THĖSES CANADIENNES

Abstract

AVIS La qualité de cette microfiche depend grandement de la quatité de la these soumise au microfimage. Nous avons tout fat pour assurer une qualité superieure de reproduction.

S'il manque des pages, veuillez communiquer avec Puniversité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originates ont elé dactyiographiees à l'aide d'un ruban usé ou si l'université nous a tait parvenir une photocopie de qualite inferieure.

Les documents qui font deja robjet ơun droit doauteur (articies de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise a la Loi canadienne sur te droit of auteur, SRC 1970, c. C-30. Veuiliez prendre comnaissance des formuies drautorisation qui accompagnent cette thése.

$$
\begin{array}{lc}
\text { THIS DISSERTATION } & \text { LA THĖSE A ÉTE } \\
\text { HAS BEEN MICROFUMMED } & \text { MICROFILMÉE TEUE QUE } \\
\text { EXACTLY AS RECEIVED } & \text { NOUS L'AVONS REÇUE }
\end{array}
$$

Mationel Library
of Condt

Gblionnme nefronde
crenda

Camonoty meses
On micenciche

FWest CAMABUENTS
sut mecouracme
mum of nuthor wow of
TITLE OF THESS THAR Of LA THise \qquad
\qquad
\qquad
minnair umusurit Siman Fraser University
 \qquad Moster of Science
 \qquad NAME OF SUPENISCA MOM DU DIAECTECH OE TMÉsT \qquad Dr. J. T. Sember.

Permission is hereby granted to the NATIONAL LIERARY Of CANADA to microltm this thesis and to lend or sell copies of the fitas.

The author reserves ofher publication rights, and neither the thesis nor extensive extrects from it mey be printed or otherwise reproduced without the wuthor's witten permission.

DATED/DA PÉ \qquad Dee. 6,83 SIGMED/SIGNE \qquad
L'autorisation est. por to prisente. accorde ta Braciorthe. QUE NATIONALE DU CANADA microdimer cette these et de preter ou de venotre des exemplaires du film.

L'auteur se réserve les autres doits de publication: ni la theseni de longs extraits de celle-ci ne doiventeitre imprimés ou autrement reproduits sans fautorisation ©crite de l"autell.
\qquad (GHED \qquad

A STVDY OF UNIPORA BOUNDEDNESS

by
 Panasinghage Tilakasiri Samaratunga

B.Sc., Jniversity of Sri Lanka, Colombo', 1976

A THPSIS SUBMITMED IN PARTIAL FULFILLMENT OF

THE FEQUIREMENE FOR THE DEGREE OF

MASTER OF SCIENCE
in the Departwent
of
Mathematics
i
(C) R.T. Samaratunga, 1983

SIMON FRASER UNIVERSITY

December 1983

Name:
 R.T. Sadaratunga

Degree: Marter of Science
ritle of Thesis: A Study of Uniform Boundedness

Chaiman: C. Villegas
J.J. Senber
Senior Supervisory
A.R. Freedman
D. Sharma

C, Godsil
 External Examiner Department of Mathematics Simon Praser University

Date Approved: December 8, 1983

PART HAL COPYRIGHT LICENSE
hereby grant to Simon Fraser University the right to tend , Ty thesis, project or extended essay (the title of which is shown below) - to users of the simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library on any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for muttlpte copying of this work for scholarly purposes may be granted by ne or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not de allowed without my written permission.

Title of Thesis/Project/Extended Essay
A Study of Uniform Boundedness
\qquad
\qquad
\qquad

Author:
(signature)
RT. SAMARATUNGA
(name)
Dee .6, 1983
(date)

ABSTRACT

The purpose of this thesis is to review some of the theorems concerning boundedness of linear operators and vector valved mearures. Applications in the theory of topological vector spaces and sumability are also discussed."

Chapter I is of introductory nature. In Chapter 2, by introducing the notion of x boundedness, ve obtain a version of the unifore boundedness theore which is valid for any arbitrary topological vector space. In Chapter 3 we employ a simple version of Rosenthal's lema to give a proof of a result wich is due to J. Diestel and B. Faires. We also establish the Vitali-Hahn-Sakg-Nikody theoref for a new class of rings of gets, namely the class of rings with property ($Q I$). Among the other results obtained in this Chapter are generalized versions of the Phillips and Schur lemas. In Chapter 4 the Nikody Boundedness Theorem is proved in several settings. At the end of this Chapter we obtain an improvement of the orlicz-pettis theoren.

ACKIONLEDGEMEAT

I would like to thank Dr. J.J. Sember for suggesting the topic and for his advice and encouragement in preparation of this thesis. I would also like to thank Mrs. Sylvia Holmes for the excellent typing.

Approwal (ii)
Abstract (iii)
Mcknowledgement (iv)
Table of Contents (v)
Chaptex 1. Preliminaries 1
§1. Introduction 1
§2. Topological vector spaces 3.
§3. Continuous linear maps 7
54. Convergence of series 10
§5. Some fanilies of sets 11
Chapter 2. The unifori boundedness principle. 15
§1. Introduction 15
§2. Basic facts 16
53. Main results 19
Chapter 3. Bounded vector measures 26
§1. Introduction 26
52. Elementary properties of vector measures 28
§3. Strongly bounded pector measures 32
§4. Convergence and boundedness of a sequence of strongly bounded yector measures 49
Chapter 4. The Mikodym Boundedness Theorem 70
g1. Introduction 70
§2. Definitions and some examples 71
§3. Main results. 78
BLbliography 91

§1. Introduction.

There are geveral regulte concerning continuous linaar functions and vector valued measures which derive a conclusion of uniform boundechess frop a hypothenis oneerning pointwise ox setwise boundedness. Such results play a significant role in the thatory of topological vector spaces, sumability and integration. The purpose of this thesis is to review and discuss some of these results and their inmediate applications in the theory of topological vector spacen and sumability. of particular interest are the following results.

1. The uniform boundednesg principle for continuous linear functions.
2. The Vitali-Hahn-Saks-likody theorem for finitoly additive vector measures.
3. The Nikody Boundecness theorem for finitely additive vector. measures.

We prove each of the above results in a more general setting. In proving (1) and (2) we use primitive sliding hump arguments of the thpe originally used by Lebeggua, Hahn and-Mikodym. In fact Baire category methods seem to be unsuitable here.

The conclusion of the Vitali-Hahn-Saks-Nikodym theorem is stronger than of the Nikodym Boundodness theorem. This indicates a possible existence of a more general type of ring than those for which
the Nikody Boundedness theore holde. In Chapter 4 we introduce such a class of rings, namely the claps of pQo-rings. Interestingly this class contains the ring of ordintary density zero subsets of positive integers. Aso werove the Nikodym boundedness theoreme for a ring generated by a full fanily (3.4 Definition 4) provided measures concerned are regular over finite sets (3.4 Definition 2).

In the remaining sections of this Chapter we list som results from the theory of topological vector spaces we are going to make use of in the next three chapters. All results (except results in section 5) are stated vithout proof and can be found in one of [4] [13] and [19].

I

32. Topological vector spaces.

The following notation will be used throughout this thesis.
R - set of real mubers.
¢ - set of complex numbers.

N - set of positive integers.
R+ - set of non-negative real numbers.
2^{x} - power set of a given set X.

Definition 1. A suoset A of a vector sprace X is said to be
(i) absorbing if for each x^{+}in X there exists a scalar α with $x \in \alpha A$; (ii) balanced if $\lambda A \leq A$ for every λ with $|\lambda| \leq 1$; (iii) convex if for each pair $x_{r} Y \in A,\{\alpha x+(1-\alpha) y \mid 0 \leq \alpha \leq 1\} \leq \dot{A}$, and (iv) absolutely convex if A is balanced and convex.

Definition 2. A vector space X with a topology T, wich we write as (X, T), is called a topological vector space if the operations of vector addition and scalar multiplication are continuous.

Proposition 1. A vector space X with a topology T is a topological vector space if and only if there exists a fundamental neighbourhood system $\cap(0)$ at the origin of x such that:
(1) Each U in $\eta(0)$ is absorbing and balanced.
(2) For each U in $T(0)$ there exists V in $\eta(0)$ with $V+V \subseteq U$.

Definition 3. A topological vector space (X, T) is locally convex in case there exists a fundamental neignourhood system $n(0)$ at the origin
of X satisfying, in addition to condition (2) of Proposition 1, the condition
(1") Each U in " $\cap(0)$ is absorbing, balanced, and convex.

Definition 4. Let X be a vector space. A function $P: X \rightarrow R+$ is called an F -seminorn, provided
(I) $\mathrm{p}(0)=0$.
(2) $p(x+y) \leq p(x)+p(y)$.
(3) $p(\lambda x) \leq p(x)$ whenever $|\lambda| \leq 1, x \in X$.
(4) $\frac{1 \mathrm{im}}{n} \frac{p\left(a_{n} x\right)}{n}=0$ Henever (a) is a sequence of scalars with
$\lim _{n} a_{n}=0$ and $x \in x$.
If, in addition, $p(x)>0$ for every $f 0$, then p is called an E-norm on X.
proposition 2. A vector space X with a topology T is a topological vector space if and only if there exists a faraily F of P-seminorms on X generating the topology T on X; also, T is Hausdorff if and only if F is total. i.e., for $x \in X, x \neq 0$, there exists $p \in F$ such that $p(x) \neq 0$.

Definition 5. "Let x be a vectoŕ space. A Eunction $p: d \rightarrow R+$ is called a seminoxa, provided
(1) $p(0)=0$.
(2) $p(x+y) \leq p(x)+p(y)$.
(3) $p(\lambda x)=\lambda p(x)$ for every scalar $;$ and $x \in X$

If, in addition, $p(x)>0$ for every $x \neq 0$, then p is called a. nora on X.

Remark. A vector space X with a topology T generated by a seminorm (respectively, norm) on X is called a seminormed (respectively, normed) space. A complete normed space is called a Banach space.

Proposition 3. ($X, \overline{3}$) is a locally convex topological vector space if and only if T is generated by a family of seminorms on X.

Definition 6. A subset B of a topological vector space X is called bounded if for each neighbourhood U of zero in X there exists $\lambda \in R+$ such that $B \subseteq \lambda U$.

Proposition 4. Let X be a topological vector Space and let $A \subseteq x$. Then the following statements are equivalent.
(1) A is bounded.
(2) For every sequence $\left(t_{n}\right)$ of positive numbers with $\lim _{n} t_{n}=0$ and every sequence $\left(x_{n}\right)$ in $A, \lim _{n} t_{n} x_{n}=0$. If X is a locally convex space, then statement (1) is also equivalent to (3) A is bounded with respect to each continuous seminorm on X.

Definition 7. If z is any complex number, then sgnz is defined 5%

$$
\operatorname{sgn} z=\left\{\begin{array}{l}
0 \text { if,z=0} \\
|z| / z \text { if } z \neq 0
\end{array}\right.
$$

Remark. $|z|=2 . s g n z$ for any $z \in \oint$.

Proposition 1. Let $\left(X, T_{1}\right)$ and $\left(Y, T_{2}\right)$ be two topological vector spaces over the same field. The set of all continuous linear functions from X to Y, denoted by $L(X, Y)$, is a vector space with the pointwise addition and the pointwise scalar multiplication.

Proposition 2. Let X, Y be seminormed spaces. A linear function f from X to Y is continuous if there exists $M>0$ such that $\|f(x)\| \leq M\|x\|$ for every $x \in X$.

Proposition 3. If $\|f\|=\operatorname{Sup}\{\|f(x)\| x \in X,\|x\| \leq 1\}$ for $f \in L(X, Y)$, then $\|\|$ is a seminorm on $L(X, Y)$; moreover, it is a norm if Y is a normed space.

Theorem 1. Let f be a continuous linear mapping from a subspace A of a topological vector space X into a complete Hausdorff topological vector space Y; then there exists a unique continuous linear map F from the closure \bar{A} of A into Y such that $\left.F\right|_{A}=f$.

Definition 1. Let $F \subseteq L(X, Y)$ where X, Y are topological vector spaces. Then F is called
(a) pointwise bounded if $\{f(x) \mid f \in F\}$ is a bounded subset of Y for each $x \in X$;
(b) uniformly bounded if $\{f(x) \mid f \in F$ and $x \in A\}$ is a bounded subset of Y for each bounded subset A of X.

If E is a linear function from a topological vector space
X into scalars, then $£$ is called a linear functional. The set of
all continuous linear functionals on X. which is denoted by X^{*}, is called the dual space of X. The topology generated on X by $X *$ is called the weak topology of X : In case X is a seminormed space X^{*} is a Banach space with the norm defined in Proposition 3; moreover for each $x \in X$ the linear functional \hat{x} on X^{*}, defined by $\hat{x}(f)=f(x)$, belongs to $x^{* *}$. The locally convex topology. generated by $\{\hat{x} \mid x \in X\}$ on X^{*} is called the weak* topology on X^{*}.

Theorem 2. (Hahn-Banach). Let X be a vector space and p a seminorm on X. Suppose f is a linear functional defined on a vector subspace \bar{Y} of X such that $|f(x)| \leq \bar{p}(\bar{x})$ for every $\bar{x} \in Y$ - Then f can be extended to a linear functional F on X such that $|F(x)| \leqslant p(x)$ for every $x \in X$.

The following propositions are immediate consequences of the Hahn-Banach theorem.

Proposition 4. Let Y be a closed subspace of a locally convex space X, and $a \in X Y$. Then there exists $f \in X^{*}$ such that $f(a)=1$ and $f(y)=0$ for $y \in Y$.

Proposition 5. Let X be a seminormed space. If * $x \in X$ with $x \neq 0$, then there exists $£ \in X^{*}$ such that $f(x)=\|x\|$ and fit $=1$.

Proposition 6. Let X be a seminormed space. Then for every $x \in X$ $x=\sup |f(x)| f \in x \neq \| f=1\}$.

Remark: proposition 4 implies that if x is a locally convex
Hausdorff space, then x^{*} is total over X. i.e., for each $x \in X$ with $x \neq 0$ there exists $f \in X^{*}$ such that $f(x) \neq 0$.

Theorem 3. Let X be a normed space and Γ. a linear subspace of $X *$ which is also total. Then Γ is a weak * dense subset of $X *$.

Theorem 4. (Banach-Alaoglu). If X is a normed space then the unit disc in X^{*}, i.e., $\left\{f \in X^{*}\|f\|^{\prime} \leq 1\right\}$, is weak \bullet compact. If, in addition, X is separable, then it is weak metrizable.

Theorem 5. (Banach-Dieudonne). Let X be a Banach space and S-a subspace of X^{*}. Then S is weak * closed if and only if $\{f \in s \mid\|f\| \leq 1\}$ is weak \cdot closed.

We conclude this section stating some properties of the Banach spaces c_{0}, ℓ_{∞} and ℓ_{1}. Let ω be the set of all scalar sequences. Then $c_{0}=\left\{\left(x_{n}\right) \in \omega \mid \lim _{n} x_{n}=0\right\}$ is a Banach space with the norm $\left\|\|_{\infty}\right.$ defined by $\left\|\left(x_{n}\right)\right\|_{\infty}=\operatorname{Sup}_{i}\left\{\left|x_{n}\right| \mid n \in N\right\} \quad c_{00}=\left\{\left(x_{n}\right) \in c_{0} \mid x_{n}=0\right.$ for all but finitely many $n\}$ is a dense subspace of c_{0}.

$$
\ell_{\infty}=\left\{\left(x_{n}\right) \in \omega \mid\left\langle x_{n}\right) \text { is bounded }\right\} \text { is a Banach space with }
$$ the same supremum norm. $m_{0}=\left\{\left(x_{n}\right) \in \ell_{\infty} \mid\left\{x_{n} \mid n \not \epsilon^{\prime} N\right\}\right.$ is finite $\}$ is a dense subspace of b_{∞}. Also note that c_{0} is a closed subspace of ℓ_{∞}.

$$
\ell_{1}=\left\{\left(x_{n}\right) \in \omega\left|\sum_{n=1}^{\infty}\right| x_{n} \mid<\infty\right\} \text { is a Banach space with the }
$$

norm 1 , defined by $\left\|\left(x_{n}\right)\right\|_{1}=\sum_{n=1}\left|x_{n}\right| \cdot c_{00}$ is a dense subspace of ℓ_{1}. Remark: $c_{0}^{*}=\ell_{1}$ and $\varepsilon_{1}^{\prime}=\ell_{\infty}$.
34. Convergence of series.

Definition 1. A formal infinite series $\sum_{i=1}^{\infty} x_{i}$ in a topological vector
space (X, T) is said to be (1) convergent in (X, T) if
$\left(\sum_{i=1}^{n} x_{i}\right)_{n} \in N$ converges in (X,T); (ii) weakly convergent in (X,T)
if there exists an $x \in X$ such that $\sum_{i=1}^{\infty} f\left(x_{i}\right)$ converges to $f(x)$
for every $f \in X^{*}$; (ii) subseries convergent if for any increasing
sequence (in) of positive integers, the series $\sum x_{i}$ converges
in (X, T), and (iv) unconditionally convergent if for any permutation
σ of N, the series $\sum_{i=1}^{\infty} x_{\sigma(i)}$ converges to the same element x
in X.

Remark: Let $A \subseteq N . \sum_{i \in A^{-}} \mathbf{x}_{i}$ converges in (X, T) means that
$\lim _{n} \sum_{i \in A \cap[1, n]} x_{i}$ exists in (X, T). Therefore $\sum_{i=1}^{\infty} x_{i}$ is subseries
convergent if and only if $\sum_{i \in A} x_{i}$ converges for every $A \subseteq N$.
Theorem 1. If a series $\sum_{i=1}^{\infty} x_{i}$ in a locally convex space X is sub-
series convergent, then it is unconditionally convergent.

The proof of the above theorem can be found in [9].

Theorem 2. Let $\left(x_{n}\right)$ be a Cauchy sequence in a locally convex space X. If $\left(x_{n}\right)$ converges weakly to x in X, then $\lim _{n} x_{n}=x$.

Definition 1. Let Ω be an axbitraiy set. A subfamily R of 2^{Ω} is said to be a ring in case $A \cup B, A \backslash B \in R$ whenever $A, B \in R$.

If, in addition, $\bigcup_{i=1}^{\infty} A_{i} \in R$ for every sequence $\left(A_{i}\right)$ in R, then R is called a $\sigma-r i n g$. .

Definition 2. A ring R of subsets of a set Ω is called an algebra if $\Omega \in R$.

Zemaxk: A ring"-R is elosed undex finite-intersections.

1
Definition 3. A ring, R is called a QO-ring (respectively, an FQo-ring) in case for every sequence (A_{i}) of pairwise disjoint sets (respectively, finite sets) in R, there exists a swopequence (A_{i}) of $\left(A_{i}\right)$ such that $\left.\bigcup_{j=1} A_{i}\right\rangle_{j} \in R$.

Definition 4. A ring R is called hereditary (or an ideal) if R is closed under subsets. If R is an ideal then $F=\left\{A^{C} \mid A \in R\right\}$ is called a filter. (Note that filters ace closed under supergets.)

Example 1. A go-iing R which is not a o-ring.

Let F be a non-principal maximal filter of subsets of N.
This means that $\cap F=\phi$ and if there exists a filtex F^{\prime} such that
$F \in F^{\prime}$ then $F^{\prime}=F$. The existence of such filters is implied by. the Zorn's lema. Let $R=\left\{A^{c} \mid A \in F\right\}$. We claim that R is an

```
ideal satisfying the following:
```

(1) R contains all finite subsets of N.
(2) R is a go -ring .
(3) R is not a σ-ring.

By the definition of a filter it is clear that R is an ideal. Let $A \leq N$. Suppose $A, A^{C} \notin F$, since F is maximal, there exist $E, F \in F$ such that $A \cap E=\phi$ and $A^{C} \dot{\lambda} F=\phi$; consequently $\underline{E} \cap F=\phi$. This contradiction shows that $A \in F$ or $A^{c} \in F$. To prove (1) let $n \in H$. Since F is non-principal $\{n\} \& F$. Hence $N\{n\} \in F$ so that $\{n\} \in R$. This shows that every finite set is in R : To prove (2) let $\left(\mathrm{K}_{\mathrm{n}}\right)$ be a pairwise disjoint sequence of members of R Then $\bigcup_{n=1}^{\infty} A_{2 n} \in F$ or $\left(\bigcup_{n=1}^{\infty} A_{2 n}\right)^{c} \in F$. If $\bigcup_{n=1}^{\infty} A_{2 n} \in F$, then $\bigcup_{n=1}^{\infty} A_{2 n} \subseteq\left(\bigcup_{n=1}^{\infty} A_{2 n-1}\right)^{c} \in F$. Therefore $\bigcup_{n=1}^{\infty} A_{2 n} \in R$ or $\bigcup_{n=1}^{\infty} A_{2 n-1} \in R$. (3) follows from (1) and the fact that $N \& R$.

Leman 1. Let R be a ring of subsets of a set Ω. Suppose $a: R+R+$ is a unbounded function such that:
(1) $\alpha(A \cup B) \leq \alpha(A)+\alpha(B)$ for $A, B \in R$ with $A \cap B=\phi$.
(2) $\alpha(A \backslash B) \geq|\alpha(A)-\alpha(B)|$ for $A, B \in R$ with $B \subseteq A$.

Then there exists a disjoint sequence $\left\langle A_{n}\right.$) of members of R such that $\underset{n}{ } \quad \lim \left(A_{n}\right)=\infty$.
Proof: Define $-2^{\Omega} \rightarrow[0, \infty]$ such that $\bar{a}(A)=\sup \{\alpha(B) \mid B \in R, B \subseteq A\}$.

Case 1. Suppose there exists a $k>0$ and an $E \subseteq \Omega$ with $\bar{a}(E)=\infty$ such that for every $F \subseteq E$ with $F \in R^{\prime}$ and $\alpha(F) \geq k, \bar{\alpha}(F)=\infty$.

Since $\bar{\alpha}(E)=\infty$, there exists $P_{1} \subseteq E$ with $P_{1} \in R$ such that $a\left(F_{1}\right)>k$; hence $\bar{a}\left(F_{1}\right)=\infty$. Let $F_{2} \subseteq F_{1}$ with $F_{2} \in R$ such that $\alpha\left(F_{2}\right)>\alpha\left(F_{1}\right)+1$. Note that $\bar{\alpha}\left(F_{2}\right)=\infty$ since $\alpha\left(F_{2}\right)>k$ and $F_{2} \subseteq E$; so by induction we can construct a decreasing sequence ${ }^{\prime}$ (F_{n}) of members of R such that $\left.\alpha\left(F_{n+1}\right)>\alpha\left(F_{n}\right)+\dot{n} . \operatorname{set} A_{n}=F_{n}\right\rangle F_{n+1}$. Then $\alpha\left(A_{n}\right) \geq\left|\alpha\left(F_{n}\right)-\alpha\left(F_{n+1}\right)\right|$ by (2) and hence $\alpha\left(A_{n}\right)>n$. This implies that $(A /)$ is a disjoint sequence of members of R such that $\underset{n}{\operatorname{lin}} a\left(A_{n}\right)=\infty$.

Case 2. Suppose for each $k>0$ and each $E \subseteq X$ with $\bar{\alpha}(E)=\infty$, there exists $F \subseteq E$ with $E \in R$ and $\alpha(F) \geq k$ such that $\bar{a}(F)<\infty$. Since $\bar{a}(\Omega)=\infty$, there exists an $A_{1} \subseteq \Omega$ with $A_{1} \in R$ such that $\alpha\left(A_{1}\right) \geq 1$ and $\bar{\alpha}\left(A_{1}\right)<\infty$. Now. we show that $\bar{\alpha}\left(\Omega \vee A_{1}\right)=\infty$. Let $P \in R$. Then $P=\left(P \backslash A_{1}\right) U\left(P \cap A_{1}\right)$ and $P A_{1}, P \cap A_{1}$ are disjoint members of R. Hence by $1, \alpha(P) \leq \alpha\left(P \vee A_{1}\right)+\alpha\left(P \cap A_{1}\right)$. Taking supremos over $P \in R$. we have

$$
\begin{aligned}
\bar{\alpha}(\Omega)=\operatorname{Sup}_{p \in R} \alpha(P) & \leq \operatorname{Sup}_{p \in R} \alpha\left(p \backslash A_{1}\right)+\operatorname{Sup}_{p \in R} \alpha\left(p \cap A_{1}\right) \\
& \leq \bar{a}\left(\Omega \backslash A_{1}\right)+\bar{a}\left(A_{1}\right)
\end{aligned}
$$

Since $\bar{\alpha}(\Omega)=\infty$ and $\bar{\alpha}\left(A_{1}\right)<\infty$, this implies $\bar{\alpha}\left(\Omega>A_{1}\right)=\infty$.

Choose $A_{2} \subseteq \Omega \backslash A_{1}$ with $A_{2} \in R$ such that $\alpha\left(A_{2}\right) \geq 2$ and $\bar{\alpha}\left(A_{2}\right)<\infty$. Using the same argument we can show that
$\bar{\alpha}\left(\Omega \backslash A_{1} \cup A_{2}\right)<\infty ;$ so by induction we can construct a disjoint sequence $\left(A_{n}\right)$ of members of R such that $\alpha\left(A_{n}\right) \geq n$ for $n \in N$. Hence $\lim _{n} \alpha\left(A_{n}\right)=\infty$.

Definition 5. An algebra R of subsets of a set Ω is said to have the interpolation property in case for every pair of sequences (A_{n}), (B_{n}) of members of R such that $A_{n} \subseteq B_{m}$ for $n, m \in N$, there exists $C \in R$ such that $A_{n} \subseteq C \subseteq B_{m}$ for $m, n \in N$.

THE UNIFORM BOUNDEDAESS PRINCIPLE

51. Introduction.

The material in this chapter is essentially contained in the Antosik-Swartz paper [2] with the exception of corollary 1 of theorem-in bection - 3 which is a generalization of the Banach-Steinhaus theorem. The uniform boundedness principle, one of the most important theorems in Functional Analysis, is a result which derives a conclusion of uniform boundedness from a hypothesis concerning pointwise boundedness. In proving this theorem our use of a matrix method in place of the Baire category theorem paves the way for some generalization of the classical version of the theorem. As a preliminary, in section 2, we obtain a result concerning infinite matrices in a topological vector space which is somewhat in the spirit of the Antosik-Mikusinski diagonal theorem [1]. By introducing the notion of a k-bounded set, we obtain an analogous statement of the uniform boundedness theorem which is valid for any arbitrary topological vector space.

§2. Basic facts

We start with a lemma which can be viewed as an elementary sliding hump type argument. "

Lemma 1. Let $\left(\lambda_{m n}\right)$ be an arbitrary infinite matrix of positive numbers. Suppose ($x_{m n}$) is a given infinite mátrix of non-negative numbers such that $\lim x_{\operatorname{mn}}=0$ for each n and $l_{n} x_{m n}=0$ for each m. Then there existo a subsequence (m_{i}) of positive integers such that $x_{m_{i} m_{j}}<\lambda_{i j}$ for ifj.

Proof. Set $m_{1}=1$. Suppose $m_{1}, m_{2}, \ldots, m_{n}$ have been chosen such that $x_{m_{i} m_{j}}<\lambda_{i j}$ for $i, j=1,2, \ldots, n$ and $i \neq j$. since $\lim _{p} x_{m_{i} p}=0$ and $\lim _{p} x_{p_{m}}=0$ for $i=1,2, \ldots, n$, we can choose $m_{n+1}>m_{n}$ such that $x_{m_{i} m_{n+1}}<\lambda_{i, n+1}$ and $x_{m_{n+1} m_{i}}<\lambda_{n+1, i}$ for $i=1,2, \ldots, n$. By induction the result follows.

We use the above lema to obtain our main result in this section.

Theorem 1. Let $\left(x_{m n}\right)$ be an infinite matrix in a topological vector space X. Suppose (i) $\operatorname{lin}_{\text {m }} x_{\min }=0$ for each n and (ii) each. subsequence (n_{j}) of positive integers has a subsequence ($n_{j_{k}}$) such that $\lim _{\mathrm{m}} \sum_{k=1}^{\infty}{ }^{\prime} \mathbf{x}_{\operatorname{man}}=0$. Then $\lim _{\mathbf{k}} \lim _{\mathrm{mma}}=0$.

Proof. Since every topological vector space X is generated by the set
of all contimous F-seminorms an X, it is sufficient to consider the case when X° is an P-seminormed space. We show that $\left(x_{\operatorname{man}}\right)_{m} \in N$ has a subsequence which converges to zero. Since the same argument can be applied to an arbitrary subsequence of $\left(x_{\operatorname{man}}\right)_{m \in N}$, we will have that $\lim _{\mathrm{m}} \mathrm{x}_{\mathrm{mm}}=0$.

Let. ($\lambda_{i j}$) be an infinite matrix of positive numbers such that $\sum_{i, j} \lambda_{i j}<\infty$. Condition (ii) implies that $\lim x_{m n}=0$ for each m. Thus, by lema 1 , there exists a subsequence (n_{i}) of positive integers such that $\left\|x_{n_{i} n_{j}}\right\|<\lambda_{i j}$ for $i \neq j$. $\|\|$ denotes the F-seminorm.) To avoid double subscripts assume $n_{i}=i$. Let (i_{k}) be the subsequence satisfying the conclusion of condition (ii). Then for every $k \in N$,

$$
\left\|_{\mathbf{i}_{k} i_{k}}\right\|=\sum_{\ell=1}^{\infty} x_{i_{k} i}-\sum_{\substack{\ell=1 \\ \ell \neq k}}^{\infty} x_{i_{k}} i_{\ell} \|
$$

$$
\leq \sum_{\ell=1}^{\infty} x_{i_{k} i}{ }_{\ell}+\sum_{\ell=1}^{\infty} \lambda_{i_{k}} i_{\ell} .
$$

Now note that $\lim _{k}\left\|\sum_{\ell=1}^{\infty} x_{i_{k}} i_{\ell}\right\|=0 \quad$ by \quad (ii), and
$\lim _{k} \sum_{\ell=1} \lambda_{i_{k} i_{\ell}}=0$ by the fact that $\sum_{i, j} \lambda_{i j}<\infty \quad$. Hence $\lim _{k} x_{i_{k}} i_{k}=0$.

This completes the proof.

Remark.. In the above theorem it can be concluded that $\operatorname{lin}_{n} x_{\text {ma }} x 0$ uniformly for $m \in N$.

To verify this let $\left(m_{i}\right)$ and ($\left.n_{i}\right)$ be two subsequences of positive integers. It is readily seen that the matrix $\left(x_{m_{i}} n_{j}\right)$ satisfies
conditions (i) and (ii). An application of theorem 1 shows that $\lim _{i} x_{m_{i} n_{i}}=0$., This shows that $\lim _{n} x_{m n}=0$ uniformly for $m \in N$. $?$

The classical uniform boundedness theorem states that a pointwise bounded family of continuous linear operators on a Banach space is uniformly bounded on bounded subsets. By introducing the notion' of a K-bounded set we give an analogous statement of the unifmm boundedness theorem which is valid for arbitrary topological vector spas ${ }^{5}$.

Definition 1. Let B be a subset of a topological vector space x. B is said to be K-bounded if for each sequence (x_{n}) of elements of B and each sequence of scalars (t_{n}) which converges to zero, the sequence $\left(t_{n_{n}} x_{n}\right)$ has a subsequence $\left(t_{n_{i}} x_{n_{i}}\right)$ such that $\sum_{i=1} t_{n_{i}} x_{n_{i}} \in x$. Remark. It is easy to see that every K-bounded set is bounded. An example of a bounded subset of a normed space, which is not K-bounded, is given at the end of this section.

Definition 2. A topological vector space X is said to be a (K)-space if every bounded subset of X is K-bounded.

Proposition 1. Let X be an F-seminormed space. Then X is a (K)-space if and only if each sequence $\left(x_{n}\right)$ in x, which converges to zero, has a subsequence $\left(x_{n_{i}}\right)$ such that $\sum_{i=1} x_{n_{i}} \in X$.

Proof. To prove the necessary part suppose X is a (K)-space. Let $\left(x_{n}\right)$ be a sequence in X with $\lim _{n} x_{n}=0$. First we show that
there exists a sequence $\left(t_{n}\right)$ of positive numbers, which diverges to infinity, such that $-\frac{i \pi}{n} E_{n} X_{r}=0$.

Let $\left(\mathcal{F}_{n}\right)_{n+1}$ be a local base at zero in x with $v_{n+1} \subset V_{n}$ for $n \in x$. Since $\lim _{n} x_{n}=0$, we can construct a subsequence (n_{i}) of positive integers such that $x_{n} \xi \frac{1}{i} v_{i}$ for $n \geq n_{i}$. Define the
sequence $\left(t_{n}\right) \quad i y$,

$$
t_{\pi}=\left\{\begin{array}{ll}
1 & \text { if } 1 \leq n<n_{1} \\
i & \text { if } \\
n_{i} \leq n<n_{i+1}
\end{array} .\right.
$$

It is easy to check that $\frac{1}{n} \bar{m}_{n}=x$ and that $\inf _{n} \tau_{n}=0$. Hence $\left\{t_{n} x_{n} n \in \pi\right.$ is bounded. Since X is a (K-space, it $x_{n} \mid n \in n$ is k-iownded and hence there exists a subsequence $\left(n_{i}\right)$ of positive integers susan that $\sum_{i=1}^{x} \frac{1}{t_{n_{i}}}\left(t_{n_{i}} x_{n_{i}}\right)<\pi . i . e ., \sum_{i=1}^{i} x_{n_{i}} \in X$. The sufficient part car be easily checked.

Corollary 1. Every complete E-seainormed space X is a (X)-space.
proof. Let $\left\langle x_{n}\right.$ be a sequence in x with $1 i \pi x_{r}=0$. Choose a subsequence $\left\{x_{n_{i}} ;\right.$ of $\left\{x_{r_{i}}\right.$ such that $\sum_{i=1} x_{n_{i}}<x$. clearly $=$ $\bar{i} x$ satisfies cite dancing condition. Since x is complete, $\sum_{i=1}^{n} i$

```
    E K = X , Eerce me gyevious proposition implies that }X\mathrm{ is a
i= 年立
```

(x)-space.

Theorem 1. (The uniform boundedness principle.)

Let F be a family of pointwise bounded continuous linear functions of a topological vector space X to a topological vector space Y. Then F is uniformly bounded on every K-bounded subset A of X.

Proof. Let $B=\{f(x) \mid f \in F$ and $x \in A\}$. We want to show that B is a bounded subset of Y. Let $\left(f_{n}\left(x_{n}\right)\right)_{n \in N}$ be a sequence in B and (t_{n}) a sequence of positive numbers with $\lim _{n} t_{n}=0$.

$$
\text { Set } a_{n m}=t_{n}^{\frac{1}{2}} f_{n}\left(t_{m}^{\frac{1}{2}} x_{m}\right) \text { for } n, m=1,2,3, \ldots \text {. since the }
$$

sequence $\left(f_{n}\right)$ of continuous linear functions is pointwise bounded and $\lim _{n} t_{n}^{\frac{1}{2}}=0$,
(1) $\lim _{n} a_{n m}^{i}=\lim _{n} t_{n}^{\frac{1}{2}} f_{n}\left(t_{m}^{\frac{1}{2}} x_{m}\right)=0$ for $m=1,2, \ldots$.

Since A is K-bounded, each subsequence $\left(m_{i}\right)$ of (m) has a subsequence $\left(m_{i_{j}}\right)$ such that $\sum_{j=1}^{\infty} t_{m_{j}}^{\frac{1}{2}} x_{m_{j}} \in x$. Again by the facts that (\tilde{n}_{n}) is pointwise bounded and $\lim _{n} t_{n}^{\frac{1}{2}}=0$ we have

$$
\text { (2) } \quad \lim _{n} \sum_{j=1}^{\infty} a_{n m}=\lim _{n} t_{n}^{\frac{1}{2}} f_{n}\left(\sum_{j=1}^{\infty} t_{m_{j}}^{\frac{1}{2}} x_{m_{j}}\right)=0 \text {. }
$$

Therefore theorem i of the previous section implies that

$$
\frac{i n}{n} 5 E_{n}\left(x_{n}\right)=\frac{1 i m}{n}=0 \text {. This completes the proof }
$$

Remark. If X is a (K)-space, then F is uniformly bounded on every bounded subset of X.

Corollary 1. (Banach-Steinhaus).

Let (f_{n}) be a sequence of continuous linear functions from an F-seminormed (K)-space X to a Hausdorff topological vector space Y. If $\lim _{n} f_{n}(x)=f(x)$ exists for every $x \in X$, then f is a continuous linear function from X to Y. Moreover, this convergence is uniform on every compact subset of X.

Proof. Since Y is Hausdorff, $f: X \rightarrow Y$ is well defined and evidently it is linear. First we show that f is continuous. Since X is first countable it suffices to show that for each sequence $\left(x_{n}\right)$ in X with $\lim _{n} x_{n}=0, \lim _{n} f\left(x_{n}\right)=0$.

Construct, as in proposition 1 , a sequence (t_{n}) of positive numbers with $\lim _{n} t_{n}=\infty$ such that $\lim _{n} t_{n} x_{n}=0$. $\left\{t_{n} x_{n} \mid n \in N\right\}$ is a bounded subset of X and, moreover, since $\lim _{n} f_{n}(x)=f(x)$ for each $x \in X$, the sequence $\left(f_{n}\right)$ is pointwise bounded. Therefore theorem 1 implies that $M=\left\{f_{n}\left(t_{m} x_{m}\right) \mid n, m \in N\right\}$ is a bounded subset of Y. Since $\lim _{\mathrm{I}} f_{m}\left(t_{n} x_{n}\right)=f\left(t_{n} x_{n}\right)$ for each $n \in N, \quad\left(f\left(t_{n} x_{n}\right)\right)_{n \in N}$ is a sequence in \bar{M} and moreover \bar{M} is bounded. Hence $\quad \lim _{n} f\left(x_{n}\right)=\lim _{n} \frac{1}{t_{n}} f\left(t_{n} x_{n}\right)=0$.

Now we show this convergence is uniform on every compact subset K of X. Suppose $\left(f_{n}-f\right)_{n \in N}$ does not converge to zero uniformily on K. Then there exists a subsequence $\left(n_{i}\right)$ of (n), a sequence $\left(X_{i}\right)$ in K and a neighbourhood U of zero in Y such that
(1)

$$
\left(E_{n_{i}}-f\right)\left(x_{i}\right) \notin U \text { for } i=1,2, \ldots
$$

Since X is first countable, K is sequentially compact and hence, perhaps by passing to a subsequence, we may take $\left(x_{i}\right)$ converging to a point x in K.

Set $a_{i j}=\left(f_{n_{i}}-f\right)\left(x_{j}-x\right)$. The pointwise convexgence of
$\left(f_{n}\right)$ to f implies that (2) $\lim _{i} a_{i j}=0$ for $j=1,2, \ldots$.

Since X is an F-seminormed (K)-space, proposition 1 implies that every subsequence $\left(x_{j_{k}}-x\right)_{k \in N}$ of $\left(x_{j}-x\right\rangle_{j \in N}$ has.a subsequence $\left(x_{j_{k_{\ell}}}-x\right)_{\ell \in N}$ such that $\sum_{\ell=1}^{\infty}\left(x_{j_{k_{\ell}}}-x\right) \in x$ and hence
(3) $\lim _{i} \sum_{\ell=1}^{\infty} a_{i j_{k}}=\lim _{i}\left(f_{n_{i}}-f\right)\left(\sum_{\ell=1}^{\infty} x_{j_{k}}-x\right)=0$.

Hence theorem d of the previous section implies that
 we have $\lim _{i}\left(f_{n_{i}}-f\right)\left(x_{i}\right)=0$ which is a contradiction to (1).

Therefore f_{n} ' converges to f uniformly on K.

Corollary 2. Let X be an F-seminormed space, Y an F-seminormed (K)-space, and z a Hausdorff topological vector space. If the bilinear map $P: X \times Y \rightarrow Z$ is separately continuous, then F is jointly continuous.

Proof. Since $X \times Y$ is first countable, it suffices to show that ($\left.F\left(x_{n}, y_{n}\right)\right)_{n \in N}$ converges to zero whenever $\left(x_{n}\right)$ and $\left(y_{n}\right)$ conyerge to zero in X and Y respectively. Consider the sequence (f_{n}) of continuous linear functions of Y to Z given by $f_{n}(y)=F\left(x_{n}, y\right)$ for each n. The separate continuity of F implies that $\lim _{n} f_{n}(y)=0$ for èvery y in Y. since $\left\{0, y_{1}, y_{2}, \ldots \ldots\right\}$ is a sequentially compact subset of X, the last corollary implies that $\lim _{n} f_{n}(y)=0$ uniformly on $\left\{0, y_{1}, y_{2}, \ldots \ldots\right\}$ and hence $\lim _{n} F\left(x_{n} y_{n}\right)=\lim _{n} f_{n}\left(y_{n}\right)=0$.

Corollary 3. If E is a subset of a seminormed spaç X such that $f(E)$ is bounded for every $f \in X^{*}$, then E is bounded.

Proof. X^{\star} is a Banach space with the usual norm topology. Since $f(E)$ is bounded for each $f \in X^{*}, \hat{E}=\{\hat{x} \mid x \in E\}$ is a family of pointwise bounded continuous linear functions on X^{*}. Therefore theorem 1 implies that $\operatorname{Sup}\left\{|\hat{\mathbf{x}}(f)| \mid \hat{\mathbf{x}} \in \hat{E}, f \in \mathrm{X}^{*},\|f\| \leq 1\right\}<\infty$. Since for each $x \in x\|x\|=\sup \left\{|f(x)| \mid f \in x^{\star},\|f\| \leq 1\right\}$, this implies that $\operatorname{Sup}\{|x| x \in E\}<\infty$.

The above results are usually derived by means of the raire Category theorem (see [18]). The assumption of completeness or barrelednessis needed there. The following is an example of a normed space for which the uniform boundedness principle does not hold.

Let c_{00} be the space of real sequences $\left(t_{n}\right)$ such that $t_{n}=0$ eventually and equip c_{00} with the sup norm. The dual of c_{00} is then ℓ_{1}. Let e_{n} be the real sequence which has value 1 in the $n^{\text {th }}$ place and zero elsewhere. Then (ne $n_{n \in N}$ is pointwise bounded on c_{00} but-is not norm-bounded.

Note that the set $\left\{e_{n} \mid n \in N\right\}$ is bounded but is not K-bounded. Also note that c_{00} is neither complete nor a (K)-space. An interesting but complicated example of a non-complete nofrasd (X) - space is given in [10]. The following is a simple example of non-complete (K)-space.

Let X be a Banach space. We show that X with the weak topology is a (K)-space. Let $A \leq X$ be weakly bounded. The last corollary implies that A is bounded and hence A is K-bounded by the fact that every Banach space is a (X)-spaç. This shows that X With the weak topology is a (X)-space. But in general this space is not complete.

CHAPTER 3

BOURILED VECTOR MEASURES

§1. Introduction.

The theory of vector measures, in addition to its major role in integration theory, is also important in some areas of functional analysis and sumability. In this chapter we study this secondary role of vector measure theory. In doing so our strategy is to begin with some basic set theoretic manipulations. This is in fact necessary because a mumber of fundamental theorems of vector-measure theory are based on the set theoretic structure of the corresponding domain space, which is generally a ring of subsets of 'a given set Ω. In order to generalize some important results, we define vector measures taking values in an arbitrary topological vector space instead of a Banach space. Since every topological vector space is generated by a class of F-semiñorms, in most cases the results obtained for F-seminormed spaces can be readily generalized to topological yector spaces.

In section 2 we obtain same basic straightforward properties of vector measures. Section 3 is started with a simple version of the Rosenthal's lemma. We use this lemma to establish a structural link between the Banach spaces c_{0}, ℓ_{∞} and bounded vector measures. This in turn beoomes a powerful tool to obtain some important results concerning topological vector spaces, including a generalization of the orlicz-pettis theorem for locally convex spaces. The materials in sections 2 and 3 , although generalized to some extent, are essentially
contained in Mathematical surveys - muber 15 by J. Diestel and J.J. Uhl, Jr. [6]. Section 4 deals with convergence and boundedness ge sequences of vector measures. The Vitali-Hahn-Saks-Nikodym theorem, which is proved in a more general setting, plays a vital role in this section. At the end of this section we introduce the notion of full classes and disctils several applications of the previous results in matrix sumability.

As the title indicates, we group in this section all basic properties of vector measures which follow directly from definitions.
*
Definition 1. Let R be a ring of subsets of a set Ω and x a topological vector space. A function $\mu: R \rightarrow X$ is called a vector measure if $\mu(E \cup F)=\mu(E)+\mu(F)$ for every $E, F \in R$ with $E \dot{\Pi}^{\prime} F=\phi$. If, in addition, $\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$ for every sequence $\left(E_{n}\right)$ of pairwise disjoint members of R with $\bigcup_{n=1}^{\infty} E_{n} \in R$, then μ is called countably additive. Moreover, if $\{j(E) \mid E \in R\}$ is a bounded subset of X, then μ is called bounded.

In what follows, unless otherwise stated, R denotes a ring of subsets of a set Ω and X denotes a seminormed space.

Definition 2. Let $\mu: R \rightarrow X$ be a vector measure. The variation of μ is the extended non-negat ${ }^{\prime}$ fue function $|\mu|$ whose value on a set $E \subseteq \Omega$ is given by,
$|\mu|(E)=\sup \left\{\sum_{i=1}^{n} h \mu\left(E_{i}\right) \| \mid n \in N, E_{1}, E_{2}, \ldots, E_{n}\right.$ are pairwise disjoint
members of R such that $\left.\bigcup_{i=1}^{n} E_{i} \subseteq E\right\}$.

If $|\mu|(\Omega)<\infty$, then μ is called a measure of bounded variation.

The semivariation of μ is the extended nonnegative function HM\| whose value on a set $E \subseteq \Omega$ is given by,

$$
\|\mu\|(E)=\sup \left\{\left|x^{*} \mu\right|(E) \mid x^{*} \in x^{*},\left\|x^{*}\right\| \leq \eta\right\}, \text { where }\left|x^{*} \mu\right| \text { is the }
$$

varjation of the real valued measure $x * \mu$. If $\|\mu\|(\Omega)<\infty$, then μ is çalled a measure of bounded semivariation.

The following proposition is stated without a proof since its verification involves only simple computations,

Proposition 1. a. $|\mu|(E) \geq\|\mu\|(E)$ for every $E \subseteq \Omega$ and
$\|\mu\|(E) \geq\|\mu(E)\|$ for every $E \in R$.

$$
\text { b. }|\mu| \text { is finitely additive on } R \text { and } \| \text { \| } \| \text { is }
$$

finiteky subadaitive on R.

$$
\text { c. }|\mu| \text { and }\|\mu\| \text { are both monotone, i.e., }
$$

$|\mu|(E) \leq|\mu|(F)$ and $\|\mu\|(E) \leq\|\mu\|(F)$ for $E \subseteq F \subseteq \Omega$.

We use the following lema to obtain a few other results.

Lemma 1. If W is a finite: set of complex numbers, then there exists $V \subseteq W$ such that $\sum_{z \in \mathbb{W}}|z| \leq 8\left|\sum_{z \in V} z\right|$.

Proof. Divide W into four disjoint sets taking intersection with each quadrant of the complex plane. For at least one of these sets, call it V, we have

$$
\begin{aligned}
\sum_{z \in W}|z| & \leq 4 \underset{z \in V}{\sum|z|} \\
& \leq 4 \sum_{z \in V}\left(|\operatorname{Re} z|+\left|I_{m} z\right|\right)
\end{aligned}
$$

$$
=4 \underset{z \in V}{ } \underset{\mid}{\sum_{V}} \operatorname{Rez}\left|+\left|\sum_{z \in V} \operatorname{Inz}\right|\right]
$$

(The last equality follows from the fact that all $z \in V$ are in the same quadrant.)

$$
=4\left[\left|\operatorname{Re} \sum_{z \in V} z\right|+\left|\operatorname{Im} \sum_{z \in V} z\right|\right]
$$

$$
\leq 4\left[\left|\sum_{z \in V} z\right|+\left|\sum_{z \in V} z\right|\right\}=8\left|\sum_{z \in V} z\right|
$$

Remark. As a direct consequence of this lemma, we have the following. If $\operatorname{Sup}\left\{\left|\sum_{i \in F} z_{i}\right| \mid F\right.$ is a finite subset of $\left.N\right\}<\infty$, then $\sum_{i=1}^{\infty}\left|z_{i}\right|<\infty$.

Proposition 2. A vector measure $\mu: R \rightarrow X$ is of bounded semivariation if and only if μ is bounded.

Proof. Let $x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1$ and let $E_{1}, E_{2}, \ldots, E_{n}$ be pairwise disjoint members of R. Then the above lemma implies that there exists $V \subseteq\{1,2, \ldots, n\}$ such that.

Consequently, if μ is bounded, then μ is of bounded semivariation. The converse is obvious. 훌

Remark. In view of Proposition 2 a vector measure of bounded semivariation is also called a bounded vector measure.
§3. Strongly bounded vector measures.

One obvious property of a countably additive vector measure μ defined on a σ-ring R is that if $\left(E_{n}\right)$ is a sequence of pairwise disjoint members of R, then $\sum_{n=1} u\left(E_{n}\right)$ is subseries (and unconditionally) convergent. Nonetheless this property is shared by many noncountably additive vector measures. For instance, every bounded scalar measure has this property. On the other hand the vector measure $v: A \rightarrow c_{0}$, where A is the family of all finite subsets of N, defined by $V(A)=X_{A}$ is a bounded vector measure not satisfying the above property. Because of its importance in theory of vector measures we single out this property.

Definition 1. Let R be a ring of subsets of a set Ω and x a topological vector space. A vector measure $\mu: R \rightarrow X$ is called:
(i) Strongly additive in case $\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$ converges for each sequence (E_{n}) of pairwise disjoint members) of R.
(ii) strongly bounded in case $\lim \mu\left(E_{n}\right)=0$ - for each sequence (E_{n}) n of pairwise disjoint members of R.

Proposition 1. Let $\mu: R \rightarrow X$ be a vector measure.
(a) Suppose X is a locally convex space. Then if μ is strongly bounded, μ is bounded.
(b) If X is sequentially complete then statements (i) and (ii) are equivalent.
proof. (a) Let be a continuous seminorm on X. It is sufficient to show that μ is bounded with respect to $\|\|$. Define $\alpha: R \rightarrow R+$ by $a(E)=M \mu(E)$. Let $A, B \in R=$ If $A \cap B=\phi$, then
(1) $\alpha(A \cup B)=\alpha(A \cup B) \leq\|\mu(A)+\| \mu(B) \|=\alpha(A) \pm \alpha(B)$.

If $A \subseteq B$ then,
(2)

$$
\begin{aligned}
a(B \backslash A) & =H(B \backslash A)=H(B) \| \geq|h(B)|-H(A) \mid \\
& =|A(B)-a(A)|
\end{aligned}
$$

Since $\lim _{n} \alpha\left(E_{n}\right)=0$ for each disjoint sequence $\left(E_{n}\right)$ in $R, 1.5$
lema 1 implies that i is bounded, i.e., μ is bounded.
(b) (i) always implies (ii) , To show that (ii) implies (i) let (E_{n}) be a sequence of pairwise disjoint members of R. Suppose $=$
$\sum\left(r_{n}\right)$ does not satisfy the cauchy condition. . Then there exists an $n=1$
increasing sequence $\left(n_{i}\right)$ of positive integers such that

of pairwise disjoint menbers of R with $\underset{i}{ } \lim \left(F_{i}\right) \neq 0$. This
contradiction shows that $\sum_{n=1}^{\infty} \psi\left(E_{n}\right)$ satiseies the cauchy condition ara hence $\sum_{n=1}^{\infty}-\left(\sum_{n}\right)$ is converyent.

```
Femark 1. Suppose }X\mathrm{ is a localIy convex space. If X is weakIy
sequentially complete then (i) and (ii) are equivalent by virtue of
1.4. theorem 2.
    2. In statement (i) the convergence of }\mp@subsup{\sum}{n=1}{\sumM(E}\mp@subsup{|}{n}{\prime})\mathrm{ is subseries
and unconditional.
3. The set of all \(X\) palued strongly bounded vector measures defined on \(R\) fors a linear space,
The Eollowing befinition extends the earlier one to a sefuence of bounded vector measures.
Definition 2. iet R De a ring of suosets of a set if and }X\mathrm{ a
topological vector space. Further let }\mu:R->X\mathrm{ be a bounded vector
                    n
measure for eaci n { i. Then the sequence (i) is called:
                                    n
    (i) uniformly strongly additive in case for any sequenme (En) of
        pairwise disjoint memicers of R, i { j mE; converges uniformly
        FOr m { S.
```



```
        pairwise disjoint mescers of R, lim j(E E i = 0 uniformiy for
    n< : %
Proposition 2. IE { is sequentially complete then (i) and (ii) are
equivalent.
```

Proof. EOllow the prooz of part (bi of proposition i.

We need the following simplified version of the Rosenthal's
lemma [14] to establish our main theorem of this section. Although the proof of this lemma is simple it represents one of the most important results in measure theory.

Lemma l. Let (1) be a sequence of uniformly bounded nonnegative realvalued measures defined on 2^{N}-the power set of positive integers. Then for each $\varepsilon>0$, there exists an infinite subset P of N such that $\mu(p \backslash\{p\})<\varepsilon$ for every $p \in P$. F^{*}

Proof. Let $\varepsilon>0$. Partition N into a sequence (M_{n}) of pairwise disjoint infinite subsets of N. If there exists $n \in N$ such that $\dot{p}\left(M_{n} \backslash\{ \}\right)<E$ for every $p \in M_{n}$, our goal is achieved by setting ? $M_{n}=P$. Suppose for each n, there exists $P_{n} \in M_{n}$ such that
(1) $\mu_{P_{n}}\left(M_{n} \backslash\left\{p_{n}\right\}\right) \geq E$.

$$
\text { Let } p_{I}=\left\{p_{n} \mid n \in N\right\} \text {. Then } p_{I} \cap\left(M_{n} \backslash\left\{p_{n}\right\}\right)=\phi \text { for }
$$

$n=1,2, \ldots$ and hence
(2) $\underset{p_{n}}{\mu}\left(p_{1}\right)+\underset{p_{n}}{\mu}\left(M_{n} \backslash\left\{p_{n}\right\}=\underset{p_{n}}{\mu\left(p_{1} \cup\left(M_{n} \backslash\left\{p_{n}\right\}\right)\right) \leq M \text {, where }}\right.$ $M=\operatorname{Sup}\{j(E) \mid n \in \mathbb{N}, E \subseteq N\}$. By (1) and (2) we have

ก

$$
\begin{equation*}
P_{n}\left(P_{1}\right) \leq M-E \text { for } n=1,2, \ldots \tag{3}
\end{equation*}
$$

Next apply the same argument to $\operatorname{lp}_{p_{n}} \mathcal{l}_{n}$ and $P_{I} \cdot$ If the process does not stop, there is an infinite subset P_{2} of P_{1} such that (4) $\underset{p}{\mu\left(P_{2}\right) \leq M-2 \varepsilon}$ for every $p \in P_{2}$.

Thus the process must stop before n iterations where n is the smallest positive integer such that $M-n \varepsilon<0$. This completes the proof.

Now we are in a position to prove our main theorem in this section. This theorem gives a characterization for vector measures which are not strongly bounded. Recall that c_{00}-the space of all finitely nonzero sequences with the-stip norm, and m_{0}-the space of all finitely valued sequences also with the sup norm, are dense subspaces of c_{0} and ℓ_{∞} respectively.

Theorem 1. Let R be a ring of subsets of a set Ω and X a seminormed space. Suppose $\mu: R \rightarrow X$ is bounded vector measure. Then j is not strongly bounded if there exists a linear topological embedding $T: C_{00} \rightarrow X$ and a sequence $\left(E_{n}\right)$ of pairwise disjoint members of R such that $T\left(e_{n}\right)=\mu\left(E_{n}\right)$ where e_{n} denotes the sequence, 1 in the $n^{\text {th }}$ place and zero elsewhere.

If, in addition, R is a g-ring then the above statement remains true if the space c_{00} is replaced by m_{0}.

Proof. Suppose $\because: R \rightarrow X$ is not strongly bounded. Then there exists a disjoint sequence $\left(E_{n}\right)$ in R and an $\varepsilon>0$ such that
(1) $\left\|\mu\left(E_{n}\right)\right\|>E$ for $n \in N$.

By virtue of the Hahn-Banach theorem there is $f_{n} \in X^{*}$ for each $n \in N$ such that
(2) $\left\|E_{n}\right\|=1$ and $f_{n}\left(\mu\left(E_{n}\right)\right)=\left\|\mu\left(E_{n}\right)\right\|>\varepsilon$.

For $n \in N$, consider the variation $\left|f_{n} \circ \mu\right|$ of the scalar valued measure $f_{n} \circ \mu \circ$ since $\left|f_{n} \circ \mu\right|(E) \leq\|\mu\|(\Omega)$ for $E \in R,\left(\left|f_{n} \circ \mu\right|\right)_{n \in N}$ is a uniformly bounded sequence of nonnegative real valued measures.

$$
\text { For } \begin{aligned}
& n \in N \text { define } \mu: 2^{N} \rightarrow R+\text { by, } \\
& n \\
& \mu(P)=\sum_{i \in P}\left|f_{n} \circ \mu\right|\left(E_{i}\right) .
\end{aligned}
$$

The strong additivity of $\left|f_{n} \circ \mu\right|$ implies that μ is a measure. Since for $n \in N$ and $P \subseteq N, \mu(P)=\left.\sum_{i \in P}\right|_{n} \circ \mu \mid\left(E_{i}\right) \leq\|\mu\|(\Omega)$, (μ) is a uniformly bounded sequence of nonnegative real valued measures. By Lemma 1 there exists an infinite subset $P=\left\{p_{1}<p_{2}<\ldots \ldots\right\}$ of is such that
(3) $\begin{aligned} & p \\ & p_{n}\end{aligned}$

Define $T: c_{00} \rightarrow X$ by $T\left(\left(x_{n}\right)\right)=\sum_{n=1}^{\infty} x_{n} \mu\left(E_{p_{n}}\right)$. Since only
finitely many terms are nonzero in the above series, it is readily seen that T is linear. Moreover if $f \in X^{*}$ with $\|f\| \leq 1$, then

$$
\begin{aligned}
\left.\mid f_{0} T\left(x_{n}\right)\right) \mid & =\left|f\left(\sum_{n=1}^{\infty} x_{n} \mu\left(E_{p_{n}}\right)\right)\right| \\
& =\left|\sum_{n=1}^{\infty} x_{n} f \circ \mu\left(E_{p_{n}}\right)\right| \\
& \leq \sum_{n=1}^{\infty}\left|x_{n} \| f \circ \mu\left(E_{p_{n}}\right)\right| \\
& \leq\left\|\left(x_{n}\right)\right\|_{\infty} \sum_{n=1}^{\infty}\left|f \circ \mu\left(E_{p_{n}}\right)\right| \\
& \leq\left\|\left(x_{n}\right)\right\|_{\infty}\|\mu\|(\Omega) .
\end{aligned}
$$

Consequently (Af $\left.\|\left(x_{n}\right)\right)\|\leq\|\left(x_{n}\right)\left\|_{\infty}\right\| \mu \|(\Omega)$.

On the other hand for $m \in N$,

$$
\begin{align*}
& \left\|T\left(\left(x_{n}\right)\right)\right\| \geq \mid f_{p_{m}} \circ T\left(\left(x_{n}\right) \mid \quad\left(\text { since }\left\|f_{P_{m}}\right\|=1\right),\right. \\
& =\left|f_{p_{m}}\left(\sum_{n=1}^{\infty} x_{n} \mu\left(E_{p_{n}}\right)\right)\right| \\
& =\left|\sum_{n=1}^{\infty} x_{n} f_{p_{m}} \cdot \mu\left(E_{p_{n}}\right)\right| \\
& \geq\left|x_{m} f_{p_{m}}=\mu\left(E_{p_{m}}\right)-\left|\sum_{\substack{n=1 \\
n \neq m}}^{\infty} x_{n} f_{p_{m}} \circ \psi\left(E_{p_{n}}\right)\right|\right. \\
& \geq\left|x_{m}\left\|f_{p_{m}}\left(\mu\left(E_{p_{m}}\right)\right)-\right\|\left(x_{n}\right) \sum_{n=1}^{\infty}\right| f_{p_{m}} \circ \mu \|\left(E_{p_{n}}\right) \\
& n \neq m \\
& =x_{\mathrm{g}} \varepsilon-\left(\mathrm{x}_{\mathrm{n}}\right) \underset{p_{\mathrm{n}}}{j}\left(\mathrm{P} \backslash\left\{\mathrm{p}_{\mathrm{m}}\right\}\right)(b y \tag{2}
\end{align*}
$$

$$
\geq\left|x_{m}\right| \varepsilon-\left\|\left(x_{n}\right)\right\|_{\infty} \varepsilon / 2 \quad \text { by (3) }
$$

Taking supremum over m on the right hand side we have
(5) $\left\|T\left(x_{n}\right)\right\| \geq\left(x_{n}\right) \|_{\infty} \varepsilon / 2$.
(4) and (5) implies T is a linear topological embedding. Finally note that $T\left(e_{n}\right)=\mu\left(E_{p_{n}}\right)$.

Moving to the case in which R is"a $\sigma-r i n g$, we proceed as . above to produce an $\varepsilon>0$, a sequence $f_{n} f^{\prime}$ in x^{*} and a pairwise disjoint sequence (E_{n}) of members of R such that
(6) $\left\|f_{n}\right\|=1$ and $\left|E_{n} \circ \mu\left(E_{n}\right)\right|>\varepsilon$ for $n \in N$.

$$
\begin{aligned}
& \text { Define } \mu: 2^{N} \rightarrow R+\text { by } \\
& \quad \begin{array}{l}
j(P)=\left|f_{n} \circ \mu\right|\left(u_{i \in p} E_{i}\right) \\
n
\end{array},
\end{aligned}
$$

It is readily seen that (j) is a uniformly bounded sequence of nonnegative real valued measures. Again Lemma l implies that there exists an infinite subset $P=\left\{p_{1} \leqslant p_{2} \leqslant \ldots\right\}$ of N such that

```
(7) \(\quad \underset{P_{n}}{ }\left(P \backslash i P_{n}\right\rangle<E / 2\) for \(P_{n} \in P\).
```

$$
\text { If }\left(x_{n}\right) \in m_{0} \text {, can write }\left(x_{n}\right)=\sum_{m=1}^{P_{m} x_{m}} \text { where }
$$

$A_{1}, A_{2}, \ldots, A_{k}$ are pairwise disjoint subsets of N such that

$$
\begin{aligned}
& \bigcup_{m=1}^{k} A_{m}=N \cdot \text { Define } T: m_{0} \rightarrow X \text { by, } \\
& T\left(\left(x_{n}\right)\right)=\sum_{m=1}^{k} \beta_{m} \mu\left(\cup U_{i \in A_{m}} p_{i}\right)
\end{aligned}
$$

The linearity of T can be easily verified by using some elementary set algebra. Moreover if $f X^{*}$ with $\|f\| \leq 1$, then

$$
\left.\left|f_{0} T\left(\left(x_{n}\right)\right)\right|=\int_{m=1}^{K} \sum_{I I}^{K} \mu\left(\bigcup_{i \in A} E_{p_{i}}\right)\right) \mid
$$

$$
=\left|\sum_{m=1}^{K} \beta_{m} f_{o} \mu\left(\bigcup_{i \in A_{m}}^{U} E_{p_{i}}\right)\right|
$$

$$
\leq \sum_{m=1}^{k}\left|\beta_{m}\right|\left|f_{o} \mu\left(U_{i \in A_{m}} E_{i}\right)\right|
$$

$$
\leq\left\|\left(x_{n}\right)\right\|_{m} \cdot \sum_{m=1}^{k}\left|f_{o} \mu\left(\bigcup_{i \in A_{m}} E_{p_{i}}\right)\right|
$$

$$
\leq \prod_{n}\left(x_{n}\right)
$$

Consequently (8) $\left.\|\left(x_{n}\right)\right) \leq\left\|\left(x_{n}\right)\right\|_{\infty} \|(\Omega)$.

On the other hand for $\ell \in N$,

$$
\begin{aligned}
& T T\left(\left(x_{n}\right)\right)\left|\geq\left|f_{P_{\ell}} \circ T\left(\left(x_{n}\right)\right)\right|\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left|x_{\ell} f_{p_{\ell}} \circ \mu\left(E_{p_{\ell}}\right)+\sum_{m=1}^{k} \beta_{m} f_{p_{\ell}} \circ \mu\left({\underset{i}{i \in A_{m}}}^{u} E_{p_{i}}\right)\right| \\
& \geq\left|x_{\ell} f_{p_{\ell}} \circ \mu\left(E_{p_{\ell}}\right)\right|-\left|\sum_{m=1}^{k} \beta_{m} f_{p_{\ell}} \circ \mu\left(\underset{\substack{i \in A_{m} \\
i \neq \ell}}{E_{p_{i}}}\right)\right| \\
& \geq\left|x_{\ell}\right| \varepsilon-\left\|\left(x_{n}\right)\right\|_{\infty} \sum_{m=1}^{k}\left|f_{p_{\ell}} \circ \mu\right|\left(\underset{\substack{i \in A_{m} \\
i \neq \ell}}{E_{p_{i}}}\right) \left\lvert\,\left(\begin{array}{ll}
\text { by } 6
\end{array}\right)\right. \\
& p^{2}=\left|x_{\ell}\right| \varepsilon-\left\|\left(x_{n}\right)\right\|_{\infty}\left|f_{p_{\ell}} \cdot \mu\right|\left(\underset{i \in N \cup\{E\} P_{i}}{ }\right) \\
& =\left|x_{\ell}\right| \varepsilon-\left\|\left(x_{n}\right)\right\|_{\infty} \mu_{p_{\ell}}\left(P \backslash\left\{p_{\ell}\right\}\right) \\
& \geq\left|x_{\ell}\right| \varepsilon-\left\|\left(x_{n}\right)\right\|_{\infty} \varepsilon / 2 \text { (by 7) }
\end{aligned}
$$

,

Taking supremum over l on the right hand side we hare

$$
\text { (9) }\left\|T\left(\left(x_{n}\right)\right) \geq\right\|\left(x_{n}\right) \|_{\infty} \varepsilon / 2
$$

(8) and (9) implies that T is a linear topological embedding of m_{0} to X .

Finally we note that $T\left(e_{n}\right)=\mu\left(E_{P_{n}}\right)$.
Remark 1. If X is a Banach space in this theorem, then c_{00} and m_{0} can be replaced by c_{0} and ℓ_{∞} respectively.
Remark 2. Let X, Y be topological vector spaces. The statement "Y contains a copy of $X^{\prime \prime}$ means that there is a linear topological embedding $T: X \rightarrow Y$.

Corollary 1. Let \bar{x} be a Banach space containing no copy of c_{0}. If the series $\sum_{n=1} x_{n}$ is unordered bounded, i.e. $\sum_{n \in A} x_{n} \mid A$ is a finite $n=1 \quad n \in A$ subset of $N\}$ is a bounded subset of X, then $\sum_{n=1}^{\infty} x_{n}$ is subseries. convergent.

Proof. Let A be the ring of all finite subsets of N. Define $\mu: A \rightarrow X$ by $\mu(A)=\sum_{n \in A} x_{n}$. clearly μ is a bounded vector measure. Since X does not contain a copy of c_{0}, theorem 1 implies that μ is strongly additive. Hence $\sum_{n=1} x_{n}=\sum_{n=1}^{\infty} \mu(\{n\})$ is subseries convergent. Corollary 2 . Let R be a ring of subsets of a set Ω and x a locally convex space. Suppose $\mu: R \rightarrow X$ is a bounded vector measure. If $\lim \mu\left(E_{n}\right)$ exists weakly in X for every increasing sequence (E_{n}) n
of members of R, then μ is strongly bounded.

Proof. We may assume that X is a seminormed space because of the following reasons.
(1) If \| is a continuous seminorm on X and if the sequence $\left(x_{n}\right)$ in x weakly converges with respect to the locally convex topology on x, then $\left(x_{n}\right)$ converges weakly in ($x,\| \|$.
(2) μ is strongly bounded with respect to the locally convex topology if and only if μ is strongly bounded with respect to each continuous seminorm if if on X.

Suppose $\mu:-R \rightarrow X$ is not strongly bounded. By theorell there is a topological linear embedding $T: c_{00} \rightarrow X$ and a sequence $\left(F_{n}\right)$ of disjoint members of R such that $T\left(e_{n}\right)=\mu\left(F_{n}\right)$. Set $E_{m}=\bigcup_{n=1}^{m} F_{n} \cdot$ Then $T\left(\sum_{n=1}^{m} e_{n}\right)=\mu\left(E_{m}\right)$.

First we show that $\lim _{\mathrm{m}} \sum_{n=1}^{m} e_{n}$ does not exist weakly in Suppose $\lim _{m} \sum_{n=1}^{m} e_{n}=\left(a_{n}\right)$ weakly in c_{0}. For each $k, e_{k} \in \ell_{1}=c_{0}^{*}$ and hence $\lim _{\text {m }} e_{k}\left(\sum_{n=1}^{m} e_{n}\right)=e_{k}\left(\left(a_{n}\right)\right)$. This means $a_{k}=1$ for each k, which is a contradiction since $\left(a_{n}\right) \in c_{0}$.

Now let $f \in X^{*}$. Then $f_{0} T \in C_{00}^{*}$ and moreover $f_{0} T$ can be extended uniquely over c_{Q} to a member of c_{0}^{*}. We denote this extension by $\overline{f_{0} T}$. on the other hand if $g \in c_{0}^{\star}$, then $g_{0} T^{-1}$ ip a continuous linear functional on the subspace $T\left(c_{00}\right)$ of X. By virtue of the Hahn-Banach theorem we can extend $g_{0} T^{-1}$ over X to a member of X^{*}. We denote this extension by f. It is easy 46 check that $\overline{f_{0} T}=g$. Therefore every member of c_{0}^{*} can be writ yen in the form $\overline{f_{0} T}$ for some $f \in X^{*}$.

Since $\lim _{n} \mu\left(E_{n}\right)$ exists weakly, therg exists $x \in X$ such
that
(1) $\lim _{n} f\left(\mu\left(E_{n}\right)\right)=f(x)$ for $f \in \mathcal{K}^{*}$.

Suppose x does not belong to the closure of $T\left(c_{00}\right)^{\prime}$ in X. Then by virtue of the Hahn-Banach theorem there exists $g \in X^{*}$ such that $g(x) \neq 0$ and g vanishes on ${\overline{T\left(c_{00}\right)}}^{X}$. This contradicts the fact that $\lim _{n} \mu\left(E_{n}\right)=x$ weakly in x. Hence $x \in \overline{T\left(c_{00}{ }^{t}\right.} X$. Therefore there exists a sequence $\left(a_{n}\right)$ in c_{00} such that $\lim _{n} T\left(a_{n}\right)=x$ in x. Let $\mathrm{f} \in \mathrm{X}^{*}$; then
(2) $\lim _{n} f_{o} T\left(a_{n}\right)=f(x)$.

Also note that $\left(a_{n}\right)$ is Cauchy in c_{00} since $\left(a_{n}\right)$ is Cauchy in x. Consequently there is $a \in c_{0}$ such that $\underset{n}{\lim } a_{n}=a$ in c_{0}. Since. $\overline{f_{0} T} \in c_{0}^{\star}, \quad$ (3) $\quad \lim _{n} \overline{f_{0} T}\left(a_{n}\right)=\overline{£_{0} T}(a)$.
 $+\left|f_{0} T\left(a_{n}\right)-\overline{f_{0} T(a)}\right|$.

By (1), (2) and (3) the right hand side tends to zero as n tends to infinity. Consequently $\underset{n}{\lim } \sum_{m=1}^{n} e_{m}$ exists weakly. This contradiction shows that μ is strongly bounded. This completes the proof.

Now we employ the above corollary to prove the orlicz-Pettis theorem for locally convex spaces. This theorem was first proved by Orlicz for weakly sequentially complete Banach spaces. Kalton [8] recently obtained this theorem for separable topological groups and then derived the result for separable locally convex spaces. For an
alternative proof of the locally convex version of this theorem, the reader is referred to McArthurs paper [11].

Corollary 3: (orlicz-pettis). Let x be a locally convex space. If $\sum_{n=1}^{\infty} x_{n}$ is a weakly subseries convergent series in x, then $\sum_{n=1}^{\infty} x_{n}$ is subseries. convergent.

Proof. Let A be the ring of all finite subsets of N. Define $\mu: A \rightarrow X$ by $\mu(A)=\sum_{n \in A} x_{n} \cdot$ Evidently μ is finitely additive. To show that μ is bounded, it suffices to prove that μ is bounded with respect to each continuous seminorm || || on X. Consider the subset $F=\left\{\sum_{n \in A} \hat{x}_{n} \mid A^{\prime} \in A\right\}$ of $(x,\| \|) * *$; the second dual of x with respect to the seminorm topology. For every $f \in(X,\| \|) *, f \in X^{*}$; the dual space of X with respect to the locally convex topology, and hence $\sum_{n=1}^{\infty} f\left(x_{n}\right)$ is subseries convergent so that $\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|<\infty$. Consequently for $A \in A,\left|\left(\sum_{n \in A} \hat{x}_{n}\right)(f)\right|=\left|\sum_{n \in A} f\left(x_{n}\right)\right| \leq \sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|<\infty$. since (X, i) * is a Banach space, the uniform boundedness princple implies that:

$$
\left.\operatorname{Sup}\left|\underset{\sim}{\mathrm{L} \in A} \underset{\mathrm{~A}}{ } \mathrm{f}\left(\mathrm{X}_{\mathrm{n}}\right)\right| \mid A \in A, f \in(X,\| \|) *,\|f\| \leq 1\right\}<\infty
$$

Therefore $\sup \{\mu(A): A \in A\}=\sup \left\{\sum_{n \in A} x_{n}| | A \in A\right\}<\infty$. This shows that i is bounded.

Let (A_{n}) be an increasing sequence in A...Then by hypothesis, $\quad \lim \mu\left(A_{n}\right)=\underset{n}{\lim } \sum_{m \in A_{n}} x_{m}$ exists weakly. Therefore the last corollary implies that μ is strongly bounded and hence
$\sum_{n \in A} x_{n}$ satisfies the Cauchy condition for every $A \subseteq N$. Since
$\sum_{n \in A} x_{n}$ exists weakly in $X, 1.4$ theorem 2 implies that $\sum_{n \in A} x_{n}$ is convergent in X. This completes the proof.

Remark. In chapter 4 we obtain , another version of the Orlicz-Pettis theorem.

The following corollary establishes a characterization of complete seminormed spaces not containing a copy of c_{00} -

Corollary 4. A complete seminormed space X contains no copy of c_{00} if and only if every series $\sum_{n=1}^{\infty} x_{n}$ in X, with $\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|<\infty$ for every $f \in X^{*}$, is subseries convergent.

Proof. First suppose X contains no copy of c_{00}. Let $\sum_{n=1}^{\infty} x_{n}$ be a series in X with $\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|<\infty$ for $f \in X *$. We define u: $A \rightarrow X$ precisely as in the proof of the last corollary and follows the same argument to show that is bounded. Since. X contains no copy of c_{00}, frioorer 1 implies that it is strongly bounded. The

```
completeness of \(X\) assures that \(\mu\) is strongly additive. Hence
    \(\infty\)
    \(\sum_{n=1} x_{n}=\sum_{n=1} \mu(\{n\})\) is subseries convergent.
```

 To show that the converse is true, suppose \(X\) contains a
 copy of c_{00}. Then there are many nonconvergent series $\sum_{n=1}^{\infty} x_{n}$ in x
such that $\sum_{n=1}^{\infty}|f(x)|<\infty \quad$ for $f \in X^{*}$.
$n=1$
Corollary 5, Let X be a complete seminormed space. If X^{*} does
not contain a copy of l_{∞}, then X^{*} contains no copy of c_{0}.

Proof. Let $\sum_{n=1}^{\infty} f_{n}$ be a series in X^{*} such that $\sum_{n=1}^{\infty}\left|F\left(f_{n}\right)\right|<\infty$
 By virtue of the Banach-Steinhaus theorem, $\sum_{n \in E} f_{n}$ converges with respect to the weak* topology on X^{*}. Define $\mu: 2^{N} \rightarrow X^{*}$ by $\mu(E)=\sum_{n \in E} E_{n}-$ weak* limit. Evidently μ is finitely additive. To show that μ is bounded consider the subset $F=\left\{\sum f_{n}\right.$-weak* limit |E $\left.\subseteq N\right\}$ of X^{*}. By $n \in E^{n}$ the fact that $\sum_{n=1}^{\infty}\left|f_{n}(x)=\sum_{n=1}^{\infty}\right| \hat{x}_{n}\left(\sum_{n}\right)<\infty$ for $x \in X$, we have that F is pointwise bounded. Hence the uniform boundedness principle implies
that Supt: $\sum_{n \in E} f_{n}$-weak* limit $\mid E \subseteq$ N; $<\infty$.
ire., SUpt $\quad(E) \quad E \leq N<\infty$.

Singe x^{*} does not contain a copy of ℓ_{∞}, the last part of theorem 1 implies that μ is strongly bounded. Consequently $\sum_{n=1} f_{n}=\sum_{n=1} \mu(\{n\})$ is subseries convergent. Hence the last corollary implies that X^{*} contains no copy of c_{0}. This onmietes the proof.

The results we obtained so far demonstrate the utility of theorem 1 in the theorl of topological vector spaces.
§4. Convergence and boundedness of a sequence of strongly
bounded vector measures.

The main result we obtain in this section concerning sequences of strongly bounded vector measures is the Vitali-Hahn-Saks-Nikodym theorem. We prove this theorem for vector measures defined on a ring with a weaker structure than of a o-ring. The proof is a modification of the proof given in [7] by Barbara Faires. We use this improved version of the theorem to obtain generalizations of both the philips and Schur lemas. We start with the following definition.

Definition l. Let R be a ring of subsets of a set Ω, R is said to have property (QI) if for every disjoint sequence (A_{n}) in R and every sequence $\left(B_{n}\right)$ in R with $A_{m} \cap_{n}=\phi$ for $m_{n} n \in N$, there exists a subsequence $\left(A_{n_{i}}\right)$ of $\left(A_{n}\right)$ and $c \in R$ such that:

$$
\left.\sum_{i=1}^{A_{n}} \subseteq C, C \therefore \sum_{n=1}^{\sum B_{n}}=\right\} \text { and } c \cap A_{n}=\phi \text { for } n\left\{\left\{n_{1}, n_{2}, \ldots \ldots\right\}\right. \text {. }
$$

Femarks 1. The class of go-rings and the class of algebras with the interpretation property sotin have property (QI).
2. Let R be a ring of subsets of N with property ($Q I$). IE R contains all inite subsets of N, then R is a $Q^{\sigma-r i n g}$.

To verify (2) let (A) ie a sequence of disjoint members $0=2$ Then $: \backslash_{i=1} A_{n}$ is countable. We write $N \backslash\left(j_{n=i} A_{n}\right)=$

that there is a subsequence $\left(A_{n_{i}}\right)$ of $\left(A_{n}\right)$ and $C \in R$ such that

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} A_{n_{i}} \subseteq c, c \cap\left(N \backslash (\bigcup _ { n = 1 } ^ { \infty } A _ { n }) = \phi \text { and } c \cap A _ { n } = \phi \text { for } n \left\{\left\{n_{1}, n_{2}, \ldots \ldots\right\}\right.\right. \text {. } \\
& \text { This implies } \int_{i=1}^{\infty} A_{i}=C \in R \text {. Therefore } R \text { is a } n^{0} \text {.ring. }
\end{aligned}
$$

Proposition 1. If R, is a ring with property ($Q I$), then R has the following property (we call this property (QI) ${ }^{\text {l }}$).
,
For every disjoint sequence $\left(A_{n}\right)$ in R and every sequence $\left(B_{n}\right)$ in R with $A_{n} \subseteq B_{m}$ for $m, n \in N$, there exists a subsequence ($A_{n_{i}}$) of $\left(A_{n}\right)$ and $c \in R$ such that:

$$
\left.\bigcup_{i=1}^{\infty} A_{n_{i}} \subseteq C \subseteq \prod_{n=1}^{\infty} B_{n} \text { and } c\right\urcorner A_{n}=\phi \text { for } n\left\{\left\{n_{1}, n_{2}, \ldots \ldots\right\}\right. \text {. }
$$

Proof. Let $\left(A_{n}\right)$ be a disjoint sequence in R and $\left(B_{n}\right)$ a sequence in R. Suppose $A_{n} \subseteq B_{n}$ for $m, n \in N$. Set $D_{n}=B_{1} \backslash B_{n}$ for $n \in N$. Since $A_{n} \subseteq B_{m}$ for $m, n \in N, A_{n} \cap_{m}=\phi$ for $m, n \in N$. Since R has property ($Q I$), there exists a subsequence $\left(A_{n_{i}}\right)$ of (A_{n}) and $c \in R$ such that:
(1) $\sum_{i=1}^{\infty} A_{i} \Xi C, C \cap\left(\sum_{n=1}^{\infty} D_{n}\right)=\uparrow$ and $C \cap A_{n}=$ for $n\left\{\left\{n_{1}, n_{2}, \ldots \ldots\right\}\right.$. . In fact we can choose C such that $C E B_{1} \cdot B y$ (1) $C C_{i}\left(B_{1} B_{n}\right)=\phi$ for $n \in N$. Hence $G B_{n}$ for $n \in N$.

$$
\text { i.e., (2) }=\Xi \prod_{n=1}^{\infty} B_{n} \text {. }
$$

The proposition follows from (1) and (2).

Theorem 1. (Vitali-Hahn-Šaks-Nikodym).

Let X be a topological vector space and R a ring of subsets of a set Ω with property ($Q I$). Suppose (μ) is a sequence of strongly n bounded X valued measures on R with $\lim \mu(E)=0$ for every $E \in R$. n n

Then the sequence (1) is uniformly strongly bounded. i.e., for every F
disjoint sequence $\left(E_{n}\right)$ in $R \quad \lim \mu\left(E_{n}\right)=0$ uniformly in m. Proof. Since X is generated by a family of P-seminorms, we may assume that X is an E-seminormed space. Suppose the contrary. Then there exists a disjoint sequence $\left(E_{n}\right)$ in R, an $\varepsilon>0$ and a subsequence (μ) of m_{n} (D) such that $\operatorname{m}_{n}\left(E_{n}\right): \geqslant 3 \varepsilon$ for $n \in N$. For simplicity we relabel (i, by (i) and write $N\left(E_{n}\right)>3 E$ for $n \in N$. m_{n} pairwise disjoint ifitinite subsets of N. Consider the following two disjoint sequences in R :

$$
\therefore E_{i} i 4-i \text { and }\left\{E_{i} i \in\left\{i_{1}\right\} u_{k=2}^{\infty} \sum_{k}^{1}\right\}
$$

The property ($Q I$) of R implies that there exists an infinite subset $\therefore \quad \therefore \quad \because \quad \operatorname{and} \quad E_{2}^{+}=R$ such that:

Suppose, for $1 \leq k<n, F_{k}^{1} \in R$ and an infinite $\Delta_{k}^{1}\left(\subseteq \pi_{k}^{1}\right)$ have been constructed such that:

$$
\begin{aligned}
& \left(a_{1}\right) U\left\{E_{i} \mid i \in A_{k}^{1}\right\} \subseteq F_{k}^{1} \\
& \left(b_{1}\right) F_{k}^{1} \cap E_{i}=\phi \\
& \left(c_{1}\right) F_{k}^{1} \cap E_{j}=\phi \text { for } j \in \underset{p=k+1}{U_{p}} \Pi_{p}^{1} \\
& \left(d_{1}\right) \quad F_{1}, F_{2}, \ldots, E_{n-1} \text { are pairwise disjoint. }
\end{aligned}
$$

Consider the following two sequences in R.

$$
\left\{E_{i} \mid i \in \pi_{n}^{1}\right\} \quad \text { and }\left\{E_{i} \mid i \in\left\{i_{1}\right\} \cup \underset{p=n+1}{\infty} \prod_{p}^{1}\right\} \cup\left\{F_{1}^{1}, F_{2}^{1}, \ldots, F_{n-1}^{1}\right\}
$$

By(c_{1}) the members of both sequences are pairwise disjoint. Again property ($Q I$) implies that there exists an infinite subset Δ_{n}^{1} of I_{n}^{1} and $F_{n}^{1} \in R$ such that:

$$
\begin{aligned}
& \left.U\left\{E_{i} \mid i \in \Delta_{n}^{1}\right\} \subseteq F_{n}^{1} \text { and } F_{n}^{1}\right\rceil\left(U\left\{E_{i} \mid i \in\left\{i_{1}\right\} \cup \underset{p=n+1}{\infty} \Pi_{p}^{1}\right\} \cup F_{1}^{1} \cup F_{2}^{I} \cup\right. \\
& \left.\ldots \cup F_{n-1}^{I}\right)=0 .
\end{aligned}
$$

clearly F_{n}^{1} satisfies $\left(a_{1}\right),\left(b_{1}\right),\left(c_{1}\right)$ and $\left(d_{1}\right)$. Therefore, by induction, we can construct a sequence (F_{k}^{l}) of disjoint members of $/ R$ and a sequence (\hat{H}_{k}^{\prime}) of disjoint subsets of N satisfying (a_{1}), (b_{1}), $\left(c_{2}\right)$ and $\left(d_{1}\right)$ for $k \leq N$.

$$
\text { Define } \overline{I_{1}}: R+R+\text { by, }
$$

$$
\bar{\mu}(E)=\sup _{i_{I}}(\|\mu(F)\| F \in R \text { and } F \subseteq E\}
$$

To show that $\underset{k}{\lim } \bar{j}\left(F_{k}^{1}\right)=0$, let $\varepsilon>0$. Then for each k there is $A_{k}(\in R) \subseteq F_{k}^{1}$ such that $\prod_{i_{l}}\left(A_{k}\right) \|>\bar{i}_{l}\left(F_{k}^{l}\right)-\varepsilon . \quad$ since μ is strongly bounded, $\underset{k}{\lim } \operatorname{Hi}_{1}\left(A_{k}\right):=0$. Consequently $\underset{k}{\lim } \bar{i}_{1}\left(F_{k}^{1}\right)=0$. Choose $k_{1} \in N$ such that $\bar{\mu}\left(F_{k_{1}}^{l}\right)<\varepsilon$ and then $i_{2} \in \hat{S}_{k_{1}}^{l}$ $\left(i_{2}>i_{i}\right)$ such that $\underset{i_{2}}{=}\left(E_{i_{1}}\right): \leq E_{2} \mathcal{E}$. Note that, by $\left(a_{i}\right), E_{i_{2}} \leq F_{k_{1}}^{1}$. Partition $\left.S_{k_{1}}^{1} V_{2}\right\}$ into a sequence $\left(R_{n}^{2}\right)$ of disjoint subsets of $\left\{_{1}^{1}\left\{i_{2}\right\}\right.$. Use the same induction procedure to construct a sequence $\left(F_{k}^{2}\right)$ of disjoint members of R and a sequence $\left(S_{k}^{2}\right)\left(a_{k}^{2} \leq \pi_{k}^{2}\right)$ of disjoint subsets of if such that:

$$
\begin{aligned}
& \left(a_{2}\right) \quad \cup\left\{E_{i} i \in \mathcal{S}_{k}^{2} \equiv F_{k}^{2} \text { for } k \in N\right. \text {. } \\
& \left.\left(D_{2}\right) F_{k}^{2} Z_{i_{1}}-E_{i_{2}}\right)=\hat{f} \text { for } k \in N . \\
& \left(s_{2}\right) \quad F_{k}^{2} \cdots E_{j}=t \text { for } i \leqslant \sum_{p=k+1}^{\infty} \sum^{-2} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { we can choose } k_{2} \leqslant N \text { such that }\left(\frac{-}{-}\left(E_{k_{2}}^{2}\right)<E \text { and then } i_{3} \in \frac{2}{k_{2}}\left(i_{3}>i_{2}\right)\right.
\end{aligned}
$$

Proceeding in this manner we can construct inductively a sequence $\left(F_{k_{n}}^{n}\right)=\left(F_{n}\right)$ say, in R and an increasing sequence (in) of positive integers such that:
(1) $E_{i_{k}} \subseteq F_{n}$ for $n<k$
(2) $F_{n} \cap E_{i_{k}}=\phi$ for $1 \leq k \leq n\left(b y\left(b_{1}\right)\right.$ and $\left(b_{2}\right)$.
(3) $\bar{\mu}{ }_{n}\left(F_{n}\right)<\varepsilon$ for $n \in N$.
(4) $\|_{i_{n}}\left(E_{i_{k}}\right): 2_{2^{n}}$ for $1 \leq k \leq n$.
(5) $\lim _{i_{n}}\left(E_{i_{n}}\right)>3 E$ for $n \in N$. Let $H_{n}=F_{n} \cup\left(\bigcup_{k=1}^{n} E_{i_{k}}\right)$. Then (1) implies $E_{i_{k}} \subseteq H_{n}$ for $k, n \in N$. Since R has property $\left(I_{Q}\right)^{l}$, there exists a subsequence ($i_{k_{\ell}}$) of $\left(i_{k}\right)$ and $c \in R$ such that:

Therefore, for each $p \in N$,

$$
\begin{aligned}
& c=\left(C \backslash \bigcup_{\ell=1}^{P} E_{i_{k_{\ell}}}\right) \cup\left(\bigcup_{\ell=1}^{p-1} E_{i_{k_{\ell}}}\right) \cup\left(E_{i_{k_{p}}}\right) \text { and hence }
\end{aligned}
$$

By (6) and the definition of $H_{k_{p}}, C \subseteq H_{k_{p}}=F_{k_{p}} \cup\left(U_{m=1}^{k_{p}} E_{i_{m}}\right)$.
Since $F_{k_{p}} \cap\left(\cup_{m=1}^{k_{p}} E_{i_{m}}\right)=\phi$ by (2), $C \bigcup_{m=1}^{k_{p}} E_{i_{m}} \subseteq F_{k_{p}}$. Also

Hence (3) implies that $\underset{\substack{i_{k}}}{\mu}\left(C \backslash \bigcup_{\ell=1}^{p} E_{i_{k}}\right) \| \leq \bar{\mu}_{\ell}\left(F_{k_{p}}\right)<E$.
Also $H_{i_{k}}\left(U_{\ell=1}^{p-1} E_{i_{k}}\right) \leq \sum_{\ell=1}^{p-1}\left\|\mu_{i_{k}}\left(E_{i_{k}}\right)\right\| \leq \sum_{\ell=1}^{p-1} E / k_{\ell} \quad$ (by

Therefore $\left\|\mu_{i_{p}}(C)\right\|>3 \varepsilon-\varepsilon-\varepsilon=\varepsilon$. This contradicts the fact
that $\lim \mu(C)=0$. Hence the sequence (μ) is uniformly strongly i i
n
bounded.

Corollary 1. Let R, X be as in theorem 1 . Suppose (1) is a sequence of strongly bounded X-valued measures on R such that $\lim \mu(E)=\mu(E)$ n n
exists for $E \in R$. Then μ is strongly bounded and,moreover, the
sequence (μ) is uniformly strongly bounded.
n

If, in addition, X is complete, then for each disjoint
sequence $\left(E_{m}\right)$ in $R \underset{m}{\lim } \sum_{m \in A} \mu\left(E_{m}\right)=\sum_{m \in A} \mu\left(E_{m}\right)$ uniformly for $A \subseteq N$.

Proof. Again we may assume that \underline{X} is an F-seminormed space. Let (E_{i}) be a disjoint sequence of members of R. First we show that $\lim _{n} \mu\left(E_{i}\right)=\mu\left(E_{i}\right)$ uniformly in i. Suppose $\underset{n}{\left(\mu\left(E_{i}\right)\right)_{n \in N}}$ is not uniformly Cauchy in i. Then there exist two subsequences (n_{k}) and (i_{k}) of positive integers such that:
(1) $\quad \lim _{k}\left\|\left(\mu-\eta_{k+1} n_{k}\right)\left(E_{i_{k}}\right)\right\| \neq 0$.
 bounded and, moreover, $\left.\underset{k}{\lim } \underset{n_{k+1}}{\mu}-\underset{n_{k}}{ }\right)(E)=0$ for $E \in R$. Thus theorem 1 implies that $\underset{i}{\text { lima }} \underset{n_{k+1}}{\mu}-\underset{n_{k}}{\mu}\left(E_{i}\right) \|=0$ uniformly in k. This contradicts (1). Therefore (2) $\underset{n}{\lim } \underset{n}{ }\left(E_{i}\right)=\mu\left(E_{i}\right)$ uniformly in i. For given $\varepsilon>0$, there is $n_{0}^{*} \in N$ such that $\left\|\mu\left(E_{i}\right)-\mu\left(E_{i}\right)\right\|<E / 2$ for $i \in N$. Since $\underset{i \lim \eta_{0}}{ }\left(E_{i}\right)=0$, there is $i_{o} \in N$ such that
$\left\|\mu\left(E_{i}\right)\right\|<\varepsilon / 2$ for $i \geq i_{o}$. Thus $\left\|\mu\left(E_{i}\right)\right\| \leq\left\|\mu\left(E_{i}\right)-\underset{n_{0}}{\mu}\left(E_{i}\right)\right\|$
$+\operatorname{nom}_{0}^{\mu}\left(E_{i}\right): \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ for $i \geq i_{0}$ so that $\underset{i}{\lim } \mu\left(E_{i}\right)=0$. Hence μ is strongly bounded.

An application of theorem 1 to the sequence $\underset{n}{(\mu-\mu)_{n \in N} \text { shows }, ~}$
that the sequence (il) is uniformly strongly bounded.

To prote the last part of the corollary let X be a complete space and $\left(E_{n}\right)$ da disjoint sequence of members of R. Then the sequence (μ) is unifgtoly strangly additive and μ is strongly additive. Now we show tbt (3) for $A \subseteq N, \lim _{n} \sum_{m \in A} \mu\left(E_{m}\right)=\sum_{m \in A} \mu\left(E_{m}\right)$. This is true A is finite, so assume A is infinite. Let $A=\left\{m_{1}<m_{2}<\ldots \ldots\right\}$. Since (μ) is uniformly strongly additive, $\sum_{j=1}^{\infty} \mu\left(E_{m}\right) n=1,2, \ldots$ axe convergent uniformly in n. Therefore for given $\varepsilon>0$, there exists $n_{0} \in N$ such that $\sum_{j=n_{0}}^{\infty} \sum_{j}\left(E_{j}\right) j<\frac{\varepsilon}{3}$ for $n \in N$. In fact can choose n_{0} large enough to satisfy $\sum_{j=n_{o}}^{\infty} \mu\left(E_{m_{j}}\right) \|<\frac{E}{3}$. \quad Since
$\lim _{n} \mu\left(E_{m_{j}}\right)=\mu\left(E_{m_{j}}\right)$ for $j \neq 1,2, \ldots, n_{o}^{-1}$, there exists $m_{o} \in N$ such that $\left.\sum_{j=1}^{n_{o}^{-1}} \prod_{n} \|_{m_{j}}\right)-\mu\left(E_{m_{j}}\right) \|<\frac{\varepsilon}{3}$ for $n \geq m_{o}$. Therefore for $n \geq m_{o}$

$$
+\left\|\sum_{j=n_{o}}^{\infty} \mu\left(E_{m_{j}}\right)\right\|
$$

$$
<E / 3+E / 3+E / 3=E
$$

This proves (3).

$$
\text { We define } v_{n} ; 2^{N} \rightarrow X \text { by } v_{n}(A)=\sum_{m \in A} \sum_{n}\left(E_{m}\right) \text { for } n \in N
$$

and $v: 2^{N} \rightarrow X$ by $v(A)=\sum_{m \in A} \mu\left(E_{m}\right)$. Since $\sum_{m=1}^{\infty} \mu\left(E_{m}\right)$ is subseries convergent for $n \in N,\left(v_{n}\right)$ is a sequence of strongly bounded vector measures and,moreover, $\lim V_{n}(A)=V(A)$ for $A \subseteq N$ by (3). Therefore the first part of this corollary implies that $\left(v_{n}-v\right)_{n \in N}$ is uniformly strongly bounded. To show that $\underset{n}{\lim } \nu_{n}(A)=V(A)$ uniformly for $A \leq N$, suppose the contrary. Then there exists a subsequence $\left(v_{n_{k}}-v_{k \in N}\right.$ of $\left(v_{n}-\nu\right)_{n \in N}$ (for notational convenience we relabel. $\left(v_{n_{k}}-v\right)$ by $\left(v_{k}-\nu\right)$, a sequence $\left(A_{k}\right)$ of subsets of N and an $\varepsilon>0$ such that $v_{k}-\nu\left(A_{k}\right)^{i}>E$ for $k \in N$. By the definitions of V_{k} and v there is a finite subset F_{k} of A_{k} such that $\|\left(U_{k}-V\right)\left(F_{k}\right)>\varepsilon$ for $k \in N$. Now we use the induction to construct. a sequence $\left(G_{i}\right)$ of disjoint subsets of N and a subsequence $\left(v_{k_{i}}-v\right)$ of $\left(v_{k}-v\right)$ such that $\left.\|_{k_{i}}-v\right)\left(G_{i}\right) \|>E / 2$. This leads to a contradiction since $\left(v_{n}-v\right)$ is uniformly strongly bounded.

$$
\text { Set } k_{1}=1 \text { and } G_{1}=F_{1} \text {, Suppose } G_{1}, G_{2}, \ldots, G_{n} \text { disjoint }
$$

subsets of N, and $k_{2}<k_{2}<, \ldots<k_{n}$ have been chosen such that
$H\left(v_{k_{i}}-W\right)\left(G_{i}\right) \|>\varepsilon / 2$ for $i=1,2 \ldots \ldots$, Let $\overline{\nu_{k}-V}\left(G_{I} \cup G_{2} \cup \ldots U G_{n}\right)$
$=\operatorname{Max}\left\{\left\|\left(\nu_{k}-\nu\right)(H)\right\| \dot{H} \subseteq G_{1} \cup G_{2} \cup \ldots \ldots \cup G_{n}\right\}$ for $k \in N$. Since
$\lim _{k}\left(\nu_{k}-\nu\right)(E) \quad 0$ for every $E \subseteq N, \lim _{k} \overline{\nu_{k}-\nu}\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n}\right)=0$.
(Note that $G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ has only finitely many subsets.) Choose $k_{n+1}>k_{n}$ such that $\overline{v_{n+1}-v}\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n}\right)<\varepsilon / 2$. Set $G_{n+1}=F_{k_{n+1}} \backslash\left(G_{1} \cup G_{2} \cup \ldots, j G_{n}\right)$. Then $\left(\nu_{k_{n+1}}-\nu\right)\left(G_{n+1}\right)=\left(\nu_{k_{n+1}}-\nu\right)\left(F_{k_{n+1}}\right)-\left(\nu_{k_{n+1}}-\nu\right)\left(F_{k_{n+1}} \quad\left(G_{1} \cup G_{2} \cup \ldots U G_{n}\right)\right.$

$$
\begin{aligned}
& \text { (by the additivity of } \left.v_{k_{n+1}}-v\right) \\
& \geq\left(v_{k_{n+1}}-\nu\right)\left(F_{k_{n+1}}\right)-\overline{v_{k_{n+1}}-v}\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n}\right) \\
& >\varepsilon-E / 2=\varepsilon / 2 .
\end{aligned}
$$

Therefore $\lim _{\mathrm{n}} \eta_{\mathrm{n}}(\mathrm{A})=V(\mathrm{~A})$ uniformly for $\mathrm{A} \subseteq \mathrm{N}$.

$$
\text { ie., } \lim _{n} \sum_{\mathrm{m} \in \mathrm{~A}} \quad u\left(E_{\mathrm{m}}\right)=\sum_{\mathrm{m} \in \mathrm{~A}} H\left(E_{\mathrm{m}}\right) \text { uniformly for } A \subseteq N \text {. }
$$

Remark 1. In the absence of the completeness assumption the last part of the corollary can be modified in the following way.

$$
\begin{aligned}
& \text { "IE (Em) is a disjoint sequence of mergers of } R \text { such that }
\end{aligned}
$$

$\sum_{m \subseteq A} \mu\left(E_{m}\right)$ uniformly for $A \subseteq N^{n}$.

$$
\text { To see this it suffices to show that } \underset{n}{\lim } \sum_{m \in A} \sum_{n} \mu\left(E_{m}\right)=\sum_{m \in A} \mu\left(E_{m}\right)
$$

for each $A \subseteq N$. The remaining part of the proof runs identically.

$$
\text { Let } A=\left\{m_{1}<m_{2}<\ldots\right\} \text {. The convergence of } \sum_{j=1}^{\infty} \mu\left(E_{m}\right) \text { for }
$$ $n \in N$, and the uniform strong boundedness of (\hat{n}) assure that $\sum_{j=1}^{\infty} \mu\left(E_{m}\right)$ converges uniformly for $n \in N$. Therefore for given $\varepsilon>0$, there exists $F_{0} \leqslant s$ such that $\sum_{j=p n}^{\infty} \mu\left(E_{m_{j}}\right)<\varepsilon / 3$ for $n \in N$ and

 there exists $n_{0} \leq s$ such that $\left.\underset{j=1}{E} n_{j} n_{j}\right)-\mu\left(E_{m_{j}}\right)<\equiv / 3$ for $n \geq n_{0}$.


```
Remark 2. The last part of the corollary 1 may be treated as a
generalized version of the Phillip's lema [12]. To verify this we
derive the Phillip's lema from the last corollary.
Corollary 2. (Phillip's lemma). Let ( \(\mu\) ) be a sequence of bounded
                                    n
complex valued measures defined on \(2^{N}\). If \(\underset{n}{\lim } \mu(E)=\mu(E)\) exists
for each \(E \subseteq \Omega\), then \(\lim _{n} \sum_{m=1}^{\infty}|j(\{m\})-\mu(\{m\})|=0\).
Proof. Since \(\mu_{n}\) is bounded and scalar valued, it is strongly bounded.
Letting \(\left(E_{n}\right)=(\{m\})\) we have \(\lim _{n} \sum_{m \in A} \underset{n}{\mu} \underset{n}{ } \mu\left(\{m)=\sum_{m \in A} \mu(\{m\})\right.\) uniformly
for \(A \subseteq N\) by the last corollary. Thus for given \(\in>0\), there exists
\(n_{0} \leqslant N\) such that:
    \(\sum_{n \in A} \quad N\left(i n j--(i n)<\varepsilon / 8\right.\) for \(A \leq N\) and \(n \geq n_{0}\).
Therefore by 3.2 leman \(1, \sum_{i=1}^{x} n_{n}\left(a^{\prime}\right)-\mu(\{m\}) \leq E\) for \(n \geq n_{0}\).
```



```
Corollary 3. Let \(R\) be a ring of subsets of \(?\) with property (QI)
ar. \(A\) a complete \(\because a x s d o r \equiv\) topological vector space. Suppose
```



```
\(\therefore\)
```


Proof. Let (E_{i}) be a disjoint sequence of members of R such that
$\bigcup_{i=1}^{\infty} E_{i} \in R . \quad$ Then $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\underset{n}{\lim } \mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\underset{n}{\lim } \sum_{i=1}^{\infty} \mu\left(E_{i}\right) \quad$ since
μ is countably additive for $n \in N$. Since X is complete the last n
part of corollary 1 implies that $\lim _{n} \sum_{i=1}^{\infty} \mu\left(E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)$. Hence μ
is countably additive.

Uniform countable additivity of (μ) follows from the fact ก
that (μ) is uniformly strongly additive.

Corollary 4. Let X be a separable Banach space and R a ring of subsets of a set Ω with property (QI). If the vector measure $\mu: R \rightarrow X$ is bounded, then μ is strongly bounded.

Proof. Suppose μ is not strongly bounded. Then there exists a sequence $\left(E_{n}\right)$ of disjoint members of R and an $\varepsilon>0$ such that:
(1) $\left\|\mu\left(E_{n}\right)\right\|>$ for $n \in N$.

By virtue of the Hahn-Banach theorem, there is $f_{n} \in X^{*}$ with $\left\|f_{n}\right\|=1$
such that (2) $\left|f_{n}{ }_{0} \mu\left(E_{n}\right)\right|>\varepsilon$ for $n \in N$.

By 1.3 theorem 4, the unit disc of X^{*} is weak* compact and since X
is separable it is metrizable with respect to the weak* topology. Therefore there exists a subsequence ($f_{n_{i}}$) of (f_{n}^{\prime}) and $f \in X^{*}$ with


```
a scalar valued bounded measure. Therefore coroliary i implies that
```



```
is strongly bouraed.
    %
```



```
over finite sets if Eor =rery A = X ard every neignbourhood # at
```



```
Sezinition j. A ritig a of siosets ge a set i, ss saiz so fave
```



```
Gere exists a sursugemze iAn, ze An ard a R Ruch that:
```



```
IEmark. In treore= - and slosefuer= corollaries property(qI) can be
regiaced t% frocert% E##: Erovijed chat measures concemed are
zegi`ar rier Eirite sesj.
```


Every series in a topological vector space gives rise naturally to a definition of a vector measure. The domain of this type of a vector measure is determined by the nature of convergence of the series. In this context we use the notion of full ciasses to obtain certain results concerning matrix sumability. The notion of fuil classes was introduced by J. J. Sember and A. Freecman in their paper [17]. Definition 4. A ring R of subsets of N is cailec full in case
 for $A=R$, then $\underset{n=1}{Z} x_{n}$;

The above definition is sightly different from the definition of a fuil class giver in (17).

Rémark. Let R be a fuli ring. If $\left(x_{n}\right)$ is a sequence of complex numbers such that $\underset{n \in A}{-} x_{n}$ exists for $A \in R$, then $\underset{n=1}{x} x_{n}<x$. Proposition 1. Let R be a full ring and X a Banach space containing no sopy of $0_{0} \therefore$ If $\left(x_{n}\right)$ is a sequence in x such that $\sum_{n \in A} x_{n} X$ for $A \in R$, then $\sum_{n=1} x_{n}$ is subseries convergent.
proof. Suppose $\left(x_{n}\right)$ is a sequence in X with $\sum_{n \in A} x_{n} \in X$ for $A \in R$. Let $f \in X^{*}$. Then $\sum_{n \in A} f\left(x_{n}\right)$ converges for $A \in R$. Since R is full, $\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|<\infty$. Therefore $\sum_{n=1}^{\infty} x_{n}$ is subseries convergent by corollary 4 of 3.3 Theorem 1.

In the remainder of this section R denotes a ring of subsets

 of N.Proposition 2. Let R be a p-ring containing all finite subsets of N and x a complete topological vector space. If (x_{n}) is a sequence in \ddot{A} such that $\frac{\bar{n}}{n \in A} x_{n} \in x$ for $A \in R$, then $X_{n} \in A$ is subseries converget.t.

Exof. Let $\left\{x_{n}\right.$ be a sequence in X such that $\sum_{n \in A} x_{n} \in x$ for $A \rightarrow R$. Eor each $n \leq N$ aefine $\vdots: R \rightarrow X$ by n

$$
\frac{\mu(A)}{n}=\sum_{i \subseteq A^{-}[[1, n]}^{x_{i}} .
$$

Clearly $(\underset{n}{ }(\dot{n})$ is a sequence of strongly bounded vector measures which converges setwise on R to defined by $j(A)=\sum_{n \in A} x_{n}$ for $A \in R$. It follows by corollary 1 of theorem 1 , that μ is also strongly bounded. Since X is complete, μ is strongly additive. Hence $\sum_{n=1}^{\infty} x_{n}=\sum_{n=1}^{\infty} \mu(\{n\})$ is subseries convergent. Next we establish our generalization of the Schur lemma. i

Theorem 2. Let R be a $2 \sigma-r i n g$ containing all finite subsets of N and ($x_{m n}$) a infinite matrix in a complete topological vector space X. Assume that $\sum_{n \in E} x_{m n}$ exists for $E \in R$ and $m \in N$. If $\lim _{m} \sum_{n \in E} x_{m n}$

```
exists for E\inR, then (i) }\operatorname{lim}\mp@subsup{x}{mn}{}=\mp@subsup{x}{n}{
(ii) lim E E x mn = = < x m uniformly for E EN.
```

Proof. (i) directly follows from the fact that $\lim _{m} \sum_{n \in E} x_{m n}$ exists


```
                                x
```



```
m: R m X by 
```


strongly bounded vector measure. Now letting $\left(E_{n}\right)=(\{n)$, we apply

m m $A m$
$\bar{Z}_{n \in A} \sim(\vdots n)$ uniformly for $A E N$.
i.e. $\lim _{m} \underset{n \in A}{ } x_{m n}=\sum_{n \in A} \underset{m}{\lim } x_{m n}$
$=\sum_{n \in A} x_{n}$ uniformly for $A \cdot \subseteq N$.
Remark. If $R=2^{N}$, in view of remark 1 after corollary 1 , we can drop the completeness assumption in the above theorem.

The following example shows that R can not be replaced by any ring containing all finite sets.

Set A be the ring of all finite subsets of N and let

$$
\left(x_{m n}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \cdots \\
1 / 2 & 1 / 2 & 0 & 0 & \cdots \cdots \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & \cdots \cdots \\
\cdot & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Then $\lim : \bar{Z} x_{n m}=\hat{a}$ for every $A \in A$, but clearly the conclusion of theorem 2 does not hold for the matrl $x\left(x_{\operatorname{man}}\right)$.

Corollary i. Let ($\mathrm{Xm}_{\mathrm{mn}}$) be as in Theorem 2 . The seties
${ }_{n=1}^{n} x_{n n} m=1,2, \ldots$, are unordered uniformy convergent in the sense that if $=?$, then there exists $n_{0} \& N$ such that $\sum_{n \in E} x_{m n}<\hat{E}$ for every m whenever Min $E \geq n_{0}$.

Therefore the sequence $\left(E X_{m n}\right)_{m \in N}$ is uniformly Cauchy for $E E N$ and nence there exists $m_{0} \in N$ such that (1) $\sum_{n \in E}\left(x_{m n}-x_{k n}\right)<E / 2$ for $m, k \geq m_{0}$ and $E \in N$. Now we show that for each $m \in N$ there exists $F_{m} \leqslant N$ such that:
(2)

$$
\therefore \sum_{n \in E} x n<E / 2 \text { for } \operatorname{Min} E \geq P_{m}
$$

```
FOI, suppose the contrary. Then there exists a sequence (E ( ) of
```



```
a disjoint sequerce (G, of finite setsisuch that max Gi c Min Gi+1
ard }\mp@subsup{n}{|}{\mp@subsup{F}{i}{}}\mp@subsup{x}{mn}{i}=/3\mathrm{ for i GN. This contradicts the fact that
x
# - x mar is subseries convergent.
Now let F}=\mp@subsup{F}{T}{
```



```
for min }E\geq0, my (1) and (3)
The result Eoliows Eram (3) and (4).
    We next show that theorem 2 can be viewed as a generalization
of the classićal version of the Schur lemma.
Goroliazy 2. Let (x, De an infinite matrix of complex numbers.
```



```
each E\subseteqN and if }\operatorname{lim}\mp@subsup{x}{mn}{}=\mp@subsup{x}{n}{}\mathrm{ for each }n\inN, the
                    m
    (i) }\mp@subsup{\operatorname{lim}}{m}{}\mp@subsup{\sum}{n=1}{\infty}|\mp@subsup{x}{mn}{}-\mp@subsup{x}{n}{}|=0 and
    (ii) the series }\mp@subsup{\sum}{n=1}{\infty}|\mp@subsup{x}{mn}{}|,m=1,2,\ldots., converge uniformly in m
Proof. (i) Let E>0. By Theorem 2, there exists mon m such
that 
3.2 Lemuna i, 
    (ii) By coroijar: -, there exists P E N such that
```



```
for m }|\inN\mathrm{ . This implies (ii) .
Remark. (ii) mmzees that sup 
```


CHAPTER 4

THE NIKODYM BOUNDEDNESS THEOREM

31. Introduction.

The subject of this chapter is one of the truly impressive theorems of measure theory, the Nikodym Boundedness Theorem, which derives a conclusion of uniform boundedness from a hypothesis concerning setwise boundedness. It also has a strong impact on the theory of Banach spaces. The validity of this theorem depends entirely on the structure of the ring of which measures are defined. An algebraic characterization of such structures is still unknown. The recent developments in this area are largely contributed by the papers of G.亡. Seever [16], Barbara Faires [7], R.B. Jargt [5] and Corneliu Constantinescu [3]. Constantinescu'
 Befinition $)^{\text {b }}$. Although a Qo-ring has a nice algebraic structure, it is extremely difficult to construct such a ring explicitly. One aim in this chapter is to prove the Nikodym Boundedness Theorem for a more general class of rings, namely pgorings. Unlike the class of Qo-rings, this class contains some well known examples of rings of sets. In this chapter we also deal with the measures defined on substructures of 2^{N}. These measures are especially important in sumability theory. Some of the results in this chapter appear in the joint paper [15] by J.J. Sember and myself.

The purpose of th土s section is to study a new class of rings of sets introduced below. It will be shown in the next section that the Nikodym Boundedness Theorem holds for measures defined on this type of ring. One of the important features of this class is that it contains some well-known examples of rings of sets. In what follows; unless signified otherwise; R denotes a ring of subsets of a set Ω.

Definition 1. A ring R is called a PQO-ring (respectively, an FPQ-ring) in case for every disjoint sequence (A_{n}) of sets (respectively, finite sets) in R and every sequence (t_{n}) of real numbers with $\lim _{n}=\infty$ there exists a subsequence $\left(A_{n_{i}}\right)$ of $\left(A_{n}\right)$ satisfying the Eollowing:

$$
\text { For each } i \text { there is a partition } A_{1}^{A_{i}},_{A_{2}}^{n_{i}}, \ldots, A_{s_{i}}^{n} \text { of } A_{n_{i}} i_{i} \leq t_{n_{i}}
$$

 with $2=k_{1}$'s s_{i}

Remark. It is eas to verify tiat every \quad a-ring is a par-ring and that every $\mathrm{FQ}_{\mathrm{q}}-\mathrm{ring}$ is an EPQ-ring.

Example 1. An increasing sequence (F_{n}) of positive integers is called a lacunary if $\lim \left(E_{n+1}-E_{n} j=\infty\right.$. We show that the ring L of subsets of M generated by lacunary sequences is rpQo but not poo. To this end let $\left(A_{n}\right)$ be a sequence of pairwise disjoint finite subsets of N and (t_{n}) a sequence of positive integers with $\lim _{n} \equiv \dot{x}$.

Choose a subsequence $\left(A_{n_{i}} j\right.$ of $\left(A_{n}\right)$ such that $\operatorname{Max} A_{n_{i}}+i$ $<\operatorname{Min} A_{n_{i+1}}$ and then partition each $A_{n_{i}}=\left\{p_{1}<p_{2}<\ldots<p_{k}\right\}$ in to $A_{1}^{n_{i}}, A_{2}^{n_{i}}, \ldots \ldots, A_{t_{i}}^{n_{i}} \quad$ such that:

$={ }^{A_{t}}{ }_{n_{i}}^{n_{i}}=\left\{p_{t_{n_{i}}}, P_{2 t_{n_{i}}}, p_{3 t_{n_{i}}}, \ldots \ldots\right\}$.

It is readily seen that $\sum_{i=1}^{\infty} A_{i} n_{i}$ is lacunary for every sequence $\left(k_{i}\right)$
with $l \leq k_{i}=t_{n_{i}}$. This shows that L is FPQC.
To show that L is not $P Q \mathcal{Q}$, let $A_{0}=p_{1}<E_{2}<\ldots$.
be an infinite lacunary sequence. Setting $A_{n}=\left(A_{0}+n\right) \backslash\left(A_{0} \cup A_{1} \cup\right.$
$\left.\ldots . . A_{n-1}\right)$, where $A_{0}+n=\left(P_{i}+n\right){ }_{i}{ }_{N}$, we can define inductively the disjoint sequence $\left(A_{n}\right)$ in L.

show that there is a sequence $\left(k_{i}\right)$, where $I \leq k_{i} \leq s_{i}$, such that $\bigcup_{i=1}^{\infty} A_{k_{i}}^{n_{i}} \& L$. Since $A_{n_{1}}$ is infinite there exists $l \leq k_{1} \leq s_{1} \quad$ such that $A_{k_{1}}^{n_{1}}$ is infinite. Consequently $A_{k_{1}}^{n_{1}}=F_{1}+n_{1}$ for some infinite. subset F_{1} of A_{0}. A similar argument shows that there exists, $1 \leq k_{2} \leq s_{2}$ and an infinite subset F_{2} of F_{1} such that $F_{2}+n_{2} \leq A_{k_{2}}^{n_{2}}$. Inductively we can construct a decreasing sequence (F_{i}) of infinite subsets of A_{0} and a sequence $\left(k_{i}\right)$ of positive integers such that $F_{i}+n_{i} \subseteq A_{k_{i}}^{n_{i}}$.

$$
\text { Suppose } \bigcup_{i=1}^{\infty} A_{k_{i}}^{n_{i}}=N_{1} \cup H_{2} \cup \ldots \ldots N_{p} \text { where } N_{i}=\left(p_{m m \in N}^{i}\right)_{m} \text {. }
$$

$1 \leftrightarrows \leq F$, are lacunary sequences. Since $F_{p+1}+n_{p+1} \subseteq A_{k}^{n}{ }_{p+1}$,
there exists i_{1} such that $\left.\mathbb{N}_{i_{1}}\right\rangle\left(F_{p+1}+n_{p+1}\right)$ is infinite.
Consequently, there is an infinite $G_{p+1} \mathcal{C}^{\prime} \vec{p}_{\mathrm{p}+1}$ such that
$q_{p+1}+n_{p+1}=N_{i_{1}}$. Since $\left(F_{i}\right)$ is a decreasing sequence of sets,

Therefore, there exists $i_{2}\left(\neq \dot{I}_{1}\right\}$ such that $\left(G_{p+1}+n_{p}\right) \because N_{i_{2}}$ is
infinite. Consequently there is an infinite $G_{p} \subseteq G_{p+1}$ such that $G_{p}+n_{p} \subseteq N_{i_{2}}$. Proceeding in this manner we can find an infinite set $G_{1} \subseteq F_{p+1} \subseteq F_{1}$ at the $(p+1)$ th step such that $\left(G_{1}+n_{1}\right) \cap N_{i}$ is finite for $1 \leq i \leq p$. This contradiction shows that L is not $P Q \sigma$. Example 2. Let $A \subseteq N$. We denote by $A(n)$ the number of elements of $A \cap\{1,2, \ldots . . . n\} . A$ is said to be a set of zero density if
$\lim _{n} \frac{A(n)}{n}=0$. We show that the class of sets of zero density, denoted by. n_{δ}^{0}, is a PQo-ring.

Let (A_{n}) be a disjoint sequence of members of η_{δ}^{0} and $\left(t_{n}\right)$
a sequence of real numbers with $\lim _{n}=\infty$. If $\left(A_{n}\right)$ has a subsequence (An n_{i} consisting of finite sets, then it can be easily shown that the sequence (A_{n}) satisfies the condition given in the definition of a PQ -ring. So let us assume that all A_{n} 's are infinite.

$$
\text { Set } n_{1}=1 . \text { Suppose } n_{1}<n_{2}<\ldots . .<n_{i} \text { have been chosen. }
$$

Now choose $n_{i+1}>n_{i}$ such that:

$$
\begin{aligned}
& \text { 1. } A_{n_{k}}(n) / n<1 / \gamma_{2} \text { for } 1 \leq k \leq i \text { and } n \geq n_{i+1} . \\
& \text { 2. } \operatorname{Min} A_{n_{i+1}}>n_{i} .
\end{aligned}
$$

3. $t_{n_{i+1}}>2^{i+2}$.
4. $A_{n_{i}}\left(n_{i+1}\right)>2^{i+1}$.

Such an n_{i+1} exists since (1)' $A_{n_{1}}, A_{n_{2}}, \ldots, A_{n_{i}}$ are of density zero, (2)' $\lim _{n} \operatorname{Min} A_{n}=\infty$, (3)' $\lim _{n} t_{n}=\infty$ and (4)' $A_{n_{i}}$ is infinite.

Inductively we can construct a subsequence ($A_{n_{i}}$) of (A_{n}) satisfying conditions (1), (2), (3) and (4).

Partition each $A_{n_{i}}=\left\{p_{1}<p_{2}<\ldots ..\right\}$ into
$A_{1}{ }^{n_{i}}, A_{2}^{n^{i}}, \ldots \ldots, A_{2}^{n}{ }_{i+1}$ in the following way.

$$
\begin{aligned}
& { }_{A_{1}}^{{ }_{i}}=\left\{p_{1}, p_{1+2}{ }^{i+1}{ }^{\prime} p_{1+2.2^{i+1}}, \cdots \cdots\right\} \\
& A_{2}^{{ }^{n}}=\left\{p_{2}, p_{2+2^{i+1}} p_{2+2.2^{i+1}}, \cdots \ldots\right\} \\
& \vdots \\
& A_{2^{n+1}}^{n_{i}}=\left\{p_{2}{ }_{2+1} P_{2.2^{i+1}} P_{3.2^{i+1}} \cdots \cdots \cdot\right\} . \\
& \text { If } n \geq n_{i+1} \text {, (4) assures that } A_{n_{i}}(n)>2^{i+1} \text {. Therefore, }
\end{aligned}
$$

by the way $\quad A_{n_{i}}$ is partitioned, $A_{k}{ }^{n}(n) \leq A_{n_{i}}(n) / 2_{2}$ for $1 \leq k \leq 2^{i+1}$.

Let i be a fixed positive integer and $j>i$. Then for
$1 \leq k \leq 2^{i+1}$, and for $n \geq n_{j}>n_{i}$ we have
(i) $\quad A_{k}^{n}{ }^{i}(n) / n \leq A_{n_{i}}(n) /{ }_{2^{i}, n} \leq 1 / 2_{2^{i}, 2^{j}}$.

The' last inequality follows from (1). Also for any $n \in N$ and $1 \leq k \leq 2^{i+1}$ we have $A_{k}^{n}(n) \leq 1$ or $A_{k}^{n}(n) \leq A_{n_{i}}(n) /{ }_{2}{ }^{i}$ and hence \quad.
(ii) ${ }_{A_{k}}^{n_{i}}(n) / n, \leq \operatorname{Max}\left\{1 / n, A_{n_{i}}(n) /{ }_{2} i_{n}\right\} \leq \operatorname{Max}\left\{1 / n, \frac{1}{2^{i}}\right\}$.

Let $\left(k_{\dot{i}}\right)$ be a sequence of positive integers such that $1 \leq k_{i} \leq 2^{i+1}$. We show that $\underset{i=1}{\bigcup} A_{k_{i}}^{n_{i}}$ is of density zero. Let $j \in N$ and $\begin{aligned} n_{j}<n \leq n_{j+1} & \text {. Then by (2) } A_{n_{i}} \cap[1, n]=\phi \text { for } i>j+1 \text {. Therefore, } \\ & \left(\bigcup_{i=1}^{\infty} A_{i} n_{i}\right)(n) / n=\left(\bigcup_{i=1}^{j+1} A_{k_{i}}\right)(n) / n\end{aligned}$ $=\sum_{i=1}^{j+1} A_{k_{i}}^{n_{i}}(n) / n$ (the $A_{k_{i}}^{n_{i}}$ s are disjoint) $=\sum_{i=1}^{j-1} A_{k_{i}}^{n_{i}}(n) / n+A_{k_{j}}^{{ }_{j}}(n) / n+A_{k_{j+1}}^{{ }^{j+1}}(n) / n$ $\cdots \quad \leq \sum_{i=1}^{j-1} \frac{1}{2^{i+j}}+\operatorname{Max}\left\{\frac{1}{n}, \frac{1}{2^{j}}\right\}+\operatorname{Max}\left\{\frac{1}{n}, \frac{1}{2^{j+1}}\right\} \quad$.

The last inequality follows from (i) and (ii).

The right hand side of the inequality tends to zero as j goes to infinity. Hence $\lim _{n}\left(\underset{i=1}{\infty} \hat{X}_{k_{i}}^{n_{i}}\right)(n) / n=0$. This shows that η_{δ}° is a PQO-ring.

We conclude this section with the following proposition.

Proposition l. Every FPQo-ring R of subsets of N containing all finite sets is full.

Proof. Let $\left(x_{n}\right)$ be a sequence of positive real numbers with $\sum_{n=1}^{\infty} x_{n}=\infty$.
Choose positive integers $n_{1}<n_{2}<\ldots . .<n_{i}<\ldots$ such that
$\sum_{i} \sum_{k<n_{i+1}} x_{k}>i$ for $i=1,2, \ldots \ldots$. Let. $\cdot\left(t_{i}\right)=(i)$ and
$A_{i}=\left\{n_{i}, n_{i}+1, \ldots \ldots, n_{i+1}^{-1}\right\}$. Now for any partition $A_{1}^{i}, A_{2}^{i}, \ldots . ., A_{S_{i}}^{i}$ $\left(s_{i} \leq i\right)$ of A_{i} there exists $1 \leq k_{i} \leq s_{i}$ such that $\sum_{k \in A_{k}^{i}} x_{k} \geq 1$.

This completes the proof.

Remark. Forf subrings of 2^{N} containing all finite sets we have
$\{$ Full rings $\} \geq\{F P Q \sigma-r i n g s\} \nexists\{P Q \sigma-r i n g s\} \supset\{Q \sigma-r i n g\}$
u

$$
\left\{\mathrm{F}_{\mathrm{Q}} \mathrm{O}-\text { rings }\right\}
$$

We have not come up with an example of a full ring which is not FPQO.

§3. Main results.

Although the Nikodym Boundedness Theorem is subject to many generalizations, it is difficult to find one generalization that fits the others. We therefore consider here several situations for which the theorem holds.

Theorem l. (Nikodym Boundedness Theorem).
Let R be a ring of subsets of a set Ω satisfying one of the following:
(a) R has property ($Q I$).
(b) R.is a p2J-ring with the hereditary property.

Also let X be a locally convex space. Suppose $H: R \rightarrow X, n=1,2, \ldots$, n are bounded vector measures such that $\{\mu(A) \mid n \in N\}$ is a bounded subset n of X for every $A \in R$. Then $\{H(A) \mid n \in N$ and $A \in R\}$ is a bounded subset of X.

In addition, if the $\mu, n=1,2, \ldots .$. are regular over n
finite sets, then (a) and (b) can be replaced by the following:
(a') R has property (FQI).
(b') R is an FPQc-ring with the hereditary property.
(c') R is a full ring with the hereditary property and containing all finite sets. (In this case $\Omega=N$.$) .$

Proof. First we establish the theorem for scalar valued measures; i.e., we assume that $X=C$.

Suppose (1) $\quad \underset{n}{\operatorname{Sup}\{|\mu(A)|} \mid n \in N$ and $A \in R\}=\infty$.
Define $\alpha: R \rightarrow R+$ by $\alpha(A)=\sup _{n}|\mu(A)|$. Since the sequence (μ) is
setwise bounded, α is defined and, moreover, by (I) α is unbounded. We also show that:
(2) $\quad \alpha(A \cup B) \leq \alpha(A)+\alpha(B)$ for $A, B \in R$ with $A \cap B=\phi$.
(3) $|\alpha(B)-\alpha(A)| \leq \alpha(B \backslash A)$ for $A, B \in R$ with $A \subseteq B$.

Let $A, B \in R$.
 $=\alpha(\mathrm{A})+\alpha(\mathrm{B})$.
(3) Suppose $A \subseteq B$. For given $\varepsilon>0$ there exists $n_{0} \in N$ such that $\alpha(B)-\varepsilon<1 \mu(B) \quad$.
n_{0}

Hence $\alpha(B)-\alpha(A)-E<\underset{n}{\mu}(B)|-\underset{n}{\mid \mu}(A)| \leq \underset{n}{\mid \mu}(B \backslash A) \mid \leq \alpha(B \backslash A) ;$
consequently $\alpha(B)-\alpha(A) \leq \alpha(B \backslash A)$. Similarly $\alpha(A)-\alpha(B) \leq \alpha(B \backslash A)$.

Now an application of 1.5 Eemma 1 to α shows that there exists a disjoint sequence (E_{m}) of members of R such that $\lim \alpha\left(E_{m}\right)=\infty$.

Thus by the definition of a we can find subsequences $\quad(\mu)$ and $\left(E_{m_{i}}\right)$
of (μ) and $\left(E_{m}\right)$ respectively such that $\underset{i}{\lim }\left|\underset{n_{i}}{\mu}\left(E_{m_{i}}\right)\right|=\infty$. For.
simplicity we relabel the sequence $\underset{n_{i}}{\left(\mu\left(E_{i}\right)\right)_{i \in N}} \underset{i}{ } \quad \underset{i}{\left(\mu\left(E_{i}\right)\right)}{ }_{i \in N}$. Then.
we have
(4) $\underset{i}{\operatorname{Lim}}\left|\underset{i}{\mu}\left(E_{i}\right)\right|=\infty$.

First we consider case (a) R is a ring with property (Q I). Let (t_{i}) be a sequence of positive numbers with the limit zero such that:
(5) $\quad \lim _{i}\left|t_{i} \mu_{i}\left(E_{i}\right)\right|=\infty$.

It is readily seen that $\left(t_{i} \underset{i}{\mu}\right)$ is a sequence of strongly bounded scalar valued measures (note that every bounded scalar valued measure is strongly bounded) with $\underset{i}{\lim } t_{i} \underset{i}{\mu(E)}=0$ for every $E \in R$. Therefore 3.3 Theorem 1 implies that $\underset{i}{\lim } t_{j} \underset{j}{\mu}\left(E_{i}\right)=0$ uniformly for $j \in N$. This contradicts (5). Hence the Nikodym Boundedness Theorem holds when R is a ring with property (QI).

Now we consider case (b) R is a PQO-ring with the hereditary property. Recall (4) $\underset{n}{\lim }\left|\underset{n}{\mu}\left(E_{n}\right)\right|=\infty$. Let $t_{n}=\mid \underset{n}{\left.\mu\left(E_{n}\right)\right|^{\frac{1}{2}}}$. Since R is a PQO-ring, there exists a subsequence ($E_{n_{i}}$) of (E_{n}) and a partition $E_{1}^{n_{i}}, E_{i}, \ldots \ldots, E_{s_{i}}^{n_{i}}\left(s_{i} \leq t_{n_{i}}\right)$ of each $E_{n_{i}}$ such that $\underset{i=1}{\infty} \mathrm{E}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{n}_{i}} \in R$ for every sequence (k_{i}) with $1 \leq k_{i} \leq s_{i}$. For each

 there exists $1 \leq k_{i} \leq s_{i}$ such that $\underset{n_{i} *}{\left|\mu\left(E_{i}{ }_{i}\right)\right| \geq t_{n_{i}} .}$

Since R is hereditary, $\bigcup_{p \in P} A p \in R$ for $P \subseteq N$. Let $v_{i}: 2^{N} \rightarrow C$ be defined by $v_{i}(P)=\underset{n_{i}}{\mu}\left(\bigcup_{p \in P} A_{p}\right) . \operatorname{Since} \quad(\mu)$ is a sequence of bounded scalar valued measures with $\sup |\mu(E)|<\infty$ for every $E \in R$, it readily follows that $\because\left(\nu_{i}\right)$ is a sequence of bounded scalar valued measures with $\operatorname{Sup}_{i}\left|v_{i}(\mathrm{P})\right|<\infty$ for every $\mathrm{P} \subseteq \mathrm{N} . \operatorname{Since} 2^{\mathrm{N}}$ is a
o-algebra (hence it is a ring with property (QI)), we have
$\operatorname{Sup}\left\{\left|v_{i}(P)\right| \mid i \in N\right.$ and $\left.P \subseteq N\right\}<\infty$. This contradicts that
$\lim _{i}\left|v_{i}(\{i\})\right|=\lim _{i}\left|\mu\left(A_{i}\right)\right|=\infty$. Hence the Nikodym Boundedness
Theorem holds when R is a PQO-ring with the hereditary property.

To prove the last part let us assume that the
. $\dot{n}, \mathrm{n}=1,2, \ldots . .$. are regular over finite sets. Then in (3) (E_{n}) can n
be replaced by a disjoint sequence $\left(F_{n}\right)$ of finite sets in R, so we have (7) $\quad \lim _{\Omega}\left|\mu\left(F_{n}\right)\right|=\infty$.

Now cases (a^{\prime}) and (b^{\prime}) can be treated exactly the same way we treated cases (a) and (b). Therefore we only have to consider case (c^{\prime}) R is a full ring with the hereditary property and containing all finite sets. Perhaps by passing to a subsequence we can assume that in (7), $\left|\mu\left(F_{n}\right)\right|>2^{N}$ and $\min F_{n+1}>\operatorname{Max} F_{n} \cdot \operatorname{Since} \lim _{n}\left|\mu\left(F_{n}\right)\right|=\infty$ implies that $\lim \left|\operatorname{Re} \mu\left(F_{n}\right)\right|=\infty$ or $\lim \left|\operatorname{Im} \mu\left(F_{n}\right)\right|=\infty$, we also can assume that the $\mu ; \mathrm{n}=1,2, \ldots . .$. are real valued measures.

$$
\text { Let } t_{n}=\frac{1}{\mu_{n}\left(F_{n}\right)} \text { for each } n
$$

Then (8) $\sum_{n=1}^{\infty}\left|t_{n}\right| \leq \sum_{n=1}^{\infty} \frac{1}{2^{n}}<\infty$ and $\sum_{n=1}^{\infty} t_{n} \sum_{n} \mu\left(F_{n}\right)=\infty$. Since F_{n} is finite for $n \in N, \sum_{n=1}^{\infty} t_{n} \underset{n}{\mu\left(F_{n}\right)=} \sum_{n=1}^{\infty} t_{n} \sum_{i \in F_{n}}^{\sum_{n}}{ }_{n}(\{i\})$.

From (8) it is clear that $\sum_{n=1}^{\infty}\left|p_{n}\right|=\infty$. Without loss of generality we can assume that $\sum_{n=1}^{\infty} p_{n}^{+}=\infty$ where $p_{n}^{+}=\operatorname{Max}\left\{p_{n}, 0\right\}$. Since R is full, there exists $\dot{A} \in R$ such that $\sum_{n \in A} P_{n}^{+}=\infty$. Since R is hereditary we can choose A such that $p_{n}^{+}>0$ for every $n \in A$. Then clearly
$A \subseteq U_{n=1}^{\infty} F_{n}$. Let $G_{n}=A \cap F_{n}$ for $n \in N$.

$\sum_{n=1}^{\infty}\left|t_{n}\right|<\infty$, this implies that $\sup _{n}\left|\mu\left(G_{n}\right)\right|=\infty$. Also notice that $\left(G_{n}\right)$ is a disjoint sequence in R such that $\bigcup_{n=1}^{\infty} G_{n}=A \in R$. To complete the proof one can follow the last portion of the proof for the case R is a PQO-ring.

To extend the Nikodym Boundedness Theorem for locally convex

 spaces, let X be a locally convex space as stated in the theorem. Suppose || || is a continuous seminorm on X. Now consider the following collection of bounded scalar valued measures defined on R.$$
\begin{aligned}
& G=\{f a \mu \mid f \in(X,\| \|) *,\|f\| \leq 1 \text { and } n \in N\} \text {. } \\
& \text { n }
\end{aligned}
$$

We show that G is uniformly bounded on $R . \operatorname{Let}\left(f_{i}{ }^{\circ} \underset{n_{i}}{\mu}\right)_{i \in N}$ be a sequence in G. Then for each $E \in R$,

$$
\begin{aligned}
& \operatorname{Sup}_{i}\left|f_{i} 0 \underset{n_{i}}{\mu}(E)\right| \leq \underset{i}{\operatorname{Sup} \|} \underset{n_{i}}{\mu}(E) \| \text { since }\left\|f_{i}\right\| \leq 1 . \\
& <\infty \text { since }(\mu) \text { is setwise bounded. }
\end{aligned}
$$

Since the Nikodym Boundedness Theorem is true for scalar valued measures defined on R, we have $\left(f_{i} \circ \mu\right)$ is uniformly bounded on R. Hence G is uniformly bounded on R. This implies $\operatorname{Sup}\{\|\mu(E)\| \| n \in N$ and $E \in R\}<\infty \operatorname{since} \underset{n}{\|\mu(E)\|}=\operatorname{Sup}\{|f \circ \mu(E)| \mid f \in(X,\| \|) *$ and $\|f\| \leq 1\}$ by virtue of the Hahn-Banach theorem. since || \|| is an arbitrary continuous seminorm on X, the sequence $\underset{n}{(\mu)} n \in N$ is uniformly bounded on R.

Remark 1. If R is a δ-ring; i.e., closed under countable intersection, then the hereditary property in cases (b) -and (b^{\prime}) may be dropped.

- 2. The Nikodym Boundedness Theorem is true for any sequence of vector measures for which the Vitali-Hahn-Saks-Nikodym theorem is true. The following example shows that the converse does not hold.

Let η_{δ}^{0} be the ring of sets of zero density. We have shown that, in section 2, η_{δ}^{0} is a pQorring. Also it is easy to check that η_{δ}^{0} is hereditary. Let $\mu: \eta_{\delta}^{0} \rightarrow[0,1], n=1,2, \ldots .$, be defined by $\underset{n}{\mu(A)}=\frac{A(n)}{n}$, where $A(n)$ is the number of elements of $A \cap[1, n]$. Then clearly (μ) is a sequence of strongly bounded measures such that lim $\mu(A)=0$. But it is easy to construct inductively a disjoint $\mathrm{n} \quad \mathrm{n}$ sequence $\left(A_{i}\right)$ of finite sets and a subsequence (μ) of, (μ) such that $\lim _{i}{ }_{n} n_{i}\left(A_{i}\right) \neq 0$. Let $A_{1}=\{1\}$ and $n_{1}=1$. suppose disjoint finite sets $A_{1}, A_{2}, \ldots, A_{i}$ and positive integers $n_{1}<n_{2}<\ldots<n_{i}$ have been chosen such that ${\underset{n}{j}}_{\mu}^{\left(A_{j}\right)}>\frac{1}{2}$ for $j=1,2, \ldots, i$. Choose $n_{i+1}\left(>n_{i}\right) \cdot \operatorname{such}$ that $n_{i+1}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{i}\right)<\frac{1}{2}$. Set $A_{i+1}=\left\{1,2, \ldots \ldots, n_{i+1}\right\} \backslash\left(A_{1} \cup A_{2} \cup \ldots . . \cup A_{i}\right), \quad \operatorname{cleally} \underset{n_{i+1}}{ }\left(A_{i+1}\right)>\frac{1}{2}$. The following corollary is useful in applications.

Corollary 1. Let R be a ring of sets as stated in (a) or (b) of Theorem 1 and X a Banach space. Suppose $\mu: R \rightarrow X$ is a function such that $f \circ \mu$ is bounded and finitely additive for every f in some total subset Γ of X^{*}. Then μ is a bounded vector measure. In addition, if $f \circ \mu$ is regular over finite sets for $f \in \Gamma$ and if X is separable, then the conclusion remains true if R is as in (c^{\prime}) of Theorem 1 .

Proof. To show that μ is finitely additive, let A, B be two disjoint members of R. Since $f o \mu$ is finitely additive for $f \in \Gamma$, we have
$f(\mu(A \cup B))=f \circ \mu(A \cup B)=f \circ \mu(A)+f \circ \mu(B)=f(\mu(A)+\mu(B))$, , since Γ is total this implies $\mu(A \cup B)=\mu(A)+\mu(B)$.

To show that, μ is bounded, let $M=\{f \in X * \mid f o \mu$ is bounded $\}$. Then M is a linear subspace of x^{*} containing the total set" Γ; consequently M is a weak*-dense linear subspace of X^{*}. by 1.3 Theorem 3. If it can be shown that $M_{1}=\{f \in M\| \| f \| \leq 1\}$ is weak* closed, then an appeal to 1.3 Theorem 5 (Banach-Dieudonne Theorem) establishes that M is a weak* closed subset of X^{*}, and hence $M=X^{*}$. Let ${ }^{\prime}\left(f_{\alpha}\right)$ $\alpha \in \Lambda$ be a net in M_{1}. such that $\lim \mathrm{f}_{\alpha}=\mathrm{F}_{\mathrm{I}}$ " exists in the weak* tapology on X *.
 $a \in A$, this implies $f_{1} \leq I$.

To show that $f_{1} \mathcal{H}$ is bounded we apply the Nikodym Boundedness. Theorem to the collection $\left\{f_{\alpha} O^{*} \mu \mid \alpha \in \Lambda\right\}$ of bounded scalar valued measures on R. First we observe that $\operatorname{Sup}_{\alpha^{2}}\left|f_{\alpha} \circ \mu(E)\right| \leq$
$\sup f_{a}\|\mu(E):\| \mu(E) \|_{i}$, for every' $E \in R$. Therefore by the Nikodym Boundedness Theorem we have that $\sup \left\{\left|f_{\alpha} \circ \mu(E)\right| \mid \alpha \in \Lambda\right.$ and $\left.E \in R\right\}<\infty$. Since $\lim _{\alpha} f_{\alpha}(\mu(E))=f_{I}(\mu(E))$ for every $E \in R$, this implies that $\operatorname{Sup}\left\{\left|f_{I}(\mu(E))\right| \mid E \in R\right\}<\infty$. Hence $f_{1} \in M_{I}$ so that M_{1} is weak* closed. Now a similar application of the Nikodym Boundedness Theorem to the collection $\left\{f_{\circ} \mu \mid f \in X^{*}\right.$ and $\left.\|f\| \leq I\right\}$ of bounded scalar valued measures shows that $\sup \{\|\mu(E)\| \mid E \in R\}=\operatorname{Sup}\left\{|f o \mu(E)| \mid E \in R, f \in X^{*}\right.$ and $|f| \leq 1\}<\infty$.

To prove the last part, let $M=\{f \in \cdot x \neq \mid$ folt is bounded, and regular over finite sets\}. First we show that M is a" linear subspace of X^{*}. Let $f, g \in M$ and let $A \in R$. Since foj is regular over. finite sets, for each $\varepsilon>0$, there exists a fïnite subset B_{1} of A
 sets there exists a finite subset $-D^{\circ}$. of $A X_{I}$ such that.
$\left|g \circ \mu\left(A \backslash B_{1}\right)-g \circ \mu(D)\right|<\varepsilon / 4$. i.e. $\quad\left|\operatorname{lo\mu }(A)-\operatorname{goj}_{1}\left(B_{1} \cup D\right)\right|<\varepsilon / 4$. Let $B_{1} \cup D=C_{1}$. A similar application to for and $A \backslash C_{1}$ shows that there exists a finite set $B_{2} \geq C_{1}$ such that $\left|f_{0 \mu}(A)-f_{0} \mu\left(B_{2}\right)\right| . \leq \varepsilon_{1} 4$. So inductively we san construct sequençes $\left(\mathrm{B}_{\mathrm{i}}\right)$, and (C_{i}) of firite sets in R such that:
$(1)=\left|f \circ \mu(A)-f \circ \mu\left(B_{i}\right)\right|,\left|g \circ \mu(A)-g \circ \mu^{*}\left(C_{i}\right)\right|<\dot{E} / 4$ for $i \in N$.
(2) $\mathrm{B}_{1} \subseteq \mathrm{C}_{1} \subseteq \mathrm{~B}_{2} \subseteq \mathrm{C}_{2} \subseteq \ldots . \subseteq \mathrm{B}_{\mathrm{i}} \subseteq \mathrm{c}_{\mathrm{i}} \subseteq \ldots \ldots \subseteq \subseteq A$.

Since foH is bounded and scalar valued, it is strongly bounded and hence $\lim _{i} f_{0} \mu\left(C_{i} \backslash B_{i}\right)=0$. Consequently there exists $i_{1} \in N$ such that: i
(3) $\left|\mathrm{f}_{\mathrm{o} \mu}\left(\mathrm{C}_{\mathrm{i}_{1}} \backslash \mathrm{~B}_{\mathrm{i}_{1}}\right)\right|<\varepsilon / 4$.

Now (4) $\left.\left|f \circ \mu(A)-f_{0} \circ\left(C_{i_{1}}\right)\right|=\mid f \circ \mu(A)-f \circ \mu\left(B_{i_{1}}\right)-f \circ \mu\left(C_{i_{1}}\right\rangle B_{i_{1}}\right) \mid$.

$$
\begin{aligned}
& \leq\left|f \circ \mu(\mathrm{~A})-\mathrm{fo} \mathrm{\mu}\left(\mathrm{~B}_{\mathbf{i}_{1}}\right)\right|+\left|\mathrm{fo} \mathrm{\mu}\left(\mathrm{C}_{\mathrm{i}_{1}} \chi_{\mathrm{B}_{\mathbf{i}_{1}}}\right)\right| \\
& <\varepsilon / 4+\varepsilon / 4 \text { by (1) and }(3) .
\end{aligned}
$$

```
Therefore \(\mid\left(f \circ \mu+g \circ u(A)-\left.(f \circ \mu+g \circ p)\left(C_{i_{1}}\right)\right|_{1} \leq \operatorname{fo\mu }(A)-f_{0 \mu}\left(C_{i_{1}}\right) \mid\right.\)
\(+\frac{\operatorname{lgop}(\mathrm{A})-\operatorname{gop}\left(\mathrm{C}_{i_{1}}\right)}{( }\)
\(<E / 2+E / 4\) by (4) and (1).
```

This implies that for $+g \circ \%$ is regular over finite sets and hence $f+g \leq M$. It is clear that $\lambda \in \in M$ for $A \in \mathbb{C}$ and $f \in M$. Therefore 4. is a linear subspace of X^{*} containing the total set F. To show
 Since X is separable, the unit disc in X^{*} is metrizable with respect to the weak* topology and it is also weak* closed. Therefore it suffices to show that. if $\left(f_{n}\right)$ is a sequence in M_{1} such that. $\lim _{n} f_{n}=f$ exists in weak* topology, then $f \in M_{1}$. First we claim that f is regular over finite sets. Let $A \in R$. Since R is hereditary, $2^{A}: E R$. Now ($f_{n} O H{ }_{2}^{A}$) $n \in N$ is a sequence of scalar valued bounded vector measures defined on a J-algebra. Also, since (f_{n}) weak* converges to f, $\left.\lim _{n} f_{n} \circ \mu\right|_{2} A(E)=f \circ \mu(E)$ for every $E \subseteq A$. setting $E_{k}=\left\{n_{k}\right\}$, where $A=\left\{n_{1}, n_{2}, \ldots ..\right\}$, we apply the last part of Corollary 1 of
 $\sum_{k \in p}$ fon $^{\prime}\left(\left\{n_{k}\right\}\right)$ uniformly for $P \subseteq N$. In particular taking P finite $k \leq p$. we have
(5) $\quad \lim f_{n} \circ \mu(F)=f \circ \mu(F)$ uniformly on finite subsets F of A.

Therefore for given $\hat{c}>0$, there exists n_{o} such that:
(6) $f_{n} O \mu(F)-f \circ \mu(F)<E / 3$ for every finite subset F of A and $n \geq n_{0}$.

Also since $\lim _{n} f_{n} O \mu(A)=f o \mu(A)$, there exists $n_{l}>n_{o}$ such that:
(7) $\quad \mathrm{f}_{\mathrm{n}_{1}} \circ \mu(\mathrm{~A})-\mathrm{f} \circ \mu(\mathrm{A})<E / 3$.

Since $f_{n_{l}} 0 \mu$ is regular over finite sets there exists a finite subset F of A such that: (8) $\left|f_{n_{1}} \circ \mu(A)-f_{n_{l}} \rho \mu(F)\right|<\varepsilon / 3$. Now $\left|f o \mu(A)-f_{0} \mu(F)\right| \leqslant\left|f 0 \mu(A)-f_{n_{1}} \rho \mu(A)\right|+\left|f_{n_{1}} \circ \mu(A)-f_{n_{1}} O \mu(F)\right|+$

$$
\begin{aligned}
f & \circ \mu(F)-f \circ \mu(F) \\
< & \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \text { by (7), (8) and (6). }
\end{aligned}
$$

This shows that for is regular over finite sets. As in the proof of the first part of this corollary we apply the Nikodym Boundedness Theorem to the sequence ($f_{n} \circ \mu$) of bounded scalar valued measures to show that $\mathrm{f} 0,1$ is bounded. By this we can conclude that $f \in \mathrm{M}_{1}$ and hence M_{1} is weak* closed.

Now a similar application of the Nikodym Boundedness Theorem to the collection $\left\{f \circ \mu \mid f \in X^{\star}\right.$ and $\left.\|f\| \geq l\right\}$ of bounded scalar valued measures shows that μ is bounded.

We use the above result to derive an Orlicz-Pettis type
result for Banach spaces satisfying certain conditions.

Corollary 2. Let the ring R of subsets of N and the Banach space X satisfy one of the following :
*
(I) $R=2^{N}$. X contains no copy of I_{∞}. t
(2) R is a ooring containing all finite sets. X is separable.
(3) R is a qo-ring containing all finite sets. X contains no copy. of C_{0}.
(4) R is a hereditary $P Q \sigma-r i n g$ containing all finite sets. X contains no copy of c_{0}.
(5) R is a full ring with the hereditary property and containing all finite sets. X is separable and contains no copy of c_{0}.

Further let Γ be a total subset of X^{*}. Suppose $\sum_{n=1}^{\infty} x_{n}$ is a series in x such that $\sum_{n \in A} x_{n}$ is Γ-convergent for every $A \in R$ in the sense that there exists $x_{A} \in X$ such that $\sum_{n \in A} f\left(x_{n}\right)=f\left(x_{A}\right)$ for every $f \in \Gamma$, then $\sum_{n=1}^{\infty} x_{n}$ is norm subseries convergent.

Proof. Define $\mu: R \rightarrow X$ by $\mu(A)=x_{A}$ as above. Since Γ is total, $\hat{\mu}$ is well defined and,moreover, $f_{0} \mu$ is finitely additive and regular over finite sets for every $f \in \Gamma$. Also since for each $f \in \Gamma$ $\left|\sum_{n \in A} f\left(x_{n}\right)\right|<\infty$ for every $A \in R, \sum_{n \in A}\left|f\left(x_{n}\right)\right|<\infty$. (Note that R is full.) This implies $f_{0} \mu$ is bounded for every $f \in \Gamma$. By corollary 1 ,
, μ is a bounded vector measure. If X is as in one of (1), (3), (4), (5) then 3.3 Theorem 1 implies that μ is strongly additive. If X is as in (2), then Corollary 4 of 3.4 Theorem 1 implies that μ is strongly additive. Hence $\sum_{n=1} x_{n}=\sum_{n=1} \mu(\{n\})$ is subseries convergent "
in norm.

BIBLIOGRAPHY

[1] Antosik, P., On the Mikusinski diagonal theorem, Bull. Acad. polon. Sci., 19 (1971) 305-310.
[2] Antosik, P. and Swartz, C., Matrix Methods in Analysis, To appear.
[3] Constantinescu, C., On Nikodym's Boundedness Theorem, Libertas Math., 1 (1981) 51-73.
[4] Cristescu, R., Topological Vector Spaces, Noordhoff International Publishing, Leyden, Netherlands (1974).
[5] Darst, R.B., On a theorem of Nikodym with applications to weak convergence and von Neumann algebras, Pacific J. Math. 23 (1967) 473-477.
[6] Diestel, J. and Uhl, J.J., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
[7] Faires, B., On Vitali-Hahn-Saks type theorems, Bull. Amer. Math. Soc., 80 (1974), 670-674.
[8] Kalton, N.J., Subseries convergence in topological groups and vegtor spaces, Israel Jour. Math. 10 (1971) 402-412.
[9] Kanthan, P.K. and Gupta, M., Sequence spaces and Séries, Marcel Dekker Inc. N.Y. and Basel.
[10] Kliss, C., An example of a noncomplete normed (K)-space, Bull. Acad. polon. Sci. 26 (1978) 415-420.
[11] MaArthur, C.W. On a theorem of Orlicz and Pettis, Pacific Jour. Math. 22 (1967) 297-302.
[12] Phillips, R.S., On Linear Transformations, Trans. Amer. Matho* Soc. 48 (1940) 516-541.
[13] Robertson, A.P. and W. , Topological Vector Spaces, Cambridge University,Press, 1973.
[14] Rosenthal, H.P., On relttively disjoint families with some applications to Banach space theory, Studia Math. 37 (1970) 13-36.
[15] Samaratunga, R.T. and Sember, J.J., Sumability and substructures of 2^{N}. To appear.
[16] Seever, G.L., Measures on F-spaces; Trans. Amer. Math. Soc. 133 (1968) 267-280.
[17] Sember, J.J. and Freedman, A.R., On summing sequences of 0's and l's, Rocky Mountain Jour. Math. 11 (1981) 419-425.
[18] Trevas, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, N.Y., 1967.
[19] Wilansky, A., Modern Methods in Topological Vector spaces, McGraw-Hill fN.Y., 1978.

