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ABSTRACT ’ - - -

[

A general solution for a class of plane strain boundary value

- problems involving perturbations about a finite inflation of a slab

wJ

containing a circular hole or inclusion is obtained. The governing

—~~—equatioas~ef—equilibriumgfefgthefperturbed:state~aregderiveéminwtermsgf—g——m—h——
of a general strain-energy function. An exact general analytic solu-
tion is obtained for Mooney-Rivlin materials although the method is

__not restricted to thi;;ggg;ignlar class of materials. BApplications

are made to the case where a perturbational uniaxialbfension is act-
ing at sections far from the cavity or the inclusion éﬁd to some caées
where perturbational loadingsrare applied at the edge of the hole.

The deformation, the stress field and fﬁe'stress concentration around

-

the hole are investigated in detail and the computaticnal results are

presented graphically.

The general solution obtained is also applicable to problems in-
volving geometric perturbations of the boundaries of the oiiginélrbody.
Specific analytic solutions are obtained taking into account both the
perturbation due to an applied’stress field and the perturbatién in .

‘the geometrv of the original body. We investigate the problem of a

slab with a rough cavity and the case where the cross-section of the

hole is elliptic, both in the context of a perturbational uniaxial EX

-

tension. -

The method can also be extended to materials with a strain-energy .

function that may be regarded as a perturbation of the Moocney-Rivlin K -

form. (iii)
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P s R - - - . - ‘
In view of the nonlinear character of the equations governing the ' '

Theory of FPinite Elasticity, so far, only a few exact solutions valid

ﬁorjényfeléétic;matériaifaregknewnTgﬂEurthergéroblems~can4befsélvedmif447~A~————

a particular form is specified for the strain-energy function , but-even

with this assumption, the number of known exact solutions remains limited.

Further progress, howéver, can be made with the aid of approximation the-

ories.

In particular there is the theory of successive approximations, where

the first approximation is the solutid”Eo a corresponding problem of lin-

N

ear elasticity. The method is limited to probléﬁs in#blvihgrdéformaﬁiohs

that do not depart much frqm tbe,infiniteéiﬁhl deﬁormation, so the classi- ,

——cal linear theory gives a reasonable first approximation. It therefore; "
. . ) ; ¢ . V - . ™ ' oL
inevitably excludes some OI the more interesting effects in finite elas-
ticity. : . i o . 7

R : %
Another method is based on the theory developed by Green, Rivlin and

Shiel&’Il], on the superposition of small deformations upon large elastic

deformations for which the solution is available. This allows one to con-

sider large deformations in contrast to the method of successive approxi-

+

A -
mation, based on linear theorv.

. Related to the Green, Rivlin and Shield theory, other theories,- in-

volving perturbation of the properties of the original bodv, have been

developed. Perturbation of the strain-energy function has been consid-

sred bv Spence¥ fZT,'IB]'éﬁa”E”ﬁetnod’of fihité deformation sclutions of -



-problems with geametric perturbations on “the boundary surfaces, has been

formulatediby Graham [4].
Many problems involving incompressibie materials, have beenisolved

by assuming a suitable deformation field and then determining the surface

tractions required to maintain equilibrium of the deformed body. This

inverse procedure is not applicable to most compressible materials. The
assumed deformation can seldom be maintained without body forces, as the

only controllable deformations for these materials are homogeneous de-

formations. vVarious approximation procedures have been proposed.

Spencer [3] has proposed the perturbation of the solution for an incom-
pressible body with the volume changes calculated for the perturbed elas-
tic constants. Haddow and Faulkner {5] have developed a method of solu-

tion to consider finite expansion of a thick compressible spherical elas-

tic shell. Their procedure is applicable to any admissible strain-ener-

gy function and also to a material whose constitutive coefficients are ——
.

not derivable from a strain-energy function.

Other methods are in a sense more restrictive. Most of them de-

»

pend on some particular feature of the geometry of the body which sug-
gests a method of simplifying approximation (such as the approximation
of a thin membrane). ‘ i ' -

The method used in this work is based in part on the theory of Green

Rivlin and Shield [11 oiwsuperpqsition of small deformations upon.-large .. ...

_elastic deformations. This theory has been applied to a variety of spe-

cific problems.

- |

The problem of small torsion-superimpqsed”on finite extension of a



cylinder, investigatediby Green and Shieid [6], received a special at-
tention at that time as it provides one of the most elegant and con-
vincing experimental verifications of the theory. Small bending ofV;
circular bar superimposed on a fJ:.nite extension or compression has been
. considéred~by{Fesdick;éhéwshieldeJJ;where7~in~addrtbmrirsbiution*iS*AAAff”*“f

given for the small bending under its own weight of a stretched horizon-

tal cylinder. The gravity effects have also been considered by Vaughan

,iijjg%the,problemuofAfiniteﬁaxialucompression,éfﬁc&lindricalvblocks
Green and Spencer [9] have obtained the solution to the problem of small
deformations superimposed upon finife extension and torsion of a Neo-A
Hookean circular‘cylinder. In these investigations the finite deforma-
tion has been considered a simple extension or a COmpiession.

‘Further progress has been made towards problems involving non-uni-

form large extension in investigating cases with a high degree of sym-

metry [10] or a §petial choice of radiai aisplacement [11]. )

In this work we obtain anzexacﬁ'geheral ahéiytié solution to a class
of boundary value problems involving perturbations aboﬁt a large non~uni-
fo:m radial extension. This class of boundary vaiue'problems arises when’
a slab with a cifcular hole or inclusion, finitely deformed dué to a uni-

form pressure applied at the opening, is further subjected to some per-

turbations. We obtain an exact general analytic solution for the plahe—

strain case concerning incompressible materials of the Mooney-Rivlin type. .~

' The method, however, is not restricted. to this particular class of. mate~-

-~

rials. Applications are made to a number of specific boundary value prob- -

~

lems. We use the solutions to investigate the effect of thé holé on the



4.

energy funqtion [2] and the results of the work of Graham on finite elaSj

stress and displacement fields.

The étudy is further extended to problems involving peiturbationé

of properties of the original reference body-

The work is organized as follows. We briefly present the general

- theory of Green, Rivlin and Shield [1], for small deformation¥ superim- ..

posed on large elastic deformations (Chapter 2). 1In éddition,vweigiVe a

summary of Spencer's theory of finite deformations with a perturbed strain-

tic deformations of irregularly shaped bodies [4].

Haviﬁg sfated thergeneral problem (Chapter 3, section 3.1) to bé
solved, we give the solution of thé initial deformation problem (section
3.2). ¥

The governing eguilibrium equations for the perturbed state, formu-

P

. £ .
lated for an incomore,ssibl,eﬁmatﬁ;i,aj.,inftermspgfg,ag;enenaj,st:atin:energy

- 6.1.3) embedded into the slab are present, are also considered.  The ana-

functionvtchapter 4) , are solved exactly for Mooney-Rivlin materials
{Chapter 5). -

Applications of the general solutions are made to a number of bound-
ary value problems of interest. Firstiy,fééggensider that the perturbation
is caused byruniaxial tensile loadings actiég at'g?eat distances from the
cavit? {Chapter 6, section 6.1.i). The cases where a rigid bonded,in%

clusion (section 6.1.2) or an inserted frictionless inclusion (section

. o, o o . .
l¥tlcﬂ£m§£e55ieﬂs—have—beeﬁ—evaiﬁateégnﬁmar;bally for—various parameters

to allow detailed invéstigation of the deformation and stress fields.

_ In Linear Elasticity, the stress distribution caused by a load applied to

2



a slab weakened by a cut-out differ considerably from that in an unweak-
ened body, We have found here that the stress doncentration éffect at
the hole is magnified due to the fact that the slab has previously been

.

finitely deformed.

Further we investigate the effect of small shearing forces, uniformly
distributed at the edge of the hole (Chapter 7), and obtain the specific
solution to the problem where a perturbational radial loading is applied

at the opening (Chapter 8).

The general solutidn obtained is also %pplicable to problems involving
perturbations of the boudary surfaces of the original reference body.
Specific analytic solutions are given taking into account both perturbation
due to an applied stréss field and ﬁhe geometry of the original body (Chap-
ter 9). We examine two cases, namely, the problem of a slab with a rough

cavity (section 9.2) and also the case where the cross-section of fhe/holegzg;,gff

is elliptic (sectioﬁ 9.1) where, in both céses, a perturbat;onél uniaxial-
tensipn is applied. ~ In addition éo the énalytic'solutibn, a numerical
solution to the later problem has also been obtained [Zb] usiné Colsys
numerical procedure [12], [13]. The results obtained are in -good agree-

ment with those presenté@rheré, R T o ‘ : T
Finglly, we show how the studv can be extended to materials with a-

. strain-energy function which is a .perturbation of Mooney-Rivlin form. .

(Chapte.filﬂ) ST S
~—~Results¥£elated4te4the'eemputatieﬁai—werkgthatghas4beenginterpreted44444¥’44*
- e - -

in each relevant chapter are given in the Appendix I and II.

Concluding remarks and topics for further research are outlined in L

the last chapter. . -
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The method employed in this study is based in part upbnithe theory

~of a perturbational displacement field superimposed on a finite deforma-

- tien. This theory has been developed by Green, Rivlin and Shield [1 551
- - - P R — e S S e O -

Lo

and is also described in'Gréen:§qd Zerna [14]. The notation of Green

and Zerna is adopted. A brief summary of the results and principal -

-

notations is given here. : b

Let BO' B and B’ denote the body in its unstrained, finitely deformed

-

and-perturbed confiquration, respectively. We shall represent by thhe o

: : A
displacement vector of a typical point in B and by v +:sw~i? B’ where &

a2 v

is a nondimensional constant so small that squares and highér powers maylh

be neglected compared with €. For any curvilinear system {ek} moving wi

the body, we take the natural base vectors at a generic point to be

g. and §l in B, G, and G- in B and G. + &G’, G* + &’ in B’. The cor-
i o 1~ 1 i s )
. . ik | ik |
responding metric tensor components are gik' g in BO' Gikr G in B
and, to first order in G., + &G’ - Gik + G’ik in B’ Tﬁen
' O $ER By TSRy & T EET AR B ‘ ’
, - :
= - + ’ -
. Gk T Yk T ki1 (2.1).
o i
ik ir k : :
'™ =-a6Te 6, (2.2) » :
: Irs D C e

where a double line stands for covariant differentiations with respect to ;

the coordinates in the body B. L

The determimants of the metric tensor componénfs Iix and G, are

ik




s

denoted by g and G, respectively and the determinant of Gy + EGik is

denoted by G + ¢G’. To the first order of & we have:

(2.3)

The strain invariants associated with the body B’ are expressed by

, _ _Is rs_, .
,,_I;L: el; =9 Gt 89 G gy

- rs r
. Fd
I, + el =g_G I3 + eg_ (G

L rs_,
+
G/g EG GrsI

]

as
+

m
H
~

1l

3 »

We shall assume the body is hcxp'og’éneous and isotropic‘, so that the
I - o minjnerMJSLfythLSolélyfaf_the;SMMimtuhus,_cmi

responding to the state of deformation B,

W= W(;l,I2

I - o (2.5)

>

The relation between stress and strain can be written in the form

B}

T = &g + ¥B + pG . (2.6)
The fmrctrcns@,—?—and—;_fare—defmeﬁ—by—the—expressmns—
.
I P 2. o
vI, 31 YI., 31 oI



- and the tensor components pi¥ by

ik ik ir k i
B s (g9 ~g g6 . | (2.8)

For the configuration B”, the strain energy W becomes

W=W({I,6 + eI
(I, +e

’, -+ d ’ . "
1,12 ‘ sIz,I + 513)» (2.9)

The scalar invariants &, 7 and p, which, for the body' B are functions

of I I, I3, become functions of I. + eI, I_ + eI/, I, + eI’ and

17 72 1 1" 72 2 3 3

‘may be represented by & + £, ¥ + ¢¥’, p + ep’. Up to order g, we
Y

may show that

&’ = ’ 4 7 (B : ’, ,
AI7 + FIZ®+ EIJ =(3/2I)1

3
77 =PI + Bi52+ 1§ -(7/21,)15 - (2.10)

(VEIl + D12 + CI3)I3 + (1:/213)}3 r

e
I

~ where o ' : o ' ’ B
' 27 3%y 2y w2 - -
Az —" , Bs—z —-W, CE—‘—’2 _BW’
VI, 312 . VI, 912 Y1, 312 o
3 1 3 T2 3 %73
(2.11)
5o -2 32w - 2 5% P 2 32w
z —— , E = , = .
—— - ,;r, ’/-r AT AT '/‘r_ NT AT
47&? 31—2‘3‘}3 .1_3 0.1.30.1.1 - 1.3 O.LIOJ.Z _ )

The elastic potential W which 'appéars in relations (2.11) may be expressed.
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in the form given by (2 5) and depends exc1u31vely on Il, 12, I3
The quantities A, B, ... ,F are evaluated for the finitely strained
body B and in turn depend only on 1,01, ‘and 13. ;
The tensor components Blk in (2.8) become Blk + eB’lk for the
. boay B’ where o
ik ik rs ir ks (2.12)

rd — - y] ‘
B = (g g- gﬁ g )Grs .

Associated with the final state of strain B’ , the stress tensor

field is modified to T-F + &1’ ¥ in which

Ak prgtk ik ko, prgt* e pert® L - (2.13)

T =&’g" + ¥'B" + ¥B”

For the incompressible, homogeneous, isotropic solid, the elastic

potential deoends only on Il and I2 since 13 is unity in every deforma-

The constltutlve relatlons (2. 6) and- (2 13) retaln the same form.

tion.

but now -
. _ . oW . _ ., oW
=2 3T, ' T=2 3T, ' . .

o 0 (3.14)
2 2 2y
=ngZ'B=Zglg’ 223131 ’
- I T2 -T2
— _ . _ _ - r*—f‘-‘::' __ .-
- W~where4in—%hisgease

~(2.15)
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Also,

13 =0 (2.16)

Wwanduin,view,éf,theﬂconditionsmiz,15¥uand7(2.16)7rtheffizéﬁwtwegrelations——héf

iﬁl(2.ibj reduce ﬁo '

®” = ATZ.+ FI;_" ', T’ =FI1’ + BIZ . . (2.17)

,?

,1

ik . . ..
The stress tensors T and T are indeterminate up to an arbitrary

pressure which arises as a consequence of the incompressibility con-

" straint. The functions p and p’ that depend on position and time can

be determined only when an initial boundary~valueip;oblem is posed.

—774~f—mfﬁ—*gg%ﬁ;the“abSﬁﬁCﬁ‘Of‘bOdY‘fOrCeSAthEAStIESS‘eqHatiUHS of equilibrium

[y

in B are r

=0 - ’ h ‘ (2.18)

and in B’

1. =0 . - (2.19)

We have assumed a quasi-static loading and therefore inertia terms

nhave been ignored.

_ On the boundary surface, the stress vector t is required to equi-
librate the surface force 5. If P + €P’ is an applied force at, the

boundary of B’, measured per unit area of the corresponding surface in B

k]
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tE=PFP , T =5 . T~ (2.20)

3

,Aﬁ,WIfﬁfhegsnrface;foxcesWimaiefgiéresééd;in;féfmsvéfmthgirgéompbnéhts then

the boundary conditions lead to

(2.21)

n [t7 ¥l o+ G =) (2.22)
1 r r )

Related to the Green, Rivlin and Shield theory of superposition

of small deformations upon large elastic deformations, G. A. C. Graham

{41 has developed a method of obtaining Finite defornation soluti
for bodies with irregular sﬁapes. Tﬁé qndeformedréhape of these bodies
is a perfurbation of the undeformed shape of another body, for[whiéhla'w'v
finite deformation solution ié already available.
Let |
f(el,ez,e3) =0 : ‘ | ) ;(2.23}

oo-

be the surface that bounds the undeformed body. A finiie deformation

‘that is consistent with the given tractions on the surface (2.23) is

assumed to be knawn throﬁghout the body.‘ Replacing the surface (2.23}

by a pe;turbeé surface

ret,e%,8% vegete? 0 =0, S (2.28) <

-
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the tractions acting across the surface f =0 td;méintainﬁthe finité DR
deformation will not in generél maintain the giﬁen deformatioﬁ when -

acting on thé pefturbed surface f + eg = 0. In_order to satisfy the

traQt;on boﬁnda}y condition on this surfacé, an additional dgformationr‘ ‘

EW, assumed to be of order ¢, is superimposed on the given deformatiom.. .

It is found that up to first order in ¢, the value of the. tractions.- e

~

acting across the surface (2.24) is given by

o

ST fF——i — = ==t N _
P S s P N R R B BT W ET Y-

et st et 30t J
v ' (2.25)"
where
R s N T : (2.26)
; o= (glg-ﬁfu ¢Hy-vz T (2.27)
36t 367 : :
X = (gfé_gg;)Grs PR Sy LV C (2.28)

36T 20 a8 387

Let us take the strain-energy function Wf to be a perturbation

- -

--of a strain energy function W:

W =W + eW’ ) (2229)

'where eW’ is a small perturbing strain-energy function. Assume that

N ' ] .- . S
an explicit solution can be found for the given problem where the -

material is that with strain-energy function W. Then,'replacinq‘w,by Ww*,



”aeformation.

SR
Astram—energy functlon has beer.\ fornmlated by A. J. H. Spencer [2‘] and

 an additional small deforﬁation is supefimpbséd QthhétexistiHQ-fiﬁife'

The theory . of flnlte elastic deformatlon with a pertuxbed

it closely resembles the theory of small deformatlon superposed on f1n1te

elastlc deformat;ons:

.However, the functlons @’j ¥ and p” of

spencer's

“theory differ fzom

of Green, Rlvlln and Shi

functlons 5" Y’Vég;/p , which a

1 1], by the addlt;onrof terms in#olving’

In fact, .-

r-in the paper

- the perturbing straln—energy function.

é’

140

M‘1 + FI + EI} - (<I>/ZI )15

?Il + BI2 t DI3 f,(Y/2I3)I

(EIjp+ DI + CI{I, + (p/2I T3 + (2#’3)

» 2

)

+ (2‘/»&_37)'1

,aw” "V - -7

’

8Ly T s




3. FINITE INFLATION

3.1. Introduction

In this and subsequent chapters we cbnstruct and.solve the equa-

-tions governing the egquilibrium of a class of finitely inflated slabs

on which a perturbation is superimposed. This class of boundary value'

problems-arises when a slab which contains a circular hole or inclusion

is finitely deformed due Fo an expanding pressure applied at the inner
boundary and it is further subjected to same perturbations.

Rather to assume a certain displacement éield and then verify that
the prescribed defqrmationrcan be maintained by surface tractions only,
we wish to obtain all combinations of two-dimensional displacement fields

that can be superimposed on the initial inflation such that the equilibri-

um can be controlled by surface forces alone.

The equilibrium sguations for the perturbed state are formulated for
: : ' X
incompressible materials in terms of a general strain-energy function and
solved exactly for Moonev-Rivlin materials.

The general solution is specialized for several boundary value prob-
lems of interest. The effect of the hole on deformation and stress fields
is investigated in detail.

-

Themgegerallsolutisnwistu:ther”agpliedﬁto,problemsfinvolvihg~irregrwﬂw7~—Am—

ularly shaped cross-sections of the cavity and it can be extended to mate-

rials for which the strain-energy function is a perturbation of Mooney-

: ' 7 N
Rivliin form.
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3.2. Solution of the Finite Deformation Problem - - '”' ; 77/— ' e ey

In this section we consider the radial deformation of an infinite

_ slab of a homogeneous, incompressible material. In its unstrained énd B

. rd - -
unstressed state, the slab has a circular hole of radius aO removed from

_ its center and is inflated by a uniform pressure P applied to the cuxved

surface of the hole. During this process the thickness £ of the slab

is maintained constant by ridid boundaries along its plane faces.

Let x,,x and x. be the cartesian coordlnates of a generlc partlcle

Fa ™
in the undeformed reference conflguratlon, and let yl,y2 ‘and y3 be the

-~

coordinates of ‘the same particle in the deformed conflguratxon B. Then,

in terms of the cylindrical polar coordinates S

6 =r , 8°=8 , 0 =z , : (3.2.1)

of particles in the deformed state, the deformation’ishdescribedfby

rsing , y. =z ,

Yy rcosg , y2

(3.2.2)

+

fQ(r)sine y X

L]
[

rQ(ricosg8 , x

i
N

2 3

" The non-zero components of the metric matrix and its inverse are

H

known to be

3 1, e =22 , e._=1 . (G.2.3

S TP A S S AP LR & Y B

Further computation reveals that



[Te}
|

It follows from relations (3.2.5) that

strain invariants in the foxm

2

and leads, on integration, to

’ do, 2 2 o
. r ¥
Q. +.r 3D 9, =T Q 933 (3.2.5)
dQ. 2 22 2.2 33
=@+ B, -1, g (3.2.6)
1
' 22 - _.do.2 N
g =10+ r3d (3.2.7)
-2
G=r . (3.2.8)
We may use the relations (3.2.3) — (3.2.8) to express the
I =1 ¥ 1/0°F 1/(Q %IQ)Q ; —
- : (3.2.9)
1. = 492 | 2 /02 49,2
I [{g +r dr) +79 + 1] ( Q (D + r dr) .
" The incompressibiiity constraint (2.15) reguires that
, ag |
+ . -
20Q + r dx{ | 1 (3.2.10)
A famt i ”\1/2;- g o~y
o{ryr—=HAr K} V4 {3211

- The constant K may be either positive or negative, according as the ratio

‘of the radius of the hole before and after the expansion, ad/a, is less
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or greater than unity. We replace relation (3.2.10) by

o(r) = (1 - k25 t/?
where

kK = -X #-a - a ; 7 o (3.2.13)

Moreover; under the condition of volume preservation, the relations
(3.2.5), (3.2.6), (3.2.7) and (3.2.9) reduce to.

=1/Q" , 9y =T Q ro 933 =1 (3.2.14)

n
11 2 22 2.2 33
=Q 9 =3/rQ , g =1, (3.2.15)
g=1", - ' (3.2.16)
‘ 2 2
I,0= 12 =1+0Q" +1/97. - (3.2.17)
v ik . ' N\ : ’
and the tensor B (relation (2.8)) may be expressed as
st =1+ 0%, 8% -+ 10ha?,
' (3.2.18)
33

12 =‘Bl3 23

B Qz_+,1/Q2', B =B =0 .

Substituting relations (3.2.4), (3.2.15) and (3.2.18) . into relation

(2.6) we obtain the state of stress throughout the bédy B

CoI1 2o

tt 0%+ @2+ 4D
Y LNty S
(3.2.19)
T P e +1097T

12 13 23
T

= T = =0 -
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The functioﬁs & and ¥ are derived from relations (2.14)-
The equations of equilibrium (2.18) may be written in the equi-

valent form

2
.k . - ) i
T i I i e (3.2.20)
1 ir ir .

where, for the metric tensor of the strained body B, the only non-

zero Christoffel symbols are

We can prove that the equilibrium equations can be expressed as

R R - S I T LR VL YGRS SR

“(3.2.22)
) ) A
36 .9z :

k)

These equations are satisfied in the absence of body forces provided

that the hydrostatic pressure p is such that

p=p(r) =H - L) - 0% - (1+097 . (3.2.23)
where H is a consténf and -
(F. 2 2 | *
L(r) = i [ - 1/07 (¢ + ¥)/rlar . (3.2.24)
R . )

.

We now substitute the relation (3.2.23) into (3.2.19) and obtain the

stress field le in the form



B

it e s

- 9
Tll =H - L(r) - %
| - ) !
2 22 2. 2 ]
rr =~ L) - @7 - 1/09 @ + V) 3
i (3.2.25) ‘:
- 33 : E
SH-L(@ + 1 -0%8 - (1 -1/0)7 .
. : i“
12 13 23 - -
T =71"=1" =0 . o - : :
In order to support the deformation, the following forces must
be applied at the boundéries:
(i) a distribution of radial tractions P over the surface r =a
p=ch =-¢thH = =& (3.2.26)
_ r=a r=a
(ii) a distribution of normal forces on the plane boundaries
, 3 33 2 2
o (P7) = (177) =H-L(xr) + 1 -0)% + (1 - 1/0T)¥ .
. ' z2=5/2 i z2=£/2 - \
add et - \3.2.27)
- H
A béundedness cohdition for L(r) as r + = is required
. ’ L(x) ~L * ' (3.2.28)
where I is a constant.
If.werchbose a vaniéhing state of stress-at infinity, then the
constant H must take the value ’ :
L, >
H=17L = jc [(©° - 1/07)(® + ¥)/rldr . (3.2.29)
a
» In using the notation °~" we shall omit, throughout, an explicit .

reference to "r + =", but this will always be understood.



4. SUPERPOSITION OF A SMALL DEFORMATION FIELD .

ON A FINITE INFLATION

Consider that the slab strained as described in chapter 3 is

final state of equilibrium B”.

The displacement field ew superposed on the previous finite defor-

mation is unknown at this stage.. We denote, respectively by. <W, ,,vz?
1 :

1 ~ ~ . ) . . . . :
<w ,w2> and <w ,w2> the covariant, contravariant and physical components

of the displacement vector w(r,9), referred to the base vectors at
points P in the body B. .

In order to find the final stress field, some preliminary calcu-

lations are necessary. -

[ calabtt b

further perturbed by a certain 'force*di'stti’bution," thus - ‘reaching-its R

_i
The covariant derivatives of the components w~ and wj are ob-

tained in the form

wl” _ wl
Y1 I
Wl = wl _ rw2
2 ;2 ! o
hod <
2, _ .2 1 2
| \ .v.l—ﬂ’l+rw , (4.1)
wz'2 = w2 + i wl
2 12 ' S —
1, 2, -
\Tj3tw‘j§ =0 -
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willy = ¥,1
- LY *.,’
- Wolly = vy v vy
. 1 : .
villa = w9 ~ Wy o 4.2)
_ he _ . _ _ S ' _ L~ - S
Wolly = wy g - Tw
2y T Wy T TV, v |
S \
wlﬂ3 w2”3 =0 .

If the relations (4.2), together with (3.2.4) and (3.2.8),a£e substi{

tuted into relations (2.1) and (2.2), we find that the contributions

) ik . o '
Gik and G’ to the covariant and contravariant components of the

metric tensor in B’ can be written as

Gr, = 2w, . r — -
- T N 1,1
Gpp = 2%y 5 * 20wy .
S (4.3)
G!. s w + w - Z-w
12 7 1,2 2,1 r "2 '
. G13 = CGy3 =6G33=0 .
and
L1, -
G -Gy,
122 —_ —l_——« > — - - - S—— _——
G = -6,
(4.4)
. S o _—
2l J 1l o ]
rZ 712
o13 _ge22 o33 L - N



- T T T T T T T T T T T - zz. N bl
Relations (2.3) along with (3.2.4), (3.2.8) and (4.3) give
G; = 2rlw, .+ L (w + xw )]l (4.5) ’
‘ 1,1  x2'72,2 1 : :
rWe substitute the results (3.2.15) and (4.3) into (2.12) and verify that
y —_ - [ PR [ S - ,,,ji i R O ,,,,l,, R U — - - —_— S [ =
JA1 1,
BL =T v
. 221 .,
i A~ T —
’33_ 2 rd rd
‘B Q Gy, *+ 352 Sop (4.6)
a2 1,
BT = r‘2G112 !
g3 -pP oo o
*’*r’”‘*‘.’*%Writfﬁg-*m’,wgf’df?@ﬁ‘s*m? nave T =
1 2 v v
_Wl-W°‘1rW2—fV:,W"r~ (4.7)‘
Thus relations (4.3) — (4.6) become, respectively
Gr = 3@
611 =235 -
P\ 4
G2, = 2r(36 +ua) S
. - o c, T (4.8 T
, 3u v T~
= —— + == -
¢T3 T T TV —r
Gl3, =-G = G o .,



Al _ _ , 3
G ,: 2 or '
22 _ _2_3v ’
G = r3(ae + u) , ;
(4.9)
A2 _ 1 du v
G = p‘(ae r ar, V) ’
AL e E I -
o 5p2p0u 1 3v
- - G” =2 [§§,,+,,,r(39 + u,),]:'ﬁf,,ﬁ;:; o ( 1.10)
and
Al _ 23w
BT =Gt
\-
J2 1 . u v ;
B et TV ’
22 _ 2 3u
> B =25 - (4.11)
( .
L33 23u, 1 3v
B/ = 2007 o7 + o3l t W1 ]
13 23

Since the material is incompressible, we have G’ =

0, and therefore

-(4.12) .

for all <r,6>. We may use the above results together with (3.2.14),

’

’

(3.2.15), (4.8) and (4.9) to show that the invariants 1] and 17 can be
expressed as
. _ , _ 2 2 3_\1
I3 =I5 = 2007 - 17905 (4.13) .



As an immediate consequence of (4.13), relations (2.17) may be written

in the form

ﬁ
® = 2(A + F) (92 --1/92)2—‘; -

e T N R ¥/

On substituting (3.2.4), (3.2.15), (3.2.18), (4.9), (4.11) and (4.14)

S into (2.13)° and-then using the condition (4.12), we may conclude that — =

ik i .
« the stress components T’ are given by the expressions

_ ., _ 5 3u 21 2 , 2 '

T =p 2 ar[p+Y_ (Q Q—f)[(A+F)Q + (B+F(1+001} ,
2,22, Ju 2 1 1 1,
rrtT et A 25T (@ - HI@+ PGyt (B F)(1+ )

T ey it - T o st e Bt T

A2 1 38u v _
rT = r(ae +r o v)(p +¥) ‘

L R (4.15)

The stress equations of egquilibrium correspoﬁding to the configura-
tion B’ are

'Kljﬂ =0, ’ (4.16)

Kll + KZl '+ l{kll N r2X22) =0,
1 2 r (4.17)
2 33
W22 s iz =0, 2 =0
ll ,2 r r



Let us recall from (2.19) that

: - . . . .
When the required covariant differentiations are performed,the expressions

for W become

11 11 11 5u
A = 1’ + T -_—
ar
- — ,}.23,5 '1:’22 + l'rzz(ﬂ +.a) .,
‘ T 30
33 33
-)\ = T’ ?
(4.19)

)\12=T,12+_J_.1_llﬁl .

r ar

using also the incompressibility constraint (4.12). The equilibrium .

equations (4.17) become

) 12 22 3u
— 1T T

? 11 11 3u 3
TRM T el t e d g = v}
T i R el e LS R
r » 231;7
3 L1201 11 3v 3 .22 22 3u
g LI vl i Y T At
1 L12 211 3v 22 3u _ _
+ {3 °r (86 v} =0 ,
3pr 33
2 =90 . (4.20)

oz



.We now .substitutei the stress fields determined in (3.2.25) and (4.15)
into (4.20). .The last eqﬁation of (4.20) ifnplies that the contribution

p’ to the final hydrostatic pressure does not depend on z. We obtain

3 4, du .- , 2,2 1.,
- e A W ok® m2er D) 200 -
+20+ 0% -5 B+ M1}
0: A
1 3 ,0u . v S 3u ‘ 1 2
o T lGy rray e - G o viE - LE * g -0 (F DI}
13u . _ ‘ 2 1.2 -
iy {28 ‘ 2L(r) - 4(p + ¥) + 2(Q Q2) (A + B~+ 2F)
- (Q2 - %2) (@ + Y)} =0 )
3 1l 5v 1l  5u v
o {rgr_ [H—L(r)ﬂ] -rz(ae+r ar—v) (p + B}

+ = = {p* -%% [H - L(r) -~ 2(p + %) -

AR Xy

-2+ %2) 02 - éz) B+ F) + ,%2' -0+ D13 |
22 e -5, &E T v +“I")
+ 3, & o - Lo + G -eHE+ DI =0,
B, 5 | : (4.21)
az -
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5. EXACT SOLUTION OF THE EQUILIBRIUM EQUATIONS

- . - - -k

' To solve the equations of equilibrium (4.21), we seek a solution

in the form of a Fourier Series whose coefficients are themselves

ceiceee. - .- __functions of r: : : o

e i e r 7o s i e s —e S

u(r,8) = Z {uh(r3cos(n6) + nn(r)sin(ne)} ,
n=0 - >
- v(r,8) = z {vh(r)sin(ne) + gn(r)cos(ne)} , (5.1) '
n=0 =

p’(r,0) = z {p’(r)cos(nB) + E (r)sin(n®)} .
n) n
-n=0 ' o

The incompressible nature of the material requires that

0 Loy s u) =0 : (5-2)
dr . ¢ n n

and

V @]n .1 . o . Lo - el _ I - [
ax ;{HZD - nn) = 0 (5.3)

must be fulfilled for all n. Substitution of (5.1) into the equilibrium
-, m
equations (4.21) then gives a set of four ordinary differential equations

- . . I d AI
which together with (5.2) and (5.3) determlne u . noe Vs gn, P, and En
as functions of r.

In order tomprﬁceea”with*thgmsoiution;”wemassume*afspec%ficffﬁfﬂfféf‘"*f‘**

- 3) + c2(12 -13) , (5.4)

»
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although the method used is not restricted to this particuléf form.
Relations (2.14) and (5.4) yield

$=2 , ¥=2, , A=B=F=0 . (5.5)

 taving the strain-energy function (5.4) and the radial deformation

o

expressed by (3.2.12), we can evaluate the definite integral (3.2.24)

to obtain '
T - - - *’T"Z(iff’i: 7777777 2, 2 T T T YT
- (& _k r/a
L(r) = ( > p) + 1n (2 - k )/a%)c {5.6)
where
) | | cse te, . , ) (5.7)
Consequentlyt\zﬁ\qizg;of (3.2.29), the constant H takes the value
k? ag
BE = - 2 - in a-z)c L - (5.8)

A

>

o . (5.9)

. , o . . ik
For the Mooney-Riviin material, the stress“fields =T (3.2.25)

- -
ik . -

and T {(4.15) take the fors

Y

prod !
ot

»

ey
1

1]

[
!

Tll L(ry .,

2 22

H
,‘
it
1
]
3]

-y - 200 - éz)c ' (5.10)

1

33
’ Q

2)C

[
11
t

i{ry + 2(1 - QZ)Cl - 2{(1 - 5

w
1)
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and .
lll - Al = s X - - 2 _a_u
T =T 11 P 2(H L(r) 20 ¢) !
2,22 _ A0 _ o, _ _ on2 .00
r = ,T.zz =p” + 2(H L(r) 20 c)ar .
_ (5.11)

L33 A, 1. 5u L ' ,
==+ 22 (Q Qz),rar,:,,',,,, A
,12 ~, 1 _ 2 Ju v

rT =1, = I(H‘ L(r) - 2Q7¢) (ae + . v) .

to obtain
1 3p’ 23> 1 3% 1, .2  1.3u 1  _
2c3r T 2 orz Yrgz pez YW W Y et gt < 0
1 37, _23% 1 3% 1 2, du , v _ . _
2c 36 T ™9 572 T Q2dwee T2 T Q)Ggt Ty TV =0
°op _ 0 ' ) (5.12)

9z : - [}

Seeking solutions of the form (5.1) we find that

an

P’ d
z {[2C, drn Q2 dr:n + }-(4 - 2Q + Qz)—+ W(l -n )u ] cos (né)

1 dg1'1 2 d2‘rgn

. 2 M, 1 20 ..
'—(4-2Q +-) rz—Qz-(l—n)T]n] sin(ng)} =

fem Y9 =@ 02’ ar
and ‘ (5.13)
) B 2 ’szz; ﬁWI’}i ”dun l e '2' dVI; N o S
z{[-z—c n + rQ E-+§ZE—+;(2-Q)(rd—r——nun-vn)] sin(n6)
n=0 . .
' a2
, 2 “n n n 1 _ 2 n _ _
+ [20. £ + E) Ezdr + 7:(2 o) (r T +rxr3n &n)] cos(n8)} =

5.14
— (514



The equations obtained from the relations (5.13) and (5.14) as well"
as the incompressibility conditibns (5.2) and (5.3} take a particular

form when n=0. ’Théiefore, we shall ;nvestigate the case n=0 and n#0

e

separately.

Case 1. Provided n#0, v (r) and ¥ (r) can be eliminated from

_conditions (5.2) and (5.3):

dun
) vn = - —(r = + un) R (5.15)
an
2 =iz "+ (5.16)
n dr n

_ The relationé (5.13) and. (5.14) yield a system of four ordinaryr

differential equations . .

- %Z gé’ +? Zizn =4 =20+ %2):1: i”gr—’zi-zijfg”f 0 1 (5.17)

) -%c-p;+£gzzTZ +;‘ZZ:‘1 Z;Qz(rj:n—nun—v)=0, (5.18)
é_c:tf_;*& ;’H%m - 20° +é-2) Zn—r“v-ﬂjzg'—zlnn=o ;T (5.19) |

(5.20)

{(5.19),

15.20)}. In view of (5.15), the function p; can be deduced

from eguation (5.18) to be



>

7 31.
. SE . a2u — '
2 2 2 n - 2 n
‘(r) = - = {r —" &+ 2r(1+0°)y—"1.
Pt T T2 iz 33 r(+Q )+
du | 2 :

: 2 n? -1 2.
- + (20 5)— + =—=(20")u_} ' (5.21)
' - Q drr r n- -

S -
and then substitute imto (5.17). Similarly, using relation (5.16);

s '”’E;.can’be’eliminated*from’fﬁ:iQ) and~ (5.20): It can be proved that
p; and Eé have the same functional form in u and nn, respectively

%
and that both u (r) and nn(r) satisfy the fourth order differential

- 77rmfxgaatixn}fff——77477fﬁ5t4ffef.:fufaﬁf;ffjfff:;uffﬂf—Aif;ﬂf?ffﬂa,, S —
‘a*a adu , d%
2.2 n 2 n 2, .2 n n
r Q @ + 2r(2+Q )33’ + [8 - (3+n )Q = -Q..z]d 2
’ 2 2 du

1 2 2, .2 3n 2n n
7"‘ ;[2(24‘]‘1 ) - (3+n )Q + Qz - Qz ]-dT-

+ l-(l- 2)(4-3 2-"1—1-2)u =0 (5.22)

r.2 n v Q Q2 a . - . -

On substituting the expression (3.2.12) for Q(r), equation (5.22) becomes

db’un ’dsun d2un ldun
uun(r) = bo(?)r - + b (r)r— +b_(r)—= +>b3(r);a;

l -
+ b, (r)~u =0
ar* 177 ar3 T2 gy 47 'r%'n

where

(5.23)
_ k2 k* kb6
bo(r) =1 - 3]’_‘2 + 3‘;4 - 6 ' .
k2 k'+ k6
=6 ~ 145 + 105> - 2=,
bl(r) 6 14r2 ob -6
: : o 12 I T -
b (r) = ~(m%-3) + (an?11E - Gr®DE + %E (5.24)
_2 B e r r
o .
N 2 2 2 x* 2 _ kb
. X
’ 2 k‘* 2 kﬁ R
b (r) = m2-12 - 0*DE sm?-nE - 3@f-nE
4 2 A 6



To investigate- the behaviour of the point at infinity and to de-

termine the appropriate form of the solution, we map the point at in-

~ finity into the origin, using the transformation

~
r=1/t (5.25)
Higher derivatives with respect to r transform as follows
du_ _ ,2du
dar — - at R S —
d%u 4 d%u 3 du
ﬁ' ;{ + 2t E . .
r A (5.26)
d’s _ _6d%w_ 5d% _,d4du
dr3 a3 dt2 at
d*ua 8 d*u 7 d@3u 6 d2u 5 du
=t + 12t + 36t + 247 — . -
art at" at3 at? dt
Thus, in terms of the parameter t, equation (5.23) becomes
4 d“un 3 d3url 5 dzun dun
L = t S+ —_— — =
Un(t) = ao( )t E&' al(t)t @- + a2(t)t a2 +a3(t)tdt + a4(t)un 0
where (5.27)
ao(t) =1 - 3k2t2 + 3k4t4 - k6t6: ;
a (t) = 6 - 22x%t% + 26k%t? - 10k8° (5.28)
2 4 4 2 6,6
az(tJ sr—(2n295) + LAn?eBIlk?t?,a {3n =4kt +{n =21}k £
‘ 2 4 4 2 6.6 -
a it) = —(2n2+1) + (an-1)%%t? - (Tn2-5)kte? + 3%-1)x%8
> 2 4 4 2 6 6
a,(6) = (01" - n*-0K%? + sePnrte?t - 3P



_ 33.
Equation (5.27)«is equivalent to
ata au_ a%u_ Sdu
v + p3(t) 33 + pzft) E:z' + p; (B) EE—-?'PO(t)un‘z 0,
where (5.29)
- - S
pott) =~ a4(t)/t ao(t) 7 - )
_ 3
p,(t) = az(t)/t7a (t)
(5.30)

< Py (t)

s 2
Syt = asity/tlanie) o

al(t)/tao(t).

The point t=0 is a regular singularity for (5.29), as po(t), cee 1 p3(t)

are not analytic but all of

4 3 2 :
t Po(t), t Pl(t), t pz(t) and tp3(t) ére

of t=0.

analytic in a neighbourhcod

We shall construct the.
by finding four independent
is assumed to be

If u
n

o _(t) =
n

then Vthe eguation {5-27) impliesthat - — - —-

general solution of the equation (5.27)-

solutions.

a function of the form




£

f(A)a 'tA+f(7\+l)c. t
. n n

;0

2 A+2
2 +k g(l)an'O]t + [f(k+3)an

2 A+3
+ + + ,
[f(+ 2)an 3 k g(A l)an,l]t

14

2 4 : At+4
+ [f(A+4)an a + k g(A+2)an 5 + k h(A)an O]t

14 14 14

T e S
+ [f(k+5)an'5 + k g(A+3)an’3

+ kKhOdn e e
n,l N

+ [f(+6)a _ + kKg(M4)a . + kTh(M2)a . + kK30 a  tT6
n n,4. n,2 n

/6 ’ ’ ,0

+ [f(x+6+s)an + kzg(x+4+s)an + k4h(>\+2+s)an

,6+s ,4+s ,2+s
R A
+ k63(A+s)a 1t +6+sf+ ............... =0
. n,o0 :
. (5.32)

where, for each n, it is conyenient to define the functions
£(X), g(A), h(}), and 3(}) by the expressiong i
£(A) = A(A-1) (A=2) (A=3) + 6X(A-1) (A-2) - (2n2-5)A(A-1) - (2n2+1)A + (n%-1)2 , i
G(x) = =3A(A-1) (A-2) (A=3) = 22A(A-1) (A-2) + (4n2-31)A(A-1) + (4n2-1)) - (n*-1) ,

°

_h(k)

[}
—~
-
~
n

-2 (A-1) (A-2) (A=3) = 10X (A-1) (A-2) + (n2—21)k(k—l)+ (3n2-3)A

3A(A-1) (A=2) (A-3) + 262 (A-1) (A-2) - (3n2-47)A(A-1) - (7n2-5)A + (5n2-5) ,

(3n2-3)

(5.33

)




Cf(MDa =0,
£ N (

pp,i( : 35.

The functions (5.33) are related to the coefficients of u and its
_ ' n

derivatives as they occur in the differential equation.
. . P o
By equating to zero the coefficients of t v 3= 1,2,...,

a recursive system is obtained

: . I

fF(M2)a . + k%g(Ma =0 , (5.34)
n n

2

2 : 6 -
f()\+6+s)an + k g(X+4+s)an + k“h(A+2+s)an + k J(X+s)an s 0 f

,6+s s 4+s 12+s ’

----------------------------

7(5.34)

which can be solved for an 1’ an PYAREE as functions of A, except
- 14 14

possibly at zeros of f(A+j). It can be shown that the indicial equation

£(Ay =0 . (5.35) .
has solutions

A={x(1+tn}. (5.36)

These form a set of four roots, all differing by integers and distinct
provided n#l. In case n=1l, there is a double root and again all roots
differ by integers.

case la. Consider n#l and let

A, = n+l , A, = n-1, A, T -ntl , A, = -n-1, (5.37)

such that Xl > XZ > k3 > k4.



-If A is set equal to Al,

" then the quantities f‘§§4j) # 0 for all jzl.

Thus, there is always a pbwer series solution associated to the'largest

. root:
(1) AT 3
o)y =ty a LAt (5.38)
n . m,j 1
j=0
Each of the coefficients ¢, * is uniquely determined in terms 6f a non-

14

zero arbitrary constant an by the recurrence relations (5.34). We find

,0
that
an,l+25 =0, — s = 0,1,2{ '
a = ~[k2g(A.+4+2s)a + KO +2428) a .
n,6+2s gth n,4+2s 1 n,2+2s
+'k6j(k +2s)a 1/7£(X +6+25)k:
-1 n,2s 1
) with ““’f’/f“‘ﬁ
- 77W”47:”:;5;¥E;7;}f(x +2)1a -
OLn,2 - g 1 1 n,o
and
6 = -[K°g(A42)a .+ k(e 1/E(A +4) (5.39)
n,4 R L B *17%,0 1 T .

For the remaining roots, there is at least one N, specific to each A,

for which

§

fF(A¥) =0, X = A A5, (5.40)

and a relation of the form

f(l+N)an N —[kzg(R+N—2)an )

r2A

4
+ k'h(A+N—4)an + k6j(x+N—6)an

N-2 N-4 N-6
(5.41)

* , L. . .
If no A is specified, evaluation of a at A=Al will be understood.

n,j



cannot be fulfilled; conséquently; there is no corresponding poﬁer series
représehtation about t=0, unless, the right-hand side for that particular

N happéns tb be zero. ' )

We shall show that there is-also, for all n, a power series solution,

associated with the second largest root.

Regardless of the'specifié)value of n, f(k2+j) vanishes if

[N

R i -

and does not vanish for any other valué~of j. Corresponding to j=2,

-

- relations (5.34) give

‘ 5 .
f()\+2)an = -~k g(})an . (5.43)

,N ,O

Ezﬂturns out that A2 = n-1 is also a root of g(A) , and therefore, an N
I4

determined as a rational function of A, does not have Xz as a pole.

The terms

Bn,j = an,j(kz) y J>2 (5.44)

are now readily obtained and also will not have kz as & pole. Thus,

the differential eguation has & second solution of the form (5.31):

A o0 . .
2
¢( %t) =t2¥ya @ )tj . o o A5 Sy
n = . n,J 2 ] =
D Y
The leading term 1is t‘2 and so, the corresponding solution is di¥ferent

from any associated with The coefficients 8, satisfy the recursive
- r

1°



relations (5.34) where X=X2; In this\case

n,l+2s

-~

2 , 4
B 628 - LK g()‘24*44*25)811,4+2s K h(A 4242508 0
+x%5 0 ;2 )8 _1/E(A_+6+2s) T T
JAFesIB as 2 s
such that
2 3g(A) IE(A+2) -
,,,,, o ) | — / 1 R e el PR _
B B Tl e Ty ‘?n,o A S
A=A
2
8 = -k>g(A42)8_ . + kK*h(A)8_ 1/E(X +4) . (5.46)
n,4 IIATEIRN 2 2'%n,0 2 A

When A=Ay, £(0+3) = 0 for j = A -A, = 2n-2 and élso for j = A =iy = 2n.

We cannot draw a general conclusion concerﬁing all n, regarding the form

of the solution.
If the right-hand side of the relation (5.41l) is not zero for both

j = 2n~2 and j = 2n, no number o N satisfies the equation and thus,

r

ne solution of the tyre (5.31) exists. %We note that the functions Yn j()\)

r

defined as

Yo .() = (A-2)a L (}X) (5.47)°
] 3 ] A ,

r r

are analvtic at X=13qandrsatisfy the recurrence relations (5.34) not only

for A near A_ but also for i=Xi Let

3 3T 0

A-A)e(t,A) = Ty el . (5.48)

$£B%tlk)

1
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.

Although the formal series (5.48) satisfies the differential equation for ~ —

X=X3 its first N-1 terms vanish, and ultimétely’the series is merely a

multiple of the first solution gél). In fact, -

Y ' '
6@ TN @) o (5. 49)

,

indepen 'Bt spolution wé3{t), associateg with the indicial root A3,

____ calculations reveal that . ...
. Y A ® 9y . . '
ety = 2N o Mhyinee) + £ 3] (=2ddy I (5.50)
n dn,0 n PP U
' . j=0 A=A
. 3
where
(Yn,j)l—)‘3 =0 7 7 J = 011121 --7- ’ N"l
o o - N
n,N
{ . =——0a ., (A, j = N+1,N+2, ...
Yn,J))\=)\3 %n,0 n,j=N" 1 J
 and
(aYn'O) =q
A A=13 n,0 ir———
’ (£ (1+2) . f(l+2)3Yn,2 4+ x2 390 . (l)aYn,o] s 0,
3% 'n,2 3 ) Yn,0 EASR AN A=A,
3Y
(3£ (A+éts) : _n,bks 2 3g+ats) - I
75X 7 Yn,ees T EAREIS) T 4k ax  'n,ats t
o *%T,,f _ >~ B‘Y <
2 n,4+s 4 dh (A+2+s) 4 n,2+s
k g (A+4+s) Y + k o Yn,2+s + k h()\+2+s)———a)‘
cngs, el =012, ...
3% a1t 3L A=Ay v ST Uetels ens



- ’ : : ’ .
If the two critical coefficients can be determined from (5.41), then

there is a power series solution associated also with the third root:

AL = :
(3 _ .3 r ]

. by = ¢ 'Z an;j(l3)t (5.52)

N j=o
. The two types of the solutions-(5.50) and (5.52) can be written in the
same form as
BYo) = a oMoy + tl3 E v .t (5:53)
®n n? Y n,j i

where a =0 and y* .
R n,j n,j

_.3=0 -

1 .(13) if for é cértain n the solution has the

- Y. .

3 = * oz (el : :
st ctgre (5.52), and a = Yn,N/an,O and Yn,j = { o5 )A=A3 if th? solution
solution is of the form (5.53). '

Analogously, .
- : z a I 7 X = — .
oMy = b oMeyin(ey + £ 4 Y ox ] (5.54)
n n . n,j
j=o0 "
is the fourth independent solution where b =0 and &* ., = a .(A,)
n : n,j n,j 4

if, for a given n, the solution is of *a power series form, and

1 a

n = 3 . S % = __~_Jn’.
“n 7 3n,N/ﬁn,O ' 0n,j ( EDY ?R=A4

Similar recursive relations with (5.51) hold for &

ated, though, at kék4.

p.

Case 1lpb. For the specific value n=l, the fourth order differential-

r

if the solution ihvolves'logarithms,

98 . .
and —§§Ll- evalu-

order three in u'(t) = dul/dt :

equation (5.27), in u_(t), lowers its order and becomes an eguation of



'Y
o

3. 5 42 o
1.3 du' 2du' oy dut : 7
x = T mmme— - * e = |
Lul(t) 7 CO(t)t 33 cl(t)t > cz(t)t = +c3(t)u o,
o (5.55)
colt) =1 - a%e? + acte? - kB8,
‘él(t), =6 —4227](21:2/ + 26k4t4 = 10]{—6—1:6 = S o
,'77':7 e S St R (5-56) S
‘ o, (e) =3 - 27%e? + aaxte? - 2ox5:8 '
c3it) = -3 + 3k%2 - et .

e follow the procedure used in the preceeding case and seek a power
series solution of the form
AT j ) - ) : -
= J .
ui(e) = ¢ Ja .t . (5.57)

. 1,3
“ 3=0

Eguation (5.55) yields

x k) . o
I (£, 049)a) R kzgi(x+j)ai';tl*3+2””’ o
j=0 IJ N ‘ Ij
, (5.58)
. v A+j+4 6 . LAFHE,
+ k4hl(k+])al’jt 7 + Xk ]lﬁk+3)a1,jt } =0
wnere we have defined ’
) = AR G2) + BA(A-1) + 32 -3,
gl}x) = =33(R-1) (3-2) = 22A{A-1) - 271 + 3,
' ‘ ' (5.59)

o

=
—
>
~—
H

3A{A-1) (-2} + 263 (A-1) + 44X - 2 ,

~h{x-1) {x-2) - 1OXx-1) - 20k . 0 — o

[}
=
-
-
L
1l
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The solutions of the indicial eguation fl(k) = 0 are found to be
A, =1, A =-1, A, = -3.  (5.60)

As has been shown, there is at least one independent solution expressible
_in a power series form, and this corresponds to the largest root. It will .
be shown that the solution assSciated with the second foo£ invélvesﬁloga—
rithms and the solution corresponding to the last root is again expressi-

ble in a power series £form. ~

Setting A=1, we obtain

€

1 z 3
uy Piey = ¢ } oz ). . - (5.61)
. 1,3 :
3=0

a (L.) are to be determined from the re-

The coefficients a. . = .
1,3 - 1,31

currence relations

-

2
2 5= X lg (W/E DTy o
@, = =g (3)ay , + Kh () (1/£,(5)
, , 071 (5.62)
= -{kzn {3+2s) + k4h(3+25)ﬂ'
*1,6+2s - v T tITESITY 4406 Y ®1,242s
&
P 1+ bl T+ s
+ X 3§ 2s)al'25]/ 4 (7+2s)
B = 0, =y, 121 ...
*1,142s . s =9
P

takes the wvalue

(W)



‘The corresgonding,relatioh}xéﬁiéinéd by equating to zero the coefficient

-

of the first power of t in (5.59), is given by

2 .
fl(A2+2)al'2(A2)~+ k gl(Az)al O(Az) =0 . (5.64)

S e anceuthE'functlon gl(k} -does not vanish for A= kﬂ”'thE*relatxon {5+ 64)""*““*"*“"

cannot be satlsfled for any choice of al 2(Az). It can be ver1f1ed that

a solution associated with A2=-l is furnished by

S @, B 7{{ R =V
‘ u) ey = = w () In(e) + { ( £ (5.65)
1,0 : A=fl
where
L) = G+l (1) . (5.66)
81'3( ) ) n’:[( )
The critical coefficient here is found to be
5 afl(l+2) . '
; - - —_ , .67
3112 X [gl(k)/ 3 ] al’o (5 )
A=-1 ™
381 X :
and the derivatives 3! = —1 satisfy recursively
. 1,3 3 &
L2
£1{A+6+5) 2 ; ! .
_{ 1'}‘*6"5)’“1,6+s + £ (A+6+s)81 6+ + k gl(}f4+s)81’4+s +
4
e Qi 1 + +
(A+4 s)8 1 a+s + k hl(A+2 S)Bl,2+s + k hfx+2+s)81 245 ’
6 ' = Lo R o= . e
Jl(k+6}81;” + k- }(1*6} T S}~f~'ﬁ— a-, =3 )0,1121 -
A=—
S ' (5.68)

such that




and correspondingly, the

e e -1
coefficients of t

and t ares resvectively

81,0 8;,°0s
- 8
1,2
B, . = I~ a. . , j =3,4, ...
1.3 ul,O 1,3-2
, (dBl,O) . B
TN 1,0 - |
38 32F_ (A+2) 3g, (A) 9B “SS 3f. (A+2) :
L2 oL o 4 ox? 2L 1,0 ,,°1 ]
52 322 1,2 X A 3A ’
A=-1 , A=-1
38 3. (A+4) 3g. (A+2) | 38
T e I SVt SN M0 | LN S5 H S —
T S T L A
38
+ o022 . (5.69)
1 A -
A:—l >
Considering now the smaller root A3, we see that fl(l3+j)-becomes
—-——————2ero—for both :
3 = uz-xg =2 (5.70)
and
j = l—&3 = 4 (5-71)

given Dby -
£f_ (A _+2)vy + kzg (A.) Yy =0 , (5i72) |
103 2 1Y53%11 9 : R
£, (h_ +4) % kb G.+2) ¥ 54* (X)) =0 (5.73)
1438y o kg vy, T LA S I S A
where
- -= : . 5.74
rl,j 3l,j()3) { )
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It turns out that gl(Aa) = 0 and hence, relation (5.72) is fulfilled
for any value of Y; - The relation (5.73) can be satisfied if the sum
,
of the lastvtwb terms can be made zero. This may be arranged if
= —k2 Eliiél_. = _? ' (5.75)
Y1,2 7. gl(A3+2)Yl,O 2 1,0 © 12

o

If Yl 5 satisfies (5.7 ), then relation (5.73) is fulfilled for any Y] 4°
’ _ . ’

In particular,we can choose

=0 . (5.76)

Y1,4

[+ -
211 other coefficients are obtained from the recurrence relations

2 ' 4 '
= ~lg  (428)Y) o ¥ K B(S1429)Y) o0

Y1, 6+2s
6 . ) -

+ k% (=3+25) 1 / £ _(3+2s) , . (5.77)
Y1042s =0 5 =012 - o o
Writting

e 38 -
w3 2 Yoy, ut? o, - (5.78)
LR M ,

it follows from (5.61l), (5.63) and (5.78) that, corresponding to n=1,

the differential eguation (5.27) has the solution u, (t) satisfying

e, T ®1,2 1+3
3
= Y 4 5 + B, [==L= 1n(t) Z @, Lt o+
ac Al 1,3 13, o Lo 13
B (5.79)
-1+j -3+j
X (a) t I+¢ z Yl 3

=0 A‘-l 3.0



Case-2. If n=0, the equilibrium equations (5.13), (5.14) and the

conditions of incompressibility (5.2) furnish

0 0]
a;—-+ ;—’= o , (5.80)
a%y 3 Z
- 2 =0 277770 0. oo TTtmmm s -
rQ > + (2-0 )(a - ;—0 =0, (5.81)
dp’ a%u du : .
1 “Po 2% % 2 2570
2¢ ar Q 3 + r(2-Q ) =0 . (5.82)

In view of the expreésion (3.2.12) for Q(r), the equation (5.82)

may be readily 7integrated to‘yield-

, _ kKW o
po(r) =My 2¢ -r—z o (5.83)
pe ,

"Further, it follows from (5.80) that

(5.84)
and hence,

of(r) =, - 2a.C s (5.85)
r

To integrate ecuation (5.81) we firstly apply the inverse trans-

formation (5.25). Ecuation (5.81) beéomes,

] d2y 7777777777 7' dr L L .
(l—kztz)t27~——- + (1—3k2t2)t — - (1+két4)§ =0 . - (5.86)
at? at 0
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It can be shown that the general solution of thHe equation (5<86) - -
is given by
© .. b bl T @ 3b
~ 1+3 o~ 0,2 1+3 0,7 -1-7
io(t) =)ﬁak_2 a, st 34 Bo[a *= 1n(t) z a, jt ' Z (—31419 £y .
7 3=0 O 0,0 j=0 ° j= A=l
- 7 (5.87)
TheAcgéfficients a, ; are determined by the recurrence felations
S . AU i _ .
(5.87) in the form . -
- ° . 2 »V -
= - - + )
2y, 2425 k [go‘1+25)/f0(3 25)]a0’2s ’ i
o (5.88)
,71,77777739:1/1.&25,, ?, 0 ! ,,75”,:::7 —0—’1]{—2%177' B m— SrmrmE T v ::’:?f *:ilf‘ii{'a‘ji"::
where the functions fo(x) and go(x) have been defined as follows
’ £,00 = A(A=1) + A -1,
] (5.89)
) 9o(A) = -A(A-1) -3% +1
The values of A for which fo(k) = 0 are i
= =-1. V . 5.90.
Xl 1, Az 1 ( )
The coeffiféents bO,j are defined by —
B (M) = (A-Aa. L (A) (5.91)
0,j( y = ( .2 0,3 ' »
and, we obtaiq that - B
By =0, 3=0a. -
b = hkz[é N /(=01 a = ~k"a ' {5.92)
0,2 o . .,70,0 0,0
: A=-1
I = b - = 3r4 LR
20,5 = ®9,27%0,0'%,5-2 * ? ’



__of the coefficient functions which occurs at t = 1/k_._

The derivatives bé 3 = 82 satisfies recursively
14
f! j L+ \+2+3)Db .
{ o(x+2+;f)b0,72+:| £(+2 ;|)bO,2+:|
+ k2[ '(AM3) Db + (M3)b ]} =0
90,5 T 9B 3 I ey T
- S j=0,1,2, - (5.93)
where it can be shown that
T _ e
0,1
(—— = a (5.94)
oA 0,0 .
-~ )\—_‘—l .
The series involved in all solutions obtained here have radii 6f

convergence at least as large as the distance to the nearest singularity

We reassemble the solution, firstly includ;ng expression (5.84)
for ud(r) and integratincg relation (5.79) to obfain ul(t)" We use the
partial results (5.38), (5.45), (5.52{ and (5.54) which expfess un(t)
for every n # 0,1 and apply, throughouf, the inverse transformatiqn (5.25).
»Further, we_derive vn(r) and ﬁn(r), making use of the relation (5.37)
and employing the incompressibility conditions (5.2) and (5.3) together

with the corresponding results for un(r). We obtain that any perturba;

. . + PR - - .- _ N
tional displacement field £@ = <tu,ev>, that can be superimposed on the

fTimite inflation and éﬁgur€§*équiiibrium“byméurfémz?1ﬁﬁRﬂ:hﬁﬁ?‘&tﬁﬁé?fbe:““‘"“

longs to the general solution:



;’W%L S - T .
- 49.
A‘0 v %, -2- 37 |
Cur,8) = 4+ ([ <t )[Acos(e) +Asm(9)]
- r 2+3 1
j=0
By 2 ao‘g 1,3 =25 z LJ, ~2-j
+ [——-’-—l r .'__L_
9,0 r j=0 2+j 1,0 520 (2+3)
a8 a = BB _ A :
1,0 ) _0 l_l_! : =] e :
g, Ing +J§1 . ) -y T "1{Bjcos(@) + B sin(@)]
. Y14 o Ay ]
+(Z —-'l ?+Y ln—)[f‘ cos(G)+Cs:.n(9)] -
372 '

. r°°7' ab‘_ . '
8 . (;

‘ @ . - - ® 4
1+ -2-3 . o . 1,2 ma—o\i 1+j -2-3
+ (j20—12+j°1,3r ) [A)5in(®) - Ajcos @)1+ fro(ln o) pre
I T a 38
1,3 -2 _1 __o 1,0
LGy T ) v - In (5 )y
= 1 98 . ; .
Y‘ - r = . - e
/ t oL 3___3_ (_lfax )y=-1F 1,,[13,151:11(5,),,,,,BlCQS,(, )
j=1
=3 255 % =
122, -] - 1n — in(€) - 5
+‘ [Z :l‘2 (l,jr + (l 1In r )Yl,Z] [ClSln( ) ClCOS( )]
3=



+,22 %-{[jio(n+j)ah,jr_n-l—31[Ansin(ne) - Kncos(ne)]
n= =

[--] .
DL "n+l—j - e o
- - B 0
+”[.z (n 2+J)Bn,jr _ ][Bn51n(n ) ncos(n )]
- ]=0 - ) ‘ ¢
: S -n-1- . _~n-1-
+ [a (1n 0 z (n+j)czn Ba o B z an jr J)
n ‘ r 5=0 ] ‘ 3=0 ’ -
- f‘(nej)y* .rn‘l‘J][C sin(n6) -’Eicos{nE)}fA . _'};A
. n,j . n n . oo
=0 .
a [--] . Lo .
- -n-1- -n-1-3.
-+ [b (1n 0 z (n+j)an T n B 2 an .r J)
- n r j=0 IJ J=O r

- z (n+l—j)6* .rn+l—j][D sin(ne} - 6.co§(n6)]}}
320 n,Jj n " n ]

(5.96)

In order to calculate the additional stresses, we firstly obtain

the hydrostatic pressure o”(r,8) making use of the results (5.85) and

"7(5.21) and performinc the recuired nicher derivatives of the displace-

ment components: Then, we substitute into relation (5.11) along with
the displacement gradients derived from (5.95) and (5.96). Finally we

opbtain the following incremental stress components:

: 2
_,11 AN = v An s 1 r
T (r,3) = 25 .nob(l + 21n r2—k2)/r
7 ol 3-3 ~
+ 2¢{( ) Fl 5% iT ) [3,cos(8) + A sin(8)]
, j=0 3 L.
g ’ © . o] .
1,2 -3- : . =3=9 S
+ [=—= (1a ;9 ¥ Fi 2 LT 33 ) Fi Nt 3 )
"'l,O ur-» ]=O lj IJ R jzo IJ r]
S 3 381+ 1.5 L - )
+ ) F :(':;il) _— 1118, cos(8) + B.sin(8)]
. 1,5° 5x 1 1
j=0 A==1 e °

rl—j)[clcos(e) + C.sin(8)}

,3%1,5 1



where

_ _ 51.
S~ 2¢ E =,{C Z r 7727y (A cos(nd) + A sin(ng)]
jn,j n n
n_2 n ]——0 n, f ;
-3 . o ‘
+ [(z - | [B- cos(nB) + B sm(ge)] =
j"o lJ nlj a - .
) 2- o -2
- -n- -j —n— =3
+ [a {in = z F T z ,)
mrx 3=0 n,3 *n,3 73=o' n,J nJJA )
‘ v 8 -2- ' 3
4+ (z F Y*' o ]] [C cos(ns) + C 51n(n6)] o e
——frfj;dfnrj n,J e - : e
23 '617 O pe2-
+[b(1n—ZF o .r " ']-ZF .cr.n.rn 7y
n,j n,j v ]=0 n,Jl /.. .
+ (Z F 3 s* . ™ J)] [D cos(nB) + D 51n(n6)]} -
= jzef n,jn Ll e ; *,,"T’ e
" ' (5.97)
1 ’l 2 2x2 22 2 : T
’ = (-1+33+7 - (445343 )—, - + 1n ),
Fl,j( r) ( 1+33+37) {4+53+7 )rz, ‘(r,z-kz rz-kzl . \
F2 (k,r) = (-3-23) + (5+2')k2
1/j ] = P J ';2 ' i
T . 2 2 — 2 .
3 .. .2 ., .2,k r r .
= —-— - - - - p— - + P
Fl,j(k’r)“ (-3-3-37) + (2-3-3 )r2 (rz—kz 1n _rz_kz)
2 2 2
: k : r
?i .(k,x) 57,(3-5j+j2) + (3j-—j2)—2 - ( 2r 5 ¥ 1n > 2) . .
] . r -k r -k '
5 Do 2 : . .3
F_ j(k,r) = [ (n+l) (" =+2) - n(n+4)3 - (3n+2)3 - 371
; T 2 3 k2
+ [4n(n+l) + (2n"+8n+4)3j + (3n+4)3" + J ]—2
r
2 ) r2 | r2‘
+ n (n+l+3) ( + 1n —0
’ r2—k2 r2-k2 ’ -
" A 2 e el a2 i3 S
2% _(k,r) = [n(n-1) (n+d) - (n°-Bn+d)j - (3n-4)3° -'3°]

B s

-2 .3k
+ [2r(n~2)F + (3n-2)3" + F ]—2

2 2

2 . r \
+ n (n—l+})(r2_k2 + 1n r2-k§+ ,




o r
. - ~

' . 2
FZ j(k,r) = [n(n+4) + 2(3n+2)j + 331
’ .
. . ) . ) 2 -
5 . 2.k -
- [(2n2+8n+4) + 2(3n+4)3 + 33 ]—}
‘ r -
2 2
2, r : r )
-n ( > + 1n 2-k21 ' B

. F j(k"{) = :['-nAz - n(nf4)j +. (?m-fZ)jz - j3]

: : 2
. . .2 . .3.k

+ [4n(n-1) +'(2n2—8n+4)3 - (3n-4)j + 3 ]“b

. r?

r2 ’ 'r2
+ 1in
r2—k2 r2—k

- n?(a-1-9) ( o
LE kD) 2 D) (1-n2-3n) - (n2+8n+4)3 + (3n+1)3°% - §°]

2
+ [(n+l)(l-n2) + 2n(n+2)j -~ (3n—2)j2 + j3]5}

r
5 - 1’_2 L2
- e (s a5y
o r -k r -k
: 2 2 B
2,22 . k 1 r 2
rt7°%(r,8) = 8+ 42 c(l - — + 5 In ) /"
-\ 0 0 22" 242
T 1 L -3-3 ~
3T +
+ ZC{(.Z Cl,jal,jr )[Alcos(e) A151r_1(6)]
3=0
1.3 % ¢ 1 3y 2 o 3~
+ [—Ll(ln— z Gl .al T J - z Gl ,al T J)
< ’ allo r §=0 r] r] j=0 r ] r] -
w 38 . N
2 + 7 =2 s cos(9) + Bsin(®) ]
b4 j=o ~'3 7 x=-1 :
/ 2, T -
/ ¥ v’" - -J . c 1 o=
+ éio“l:jYL:jF )[Clcos(e) + C151n(6)]}
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- 2¢ Z 1 {( z r“n°2—:') [A cos(n®) + A sin(n6)]
n=2 n J_O n,3°n, 3 n ’ n
B o) N '
T+ z G }[B cos(nB) + B sln(nB)] 0y
.. j= =g rJ nlJ LT n:‘ . n .y
A N 2 b cne2-3 '
, -n-2-j =23
+ a 1n G .a LT )
7 . ( 3 Z n,j n, J E n,j n,J N
_ - o ,,Tﬁﬁngf R e _
o +z G * jr ][C cos(ne) + c sln(nB)]
. , n,
S ao S5 - 2 2 7 o P o
: + [b (In = Y Gh o LT nmetd - e ‘Jan 5% nmedy
- b ‘ _ j=0 n,J r] » j=0 ,' ’
"mfffbm“7+iiG97f¢7 ***** %Tﬁcosmg>+'i§ﬁﬁﬁﬁjr};* :
' " (5.98)
where
, Co2 2 2
1 2 L2k r
G, .(k,r) = (3+33+37) - (6+55+3 7 )—. - ( ~ 1ln )
1,3 %) 7] I T a2 r2x2
2
2 _ . Lk
Gl,j(k,r) — (‘3"2]) + (5+2J)r2 r -
2 2 2-
3 _ . .2 . .2 k T r
.Gl'j(k,r) = (1-3+37) - (3+7 )r2 (rz—kz 1in r2-k2) ’
- - 2 2 2
4 _ . .2 . .2k r
Gl,j(k'r) 2 (7-53+37) - (2-3j+3 )r2 (rz—kz - 1n r2—k2) ,

Gi j(k,r) = [(n+l)(—3n2—n+2) - n(5n+4)j - (3n+2)j2 - j3]
) 2 2 3 k2
+ [2n(n+1) (2+n) + 4(n+1)"j + (3n+4)3j° + j ]*2-

- r

2 r2 r2
+ n (n+1+3) ( 5 5 In 5 2) ’
L X -k ] r -k° ~ )
6

30/0) = [=n(a-1) Gn-a) - (5n°-8n+4)3 - (3n-4)3% - 37

2
+ [2n2(n—l) + 4n(n-1)j + (3n—2)j2 + j3]Eé
ba

r2 r2 i -

- 1n )

rd-x2 r2-k2

+ nz(n—l+j)(
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: <2 ’ s =2
<’ J0x) = nln°<3nta) + 20m2)) + 337)
n, )
2
2.k
- [2(n3+4n+2) + 2(3n+4)j + 3]2]—2
) r
2 2
SR S [ S

) : ré-x? o r2-x?

TG k) (n2Wn<S) - n(n-4)3 + (=237 =571

- [2n(r-1) (0-2) - 4(-D%3 + Gn-4)3° - 315

2 2

_— L e e T

T2-K2 2-x2

°

‘ , : ‘ o .3
Gi j(k,r) = [(3n3+2n2+4n—l) - (5n2+8n+4)3 &+ (3n+l)j2 - 3]

- .

, , 2
+ [(n+1)(1—3n2) + 4n(n+1)j - (3 -2{52 + j3]5
| i . ‘j | | r2
2 ' r2 r2
- {n+1-7) ( —< = In =—7) ,
nomRTm e 2 r2-

g

.‘ .

. L2 2 § @ .
i2 . £ 4+ 1n =)< . z ja =273
: 2" Fo,2,7%0,3

-2-3

0.3 (2-9)x 71
o’ j=0 A=-1

_
-t

5=0 1,3 1
1,2 . %% T 3 81,22
+[u ‘= 1In :y Po(2+3) r= s al,2 z <N _1_3_]
1,0 - 5=0 ] l’O]’:O ']
233, 1s Y
-7 3—=h._ r 7115 sin(e) - B cos(9)]
SRR 1 1

cos(8) ]

-~ e . 1-3 . ~
Z (2-3) jr ][C151n(9) 7 Cl



- Z 1 {( Z H’lr o r-n—z-j) [A sin(n8) - & cos(nd)]
=y a P~ n

n=2 j=0 Pr3 D43 2
+ (Z 52',.8 . -n- J) [B s:l.n(ne) -B cos(ne)]
j=0 nIJ IJ

- o (=<} .

+ [a (1n 2§ ul 2, V3 . 2R
nTr gl ndig 550 Prdn,3 )

o ’”""”’*W"iu'f g n'z'jJ[c siﬁkne) - C_cos(nd)] -
- 7 ._ f 14 .

r—n-2,—.3 +'Z H3 ] r_n-2 ])

rj—onfjnj =) ’r]nrj

L Y/ H .o T JlD sm(nB) = Bnqos(ne)]}> .,

| j=0 73 B+ S
T - B o - (5.99)
where, - X
1 R .2
B . = 2(n+tl)(p+3) + 37, =
n,j} .
2. L L2
5 = 2(n-1) (n+j) +.3°,
o 3 .
g = 2(n+1+5) ,
R : °
~ 4 - R .2 S B o
e n,3 z 2(n J:)(n j) A+j ’
5 o 2
E . T 2(n+1) (n-3) + 7 .
n,j . J
and '
2 o 2 2 T ‘
3 N k k r 2 - -
(r,8) =) - 2a [cr2 te, 22 7252 Yl1/x -
I e I U
+ 2{¢ Z . r ) [A,co8(8) + A_sin(8)].
1,31,3 1 S Ry
_ 3=0 o~
8 a =
1,2 . _=3-5 ~3=5
+[;—(L1I;OZL]J:.31 3 ZL 5% _r3])
112 , ]=0 r] '] ]—O ' IJ
a3
3 1,3 -};—} — -
+
Ll,j( = ) ][Blcosfa) + Blsux(e)]

j=0 A=-1 P
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+ (V) o r'Y)(c costs) + & sin(6)]}
j=0 1.3 1 1 . '
-2 ¥ {c} L’ e .r " 277 (A cos(nd) + A _sin(né)]
n=2 j=o0 n,j n,J n n
o0 6 R
+ (Y12 .8 .r'")(B cos(nd) + B_sin(ng)]
j=0 n,)"n,J n 3 n
,,7, . ao w,,,s,,,,_ '~~-n—2/-f' .2 T e D e ,7, s
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+ 718 yr "? I (c costne) + C_sin(ne)]
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: 2 "2
+ (3n2+2)j2 + j3}5-‘+ n?(n+l+j) . >/n2
| 2 7 p2y2
2 .2
k r .
- = - +1+ ,
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v r
2 2 2
2 r 2 k r
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SR 2 2 £ 27 2 22
4
/ It is worth noting that the displacement field that constitutes

the general solution of the problem corresponding to the Mooney-Rivlin
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strain-energy function is also valid fo neo-Hookean solids when the

the constant ¢ = ¢, + Q2 of the Mooney-Rivlin material.is identified

1
with the constant ¢,{¢c = cl, 92 = 0) of the neo-Hookean solid. However,
B 11 22 . 11,22 12 ‘
although the nonvanishing stress T, T ~ and /77, 77 and T’ cor-

responding to Mooney-Rivlin strain-energy function are the same asithééé

»33

. . 33 .o
corresponding to the neq:gggggan, the stress T and T differ.
>

g




6. PERTURBAT&ONAL UNIAXIAL TENSION

In order to illustrate the method outlined in the preceeding sections,

we shall now investigate some specific boundary value problems.

In this chapter we consider that the perturbation, applied to a finitely

deformed slab, is caused by uniform tensile loadings acting at sections far

frem'thefopéningﬁ/%ﬁefsﬁari*xnvestlgatéifhé’case of T sIab with a circular
5

hole and two cases where a rigid inclusion is embedded into the body.

6.1. Perturbational Uniaxial Tension Applied to a Finitely

Deforméd Slab with a cular Hole

Let PZeP denote the perturbational stress distribution which is

zpplied in the xl direction. No additicnal forces, besides the expanding
pressure, are to be applied at the hole. . Jhen, the boundary conditions

at infinity may be expressed as

, T, ~0, T __ ~0. (6.1.1)

We perform the approrriate tensor transformation into polar cocrdinates

and obtain ] ] I o L S
q':l l LS %i‘%#;l%lg% P~ ?GGS 24 6 — -
rz['f:22 + 5(1'22 - 122 g%)] N'Psinze r {6.1.2)

11 3v P .
391 ~ - 3 sin(20) .

[a}
a
+
[\
—~
€
+
Kb
«
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However, by (5.10), %ik ~~ 0 and therefore ) -

T’ll Aag{l + cos(28)] ,

22
.r21’ mrgil - cos(26)] ,

12 '
T~ - % sin(28) .

" In view of the expressions (5.27), (5.98) and (5.99) for the stress

componentéir’lk['relatigns (6.1.3) are satisfied prdGideé

(6.1.4)

O
1
0]

¢ =p =p =0,

We also regquire that the small uniaxial loadings at infinity

induce no changes in the .applied force distribution at the hole.

Hence, at the boundary surface r=a, we must have

r=a (6.1.5)

11 5 ﬁ\§

P
¥

11 - 11

essions (5.10), (5.11) for =, 7 12—

and T R

and further, using the
together with the incompressibility comstraints (5.2) and (5.3), we

find that the contrizuticn of terms corresponding to n=0 yield



. - 2 a2 o
, P 2, " k
A ==>a‘/(4 - < «<1n D) . (6.1.6)
a2 i a2

Correspending to n#Q, we obtain

- % -
i? d3wn 2 dzm 3-2 k2 2
fa-%)r? ot -2 — e {(1 2n) +(1+3509)%, - ——
o I _a% —..@r> .dre. o 2 7 '2*'*7'1-k2/a
. X , ‘
2 a dw 2
n 0 n 2 k.1
+ — — ——— -— —_— —— =
s Sl g+ D ar=)ze } =0,
. a a r=a k
k2 5 d2mn k2 ag dm k2 a2
{2(1- =)r" ——+ (2=3=+1n—; E—E::k a2 iuz-f,tlnf m,} ,,,,,, =0
a dr . a a r=a
(6.1.7)

where w_ stands for either u_(r) or n_(r). Relations (6.1.7)
- n n e Ny n .

provide for each n, two sets of coupled equations for the unknown
constants {An,Bn} and {An,Bn}. It can be shown that, except when

n=2, each system admits only the trivial solution

<

R

o : ] (6.1.8)
A_ =B =0, n#o0, nF2.

3

In order to obtain the value of the constants A2 and BZ’ we have to

to specify some results.
The functiomns £, g, h, and 7 involved in the recursive relations

for the coefficients %, 2, y and 8 are obtained from their general ex-

cressions (5.33) by setting n=2. The indicial roots (5 36) become for

n=2
A, =3, A,.=1, i, =-1, A, = -3 . (6.1.9)



In fact, only the first three roots contribute to the solution of the
posed boundary value problem since the constants Dn and 5n must ganish
to meet the stress conditions at infinity.

We have proven that for every n#0, there are two independent power

/\

_series solutions, corresponding to the largest and the second largest = ‘7

indicial root. These solutions, for n=2, have the form

@K

1 . -3-

u )(r) = Z a, .T 3 7,

2 .20 2,3

B I ] “(6.1.10)
(2) . - v 1

(r) = ) 8, .xr

2 L 72,)

) ~ 3=0
The coefficients a, and 82 satisfy the recurrence relations
’ !
a A a
2,6+s 2 4+s 1 2,2+s
k g( +4+s) + k4h( +2+s) +
o - A .
82,64‘—SJ (25 l82,4+s (Az) [82,2+s J
) Xl :
ok 3( / £ +6+s) , s =0,1,2, ...
8 A
2
u (6.1.11)

in which Rl, R2 respectively take values 1 and 3. It can be shown that

n this case the initial terms are given by N

(=8
-
-

i o L.29(3) 1.2 o
Y27 7K E®¥2,0 72 K %207 TN
(6.1.12)
, T2 a : :
= - = IX°g(5] 3 -
%),4 F) K 908Ta, ¥ k3o,



. _ _ 2.3 , 3f. __1.2
By,2 k7 BA}A=182,0 =3k B0,
' (6.1.13)
= 4 :
By 4 = f(s) [k g(3)s +khe, 1.

To investigate the nature #oof the solution associated, with the.
_first root, we note that in case As-1, £(A#i)=0 for j=F and j=4.

When j=2, the relations (5.4l)lyield

f(l)§2 5 3) + k g( 1)a (A3) =0 (6.1.14)

Although f(1)=f(A2)=o,’it turns out that also g(-1)=0 and thus a (A 3

would not be an impediment in determining recursively the coefficients
a, .(A,). However, when j=4, we have

= _- - 2 ) - -
£3)e, ,04) = - Kga, ,(03) + k% ( Da, (0. (6.1.15) .

[4

We recall that f(3)#f(31)=0 and, it ‘=3n be shown that, whereas g(1)=0,
h(-1)#0 and the relation (6.1.15) cannot be satisfied for any choice of

Ay 4t ConsequentX¥y,/ there is no power series solution associated with
! s

R3=-1; the corresponding solution involves logarithms and it follows from

relation (5.47) that

~(3) Y2, . % % AP -1-3
(M =7z Je, x- T+ J5H 7, (6.1.16)
2,0 % =0 °"] 30 A=-1 :
where ' ¢
Y, JOT EORDe (6-1-17)
with
-, = - = = = 601-18



The calculations show that the critical coefficient yz’é'maylbe/exf
: ' -2, A

pressed by

C 4 of (X+4) . 1.4
= -~ k [h(})/ ———— = - =
Y2,4 [/ =35 ]A=_1“2,o 2 X %0

The remaining y'coefficients are related to the a's by

: 1 4 - S :

Y2,4+s = ; 5 kK a2’s ’ s =20,1,2, <o (6.1.20)
To obtain the derivatives of 10 iKA)—involved in the solution (6.1.16),
i I 2 - R

-

-~ B
we. use the property that the y's themselves, by definition, satisfy re-

lations of the form (5.34). It can be shown that

. = * P
T2,0 7 %2,0 7 :
.4
¥
oo g3 eh, 2 = - x?
Y32 Vs k aZ,O 2k a2,0 ’ 4 (6.1.21)
; 2 4 ' 23 . 4
! = -[£%(3 + 2k M '~ ; ==k
V2,4 = TR, 4 51y, * 2k RNy, 51 =5k,
A1l other ¥' are obtained recursivelyrby
Y2,l+2s =0 , s =0,1,2, ...
! = - {£'(5+28) v + %P g (3+28)y + g(3+2s)y! ]
2,6+2s '2,6+2s 2,4+2s '2,4+2s
! + ke sy + h(i+25)Y ' ]
‘2,2+2s 2,2+2s
+ keiﬁ'(—l+2"}v + 3(-1+2s)yl __ 1} / £(5+2s) (6.1.22)
TR e T ,0s T IS0, 060 : T
* In this and subsecusnt chapters, in order to simplify the writing,
we denote by " ' ¥ derivatives with respect to A. If no A is mentioned,
svaluation at the arcrorcriate * is understood, i.e. we evaluate W at
A.=3, 3, . at A_=1 and at x_=-1. +J

T
1 2,3 2 Y2,3 3

J



; o5,

e ?~-fWegeeﬂe%uéegthatutheAfadial—disp}aeement—u{r7ﬁ}4i54§4funotipngoffthe%fornrttttf
(1 { (2 { (3 % . : v
rp,e' » u(r g) = Aju, (r) + [A u, r) + Bzu2 r) + C,u, r)] cos(28). (6.1.23)

The constant A has the value glven by (6 1. 6) and the constant C2 is given

by (6.1.4). The constants A2 and 32 are still unknown and are to be deter-

" mined from the boundary conditions imposed at r=a. Bel,,a,t,,i,qni,(6,,»,1,,-,7),, yielde® -

- - 2 : 2 v L
<a_ ¥ {(12-12j-8j°-85°) + (18+26j+10j2+j3)}5-2 +a(3+3) (- £yt -
=0 . ~ a 3.2
2
a

N 0 . - . - 7 ]
= 2{3+3)In ol LY T - DT T T T e e
J a2’ 2,3 . : :

« | o 2 L2
. As2 L . .2 .3k : coL -1
+3 § {a2e8i-257-37) - (2e29-43750 %+ adep - X7
2 L VAT a2 g2
3=0, : a
. a
= 2(+3)1ln — }B, T
(1+3) - } 2,

owN

-2-3

N

) 2 2
2 - k
ety a0 T rae-123-8323%) ¢ (@es269+10325 %% + aei - K
22,4 a2 22
- =0
2
%o
- 2(3+3j)1n ;é]azl.r

-1

m

T

-4-

2 2
5 [(12+163+37 2y~ (26+20§+37 )—- - 4(1- —-)
a? a?

. -1
2, 4

a
+ 21In —la_ .r -
a 2,3 . -

2
. o..2 .3 . k

[(—4+4j+4j2-j3) + (10—6]-2]2+j ) - 4(1-3) (1- —é)
' a

-1

.'.

[N i
&rvue

— 2 O
a .

. . __O 1 -J bl _
+ 2(1-j)1n 2]Yzljr 5> 0 .

S = r=
o E S

=
1= 3

(6.1.24)
and



© : 2
» 2 , 2 k2 %o ~4-3
< A ) {(24+1254237) = (18+113+25°)=, - (6+j)1n —}a. .r +73
2j=0 - a? a2’ 2,]
. 5 2 2k ag 2§
+ B ) {(8+43+237) - (4+3§+239)%. - (4+§)1n — 8. .r -
-2, : 2 : 2°72,3
j_=0 a ‘ a 2
a = - : ; , 2 a.
L 0 : L. 2 . ~..2.k . 0 -4-3
.+ 1n — 24+1.23+2 - 8+X13+2 -, — (6+3)1ln — )
CZ{Y2,4 - Z [( j+237) (18+11j r'j )az. (6+3) 1n azjaz’jr 7
T T TR T e T oy 2. T T
o SN ~4-]
-y } [(-12-43) + (11+#45)5, + In —lo, .z
2;4 j=O i , ) a2 . a 2,3
L2 e a2 - . -
- » + z [ (8-47+237) —(6-5j+273 )E"- (2+3) 1n ~91Y1 .Y J}f> o=
. 2 272,37 .
j=0 ' a a. .r=a -
. ) (6.1.25)
. . . o ok % *
We shall evaluate the nondimenkional constants AO’ A2 and B
defined as - -
' A ~ A B, .
i 2 4 2
—OEaA*,'EZEaA;, —ZEaB;, (6.1.26)
2 2 2 '
LS
__ . rather th a%LAO% A,randj 2
v We note that all odd coefficients a, 8 and y' vanish and so the
-remainin¥ terms are of even order. Furthermore, for simplification,
L . s . - 2 . v
fe shall write q2i instead of 32,2i' 855 instead Qf 82,2i' Y2i or
At d
(2’21 and set
2i~ 2i» 2i
= -~ 2 = 1 - ]
: O TR %y 01 TR By Yoy TRV
(6.1.27)
. 2 2,2 ' _ _
c =Tk /a , a2’0 =1, 32’0 1 -

Thus, equations (6.1.24) anariéliiég),7fespecti§élf become



placement field t=w and the stress field €T

The solution of the

posed boundary value problem, given by the dis-

’ may be expressed in the form

7 R 67.
[--] . 2’ 3 .
* - . - . _
Ay ] [(12-24i-321°-8i”) + (18+52i+40i°+8i%)q” + a(3+21) (1-g)
i=0
. 2
r a
¢ 0, 21
-~ 2(3+2i —
(342i) 1n az]q ¢y
. 2.3, 3
+ B, Y [(12+16i-8i°-i") - (2+4if-16i2—8i g2 + 4(1+2i) (1—q2)f1
i=0 : ‘
’/“'// 2
- a .
. 0, 2i~
o R L~ o5(1429)1in O30%s o R
| 2(1+2i)1n aziq BZi
1-4. - % ‘ -1
- 3a in Z [(12-24i-321i%-81i" ) + (18+521+40l 2813 )q + 4(3+21) (l-q )
i=0
. ) ) a2 7
. = z(atzllm,zl ,,,2,, N S
1 -1 ‘
+ 2q Z [(12432i+12i%) - (26+401+121 )q —'4(1-q )y -
- : i=0 '
. a2
4-21n — ] 21‘
al 21
3 ,
+ Z [ (-4+8i+16i —81 ) + (10 121 8i +81 )q - 4(1~ 21)(1-q ) -1
i=0 .
2 A S
2. 2in '
. - ‘0, _
2{I=2iyIn zlq Y21 o, (6.1.28)
"3
)
N o 2
2.2 . 85, 2i~ N
Z [(24+241+81 ) - (18+22i+8i%)g” - (6+2i)1n —lq o .
1—0 a h
- . - 4a2 .
+ B* Z [(8+8i+8i°) - (4+6i+8'12)q2'— (4+2i)1n —1q13
‘ 2. : a2 2i
' i=0 :
14, %% 2 2. 2° ag 2i
- =g 1n — ) [(24+24i+8i°) - (18+22i+8i")g” - (6+2i)in — 1q "a_.
2 a .= - a? 21
i=0 i
' 4% 2 ag 2i
+ 35% Y [(~12-81) + (11+8i)g” + 1n —1q" TG,
2 . a2 21
i=0 2
i 2 202 e P o
+ ) [(8-8i+8i") - (6-10i+81i )q- ~ (2+2i)1n —2]q Yéi =0 <
i=0 —— - . a
A (6.1.29)
3



- .
P.a‘_» 4 = -3-3 2 % -1-j
. aulr,9) = ={—=A + [a'a q r + aB 8 .
8.c ro 2j=o 2, 23.20 2,3
4 a «
k _0 -3- ) -3 :
i - 5 1n 2 _Z_ szjr +'z Y2, ]COS(29)} ’ (6.1.30)’
v - j=0 i= *
:3—' ) - . . V— - "\ -
ev(r,8) = ch{a A Z (3+2)a2 o azB; ! 38, . "1
3_0 lj R ‘ j=0 'J ) -
- - - — — - 74 — **a“oa* e R - - T, e P R T :
k o R s e .
Y - > [in po ) (J+2)a T 3>] + ) a, 373,
j=0 ) j=o0 °
+ 1 G=2)v) x " Jlsin(2d) (6.1.31)
3=0 -
% p 2Py 1 2 5 . a ST T
Tl(r,e) —E{l-aﬂx (1+21nr2 Z)Zr 1
P, 4 2 3.k°
- 7gla A Z [(12-12]—83 53+ (24+283+103 +3)=,
.2 2 4y
+ + o -
- 4(3 3¢ 2—k2 + 1n R )JQZ,jr
2 2 2 )
o +a Z [(12483=257=3 ) + (437+3 )—}
_ = Q A S o -
r2 2 2-j
+ 4(1+3) ( + 1n )13
r2-x2 r -k2 2,
- Eln — Z [(12-125-83°=3 ) + (24+28j+103 7+ )—-
3=0
. 2 22 a3
+ 4(3+3) € + 1ln J]la, .r
. _z-k2 Corlx?2 72,3
- 2
+ 3 7 [(124163+35%) - (28+203+35)—
2 .& r2
j=0
2 2
J r -4-3
< 4 — + 1n )]u .T
rz_kc 2_k2 ,’J

-

2 2

r
- 4(1-~-3)( + 1ln
_k2 r2_k2

= 2
+Mi‘l) + (8~43-25"+3H)E
j=0 . .

B '
)]YZ'jr }eos(26)

I (6.1.32)
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) P 'f' 2 %,..  k
= - + - —- prenig .
Tl (r,8) [1 aa (1 + = 1n

1 g/rZ] . . T

r 2

- 2 ° .
- l—G{a Y }: [-(36+283+85°+3%) + (48+363+103 +3 ) S S
*5=0 | » ~

22 22 4y

+ 4(3+3) (

- 1n
2_k2 ) k2]a2,j

Lz . i e

+a f = (4+83+23 +3 ) + (8+83+4j +3 Hk
) j =0 ;2
X ) 22 .2 _2_j
) -~ 4(1+3) ( — ~ 1n -] B :
r2-x? —k2

r2 ‘ 1”2 -
2 - n rz_kz)]uz,jr

*

+ 4(3+5) (
22

Ao L7 5 2 , -
+ 5 ] [(28+163+33°) - (36+20j+3j )=, '
B r

2 2

r
- 1n Jla, .r
rZ_kZ r2_k2 2,]

-4-3

- 4¢(

A
(el

P k
= - = {7 = 1
2(r,3) 16(2 + 1In

+ 7 (12 -125+45%-32) + (45-29%+5 )-

3-0 r?

2 2 .

- In r1 r IYcos(28) -
rz_ka 2_k2 Y ] } s (28) _

;7 - 4{1-3j} (

{6.1.33)

2 2 4 * -4-3 e
) [ (12+63+3 )a .r
r2 r2.x2 2320 2,3

4 a

(-~}
-2-j k 0 L .2
-3 1n c X (12+63j+7 )az’jr

+ a23* E (4+25+3 )8 5T

%50 . 3=0

-4-3
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:NIW

-

—-4=3 -

(6+29)a, .x 7+ 7 (4-23+3 )y , ]sm(z“) .
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“r

¥ .
: In the limiting case, when the finite\deformation vanishes (that is
k/a = 0), Classical Elasticity results [16] are recovered:
2 2 4 : .
v o= =224 22+ 2cos20)]
r 8C'r r r= v
o B A S
ToTT T v, = -~ —{r + —))sin(25) , .
g C 3T
. £ a2 a? a? -
e T _ =35I -=) - (1 ~-4—, + 3—,)cos(26)] , - (6.1.35)
rr 2 r2 r2 r4 - = .
. - 4
:Jr £) z 2 V. 3 ,,a,, B il R
e Cme e g m e = b= A3 e 3= Jeos{28) ], T ST T T
56 .2 2 4
r
’ z a a? SO
T .= -=(1+ 2— - 3—h)51n(28) '
.rs 2 2 r
taXing into account that 6(Cl+02) of the Mooney- Rivlin material is
associated with Young's modulus, E, for infinitesimal deformations.
Deformation £ield and stress distribution.
for similar crotlems iéklinear'slasticity, the stress distribution
caused o7 some lsad apslisd to a sliac weakened bv a cut-out, differ con-
siderznir Zrom that fn zn unwe kengs oody.. The following guestion arises: —
is thes stress concentrazticn e2ffect 2t the hole diminished or magnified

ccundary condi<ions 2zt r=z2, zrs =2 s Soundé from relaztion (56.1.6) angd
L T 3 o~ P - o P TN =% = ~ £ =3 -
Lhs COup.ed &guatisns 2...22F7 - {£.1.2%). The wvalue of these constiants



A

and correspondingly, the deformation field and- the state of stress have

>

ot
R

been computed for a selection of various finite deformations in the form
"  of an input a/ao.f The numerical results and curves have been obtainéd
on MTS Integrated‘Graphics System on an IBM37O with a.PLi programme.
,"r7?hg,spgcificﬂvgluesmoffa/aodwi;l,beAtaken,difhinﬁﬂl,§7a¢aﬁwé,2,wwhic R

is thelringé‘ofvéréctical interest. W¥We need an estimation of the sums

of the form
o k B -] k2 .
n ia .n i~ I
o W""”*””%&49*2T*?§?4§*%f’ -
- 2 . (6.1.36)
IahENN, , n=To1,2,30
i=0 T *

It emerges that the convergence of the series is rapid on the wholef/

2As expected, the larger the finite deformation, the slower the con~
,Wﬂw47*7u;uergence47£e£4a4£ixeégéinite—defermaticanthe~convergenc94isgbetter as

r increases. The corresponding numerical results are rresented in the
zppendix I. The truncated sums along with the number of terms to be
‘taken into account for 7-digit accuracy are tabulated (Table I, Appen- C

dix I}, as function of the magnitude of the finite deformation and the

distance. An error estimation is also given.

Since the analytical solution is valid as long as the additional
displacement field gives rise tc small strains, there is a limitation

on the admiggible axial lpading azzliéd at infinity . We choose

P/8¢ = 0.02, {(from Appendix II), to remain within the theor of small .

deformation superposed on finite deformation, for all 1 £ a/a_ £ 2.



Table 6.1.1 shows the computed values of the nondimensional con-

t * * and B*
stants AO, A2 5

. 1.00 o

1.10
1.20
1.30
1.40
1.50 o
1.75
2.90

corresponding to a number of initial inflations.

0.93999
J.89973
3.86276

Table

6.1.1

~ -1.00000

-0.68102
-0.48028
-0.35378
-0.27541

« —0.22896

-0.19288
-0.21295

TITLils2d, e TCInTs 4
P T 4 — o T PR
SnZLL. WILTS g rTz.zT

rhat maintzinz 4os

_——--= Lz

it ieia
S
zguilizriun,

a2

172 inpe
Ta s Azl

»
0
{
1]
[e8

[\

2.00000
2.07724
2.12036
2.14162
2.14878
2.14686
2.12110

2.08362

snce the axial tension is

remertal displzcements and

-

» <he formulae (6.1.30) -

the expanding




-1 § 2i -2iz 4
.+ B* : :
T A P :

i=0 i=0

> o . .
_ g _9 2i =2ia 2i -2ia,
> n 'Z g m e, + 'z g m Y2i1005(29)} '
i=0 i=0
(6.1.37)
p - @ . - " -3 A
ey (ma, 6) 16c & ’;m 3 X {2+2i)q21m lazi + B*m 1 Z 2i 21 2182i
o . . R g e e A S - . =1 . ]
- 4 © - . .
g 2o ., 21 -2ia -3 2i =2ia
-3 {ln e, _Z (2+2i)g ' m a,, *m _z g m u2i]
1=0 i=0
T 2i_-2i
+m ¥ (~2-21)atm Y. Isin(28) ,
.= 21 -
e e (a1.38)

~where We have set r Zma. The additional displacements depend both on the-
\\ 1\1 - - a - \ - I3
expanding pressure and the tensile loading. It is interesting to note

that ﬁhile the expanding pressure is responsible for the direction of the

incremental disvlacement, the intensity of the axial loading affects only

thre magmitude; and merely Slays the rele-of a scale factor which is chosen

erz to Se 0.2 (3¢} . This large valus enhances the cresentation of the
data. Some significant results are oresented in a few craphs.
It can be sesn that* the offsct of the hole is of a verv localized
charactaer. Typical dsformations of 2 volar grid are cresented in Pigs.
™ .
e.1.2 - 56.1.4. In tnis instance, the finite inflation is such that

a/a_ = {1.25,2.00%. Tigs. §.:1.1 znd &.1.2 cover a zcne in the vicinity

of the hole, while Tigs. ©.1.3 and £.1.4 refer to a larger zrea. The com-

marison is mads with zhs elasticity oroblem, obptained as a limiting
zas2 when the finite daformation vanlisnes Xeecing unslitersd the erturba=
ticnal Zorces. Ths invastigation nas heen repeated for a numoer of values

of 5z Zegrae of inflaticn. I% emgrTes that as the ratioc k/a increases
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Fig. B8.1.1
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Fig. 6.1.2
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77.

Fig. 6.1.4

.




78.

(that is, as a/aO increases), the distorsion of the radial lines is more
pronounced and is also more dispersed. The deformation of the cavity
and surrounding layers are now examined in more detail.

The deformation of the hole, corresponding to different values of

the exzanding pressure are given in Fig, 6.1.5.

«]

For a better comparison,
the curves are drawn under ‘the assumpgtion that the various initial radii

of the hole, dencted

Ty ao, reach after the first deformation, the same

value r=a, which is taken as a reference.
Pig. 6.1.6 describes now concentric layers enclosinc the hole (the
reference circle 'is taken hars to be r=ma) are deformed when the body is

only stretched at infinitv and not subjected to any finite deformation.

ny
'—J-
.
7
(o)}
e
~J
a
o
H
@
ey
"
[}
0
o
=1
8
i
"
o
a

orrespond to computational results

It emerges that the larger the

(]

finite deformatiorn, the less is the

‘)‘

eviation from its original circular

.
-

contour. i ~
The deformaticn stsctrum, however, depends on the initizl finite
delormation only nsar the nols. 2Awav Zrom the nele {Fig. €.1.%,°6.1.3

.47, the radial lines znd ths ccncentrical lavers apcroach a de-

- s e - . L e .
finite shars which corresconds o the classical linear elasticity

= 32 I L o § by e T e Y EET
X8garcding Toe cnat a2 sirsess vector, T + ftT,

. o zmans RN, T : tas : ks)
WSS E U T OYMat IIr TS COSILICT I D

is given v the generzl sxXpression

e e

ot s e v e B
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m=1.0
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Fig. 8.1.8




81.

[ f 1 + 5y . =y H 1 y
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Fig. B.1.7
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- -y T 3
e 't”i-”EtL: n (1‘,' T+ 57\ )G

Consequently, the stress vector ég;'soéiai:gd w:.th a surface which. a plane

in B, paséing through the a%is of the hole is deformed into, is given by

Uy v (6e.1039)

i ' ' ] U229 o
t + st &ew—g+rn€§5*w)ﬂ€rﬁ+ f‘r ﬂ ( 22 y 32‘162 -
T (6.1.40)
We substitute into (6.1.40); relation (5!.1.()»7)‘. for 122, relation (6.1.33)
2 i L - - 2 .
for 7°2 and g—?- derived from (6.1.30). We obtain the following expres-
sion for the normal stress:
- - 2
Tgelr8) = rz[*n:22 +;(fr'2 - 22 93)] .
='(]£2_2+2 2"11’1 2)7 R S o
£2 T 22 2242
.. BEa2 2 ... .2 2
+§[1+?2(2—352+22r‘2+1n )1 -
. Ay r =k~ =K
2 | 2. 3 k2
- I¢ 1{a p*z [- (24+243+83 +33) (42+343+105 "+ )—
1=0 . o N
7 - ' r2 4-j
- 2(3+jJ1n la., .x
i r2-k2 2,3 -
2 2 2 x2
+ a B*E [- (43+23 +3 ) + (6+63+43°+3 3k e -
‘ r2 ' 2-3
$ ! - 2(1+3)10 B, .r <7 .~
, : P22, - o ’
4 ® * ‘ K2
T 7-]2(-1 ;0- ) [-(24+243-832—3 ) + (42+343+103 +j )-
o - - - - ,473-07 e S
- 2(3+j)1n o, L 2
- - . rdckd 2,]
, e . o . 5
Tk .2
+,-—X [(24+1635+357) - (34+20j+'3j2)E
RO g £2




r
+2 In ——]

T 2 .3 2.3

+ ] [(8-83+43°-37) + (2+2§-23+3)

E?
2
0 |

r

r . ;j
rz—kzlyzrjr }cos (29) . (6.1.41)

+ 2(1-3)1n

3

'~ For the purvose of the numerical computation, we use the relations (6.1.27)

and also set.r = ma. We may rewrite (6.1.41) in the form:

2 =2 m? ’ 2
,ti:;mggvgzeeima.e) =C<{gm © -2 + 2 — + 1ln ——)

m2—q2 me—g2
m m2

2
+ 1n
mz_sp m2_q2
b

V- Tl iatn? ] 1-(2a+s8ie32i%401%) + (42+68i+a0i%48i %) qPn”
i=0

+ L+ a2 - 3a°m 2 + 2 )]

8¢ o

2

R 2i -2it\
- (6+41 -
. { lfln, _qzlq_ m a2i

- © .
* =2 o IS

- 2_.3 ' 2 3.2 -2
+Bm ) [-(8i+81 +8i7) + (6+12i+lei"+8i)a'm
i=0 ‘

2 . a :
m ]qumfg;B B 7 -

- (2+4i)1n
. m2—q2 21
N =4 a = ] -
—_ —,% m 1ln g%-,z [-(24+481+32i2+8i3) + (42+68i+40i2+8i3)q2m
: i=0 : '

2

4

' m? 2i ~2ia
1g Ta

- (6+4i)1
(6+di)in 5 o2'% 2i

-4 ¢ 12 o 2 -
+2m 0 ] [(24+32i412i°) - (34+401+12i°%) ¢%n 2
i=0
o’ g2l 21,

. 2 .3 -
[(8-16i+16i"-81i") + (2+4i—8i2+8i3)q2m 2

]q21m‘21f2',1. }cos (20)>

- - - + (2-4i)1n
- i ﬁ%_:qz,, S

(6.1.42)



Letting @ = +3/2 in (6.1.40), we obtain the stresses in a section nor-
mal to the direction of the uniaxial tension yielding a vanishing shear -

60
ing results for 1@9 are plotted in Fig. 6,1.10.> Although the effect of

stress 1}6 and a maximum value for the normal stress t. . The correspond—

08

" infinity as r increases, a magnifying effect on stress concentration, due

_ the hole is very localized and <t approaches very rapidly the value at

to the finite deformation, has been ascertained.

% »

We shall now investigate the stress T,  in more detail. 1If only the .

s D

expanding pressure is applied, we have an axially symmetric finite deforma-

tion, ahd T,, is only r dependent; Varying the applied pressure, T

68 80 s
increases everywhere with a/ao- The maximum value is attained at ‘the hole
and approaches zero very fast as we go away from the hole (Fig. 6.1.11).

We consider now the complete problem, when the uniaxial tension is also

] - 3 . 3 ] ] l l 1 i - - ! m l ] - - I3 EJ | . - -
It emerges that there is a definite .increase in the contribution of the
“uniaxial tension to the total stress Ty With the intensity of the in-

flation. At the hole, at 8 = %71/2 where the largest value of Tee occurs,

the stress resulting from the uniaxial tension alone is 3.12 times the
value at infinity for a previous inflation of a/a0 = 1.20 and increases

to more than 4 if a/a0 = 1.75. These should be compared with the clas-

sical result 3.00 which is the stress concentration factor corresponding

"to the case of a slab free of expanding pressure. Some other values are

———given in Table 6.1.2.
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Fig. 6.1.10
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Fig. 6.1.11
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Table 6.1.2
a/a |m 1.00 1.20 1.40 1.60 1.80 2.00 3.00 4.00 5.00 10.00-
1.00  3.00 2.07 1.65 1.42 1.30  1.22 1.08 1.04 1,02 1.0
1.10  3.03 -.2.05 .1.63. 1.41 1.29 1.22 -1.08 ~1.04 1.02- 1.0l
1.20 - 3.12 2.04 1.61 1.40 1.28 1.21 1.08 1.04 1.02 1.0l
1.30  3.24 2.03 1.60 1.39 1.28 1.21 1.08 1.04 1.02 1.0l
1.40 3.40 2.02 1.58 1.38 1.27 1.20 1.08 1.04 1.02 1.0l
" 1.50 3.58 2.02 1.57 1.37 1.26 1.20 1.07 1.04 .1.02 1.0l
1.75  4.12 2.00 1.53 1.35 1.25 1.19 1.07 1.04 1.02 1.0l
2.00 4.77 1.97 1.51 1.33 1.23 1.18 1.07 1.04 1.02 1.0l

The variation of T around the hole is shown in the diagram 6.1.12.

86

Compared with the classical solution, the area with compressive stress

gradually diminishes as the finite deformation gets larger.
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Fig. 6.1.12




6.2. Perturbational Uniaxial Tension Appliedrto a Finitely

Deformed Slab with a Bonded Rigid Inclusion

In this section we consider that a rigid cylindrical inclusion is

embedded into the body. e assume that the inclusion is joined to the

“surroanding slab along its edge and is not displaced during the stretching

of the slab. Thus, while the boundary conditions at infinity remain as

-

they have been stated in (6.1.1), we require that there are no displace;

uf{a,s) =0 , v{a,8y =0 . (6.2.1)

£ = ‘ - (6.2.2
AO 0 7 7 7 ‘(6 )
and the nonzero constants A; and B; must satisfy the coupled equations
= 5 = 5 4 ag o 24 ® . B
P !a l&21. +8,14q la2i - %-ln 1 qua21 + 1 q'l$él =0 (6.2.3)
i=0 i=0 a?i=p i=0 -
] . © . 4 a «
£ (2¢2i)g°Ya . + B* ¥ 2i¢?*3 2% 1n O J (2+21)0%%s_
2, 2i 2.= 2i 2 a . 21
i=0 1=0 =0
(6.2.4)
4 = 23 -]
- %’ }a laz. + Z (2i-2)c Yéi =0
i=g i .

where the notations given by (6.1.26) and (6.1.27) have also been employed. |

The state of deformation and the stress field are formally described

»
by relations (6.1.30) - (6.1.34). However, here, A; = 0 and {A;,Bz},

determined from different boundary conditions, are specific to each case.
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It can be shoam that, if the finite deformation is remaﬁed,:

. the results reduce in this case to -
P azf a4 o ’ - 7 ’
vr = §E{r - 2;— + ;})cos(Ze) ’
4
P . o , L _
S v, = - =—(r - £)sin(20) ,
153 ac r
- “;r“ ‘az”‘ ;34 T - e e i e
T = 3{1 + (1 + 2;é - 3;4)cos(26)] ' (6.2.5)
P 4 a4
T&B = ;{l - {1 - 3;h)cos(26)] ' B
P #2 'a4
Tie = - 3{1 - 2;é + 3;3)51n(26) .

which coincide with the classical solution [16].

Deformation field and stress distribution.

In order to determine the deformations and étresses throughout
the body, we have to obtain the specific valueB-for the constants A}
and B; which are fixed by the béundary conditions. Following the pro-
cedure show; in the previous sectioﬁs, numerical calculations have been
cairied out for various values of the ratio a/ao. Some results are

given in the Table 6.2.1. These constants are then substituted into

felations (6.1.37), (6.1.38) and (6.1.42). We vary the ratio k/a to-

ks

flations. Taking a seguence of values for m, we investigate the de-

formation and stresses in layers at various distances from the inclusion.

We also vary 8 from the line of the axial tension, (8=0), to the line
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a/a

1.00

- l.i0

1.20
1.30
1.40

R e S Rl

1.75
2.00

‘Table 6.2.1

, ¥

5 s o3
0.00000 ©1.00000 -2.00000
" 0.00000  0.71568 -1.56997
0.00000 0.50318 -1.24905
© 0.00000 . 0.33687 -1.00406
0.00000 0.20193 ~0.81340
0. 00000 0.08932 -0.66255
0.00000 -0.12819 -0.40074
©0.00000 -0.28871 -0.23898

perpendicular to it. The computational results are presented graph-

ically in Figs. 6.2.1 - 6.2.5.

Near the bonded inclusion, the layers closely follow the shape of

the inclusion whereas the radial distorsion is very pronounced. The radi-

al lines are bent in the reverse way to the inclusjonless case, as the

elastic material, bonded to the inclusion, is prevented from shifting

(Figs. ©6.2.1 and 6.2.2).

The presence of the inclusion considerably

changes the deformation and stress field, yet the effect is concentrated

in the vicinity of the inclusion.

torsion of the radial lines is more pronounced and more widespread (Fig.

6.2.2) .

Az the ratio k/a increases the dis-

Away from the inclusion, as has been observed in the case of a slab

with a hole, the deformed layers and radial lines take the shape that cor-
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Fig. 8.2.5




2 v

responds to the classical linear elasticity solution (Pigs. 6.2.2 and 6.2.3).
Regarding the stress field, at the edge of the inclusion, in the case

‘of zero finite deformation, the normal stress T,, has negative values in

8o

the zone & = n/2 - n/€, n/2 + 1/6. The stress 1 remains negative for

00

small finite deformations but as k/a increases, this zone with compressive

( “stress vanishes and T, ., is tensile everywhere (Fig 6.2.4). .

0

s 56 _ T
The variation of Tee with r at the section 8 = 7/2, for various ratios
a/a_ is shown in the diagrams 6.2.5. As k/a =+ 0, the diagrams approach the

-

~curve corresponding to the linear elasticity problem and, as r increases,

the normal stress =T approaches the value specified at infinity.

69




100 7 e

____ _serted into the opening and no friction occurs between the inclusion B

6.3. Perturbational Uniaxial Loading Applied to a Finitely ~ =~~~ =

Deformed Slab Containing an Inserted Inclusion

We shall now investigate a version of the boundary value problem o, -

considered in section 6.2. We assume that the inclusion is only in-

and the surroundiﬁg slab; Thﬁs, the mixed boundary conditions

1 S |
u(a,8) =0, (v?si %) =0 (6.3.1)

are to be satisfied at r=a.
The deformation field and stress distribution are described by

(6.1.30) - (6.1.34), where, cqnsistent with relations (6;31}1,

a*=0, ' (6.3.2)

and {A;,B;} are solutions of the system

S 2 2D 26 g3 % 721a v 2ia
a3l a7d, +8,[a" 8, -3 g [aay, +Javyy =0,
‘ i=0 i=0 i=0 i=0 .
, . (6.3.3)
@ - - a2 . '
a¥ Z [(24+24i+8i2) - (18+221+8i2)q2 - (6+2i) 1n —p]qzl& .
2. - . 2 2i
i=0 . - a
® 5 a2 2~
+BY ] [(8+8i+8i%) - (4+6i+8i%)q> - (4+2i)1n —1q° 8.,
2.2 a2 2i
i=0
4 a = a2 ,
T it T e T 3
- 2 1n 7§ [(28+24i+8i%) - (18+22i+8i%)g° - (6+2i)1n —lq°Ta.. -
2 a . ) a2 2i .
_ i=0 2
4 = a. ,
: 0, 2i~
+ L 7 [(-12-81) + (11+8i)q> + 1n —Ig - a
2, al 2i
i=0 >
@ a .
. . 2. : 2, 2 .. 0, 2i~, e
+ ] [(8-8i-81%) = (6-101#8i°)q" = (2#21)In = Jq" v5 =0+
i=0 a

(6.3.4)



: In the special case of infinitesimal deformation only, once again -

the results coincide with those. predicted by the Classical Elasticity

Theory:
2
P a
\Vr = éz(r -7 Ycos(28) ,
v = - —Egr sin{28) ,,h,",,”;lﬁ,;,,,ﬁ, e
- - e o e - - g = =80 - LR I
o P.. az" ' ' '
T ==[1+ (1 + 2=,)cos(208)] , (6.3.5)
rr 2 r2
. mg=ftn-cesel,
>
P _. . -a-
= = - - = 3 4]
’Trﬁ ) 2(l 'I2)51n(2 )

Deformation field and stress distribution.

*

The constants A2

and B;, sqlutiéns of the coupled equations (6.3.3)

T 7and (6.3.4), are evaluated numerically for several values of ratio a/ao.

The results are given in Table 6.3.1.

Table 6.3.1
* * *
zzl/aO AO A2 B2
1.00 - 0.00000 0.00000 -1.00000
1.10  0.00000  -0.01841  _ -0.70954 -
1.20 ©.00000 -0.04355 -0.50819 /
T 1.30 $.00000 -0.07583 ] -0.36475 N
1.40 " 0.00000 -0.11348 : -0.26005
1.50 0.00000 -0.15451 -0.18191
1.75 y 0.00000 -0.262067 -0.05702

2139‘// ; G.00000 -0.36618 : 0.01282



— B . i 710270'

Investigating the displacement fiela,,it'is'OBSérvéa’that'ihérfaaiél7'"”’h
lines bend very little. They merely adjust to the tendency”ofréoints to
’ ) ) i
accumulate abogt the stretching axis (Fiési 6.3.1 a;3§6.3.2){ " Comparing
the #esults with those for the Vboundary value problems 6.1 and 6.2, we

note that the displacements associated with a given layer in the vicinity . -

of the. inserted inclusion are larger. than those that would correspond-to - - - .-
the case of the bonded inclusion but not as large as those associated

with the case where no inciusion is present (Figs. 6.3.3; 6.2.3 and 6.1.8).

 These results might have been anticipated by considering the nature of

the constraint imposed by an inclusion that allows the surrounding mate-

rial to slip.

The hoop stress T is given in Fig. 6.3.4. If the finite deforma-

08

tion is removed, the stress T,,. is positive everywhere and no area with

66

compressive stress occurs. For 6=0, T vanishes and as 8 increases, Fhe

60

, ’ : Y
value of TBB increases reaching at 9=7m/2 its maximum, which is the value

of the load at infinity. If the slab was previously inflated this maxi-
mum value increases with the degree of inflation.

Fig. 6.3.5 illustrates the variation of T with r at the section

60

corresponding to 6= w/2, for a number of finite deformations. 1In all

cases, as we go away from the inclusion, T decreases fast to 'the value

66 :

specified at infinity.
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7. PERTURBATIONAL SHEARING FORCES

"In this chapter we specialize the general results to the case

. where the perturbation is caused by small shearing forces T = €T, uni-

o L o i T S o .
_ formly distributed along the edge of the hole. The corresponding bound-

ary conditions at r=a are given by

el it 8y o, (7.1)
or :
== = e r=a [ —— :
and
R g—: T =-rT. (7.2)
, =

-We may assume -that, by applying a small twist, no radial dis-

placement should take place at r=a, that is,

uf{r,8) =0 ,- (7.3)

and we also may require a state of free stress at infinity

¥ Lo (7.4)

It can be shown that the constants involved in the general

solution (5.95) and (5.96), must be chosen such that

A =A =B =B =0 ,n#0, (7.5)
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-

if the requirements (7.1}, (7.3) and (7.4) are to be satisfied. The

boundary conditions(7.2) yiélds

: 2

2 a L2 -
c[(—2+1—£— +1n—-0)v+2(1—-}£)-a—v'] = -7, (7.6)

- al a2 - g2 3r S B
r=a
and, in view of (7.5), we obtain
} T g

o 2 a .
~ M L N S _0 -3 )
Ry = gme /] Lee2n) - Ge2n®) - 1n Jlag 2, 01

J=uv

2
where M = 271Ta .

The solution to the boundary value problem may be expressed by

[
a]
@
W
(=]

o vir,8) = Zo(r) = AO Z aojz o
=0 -

11 2,22 - .

T =xr T =0 r
' 2 ) 2 Rl ) o

)12 -~ k r . "2"]
rT = -3 c(2 -—, +1in ——) V (2+)a. r ] 7.8)
. 0 r? r2-x2 jZO 0,3 w

In a limiting case, when the finite deformation is removed the

»

solution (7.8) leads to _

W
I
)

=

<

)

=

H

which are in agreement with the results of Classical Elasticity.
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This 'problén has axial symmetry. By appiying a touple M at the

opening, 1vt:he incrmémentalidisp],iacementrs Vthat’roccu;:' are,oﬂly,tang,enti,a,l

N3

‘and " the Body deforms like concentrical ring§ sliding over one ‘another.

7.2) tend to the form correéponding to the linear élasticity ?lutiqn i

as k/a -+ 0. ' “ -
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8. PERTURBATIONAL RADIAL FORCES

“

We consider that the slab is subjected to the force distribution,

o
~
e}
PoA
<
{tA
E

1A
[
5 .

- Tosin(e), T < 6

acting in the radial direction at the hole. The function T(a,8) could

"model a small weight diétribution supported by the lower half of the
curved surface .of the hole. Far from the opening, the uniaxial.tension
(6.1.1) remains unaltered..

We shall expand the. boundary conditions in Fourier series and retain

from the general solution those contributions satisfying the required

,,,,, _ conditions. It can be shown that T{(a,0) has the Fourier series repre-

sentation

To[l-— %sin(e) - 23 ; cos(2n8)] . ' (8.2)
m =0 4n°-1 :

We recall from (6.1.4) that the stress conditions at infinitv are

satisfied provided

b P
M=% T8 -
CI1 =0 , for all n#2 , ) (8.3)
6 ~=D = 5 =0 , for all n .
n n n

The boundary conditions at r=a require that
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~(5.10),

[T,ll+ 113_u] =7, B
or r=a :
(8.4)
,12 111 3
{t k4 ] =0,
r or
- r=a

where T is given by (8.2). We substitute into (8.4) the expressiohs

,11

(5 97) a.nd (5 99) for Tll, T and 712 ‘and the displacement

grédients -g% -and %:__—’ determined from (5.95)"and (5.96) .

that the contribution of terms correspondihg to n=0 yield

"It can bé shown

2
: T 2 a
e e ——— = P —— 0 2 % = 5
= — . — - — - — . 8.
A, (2 p la  / [4 - 1n azlc (8.5)

- The contribution of terms.regarding n=1 provides two coupled equations

for the unknown constants '};l and ﬁ

1
: 2
@ 2 2 a .
~ .2 7.....2.k kK. -1 1 0 -3-3
<A { ) [(-1+33+37) - (5+55+i9)=, - (1- =) ~ + Z1n — o, .r
1 jzo 373 27233 5 T 22 27" 2°%,5
- ~ 81,2 %% 2 7 2 k2 K2 -1
3 b ramsas2y L.2k° Lk
1{0‘1, = g (1435439 = (345543007, - (- =)
2 .
8 2 =y
1 0 -1-3 1,2 —3—3
+ = 1n —la, .r - Z(32;)+(5+23) la
2 a2 1,3 1,0 320 a2 1, J
2 2
L2 5 . .2k -
+ 1 1=3-343%) + (Z -3-30=, - - E) -
j=0 a a?
2 .
aB. . . T
1 20 1,3 1-3 0 -
= In — = — 8.
Rt L e B o (8.6)
=-1 r=a
x? a3 -3-5
< { Z [(-4 2]) + (3+23)— + 1n - ]a Y }
- =0 - a2 a2 1,3 e
2
a. « 2 a .
e 7473451%@#2—#&—4-23') PENEVEVES. P S L T b
1% r j=0 ] 22 22 %1,3
B, 33 2
-a—— Z (2—2—2)a + Z [-2§ - (1~23)—
ag 38y 1-
+ 1n —] (—=h rt Iy, =0, (8.7)
a A =-1 r=a
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whereas the equations for Al and Bl give

A =B =0. = (8.8)

) - ) 1
Further calculations reveal that corresponding to n=2m, m = 1,2,3, ...

we have

L < LY {[n+1) (n2-n+2) = n(n+4)§ - (3n42)32 = 551 e
‘ "5=0 o o

+ [n{(n+l) (-%+4) + (%n2+8n+4)5 + (3n+4)3° + j3]52

a
2
2 2 a,
. n -n-2- j
+ L - —7l,n, - ) (n+l+ e« _ .xr - .
TKk2/a2 2 e
+ Bn Z {In(n-1) (n+4) - (n -8n+4)j = (3n—4)j - j3]
j=0
2 2
+ [~ 3 (n-1) + Gn2oan)j + (3n-2)3°% + 1K
2 22
n2 ‘n2 'ag -n-j
+ (——=——=-=1n —)(n-1-3)}8_ .r
1—k2/a2 2, a2 "3,

+— cfaﬁrﬁ }ﬂ_[_hﬁ-i_)_fnirﬂ'_ﬁ‘nfnﬁ)fj = (3n+4)j2 = j3]

j=0
, 2
+ In+l) (- 2 +a) + Goronra)s £ Goea32 4 31K
a
2 .
2 a - .
n n 0 i -n-2-j
+ (—=——= -~ 3 1In —) (n+l+jl }a_ .r
1xk2/22 2 "2 ey

20

2
- a Z {{n(n+4) + 2(3n+2)j + 37 ] - [(—-n2+8n+4) + 2(3n+4)j + 33 ]—

"5=0 5 a?
2 2 a ' [+
n n 0 -n-2-j 2 . .2 .3
(—=——= ~=1n —)}a .r + {[-n"-n{n-4)j + (3n-2) - ]
12722 2 2o jZO ’ >
2

,+,,,{n(n+1),(52‘- +4) + ,(gn,zfanm),j,,—,,,(3n—4,),j,2, + 33152 B
i -a

- 7*"32" o ‘ aé —1r=2=7] "2TO
-~ (—=5—= -3 1n =) (n-1-3)} .r } > = —
1%2/32 2 a2 : "n,3 T(4n2-1)¢

r=a

- {8.9)
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o 2
<a ] {0 4mn i) + 23] - BateD + e+ 25015
"j=0 S a
; a2 L -
’ . 0 -n-1-j
-~ [n(n+l) + j)1n a2}an,3r
-] ! 2
+ B Z {[ 4(n-1) (n+j) + 2j ] - [(3n-1) (n-2) + (4n-5)j +2j }—
"j=0 | a?
. - - . _0 -n+l-j _
- s ﬁ[in,(n+ll 2+ jlin az}anJf ST
, Ca o T
+ C {a 1n — Z {1 4(n+l)(n+j) + 23 ] - [3n(n+l) + (4n+3)j + 2j ]—é
* j=0 a
a2 .
- [n(+1) +311n :g}an’ rié“l"J -
- o » 2 a2 el
- a_ } {-4(n+1+3) + [(4n+3) + 43]—- + 1n —-} n=L=3
s a IJ
j =0
© 5 12
+ J {[4@-1) (n-j) + 23 2] - I3n - (4n-3)j + 23 15,
j=0 . ' a
a 5 |
- [n(n—l) + jJin _2}; n+l“]} > = 0,
/3 r=a (8.10)

which allows Us to determine the constants A2m and BZm' Corresponding

to the odd n's we obtain -

(8.11)

Thus, the radial component of the displacement field, u(r,8) reduces-to

~u(r,8)-=- p—u {r) +- [A ,ll, (2) (3)

( 2 e
o 191 (r ) + Blul (r)1sin(8) +° Cu, €65 (28) )
S 1) 2 =
+7 [3, 0, " () + B, u,” (;);cos(zme) , (8.12)

m=]1
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and the corresponding relation for the tangential component v(r,9),

may be derived from (4.12) and (5.12). In terms of power series, the

incremental displacements and stresses result from their general ex-
.pression%f“‘J(S.QG) - (5.99) where the arbitrary constants are specified

here by relations (8.3) and (8.5) - (8.11).
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-9. PERTURBATION DUE TO"THE SHAPE OF THE OPENING

The general analytic solution (5.95) and (5.96) obtained for a slab

with a circular opening is also applicable to cases involving geometri® =
perturbations of the boundaries of the original body. Following from thé

work of Graham [4], the perturbaiion in shape is regarded as an additional

reference body, for which the solution is available.

In this chapter we shall obtain specific analytic solutions taking

displacement .field that is superimposed on the~finiteldeformation of'the"‘“M""5

into account both perturbation due to an applied stress field and the per-
turbation in the geometry of the original body. We examine two cases,

. &
namely, the problem of a slab with a rough cavity and also the case where

the cross-section of the hole is elliptic. 1In both cases, a perturbational

uniaxial tension is applied.

9.1. Elliptic Boundary

Suppose that -the slab has an elliptic opening S, , in its undeformed

r

o
state BO’ given by the equation
2 2 |
1 +2-1,, (9.1.1)

fa, (1+86)1%  a

o N

i

where 8 is a constant such that 0s8=1. The body BO underéoes' the finite

deformation described by relation (3.2.2) reaching the state 3. It can




up to the first order in e. The body B is then further subjected %0 a

be shown that the surface ST in to which the surface SP is finitely
. 0

deformed, is given in terms of the convected cobrdinates\(r,e,z) by the

expression Qik

2 ' :
2« a2 + 28e[(r? - k%) sin%e - a2 = o, (9.1.2)

small uniaxial tension at infinity reaching the final configuration B”.

_, AfIhe”equilihriumfequations_corzggpondinqﬁtovﬁi:azgggizgn;bymL4120)mwherefm4ﬁ44;vti

the stress components T;k and T’lk are expressed byvrelations (5.10) and
(5.11), respectively.

Using the definitions (2.27) and (2.28), we computé the functions

[y R

x and X with regard to equation (92.1.2). These functions are given by

3

sin 8 . (9.1.3)

x
1l
>
]

R |

On substituting (9.1.3) into (2.25), we obtain the traction across the

surface (9.1.2) in the form

.

t + et’= (v + ekll)él + e{llz + [%4r2 - kz)sin<2e)]r22}52.

(9.1.4)

Now at points of SP' we find that to first order in £,

* All calculations in this chapter are carried out to order e, - S

consistent with the theory.
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and therefore, the radial deformation function Q(r), (relation (3.2.12)),

—

2 k258
: k

(r) = [1 - = - 28¢
olr 22 24

takes the value

coqze]l/z. (9.1.6) -

.

: ) . S I1 T o ]
--—---—-—Conseguently, it-may-be-shown thatthe -stresscomponentt+—at-S4s— ————

I
expressed by
. .
- a 2 2
, , , . 2
ll,='[- -k—z, +'1n _cz)_+ 2851—{—2(2- 1%)cos 8lc . (9.1.7)
a a a a

If we require that the finitely inflated slab, subjected also to
the uniaxial tension P = eP at infinity, is to be maintained in equi-

librium by applying to SF the same tractions as those given by (3.2.26),

it is sufficient that

- 2 2 )
Xll + ZBQE;(Z - E;)cosze =0 , r=a,
, a2 al :

(29.1.8)

a2y [%(r?‘ - x)sin@o) vl =0, r=a,

in view of relation (5.1.4). -We now substitute into (2.1.8) the stress

2
2 2 .
1 a k
[l-p’(r,S) + (4 -3 52- 1n —g)ggi = -8 Eé(Z - =) [1 + cos(28)1,
c - = | -o—a - ri;57’7’7 a F= ””77 T
1 k2 35 3 4y
R TG TV T2 5]
r=a 5
: 2
I PO T S, SO
a aZ l-kz/a2 a a



The problem of superposition-of a small stretch at infinity on a

large radial deformation of the slab with an elliptic opening is reduced

to searching for a solution to the equilibrium equations (4.20) that

correspond to the circular case, satisfyinc the required conditions
The boundary conditions at infinity are met provided relations (6.1.4)
are satisfied. Regarding the boundary conditions at the hole, we note

that the right hand side of the relations (9.1.9) account for the changes

(6.1.1)_at infinity,and,the,appropriéte inner,boundaryéconditionsﬁ(91119)TW~

caused by the perturbation in shape. In fact, with B=0, these relations
become the boundary conditions aporopriate to the circular hole case.
It can be shown that the solution to the boundary value problem

considered here is formally described by

g
2 3) s
u(r,8) = ép + [Aauilkr) + Boug {r) + Cau; {r)]cos(Ze) (9.1.10)
where the” constants 2y 3, and B, are derived f}Qm conditions (9.1.9)

and;C2 is the same as given by (6.1.4). Relations (9.1.9) vield further

that T s 5
2 2 2 a
P k k 2 k ]
Y = __.+5_ - —— - — — —_ . .
0T gt B p - AT/ - - dn o (9.1.11)

and also that A_ and B_ are solutions of the ecuations

2 2
3 2
2 d u 2 d®u 2
X 2 2 k 2 k 4 R
f(1- =) CE(4m2 S e b (ST S e B
i a2)r dr3 (42 az)r ar2 ¢ ~a? 1-k2/a2
22 fq'n 2 ,.‘A e
e g 7 2 2
+ 21n —p] ——2~+ 3(1+ E-)l-u } = 28 g’(2— k .
. a2 dr a2'r 2 r—a a2 a2

&
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- 2 - R R 2 B R
’ 2 a_du 2 .
{2(1- -]-{-2)rd——u-2- + (2—3E + 1n —0)—— +-3(2- k _ 1n, io)u_z}
a2 4.2 2 j2'dr 2 2'r ‘r=a
’ dr a a - . a a
2 ' 2 .
- a .2 o a o
: a a -1-k/a a

(9.1.12)

7”"’7"7"we”Sha’l’l fOllUW the procedure outlined- in- Chap'tfe’r76'ilﬁaklng the ap.prorpr]_at*é”

" substitution of'ﬁéir)l'du57af and ‘higher derivatives "in terms of power

series. We shall render the integrating constants non-dimensional and

_put the qugtionseiﬂtl+lZlfin:é:mgte:ggngenienxtﬁerneikneﬂnx&eﬁiea&:com::;:::::é

putations. PFurther, we compute the displacement and stress field.

A typical deformation field near the elliptic hole is given in‘Fig.
9;1.1, in terms of a distorted sgare grid against the referenee grid. In
this iﬁstance, the’major-axis of the ellipse isrtaken perpendicular to

the line of stretch where B =.5, &€ =.1 and 'a/aO =1.5. Experiments men-

“tioned in the paper of Varley and Cﬁmberbatch (171, although in a dif-
ferent context, produce coh‘figurationsr similar to those obtained here.
Investigating the sttess fieid;iwe'héte thét’eeiewrestit of tﬁerfiet
nite ihflation, the stress concentration effect is strengtﬁéned.; Further-
more; the position of the elliptic hole with respect to the direction of
+ the uniaxial tension has a sigtificant impact on stress concentration.
It can be shown that the hoop stress Tee(r,e) derived for'two.extreﬁum

"positions of the ellipse, namely; when the major axis is perpendicular to

the line of tension (s=-1), and when the major axis is parallel to it

(s=+1), is given by the expression (6.1.41l) evaluated at r=a, with the

additional term
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2 <2 : _
- 5&;-"-2(1—7752){1 - — ; > - ; ZJ [1+s cesfze}}e e
a a 1-k“/a (1-k2/a°

(9.1.13)

The results given in Table 9.1.1 show that, in agreement with Linear Elas-

ticity, the stress concentration is more pronounced when the major axis

I _of 't'h"e elli p«;-;,-s pma’ icular to the dir ecj: ”i'on"'" of the uniaxial tension

than when 1t is parallel to‘theillne of 1oad1ng.,

Table 9.1.1

a/a, - 1.0 1.20 1.30 1.40 1.50 1.75  2.00
g O g 317 3.39 3.67  3.98  4.45 531 6.46
:é— O g 3.03  3.12 3.2~f .40 358 422 47
; O g 3.02  3.11  3.22 3.3 3.53  4.02 4.6l

These values should be compared with the Linear Elasticity results - [18].

Corresponding to a given imperfection, of an ellipse where 6=.1, 8=.5,

' the stress concentration factor is 3.10 when the axial tension is normal

to the major axis and is 2.81 when the line of tension is parallel to it,

The stress lnten51ty factor corresponding to an e111pt1c hole with

to it is glven‘by 1+ za/b.



compared with 3.00 which

‘increase with the degree
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corresponds to the circular case. These values
~

of inflation as is shown in Table 9.1.1.

/
‘\
_Z .




9.2; Axisymmetric Imperfect Cylinder

In this section we assume that the surface of the cylindrical

cw

by a sine function, in the form

x2 + x
1 2

opening is rough, within a strip of order €. Let the small variation

of the radius with the angle be described, in the undeformed State B_,
Tt T e T T - R U

2. {ao 1+ t:hmsin(me)]}2 -

(9.2.1)

The body BO is finitely deformed into the state B consistent with

(3.2.2), and correspondihgly, it can be shown that the surface (9.2.1)

defbrms into the surface SF given by the equation

r2 - a2 - 2ea h sin(m8) = 0
Om )

~
[

y3

-

(9.2.2)

2s described in previous sections, we assume that the body is subjected

to a small uniaxial loading at infinity. The stress-equilibrium equa-

tion associated with the final conficuration, B”, are given by equations

{4.20), where the stress compbnents le and T’lk

zressed by {(5.10} and (5.11).

are, respectively ex-

It follows from relations (2.28), (2.29) and (9.2.2) that

- X =0

|

i

|

~

H
||

~

e (9.2.3)

across £8e surface (2.2.2) becomes

On substituting relation (9.2.3) into (2.25), the traction vector
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- = 11 11, = 12 1 22,%
s = Fo - = . 9.2.4
t + et . (t77 + eAT6) e{} r[aoh.mmcos‘me)]'r }G2 ( )

It can be shown that at the points of the surface (9.2.2) -the stress

component Tll may be expressed by

< — S

e . L 2 N j. , ,
11 K2 a k4 P ‘
T = [- =, + 1ln — + 2e—=,— sin(mé)lc
} ' a2 a? a Q
T The deformation can be sustained‘by applying at the surface Sr,}tﬁe

same tractions as expressed by (3.2.26), provided

4 h
)\ll + {26‘1'(’ - sin(mé)lc =0 , r=a ,
a? ag
. (9.2.5)
ag
Xlz - [ hm cos(me)]'r22 =Q , r=a >
a m
e The boundary conditions (9.2.5) may be replaced by
1 K2 28 k* hp
[E'p'(rra),+ (4 -35,-1n —2) 3;1 =20, = sin(m8) ,
- a a r=a i a ao
3 . 2 B 2 . ,
2
22 -% - 1n io)(—?’3~-'v) -2 2 vy S
r 22 22’ '35 22 or
ma_h 2 a
- S T
a2 a2 1-k2/a2 al :

(9.2.6)

. . - ik . .
after substituting (4.13) for A7 "and the corresponding expressions

Liko O

(5.10) and (5.11) for =5 and T
S ZE”E5ﬁ‘Eé‘§56Wﬁ‘fEéE7‘E6ﬁ§i§t€nt‘with‘the4boundarY4conditieﬁs——gggg———————
(6.1.1) and@ (2.2.5), the radial disvplacement field mav be written in

the form 7 - . o L, RS >
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T A k@ - B -+ Geeal e 0

u(r, 6) = A uy (r} + [A u( )(r) + B u( )(r) + c u( )(r)]cos(26)

o]

-

+ oM + B3 u®he) 1sinme) - : (9.2.7)
mm mm i

where the integration constants AO, A2, B2 and C2 are respectively . -

' glven by (6 1. 6),_(6 l 24), (6 1.25) and (6 1. 4) and. A and- B -are. - ---

determined by the two equations:

S A% 4P£mﬂ'ﬂ:):é&—‘m_2#:!!b€m*4)¢;:€3m+24 R
M5=0 . , 2 ) ' :

2
+ [m(m+1) (—%+ 4) + (§m2+8m+4)j + (3m+4)j2+j3]-}52
' a

m2 m2A ag -m—2—j -
(——— - 1n =) (m+1+9) r J
1-k2/a2 2 a2 J }am{lr e

+ B X {[m(m-—l) (m+4) -'(m —8m+4)3 - (3m-—4)3 - j3]
J—O :
n° 3m° 2 ‘ﬂ‘kz

. a
2
2 2 - a e m k
t (—2— -2 Dm1- I B fm
1-k2/a2 2 a2 m,] r=a a%a,
' ’ (9.2.8)
'2
<A X {[ 4 (m+l) (m+3)+23 ] - [3m(m+l) + (4m+3)3 + 23 ]—
3=0
2

- [m(m+l) + J] in iO}OL .r
a2 m,J

- 2
+8 ] ([ 4@m1) @)+ 25%1 - [Gm-1) (m-2) + (4m-5)3 + 23°1=,
=0 Y - S L

-m-1-j

m aoh 2 a :
£ -2 4 , (9.2.9)




10. PERTURBATION OF THE STRAIN ENERGY FUNCTION

The analytical solution obtained for problems involving materials

with a specific strain energy function makes also possible to investi-

gate cases corresponding to related materials, with a perturbed strain

enrgv function. 1In view of the Spencer theory [ 2],'a strain energy

function W modified by a small perturbation to

-~

will result in an additional small deformation superimposed on the

existing finite deformation. We assume that W has -the Mooney-Rivlin

'form

i =C - + -3) , 10.2
I I =3 e, (3, ) ( )
and we make no specific assumptioh about €W’ , other than that € is
small.

It can be shown that the® stress components le are given by )

- . ' s - ik |
(5.10) and remain unchanged whereas the stress components T’ become
"

L1l -

,

T/ =’ - 2[H-L(r)—2Q2C]%% + in’ + (1+Q2)Y’,
2,22 T, o oo 2 3u 1 ) 1., T
T 1’22 =" + 2[H—L(r)—2:)2<Z}§u + 1 @7 + (1+ i Yyo,
oY 2 2
_ o Q - 2
,12 1 2 Ju v
= - —{8-T, - —— —
rT rtﬁ (xr)-2¢ c][aa +rar vl,
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where the functions %’ and ¥’ of the Spencer theory, given by relations

(2.30), reduce in this case to

- AW’ AW’
¢ =2 —, ¥ =2 —
BIl : 312

. ' -, (10.49)

" Further calculations reveal that the stresses expressed by relations

(10.3) modify the first of the equilibrium equations (5.12) and bring

no change in the last two. We may show that

., 2 2
13p”, 23w 1 3%m_ 1., .2 1 » :
2¢9r +Q 3r2 r202 562 +-r[é 2Q+ Q2 , *
+ @+ L)@y e Sy ) -
9 e 2

102 1 0 arwr o O¢n2ss 2y9:1y |
_-{-;(Q—-Q-z)(‘i‘+Y)+ar[Q¢>+(l+Q Y1},

2 2 : :
1l 9p” 23v 1 93w 1 2, du v _
2c38 T 25 2 02 orae pl2 R Gg+r g =v) =0

(10.5)

The effect of the terms éontainihg ®’ and ¥’ is to increase the
complexity of the eguations which correspond to (5.27), but the pro-

cedure followed in chapter 5 will apply here as well.




CONCLUSION
In this work we have considered a class of boundary value problems
involving perturbations about a finite inflation of a slab with a circu-
._lar cavity. -The equilibrium equations have been-formulated for incom-—— " —

pressible materials in terms of a general strain-energy function for the

plane strain case. An exact general solution is obtained for materials

__with Mooney-Rivlin strain-energy, although the method is not restricted _—
to this particular form. |
Specific analytic solutions are obtained for a number of boundary
value préblems.of interest. There are two categories: (a) problems where,

far from the cavity or the inclusion embedded into the body, a perturba-

tional uniaxial tension is applied and (b) problems where a perturbational

-

————— —load—is—acting—at the hole: The analytic expressions have in many cases

been evaluated numerically to allow detailedrinvestigations of ‘the de-
formation, the stress field and stress concentration effect around the
hole.

The general solution has further been used to take into account both

the perturbation due to an applied stress field and the perturbation in
tﬁe geometry of the original body. We have examined the probiem.of a fough

cavity and the case of an elliptic cross-section of the hole where, in both

cases, a perturbational uniaxial tension is applied. 1In addition to the

T analytic solution, a numerical solution to the latter problem has also

been obtained and the results are in good agreement.
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Finally, we have shown how the study can be extended to materials

with a strain-energy function which are perturbations of the Mooney-

®
a

Rivlin form.
The work presented here allows further investigations. We note

that the general solution,detived for a slab of infinite extent is:equal-

ly applicable to hollow. cylinders that allow a stress-distribution .on-the.
outer surface. Solutions to other boundary value problems, for a slab or

a tube can be derived as special cases of the general solution. Moreover,

Vsolufibﬁs corresponding to gther geometric perturbationé of the boundary
surfaces of the body may also be given. Further, we can éeek specific
solutions for materials with a strain-energy funétion that may be .re-
garded as a perturbation of the Mooney-Rivlin type.

Apart from all these immediate extensions, a parallel_problem to

the one solved here, where we have assumed that the thickness of the

'slab is prevented from changing, one might explore the case where the
thickness of the slab is allowed to change so that the resultant forces
applied on the plane faces are zero. The solution of the problem is ex-

pected to be more complicated than that presented here.




it %33'

corresponding values obtained in extended precision (16 decimal digits)

it also emerged that f&zi} = ¢/i, ... ,I?'.]'é c/i. All series (6.1.36)

APPENDIX I

In evaluating the coefficients a 8 ’ ;21, and §éi the results

217 T2i

obtained in double precision (9 decimal digits) are within #0.1% of the

for all i=1,2, ... 110000. This "indicates that the recurfence formulas

for the coefficients are numerically stable. Upon further investigation

are of the form

where n=0,1,2,3, Oégikz/r2< 1, [ail =c/i. This yields an error esti-

mation for the trumcated sums in the form -

° i -

, .n=11

L i\:. L) , n;l
® . (1-9)
.n_i
]Z ig c.! =
: i .
i=f - -
Zn-l A
LI S n=0
1-9

where ¢ is a constant. Further, we include some tables with truncated

sums along with the number of terms taken into account for a 7-digit

accuracy.
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APPENDIX II

It can be shown that the physical components of the strain tensor’
Y,. are given by

o _du_ 1 w2 dv2
IR AL ~Eab (- N - e

l du 1 93u2 1 ou 2
Yoo = 7 2ler T2lGY * G~V Ik

l _du _ 3u,du \ oV oV

Yro = 2riae s )  artae T Wi-

" where u{r,9) and v(r,8) are expressed by-relation 6.1.30 and 6.1.31,

respectively. The condition

IYmaxl << 1

s

) 7 :
=2y gy t Y
2 Ver T Yo' T Y

)211/2

1
+ — C -
rd Z(Yrr YBB

Tmin

- kS

yields to a limitation on the édmissible axial tengion applied at in-
finity. Although the value P/8¢ does not have any quélitative influ~
ence on the incremental deformation field as it ierely plays the role
of a scale factor for both u and v and neither ddes have an impact on

the stress concentration effect, it gives however the upper limit for

VEﬁé akiéiiibgding such that the theory-of small deformations'superposed

on finite deformations remains valid for the specified range 1= a/a0§i2.
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