the symmetry and kurtosis properties

simplify the structure considerably.

If y ~ N(O,D) where D = diag (61 8',..6h) T

2

then . oz = vec(le) =y®y " Wishart (1,D)

and j:fE(é) = vec (D)

B

With the facL that,  for norhal_variables,
i Cov(xixd, zkxm) = Cov(zizk)Cov(zjzm) + Cov(zixm)Cov(zjik)

it is'éasy to check that:

v

Cov(z) = (D@D)(1 2 + I ) ‘ (2.94)

(n,n)
where I(ﬁ~5"is;the*vec—peimutation*matrixi‘f2783ff‘*""' : .
r

0
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For y v N(XB,V) with V p.d.,
we can find an orthogonal matrix 2 such that Z'vz = D,
where D is a diagonal matrix. Then,

z'(y - XB) v N(O,D).
1f z=2'(y - XB) ®2'(y - XB),
we have that: N

Cov(z) = (D®D) (I + I(n,n){ )
and y=(-xB) ® (y - XB) = (2 ® 2)z.
Hence, using (2.86),

Cov(y}) = (2®2) (D®D) (I +'1(n ny) (222

= -+ 2.9
(Vv®Vv) (I I(n,n)) ( 5)

Further, since XN = (N ® N)y, we have,

Cov(zN) = (NVN ® NVN) (1 + I(n,n))' (%.?6)
2.7. Example Data Sets from Classification Models.
2.7.1.- Data Set 1. Data from a Cattle Breeding Experiment.

As an example of data which is commonly analysed according to

unbalanced classification models, we consider data on eight variables,

measured on 208 calves during a cattle breeding experiment. The variates

are described in Table (2.1). The classifying fattors were:

a) Sex of calf © SEX
b) Place of birth , SITE
¢) Breed of gire. - SBRb
d) Breed of dam . DBRD
e) Sire ) SIRE




Table (2.1): Data Vax%ables for Data Set 1.

VARIABLE -~ NAME STD. ERROR
Mass at birth (kg) _ MASB - 32.587 . 4.294
Height at birth (mm) ﬁ':AB 686.89 31.304
Depth at birth (mm) DPTB  421.82  28.482
Length at birth (mm) N - LENB 486.20‘7f7 36;297
Height at wganipg‘kmﬁ) : HTAWV 1041;8’ - 41.317
. li;eptil at weaning (). ‘DPTW 424.12 1 40.921 ' . )
Length at w_gla.al;i’ng (mm) LENW ‘54_:. 87 38.486
Mass at weaning (kg) ‘ MASW iésié; ‘26'320~
e

The model is described in the following table:

Table'(2.2) Classification Model for Data Set 1.

AR

EFFECT DISTRIBUTION  DEGREES OF FREEDOM
§ MEAN - Fixea 1 !
} SEX o Fixed 1
SITE oo  Fixed 1
? SBRD . Fixed 1
SITE X SBRD . Fixed 1 ’
DBRD Fixed 1 L w
I SITE X DBRD | 7 Fixed -1
— SBRD X DBRD 2 Pixed e R —
SIRE (IN SITE X SBRD) Random 11 -
SIRE X DBRD - Random ) 22 w T
- & RESIDUAL ' Random - 208 )
= ) L
|




SIRE was nested within' SITE X SBRD combinations. The distribution of

-

observations throughout the cells was:

Table (2.3) Number of Observations in Design Cells for Data Set 1.
LEVEL OF:
S S s D ; ,
E I B B LEVEL OF SIRE TOTALS
X T R R - ,
E D D 40 61. 64 67 34 38 44 23 42 9 27
11 11 5 5.3 3 16
1112 7 2 .6 3 ' o \:)’ 18
11 2 1 ’ 5 3 4 ' o2
1-1 2 2 4 3 4 11
1 2 11 8 4 12
1 2 1 2 7 57 12
1 2 2 1 9 4 13
1 2 2 2 3 5 8
21 11 5 5 7 8 25
2 112 4 9 4 7 24
21 2 1 3 5 14
2 1 2 2 4 4 7 . 15
2 2 1 1 2 3
2 2 1 2 4 2 6
2 2 2 1 ’ 2 4 6
2 2 2 2 5 6 11
Totals 21 21 20 21 16 16 20 21 14 19 19 208




2.7.2. Data Set 2. Data Generated to Foiiow the Model for the
’ v Cattle Breeding Data. -
' As a second ekample, ten variates were generated from ﬁhe
model gssumed for ﬁhe cattle breeding Aata, described in 2.7.1. The
generatéé data had the same number of observations in the cells of the

design as the'actual data. (Table (2.3)).

The parameter values used to generate the data are given in

3 >

-~ o

the following table:

Table (2.4) Parameter Values for Generated Data, Following the Model

for the Cattle Breeding Data.

EFFECT VALUE . DISTRIBUTION
MEAN ‘ 10.0 - FIXED
SEX - ‘ | -2.0 ' FIXED

 SITE , 3.0 . ’ FIXED
SBRD ' 5.0 ' FIXED
SITE ‘X SBRD 1.0 - . FIXED
DBRD 5.0 . - FIXED
SITE X DBRD ' 1.0 - FIXED
SBRD X DBRD 4.0 " FIXED
SIRE . 11 RANDOM LEVELS N(0, 10)
'SIRE X DBRD 22 .RANDOM LEVELS N(O, 3)
RESIDUAL 208 RANDOM LEVELS N(0, 8)

The sample variances for the random values generated for each

B - - a

variable are given in the following table:
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Table (2.5): Sample Variances of Generated Random Effect Values

for Data Set 2.

-

VARIABLE SAMPLE VARIANCE FOR COMPONENT:
SIRE | SIRE X DBRD | RESIDUAL‘
1 12.778 3.294 7.862 {\ )
2 - 7.976 2.759 ~ 9.663 5
3 :  13.984 1.776 8.959
4 - 11.786 = 0.750 8.911
5 611 1.994 8.326
6 7.884 1.772 8.504
7 | 8.665 3.781 7.194
g8 16.188 2.410 7.813
9 5.626 2797 8.211
10 ' 12.795 | 4.194 7.566
2.7.3. Data Set 3. A Generated Example. 1

A small and extremely unbalanced data set of 29 observations 3
was generated for ten variables. A three factor mixed effect

classification model was used. The model and parameter values are given

in Table (2.6). fThe distribution of observations over the cells of

the design is given in Table (2.7) and the sample variances of the

random values generated for each variable are given in Table (278). ]
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Table (2.6): Model and Parameter Values for Generation of Data Set 3.

EFFECT DEGREES OF FREEDOM
' OR NUMBER OF VALUES

DISTRIBUTION

MEAN 1
¥ 2
R1 3
F X R1 _ 9
R2 (NESTED 6

IN F) -

R1 X R2 14

RESIDUAL - 29

FIXED WITH VALUE 10.0

FIXED WITH VALUES 5.0 and —7.6
RANDOM "V N (0, 30)

RANDOM " N(0,10)

RANDOM N(0,3)

RANDOM " N (0, 6)

RANDOM " N(0,12)

Table (2.7): Number of Observations in Design Cells for Data Set 3.

u

FACTOR F
-
1 2 3 o
FACTOR R2 12 1 2 1 2
1 3 2 2 o | 2 3 ,
FACTOR Rl 2 1 0 1 3 1 3
3 1 3 0o 2 2 0




‘*“'ﬁ“‘r"' .

]

- . 41
Table (2.8): Sample Variances of Generated Rapdom Effect Values
for Data Set 3 | )

VARIABLE SAMPLE VARIANCE FOR COMPONENT: SR

g R1 R2 . F X R1 Rl X R2 RESIDUAL

1 14.457 8.328 2.486 7.493 © 12.762
2 8.477 8.002 6.871 4.249 . 11.055
3 44.477  15.396 3.054 5.103 15.568
4 8.114  3.546  3.349 3.796  13.095
5 0.551  12.443  1.454 2.118 14.655
6 87.042 .  16.146 1.208 1 9.416 9.309
7 14.120  14.272  1.951 5.445 | 8.911
. 8 20.921 6.564 1.980 8.268 . 14.587
9 28.4527  ‘i1;548 1.880 5.499 ' g.958
10 19.235 4.562 s.ilo o 5.353 14.158




'CHAPTER 3 S
) —a . :

Estimation Using‘éuadratic Forms Based on

‘the Structure of the Model

Many methods of variance component estimation are
~based on the observation that the expectation of the quadratic
forms in the response variables are,lipear»functionsigf the = =

o ‘ variance .components. The fact that they are also quadratic
f functions of the location parameters, is one majqrisource.of

»

difficulty. Methods based:on this observation involve
i ‘ computing quadratic forms and equating them to their

expectations to produce a set of equations in the unknown

parameters.

In classification models, the factorial data

structure provides intuitively and computationally appealing /\\k
§ ' quadratic forms as the sums 6f’5455fé§'(ééé)'sné”éaﬁi&" 7 7
f .
: . ™~ , :
: compute for a fixed effect analysis of wvariance (ANOVA). .
A second set of possible quadratic forms is the~
set of reductions in residual SS, due to fitting groups of
parameters in different orders. These are the 5Ss for the
' method of fitting constants (Searle, (1971) p 246) .

These methods developed for classification models

are extendable to variance component models having a

structured random component. The computations are, however,

more difficult.

The first attempts at estimation were for

balanced models. In this case it is well known fhat the

|
|
L



ANOVA - and fitfing cbnstéhts Sszare_identical.‘ Furthermbre,
in this case‘manf desirablg propértiesrresult whén.
N\funbiésédnéss.is the oﬁly~criterion of estimation.
Thislrelative success led researchers, notably
A Hendefson’(1953), t6 tfy ﬁo use the undemanqing uPPiaSedneSS'
e criterion'withJOneforwothefiofvthe*likelyisets of -quadratic- - -
forms for unbal%nced models. ‘Thermost outstanding-featureé

3 . -

of the resulting estimators are their relative computational

- simplicity, their widespread ﬁse‘and their lack of known

desirable properties.

3.1. Balanced Variance Component Models.
The balanced variance cémponent model (2.58) has

the form:

] y = X + & . (,3.1)
with
_ 7 o
E(e) = 0, Cov(y) = V(w) = Zw,Q. (3.2)
where: Qi’ i=l,2...§ are khown'n X n symmetric and
[‘ - idempotént matrices such that Qin = 0, i # 3.
and R(X) is invariant to Qiy i=1,2...q.

i

Interest generally centers on some independent

-—set—of linear combinations of the parameters, A = Rlﬂ and

w is constrained so that 6 >0, V(w) is p.d. and B,w = 0
o 4

—_—

for some linear combinations indépendent of those in Bl'

(3.3)
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a

Quadratic Porms Based on the Structure of the Medel.

The model (3.1)-(3.2) suggests a set ofkquaaratic
-~ : .

forms%v

»

£'e.¥, i=1,2,..q . | (A.4)
These are also SSs since the symﬁe;ryfand idempotency of the

o Qi impliesﬁthatLtheY*are'n:n;a;V'Thg;éxpevtatfons~6f*these“*~ﬂ““*m““A;v
SSs does however depénd on the fixéd‘effect parametefsw

*

One intuitive approach to avoiding this complication is to.—~

consider quaafégzcvszﬁsiiﬂrfﬂgrbrojéctiéﬁ of the response
onto the orthogonal complement of R(X):
Y'NQ.Ny = y'Q.y -~ y'PQ Py - S (3.5)

where: N =1I-P, P=X(X'x)x' ‘ (3.6)

The expectation of any quadratic form is giVen by:
CE(y'Ay) = tr(aCov(y)) + E(y)'A E(y) _ .. .. .
(Graybill 1976 p 139). '
For models with the features of (2.1) and (2.2) this becomes:
' = Ty :
E(y'ay) Zeitr(AYi) + B'X'AXB. ‘3-7£Q§
or for balanced models: . -
A< = o 1y ' -
E(y'ay) Zmitr(AQi).+ B'X'AXB o (3.?) |
Using (3.8) and (3.5) together with the properfies

of Qi' and the fact that X'N = 0, we obtain:

e E(y'NQ.My) = w tr(¥Q.)

= w.rank (NQ.) . _(3.9)
i I R _
since NQi is idembotent'and NQiNQ3 = 0 for i#j.

Hence an unbiased estimate of is 4 Wwhich has components: ~
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i | ' ' .
&, = (z'NQiNz)/rank(NQi) - (3.10) . -
.and an unbiased estimate of 0 is:
3.1.2. Distributional Propefties of the Quadratic Forms. 

If we include the Normal distribution assumptions

in the balanced variance component model, we can appeal to

N

the following results to obtain some distributional properties = |

®

of the quédra;ic forms (3.4) and (3.5).
For randomivariables y distributed N(E,V),
with V/p.d.l the quadratic forms y'Ay and y'By with A and B
'symmetric have the following propertigs:
 a) y'aAy _ X?'(rank(a),u'Au/2) if and only if
AV is idempotent. (Searle 197i,p 57)r,, ,¢3.i2y
b) Var(y'Ay) = 2tr (AVAV) + 4p'AVAp ‘ft%Ej(3.l3) |
(Searle 1971 p 57) ‘ | »
;:) _¢) Cov(y'Ay,y'By) = 2tr (AVBV) + 4H'AVB1 (3.14)
' (By expanding the joint momeht_generating function)
d) y'Ay and X'Bl are independent if and only if
AVB (or equivalently BVA) 1is ie;o (Séaglé’i97l P 59)‘

(3.15)

T T T e CQV(EszzTK2£”= 2b"VAu (Searle 1971 p 56)

P i » (3
a E AN

-— 16)

For the quadratic forms (3.4) and (3.5);we obtain:
B, . .

(1/w)y'Q:y & XU'(rank(Q),(1/2)8'X'Q. X8

(3.17)




@

and, - ("l/wi)‘y_"NQiNy_NX2(rank(NQi)) ey

Thi's follows“g; considering the transformed response:

z = (1//51)1 which has Cov(z) = (1/wi)V(g) and

z'Qhz = (1/0,)y'Q,¥ ©(3.19)

- 1

' : = " \
and z NQiqi (1/w,)y NQ. Ny 7 (3.20)
~Also QiCov(EyA;MQiu and NQiNCov(g) = NQi and both are
.idempotent so (3.17) and (3.18) fo??&w from (3.12).

Furthermore, for i#j, Qin = 0 so that QiV(Q)Qj

‘and - NQiNV(Q)NQjﬁwarewéersj§;Bﬂ4(2.64); Héﬁégrif wé igﬁoré

the constraipts on Qw (3.3), we have from (3.15) that the

sets (3.4) and (3.5) contain independent Chi-square random
variables. \

From (3.13) or properties of the central Chi- 3
- square distribution, the sampling variances of mi (3.10)

~ S

-2 T o
are: . 2wirénk(NQi)

It’is thus possible to obtain the sampling variances of the

~

estimates 6 (3.11) of the parameters of interest. Hdwever,

the compponents of § are not indépendent."Graybill_(1576)
gives examples of approximate confidence intervals and

tests for the components.

3:1:3 Uniform Minimum Variance Unbiased Estimators.

~ Seely (1971) shows that the statistics y'Q.y,
1%1,2..f§, and B = (x'X)"x'x are jointly compleﬁe and
sufficient for the normal balanced variance component model.

This follows by considering the density of the response in




the form (2.74) and writing,

I(1/w)y'NQ Ny = Z(1/w )y'Q.¥ - Z(l/wi5x'PQiPx
i i . i ' B

and : ' » (3.21)
A 2 _ Tyt -1 - ‘v ' -l
=g - By ()~ B'X'V(w) "XB - 2B'X'V{n) "X§
+ Q'XJV(Q)’lxg (3.22)
. "Wy -1,.7 '
put . B'X'V(w) TXB = f(l/wi)x PQiPX

Hence the density can be written as:

| q o |
h(B,w)expiZ(1/20,)y'Q.y + B'X'V(u) X8}  (3.23)
- - i=1 -
" where: e » R —— e -

n/2

hg,w) = (2m) 7/ %aet(vw)  2exp (- (1/2)8 x v (0 T Tx8)

(3f24)

If the model is re—parametrized via the transformations:

———

* K3 ‘ - o
w; = (1/20)) and B = X'V(a) X8 (3.25)
then the transformed parameter space contains an open

subset provided quﬂ'*has a non void open Set.’

B
In this case @8 and X'Qil re jointly complete and
sufficient according to & reéult in Lehmann (1959) p 132.

~ A

The estimators w and 6 (3.10) and (3.11)
are uniformly minimun variance estimators amonéét all
'unbiased estimators (UMVUE), since they are functions of

the complete and sufficient statistics.

3.1.4. Negative Estimates of Varjiance Components.

The distributions of the estimators w, (3.10) -

-~

are derived without regard for the constraint§y23.3)



= 48 - L
' ?n the parameter space. There is consequently a positive
probability that the ui will violate the constraints and

"lead to estimates 8 = Blg which'have'negative'components.

The prinCiple of unbi?sedness and com liaqce with
the constraints appear to be incompatible. (é;:Psolution to
the problem ié to truncate the estimators at zero, but then
Vall propertieS'of the sampling distribution of the estimators

“are lost. Th;re is also the question of whether Ei change
the model and pool guadratie forms when qap§££aim£ viol;tions s S

occur. !

Klotz, Milton and Zacks (1969) .compare the unbiased

Y

estimators‘to non-negative estimators in the balanced two-
component model. Using squared error loss, they achieve

considerable improvement with truncation-type estimators.

ey v

- - .
3.2. ANOVA Quadratic Forms for Classification Models.

In mixed and random effect classification models
(2.24), there is'bne set of quadratic forms which. has
considerable appeal for use in variénce compoﬁent estimation.
These are the factorial effect SSs computed in the fixed
effect analysis of vafianée. They are easy to compute and»

in the balanced case, have well~known expectations and -

- distributions.

The expectati are linear functions of the
variance components, plus quadratic. functions of the fixed
: : » : .

effect parameters. It is the appearance of the fixed effect i,




paFameters in_the-expééf#tion of the S8Ss which causes
‘difficulty and limits the estimation of variance components
by this method. The method is kn;wn as the ANOVA method. .-
| We conéider some‘géneral aspects of\;he methdd
and then consider special caseé and procedu;es_for _ &
eliminating the influence of the fixed effects.oﬁ the S ;
variance component éstimatoré. With balanced classification
modeis, the invariance of the fixed effect design matfices
to the coefficient matrices of ﬁhe covariance.facilitates .
the remova14§f the fixed effect par#heters 1eading to the
estimators of 3.1. Henderson (1953)'exteﬁded the technique —
td'some cases of unbalanced modéls,kénd Searle-(1968) and
(1971; reviewed and extended the procedures.
' §
We consider the classificatioh modél (2.24) Qithf o ' {

basic structures:

¥ = x181+’/x72g2 +...+xr_[3_r + Ulll +""‘/Uq—1!q-1+ e
(3.26)
or Y = XB + UV + e o L (3.27)

where:

Xi, i=1,2...r and Uj' j = 1,2...9g~1 are the

effect desigh matrices.

Ei i=2 ,3...r are the fixed effect parameters

j=1,2...q9-1 aré the:fandom efféct comdeentsj
e 1is the residual error effect.

Bl is the mean effect and xl = 1.
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3.2.1. The ANOVA Quadratic Forms.

In cl?ssification models the response:vectof cah be
pé;titioned into cells according to subsets of"ﬁhe facférs
correspoﬁding to each effect in(the model. The SSs of the cell
meahs of these sub—ciaSSifications are the ;Ss of the |
orthogonai prdjection of the_responsé vector ohto‘the column
space of each effeét desigﬁ ﬁatiix. The ANOVAVSSs ére iiﬁear

contrasts amongst these sub-classification SSs. The contrasts.

>

are linear combinations with coefficients summing to zero.

In balanced models the ANOVA SSs correspond to repeated
projections onto subspaces of lower dimension.

In the model (3.26) we can define the set of
projection operators:
. | .
H = = ] ]
{Pk. For k=1,2...r P = X (X!X ) Xt
and for j=1,2...q let k=j+r - C s

~1 L
= ' ' )
and Pk Uj(UjUj) Uj here Uq= In} (3.28)

The sub-classification or projection SS associated with the

k th effect is then: = Y'PY (3.29)

and we define the vector of these SSs as: t. (3.30)

Several properties of Pk and t, , k=1,2..r+q

follow from the properties of design matrices, 2.4.1:

a) Since X'X,= diag(n,
J ] 1

, i=1,2...p.),(2.32), (l
' J
“we see that the projection S8s are simply SSs o .

of - the—sub-classification totals weighted —
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according to the number of observations ih each cell.

) (3.31)
= N = '
b) Pr+q I so that tr+q 'y .(3.32)
c) tr(Pk) = rank(Pk) = Pi or qi, the column size
of the effect design matrix. _ (3.33).

i v‘;),__’v’l - , ) _ - .

a) lqu 1l' and pkl ‘ 1. . (3.34)

. - . 1'p = t [] ‘=',. ' " ]
since, for k=1,2 r, 1P lkakPk lpkxk lﬂ
by (2.3 . Similarly for k=r+l,r+2...r+q, using
u; and 2.31). ' .

z e) 1'P

kl = n for k=1,2...r+q. ' (3.35)

« -
‘

The ANOVA SSs for the random effects are given by
d linearly independent contrasts amongst the r+g projection
SSs. We define r to be the g-vector of ANOVA SSs corresponding
to the iindom effects. Then: 1 = Rt (3.36)

i The matrix R of contrasts has some impo}tané
{fopglties which can. be exploited to estimate the variance
coméonents.

a) R isaq x r+g with rank q. (3.37)

The independence of the rows of R follows from the

relationship between the effects of any factorial

élassification. They either inﬁdlve disjoint
h subsets of the factors and hence their “ANOVA SSs
involve different components of t, or there is a
‘? distinct*hierarchy;amonggtfthe—ef%ee%sTwhighef—‘f

order effects invaolving more factors than lower

¥

!
. E

order effects. Thus the ANOVA SSs of the higher

order effects involve more components of t.
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b) Rl = 0 since the }oys of R are contrasts. (3.38)
c) The last column of R is zefo,’except for the
(q, r+q) th element, which is 1. _ (3.39)
fhis follows because the only ANOVA SS involving
VARA the fast component of t, is the-
residual or error SS. This SS is the last
component of r.

Exp?cted Values and Estimation Egquations.

The Expectation of.£, E(r) is:
E(x) = RE(f) (3.40) Q

From (3.7),

where:

and

i

E(t) = S8 + a(B) ‘ (3.41)
S is g+rxgqg  -with - k,;j th element

iven b tr(P,U.U') = tr(U'P
9 Y (P 0595 ik

U.) (3.42)
B J .
alg) is a g+r-veetor of quadratic

functions of the fixed effect parameters.

The k th element is:

lé'l X! P X, B, = B" X' P Af (3.43)

2

i R

Hence the expectation of r is:

where:

B(x) = H8 + Raff) (3.44)
HA = RS is gxq.

s

g



The principle of using E(r) to get unbiased
estimates of § . is to find model conditions oxr transformations,
which make the term Ré(g) vanish,'leaving estimation'
equations for tﬁe restricted or transformed model:

. ~ : 1

r = HAG- ' (3.45)

6ne feature of (3.44) common to all classification
models is that the last egquation is automatically free o{)
the fixed effects and all but one of the variance components.
This equation therefore, always provides an unbiased estimate
of the residual effect component. This is discussed in
section 3.2.4. .

s The rank of ﬁhe matrix HA is important for
coﬁsistency of equations (3.45). This is not discussed in the
literature and seems to cause no problem in practice. We ' 3
A

assume H, to have full rank. According to Hartley, Rao and - ]

LaMotte (1878), this will follow provided the matrices

Ujﬂf are independent and there is no confounding of fixed

and random effects. This is related to identifiability (2.3).
Conditions which lead to the elimination of the
fixed effect parameters in (3;44), Ri(g) ="Q, are invariance

of the column spaces of-the fixed effect design matrices to

L3

Vj = UjU3 and hence to Py for k=r+l,...q. This leads to

identities amongst the elements of a(B) and thence to zero

i -

elements of RE(E) because of the contrast propefty (3.§§;W
of the rows of R. Because of this, restricted models which

possess this invariance or transformations which produce it,
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are used to obtain estimating equations. like (3.45).
Examples afe discusséd in sections 3.3.6, 3.3.7 ahd,3.3.8.
‘Two aspects of equations like (3.45) which make
them desirable estimating equations are computational
simplicity and efficiency, sect?fﬁ 3.2.3, and some
distributional properties fo; the estimators based’on them,

section 3.2.5. The transformations considered to make the

model amenable, generally affect both these properties and

one objective is to minimise this effect.

3.2.3. Computational Procedure - Synthesis.

The major advantage of using the ANOVA SSs and
equatién (3.45) to estimate g is computational ease. The
SSs are easily computed from sub—ciassification tables.

Hartley (1967), observed that the same |
computational device was available for calculating elements
of S and hence-of HA for any particular model. lFrom (3.42)

4

we can write the k,j th element of S as:

q
3
] - - '
tr(UijUj) . EjiPkEji (3.48)
i=1
where Eji is the i1 th column of Uj.

The components of the sum have exactly the same form as

compbnentsiffﬁ te fg = x]ka, and hence can be calculated using

e

“the same sub—cI3551ticati0ﬁ§'oﬁ”)ggz‘fur484337ﬂr y for—t-
That is, treat Eji as a data vector and calculate the model
ANOVA.; This method is known as the Method of Synthesis,



\n
(%)

Hartley (1967), Rao, J.N.K. (1968).
Computations for the last row and column of S
are made trivial when Uq = In' which is often the case.

(3.47)

5

3.2.4.. The Residual Effect Variance Component.
" For all classification models, the last equation

of (3.44) is free of all parameters in g and .E except for

"8 . This is because rq is the residual SS, after fitting

éll the fixed effect parameters 8, and all the random

effects except the last, that is v_, v_...v
. -1" =2 —q-1"

! Using the model equation in the form (3.27)
rq = y'Ny | - {3.48)
where »
No= (I - (X,0) ((X,0)'(X,0)) T (X,0)')  (3.49)
N is idempotent, symmetric and has the property that

= ! = = ' = = § = -
in XiN NUj UjN 0, for 1i=1,2...r, j=1,2...9-1.

Hence with (3.7), the last equation of (3.44) is:

. q . r .
E(r ) = I 8, tr(NU,U!) + & BIX!NX.B.
q j=l J J ] i=l i i 1—1
= 8 tr(N) = 86 _ rank (N) - (3.50)
B ) q ~
rank (N) = n~s, where s is the numbgrﬂof”

independent columns in (X,U). This is usually referred to

as the degrees of free%Qm for the model.

Hence an unpiased estimate of Gq is
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provided by: ea = rq/(nls) (3.51)

If the normality assumptions are included in the model (2.20),'
the properties of N, together with (3.12), mean that

2
Oy " Xpog (847 (n=s)) (3.52)

because r =6 _y' (N/eq)z

S SU." S .
and (N/Qq)v(g) = N which is idempotent.
. It follows froﬁ {(3.13), ﬁhat'the variance of éq is:
== . D bafﬁig= zﬁ?ﬁﬁfﬁy e ISy

Further, because the matrices for the guadratic forms

z‘rl....rq_1 are linear combinations of Pl...Pr+q_l‘(3.30),

(3.31) and (3.36).

and
NV(_(-)_)Pk = NP, = 0 k=1,2...r+g-1

A

we have with (3.15) that 8, is distributed independently

ot

A

of 0

3, j=1,2...9-1 whenever estimation equations (3.45)

.

are possible. ~(3.54)

5
e B e e

3.2.5. Distributional Properties of ANOVA Estimators.
! : Assuming that the model is such that the fixed

effect parameters vanish from the expectation equations (3.44)

—f R ' we can make some observations about the distribution of the

i gstimators obtained from (3.45) when we include therNormal

Distribution‘assumptions in the model.

-1 -1 - .
H, L= Hy Rt ‘ (3.55)

8

e
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Hence:

Cov(g) = H;l R Cov(t) R'Hgl‘ (3.56)

Elements in Cev(t) are obtained from. (3.13) and (3.14).
Specifically the k,m th element is given by:

2 tr(P, V()P _V(8)) + 4 B'X'P,V(B)P XB  (3.57)

Hence wercgh write Cov(E) as:
. ¥ )
Cov(t) = 2D(8) + 4A(B,8) (3.58)
where the kjgwggrelemep;s of thgg A are in'thé first and

~ea,
second terms of (3.57) respectively. . Thus the elements of

Cov(6) depend on the unknown parameters and are difficult to
compute; the Method of Synthesis (section 3.2.3) is only

available for some components in D(8). The terms in 8,

however, may vanish from Cov(8) under the same conditions

that make them vanish from (3.44). . . . . - L —

We have alréady noted, (3.53 and 3.54), that the
last row and column of Cov(é) are zero, excepf for the last
‘element, the variance of éq. Thié, together with thé fact

-that the last column of R is zero,’except for the last
element (3.39), means that not all of . D(6) need be
computed to obtain COv(é).

~

In addition, apart from Sq,’the distributional

form—of 8 —is unkmown, because the matrices of the gquadratic

fmesmproducing_wQi;f:efnntﬁinggenexai—idemgotent, as they

were in the case of the balanced models (3.17).

e e s b
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" The second term is constant for all k and m because i’rk =

U g U N RN o 2

3.2.6. ANOVA Quadratic Forms for Random Classification Models:

Henderson's Method I

Random Effect Classification Modéls have model

equation:

+ e  (3.59)

+ ‘..+Uq—l!q—l oo _

r o=+ Uy

The fixed effect design ﬁattix; iﬂié particﬁlarlyf;iméié,and

its column space is invariant to Vj = UjUi. Components

~ of af(g) in E(t) 6f4}3.491 ﬁgre-aIE nu?mfrdm (3;}4) and

hence vanish under the contrasts R to yield estimating
equations (3.45) free of the fixed effects.

Unbiased estimates of § are thereqfore:

S -1 ' : & =
8 =mHyr . (3.60)

Again, the last equation only involves eq and the solution

is the same as d&scussed in section 3.2.4. &=~ T T T
The distribution of elements in 8 are unknown,
even with the Normal Distribution assumptions, except for eq,

which is independent of other components (3.54), and

- 2

8 A X (Gq/(n - s)) (3.52).

q - n-s

For the Cov(8) we need Cov(t), which, using (3.57)

hés k,m th element: . -
- q q ) N 2 q \
2 X $6.9,.tr(U'P U, U!P U,.)+ 4p~ IO6,1'P U.U'P 1
=1 §=1t 3 3TkTiTiTmTg i= k33 m=

J=1
. (3.61)

I+

for k=1,2...9-1 (3.34). Hence the terms inwolving 'u vanish

under the contrasts -~ R--and using (3.56) and- (3.58): B
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;used for some terms 9:, Dfﬁ),‘Hértley (l967). The

'in the éxpectation of the ANOVA quadratic forms (3.44), makes

- B T B S 59
Cov(8) = 26-'R D(O)R'E.Y (3.62)
Where the k,m th element of D(8) is:
z ZO OJtr(U PkUlUleUJ) ’ (3.63)

i
The Method'okaynthesis, section 3.2;3,'can bé

U S el i R j R -
A

iqﬂependence of eq to other elements and the special form

of the last column of R, (3.39), can be used to reduce the

“size of the matrices im (3:63) (Searle (1 9Ty P 43I) e

-

However the computations are still formidable.

g |

3.2.7. Adjusting for bias in Mixed Effect Classification ,

Models.

£

The quadratic functions of fixed effect parameters

it difficult to obtain estimators of the variance components

which arefmtbiased by'thé'fixedreff%;tsrunless they can be . /
eliminated'froﬁ the equations. |

.One>approach'to ;cﬁieve this, is to transform thé
data,VSO thatrthe model does not depend on the.fixed effect
parametérs, or at least on those for which the column space

of the effect design matrix is not invariant to the covariance

matrix. The method is to provide some estimate of the fixed’

éffect parameters and then produce residuals, based on these
estimates. Tww approaches are available; estimate the fixed

parameters ignoring the random effects, or including the
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random effects as if they were fixed, but ignoring their
resulting estimatesiat the adjustment stage.
Searle (1968) gives a general method based on
’ -~ | i

ignoring the random effects and’estimating. the fixed effect

parameters apart from the mean effect.

. With t,heumodel“,wr»i;tAten_ ass. . S e e e -
. q _ -
Yy = 1w+ xB +i§lUizi B , . (3.64) \\j

Estimate 8 by X_l where "X is a generalized inverse of

[ — =

X then

- * . )
where x = 1 -3Xx'1, U= (I'-xx)u
and B vanishes because X- XX X= 0.
- . | £0, UU T ' .66
Now Cov(z) = ; UpUy : . (3.66)

method I can be used on the trénsforméd

Henderson's
.

response z. The SSs are formed using the -design model for y,
that is U; not u.. but the expectations must be taken with
the transformed model (3.65). Hence,

E(t) = S.8 + b)) (3.67)

ﬁ\h

where: t is the vector of sub-classification SSs, (3.30).

s has i,j th element ‘ ‘

B
* % . . 5 . l . ( 3. 68
8 Gk Lk Bt A A - (3.68)
‘ . -1 -1 , v
. = B ' ' = ' ) . .
and‘ Py | i(1'1) "1, Py Ui(UiUi) Ui ,

P
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also the 1 th element of E(u)'is:

'uz i'Pii i=1,2...q9+1 ° ’_ (3.69)
Therefore:
E(xr) = H8 + Rb(n) _ (3.70)
- ) v N .
with Hy = RSB; This is a set of linear equations in §

and uz,' which can be solved for both - 8§ and  p2. Searle

(1971) observes two diawbacks of the method as being non-

N

uniqueness of X , different inverses producing different

estimates, and computational difficulties because even with
the Metld of Synthesis , 3.2.3, for elements of Sz/(3.68),

* _ ,
columns of U, are required. These are obtained from Uj

by the same transformation as z from y. Also U; is no
longer I, so the simplifications (3.47) for the last row
and column of S are no longer avg;lgyie: |
While the non—u;iqueness is ﬁnfortunate, there
is at least one obvious'and, in some senses, optimal
candidate for X , that ‘is (X'X);X' which p?ovides the
least squares estimator of fB. This is invariant to chdice”
of (X'X) (Graybill (1976) p 32). Also, the mean effect

might as well be adjusted for as well as other fixed effects.

In this case, the method is to use the ANOVA SSs to~

estimate the variance_ components of the least squares =

residuals of the fixed effects.
Hartley, Rao and Lamotte (1978), suggest a method

based on these residuals, but using different quadratic forms; °
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the ﬁnweighted sub-classification - SSs, that is §Ss of
sub~classification totals igﬁoring’the'number of observationé
per cell. They produce some optimal propertieé, éuch as
.consistehcy, butvgrrive at the samé solufion as C.R. Rao (1971a)
(1971b) and (1972), who‘tackled'the'sometimes conflicting
aspects of invariance,éqifixed”effects and,qhgice of,quadratiq”

forms from didifferent point_of'view,;to’be discussed later.

Random Effects:- Henderson's Method Il

Heﬁderson (1953) proposed adjusting the data for

the fixed effect parameters to produce a model independent

of them, but wifhout ignoring the random effects or
producing the computational diffidult es associated with the
pfevious mgthdé;” Hénderson;”Searle ahwwééhaeffefr(iéﬁé) ;
4 show that the resﬁlting method ove?comes the non-uniquenegs
problem. However, it is only applicable to mixed effect
classifiqatién modei¥s, having no interaction or nesting
(vfetxeen fixéd and randomreffects,kexcept for the residual
~effecti Searle (1971) considers this a serious limitaFion.

The method is to produce an estimate of -Q in

(3.64), Ly such that

] a) XLUi = 0 for i=1,2...qgq-1 {(3.71)
b) XL1 is a constant vector : (3.72)
and c) X - XLX has identical rows. (3.73)

N
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"The model for = x’- XLy then becomes:

z
' ¢ x_ - q-1 *
z = u*l + L U,v, + U v (3.74)
- - . i—1 q9—q :
i=1
where:
. -
w1l =yl - XLl + (X-XLX)B
. *
and U = U - XLU = I-XL
- d q q

Now applying Henderson's method 1 to z, largely

overcomes the computational difficulties of the previous

method, since pnly one new U matrix need be é&alﬁatéd.

Therféstriction to models having no interaction
or nesting between fixed and rando@ effects, except thg
residual effect, ié»equivaient £o requiring:r

rank(XlU U ) -1

1-°Yg-1
o (3475)

... = +
1 qul) rank (X) ;ank;(U

or | R(X) 0N R(Ul;;;Uq:l) = R(1) ‘ =

where X is the fixed effect desiQn matrix excluding the mean

effect. Since .if this fails to hold, there are some

columns of Ul"’Uq—l’ say .U and a matrix M, such that

U = XM. So multiplying (X - XLX) on the right by M,
(X - XLX)M = U - XLU = U ' (3.76)

+

because XLU = 0 by (3.71).

Now X - XLX is required to have identical rows by (3.73) .

and hence - (X ~ XLX)M = U must have constant columns, but

not possible for columns of a design matrix, except

Fan efféct.




3.2.9. Procedure for Henderson's Method IT.

To produce a matrix L satisfgying (3.71)=a (3.73),

we re-~write the model (3.64) as:

y = 1lp + xaﬁa + xb§b1+ v v+ Ubib + e (3.78)

where fhe columns of X and elements of B, and columns;of

(U, /U,...U__;) and elements of ,22...zq_1 have been re-

2 g-1 %1

ordered and paritioned in such a way th&t:

o a) U, has full and maximum column rank  (3.79)
and b) (Xb;Ua) has full and maximum column rank,
(3.80)

Consequences of this are:

a) There exists K, such that Ub = UaK. (3.81)

For, otherwise U,_ would have columns independent of those of

b

U_ contradicting  (3.79). , o
' b) There exists vector pr such that up = 1

= | : ‘ - (3.82)

7 _For otherwise 1, whichAis in R(Ule...Uq_l)[ would not be

in R(Ua), tHEReby contradicting (3.79).

c) There exists matrix M and vecetor t, such

= Y
that X_ 1t' + X, M 4 (3.83)

Thisrfel%ewsvbecause——i—é—kng%u%%v&%%T—hencegbygfif&O)

1 Kgﬂixblg_§Q4L£+xBLﬁAhas_fui)ﬂinumngrankgandgiheicolumns of

X € R(l,xb) for otherwise rank(l,xax

a

bpa) > rank(l,xb) +

rank(Ua) = rank (X) + rapk(Ul,U2

...Uq_l) and we have restricted
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the model to ensure that this does not ocaur .

Next writing 2 for (XaX Uan), the matrix:

b
00 o o0
6 = [o Gl 12 of
0 0%t 0% o
where Gil‘clz XIX, XIU_ -1
G,y G,5|= |v %, ulul (3.84)

21 22

is a generalized inverse of Z'Z with partitioning conforming

to the partitioning of Z. Hence if we treat the random

effects as fixed, GzZ'y 1is an ugpég§edie§timq;e7o§”ﬁhgﬂeff§gg;r

parameters. The part of the estimate for the fixed parameters,

ga and éb is:

0o 0
' Y =L y = Ly (3.85)
G11%p * G12Y%| Ly | :

Consequences of this choice of G to provide L are:

a) Lle = I from (3.84) (3.86)
b) LU, = 0 from (3.84) - (3.87)
c) LlUb,= LanK = 0 from (3.81)&a48.87)ﬂjl.88)
d) L;1 =1L, Up =0 from (3.82)& (3.87) (3.89)
e) lea‘- Llli + lebM from (3.83)» ’ ‘
=M from (3.89) and (3.86) (3.90)

L of (3.85) satisfies conditions (3.71) &ad(3.73) since:

192 1%

————— from (3.87) and (3.88) - —

= o o -
a) Xu(U U) = X[L =0 (3.91)

—b) (X X )Ll =0 from (3.89) . o (3.92)
c) (xaxb) - (XaXb)L(XaXb) = (XaXb) - (XbLlXa,XbLle)

= (XaXb) —'(XBMng) from (3.84) and (3.90)
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= (1t',0) simce xa- XbM = 1t from (3.83)
and (1t',0) has identical rows. (3.93)

3.2.10. Invariance of Hendersons Method II to Choice

of Fixed Effect Estimators.

Searle (1968) and (1971) considered that this = -
method would produce different estimators of the vaf}apce

components for different choices of L. That this is not so C

observation rests on re-parameterizing the model (3.78) as:

Yy = (xb,ua)[iiJ + e (3.94)
2

ME; + Eb using (3.83)

where Y, =
= ' +
and Yo T R RE'B, Y ¥, * K¥p ysing (3.83), (3.82)

~and (3.81). -~ S

The linear functions y; and Y, of the parameters
are‘estimable because:

E(( (X, U (xb,ua))'lr(xb,ua). 'y) = (1].13) " (3.95)
Hence the samé linear functions of estimates of Eﬁ? E .
Vo !b_and 1 are invariant to the thoice of generalized
inverse for 2'Z used to solve the normal eé@atiohs.:

"(Searle (1971) p 181).

- Now if =z is the vector of residuals y - XLy

: v .
produced by using — L~ of (3-85), and z — those produced by —

*

using - L a second matrix satisfying (3.71) to (3.73), then:

* * * 3 96)3
z -z = xa(ga = Ea) +‘Xb(gb - Eb) ( 3.



67
‘ b b*
where: —a = Ly and —a = L*y v(3.97)
*
by by
7 - * = ' ~ b* ( - h* - Mb*) -
Hence, z z 1t (ga Ba) + xb(Mga+ Eb Eb Mga)‘
= ! - * = .
1t (ga ga) cl (3.98)
= ' - *
where c t (Ea ga). | ot

The second term of (3.98) vanishes because Mgé+ Eb is an

estimable function of parameter estimates and hence invariant
to the particular wstimates used.

Now the quadratic forms used in applying Hepdersbnfs

method I to Z or 5* have matrices P, of (3.29) which have the =

1

property that Pi£ = 1 and L'Pi= 1' (3.34).
z*¥'p z* = (z - cl)'P.(z - cl)
= 1% z = iz =
The ANOVA SSs used to estiﬁate the variance
contrasts of these SSs and hencé terms with

3.2.11. Computing the Coefficients of the

Hence,

(3.99)
components are

2 . :
c and c vanish.

Residual Effect

— Variance Component in Henderson's

Method II

The transformed model for z =y -

by (3.74) so that:

XLy is qiven

q-1 |
Cov(z) = L G.UiUi + 6 U*U*"* (3.100)
and B(t) = S0 + nu*?1 (3.101)
where t is,the,qtluyedtor of sub-classification §8s for -
model (3.74) with components ti?»z'P;z;~ where
- - B [ 1 ; hY
Po= 1(1'1)71, p.= u_(ulu ) u! P =.= I
1 ='==" =" "2 17171 "7 "g+l +"n
-1 )
T * *x ¢ * x !
(Note P_. . 7 ug vy vy ugY) (3.102)



- -~ . 8

Sc has i,j th element: tr(Pinvé) for i=1,2 ..q+l,

and j=1,2...9-1 and tr(PiU&U&') for i=1,2...q+l.

; . (3.103)
Also, E(x) = H_8 - (3.104)

where: L= RE;' with R being the q x g+l contrast matrix

such that r 1is the vector of random effect ANOVA

SSs. HC = Rsc is a g x q matrix. . (3.105)

The computations for t, r and all but the last

column of sc are-  identical to those for Henderson's/method I.

For the last column of Sc we have from (3.74) and (3.85):

| Uz = (I - XL) = (I - X, L) (3.106)
Hence, tr(PiU&U&') = tr(U&'PiU&)-f§r i=1,2...q+1

= tr(Pi) - 2tr(xbLlpi) + tr(?ixbLlLikg) (3.107)
However, L P = 0 fr;m (3.87)§nd(3.89) e e —(30108)
and LyL} = Gy XiLi + G, UL = Gy, (3.105)

from (3.85), (3.86) and (3.87).

-Hence, - tr(P.U*U*') = rank(P.) + tr(P.W) - (3.110)
‘ 1 qgq i’ i : :
i - -
where: rank(Pi) is the number of columns in the associated
design matrix ' - . (3.111)
. . ) = N - - . ) ‘ ’ N .‘
and W X, 61 1%p . (3.112)

W need only be computed once, and used in (3.110) for each

element, i=1,2...q+l. The simplification from (3.107) to

(3.110)7is a result of the particular choice of L (3.85).
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3.3 Reductions in Residuél SS for Variance Component Models

with Residual Exror -Henderson's Méthod III.

A second group of quadratic forﬁg motivated by the‘
model structure and eése pf,computation, are those represent-
ing reductions in fégidual. SS as difﬁerené“groups of the
model consténts, (f}xgd:gffegt parameters or random effect -
values), ére‘added éfter allvother constants have been
fitted. The idea stems from ﬁitting c?nftants methods for

‘unbalanced fixed effect models (Searle (IY7L) p 246 éf;i’fﬁcl'9'7*ff’ff” e
and is therefore sometimes known as the method of~fit;ingt

Constants.

The method overcomes the difficulty of bia§ thrduqh
fixed effecté byAthe:simple éxpedientrof'alwaQS fitting the
fixed effecf parameters first, so thgt»they:do hot.influence
the reduction iﬁ residualtwss} _This is'équiQaieht'téruéing
least squares residuals from the fixed éffect part of the
model to estimate the variéhce compdnents. This is sﬁggested
b§>Searie‘s (1971) general method of aajﬁsting for bias,

- section 3.2.7, and again by Hartley, Rao and LaMofte (1978},
wﬂo'uée unweighted sub-classification SSs on the residuals. .-
| The difficulty with this method 6f Fitting'Constanfs‘

is that there are generally more reduction SSs available

through fitting the constants in different orders, than are

needed to estimate the variance components. The order of
fitting does not affect balanced data because the reduction

‘SSs all become the ANOVA SSs, leading to the estimators of




A
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section 3.1. However, for unbalanced data different orders

of fitting produce different estimators.

3.3.1. Reduction SSs and their,Expeqtatidns. N

To examine a particular reduction SS we write a
StIthuggg;,variance components modélvwithérengualrerror——Qme~ﬂ~7*»W;

(2;23) in the form:

Y = 2;b) +.Z,b, + e * (3.113)
or Ty = 2b + e R o S
where:
R}
Zl = (X,0) i
' = ] v = []
by = (B'vyyg---54) (B'x
= ’ <
U (Ull’ U12' 'Uls) 0 = $< g-1
z, = (U

...U2t

i , - 42 217 Y22
*i : : E;' (v ot

—21
The residual effect e is assumed to have identity design

matrix, and Cov(e) = %In. Z, always contains the fixed

effect design méttix and  U is the collection of s,

Y

’ ' .
complete random effect design matrices for the effects to

be fitted first. (0 = s < g-1). Z2 comprises the random

effect design matrlces for the effects to be fitted last

-(other than the re51dual effect). Thg¢<§sultlnglgsskla,the

3 reduction in residual SS, due to fitting these effects

S

or for fitting é}wdétet b..

after those in 2 1

l’
We note that after both stages of fitting, the




~
=

model contains all the effects of the variancekcompohent

model. There 'is - a further restriction on the sets of effects

in 2, and Z

1 ] 9" This is, that the effects in 2

1

of higher order than those in 2 If this occurs, the

9°
reduction in residual SS is zero for that effect.(3.114).
One classification effect-is of higher order. than anotﬁenm

if the factors represented by the second are a subset of

those represented by the first effect.

7

may not be

Mo&éi'(5:113)7Wifﬁuéggﬁmpfisﬁé (2.267nﬁa§u56;3rianéé;

Cov(y) = Z C9v(£) Z' + GéIn 7 ) (3.115)
= U DlU' + zznzzé +'6q1n | (3;116)
whefe:
*
o Cov(b) = diag(Cov(B)= 0, Cov(v), Cov(b,))
: by, = Cov(y') = E(v Z'?”pr¥fg(qliEqLir,ﬂ,,;M
Vol i=1,2...8) ' ‘
and D2 = Cov(gz) = E(EQEE) = Diag(ezilqzi'
L i=1,2...t)
also E(b) = (E(B'), E(v'), E(b}))' = (B',0}0")"

(3.117)

~

When the model y = Z E'istfitted to the response vector by

1

least squares, the residual SS'is smaller- than the total

N

by,anﬁampun;?BLg])L,the $S _due to fitting the model,

where: R(b,) = y'%(z.'2,) 2. " (3.118)

[ > <

For the full model 'y = Z,b, + Z,b, the reduction is:
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. . _ - 72
: = ] V ] . ' - L} - l 7 B
R{byb,) Y'(z,2,)" ((2,2,1'(2,2,)) (Z2,2,)'y
= y'z(z'2z) z'y o : (3.119)
 and the reduction due to fitting '92 after 91 is definéd.to
be: , 7 _ ] N
‘ R(gl/gz) = 3(2132) _,R(El} - 7(3.;20) i
Taking .expectations over the, full model (3.113), "
‘ . we have, with (3.7)}‘ : ' !
A “ - » ‘v ’ R ‘ i g
e i 4::;fﬂEL&Q%%5)ﬁEgﬁtrLZizL&Léﬁim&{x)\ . ' _

+ E(b')z'z(2'2) 2'ZE(b)
=tr(z'z CO;(E)) + eq tr(z(z'z) " z") + B'x'xB
| (3.121)
where we have used (3.115), the cyclic property 6f trace, the.

property of generalized in&e;seS* AA A =jA, and (3.117).

] o B o

Similarly with expectation over the full model,

o - - - -
o L ] ] 1 ] h
E(R(b,)) = tx(2'Z,(2,2,) zlz(ch(g))f.
; ' T
+ eq (zlzl) ZI)
' 1o o o . ) ‘
| + E(b')2'2,1(2]2,) 2;Z E(b) - (3.122)
g But using: N . ‘
: . oo P
' T = ’ . ‘\
Zl(zlzl) lel ,Zl (Searle; (1971) p 20) | o
-
1 ‘ ] = "y t
Z Z;(lel)ZlZ [;lzl Z;Z2
- = : [ 1 [] [
N i ] Lzzzl ZZZl(ZlZl) ZlZ%
-2z -TFo o
e i T - . o —
o . A 3\ 0 2} N,z (3.123)
y .
: J

. = N - PR o B . R e e s i e



T SN 3
Where:}
= - v Tt B
N, =1 zl(zlzl)rrzlt '
‘Hence, '
. : ) - . )
) = b - ]
E(R(gl)) tr(2 ZCov(g)) tr(Zlez C?v(g2)) .
T ] - [ ] [ ] . 2 - :
+ B'X'XB E(b))2; N, Z, E(gz) - (3.124)
L¢<rfheTiééé iérﬁwiéuzégg, siﬂéeiré; cbmprises only randém;
effects, E(gz) = 0. ‘ S o o < e
o . Therefore, N -
E(R(gz‘/_lzl)) = E(R(b,; 132)‘) - E(R(b,;)) |
. v = [ ¥ _> v Y. .
. . - tr(ZZle2D2) + eq(rank(z) rank(Zl)) _ .
o o = f -t X - "
» ’ [ f=162i tr(IjJ?i N1U2i) f Gq(rank(z) ;ank(zl))

(3.125)

because tr(z(z'2) 2') = rank(2) .

RN ) ¢ . - — el e

Hence, the expected valbe of the reduction SS is a linear
function of the Qariancercompoﬁ?nts” relating to the
copstraints\fittéd last. . It does nof involve the fixed effects
6r the componeﬁts for cqnstants fitted first. With

taking -

1 27

judicious' partitionings of effects into b, and b
care with the restriction (3.114), we can produce a vecteor r of
réduétion ; - 8Ss, whose expectations provide' a set of

estimating equations for the variance components. Given the

'vector r partitidned into effects fitted first and last, we

,pérforﬁ‘a two-stage procedure:




is a modification of Gaussian Elimination; the Sweép

Operator, as defined by Goodnight (1978b).
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! a) Fit y =_zlgl*+ g.;and obtain
-rank (Zl), R(gl) and the residuals J
€y = ¥ = Zpby = Nyy o
b) Fit e = Z,b, + e and obtain
’rapk(ZlZZ),,R(gl 22)..
3.3.2. Computational Method - Henderson's Method III.
____ .There are seyeral'élgorithms available for
 producing the reduction SSs and the matrices required for
coefficients of the éxpectation (3.125). They are
essentially the algorithms for least‘squares‘solutioﬁ of
multiple linear regression problems. The method used here
- - ’ -M\\\

Given a set of Normal Equations for model (3.113):

s

A = ZiZ2 Zil
22, Z,¥ o - (3.126)
¥z, y'y

The Sweep Operatbr'appligd to all columns containing Zizl'

in A trgnsforms A ;o Al .
- o .4
| - Ay o (2iz)7, (z2) 71z, , (212007 2] ]
‘55z5zl(zizi)',rrz5nlgz , ZyNyy | (3:127)
b l'zi(zizi)f’ YN Z, 0, YNy |
| Vw§§r§j  V'N1A= (I- 2,(2)2,)72,), o

y

i



e
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o

After this stage of the cémputation~We have. R(gl),‘because

X'Nll =y'y - R(gl), and the cogfficients for 6 in (3.125)

21i

from the trace of appropriate submatrices of Zélez.
The Sweep operator also counts the rank of the swept columns

of A, so we have the rank(Zl). If. sweeping is dontinuedAon

the columns of. A. containing Z!N.Z_ the result is:

1 212 - -
(z'2)", (2'2) z'y)
AZ = _zlz(zlz)—, XINX (3-128)
where: N =TI - Z{(z'Z)_2' —and the partition .- Z —-,LLZI - sz};——m, S —

" has been collapsed. At this stage we have rank(z) and

R(gl,gz) because y'Ny = y'y —.R(gl,g ). Hence we have the

2
théle equation for the partition 'gl,gzz
. + : .
= ' -
R(gz/gl) .iflezitr(UziNlei) + eq(rank(Z) rank(Zl))

(3.129)

TheWSweép algofitﬁmrcahrbé pfogr&ﬁméé to

operate on the lower triangular part of A- stored in a

one-dimensional array by -rows, (Goodnight (1978b)). Although

A, and A

1 are not symmetric, the upper ipd lower triangular

- . ‘
'parts differ at most in Sign so that theéyhole matrix may be

2

recovered from one half. . RS kN

) : 5 L
The columns of A" do not neeq to be ordgred in any

particular way. The ordering of (3.126) was only for

notational convenience. Similarly,?the effects selected to

be fitted first :or last need not be grouped in any parficular

way. Hence, a convenienpt way of producing a set of equations

[l
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like (3.129) is to specify an order for adding the effects of
'model (2.23) into the group to be fitted first, while taking

account of the restriction (3:114). For eXample for the model:

- g-1 ‘ .
y = X8+ LU.v. + e (3.130) ' :
R b B : :
where: X = (Xl,X ,...X ) and g = (ﬁ',gé,..ﬁé)' o ;
we specify an order:- {(kl,k2...k(g-1)) . - L o B B B B B

which is a permutation of (1,2...(g-1)), and specifies the

order in which the random effect wvalues (vl,v ...zé

be added to the group of effects f1tted flrst ThlS leads

to the set of reduction SSs:. _— <L/\\/

—

/<
. {rR(v. k1’ Yk (q )/3), RLV‘z,..v X (q )/éf!kl)'
| R(Yy (g l)/B'vkl"'vk(q 2)), RSS}
where: RSS isthe residual SS after fitting the full model.

An algorlthm for computlng these SSs is as follows:

The columns of the normal equations A of (3 126), correspond-.

ing to X are swept first at stage 0. This results in a

. : : ™
matrix A, with the form of (3.127)'from which it is easy to ]
obtain: ty= 'y - R(ﬁ) = ¥Y'Noy \ (3.132)
£,= rank(X) = rank(z,) (3.133) - K
/ 1 ] :
and sl;i=.tr(U NoUps ) for i=1,2...qg9-1 _ (3.134)
‘ . = ‘ = - ' Tg
where: ZO (Xl,Xz,..Xr) and NO I‘ ZO(ZOZO)'ZQ'
— —wmﬂwffNextT—a—matrixmeAiuisepzedueed—by—sweeping——hﬁ—on—the—columns‘\ :
o o corresponding to those of Ukl in the normal equations. The
process continues producing A_, A_,... A . At the j th
, 2 3 . gq-1 Y
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stage, the following staérstics are read from A L

3
= v -
tj+l Xx R(B B ---Brl !kll..y'kj)
= y'Ny : . (3.135)
¥ . ' . b
fj%l = rank (xlxz"'xr’ukl"'ukj) |
"= rank fZ.) . (3.136)
) ) 7 = ! = 3 3 - V N . 7 .
sj+1,iAwﬂFf{Uk ,NjUki) (A=3+1, j+2...9-1 (3.137) o
0 for i=1,2...]j
where
AR Zy o= (XIX?’ o s
N = 4

. I ~2,(z'2
j 373 I%“FQ

After the final stage, from we have;

Aq"l ’

. ] -
ty Y'Y R(ﬁl"'§r’lkl""—’-k(q—r'),)
and fq = rank(xlxz...xv,Ukl...Uk(q_l)!
There are no non-zero values for~—s§&,—Like?(3.137)r because — - —~
we have fitted the whole model, and Uiqu = 0 all i

Let r be the g-vector with components

T;o= tgtp S R(lki"fzk(q-QAEI"'élzkl';zk‘i;n)
i=1,2...q9-1 ' i ’ B

and Ty ='tq = residual SS. - : o 1 (3.138)

Let R be the obvious gxg matrix of row contrasts,ugﬁdh that:

S - . X = Rt ) R
— g-matrix,—with—isjthelement P
Let—Hﬁ——be—the——qx 7 7 , ement ulj,
where
N
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hij = sij i=l,2...qfl, j=l,2...qfl
hiq = fq for 1={'2f’“371
h ., =0 £for j=k,2...9-1
......... ai o J ’ q-= ‘ »
qq q : T e
" (The last row of H is the equation for ‘E(rq{, as in
B (3.50)) . e U LT S S
Then the Henderson Method III Estimators are then solut-
ions 8 , to .
= T i s - Lo e e s e e e e s e
r =HE ‘ | (3.140)
"%, The procédure can produce a variety of estimators,
depending on fitting orders (3.131), which are specified as
‘input. - .
i ] T . T T s e e Lo .
3.3.3. Distributional Properties of ,the Henderson Method III .
Estimators.
1 7 o If the Normal distribution assumptions are included
in the model (3.130) we know that Tq and hence eq .
‘have central chi—squaré distribution (3.52). Further,
-since:
% . o '
"f ) ti = x'Ni_lx | l=l,2 A 9
B L r, =t -t = y'{(N -N. ly i=1,2...q-1
o 1 q- 1 = g-l+s i=1"% =
~ and::-. (N _.-N, JV(B)N . =6 (N_ =N, IN___
T - ® - ] A= § .-h -A-,.-l. A g R - = " § ‘...
! = 0 _(N - N ) =0 ?
° ] q q"'l q_l ) I\\;
» : " =
s
—
—
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A

we have that rq and Rence Gq is independent of r

185° %

2 q-1.

However, since Ni_lV(G) for i=1,2...9~1 are not, in

general,idempotent (except for balanced models), the

distribution off-tl,t2...tq_l'is unknown. Similarly, for
rl"'rq-l'
However, writing
N -1 K . -
8 = H "Rt , (3.141)

we have = o : ) ) e

-1

Fal - 1
= . 1 . 1
Cov (9) HD RCov (t)R HD

(3.142)

‘and from (3.14), .

c§v(ti,tj) = 2tr(Ni_1V(g)Nj_1V(Q)) + 4§'x'Ni_lv(g)uj_lx§

- , ©(3.143)
However, X Ni—l = Nj—lx = 0 for gny i,j=1,2...9.
So we can write: . ’ . N -
cov(t) = 2D(8) B (3.144)
' o -1 -1 ) :
and Cov(f) = 2H "RD(Q)IR'H (3.145)

D(0) is'sygmetric, with lower triangulai elements

. s om s .
dij with i = j given by:
d; f.tr(Ni_lv(Q)Nj;lv(g))\ 7
q-1 g-1 - - 2 .
= 2 z 9 0 tr(U!' N, U U'N, .U ) - +6. £,
pei mei XE. km km i-1"kp kp j-1 km' ““q i
o . , : : S : . (3.146)
where {kj: j=1,2..q-1} is the fitting order specified,at‘

(3.131).

(
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because .
la).Ni_lefl = Nifl - Nihlzj_l(zg_%zj_l)fzj_l ;
=N | i
b)-tr(Ni—le—l) = rank(Nifl) = rank(zi_i)r= £, E
] : : . . 1
| D My O ferpelzo.icl
| a) up N, =0 for m=l,2...i-1 - s
The d;agonal_elements dii' and hence va#iénces'of ti are ?
-t ~Teasy to céICﬁiﬁfé"WitH*Eﬁéfﬁiﬁﬁfffﬁﬁ*6f*§€ﬁfféﬁ}3?3?%?7?byf%—4«bgﬂgf%f%
calculating the SS éf'elements"in thé?ﬁ,p th submatrixgof |
the unswept poitién of Al:i(ZQNirizé)" fhat ;é, phev
submatrix jUimNi_iUké. This SS ié;the.coeffiéiept;of
kaekm in:‘dii; However, t?e off'diagonal’eieﬁén?s-ére
computationally far more,burdensome.,,in Qrdérjto get a
I ‘measure of Cov(dy, we would have to substitute § for 8
in D(8)of (3.145) |
G
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‘3.4, " ‘Henderson's Method III Estimates of Variance

Components for Example Data Sets.

Variance component.estimates were computed for

the example data sets described in 2.7. iThe'method used

was -the method of fitting”Constanté,'Henderson‘s method III,’
L “with the algorithm described in 3.3.2,

3

3.4.1.  Dpata Set 1.

With therfﬁil‘model as described iq(Tabie:fZ:Zy,
the reductions in reéidualrssruéed to cqmpu£é the variénce
‘chponépt estimates wereﬁl o

| va) Reduction. due to fitting éffgct,sxRErlast,

b) ReduAc-il:riorrl due to fitting SIRE AND SIRE X DBRD

aftex,all,charwafﬁecfs,ﬂ ,Wgw,mwjﬁ,,W;hﬁ,,ﬁwwlv_,j_;”;;w

and . - e) Resid%ﬁf SS after fitting all effects.
- N ( . R

Neééfng estimatés of the SIRE 6? SIRE X DBﬁD 
varjiance cbmponents were obtained for'all'va:iates except
Length at birth, LENB, which had the following estimatéd
variange components: o

a) SIRE 40.726

b) SIRE X DBRD 51.418 , L o
- - c) Residual 759.237

The large, number of negative gstimates could be a

result of an inappropriate model, or the relatively large

residual variance which could have swamped the components- me e e



.However, if the model is reduced by excluding the SIRE X DBRD
- interattion, several variates still have negative SIRE

variance components. The estimates under the ;edﬁcéd model

veop gl

are given in the following table.

-82

Table (3.1): Henderson Method III Estimates for Data Set 1

‘Under the Reduced Model.

VARIABLE QARIAﬁcE cdmponENT ESTIMATE FOR:
| SIRE  RESIDUAL
MASB 0.333 14.611
HTAB s =5.361 - 823.334 \
DPTB 2.825 668,951
"LENB . 65.454 779.132
HTAW -54.385 - 1461.444'7
DPTW ~45.346  .1207.723
LENW -25.399 2299.078
MASW , . 24.848 576.397
3.4.2. gggg_gég;g.‘

The data generated to follow the model which was

assumedl;or the cattle breeding experiment 2.7.3., was

analysed according to the full model of Table (2.2).

' The Henderson Method III estimates for this'déta’are given

in the following table.
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Table (3.2): Henderson Method III Variance Component Estimates

for Data Set 2.

VARIABLE VARIANCE COMPONENT ESTIMATE FOR: ‘

SIRE SIRE X DBRD RESIDUAL
1 ~- 14781 -- | 1.921 - 8,22 - - S e
2 |  4.618 9.275
3 8.510 8.804
4 9.944 - s.733 o
5  5.169 8.404
6 7.661 8.983
7 8.727 7.153
8 26,952 7.940
9 4.430 7.875 °
10 1s.239 7‘ ‘s.002 |

M-

The true variance component values were 10.0, 3.0 and 8.0

respectively.

3.4.3. Data Set 3.

The generated data set of 2.7.3. was analysed

i

according to the-model of‘T%ble (2.6). The reductions in

residual SS used for the Hen@erson Method III"estimates'were:
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a) RL, F x RL, R2, Rl X R2 fitted after MEAN é.nd‘:F,'
f b) F X RI, Rz,é;g R2 fitted after MEAN, F, and RI,
% ~.c)VR2,,gg'X Rl fitted after MEAN, F, Rl, and F X R1,
d) R2 X Rl fitted after MEAN, F, Ri,VF X R1, and Rgz
and e) Residﬁél Ss after‘fitting.the full model.
The estimates are“given ih'théngffﬁﬁTﬁé table. S «
‘rable (3.3): Henderson Method III Variance Component .
Estimates. for Data Set 3. )
. _VARIABLE ____ VARIANCE COMPONENT ESTIMATE FOR:
R1 R2 F X Rl R1 X R2 RESIDUAL
1 64.184 - 17.120 -19.575 17.851 15.720
2 23.145 17.392 2.786 0.911 9.889
3 28.554 ;3.417 ~16.327 24.752 12.556
4 2.299 -6.092  -4.359  9.889  16.429
5 127140 "10.180 -13.023 - 16.459 16.777
6 76.390  5.798 17.439 - -2.486 8.893
7 26.955 17.720 11.606 -4.360 11.311
8 32.975 3.341 -12.974 - 11.781 20.974
9 68.238  5.955 15.194 7.659 11.330
10 18.698 2.836 19.458  -8.637 19.988
o The true variance components were: 30.0, 10.0, 3.6, 6.0)
and 12.0'res§ectively.
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Classical Approaches to thimal Variance Coqponenf Estimation.

Discussion of the ANOVA and Fitting Constants methods of

variance component estimation illustrates three aspects of the general

estimation problem: — oo oo e ST e e -gwwwéuu
a) What criteria should we use to judge between

candidate estimators? ' o

b) Can we restrict the éiﬁgéisf fuﬁctions f?oﬁ

which the estimators are to be selected,; without
a high risk of excluding;particularly desirable
ones? o

¢) What properties should be required of -

N
estimators, and are there any available with

éﬂeséréropéf£ie;éﬂ

Two criteria for choice between estimaﬁors»are used;‘mihimuﬁ
mean square error and a minimum norm. The choice in the variance
componént case is a trade-off between extra assuﬁptions on the model’
and restrictions on the qiaés of estimating functions.r This is bécéuse
variance component estimatoré have variances or méanAséuafe errors,

which depend on second to fourth order moments. ' Hence, not only are

,,,,,,k;ﬁAﬁﬁjme*parametersfofginterestginvnlvedfgbutrforgnonznérmal—d;st£ibutions,

other unknown parameters may be involved as well.

Rao, C.R. (1971b). assumed. finite fourth order moments in

the structured model (2.13) and made progréss with the critgrion'of o

t
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local minimum variahce»amongst'quadratic unbiased and invariant

estimating functions. Apart from the restriction on functions, the
local property requires specification of a priori‘values-of

variance components and kurtosis parameters.

For normal models,‘however, local minimum variance and.local;

minimum mean square error prov1de tractable solutions in generaI o

 classes of unbiased estimating functions, as well as in some classes

of biased, gquadratic estimating functions. (LaMotte:(1973 a and b)).

require normality, produces'the same estimators when normality is

, available. [ -
o o -

. The minimum noxm criteriom'ﬁas introduced by C.R. Rao
(1970, 1971a, 1971b and 1972). The motivation is along the lines

of linear least squares estimation for locafion parameters,. but

“The idea is, given a gquadratic

estimator y' A Y which is somehow obv1ous but unobservable, use

the estimator y' A Y where A mlnimizes some norm between A and A,

This method does not require‘the normal éistributibnvaesumptions, but -
is restricted to quadratic functions. ‘Like minimum‘mean square erfor,, L

it does depend on the variance compenemts and in pmactice is also a o

local criterion. | |

'I?e answer to the second questlcn about- restrictions on the

class of estimating functlons, is forced by the choice between’,

optimality criteria. Restriction to quadratic functions is mot: .

L.

severely counter-intuitive, since the paiameters*pf interest are =




second order moments. However, -there is-ew agnce (4.40) for .
considering quadratic plus linear functions, or quadratic functions - :
of- a transformed reSi:onse;.;
- The question of .propéri‘:ies to be required of candidate
~ estimators is plagued by issues of consistency, as well as trade-offs . ' ,,;
,,,_~betvveen~,'d'esirab1e¢.£eatures#'oﬂuthe.-estimators, Requirements.of = .. \) .U,“.;A,_:,.A@QM,,,;
unbiasédness, invariance to translations of the location parameters C
and 'hon-hega,tivity"»are_considered. Conditions for estimability under
" thése restrictions are unfortunately, difficult to test in practice . T
4.1,/ Effects of Unbiasedness Invariance and Non=Neégativity on
" Estimability.
For the general"lineér model (2.1)
y = XB+e- : ‘ (4.
I e q e o _ pe e m e I _
with Cov(y) = .Z eivi
i=1
’ ' ’ ’ .
we consider estimation of linear functions of the variance parameters,
Gi, given by h'6 for h € 1.
Let' Q be the class of quadratic functions of y, and QL quadra{:i‘c
plus linear fu,nctions.'~ 7 ' -
o) ={'y_"Ay_:7AIAnm,A=A'} (4.2)
oL ={ y' Ay + a'y: Amm,A-—*A'andg_a_Gan} (4.3)
&
r ';,é



B o
:4.1.1; Unbiasedness:'
By“$3;7) we have; , oo
Bl y'ay +ay) #."igléitruwi) + BYX'AXE + 2% ‘%(q;m' L

-Hence, if QL(U,h) ‘and (U,h) are the sub classes of QL and'Q‘of‘

functions unbiased for h'8 we can write:

S ou(uyh) ={ y'Ay #a'y v A= A", X'AX = 0, a'X'= 0 and "

3 ; © tx(avy) = hg, i=1,2...q} ' (4.5)
... and  O(Uh) = {y'Ay: A= A", X'AX = 0, and
: - tr(av,) = h,, i=1,2..%q} . (4.6

Conditions for estimability, that is, non-emptiness of the
classes, were developed in geh;ral by Seeley (1970a and b) and mofe
specifically by Pincus (1974), and Kleffe and Pincus (1974 avand b).

Both classes, QL(U,h) and Q(U,h) are hon—empty if and
only fif” ll_ € R(Hﬁ) , Where T T

- ) H
U

(tr(ViNVj)) i,j=1,2...q . 4.7

and N =I-pP, P=3XXXTx
An alternative necessary and sufficient condition is:
' * . _— , .
h € R(H) where H = (tr(V.V.- PV,PV.)) (4.8)
- U U 173 i 3
i,j=1,2...q—.-b

This fpllows from (4.7) because of the fact that

R() = ,Ru{) (a.2).

To establish the result (4.7), we first note that;
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= * R - . 2 . b v
HU = TT* where T is g xn" with i ¢h row given
by  Vec! (Vi PViP_) (a.1).
 Hence, ' )
O am) = R - e |
f R(.HU -RHUI‘-.-R(T). S ~ ‘ S
) Next, if- QL(U,h) or - Q(U,h) are not émpty + there exists a.
e rsymmetriémmatrixﬂ -A-such-that. X'AX = 0. vand,«.tr(AVi,) = hi' i=1,2...q. .. S
Hence, ‘ ‘ . ' R RS %
’ h = T Vec(n) ' , . - : ’ V RE
’ - sothat [ T
h € R(T) = R(Hy =R(H,). o _ (4.9) ,
On the other hand, 4if h € R(HU), there exists b # 0, such that
* . . .
h = Hyb : - C (4.10)
5 a ‘
If A=2 (b./2) (NV.+ V,N) where N =1 - P
i : =1 ] J J
2 J.—
& then - -.-A is symmetric, L e e o -
X'AX = 0 since NX = XN = 0
: )= . V,) + L))
and tr(AVl) ;Z(bj/z) (tr (NVJV:.) tr(VjNVl))
= Ib, tr(V,Nv,) =h, from (4.10)
3 . J 1 J 1
E (using: tr(AB) = tr(BA) and tr(a) = tr(a'))
§ Hence, -
% Y'AY €0Q(UB) and y'Ay + a'y €QL(UD)
A
3 .
‘ for any a s.t. a'X = 0. : o . (4.11)
Further equivalent conditions to (4.7) and (4.8) follow from observing
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that if B is any p.d. matrix, R(H;) = ‘R(HU(B)) - (4.12)
where:  H (B) = (tr(3 (¥ - ‘P(B)vip'(B)‘)Elvﬁ)A)

and  p(B) = X(x'B'x) x'BL. @a.3) . o S 4
In particular, if s is a g-vector, such that V(s) =1 siVi'is p.d.
‘Then Q(U,h) and QL(U,h) are non-empty if and only if

h € R(H(s)) | o | C(4.13)

where ~
Hy (s) = '(—'trré\ng-)-’l (v, —P(s*)V.*Pés%*)*VGSTJiV:)')v .
- [y 1 - 1 = = 3 . ) _ 7 O
and ~N , . : .
. . _1 — _1 ’ £y
B(s) = ZX(X'V(s)™X) X'V(s)
Seeley (1970b) gives two corollaries to (4.7): (4.14)

a) 0k is unbiasedly estimable in J Q or QL if
and only if there does not exist a # 0€ R -1
and A symmetric such that
V, SXAX + I av,

. i#k .
b) All components of 6 are unbiasedly estimable
in Q or QL if and only if

{Vi.. .Vq}“ are independent in the vector space
of nxn symmetric matrices and

gl

sp {V;,...v} M sp {x Ax:A=AY={0)

Comparing condition (4.7) for Estimability of h'g and (2.3) for

Identifiabiﬂty, we note that the two pf&:éfties do not coincide, since
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in general, - o L , . ’
c :
R,(HU) R(Ef) , ,
- Pincus, (]_.974) , shows that in normal models, if
Q(u,h) and QL(‘U,h) are empty, then h'0 is not unbiasedly estimab! = :
- e : : —— e N
by anyr function of the response. .
l A class of eStiméting functions where the bias is
unaffected by the fixed effect parameters is Q(rpU)
where; . . ] o : i ,‘ ;o . ,:’;'E

Q(PU) = { g'Ay : A=A\ X'AX =0}

4.1.2. Invériénce to Translations of the Fixed Effect Parameters.

In the model (4.5) the covariance structure is; invariant ‘to
translations of \E‘\Thq.s provides an intuitive argument for -
requiring estimators of. § to have the saxr;e'invariance. (Rao, C.R."

(1973) p 343).. . ..~ , S
f£(y) is invariant if and énly if f(y + XB) = f£(y) for allv

B € QB. According to Lehmann((1959)p 215), we need only consider

functions of a maximal invariant.
For the linear model (4.5),
z = i\I(g)y_ o - (4.16)

is a maximal invariant where

s € Q. is s.t. V(s) = g.,V, is p.d.
= 8 = i1

N(s) = v(s) (I - B(s)), B(s) = X(X'V(s) %) "x'v(s)>

¥
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Kleffe (1976a) shows this as follows:
= \ a) N(s) (y + X8) = N(s)y all B €&

because N(s)X = q, so N(g)z_is invariant, and

% b) Taking \y; # ‘Y_zr‘ (Y_l’ ‘Y.zyv € R'(X)‘L withouf
x’fﬁoss of generallty) . Spppose N(S)Xl N s)x
ke

. ___then Yo ’*Xl +. XB . for otherwxse X. ¥ - Xi € R(X) B

and N(s)y = O which contradicts the fact that

rank (N(g}) =n - rank (x).

In fact; any function By where R(B) + R(X) and
" rank(B) =n - rank (X) is a-ﬁéximal invariant.  In particular,
N(s)  can be;faétored as BB' with B n:x (n-rank (x)) having—full'éolﬁﬁn
“rank and then B'z;is a maximal invariant suchafhat

Cov(B' y) = B'V(8) B o - (4.17)

is non-singular when V(8) is p.d.. o o . L B o

* If we restrict attentién to quadratic estimating functions,
Q and quadratic p;us linear functions, QL, we can charaéterise‘the
invariant functions by: |
LR .~ ou(1) = {y'ay+a'y: A=A', AX = 0, ax = 0}
and | 9 (1) = V(fo y: A=A', AX}='0} (4.i8)

since:

(y + XB)'A(y + XB) + a'(y + XB) = y'ay + a'y

~for all y and*uﬁjifgand‘on1y41f**AXﬂ=
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If we include the restfiction of. unbiasedness for h'8 on these classes,

they become: 8
. QL(U,I,h) = {y'Ay + a'y: A =A'", AX =0, a'X = 0 . ‘
-and tr(av,) = h,, i=1,2...q } S (4.19)
Q(u,I,h) = {y'Ay:. A =1', AX = 0 and . S
"tr(Avi) = h,, i=1,2..xq } . - © (4.20)
A nec’essary and sﬁfficiént'con_dit'ic_on for Q(U,I,p_) or

QL(U,I,Q_) to be non-empty is that
h 6' R(HU’I) v K o (4.21)

. where »

HU,i = (tr{(NViNVj)) i,j=1,2...q9

and N= I-P

To show this, first note that 'HU' I =TT ‘where T is” qx’nz "With'i‘vf:h"' . )

row Vec' (NViN). (A.1).

Secondly, if Q(U,1,h) or QL(U,I,h) are non-empty, » there exis’fs a ' -

symmetric matrix A such that AX = AP = 0 and tr(av,) =“h‘i, i=1,2..q.
Hence, A = NAN and

h,
i

tr (NA,NVi) = tr (WiM)

Vec' (NViN) Vec(np) for i=1,2%

"

Therefore h = T Vec(A) so h € R(T) = R(HU'I'

On the othéf hand, if h-¢ R(HUV;)V , {;here exists b such that
4 -




=- e, NV.N,
. V ] :
then A is symmetric, AX = 0 .
;apq t;(AVi) = Ebj tr(NVjNVi) = hip
_ Hence N ‘
y'A'y € Q(u,I,h)
: . S oy
Equivalent. conditons to (4.21). follow from the fact that for .. _
B p.4.,. R(HU,I) = 3(HU;I(B)) (A.4) (4.22) -
;,whefe
i e e
Hy ¢ (B) = (tr(N(B)V;N(B)V,)) /” ‘ T
;1 L » =
N(B) = B (I -P(B)),  P(B) = X(X'B X) X'B
In particular, if V(s) = EsiVi 'is'p.d. we write
H

0,08 for My V()

It is easy to find examples where Q(U,I,h) is empty and in
these éituations, unbiasedness and invariance cannot both be'required
properties. Rao, C.R. (1979) gives the following example:

Yy = By teyr

y2 = Bl + e2 ,. o (4.23)
y3 =8y tes vy = Bytoey
with ' .
) 2 2 2 2
E(eiej) = 0, E(el) =

=8

E(e3) = ﬂl,E(ez) = E(e4) 5 ‘,f

Then symmetric matrices A such that BAX

-0 imply that

tr(AVl) E,EE<AY2) so that only the linear combination a(el+92) is
unbiasedly estimabie.
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while all functions are unbiagedly estimable.

.4.1.3. Non-Negative Variance Component Estimation.  ©

Another way to view this is to note that HU ;= (&) 11", while
: o . . )

HU = Ib \so that'unbiased and invariant estimation iS»liﬁited,f

a

*
;
/

Where Q(U,I,h) .. is em?ty,and unbiasedness is forfeited, Kleffe (1977c)

reports. that quaéxatic minimum bias invariant estimation reduces to the

Ya 3

. ) * LA : * : o I
-class- Q(U,I,h ). where .h. .is the projection,of.Lg_onto,ﬂR(HUhILl%v;wﬂx
_ P -

Hence, these estimators can be examined with’fhése in Q(U,I,h).
R . ey

<

In variance component models (2.16), the variance component
parameters, 'ei are non-negative. All classes of estimators
considered so far, allow estimators to take negative XQJues, even

when the parametric function h'6 is positive. The difficulty with

', non-negative estimation, is that the requirements of non-negativity

and unbiasedness are frequently incampatible. If unbiasedness is.- not
required, but the class of estimators is restricted to quadratic forms,
which do not take negative values, the class becomes:

-

Q(NND) = {y'A y: A = A' A n.n.d} (4.24)

and with invariance, but not unbiasedness:

Q(I,NND) = {y'A y: A = A' A n.n.d. AX = 0}. (4.25)
Because we allow biasedness, these classes always contain estimators

for h'6. LaMotte (1973a) usedmlpéallyﬁminimuﬁ mean square error to

produce optimal estimators ;EAEEiéig}ass for Normal models. Rao, P.S.R.S.

and Chaubey (1978) and Rao, C.R. (1979) provide nén-negative

—

/

I



invariance because ‘the unbiasedness condltlon- X'AX = 0 Wifgiiiﬁ\;“rw

estimators in Q(I,NND) and Q(NND), using the locally minimum norm
criteria, without the asSﬁmptions of Normality.\ Fortunately, these

coincide with LaMotte's (1973a) é#tamators in the normal case.

voE

LaMotte (1973b), Pukelshe1m)7(1977) and Kleffe (1980) investigated

e i .
the relationship between unblasedness and non—negativ1ty.: j

-

Pirstly, non—negat1v1ty and unblasedness together 1mp1y

AX = 0 for A n.n.d. : - » 7 ] e

,QEU NND,h) = {y'Ay : A=A, An. {Ld-,, Ax =0, and =
tr@v,) = b, i=1,2...q} (4.26)
and Q(U,NND,h) = Q(U,I,NND,h) ) , © o (4.27)

LaMotte (1973b) shows that if Ve i=1,2...q are n.n.d.,
and if pX Vi is p.d. then 6, .is not Q(U,NND) estimable.‘

i#3 ] , . -
Furthermore, if v3 is p.d. then Bj is the only variance component

which is Q(U,NND) estimable. For classification models this means that

only the residual error component is non-negatively and unbiased1y>

estimable. ) : ;

4.2. Minimulm Variance Unbiased Estimation in Normal Models.

If we do not restrict the class of estimating functions but
do assume Normality and p.d. covariance structure,—then optimal estimators

can be found on the basis of local minimum variance, since in general

the variances of estimators depend on the parameters. Conditions under

which thE'variance46f‘these4estimators*is*independentfuihtjmr”Iﬁnnnmﬁxnnrﬂ*ﬂ“'**

are precisely the conditions of balance (2.60) and (2.61).
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- 4:2.1. Locally Minimum Variance Unbiased Estimators (‘LMVUEls) .

- Kleffe (1977d) developes LMVUEs for Noxfmal models with the"

and b) . Ifh satisfies a).then the IMVUE of vy at (_hi-'é)‘ is: -

Y =2 (z - X)'A(8) (g - W) (433
= Az (s) | _ (4.34)
— S = v . . i
-y - MAG (G- (4.35)

‘-\\ " where: A = ()\;1',')\2'.'.".xé')'* is ‘any solution to

H(s)A =h' 7 | . (4.36)

u finindy
r,(s) = (g - x)'a,(s) (¥ - Xb), i=1,2..q)" (4.37)

and  “A(s) = INA, (s) . (4.38)
We can writd Y as h'6 where 6 is any solution to: .
HU(E)Q =z, (s) - ’ (4.39)

It is interesting to note that the LMYUE turns out to be in QL(U,h)

even though all estimating functions are considered. (4.40)
: A

form (2.1): y = XB + e, -y VNGB, VE) ~~ (4.28)
Given-"b and 5‘: v a'%éﬁori values for B and“: B, Lsucbvy.éléa,t:
' q AR . L e
) - PR ] 7
Then a) Y=h'0 is unbiasedly estimable if and only if- B
h € R(H,(s)) 7 s - | | S
where: H_(s) = (tr(a (s)V.))- (4.13) ; (4.30)
- . 1= 3
- =1 _ ] =1 . -
B WO (ORCAR IO A R {E R It
. and P(s) = XX'V(s) %) X'V (s)} , (4.32)

Establishing part a) rests on the observation that

© R((s)) = R(4), (4.13), and that for normal models, if h £ R(H,)

then _}_1_'9 is not unbiasedly estimable. (Pincus (1974)).

R e
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. For part b) we note that Y is unbiased for <Y because
X'A, ()X = 0, i=1,2...q and )
i ' . -'— ' ' - ' ' = ! -
tr(A(s)v(6)) = g X Aitr(Ai(§)Vj)6j . A.HU(S)Q_ Y . -
1 j : : . & i V
) Then, if g(y) is any random variable with zero expectation over stﬂe v
and finite second order moment, then:
A“~‘J{g(1)exp{-(l/2)(1_— x8)'v(8) (y - XB)} dy = 0 S (4.41) - SERA—

Differéntiating (4.41) with respect to ei (A.6), we can interchange

differentiation and integration to obtain:

Eg gfa(y)(y - X_B_)'V(_ejlviV(Qfl(y_p- X)) = 0, all i.(4.42).
hence Cov(g(y), ( 'V(s?lv V(ssl - 2bX'V(s$lV V(57l 3/ b,s) =0
’ gy \y = i_l = = i—'x _’_,"
- . for i=1,2...q T (4.43)
The second order partial derivatives of (4.41)°with respect to BiBj'
for i,j=1;2...p result in: v
E; lg(y)t —'V(eflx XV (0 1xy - 28'x'v (07 x, x!v (67 1y
E'Q VAR A — ij — > = Sk ij Ir L
+ B V() ik, x!V (87 1xB. - x1v(0) %)) = 0
= i S R S
where x!: 1is the i th column of X.
1 _
Hence: Cov(g(y). (va(gjlxixgv(gflx_l 2§fX'V(§51xix3V(§flx)/ b,s) =0
o for i,j = 1,2...p. . .  (4.44)
Now sp{xix3 ,‘i,j = 1,2...p} = sp{XCX' : C symmetric} and hence
includes the matrices: P(s)V,P(s)' for i=1,2...q and therefore,

3

Cov(g(y), (x'v(_sjlp (s)V.P(s) 'V(§711

- _ B — - XV PE@V,PEIVE )/ B =0 (@45
— — ' - e for—iml;2c g

Subtracting (4.45) from (4.43) gives:

»

B o
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cov(g(y), (y'A, (8)y - 2b'X'A_ (s)y)/ b,s) = O b
or since X'A, (s)X = 0, ' )
Cov(g(z), Y / b,s) =0 . iyi
whlch together w1th a result on minimum variance : unbleeed estlmatlo;" ,‘»_ B

AT

(Rao, C.R. (1973) p 317) means tha; Y is LMVUE for Y,

7.k The variance of ‘YJ(4 34) is, from (3. 12) 7 ”_;i,d i;;;;l:iff\ e
'Vér(Y/ B.®) = Ztr(h(s)V(e)Ag_)V(e)) | .

+a m-M'wAwMNW$ﬁnuB—b); . ' -(4.46)

since Y < KB =X(B= b)Y ¥ &

1

This attains its minim hen g_ b and 6 S:

Var(y/ b,s) 2tr(A(§)V(_s_,_)A(_§)V(§_))

G

ngU(s)A' = h'H (sh from (4.35) (4.47),

One modification of (4.34) is to use the best linear unblased estlmator,

B = (X‘V(E)x)_x'z_ of '§_‘for the a priori value Qf rhen' xﬁ P(s)z

and Y becomes Y* givens: i e
Y* = y'N(S)VA)N(s)y , ) (4.48) |
where ' N(E) =-v(§51(1 - P(s)) and V(}) =_ZXiVi with ’A_ as.in (4.36).

This is independent of any a priori value fof B but may be biased.
A# -_— .

,8 - h S , \/’%&\vﬂ\ B

3

If HU(§) is non-singular, and writing Y for s
we can establish an iterative scheme: . .
A _A A R A 'v,
8, = HU%gi-l)Eu(gi—l)' and XB, = P(el Y (4.49)
~IfmthiS—sehemefcenvergesi4thefresult4isetheeiteratedeminimumeyarience

unbiased estimator (IMVUE) which is not generally unblased.

Seely (1971), Rao, C. R. {1971) and Kleffe and Plncus (l974a)

examined conditions under which IMVUEs are 1ndependent of b andli
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and hence .UMVUE. ' The ‘conditiéns tui‘h out to be equivalent to the -
conditions of balance in balanced variance »c'omponentymodel‘s‘ (2.58),
which lead to the ANOVA estimators of 3.1.. which ‘a'rev. UMV‘UE . (4.50)'

&

4.2.2. Locally Minimum Variande Invariant and Unbiased Estimators.

BN

S

If the class of estimating functions is rest"rr:ricrtgad’ to ';'V.nyar.ir_irant“ o

. 8
and unbiased estimators then we need only consider functions of a maximal

invariant (4.16). invariant and unbiased functions have the properties:

Sly + XBY = gcx) for'all B and E(g(y)) =h'&— (asn

. Using a full rank maximal invariant (4.17), Kleffe' shows that,
given s, an a priori value for 6 :
) . ’ E )
a) The Locally minimum variance unbiased and inva;' ant estimate,

(IMVIUE) of Y = h'0 exists if and only if h € R(H, [ (s))

\‘“

where: Ey ;(s) = (rN@VNEV)) (422 . (.53

and - b) The IMVIVE of Y = h'0 is,

~

Y = IAy'N(S)V,N(s)y _ | (4.54) -
= Y'NEVAIN(EY = A, z'V,z - (4.55)
= i"iu,x(i) - (4.56)
or 33'9_ (4.57)
‘where
A is any solution to Hy I(_S_)Z\_ =h /
o EU,I&S,),,,,ifz N(s)V; N(s,),%’,l'l 2... q)' ' | .
and 6 is any solution to Hor _g_=r (s) : (4.58)

S -
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This result also follows from moting that R (s)) = R(H ) (4.22)

and_applying the LMVUE result (4.33) to the transformed model fbrf“?chgg

z = N(s)y a maximal invariant with respect to translations in B. -

~

Putting s = 90 and using

Hyp 5 1) 8 = 5y 1 @542

we can define iterated MVIUE,;IMVIUE ~ (4.59)

4.3. Minimum Norm Quadratic Estimation in General Variance Component

S [N

T Models. . T e

) In a series of papers (1970, 1971a, 1971b, 1972), C.R. Rao
developed a minimum noxrm c;iteriqn for»vaxiance component estimation;
starting.with heteroscedastfé regresSibh médels. The main advantage
of the method is that if does not require the normal distribution
assumptioﬁs on the model, but the optimizatién is only carried out‘ovef
régtricted classes bfiéﬁédfé ic estimating fﬁgéfibné.

Fortunatelyrthe'techhique resultsrin 6ptimal estimators,

. whichvagree with those for Normal models derived through minimum mean
squarererfor or maximum likelihood principles, when the classes of
eétimating functions coincide. (Chaubey 1980)i It is argug? that
the restéiction,to quadratic fofms in the response, y, or transformed

response y - Xb, 1is not severe, because optimal estimators for

normal models with other criteria, turn out to be functions of that form.

The minimum norm estimators still suffer from the possibility

of prq@ucing negative~estima§§fsffﬁréahé classes. Chaubey and Rao, P.S.R.S.
, =

(1976), Rao, P.S.R.S. (1977) and Rao, P.S.R.S. and Chaubey (1978),

~ >

' ?;ﬁ'f"?



examinea mééifié;;;;;; to avoid this.r One pos;iSility is to cdnsider
biased quadratic esfimating functions And in this case,‘it is possibie
to incorporate information on the structure offfhg error.term.for‘
structured models, f2.16). This does not séeﬁ to be possible witﬁ
other methods of ;astimation. =

The diét;ibutionrof thg minimumfhorm estimators is unknown.
Brown (1976) showed them to be”asymptoticélly normal and consistent, -~ oo T

However, he based these results Qn'the assumption that models of

increasing size could be" regarded as‘rep;iéations of a basic model

of small dimension. This assumption is difficult‘go meet in practice,

4.3.1. Principles of Minimum Norm Quaaratic Estimation. (MINQE) .

To estimate the function <y = éfg_ with the minimum norm
technique}.we‘must first identify a qﬁ;dratic e;timator, y'Ay whicﬂ
would be tﬁe obvioqs choice if the random part of the model wére
observable. Next, we mist choose the cbservable estimster, y'Ay,
from some class of gquadratic estimators, whiéh,minimizes la - all

for some suitable choice of norm, | . |.

The structured model, (2.16), has form:

-

y = XB + Ulz-,+"" + Uq!q = xgr+'Uz - (4.60) ?
with Ely;) = 0, E(v;v!) =0 for i # j, ’
and Bly,vp) = I, for i =1,2...q. © (4.6D)

If-the gz~fwerefobservable7 an obvious estimator of — - — -

03 would bei . g = viy /g, i =1,2...q )
and hence for y = h'8 :

y = h' (4.63)

| >
[}
™
3

A
<
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where: D= dlag((ﬁi/qi)Iqi, i=1,2...9)
. By writing an arbitrary quadratic form in y as:

. f{x| '|v'au , U'AX| | ¥
B| |x'avu , x'Ax| |8

-

‘'we see that the Quantity to be minimized is:

”U'AU - D, U'AX

, o
_X'AU , X'AX|

There is an arbitrariness in the choice of norm. We will show in

(4.64)

(4.65)

4.3.2. and 4.3.5. that if we use the usual Eﬁ@lidean'noim and minimize

over the classeés Q(U,I,h) (4.20) and Q(U,h) (4.6), then the resulting

MINQE,s have the same form as the LMVUE,s of 4.2. put having ‘minimum

variance at points 6§ = al, for o >0, if the model had been normal.

We may, however, have some prior information about the
parameters in the madel, for example, a prior value g_# al, for

and a prior value b and precision K for B8, ( K-l is a prior

8

covariance matrix for £). One way to incorporate this information

into the minimum norm method and to produce estimators with good

properties at points as € Qe, is to consider the weighted Euclidean

norm: “ D(s) * 0, | [u'au - D, u'ax D(g)l’.o,! “2
0 X°}]|x*au ., X'AX 0 K
where: ‘D(s) = diag( s.I_, i=1,2...9).
- 14q9j
For normal models this norm produces the 16ca11y minimum variance
estimators at points 8 = as in Qe.

(4.66)

Use of the weighted norm (4.66) is equivalent to using

the'uhweighted norm on a transformed model:

P

* = X* xyk 4. o+ *yh = X*Q 4 Uryr
Y X*g + Ui U*v X*8 + U*y

(4.67)



where : y_* =y - Xb, X* = XK’!, - B* = K “(B8 —'b)',
U
i

= ¥5,U, and v.* = (1/7s.)

v,
11 -1 1

The natural estimator of y = h'§ becomes

~ .

- h1Q = Xy * = *1 * : R
) =h'6 = I(hs./q) v, *'v, v, *'bv, (4.68)
. -where D= diag((bisi/qi)Iqi, i=1l,2...q) (47.6792‘ -
Then y_‘= y* + XE = X*B + U*_\i* and the quantij:y'to be

minimized is: /
I urraux - D’;' CUr ARt
X*'AU* . X*'AX*
= tr((U;“'AU* - D) (U*'au* ;-D)) + 2tr‘(U*'AXKX'AU*)
+ tr(X'AXKX'AXK) ' " (4.70)
which is identical to (466) 3 ’
The obvious estimator in this case reflects the model striucture. The

MINQE technique is therefore able to utilize the structure where other

methods ignore it.

- In the general model (2.1), the choice of natural estimator is not as
obvious as for the structured model. However, given prior information

s/ b and K with the transformed model:

y*¥ = X** + A(s) e* | (4.71)
where - -
sy_*,'x* and B* are as in (4.67), .
- Ar(_s_) israipwi.—squai::a Wroot': of ng) - R
so that A(s) A(s) = v(s) -
and er=h(m)7e
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If e* were observable and normal, it would have model:

e N(8,V*(8)) ; (4/72)
where = V*(8) = ZeiVi* />
and v.* = A(g)-lViA(g)_l ’ . | O,\
Hence from (4.3’3) the LMVUE 'of"'; ="h'6 given s ‘would be; - A

; = e*'Te* 7 (4.73)
where T= IX, *V,* N - |
4 A* is any solution to H(s) _);* ; h

and H(s) = (’tr(V*(_e_',_)-lVi*V*(f»lej*))

(tr (v(;ﬂvi v(_sjlvj))

The simplifications over (4.33) being due to the centrality and the fact

that V*(s) = I.

Similarly to (4.65), we see that the quantity to be minimized is:

Ms) A A(s), Als) Ax+[ 2

JIx* & As),  X*' A x*

= tr((AM(s)a A(s) - T) (A(s)aA(s) - T)

+ 2 tr(A(s)A X K X'AA(s)) + tr(X'A X K X'A X K) (4.74)

Q)



4.3.2. Minimum Norm in Quadratic, Unbiased and Invariant

Estimators - MINQE(U,I).

In ﬁhe,class Q(>U,I,_Il) (4.20), the“conditions:

AX = 0 and tr (Av,) = h, i=1,2...q , : (4.75i 
simplify the quantity"(4.70) or (4.74) to be minimized. In'particular,
for the gereral model, ‘(4;74) becomes : :

7 ' 'Bf fr(V(E)AV(.E)AX - '2tr(AJ\(§)TA(_S_)) + tr (TT)
which is ind‘epeﬁdent of >K,‘ and from the definition of T, (4.73),
we obtain:

7 A(s)TA(s) = IAFV, |
and therefore the second term becop;eé: | Z)\;tr (Avi) = ;tl'_)\;*from (4.75), .
which is independént of A. Hénce the. quanti_ty to bev mihimj.zed is:

tr (V(s)AV(s)A) ' T (4.76)

subject to A satisfying (4.75).

—_—

TTT— Given s and h sucrzrh'trh'aii: 7Q(U,VI,E) 1s noh-empty, 'we 7l£néw
from (4.22) that there exists A. satisfying:
Hy ((8)A=h
where H- _(s) = (tr(N(s)V.N(s)V.)).
U, I = -1 — 3 ]
Under these.conditions the op*l:_imal choice of A which minimizes (4.76%5

A* = XA . N(s)V,N(s) - - (4.77)
1 - 1 -

This follows because y'A*y is clearly in Q(U,I,h) and if A is any

other matrix satisfying (4.75), then A = A* + B for some B sai:isfyig:

B#0, B=B', tr(BVi) = 0, for i=1,2...q ‘ )

and BX = 0 so that (I - P(s))B = (I—P(_s_)')B=B.
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Hence, tr (V(S)AV(s)R) = tr(V(s)A*V(s)A*) + 2tr (A*V(s)BV(s)) .
, ) + tr(BV(s)BV(S)) - (4.78)
but tr (A*V(s)BV(s)) = I\, tr(N(s)V,N(s)V(s)BV(s)) | \A
- (A*V(s)BV (s i S)V;N(S)V(s)BV(s ] _ ,.
- Z?\itr(ﬁvi) =0 , (4.79)

because N(s)V(s) = (I - P(s)").

Since the last term of (4.78) is non ne'g‘atiire we have that:

"

£r(V(S)AV(S)A) = tr (V(s)A*V(S)A*) ) \ -~ (4.80)
and‘hen.ce,vv MINQE(U,I) given s ."Qf Y ="h'6 is: ‘
; ; = y'A%y ?_Hzrlj_l_'N(i)vi’N(‘s-) = -),L'I—U,I(E), , . (4.81) -
whefe: A is any sovluti'on tq .HU,I(E)A = h '
Hy (&) = (e (N()V,N ()v,))
and -r—U,I(S) = (z'N(i)\fiN(g)y_; i=1,2...q)"

One common difficulty with MINQE(U,I) is that cases occur

where Q(U,I,h) is empty and then the estimator is not available.

-
structure. If we had chosen to minimize (4.70) for the structured

‘model, we would choose A* to minimize: h
tr (U*'AU*U*'AU*) = tr(V(_s_)AV(E)A)— . (4.82)
since U*U*' = Is,V, = V(s).-
i'i -
MINQE (U,I) is also independent of the fixed effect
parameters B, as expected for invariant estimators. -

Under normality MfNQE(U,IY) reduces to the IMVIUE (4.54),

and as for that estimator we can write (4:81)—in the form: vy =h'g

~

where 6 satisfies: S,

Hy (88 =1y 1 (8) E (4.83)



A

. Putting 90 = s we can define an iterative procedure for

eliminqtingaﬁhe influence of the starting value s:
U I(___l_ )9 = Iy, I(Ql_ , (4.84)

If the proceflure converges to a solution § € Qe then 6 is called
iterated MINGE, IMINQE(U,I). Under normality IMINQE(U,I) is also
IMVIUE (4.59), and we will see (5 37) that theég\\quatlons (4.84) are

also’ the marglnal maximum llkllhOOd estimators.

Variants of MINQE (U,I) given s exlst for cases where.

=

no prior knowledge of s is available. One of these variants is ’4‘g§4¢é;§237/

MINQEO(U,I) for models with a residual error, obtainedrby taking s
tb hafe zero components, except;for the one correspondin®to the
residual effé&t, whiéh is taken as unity. - (4.85)
This estimétor has the advantage that it is relatively easy to
compute (Goodnight l978§5. |

Anoﬁ?er variant MINQEl (U,I) is obtained by setting all the

elements of E_Vzgual to 1.

4.3.3. The W-Transformation.

Computing elements of the equation systems (4.83) and (4.84),
proves to be a formidable task for general models, since it requires

V(§51, the inverse of an nxn matrix, where n will typically be larQe.

Even if this was possibleT,elementsusuch,aswfthi@QA%}L@QN%J;andA——A—ﬁr~~~A

T 3 .
y'N(S)V.N(s)y are expensive to compute:
One suggested solution is to restrict s, so as to make

V(Ejl easy to calculaiisj MINQEO of (4.85) is one such solution.
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'However, the computing problems arebconsiderably eased, even for

general s .in structured variance component models with residual errors

(2.23). - “ | \
Y = XB + UV, +...40 11 T & |
=XB +UV+e (4.86)
so that : o : - : o
Cov(y) = V(8) = uD(6*)u’ +eq1

where , . gs

D(8%) = Diag(8,T;, i=1,2...g-1)
Writing Y + (8,/8_isl,2...q-1)' ve have:
V@) = 8 H
(® = 8Ky

whereg,;r‘;%;H(l) is not related to H(s) of (2.3) but, £
K-

 H(Y) = UD(Y)U' + I

(4.87)

It is easy to show (A.5a) that,

oy}
(W)
l=
i

- - ' 71 ' '
I - W (L +u'un(Y)) u (4.88)

It

I —uom? + voyle . -
The first form does not require Yi> 0 for all i and hence is

preferable. Also, since eq >0

v = /)Rt .

In this situation, we only require the inverse of Im + U'UD, which is

- - o T
mxm when m = L q,

and m is typically much smaller than n.
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"~ Furthermore, given s such that V(s) is p.d., and the model (4.86),

we let i

. ' - W .
and Uy [wo,l,w0,2, 0’3]

vyl _ (4.89) -~ - oo et

c and W, are easy to~compute and writing H for ‘H(g) let:

0 =
Wy il uitx U’y
- ity xialx xEly - ) 7
. X'ﬁlU X'ﬁlx X'ﬁix - ’ ‘ . (4.90)
b .
Tﬁen; by substituting (4.88) into (4.90) %m

<1
= - ] 1] .
W, = W, WO,lD(I+U uD) L (4.91)

where

D is D(c) = dlag(cini171=1,2.. -1).
wl is easy to computé and provides all the elements required to form
HU'I(E) and EU,I(E) as will be seen in 4.3.4. N

' This method of forming Wlis known as the W-Transformation
and was suggested by Hemmerle and Hartley (1973). Schemes for
computing Wl from Wo and D were developed by Thompson (1975),
Hemmerle and Lorens (1976), Liu and Senturia (1977), Hemmerle and

Downs (1978) and Goodnight -and Hemmerle (1979). The latest me thods

rely -on-the observation thatmiﬁra,5Choleékywor45weep,Operatnr;y

(Goodnight 1978b is applied to the m columns of U'U + ﬁ}_}n:
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'containing x'ﬁlx,‘we get:

AN W, : (4.92)
’ - N .

The resulting matrix is:

-1.-1
] kY
I (U'U +D") WO,l Y

0 W : v : , (4.93)
Furthé?hore; since we are only interested in Wl and since elements =

-1 . .
of U'U+D. are easy to obtain from W0 and ¢, we need never form

the matrix (4.92), to achieve the transformation to (4.93).

Thisralgori£hm can be programmedrtortake‘; given“ ¢ and

produce the lower triaﬁgular part of w1 in plade of that of WO. The
programme can use  the Sweep Operator of Goodnight (1978b)and is
unaffected by small or zero elements in ¢ provided,in place of =T

=1.-1

(U'U + D) , the algorithm uses D(I + U'UDTl as in (4.91).

4.3.4. Computing MINQE(U,I) Estimates. »

With strﬁbtured models having a residhal‘error (4.86), we
have the W-Transformation of 4.33 to produce the matrix Wl (4,90)
from ¢ and ﬁo (4.89),>which is derived from the model structure apd
the given prior value §‘ for 8.

Applying the Sweep Operator (Goodnight 1978b)to the columns of Wl{

F

w, =[u'Mu 0 u'My _

Rx'ﬁluwx Vva'ﬁlz 7 . (4.94)

Y 'MU 0 XM |



M= M(c) = H(gfl(x - P(c)) .
{ P(e) = ROX'HE T, L A
and | R(c) = (x'g(gjlx)- |

(I - P(c)) is idempotent and . rank(I - P(c)) = n-rank(X).

The 1owerbtriangular part of W, can be formed in place,

'from W.. The Sweep Operator of Goodnight (1978b) can be programmed

1
to leave R(S) instead of I in the central position of- w, (4.95).

ffbﬁﬂrwz we notice that thé'féllowinéﬁqﬂaﬁfitieé'éré”
easily calculated. If we éonsider U partitioned according to the
random effect structure matrices;

U= (U),0,...0

).

2 1

Then let a, = tr(U,'Mu;) i=1,2...q-1  (4.96) .

be the trace of the. _i_th block of U'MU. . o
Let b,. = tr(U'MU,U, 'MU,) i,3=1,2...q~1 (4.97)
1] J 1 1 J
-be the SS of all the elements in the iLjrth

block of U'MU. -

(Note: b,. = b..) . T
ij ij &
and let ‘ ) e
4, = ;MU‘U'ﬁF i=1,2 -1 A (4.98)
A A . .

_be the SS of %aements,igfthe"i th block

of UM Y.

D]
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These guantities can be- computed from W (4 90)
and, together with y'M y, are all that are required to form the 7
MINQE(U,I) equations. These equations can be formed and solved to - ;
provide the estimates. ‘ ) ?
In models like (4.80), we have ;
= - ' 1= - » = a ;
Vi = 007 i=be2eecanls VT U
and M) = (17s IM(c) = (1/s M.
Hence, elementy of g2 ‘(s)-are-‘ *
. ’ - B q HU I — - .
. sé tr(N(s)V N(s)V ) = tr(U MUiU 'MU )
7 = bij . ,j—l 2...q—l (4.99)
For j=q, the i,q th element for 1—1 2...g-1 is:
- ) r
-sgtr(N(s)V N(s)) = tr (M Vi M)
= tr(u; 'mu y (4.100)
v -1 :
= tr(U.'MU,) - E Cc. tr(U 'MU U 'MU ) (A 5d)
1 1 e J 0330 o - - — S R
=1 :
.= a, - ic.b.. © (4.101) - '
1 J 1] )
Finally, thé q,9 thtele@ent is:
. ¢
sé Er(N(5)N(s)) = tr Om) e -
=n - rank(x) - 2Zc {EE (U, MUY+ LY c;C tr (U{MU U, "MU,)
_ . ij i3] id . w
oo "
o v 3
(A.5e) (4.102) %
S | ' Y
= - - P T NEP Sk
.n p -2 ciai + ..‘cicjbij
- 1] .
é._ .
";\ o,
é
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For elements of Sq EU,I(E-)’

2 R, - -

sq YNV N(s)y = ¥ MOyV; My = dj of (4.98)  {4.103) o

i=1,2...9-1 ’
and for the g th element,
s.Y'NEN@EyY = y'My - . (4.108)

= Xjﬂi :'Xéiifﬁﬁiui’Mz = y'My + Zegdy (A.5f).

Note that if .8 were the correct value of 0, the generalized least

- squares estimator of the fixed effect parameters is: ,,7;,7” S

Bls) = (X'V(STIR X'W(s) Ty

qu(g)k‘(l/sq)H-(QTIX | R ‘
- Ry | | (4.105)

. which is available in W2

of (4.94).
Also the Cov(B) = (X'V()X) = qu(gi- S (4.106)

_is available in W, in view of . (4.95).
However §_7is only a prior value for the unknown 0. We

~OAN ~

expect a good estimate of B to be B(6) where Q_is.the solution to

the MINQE(U,I) equations (4.83). This ﬁalﬁe, together with an . ‘ |

AN

estimate of Cov(B(8)) becomes available in W2 if.wé start the

algorithm with 8 as prior value.

These considerations also indicate how the computing method

can be used to produce IMINQE(U,I) estimates (4.84). . This

algorithm can be used to compute these'values,_wheh convergence

"~ of (4.84) occurs. -
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4.3.5. MINQE without Invariance.

" For many models it is easy to find casés wherg Q(u,I,h)
- (4.20) is empty. For example, in model (4.23), with
h # (a,a) for a € R,,'Q(U,i,g) "is empty. 1In these‘situafions,
conditions of invariance or upbiasedness must be abandoned. - In either
r;case, the resulting~estimat6rs~depend onrthé-fixeaveffect pér@ﬁeter5~ S
and érior information about both § and B is required. The -

estimators will ‘have minimum norm properties dependant on the prior

information.

) . A ' A . . .
For . 6 a prior value s, such that V(s) is p.d., is required,

. . . =1
and for ﬁ_ a prior mean b and p.d. dispersion K can be

incorporated. : ¢ (4.107)
The mean is used to transform the model according to y - Xb. The

: - dispersion is used)xﬁa its inverse K, which is a precision matrix and

- - - - T e T i e e

is used with the norm (4.70) or (4.74), to weight the contribution of

3 the fixed effect parameters.

. If Arggtisfies the cijjitions for unbiasedness:

She P N TR

T X'AX = 0, tr(av,) = B (4.108)
g then the squared norm (4.74) becomes:
tr((A(s)ah(s) -T) (A(s)Al(s) -T)
+ 2tr(M(s)AxXxx'al(s)) 7 o (4;109)

Terms involving T in the expansion of (4.109) do not depend on A, as

~at (4.75) - (4.76), because of the unbiasedness conditions (4.108).

Also, because X'AX = O we can write the terms of (4.109); which do

not contain T as: i ' I




tr((vV(s) + XKX') A (V(s) + XXX")A)

= tr (RARA) (4.110)

R = (V(s) + XKX')
R is p.d. becaﬁse‘ V(E) is p.d. and XKX' n.n.d. Hence the gquantity

to be minimized over A satisfying (4.108) is (4.110).

Pringle (1974) gives an explicit expression for A*, the A

matrix which minimizes (4.110), provided Q(u,h) is non—eﬁpty:

Ats DGR - PEVEI®) R (411D

where
N o | : '
P(R) = X(X'R "X) X'R 7, R=(V(s) + XKX')
A is any solution of Hy(R)_=h

-1 S | _
HU(R) = tr (R (vi -P(R)ViP(R'))R vj))

which has the same column space as
S . G
HU’HU and HU(§) of (4.7 to 4.12).
Clearly —y'A*y € Q(U,h)

because tr(A*Vi)v= h, (since HU(R)A_ = h)

3
and X'a*X = 0 (since x'R'lp(R) = x'R.'l
and P(R R 1x = R 1x.)

If A is any other symmetric matrix satisfying (4.108), then

A = A* + B with B# 0 and

tr(BVi) = tr(AVi) - tr(A*Vi)r= 0

and X'BX = X'A X - X'A*X = 0
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Therefore (4.110) can be written as:
tr (RARA) = tr (RA*RA*) + 2tr (RA*RB) + tr (RBRB)
but

tr (RA*RB)

Z>\i((vi - P(R)ViP(R)/,')B)

IA, (tr(V;B) - tr(V.P(R)'BP(R))) = 0

Also tr(RBRB) > 0 since R is p.d. and therefore A* is optimal.

MINQE(U) given s, b and K is independent>of the model

T or D,

but not of the prior precision X in the norm (4.70) or (4.74).
K 'weights the contribution of prior knowledge about g relative to
© in the minimum norm criterion.

MINQE(U) given s, b and X of Y = h'6 is:

; = I\ (y-Xb) R'l(vi—P(R)viP(R)')R_l(y_—xg)
= (y-Xb)! A*(y-Xb) o T (4.112)
where - |
A is a solution to H (R)A = h,
R = (V(s) + XKX')
and Hy(R) = (tr(R_l(Vi - P(R‘)ViP(R)')R_le).

q

If K= 0, then R=V(s) and MINGE(U) coincides with LMVUE
. [ N

(4.33) for normal ﬁodels.

~ ~ ~

We can write Y as h'§@ where 8 is any solution to:

T H R = r R ' | (.143)
" where  r.(R) = (v -xb) 'R-L . : (v —xp)
where  ry(R) = (y -XB)'R(v; - PRIV;P' ()R L(L ~XB)
i=1,2...q)" ' (4.114)



Starting with B, = Db and 8, = s we can establish an iterative

process using (4.113) and

A

. = [} -1 Ty ~1 -
Bipgg = X' ¥ (:Qi) X) X' v (Qi) ¥y . (4.115)

"If this converges to-a value in the parameter space, it is called the

iterated MINQE(U), IMINQE(U).
Variants of ‘MINQE(U) are derived by taking K to be r21

or quivalent&y assuming E to have prior distribution with mean b

an& covariance (1/r2)I. The resulting estimator (4.111) is called

Y-MINQE(U) . — o e e

In an attempt to eliminate the influence of the fixéd‘
effects on the estim#tqr, oc—VMINQE(U) was defiped, (Kleffe 1977b), as
the limiting r-MINQE(U), as r tends to infinity when this limit
exiéts. Rao, C.R. and Kleffe (1980), reéort that <« —MINQE(ﬁ? coincides

with MINQE(U,I), (4.81), when th; latter exists. (4.116)

4.3.6. MINQE without Unbiasedness.

If we restrict'attentioh to quadratic estimating functions,

but do not require unbiasedness for‘y = h'g, we still haﬁe three

estimator classes of inte;est,.(4.2), (4;15) and (4;18); B .
Q = {y'a 1 Ab symmetric (A = A')} ‘ |

A' and x'&’\= 0}

A' and AX = 0}

Q (PU) {y'ay: A

n
i

and - Q(1) {y'ny: A

The optimal solution to the minimum norm criterion over these classes,

does however, depend on the choice of model structure and the natural

estimator, because we no longer have the condition tr(AVi)=hi,i=1,2..q,
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which made terms in the expansion of the norm involving the natural V i
estimators T or D become'indgpeﬁdent of A.

In effect, without unbiasedness MINQE takes into accouﬁt
the structure of the error term in the model (2;l6), through the
use of this structure in deriving the natural es£imatbr, (4.68): We
have, therefore, two cases to conside;; One with the structpred -
model (4.67) andrnatural estimator D of t4.68) and one with géﬁeral - L
model (4.71) and natural estimator T of (4.73).

However, noting that U* is a square root of V(s) in
‘the sense that V(s) = U*U*'  in the same way that V(s) = A(s)A(s),
we can wriﬁe C for U* or A(s) and E for b or T in (4.70) and

(4.74). Then the norm to be minimized is:

C'AC,- E, C'AX 2 ]
X'AC X'aX K
- tr (V(s)AV(s)A)-tr(C'ACE) -tz (BC'AC) — -
+ tr(EE) + tr(V(s)AXKX'A) + tr (X'AV(S)XK)
+ tr (X'AXKX'AXK) : (4.117)

This is minimized at A* in the unrestricted class of'éymmetric matrices
if and only if the cross product terms in the expansion, (4.117) vanish
for all symmetric B.

A*, which satisfied this condition.is given by:

A* = (V(s) + xkx') lcec' (v(s) + xxx)7l . (4.118) .

i)

We note that:
{A: A= A" and X'AX = 0} = {B - P(s)'BP(§): B =B'} (4.119)

and {a: &= a', AX = 0} = {N(s)BN(s): B =B'} (4.120)




Hence, by substituting A* + B - P(s)'BP(s) or A* + N (s)BN(s) for

. where

e e AP T a1 S AT REaTI IR AR

(Kleffe and Pincus(1974b) Lemma 2.4 and (2.15))

where

P(s) = X(X'V(s)X) X'V(s) "

"

[

and N(s) V(._s_')'l(I -P(s)).

<

A in the expansion (4.117)..and equating the. cross product terms to_ ' S B

zero, we can obtain expressions for the optimal A* in the.classes

0 (PU) 7and 0(1). These are: b

YX(CEC' -P(s)CEC'P(s) 'V(s) + XKX' Yotazny

and

A*(I) = N(s)CEC'N(s) (4.122) '
Then MINQE of h' 0 given s, b and K.in the class Q is: B
| (y -Xb)' A*(y - Xb) for A* of (4.118), (4.123)

MINQE(PU) of h'@ given s, b and K in the class (:j(PU) is:
o

(y -Xb)' A*(PU) (y - Xb) (4.124)
and MINQE(I) of E'_G_ given s, in the class Q(I) is:
A y' AX(D)y (4.125)

which is independent of b and K.
In the structured model ‘(4.67) , with natural estimator E =D
of (4.68), we note that;

CEC' = U*DU*' = Zdivi ' » \ (4.126)

. 2

In the general model, (4.71) with natural estimator T of (4.73), - |
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CEC; = A(s)T A(g) = LAYV, (4.127)
where A* is anf solution to "H (s)A* = h
and H (s) = (tr(V_l(g)ViV(Elej))

Hence MINQE without unbiasedness incorporates theﬁgﬁbwledge of structure

of the error term in the model through the choice of natural estimator.

From (4.125) and (4.126) we can obtain an expression for the

MINQE(I) of 6 in the structured model (2.16) as:

~

o ,,,,if,,fi,i,as,is,ilip i=1,2...@ £, (8) (a2
Qhere 4
Iy,18) = (y'N(s)V.N(s)y, i=1,2...q)"

For the general model (2.1), using (4.121), we can write the
MINQE(I) of € as:

8 =H (8)8 = E—U,I(-s—) (4.129)

Both (4.128) and (4.129) suggest an iterative procedure -

IMINOE (I) defined by setting s = 8. ' (4.130)
In section‘ 5.1.2, we see that IMINQE(I) defined.(4.l29) is the
maximum 1ikeliﬁood estimator under normality. The difference between
(4.128) and (4.129) illus?rates a failure on the part of maximum .
likelihood, to take account of the structure in stfuctured varianeé

component models.

Rao, P.S.R.S. and Chaubey (1978), considered MINQE without

unbiasedness as a means of obtaining non-negative estimates of variance

£
components in heteroscedastic regression models. In the more general

R

setting, developed in Chaubey (1980) and Rao, C.R. (1979), MINQE
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- given s, b and K and MINQE(I) giveh s are non-negative for non-
negative functions h'6.
.
4.4.  Minimum Norm Estimates of Variance Components for Example Data

Sets
Minimum norm estimates of the variance components were
calculated for the example data sets, described in 2.7. Estimates with

unbiasedness and invariance properties, were calculated using the

algorithm of 4.2.4. ' e

4.4.1. Data Set 1.
As with the estim@tes obtained by Henderson's Method = IIT,
3.4.1., all variates except LENB had negative estimates of variance

components, both for MINQEO(U,I) and MINQEl(U,I). For variable

LENB the estimates were; -

Table (4.1): Minimum Norm Estimates of Variance Components for Variable

LENB of Data Set 1.

. COMPONENT MINQEO (U, I) MINQEL (U,I)  IMINQE (U, I)
SIRE 35.945 - 34.805 36.646
SIRE X DBRD 60.067 52.901 55.293
RESIDUAL 756.300  759.226 758, 485

s bR X 7l ke Bl e
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The IMINQE(U,I) estimates for variable LENB, converged
after four iterations of (4.84), starting with the MINQE1 (U,I)
P e ' estimates. Exactly the same values were obtained with the marginal

e maximum likelihood method. Table (5.1).

4.4.2. Data Set 2. - —

For the data generated to follow the model for the cattle

breeding experiment, better results were obtained. The minimum norm

estimates for the ten variables are giveniin Téble‘(4.2).

Table (4.2). Minimum Norm Estimates of Variance Components for Data Set 2.

VARIABLE COMPONENT MINQEO (U, I) MINQEL (U, I) IMINQE (U, T)
SIRE 13.814 15.384 - 15.425
1 SIRE X DBRD 2.198 10931 1,935
RESIDUAL 8.662 8.222 8.221
. SIRE. 4.263 - 5.337 5.260
2 SIRE X DBRD  2.547 . 2.849 2.858
RESIDUK '9.763 . 9.278 9.280
SIRE 7.674 9.250 ~9.200
3 SIRE X DBRD 3.934 3.322 3.411
RESIDUAL 9.126 : 8.802 8.797
SIRE 9,847 1 9.908 9.910
4 SIRE X DBRD 3.258 3.015. 3.034
RESIDUAL  8.657  8.731 8.730

Table (4.2) contd.



Table (4.2) contd.
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VARTABLE COMPONENT MINQEO(U,I) .  MINQE1(U,I) IMINQE (U, I)

SIRE - 5.240 5.162 5.154

5 SIRE X DBRD 4,095 3.941 3.967
RESIDUAL 8.323 8.405 8.403
SIRE 7.462 7.995 "7.885

6 SIRE X DBRD 0.895 0.795 - 0.918
RESIDUAL 9.136 - 8.982 8.968 -
SIRE 8.061  8.864 C 8.871

7 SIRE X DBRD 5.257 4.533 4.550
RESIDUAL 7.162 7.154 7.152
SIRE 28.048 25.780 25.732

8 SIRE X DBRD 2.563 2.805 2.792
RESIDUAL 7.124 7.940 7.942
- SIRE -4.887 4.212 - . . 4.231 - -

9 SIRE X DBRD 3.596 4.039 4.016
RESIDUAL 7.813 7.876 - 7.877
SIRE 19.659 17.004 16.915

10 SIRE X DBRD 1.528 1.302 - 1.390
RESIDUAL 6.996 8.000 7.993

The IMINQE(U,I)

values agreed®with the marginal maximum

<4

likelihood estimates, computed with programme BMDP3V (Dixon and Brown
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v4.4.3. Data Set 3.

For the small generated data set of 2.7.3, the minimum norm
estimates, like the Henderson Method A III estimates, 3.4.3{'had numerous
negative values; _fhe negative values prevented convergence of the

iterative scheme (4.84), for IMINQE(U,I).

Table (4.3). Minimum Norm Estimates of Variance Components for Data Sé£”73.

N\

VARIABLE ESTIMATOR : VARIANCE COMPONENT FOR:
7 Rl RmR2 Rl XF  RL X RZ RESIDUAL

-~ MINQEG (U,I)  62.115  51.487 9.239  -13.473  5.107

) MINQEL (U,I) 43.630 25.083  -4.280 5.874 15.757

2 MINQEO(U,I) 22.151 21.841  -5.119 - 0.814  13.600

- MINQEL (U,I) 27.086 20.094  -3.880 4.211  9.857

3 MINQEO(U,I) 25.945 -10.052 . ~8.883  38.655  1.179 -

MINQEL (U,I) 17.706 -6.745  =7.160 21.048 12.271

4 MINQEO(U,I)  4.132 -9.867 ~-13.775  20.156 15.011

MINQEL (U,I)  3.575 -7.982 -14.498 . 17.834. 16.398

5 MINQEO(U,I) 11.115 14.769 -15.583°  21.240 11.687

'MINQE1 (U,I)  4.559 16.516 -18.561  19.204 15.815

6 MINQEO(U,I) 86.940 18.571  29.259  -25.721  6.245

MINQELl (U,I) 58.329 16.622 20.904 -6.757 8.964

7  MINQEO(U,I) 30.049 43.450  14.856  -26.841 11.865

R -~ MINOEM(Y,I) 18.709 23.302 13.479 -6.207 11 .518

Table (4.3) contd.
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Table (4.3) contd.
 VARIABLE =~ ESTIMATOR . . VARIANCE COMPONENT FOR:
Rl  R2 ' RLXF Rl XR2 RESIDUAL
- 8 MINQEO(U,I) 26.608 14.656  17.725 =-20.795  25.653
MINQEL(U,I) 34.005  3.239  -0.552 = I= 21.114
9  MINOEO(U,I) 84.012 14.212  -5.389 6.36 11.182
MINQEL(U,I) 59.474 '15.506 6.891 11:180 11.328
10 ~ MINQEO(U,I) =21.348 13.262  -0.971 -11.094  28.471 -
MINOEL(U,I) 28.182  9.791  14.676 ~ ~-10.453  20.044 -
8 RN
S
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- CHAPTER 5

Maximum Likelihood Methods of Variance Component Estimation

in Normal Models. = - o .

~"Maximum likelihood estimation of variance components

was examined by Hartley and Rao, J.N.K. (1967) and reviewed

. R v
1

by Harville (1977). -Apart from-the appeal of the-principle, -— -

it produces estimators with desirable’propérties. In

_particular, the maximum likelihood estimators (MLEs) are

cons#rgined to 1ieiiﬁ’the paiaﬁefefhgéééé éﬂd'hégégébBSitivé
parameters'cah only have pdsitive esfimates. Thus, at
least conceptually, ohe major problem of other estimating
methods 'is overcome. |

When d‘thebreticéliy ﬁfactab;e and practicali?-

. . ' I 3, .
applicable notion of a limit of size for variance component

models is ayailgble, therﬁ;ﬁ; éigéwhévérthérdeéir;bié
properfy of suffiéiency, conSisteﬁcy and limiting normality.
Hartley and Réé, J.N.K. (1967) and ﬁillerA(1977);vused
differen¥ notions of tbe»limit to obtain these reéults.

Where thése limit definition§ ére applic&ﬁle tovspecific-
models, the MLiappfbach provides some measure of the variance

of the estimators through Fisher's - information matrix.

Drawbacks of the ML approach are computational

diffitulties, the fact that the estimators may be. .
= s - :

unacceptably biased in some cases and the requirement for

assuming normality in the model. : - .
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. : “w\ The computational'problems'stemffrom two'édurces;
" Firstly, maximizing the likelihood is a conStrained non-"
* linear optimizatibn problem. The constraints are just that

the solution must lie in the parameter space.r The very
feature of ML that aliowé—conceptual solution of the

Ry . N

. negative estiqators‘problem now becomes a computing problem.

Secoﬁdly, no closed form solution seems ‘available, except’

for ]t;a‘Lé{ce d models and so iterative techniques.are required.

Further, evaluation of the likelihood féquireS‘the inverse

of the covariance matrix. This problem has been overcome to

’

R
.

some extent for structuredcmodelé with residual errors .
through the development of the W-algorithm, section 4.3.3.
Jennrich and Sampson (1976) ;éview the‘computing methods

available and havewproducedfa,pfogramme,ﬂﬁBMDEBVTthich:worksﬂf;ﬂ
for a'commoniy used range of models,(Dixon and Brown (1977)).

The pfoﬁlem of unacceptable bias in MLEs for some
.mbdels can be'viewed as a failure of the technique to fake
.account of uncertainty about the fixed effect paramefers. ‘
Pattejson and Thoﬁpson'(i97l and ;974) and later, Corbeil

‘and Searle (1976a) suggested maximizing the margipal or

infegrated likelihood of the variance components, MMLE; This

i “technique seems to perform well in practice, Corbeil and

_searle (1976b). .

Evidence of robustness of the MLEs and MMLEs to

i3

non-normality, comes from the observation that cages of
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iterated minimum norm techniques produce the same

estimating equatioms-for non-normal models as MLEs and

MMLEs do for normal cases.

e

-

Moder. Tt

normal distribution:

Y = XB = ¢, Cov(y) = ZGiV. = V(0)

y vV N(XB,V(8)), B € QB'

We also ‘assume ‘V(Q) is p.d. fo

is made about the sign of 0, in this model.

5.1. Maximum Likelihood Esﬁimation in the General Normal

We assume the iesponse in model (2.1) follows the

T

P

SR SRR S e
,

!
t
i
[
PR .
b
i

The log likelihood function of B and 6 for this

model is derived from (2.5) as:

2

L(B,8/y) = -nlbg(2m) -ngg(det(v(_e_))—_l_(xéxg)'v(g_) (y-x8)
. 2 - 2 : ‘

A A

and the MLE of B and 8 is the value (g,@

such that B ¢ QB and § E-QG and
,04v) = L(B, £ 1 , Q
‘ L(B Qf%) (8 Q/L) or all (8,0) € §Vx
- H B - .

5.1.1. The Maximum Likelihood Equations.

_:l»”v; I

(5.3)

.

Ry (5.4)

The general prbceduré_for”obtaining

. A A

expressions

for the MLEs, E and 8 of (5.4), is to equate the first

order partial derivatives of 'the log likelihood (5.2) to

Zero.
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This gives the set of maximum likelihood equations: (fiom A.6h).

x'v(gilrl XB = x'v(gily_ (5:5)
and er (v (9T 1V,) = (g-XB)'V(8) v,v) Tt (g-xB)  (5.6)
i=1,2...49
When these equations are all satisfied by values B and 6,
such that QﬁLQIWEJQBAKLQG,,then B and 6 are the MLEs.
Attempts to write (5.5) and (5.6) aé explicit exprgssiohs
for B and 9 fail. However, writing B(f) as a éolutiqn to
- (5.5) féfT§i€EﬁLf§; we have =~ = T s —
XB(9) =Ax(x;v(gflx)"x'v(971x = P(gix (5.7)
N and substituting this for XB in (5.6), whilebﬁoting that
. o _ . L
er (el v, = tx(v(ei v, v(eT V(e
=38, tr(v(8) tv, v (8T tv.) ‘ (5.8)
i J - i - J
‘'we obtain;
H (8)8 = EU,I(Q) - (5.9)
where '
. -1 =1 '
H (8) = (tr(v(8) v, ,v(8) vj)) ' (5.10)
£U,I(g) = (y'N(8)V . N(D)y, i=1,2...q9)" (5.11) .

Equations (5.7) and (5.9) suggest an iterative procedure
for obtainiﬁg MLEs, provided the system converges to values

in the parameter space.
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5.1.2. Properties of the Maximum Likelihood Equations.

The MLE of 0, is invariant to translations of

Yy by XB for ény ‘EE'QB,-since from (5.11) it is a function

of a maximal invariant N(8)y (4.16). In fact (5.9) is

identical to equation (4.129), which was the basis for
: defiﬁing IMI&QE(I) and hence in normal models IMINQE (I)
is MLE.

When f is identifiable, that is, when { Vl...Vq}

are independent, 2.1.1, H(8) of (5.10) has full rank, since
HI(Q) = TT', where T,q X n2 has i th row Vec'(ViV(gyl) and

1

independent and so rank (H(8)) = rank(T) = g. In this case,

’{V'...Vq} independent implies{ VlV(QYl...VqV(g)—l} is

the iterative procedure for solving. (5.9) can be written as:

~ A'_l .
Oe1 = F (80g 18 - e

One difficulty with the ML equations reported in Rao, C.R.
(1979) is that éven when ﬁg is identifiablé'in the model

(5.1), it’may not,Be in the model for a maximal invariant.

For example, in the model (4.23), Vl and V2'are independent,

but NVlN =‘NV2N. In such cases,<the likelihood function

does not have a maximum and‘solutiOns té (5.12) exhibit

functional.relationships, which may not hold for the true

parameter values. , N

The MLEs a¥e biased since, if (5.9) holds

E(_I;U’I(_Q_)‘) = HU'I(g)“g # H.(8)8 (5.13)
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where
HU‘I(Q) = (tr(N(g)viN(Q)vj)
ana () = (ex(v(Tlv V(e V)
If we define, an estimator by equating EU I(_6_)

(5.11) to its expected value after the spirit of the ANOVA
estimators, we obtain:.

EU'I(Q) = HU'I(Q)Q _ B (5.14)
.which is identical to (4.84), the defining equation for
IMINQE(S?i)rahéVQ{il be seen to be the marginal maximum

likelihood equations.

-5.1.3. The Information Matrix for MLEs.

One means of getting an estimate of the precision
of the MLEs, is via Fisher's Information Matrix, which is
the inversé covariagcé mﬁtri#rof #herliﬁiting dingiBﬁtion
of the MLEs. The nhotion of limits is difficult to formalizé
in variance componeﬁt models and it is not known in wh;t
circumstances.of model or data size the use of the Inform-
ation Matrix is justified.

Searle 1970) derives the Informé??gﬁzﬁatrix as:

1 (ﬁ_) = [x'veoTtx 0
"0 I(9)

— .

(5.15)

1
Lo
!
1

where.

(tr(v(Q)v.viB)v,)) = 1H (9)

1(8) =

N =




"

ML i s 20

B DS L

AR

e e e AN et LS L

oA R

b iR A ALl AL

CrtpmeEE ERRESTIRT S

‘

TfféchniQﬁ?s must be used. These techniques require the ,

7
This follows from the definition of the information matrix:-

the negative expectation of the second oréer partial -

derivatives. The derivatives are given in (A.6h). Z\~§

5.1.4. Computation of MLEs in Structural Models having a

. ..__Regidual Error.

Since- closed form solutions to the_ML equations | -

*

are only available for some balanced models, iterative

s

i

inversion of the covariance matrix at each step. The

computational burden of this requirement limits the
o + “ - )

préctical appiication‘of‘ML‘to structural models with

residual‘égrors, where inversion via (4.88) and,the W-
algarithm of section 4.343: aée available. -~
‘Several Fehhni&;é;”fof soi&inérfﬁéweqﬁééiéﬁg
(5.7) and$(5.9) aré“available,v Thé most direct, is to
iterate (5.9) and update (5.7), at eaéh cyéie. Miller (1979),
shows this method to be related to the FisperAScoring
Algorithm, but %eports difficulty in imposing the non-
negativity constrainté and ensuring that, Qhen the system
convergeé to a feasible solution,; it is a maximum of the

i

likelihood function.

Hartley and Rao (1967), Hartley and QaughnLK1972)

we

and Hemmerle and Hartley (1973), proposed schemes, while

developing the W-Transformation, which are essentially hybrids
, ] - .
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of “two classical methods of non-linear optimization: the
aNewton—RaphSOn and Fisher Scoring Algorithms. Jennrich and

Sampson (1976) and Hemmerle and Downs (1978), compafe and

develop hybrids of these two methods, which appear to work

&

well on many models. Jennrich and Sampson (1978) discuss
the combination of the two basic algorithms into a_ =

programme BMDP3V (Dixon(1977)). This programme takes

T

— ,
advantage of the scoring algorithm's ability to correct poor

initial values, and the Newton-Raphson ability to use the
quadratic form of the log 1ikelihébdjto converge quickly %//
from 'good approximate values. ‘

We cénsider computatioﬁ of éhe componénts required

for both'algorithms.' The Structured Mddel,with residual

error (2.23) has form:

L= XB 4 ULY P ULY, + .40 v 4 (5.17)
= XB + UV +e ' (s.18)
where ; ‘
Coviy) = v(8) = 8 1 (Y)
é H(y) = UD(y)u' + I .
D(y) = diag(yilqi, i=1,2...9-1)
Y = (el/eq,ez/eq,..;eq_l/eq)-' (5.19) N

If the values of B and 6 at the start of any

iteration are b and s;

let ¢ = (sl/g.q,...sq_l

/sq)' be the value for Y. As in the
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description of the ﬁ-Transformation, 4.3.3, we write H

and D interchangeably with H(c) and D(c).

-

Starting-with b, s and Wo of (4.89{, the W-

Transformation produces Wi (4.90), which is easily

transformed to W

2%
Wy = [u'y walx grale (-20)
x'itv x'E'x x'Elz
E'ﬁlU Eﬁlx E'ﬁlfj
‘where:  z = y = Xb and the transformation Is accomplishe
viai— -
z ity = yratu - prxtily
z'A'x = y'a'x - zrxr@Elx
and Efﬁli = x‘ﬁlx - ZE'X'ﬁlx + é‘x'ﬁlxg k5.2i)
Noting that V(8) = eqH(l) and using A.5a) and b), LI

provides all componénts'ﬁecéééa}ymio éﬁaiﬁéﬁé.tﬁé”igg.riimww
likelihood (5.3)
Hence the equations for the next estimated values and the
information matrix (5.15) can be established‘from W2.
We make the following notational definitions for

the arrays of first and second order partial derivatives of

the log likelihood evaluated at b and s:

and its first and second order derivatives.
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NOTATION ORDER OF » DERIVATIVE . MATRIX SIZE
DERIVATIVE WITH RESPECT TO:

I, 1 §‘ p x1

£§ 1 8 g x 1

SEE 2 8,8 p X p

Sep™ SEE 2 B:6 P x g

S X 2 8,8 qa xq

2§§§%§%§ - -
E‘S:s_E Expectation-of ‘Sﬁfgrwggt:f* g% q-

(5.22)

The forms of the derivatives are in (A.6h) and using the
property ﬁl(l) = eqv(gfl A.5 a) and b) and noting that

Vi_= UiUi' and Vq = I, we may calculate these components

as follows: k

T e
= 1
r, = (1/sy) x'iz ! (5.23)
- 2 =1 =l =1 LT
53 = (l/2sq) (z'H UiUi H z tr(Ui H Ui) i=1,2...g9-1
and for i=q: (lﬁZsé) (E'ﬁlg - E'ﬁlUDU'ﬁli—n +Er(U'ﬁlUD))
(5.24)
Spp = -(1/sq)x'ﬁ;X  (5.25)
2 =1 =1
S = -(1/s”) (X'H"U.U,'H 2) j=1,2...9-1
bs / q 595 z J q

1, - x'Atupuratz)

and for j=q: _(1/52) (x'H
q

(5.26)
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£ s = (1/2s7) tr(U.'HlU.U.'HlU.).

' ss q’ i i3 Ti

' - 3, =1 =1 S N _

i | (l/sq?vi H UiUi H UjUj H"z 1,]-},2...q_l
and for j=q: (1/2s2) (tr(u, 'Atu,) -tr(u, '"2lupu'ilu,))

q i i i - i
- (1/53) (z'itu.u, ‘itz -z'Atv.y, 'ArupurEtz)
g - i“i - - i~i -
L. 2 ,=l ol ,=l
and for i=j=q: (l/25q)(n—2tr(U HUD) + tr(U'H UDU'H UD))
- (l/s;) (z'Alz ~2z'#lupu itz +zAtupu Etupu ! 2)
(5.27)
Finally, o ) T T e
E ES  =-(1/2s%) tr(u,'Blu.v,'Alu,) i,3=1,2...q-1
ss q i i3 itomre
fo j=q: | = = =1
and for j=a: __(y 552 (¢r(u, '#'U.) ~tr(u, 'Atubu'iltu,))
a i i i i
i=1,2...g9-1
. 2 =1 21 =1
and for 1=j=q:=-(1/25q)(n—2tr(U H YD) +tr(U'H UDU'H U))

(5.28)

3 » . . . } . , e .
Having calculated the components of (5.22), for given values
of B and 8, b and s, the likelihood can be evaluated and new
estimates of the paiameters computed so as to incréasg the
likelihood by either of two standard methods.

a) The Newton Raphson Algorithm:’

; _ This algorithm computes new estimates 91 and s,
; from b and s, accordihg to:
B k L 721 E b_ :;é__?anid,é_, =g=- 6—_ ‘ ) (5 .}29)
1 WheFE,,(Siaifﬁf/fg the solu iog to:
= . ‘ % 7
SppSbs | [ Sb| = [ Zp | - - (5.30).

|Sentss | 8] | Es

wn
o
0
w

[
|
I
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b) - The Fisher Scoring Algorithm.

This method computes the new estimates b. and

21 .
by =k~ 4 and 5 =8 - 9 (5.31)
where
(§b'§s)' is the solution to: T -
S A
PR 0 _Q.E - E_P_
T I L (5.32)

5.2. Marginal Maximum Likelihood Estimators in the General

: Normal Model - MMLE,

. The maximum likelihood estimators are biased and
do not reduce to the ANOVA estimators in balanced models. =~
Corbeil and Searle (1976b), show that the bias may be
considerable in models with numerous fixed effect paramétefs.
~In an attembt to rémedy these 'deficiencieé', Patterson and
Thémpson (1971) and '(1974) sﬁggested maximizing the
1ikeiihood of'contrasts' of the response, which have zero
expectation. Tiit is, statistics of the data which are

invariant to translations in the fixed effect parameters. As

in 4.1.2, under the invariance principlé, we need only

consider maximal invariants By “where BX = 0 and rank B

(/\\\iéf n-rank (X) .

\ .

\ .o » .
As noted in 5.1.2, the MLEs are also functions of




A

3 a maximal invariant and Patterson and Thompson.(l974);'axgue.(

" that this indicates that the MLEs can contain no information,

; ~about 8, which is not contained’invthevlikelihpod'function L _,7 .

e

for a maximal invariant.

This procedure has'a Bayesian justification from =
¥  the péint of‘view of’mafginalizing'a poSterior"distribution#wM%ﬂwm~4Wf~
- over nuisance parameters[B-l-i-, In the classical approach’

orfiinary Lebesgue measure is used, in a Bayesian approach

= - - == =

otHer measures on the parameter space might'appear preferable.

Hence we refer to the method as'marginal maximum likelihood
estiﬁation (MMLE). It is also known as restricted ox

modified maximum likelihood estimation.

‘5,.2.1. The Marginal Maximum Likelihood Equations.

If By is”éjﬁaiihéi inﬁéfianf7(4.l75,ritihagi

distribution N(0, BV(8)B'), since BX = 0. ‘Hence the log

e prsom p

likelihood of By is: . (5.33)

L, (8/By) = ,-g_log(z'{f) —_;_1og(det‘(BV(_6_)B' ))—%l'B' (Bv(_e_)B'TlBy_

Differentiating with respect to 561 and setting the resulting

!
j
i
¥
3
i
¥
T

expressions to zero, we obtain the MML Equations: (A.61i).

71 ' = IRt 71 ' 71 ’ o
tr((BV(8)B')"BV,B') = y'B' (BV(E)B") Bvip (BV(8)B') "By s

f*ﬁﬁ e — (5.34)

Ai . Thesa,ﬁquatignsﬁaxg independent of the particular full rank

; maximal invariant used, since for any B with size (n-rank(X))xn

"having maximal rank and for which BX = 0, we have:
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B' (BV(0)B') B 'V(Q}l(Ifx(x‘v(gflxilx'y(gfl)=Vﬁ(g)
Searle (1979 p.27). : . : o (5;35)
Hence the MML equations aiei |
| tr‘N(g)Vi) = lfN(g)viNﬁg)x i=1,2...q (5.35)
or,-noting that N(8) = N(Q)V(Q)N(g)' we haﬁé:
tr(N(B)V,) = Z6_ tr(N(B)V . N(O)V,)
: L ] - 1. =]

~and the equation can be written:

Hy (88 = xy 1 (8) - a3

where T S T e e
Hy p(8) = (£r(ViN(B)V,N(8)))

and ry, ((8) = (¢'N(B)V,N(8)y,i=1,2...q)" (5.38)

We note that equation (5.37) is just;;he defining equation
for IMINQE(U,I) (4.84) and is unbiased in. the sense that

E( (6)) = H (9). ‘The MML equations also-reduce. to

r
u,I. = u,1 =

r

‘the ANOVA equations for balanced models. (section 5.3).

5.2.2. The Information Matrix for MMLEs .

- The Fisher Information Matrix is obtqined as-the
negative expectatioa of the log likelihood (5.33) and from
(A.61), is:

I (8) = (%tr(N(Q)ViN(Q)Vj)) - %ﬂu,1<g> (5.39)

This is the inverse of the assymptotic covariance matrix of

the MMLEs. Conditions of size or design. for thé models,

— . I . J
~ 4

which make I(g) aAreaSOnable estimate of I(Q) are unknown,

as in the case of the information matrix for MLEs (5.15).
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5.2.3. “computation'of MMLEs.in Structural Models having a

Residual Error.

Essentially the same_problems are associated with

~computing  MMLEs as were encountered with IMINQEs and MLEs. s

There is no closed form solution to the .MMLE equations
- : - “ . l, //—

(5.37), and p;itéyéﬁiyebprqcedurés must bé.QSed.7,Further;

the componen of the equations, or evaluatipn,df the log

~

likelihood, réquire the inversion of .the covariance at each

i ey

step. - Tﬁé éompﬁf&ffﬁﬁﬁimﬁﬁf&éﬁfdf*thfg;i&gfjféqﬁifément;>*
means that. MMLE is,not'feASibié'in large genéral modeié.
Rao, C.R. (1979) quotesréome‘special‘cases of hierarchical
'classification'ﬁodels ahd orthoéénal block &esiéné} whére
>the iﬁvérse is easy fo find3>'The moétigenéral.case,,howéver;

is for structured models having_a residual error (2.23); where

the inversion form (4.88) and the W-transformation of 4.3.3,

are available.v(Corbeilrand:Se;rle (1976a)5.

lDi‘-rect iterative'épplication of (5.375 dpes
-prodﬁce the-vMﬁLEs, wﬁen convergence occurs dnd'tﬁé limi£~
is in the pafamgter space. This methbé«is a simple iéération
Qf'the MINQE(U,I) algorithm_of 4.3.4. andvis ;écsmmended

by Miller (1979). Problems of slow convergence, due to

osciliating values and difficulty in applying the parameter

space constraints were‘encodhtered,‘as.inﬁMillér (12979) .

The first of these prdblemS'is solved By detecting

the occurance of'oscillation and taking a new starting value

x

between two oscillations.
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Bétter'pfoéeaures may be to use the Newion Raphson
or fiéhérrscOring Aléorithms to locate the maximum of the
ﬁarginai likelihood,rih;the same way aséfor MLEs 5.1.4.
AA:combinatién of thertwo is used by Jehnrich and Sampson
(1976) and (1978) in'the programme BMDP3V (Dixon and Broﬁn

(1977)). All componehfs required to computé the Second-

prdér paftiaiﬁéé;;;ativeér(A;Bii‘afe‘avaiiéﬁiériﬁ‘ Q;ﬁiét;b;AF>K“”
"fromv  e W-Transformation and W2 (4.90) qbtained'f;om W,
e V—ria——thgﬁgvger;‘p,:gg@;gicggg,,f, , S
5.3. Maximum Likelihopd Metﬁods for éal;ncédeariance
Component Moééis:w
= The'balanced variance component model (2.58),'ﬁas
:the'fofﬁ: ' 7 ’ |
s Yy =X + e - *;~ fg'f*~< ;w f~ff*~f~~.f~ ******** (5.40) .
) Cov(y) =L w.Q; = V(w) |
- " where
-Qi;'i=l,2.z.q‘are stméeric;‘ideppoteht-
and mutuallyrorthogonal;
and R(X) _ié invarianf to - 9. i=i,2.,.é;

The parameter space QQ is restricted by linear constraints

*c, and the parameters of interest are linear functions of w,

8 = Bw. -
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5.3.1.. Maximum Likelihood Estimation = MLES.
From (2.74), the log likelihood of model (5.40),
with the‘normalvdistribution assumptions, is proportional to:
q o ‘
B - [
Ix (8- B)”V(w) ~ f_l‘m.log(wi) + (l/mi)z NQiNz)
(5.41)
where - m, = rank(Qi), , T f).
For each W € Qw (5.41) is maximized at £ = 8 = (X'XTX'X

which is inde

With B takln
vanishes and

sum when:

W,
1

pendent of w.

g 1ts max1m121ng value, the flrst term of (5 41)

the remainder is maximized for each term of the

(z'NQ Ny) /rank(Q,) (5.42)

A
= W, =

i
These maximum liklihood estimators are biased by a factor of:

tr(

Thls blas can

which results

The

hae

NQ )/tr(Q ) =

(my= tx(PQ.))/m;

be appreciable when there are many fixed effects

in €T(PQi) being large.
MLE of 8 is §'= B,w (5.43)

eliments defined by (5.42).

?

5.3.2
If
,,,,,,,,,,,,,,,,,, and B'X =
- a)
b)
and c)
the

Marginal Maximum Liklihood, Estimation - MMLE.

B is n x (n - rank(X)) with full column rank

B' is a maximal invariant
B*'B Eés full rank,

R(B) is the orthogonal comélimenyrte R(X) and
refore B(B?BTIB"= N and B'N =

B', NB = B.(5.44)




In the model (5;40) with the normal distribution
assumptions, B'y v N(0, B'V(w)B)
Now, (3'v(wBi'= (B'8Y'B'v(w) B (55! ’ (5.45)
and det(B'V(w)B) = det(B'ﬁlaék(a'afla'v(g)a)

‘ =1_, .- =1 vl
However, (B'B) B'V(w)B(B'B) B'QiB = wi(B'B) B'QiB_
so that the eigen values of (BJBYlB”V(g)B are wi ~with
multiplicity rank«B'Ble'QiB) = tr((B’BTlB'QiB) = tr(Q,N)

because of idempotency. Hence,
q

det(B'V(w)B) = det(B'B) I
‘ i=1

rﬁa:miGri

where mi - ri = tr(Qi) - tr(pQ,) = tr(ng,).
. ) ¢
Thus the log liklihood is proportional to:
q . ,

_ s it .
ifl((ml ri)log(w;) + (l/w )y'NQ Ny) (5.46)
and this is maximized when:

~ e

wi = wi = X'NQiNZ/rank(NQi) » 7(514?)

which is just the ANOVA estimator (3.10) and hence is
the UMVUE.
The same estimators are derived from a logical

Bayesian point of view in 6.1.3.
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5.4. Maximum Likelihood Estimates of Variance

Components for Example Data Sets. LQ‘;

Maximum liklihood and margimal maximum liklihood
estimates for the example data sets of 2.7. were computed //~”
usiﬁg the programme 'BMDP3V (Dixon and Brown (1977)).

5.4.1. Data Set 1.

- The SIRE and SIRE X DBRD components were constrained
to be zero in all variables except for LENB and MASW which
had the following estimates.

Table (5.1): ML and MML Estimates of Variance Components

5
for Variables LENE and MASW of Data Set 1.

VARIABLE COM®ONENT ML ESTIMATES  MML ESTIMATES j?*x
SIRE 17.482 36.646

LENB SIRE X DBRD 19.166 55.293
RESIDUAL  753.831 758.485
SIRE 4.793 24.871

MASW ' SIRE X DBRD 0. 0.

RESIDUAL 565.151 576 .49

~~ The MML estimates for LENB agreed with the

”:iMINQE(d)I) "esgzﬁ%tesigf 4.4.1. The iterative scheme (4.84)

did not converge-for variable MASW,

k




5;4.2. Data Set 2.

" The ML estimate for the data generated to follow
the model agsumed fbr data set 1, were in good agreement
with the Hendersbn Method 1III estimates 3.4.2, and the
MINQE estifigtes 4.472. ~The MML estimates agreed‘exagfly

. with the IMINQE(U,I). estimates- of Table (4.2).

"Pable (5.2) ML Estimates of the Variance Comggn&nts ﬁQL~Q§t§r

Set 2.
VARIABLE VARIANCE COMPQONENT FOR:
SIRE SIRE X DBRD RESIDUAL (
1 9.684 oo1a7n _8.175
2 3.134 " 1.806 9.236
3 : 5.619 2.260 8.746
4 6.127 1.965 8.682
5 3.058 2.653 8.355
6 4.900 0.443 8.912
7 55398 3.121 7.110
8 16.227 . 1.793 7.900
9 . 2.489 . 2.675 7.835

10 10.671 0.808 7.943

The actual variance component values were 10.0, 3.0 and 8.0%":

respectively.
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The ML estimators for the small generated example

of 2.7.3, are given in the'following table:

ML and MML Estimates of Variance Componqﬁts for-

Data Seﬁ 3.

VARIABLE ESTIMATOR VARIANCE COMPONENT FOR:

R1 R2 Rl X F Rl X R2 RESIDUAL -

1 MML | 44.482{22.750| 0.0 0.0 16.749

. ML 31.656{11.782 0.0 .0 16.662

2 MML | 20.630|17.817 0.0 5.012 9.425

ML 13.889] 8.967 0.0 4.853 9.432

3 MML 24.136| 4.447 2.711 0.0 17.587
ML | 16.711} 0.857| 0.0 ~ 0.0 18.792 |

4 MML 0.606) 0.0 0.0 4.326 | 16.153

ML 0.0 0.0 0.0 3.360 | 14.922

5 MML 0.0 7.504| 0.0 15.613 | 13.063

ML 0.0 2.023 0.0 14.934 | 12.805

6 MML 50.959/11.849 | 13.811 0.0 8.605

ML 37.602| 5.825 8.925 0.0 9.117

7 MML 13.362/18.409 | 10.477 0.0 10.486

ML 10.959{10.314 6.174 0.0 10.920

| 8 MML | 28.903{ 5.869 2.358 0.0 20,895

ML ©19.668| 1.977 1.105 0.0 21.056

Table (5.3) contd.
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Table (5.3) contd.
VARIABLE ESTIMATOR VARIANCE COMPONENT FOR:
R1 R2 Rl X F Rl X R2 RESIDUAL
9 . MML |51.0497(18.300 15.289 | 11.187 | T
. ML | 34.268 | 7.945 18.785 12.821
10 MML | 29.412 | 2.256 .0 17.597
ML 19.523 0.0 A 18.920 )
‘N

The actual variance component values were: 30.0, 0.0, 3.0,

6.0 and 12.0 respectively.
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CHAPTER 6

Bayesian Approaches to Estimation in Normal Variance Component Models.

Bayesian inferences and estimating functions have not been

constructed for the covariance parameters of the general linear model,

(2.1), even for the normal case.

Lindley and Smith (1972) consider Bayesian influence for the

‘location~pazameters:éf~the;generai:iinearfmedei7fassaming:théfpovarlance*****"" T

structure to be known. Smith (1973) extends the ideas to models with
random effects represented as location parameters having a known
covariance structure. No Bayesian methods of estimating this covariance

structure are considered. Dempster, Rubin and Tsutakawa (1981) suggest

' estimating the covariance matrix of random effects by ML, or MML and

then using the Bayesian approach of Lindley and Smith (1973) to
estimate the lbcation parameters, They also consider an algorithm for
this purpose, the E-M algori;hm. '; , :.//a;
Bayesian estimation of covariance parameters has oﬁlf been
considered in simple models. Klotz, Milton and Zacks‘(1969), considered

balanced one-way classification models with a quadratic loss function.

" Zacks (1970) considered the same model with sqﬁared erro? loss, but

restricted the class of estimating functions to the set: -

{f(y) : £f(s(y + b)) = szf'(x) S8 >0, b€ .R“:} .

The resulting Bayes estimators are termed Bayes Equivariant Estimators.

Tiao and Box (1967), Box and Tiao (1973) and Sahai(1975),

A



~-— - ignore the constraints, while developing the prior and re-introduce them
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reference priors. Portnoy (1971) considers the use of scale invariant
loss functions for the balanced single factor classificatipnrmodél.
Results for the simple models do not generaliée well, but

do illustrate two approaches to the problem. Firstly, restriéting

the model, so as to provide tfactable'results and secondly, restricting

the class of candidate estimating functions.

Considering the first approach,‘that of restricting the model,

v

palanced variance component model (2.58) without any restrictions on

; ' ' \ . +
the variance component parameter space, which is taken to be Rq .

e e

"Classical approachesryield UMVUEs for these models. Rudolph (1976), 1

uses the conjugate family of ho;mal—Gamma distributions.

Fudolpﬁfs' technique requires choosing a normal-gamma prior density
~ for ﬁrathormedgxaigg§”of the -parameters- of interest:—The-resulting — - --— -3

posterior distribution for the variance components of interest involves
an expectation, which must be evaluated for each model. The practicality ’ 4
of the results is severely limited by these difficulties, together with ~
the loss of applicability, “due to ignoring the constraints in the
parameter space.

We will consider balanced variance component models and derive

non-informative prior distributions from the logical Bayesian view

- developed by Villegas (1977a and b). Like Box and Tiao (1973) we

by truncating the posterior distribution. The logical prior turns out

to be the same as Jeffreys' prior, used by Box and Tiao (1973), for .




special cases qf balanced classification models.

’The second approach to Bayesian estimation, that of
restricting the class of estimating funct}ons and minimizing a Bayes
risk, simplifies the problem of choosing a prior distribution in many

cases because the risk associated with certain classes of functions,

" depends only on the first two moments of a prior distribution. Kleffe

~

and Pincus (1974b) and Kleffe (1975.f consider the structured

variance component model without the assumption of normality. They

éhow that the risk ;;;ociated with unbiased quadratic estimators under
squared error loss, depends only on the first two moments of therprior
distribution and the first four mohents of the responée distribution;
No readily applicable forms of the estimators appe%£\£§>p¢‘available.

We will consider the general normal moael and some sub-

classes of quadratic estimating functions.

6.1. Bayesian Inference in Balanced Variance Component Models.

-

The balanced—variance componenf model, (2.58), hasl»thezfofm;

y=x8+e A . (6.1)

Coviy) = V() = Zw,Q | | e
where ﬁ .

Qi' i=1,2...q are symmetric, idempotent and

__mutually orthogonal ; , (6.3)

R(X) 1is inﬁariant to QiL>X=1,2...q ) (6.4)
_ 4. : : 3

The parameters of interest are linear functions of ¥, say ‘E = Bﬁﬁ,

We consider X to have full ¢cdlumn rank. If this is nqﬁrphg case, the

-
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original model can be re-parameterized to make X have full rank. The

. parameter space of W, Qw is a subset of Rg +» with linear restrictions

c:f{ B,w =0 >0, BW = 0} . In some applications, (Box and Tiao (1973)

2

Ch. 5 and 6), B2 is void and ‘B19'>70 reduces to:

0 <w_ = Wy qS - Sap - (6.5)

. From (2.74), the likelihood for model (6.1) with the normal
distribution assumptions is proportional to:

a -~-mi  ___ g e

‘ AR —m e N T _*4‘?2 e
CTwgexpl X /20y NNy + KB - BT, 66
=1 i=1 o = .
where mi = rahk(Qi), B = Xx'xylxix_

6.1.1. The Multi—Gron Structure of Balanced Variance Component Models.
The Sample space of modelb(G.l) is Rp. We consider the set

G of transfermations ofrthis'sémple space defined by: - - - oo e e
SN @) = VY Paerdt
g¥/M(y) = vy + XY for .Y €R ,A €R (6.7)

‘where

C V(A) = ZXlQi. ' ’ ¢

V(MDy = V(}) XB + V(A\)e and "R(X) being invariant tor V(A), means

5

that V(A)X = XB(A) where B()\) = (in()‘('xflx'Qig{ from (2.63)and (2.64):

et G={g (y, ) : y €K, A € g™} (6.8)

Then for g, and g, in the set G,

90 91(1)"=”V(§2) V(Al)x'f,YFAQ) Xy, + XY, = g3(y)  (6.9)

where; gy = 9(13 2\.3) with Y3 = B<2‘-2) Xt Yo

and ‘ Xy = (O30 i=1,2...9)°




iGand

e R e £

The set G with the binary operation, 9,0 9 defined by (6.9), is a

. ar
group. Closure follows by observing that Y; € RP and 2\_3 ¢ g%, so

3

that 95 € G. Assqciativity follows from the mﬁtual orthogonality and
idempotency of Qi+ (6.3), which allow V(_)ll)' and V(>‘.2) and
therefore, B(Al) and BQ—Z) to co@nute. The identity element is
g‘(Q,* 1), since V(1) = I by (2.67). The inverse of gy, M is

g(- l, _>;1), where _);1 = (l/Xl., 1/ .l/kq)' € Rq+.

2'°

G induces a homomorphic group Wiigrfﬁrtvxjapisiforma};ions of

. : P + A : .
the parameters in the space R x [Rq . This is thé)parameter space if

wé ignore the constraints.
G= {3y, M : y e, x e  (6.10)
g, D) (B, w = (Brw*)

“

B* = B(A)B + Yy and E*,: '(Ai w, , i=172...q)'

The model (6.1) is invariant to G, in the sense of Villegas (1981),

meaning that, if y has distribution with parameters _B_ and W, then

9y My has distribution with parameters gy A) (B,w). (6.11)

This follows from (6.7):
g(¥, Dy = V(A y + xy

= V(_{ixg + XY + V(D) e

1l

XBA) B+7Y) +v(d) e - -

?

= 'Xé* + e*

and  Cov(g(Y, My) = Cov(e*) = V(MV®WV()

_ A o 2 _
= EZZ AikjkainQk }Z( Ak wQ by (6.3) = V(w*)
13 k
‘ (6.12)
s
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It "is’important'to note however, that-the transfor;ned parameté.fs may
violate the constrgints (6.5). Some.consequences of tﬁis will be
considered in subsequent ‘sections. However, if we ignore thev constraints,
model (6.1) is invariant to _G and hénce a statisticél G model (VillegasA
(1981)). |

We are interested in. separate inferénce,,aboﬁt g and ( and 'so we fackor ... oo
G iqto subgroups: ' ‘ p o i A 3

G = G, S - ; (6.13)

where G, is- a direct product o;} groups G, for 1i=1,2...q.

where; G, = {g(O,p_i) : E)i= 1 except for component . i
which has value Xi > 0} "' » , - ,‘ (6.14)
and GB.=‘{g(xL;): Y €R) , | " (6.15)
GS is isomorphicrto the grc,)uP,,’,‘?f,,,tr,anSIat,J:‘,c,’lPs,, of’”iﬁ:'iip ,RI?{,,,,S?.:?C? -
V(1) = B(l) = I.- Gw is isomorphic to the direct product of q

groups of multiplication by positive scalers.

G factors, because GB and Gi are subgroups of G and

9(0, p;) x g(0, py) x ...x (0, p) = g(je-»}y €c,

and QW(GI}ET“Q 1L = 9@,M €6 (6.16)

With the factorization (6.13) and thé invarian_c to. G, we have a

statistical bi-group model (Villegas (1982)).
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6.1.2. The logical Prior Distribution.

Box and Tiao (1973) consider examples of balanced

classification modéls and derive Jeffreys' prior for B8 and w,

\

aSsizigg\?ndependence of §_énd w and ignoring the constraints

on ” (6.5). Under the same assumptions, the balanced variance

cdﬁponént model (élii;ii$‘a s£é£{§£icé1 bi-group ﬁbdéi;wégh'

3 developed-in 6.1.1. Following the principles of loéical Bayesian

-

inference for multi-group models (Villegas, 1981 and 1982)) we will
derive the . logical prior, which turns out to be identical to
Jeffreys' prior:

- T8, w)yd dw = I (1/w,) dBd w _ ~ (6.17)
i=1 i a

While this prior assigns positive probability to parts of rZ + known

- to be impossible according to the constraints (6.5), it does provide

tractable results and the constraints can be' conveniently re-introduced -
¢ L

by truncating the prior or posterior distribution and dividing by a

nofmalizing factor as -in Box and Tiao( (1973) p67).

Two principles are used in-deriving logical priors
for statistical multi-group models. An invariance principle (Villegas,
; - (1977a)) and a conditionality principle (Villegas (1977b)). .
L, :,' B

.The invariance principle states that the prior, representing

ignorance, should be the measure on the parameter space, which is

3

-

invariant under the action of the group E', to which the model is also

in@ariaﬁé. (6.10). The intuition behind the principle is that

ignorance priors should only represent information about the parameters
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which is contained in the model. In a group model, this information —_— -

has been expressed by the invariance of the model to‘the group of

transformations. The prior, therefore, should also be invariant to

this group. In our situation, we have ignored information contained

“in the constraints (6.5), in order to develop the grpup structure.

ﬁheniinference is required separately for different subsets

, - . . ' :
of the parameters, anomalies may occur whereby conditional inferences,

e Ainvariant~under~ﬁééggisfthégconstantgfunctiontgﬁgfd§j4=?d§4444f67i8¥4

by stgrtiﬂg with a model ﬁgving the appropriately redﬁcéd’parameter set.
;The éonditionality principle states that the logical prior should avoid
égch anomalies.
In multi—gro» models a set of reduced models can be obtained

by repeated conditioning of the full model on all but oné of the

 parameter subsets of interest. These reduced models are invariant to the = -

\appropriaté;trénsformation sub-group. Viilégas (léSZ)Lshows that, in
this situation, application of the conditionality pfinciple results in
the logical prior being the product-of fhe logical priors for @éch ‘,~
redﬁced model.

The first sub—mbd gaiconsider is (6.1), with w known. This
reduced model has parametér B and is invariéht'under GB (6.15), the

' . P A .
group of translations ih R .- This is a location model and the measure

B8
____+ The other sub-mod

B 1is known. This reduced model is invariant to Gw (6.14), a

direct product of ¢ groups of multiplication by positive scalers.

at - . ]
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. The measure which is invariant to this group, is the product

E a : .
i .
' ng(dg) = T (L/w)dw, . | (6.19)
i=1 ‘ ' _ ‘ i
Hence the logical prior for the bi-group model is (6.17), which

corresponds to the prior derived through Jeffreys' rule. (Box and Tiao

’

S(1973)).

ToeTTTTTTU6:I03. T T The Posterior Distribution

The joint posterior distribution is obtained as the produc£
of the prior (6.19) and the likelihood (6.6). Th? constraints (6.5)
are reintroduced, either by truncating the prior or the posterior, as is
done in the method of Box and Tiao((1973) p 67'and.p 279) . The posterior

differential is proportional to: -

% wfmi/ze f{- 'NQ,Ny/2w, } (1/w,)dw
i=1 Y5 xpi-y ' NQ; i 179

‘ x exp{ ~(1/2) [Ix(8 -~ B) ||2V(t_u_)} as

. for 0 < Oy S0y S S0 . _ (6.20)

! | where m, = rank (Qi) = tr(Qi).

Hence, conditionally on 9; 8 has a normal distribution. Integrating over

- - QB and using (2.70), we obtain the marginal posterior of w with

for 0 < Oq S9g-1) T... 59 ' (6.21)

where: r, = rank(?Qi) = tr(PQi) A _ L

hence, m - I, = tr(Qi - PQi) = rank(NQi)-'

Sl

Byl
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From this joint posterior, we see that, ignoring the
constraints, the w,  are independently distributed as inverse - .
chi-square random gquantities, (Box and Tiao (1973) p 88). That is:
, . s ‘ _
, N oyt , " i =1,2... . .
w, v y'NQ.Ny Xrank(NQi) for i =1 -q (6.22)

~

;[)ggogjlngj;he“g"g‘o%straints ; the mode of the distribution (6.21)

occurs at w with components;

w; = y'NQ,Ny/(rank(NQ,) + 2) (6.23)

The mode of the constrained distribution will occur at the same values,

w; s provided they.do not violate the constraints in (6.21),in which case

the mode occurs at a boundary of the parameter space.

The point estimator w (6.23) suffers from two disadvantages:

Firs{ly, it is biased and does not coincide with the MMLE (5.46) which

is UMVUE (3.10). Secondly, it will not be invariant to transformations

-

in the way that maximum likelihood estimators are. We will generally be
interested in transformations: of w. The reason for these disadvantages
is that we have maximized the derivative of the differential (6.21) with

respect to an arbitrary measure, the Lebesque measure. This measure is

arbitrary in the sense that it is not an integral part of the model, and

is not relatively invariant under power transformations of the parameters.

The natural measure for the parameter space Qw is the prior (6.19) and

maximizing the derivative of (6.21) with respect to this measure results

in estimators which avoid the two difficulties. This derivative is:

q -(mi—ri)/z, ‘ ‘
Jowg exp{ y'NQ. Ny} , ' (6.24)

which is just the marginal likelihood (5.46). Its maximum is attained
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at the MMLE (5.46), whiéh are also the ANOVA estimates (3.10) and are
UMVUE.
This provides an interesting justification of the Marginal

Maximum Likglihood approach, which can be extended to the general model.

6.1.4. A Bayesian Approach to Marginal Maximum Like&lihood in the

General Normal Model.

."(***”"*”“AﬂYfPfi°¥:diStfibﬂtiGﬂ?ﬁﬂFffgiﬂﬁFﬁ?fﬁ”tﬁé*géner&iiﬁéaéiffifff?~‘ e

which specifies a uniform measure for B and prior indepehdence of B and

9 - has the form:
m(df)dg
If the model is parameterized so that X has full rank and the likelihood

' factored as in (2.6), then the joint posterior is proportional to:

"

det (v(0)) et (X' V(87 X)
yP/2

exp{-(1/2)g'N(O)y} m(d0)

-l "2

x (2m det ( (X' (v(gilx) )" exp{-(1/2) ]| é(_e_) - 8 1} ag

(x'v(8) )
(6.25)

Hence conditionally on 6, B is normally distributed, and therefore the {/
first term of (6.25) is proportional to the marginal differential for
6. Maximizing the derivative of this with respect to the prior measure,

;] ' :

n(d8) provides point estimatbrs of 8 even when the form of the prior is

unknown. These estimators must satisfy the equations:

tﬂdrwﬂﬁmwgf%wﬁﬁ)+uwgf%);rmy%m@x

or

tr@)V) = y'N@VNE®)y i=l,2...q (6.26)



These are just the marginal maximum likelihood equations (5.36).
. _ v ,

6.2 Bayesian Estimators in Restricted Classes of Functions.

The problem of finding applicable prior densities, which. give

rise to tractable posterior forms, remains unsolved for the general

model.” One approach that has been considered however, is to

investigate the e¥pected‘risk under squared error loss over classes of
T *ffst:tmat:irig’”ﬁm*cffﬁéi' ~ Portnoy (1971) considered the one-way balanced

model. Harville (1974) showed that,fpr the general normal model,

Lconsideration of functions invariant to translations in the fixed effect

parameters, meant that tﬁe pésterio? distribution is independent of C

prior knoﬁledge of the fixed effect parameters. Kleffe and Pincus (1974a)

consider the normal variance component model:

q
Cov(y) = v({8) = I 8,V, o ‘ ) (6.28)

5*4

v

together with claéses of unbiased and invariant qguadratic plus linear
» functions. |
In some classes of quadratic plus linear functiens, the
expected risk‘ under sqL_lared error loss depends only on thé first and

second moments of the prior distributions. We consider the prior

information to be summarized by independence of £ and 8, together with: .

e
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E(B) =b, E(BB') = KK'
E(©) = &, E(8 0') = MM . (6.29)

wheré K and M have full column rank.

M can be partltloned‘by columns M = (El' 22...§m).

6.2.1. Estimating Functions with Bayes' Risk Determined by the First . "

Two Moments of the Prior Distribution.

- Letﬂﬁlftgsun%ggmiox~oize&Ehmﬂxms:for~ﬂr&inear£yfcw—;—ﬂ~
indepéndent functions, Efig_i=l,2.;.r of the variance. or covariance
components. The risk matrix under séuargd‘error loss for pa:tichlar

parameter values, f and 8 has ;{jfth component :—

5= Ez(gi—'éi'éj(gi - Qj'g)'i,j=l;2;..r (6. 30)
yhere 7 '
o/ Ez*denotgs egpecéatioﬁ“over'théfdiéffiﬁﬁtiéﬁ'dfr'i; - o
'»fherﬁayes risk is the expected‘risk'over,the prior
‘aistribﬁtioh of B and B: o
| ' ’ (6.31)

?étg (rij) i,j=1,2...r

Restricting the estimating'functions g; to be in the class:
oL(ey) = {y'ay+a'y : A=a', X'AX = 0, a'X = 0} (6.32)
which haﬁe bias independent of the fixed effect parameters, the Bayes'

risk is determined by.the first two moments of the prior distfibution.

and is independent of the functional form,apart from independenca of

B and 8. This follows by considering the form of risk for functions

in QL(PU).
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. ,~ where m is the k th column of (6.29).

rij = Cov(X_'Aiy_, y_'Ajz) + Cov (_a_j'z Y Ay

e

+,COV(_a.'.i' yy' Ajy_) + COV(_a_i' -Y-X',aj) ' : B o
' +(tr(a; V() - h;'8) (tr(Ajv(_e_)') - gj'_é_.)'_',, ,'(6.33‘) ) | ’ ;
Thls follows by considering the covariance and product of ‘bias‘, separate- ;
‘ly with (3.7) and the properties of A and a (6.32). Using (3.14) amd ]
k3.’15), the forms for the covariénces, we obtain: ' i

r,, = 2tr(A.‘V(9)A.-V(9)~) + 48'X'A.V(6)A . XB
ij i =3 =" - i = 3=

+ (tr (A, v(Q)) - 241'9) (tr(AjV(_e_) - gj'g) (6.3_4)

Taking the expectation over _B_, we note that the second term is

4tr (a,v (_9_)AJ.XEB (B B")X'). For expectation over 6, we write each

term as a sum % zeiejf,(vi,vj) or “Zeif(Vi) " of 1i_.neaﬁ: functions of

ij 7 i

the known matrices .V, - and-.V,. - --From {(6.29), we note- tha&:J\ e
1 J i 4

m

§) ri .. B = .
E_G_ iej can be written as: kglmik mjk where M (mik) Also,

| E(Gi) = si, 1=1,.’;...q.

Hence (6.44) becomes:

g, 01y’

n :
kEl(Ztr(AiV(l_lk)AjV(gt)) + (tr(AiV(gl_k)- b—i'g‘:) (tr(AjV(gl_k) —l_l,j'glk))

24
I [

+ 2 a,'V(s)A.Xb + a,'V(s)a . (6.35)

+ 4 tr(B,V(s)A,.XKK'X') + 2a.'V(s)A,Xb
i =g —/i—
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Although the Bayes' risk (6.35), is ihdependent of'thé
' fuﬁctiohal form of the prior‘distribution, there appears to bé no
workable, or enlighteni;g, solution to the problem of minimizing
(6.35)vover Ai.and'Aj;‘satisfying the conditions of QLKPU) (6.32).
The prdblqn ig similar to‘that of obtaining MINQE(PU) (4.124), but
- we #oticewthatmin ﬁhefﬁayésmeaée;~we ére optimizinéfovef ;mr+ll~priorw+~w~fW~ -
values o s k=1,2...m anci gW’and =Te) f:he resulting estimator

should have good minimum norm properties over a wider set of

— - =

~ parameter values than the MINQE estimator.

As in the case of MINQE, the fﬁnctional forms can be

-

restricted to subsets of QL (PU), while maintaining independence from I
the functional form of the prior. Kleffe and Pincus (l974é)'considered

Bayes' Quadratic plus linear unbiased estimatots "BAQLE (U, Ei' i=1,2..r).

¢

The minimization problem reduces to:

n
z

o 2tr(Aiv(gk)AjV(mk')) + 4tr»(AiV(_§_)AjXIQ<'X) - :

1

“

K X .l ; -l j
+ 2§j V(s)A;Xb + 2a, V(E)ijg_+ a; V(E)Ej (6.;5)
with A a; satisfying requirements of QL(U,Ei) and similarly for

A.a,. Kleffe and Pincus (1974a) derive conditions for A.a,, A.a, to
33 : i— i g

<

exist and be optimal and conclude that it is sufficient to optimize

for each function hi'g_ independently.

If invariance is required of the estimators then AX = 0 and

the optimal value of a 1is zero, so.the minimization for BAQE(U,I,E),'
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the Bayes' quadratic unbiased and invariant estimator, becomes: .

m : ‘

Py tr (AV(m ) AV(m )) (6.37)

k=1 = - T '
sﬁbject to A sétisfying conditions for Q(U,I,h). This will exist
‘provided Q(U,I,h) is non-empty, (4.21) and minimizing each term

e e LY of A he-gum-is- the 'MINQE(;U,I—,'E)* problem-of 4.3.2. - S e

< S R B |

.
2,
,,,,,,,,,,,,,,,,, e
—
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CHAPTER 7

' Linear Estimation of Variance Components in Derived Models.

In 2.6 we observed that quadratic estimation .of covariance

parameters in the general model (2.1) is equivalént to linear

‘4

. estimation of location parameters in a derived model: .

g=x0+e o - (7.1)
] _ with - | o
Co_v(;'_) =F
where

;;_ = Vec‘((y_ - XB) (y - Xﬁ)") = (y - XB) @ (y - X_B_)'
, X = (Vee(V,), Vec gvz).:.Vec v )
E(e) = 0O
- F.__is the n,zx,,n,z;,;,,mbat;rix ,of,fou;;;kLQ:der ,ggnﬁa,l,,,,,,,,, e —
moments. | .
If we further restrict est;imatdrs to invariant quadratic forms in Yy,
) ‘ ~ we need only considér functigns of a haximl_invariant. Ong such
Z invariant is Ny v'w‘h-ere N7= I - X(X'X)X'" and thén we }}ave deriredm
g model (2.91): |
f | Ty = ;(N__ + _;N | . C(7.2)

with

COV(XN) = FN = (N® N)F(N ® N)

b i S i
|

RN e Y
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where Iy~ Vec(Nyy'N) = Ny ® NX

1

N®N X.® Yy = N® Nx
XN = N®N X
and E(EN) =0
As mentioned in 2.6, difficulfies with these derived models include

deallng ‘with a restrxcted sample space and compllcated covariance
structures, F, which,vin‘general, are functions of B and 6.

U51ng results on 11near estlmatlon theory, several researchers

have derived quadratic variance component estimstors with various
optimal properties. Pukelsheim (1976) demopstrates the equivalence
of minimum mean squafe error and minimum norﬁ for quadratic estimators
to best linear estimators in the derived model. Pukelsheim (19775;

applies the best linear estimation results to the structured variance

minimum variance estimators amongst quadratic and quadratic plus linear

» functions. They make extensive use of dispersion mean correspondence.
I3

Drygas (1977) and Kleffef%i con51der best simultaneous estimation

e
,z

of location and coydrlance paf%meters.
¥

4

) . J R

7.1. Ordinary Least Squares Estimation in Derived Models.

The OLS estimator of, § in model. 7.1 isg the selution to:

~ o~ A ~ o~

component model. Gnot, Klonecki and Zmyslony (1977}, consider uniform .

o L XX 0 =Xy : S : (7+3)
L ) o or ) He == £ . y ¥ . s (7.4)
‘where H= ((trace(v V )) =(vec' (v, )Vec(v )) = X'X by (2.78).

It has full rank if 0 is identifiable, 2.1.1.



—— o . 167

~ o~

and . r = k(x_— XQ)'Vi(x;- XQ), i=1,2...q9)' = X'y.

This estimator is not known to have any desirable properties, unless
B were known, when its'only property appears to be unbiasedness, unless % X¢
F is proportioned to- I.

With the inclusion of invariance, we can use OLS on model

(7.2) and obtain the MINQEO(U,I) (4.85) estimator, since;

XN'XN = (Vec' (ViN)Vec (ij),)

P el mifgﬁﬁ;,77WJ:EW(in:Uivibueil)f;E:;%irI,JALEZlQEﬂﬂ~~ ———

&

~ o~

ity = QNG L2y

Hence the OLS equations are;

A : -

Hy1 27 Zy,1 , (7.5)
with Q_having-minimum norm at the value of 8 ¢ Qe, which makes

v(8) = I. This value is (0,0,.;.1)' for models with a residual’error.

.
7.2. Generalized Least Squares and Best Linear Unbiased Estimation.

For any linear model: ,

y=x0+e o | o | 7.6)
with  Cov(y) = F. - an
A GLS estimate of 6 is a solution, é_ to the equationsi
. N X'F xa = X'F v (7.8)/

&here F  is a generalized inverse of F.
Zyskind and Martin (1969), give a Generalized Gauss-Markov

theorem to the effect that 6 of (7.8) is the best linear unbiased -




o 7 » T ) 1b8

" estimator pf @_, provided F beldngs to a specific ciass of
‘generalized inverses of F.
In the particular case where R(X) € R(F), thié class
- .includes avll generailized inverses. (Zyskind and Martin (1969) Cor.(1.1)) .7
Searle (1979) gives an equiva.lent condition .for R(X) € R(F) as

FP X -=- e SR <. -5 S

b ¥

Y " N(XB, V(8)) where V(8) = IV, o (7.10)
we have seen 2.6.5, that the covariance of the general derived modei is:

F= (V(B) ®V()) (I +1 ) ' (7.11)

(n,n)

Using the properties of the Vec-permutation matrices (2.84) to (2.86), .

. ¢ : A" '
it is easy to show that a generalized ‘}inverse of F is given by:

F o= /8 vievia+r ) (7.12)
(n,n) ,

where V is written for V(8).

Furthermore,
FF X - /masr  Ivew vievhaer, X
= @Ww2ya+rI ) X |
-_-'); s.'ince I(n'n“)Vec.:(Yi) = Vec(Vi) by (2.?5).
’ (7.13)
e Wﬁandhhence_the_solution,;_el\__to_the_erpaations*
] FFX6 = XFy - (7.14)

is Ehe BLUE of g.
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These generalized least squares, (GLS) équations, reduce to the ML
equations when we estimate"é_by the GLS estimator in the original
model:

e

The equations (7.14) are:

,~| -1 -1 ~= g ~' ! A . ‘~'
A R L e L R TR

But $ince

I, X = X (2.85), these reduce to;
(n,n)

xovlevhx=xw'e v 1yvee((y - XB) (y.~ XB)")

(7.15)

Also,

Vec! (vi)v'1 ® v lvec (vV4) = Vec! (v"lviv'l)Vec (V) by (2.77)
Ve = tr(V-lViV_]'Vj) by (2.78)  (7.16)

-

and Vec'(Vi)(V_l'g V_l)Vec((x'- XB) (y - XB)")

= tr (v_lviv'l(y_ - xB) (y - XB)")
L ,,,,,,,,,,,;,,cx fﬂg)iiflvivj(x:,xg_)ﬁﬂwf_ufllyW*ff: S

Substituting the GLSE of XB in (7.17), we obtain{ A

XB = x(x'y(gflx)—x'v(g_flx = POy | (7.18)
and | » .

. ' ¢ o _ .

(y -~ XB) = (I - P(@)g~ - e \
Hence the GLS equations are _(7.18) and v_

H (8) 6= EU'I(Q) ' (7.;9)
where =

—

SE— —fmrff*f*fifﬁgkrttr(wg%lv;v@%lvj N ii=L2og

L

Ly, 1@ = ¥'N@VNO)y, i=1,2...q)"




simultaneous . BLUE of _B_ and. 0 in the derived model is ML

estimatien in the "o'ri'ginka'l normal model.

- ' ‘\
170
S v
o - B _
- C : -1 -1 ‘ \\
~ and N(®) = (T - P (Q_)W(g) =v(@)(x - P(O))
~which are exactly the ML equations (5.7) and (5.9). 'Iﬂ'lence ‘ %l *

e it g e e i ki L A i ke

7.4. Gehefallzed Least Squares. Estimators for the Invariant Derived

Model under }iormality.

In model (7.2), we have thai?\d{neausﬁmatiomcomponds to

have that R

. Hence, .

under normality,

Cov(y,) = (NV(OIN @ NV(OIN) (T + o))"
) \\ i , ’ [ ‘
=T - X(X'X) X' . ' : (7.20)

N(G) V(e) (x - P(e)) I

MO = NONE=RE) e ) o o (7.21)
N.(B) is a yeneralized inverse of NV(G)N.
(1/4) (N(9) 2 N(B)) (I * I( .n)’)h.,, = F N : 4 (7.22)

Furthermore, F FN XN = XN so’ (7.9)- is satisfied ‘and the solution to .

the generallzed least: squares equatlons 1s the BLUE. o (7. 23)

3

In the same way ‘as the equations of 7. 3.reduced to the ML

equations, ye have that the GLSJ .equatlons for the 1nvar1ant, model reduces
—— &/ 7 ~ J ]
J xR, WO en@IX = x MO o N Oy, (7.24) |
or 8 _ :
By, ® 8=z ® (7.25)




where

]

H_ _(8)

. (tr (8 () v, N(9IV,))

£U,I(—e-)_ = (y'NV,Ny, i=1,2...q)’

on .substituting an a priori value s, for _6_ in (7.28), we obtain

exactly the MINQE (U I) equatlons (4 83) ‘We have alréady noted tQat'"

these lead to unbiased and invariant quadratlc estimates which, under

normality, have locally minimum variance at s € Qe (4.58). /

L

et I T W ST
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- Appendix - Méthématical Results.
A.l. The Vec @perator

For a matrix ‘A = (aij) for i=1,2...m, j=1,2...n,
Vec(A) is the mn x 1 vebtor:

S PIA LR L PVl PP RREL S URERE STL PHURET S R

o T Ffépéffieé’ﬁf'tHéMVé&&BpéfEtdf*éﬁa'Its'réiéfiohéﬁip'taffﬁéﬁf o

Kronecker product are given in chapter 2, (2.77) - (2.79) -

and (2.83) - (2.86). Henderson and Searle (1979) discuss -

theSevresults in detail.

= *
A.2 R(HU) R(HU) (4.8)
Given Vl,Vz,...Vq where Vi arg ‘nvx‘n‘symmetrlc

-~ matrices, and X an n x p matrix,

Let P = X(X'X) X' and N =1 - P, then NP=PN=0
Let HU= (tr(ViNVj)) for i,j=l,2...q,

* - i 1=

HU (tr((V“i PViP)Vj)) for i,j l,2...q,

B = sp{NV,+ NV,: i=1,2...q}
: : 1 1
and Bt*= Sp{Vi— PV, P: i=1,2...q}
Then the following results hold: -

~

a) Dim(B) = Dim(B*)

~Proof: If Za,(V,-PV.P) =(V - PVP)=0  (V = La,V,)then:
) . : i''i i , ) i'i°- .

VN - PVPN = VN = 0 and NV - NPVP = NV = 0,

»

hence, NV + -¥N u_zai(NVi+ V;N) = 0

On the other hand if Za, (NV;+ V{N) = 0 .

» ’ ‘
then NVP + VNP =" NVP = VP-PVP = 0 so VP = PVP and

similarly PV = PVP.
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Hence, firstly:

NV = V - PV = V - Vp = VN so that 0 = NV + VN = 2NV

and’secondli}v

V.- BPVP = V - pV = NV = 0 ’6;\|Ea'(v.- PV.P) =0.
- : it L i _

, - b% ‘B éuﬁf‘:, foi},, e , L , M ;Av,f,,,k,& T
Proaf:' Sﬁppose‘_B_G‘Bkﬂ B* then B = Zai(Nvi¥*viN)
- NV + VN for some v = Zaiv;r and tr(ﬁA{;éo,
- {for all A € B*, o - i . |
In pérticular; V - PVP € B*:i$§»£r((Nv + vn)(V ? 3vP)) =
- 2tr (VNV) $~2tr((VN1(Vﬁf{)l= 0 siqce 'gN s N. 1
~ However tr(AA') is #hé SS of gleﬁents of A so_if’
| tr(AA') = 0 then A=0. Heénce NV = 0 =-VNz>and therefqre B>=‘0.'
7 - 770)7 § =ih ;WB;;» where S. is the space of " n x n
Symmetric ﬁatrices,' : | ,
Proof: If A ¢ 5,' A-can'berQritteh as Bl+'B; with
Blé B* and 326 B**? However 'B € B becaﬁ;e 1Bi.aﬁdr B* have
5 7 ’ the same dimension Andr,B-ﬂ B*¢; {b}; 'Hence.fs;¥ B‘+‘B*T; ‘
v . ‘ y R L
i
Proof: Supp_ose“ h#0 and h =_' Hsa then \
N 7 ‘hy= ?ajtr(viij)‘fdr iél,z,.;é}
N Let A = Haj/Z)(ijf VjN)f | ~ |
Then tr(é(Y?i PViP)) = h, ) ) - ,,mwgﬂ,”ﬂ,ﬁﬁ,,g,lf .



However, if we write tr(A(Vi-ByiP)ixas' Vec{(Vi-PViP)Vec(A)
_then.We have ‘h = T Vec(a) whére' T is the g x n2 mat:ik
with i th row: Vec'(V,~ PV,P).

1]

Henée,ﬁ ﬁ € R(T) but since HG = TT', R(T) = R(Ha) andiso

*x) -
g,g R(HU).

© e} R(H*) <
‘  “e) R(HE) C R(H;) B
Proof: Suppose h # 0 and h = Hai = TT'a.
s e e have that Tra = 'vﬁ‘]?v?:‘f AV ?ﬁvffpﬂ —vec( Za (V= BVRYY
=-Vec(A)‘where A = Zai(VjAVPV5P) isisymmetric.
\_] | Also | h, ‘Vgc (V.i PViP)Vec(A) tr (A (v, lPViP))v
: . . . ES
and"since. hi# 0 all i, A g B* |
Further, A €S 50 A = B+ B, with B # 0 and B,€ B by c).
Hence,  hy= ex((By+ B,) (V= BV R)) = ®x(By(vy- PV;R))
'becausé B, € B* . Also B,€ B so ther exists b such that
B.= Zb_ (NV.+ V_.N) : o I ,/
B 1l 3j i 3 - . . S
Henée h.= tr(B;(V,- PV,P)) = 23b_ tr(V_,NV))
- . . i 1 i 1 . J -1 J
= N ] * C B . 7 " A
or h 2HUE afd so R(HU) c R(HU) 7 E , - , , _ !
1) N , ,
" A.3. For B p.d. R(H, (B)) = R(H}) (4,12)
If y is a random variable'vith model:
T : Yy = XB + & and cav(1)>% Zﬁivi - -
e » N 4 =-I-.-.3in‘
Tl ayv u:—a.\.
functions, y'Ay with A stmetric'if and,only_if
* . . . ' . ‘ .
h € R(HU) (4.8). R

N . i
e A LD R s s iy e A ey R 50 A RS T,




g
.'_Ifkwe Tet Dilbe the symmetrie p.d.séuare»reetjef
’ﬁ theniwe’ean cdnsiderlthe model: . o .
- | x* é‘X*E + . e* with Cov(y*) = ZGiV; T
where ,X*r= p7ly, 'x*euo'lx, e*= p~le
and ’;ry; e’Dflvie_lf | o o 7
. . ILCieerin;”E42}Ax)t=wglguﬁiﬁeéﬁdmenly4rf E(xildxngﬁ}mngg@f~WMfuﬁw—
..lIg whieh:case R(H}) = R(Q)‘ : | .
‘where | Q = (tr((v} - P*V?P*)V*),‘ and P*=sx*(x*rx?)'X*;
o ’however, ‘with the cycllc;gregerty of trace,
. 'Q.=3(tr((Btl(Vir P‘B)ViP(BYf)g lvj)-=rnﬁ(3)
. where t ”P(B)t%,_x(x§af%xifx'3‘l
A.4. ' For B p.d. E(HUI(Bi)_%rﬁ(H&;I)a"
5 ) ;frﬁxi rs arrandomAyerégyggxwithrmodel-
Y :txﬁ + e iandr Cov(y) = ZG.V. |
ther we‘know that‘h{bA:ls quadratlcally a d 1nvar1antly '

estimable if -and only if h ¢ R(HU I)

If we let D be the p.d. square root of B, thénj

‘we can cons;der the transformed model-'

Pl x*§’*=s*r 'CQV(X*);é'zeiV;

5

B : - : : . . - fvt?'
where = x* =VD.11,¢,xf = g?}x,' e* = D:;g "
and V* ? D lV b -1 .

Clearly, E(x Az) =h'8 1f and only if E(x*fmuw*)= h'e

In which case, R(H* _) =‘R(ﬂ )

u,1’ U, I ) v ,
where Ha 1= (tr((V* - P*V*P*)V)).  PRsm XE(X*TXR)XH
but with the. cyclic. property of trace, H* _ = H (B) .

: v, 1. "o,I

! ¢
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A.5.
 Let H = H(c) = U.D(c)U'+ I = I + uDy !
. Where . =~ ,D(%)'=,D ='diag(?ilqi'yi%l’%f"g—;)
and u = (Ul,uzf;;uq_;).‘
: uar)‘ — ,,H\A.%,A=,A_I,;l_U,D,({f.,,L+ ,uvU,,LUYD‘)A, A,IAULI R e
proof: g~ l= (1 + ubu') (I - UD(I + U'UD)_lui)
=1 + UDU' - UD(I + urup) tur
' . a - UDU'UD (I + U 653 N
= I + UDU" - UD(I +:U‘UD)(I + U‘UD)'lu"é I.
(A more general version of this resultfis available for
H with form &R + UDU'. Searle (1979) p 14).
p)y H Y= 1 - upy* H and H -1, ,l—H’l;ﬁ_lubU*H'l
Proof: (I - UDU'H "1)H = H - UDU' = I + UDU' - UDU® = 1.
‘ e I |
c) Let P = P(c) = X(X'H "X) X'H = and
Q@ = @(c) = I.- P(c) =~ Then Q is symmetric, idempoteht and -
rank(Q) = n -\rank(X)»
: -1_ . S | ' B -1
and Let M = M(¢) = H "Q. Then MM = MH "Q = M(I - UDU'H )Q -
= MQ - MUDU'H 1Q = M - MUDU'M since M = gty
- and Q is idempotent. .
;  | - ' - Y e ] 'l;. ' . .
Q) t;(UiMMUi) ~ tr(Ui”Ui,' tx (UIMUDU'MU,) by c)
However, UDU' = chUjU3 so that:
. T - N 7' _ ' - N
tr(UiMMUi) tr(UiMUi) chtr(U MUjUjMU ) i
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e) tr(MM) = tr(M) - tr(MUDU'M) by <)
=_tr(HTIQ)'— tx (U*MMUD)
= tr(Q) - tr(UDU'M) - £r(U'MMUD) by b)
= n-rank (X) - tr(U'MUD) ‘
- tr(U'MUD) + tr(UfMppU'MUD) by ¢)
ST T S m=rank (X "“—‘"Q‘Z'c' t“f‘(U'i”'MUi ) e
' . ] ]
+ f §Jcicj tr(U MUJUj MUi) .
J - ; .
MMmmeAm&jiqmﬂﬁ:hHmeﬂﬂf&HWﬂﬁueqﬁﬁﬁﬁb e
£f) y'M M y x M 1 - y'M UDU'M Y- by c)
F =.z‘M b - Ze, x MU.U 'M Y- |
i L j 33
g) Y'M MMy =y'M y - 2 XJMUDU'M %
+ y'M UDU'M U DU'M y.
A.6. Matrix Differentiation Results.
a) Let A = (aij(x)), B f‘(bij(x))
Define da = (d a; (x)) = (a*,(x)) with equivalent 3
- 7
definitions”of partial derivativeSjwhe§§ ‘X is a vector.
'_\:éb) 4 AB = A'dB + dA B
' dx dx dx
Proof: : . If AB = C (c J(x)), .
hen - o ({ . : (x)—a (e )
S then - vi’j \xL)—F’i.Eaik X .I k3 x5
. = , * ) . *
Hence 7 cij(x) ‘ i(aik(X)bkj(X) t a, (x)b j(x))
and the result fol&hﬁ- AL \ e
i ) . ,
¢/
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¢y aa™l= -a7taa a~t
dx o dx
P:obf: AR~ I and 4I = 0 -
dx ’ '
. . -1 -1 )
Hence 0 =4da A" + A da by b)),
dx dx i
: so, -a7taa a7t = aa”t
U - [N . o ,,,,.,_d X- i dx UG S E e e G VUV
d) a4 det(a) = det(a) tr(a' aa)
{ ax o . dx
S Proof:  det(A) = I + Q44 89y -.-8 .
P 1 2 n
 where P-= {(il,iz,..in):permutations’6f (1,2...n)} .
Differentiating and_groﬁping the ;erhs of the sum;
d detA = L +.a*, (a,, ...a_, ) + a*.  (a,., a,, ..a
ax B 111 212 ni 212 11.l 312 _
+...
i ) Ai*ﬁa = L Za¥*, Ai.ﬁWGEEEEiuiiﬁ?IEWEBEWﬂEfiEHhﬁwmi
. . 13 "ij . 13 , -
. 1.3 ‘ P
cofacter of A.
= tr(da adj(a'))

where

as |
adJj(A), the classical adjoint,is (Aij)‘. -
= det(a).a”!

However,

7 . -1
adj (a') = det(a).a'.

adj (n)

so and the result follows.
e) d tr(A) = tx(dA) 3
dx dax
A Proof: d tr(a) =. d La,.(x) = La¥*_ "(x) = tr dA
. - = ., 1ii . ii —-—
dx - dx 1 i dx
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£) 4 tr(a71B) = -tr(a”taa a7tm) 4 tr(A-l_t_i__B_)
dx - 0 dx - T © o dx
v Proof follows from d), b) and c). i
? g) For vector b = (b,(x)...b (x))' and constant 4
: ki
- i
g symmetric matrix A withr i th column a,. 2
——7\;17—w~~~—+~A~~£1_"~_l_)_~-'—~A:~~k_r?w*—:92'*dl:}:lAg——_l:l'———r R = :
and d Ab = Adb
dx =
X
. . 1 1 = . A: . ,. ‘ ‘ v ,
Proof: b'a b ? ; bibjaij . - o ) : . ;
, i3 , - :
Hence db'Ab =5 Ib*b.a,., + b,b* a,, ' o . I
St & i7j"i) i3 1) : ' -
-2 ' ’ :
, net = T * =
by symmet;y ZZZbibjaij 7 ngf b . :
In particular, o i N
o Ayt = . ' .4 Coen
9 B'X'A X B = in A X B where x; ‘is the i th
B - - : N
i . .
column of X. p
Hence, 3 B'X'A X B = 2X'AX B . o ' :
. 9B
Similarly, , :
32 B'x'axp = 2x. 'Ax,
aB "a"p ) - 1 J
i9F4 — .
2 iy B ¢
so, o p'X'Axg = 2¥'AX ;
' n 2 ' :




h) Derivatives of the log likelihood.
L(B E/i) = ={(n/2)log(2T) 5(1/2)1og(dét(vkg)).

7-v(.1/2) (y f'xﬁ)' V(Eyl(l - Xg)

aL. = x'v(eily - x'veeItxg = x'v(elley - xpy
3B T S | T
%%_ = -(1/2) tr(v(eTlv,) + (1/2) (g - xB)* v(&I'v, v(e (g~ xp)
T e e o e e P U USRI e e
i=1,2...q9"
2% = -xv(e)'x
1
.%o 3% | = -x'v(QT;ViV(gfl(x - XB) i=1,2...q
3p3e, (96,38 ,
- . 7 s
o’ = +(1/2) tr(v(eTlv, v(eTlv.)
36,06 - 3

, -1 S I |
-(1/2) (g= XB)' V(O TV, V(8 V V(9]
- S |
+ V(6) ViV(g) Vjvﬂﬁ) ) (y- xB)y | j; oo —v :

£ =1 =1 avrearavlone  arl -
= 1/2)ex(V(OY TV V() TV - (g- XB)'V(E) vV (8) v viey

i,j=1,2...q

=

(e
o
i

X'V (8] 'x

4

E 81 = -(1/2)tr(v(_g')'1vlv(g)"lv.‘) i i,§=1,2 q
36,36, ] | '
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i) Dérivatives,qf the log likelihood of a maximal
. - N . . & . B . .

- dnvariant:

o . ' B ‘/,'
X Ll(g, By) = -glog(2ﬂ)-ilog(det(BV(§) B'))

2 2
- 1 y'B' (BV(E) B TR y
- 3 , ;

3L, = - itr((Bv(g)B'ileigf) B - T
) 5e, % : - |
+.1 z's'(BV(Q)B'YIBViB'(BV(Q)B’TIB Y
2 =
[ i=]1-,2 g= O e ===
2 -1 - =1 :
"L, = 1 tr((BV(8)B') ijBT(Bv(g)B') BV.B') .
36,96, 2 '
i3
- x'B'(Bv(g)B'Tlava'(Bv(g)B'TlBViB'(BV(Q)B')B Y
i,9=1,2...q
E 3°L el IS |
- 1 = :thri(BVingi)WBVjB(BV(g}BlyﬁBVTngﬁvwvumrW?f S C
36, 30, 2. : t-
95995
i,j=1,2...9q Usingf(3.7).
Note: B' (BV(8)B'T B = v(oTl(z - X (x'v(87tx) "verty

= N(8)

(searle (1979) p.27).
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