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The 7 6f this thesis is to review s a e  of the theorems 

Applications Fn *t& theory af topological vector spaces and m i l i t y  

- - - - - - - - - - - -  - 
> - - A  

Chapter I is of introduc&Xy nature- In Chapter 2, by 

4 

v e r  spsce, Ln Chapter 3 we employ a simple version of Rostnthal's 
> 

- 1- to give a proof of a remalt which is due to J. D i e s t e l  and B. P ires. i P 

of rings ,of sets,  namely the class of rings with  property QI). 
'\ 

Among the other r e h t s  obtained in this Chapter are enan1ir.d versions 

Theorem is prmed in several sett ings.  A t  the end of'this Chapter we . 
obtain an iatprovement of the ~r l i cz -pet t i s  theor-. 
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'&ere ass i#wblra;L rsoplts cancsrning oontinuous Linsar f~~ 

and vactor v&Pab rhi& &rive a conclusion of d f o m  bom&dmasr 

- f t & a + q p t h e ~ h ~ ~ ~ o r k r i o a ~ ~ ~ - - -  - 

p--p----ppp p-------p -- p-p--p-- 

discuss of t)lsarrs results and tlnir humliate appliaktioas in tbe t 

2 .  The Vitali-WpSaks-Uzkcx&thea,r~ for finittidy additive -tor '- 

3. The l i k e  BoaadedDees tbawra 'for f in i t e ly  additiw mctor. 

We prove each of tlw& above results in a rore mrdl -ti-. 

, In proving (1) and 12) we we priritive sliding hump argrrents of the tlypQ 

possible existence of a =re general type of ring than those for which 



oonammd a r ~  regular over finites sets (3.4 Definition 2 )  , 



- 52, ~ 1 o g i c a l  vector spaces, 

The folloving Iotation w i l l  be used thmugbout this thesis. 

- set of real d r s .  

- set of ooaaplex nmakrs, 

- set of positive integers. 

- set- of qori-neqative real n-rs. 

- power set of a given set X . 

Defini t ion 1. A subset A of a vector &ace 
~- -- -- - ~--p - -  

- - -  - ~ - -  - - - -  ppppp-- -- - 
i s  said to be 

(i) absorbing i f  for ec?ach r in X there ex i s t s  a scalar a w i t h  

x € aA ; (ii) balanced i f  a c A  - forevery  X vith L 1 ; 

and (ivl  absolutely convex i f  A i s  balanced and convex. 

refinition 2 .  A vector space X with a topology T , which we write 
- 

- 5 - - 

as IX,T) ,  is-called a topological vector space i f  the oper_ations of  

vector addition and s a l a r  multiplication are conthous. 

Proposition 1. A vector space X w i t h  a topology T is a topological 

vector space i f  a& only i f  there exists a 'fundamental neighbourhood 
0 

system r1(0) at the or ig in  of X such that: 

(I) Each U in q f O f a  is absorbing and balanced. 

( 2 )  Fur each U in ri (01 there exists V in (0) with V + V c U . - 

DefinkZtion 3. A topological vector space (X,T) i s  locally convex in 



El') Each U i n  q f O )  is a b s a r g . ,  Wahced, and cmvsx, ! 
-finition 4- b t  X be a vector space. A function p: X -t Ri is 

lilaa = O  & X f X ,  
n n 

If, in addition, p(rf . O for every ~t #-0, then p is called an 

Proposition 2 .  A vector space .X with a topalogy T is a tupologicaf 
f 

--&or space if and only if there exists  a family F of P-seminormg 

on X generating tbs= topology T on X ; also,  T is Raudorff if 

a n d o n l y i f  F is+-. i.e., fax x E X ,  x f O  , t b e r e e x i ~ t s  

p C F such that p(x) # 3 . 

Definition 5 .  'Let I( h a vectoi &&e. A function p: 4 + R+ is 



~ b ,  in addition, pdrf > O for every x # 0 , then p is called a , 
i h 

Remar)E, A vector qxake X with a tapolcqy T generated by a seminorm 

drespectively, nand on X is  called a seminomed [respectively, no-) 

space- A complete '70- space i s  called a Banach space. 

Proposition 3 .  (X,Tf rs a 1 ~ c a l l y  convex topological vector space - --- - 

if ~d o n l y  if T is generated by a '  family of s - 5  on X . 

-- 

Definition 6 .  A subset 8 of a topological vector space X i s  called 
-- - - -- - - - - -  - 

- -- - - - -  - 
- - - - -- - - - - - - 

- --- 
iY 

4 M e d  if for each neighbourhood U of zero i n  X there exists 

& f R+ such that 3 A.u . - . . 
* 

Promsit ion 4 .  kt - X Se a topological vector h c e  and let A C x . - 
F e n  the following statements axe equivalent. A 

F. 

1 A is bounded, 

(21 For every sequence it,) of p s i t i y e  numbers w i t h  l im t = 0 
n n 

f and every sequence ix  f in A , lim t x = 0 . n n n n  

1 
If x is a l x a l l y  convex space, then s t a t ~ n t  ( l j  is also 

equiva lent  to ( 3 )  A is 'munded w i t h  respect to each continuous 



lz[ = z.sgnz for any z f . 



Proposition I. Let, (X,T1l and (Y,T 1 be two topological vector 
2 

spaces over the same f i e ld .  The set of a l l  continuous linear functions 

wise addition and the  pointwise scalar  multiplication. 

Proposition 2. fRt X,Y be s d o r m e d  spaces .' A linear function f 

from X t o  Y is continuous i f  there exists M > 0 such that 

Proposition 3. If llffl =sup{/lf (XI i[[x E X ,  [XI 5 13 far f E L ( X , Y )  , = 

then 11 jl is a m x n  on L(X,Y) ; moreover, it is a now i f  Y is  -- - A 

a normed space. 

Theorem 1. L e t  f be a continuous linear mapping from a subspace A 

of a topological vector space X in to  a complete Hausdorff topological 

.vteckor space Y ; then there exists a unique continuous lineax map 

F from the closure 

Definition 1. Let F - c L(X,Y) where X,Y aae topological vector 

spaces. Then F is  called 

la) p in twi se  bounded i f  { f ( x f  1 f f F )  i s  a bounded subset of 

Y for  each x f X ; 

(b) uniformly bounded i f  {f (x) I f € F and x C A) is  a bounded 

*--r is-"---- '---"---+ax q=Gf= 

X into scalars ,  then 'f is called a l inear  functional. The s e t  of 



g l  e o n t ~ u o u s  - -- linear - functionals - on X w h i c h  is denoted by X*  , is 

called the dual space of X . The topology generated on X by X *  

is  called the weak topology of X . In case X i-s a seminormed space 

X* is  a Banach space with t h e  norm defined in Proposition 3; moreover 

for each x f X the l inear  functional 2 on X* , defined by 

2( f )  = f (x) , M o q s  t o  x** . Ttze locally convex topology. generated 

by (SIX E x) an X* is called the weak* topology on X* . 

Theorem 2. (Hahn-Banach). Let X be a vector space and p a 

seminorm on X , Suppose f is  a l inear  functional defined on a vector 
- .  

subspace Y of  X such that j f tx? f C p W for every x F Y . Then 
f can be extended to a l inear  functional f on X such that 

The following propositions are immediate consequences of the 

Hahn-Banach theorem. 

Proposition 4. Let Y be a closed subspace of a lcca l ly  cornex 

space X , and a C X\Y . Then there exis t s  f f X* such that  

•’(a) = 1 and f ( y )  = 0 for  y E Y . 
1 

pro_psition 5. Let X be a seminormed space. I f  'x X w i t h  

.'xi' # 0 , then there exists f f X *  such that f l x )  = {jx/f and 

fli = 1 . 

Proposition 6 .  L e t  X be a seminormed space. Then for  every x X 



Eiausdorff 'space, tben Xf is total crpar X . i . ,  far dach x E X 

w i t h  x # O there exists f € X* such that • ’ ( X I  f Q . 

!t!heorer~ 3.  Let X bz a no& space and r .  a linear suhspaoe of X* 

which is  also total. Then r is a weak f dense subset of X*  . 
% 

Theorem 4.  { B a n a d - A L a o g l u ) .  If X i s  a noaned space then the un i t  

disc in X* , i-e-, If C,~*1fiffl 5 11, is weak compact. If, %n - 

addition, X is separable, then it is weak metrizable. 

m r m  5. --=en6txtr&. 5F *BitSi&&--~ - =-- =- ------ 
subspace of X* . lhen S is weak * closed if and o n l y  if 

{f C Sl /If11 5 1) is e a k  closed. 

We conclude this section stating sane properties of the Banach 

spaces co , 8 ,  and C 1 - L e t  w fx the set of a l l  scalar sequences. 

men co = {(x,) t w j l h  x = 0) is a 3anach space w i t h  the norm / I  /L 
n n ,  

for all  but f in i te ly  many n} is a dense subspace of co . 

a dense subspace of COD . Also note that co is a closed subapace 



-- - gf -4_ 

I 
m 

Definition 1. 'A f u W  i n f i n i t e  series Z xi in  a topological vector 
i=l 

space (X,T) is sa id  to be (I) convergent in (X,T) i f  

' X i ) n  6 N 
conwrges in (x,T) ; (ii) weakly convergent in ( X r T )  

i=l 

if there exists an x C X such that Z f(xit  converges to f f x )  
- - - iw f 

for every f E X* ; iii) subseries convergent if for any increasing 

sequence (i ) of posit ive integers, the series 1 x converges 
- - - 

- - - - - - - *---- - -- - - - -- - -- - - - - i 
- = = - - =-=- 

in (X,T) , and (iv) n n c o n d i t i o d l y  convergent i f  for any permtation 

o of N ,  t h e e e r i e s  L xG(i) converges to the same element x 
i=l 

Remark: Let A C N .  - E x  converges i n  (X,T) neans that 
ia - 

2% w 

l im z / x . exists i n  ( X I T I .  Therefore L x . is subseries 
1 1 

n i W [ l , n l *  i=l 

eonvergent i f  and only i f  Z x anverges for every A 5 N , 
i €A 

i 

ED 

Theorea 1 .  If a series xi in a loca l ly  convex s-ce X is  sub- 
i=l 

series convergent, then it is u n c o n d i t i o ~ l l y  convergent. 

The proof of the W e  theoran can be fowd i n  19 I .  

- - - -- 
--p 

Beorem 2 .  L e t  e a Cauchy sequence i n  a loca l ly  convex space 

X . If (\I  mnverges weakly to x i n  X , then lim x = x . 
12 



fl 
Definition 1 .  Let 5'l be an arbitrajcy set. A s u b f d l y  R of 2 is 

said  to be a ring i n  case A LI B, A \  B 6 i7 whenevex A,B .€ ?? . 
m 

I f ,  i n  addition, il A .  6 R for every sequence (Ai) in R , 
1 

i=l 

then R is called a 3-ring. % 

-f init ion-2.  A ring J? of subsets of a s e t  R is  calId an agebra 

p - r i n g )  i n  case for ' very sequence f A . )  of pairwise disjoint sets T 1 '> 
(respectively, f i n i t e  4ts) in R , there e x i s t s  a ce (Ai 

1 -?- 7 

- - - - - 

&finit ion 4.  A ring R is called hereditary (or an ideal) if R 

i s  closed under subsets. If R is an ideal then f = I A ~ ~ A  f R) is 

ca l l ed  a f i lter.  {late that f i lters are closed under supersets.) 

Example 1. A *-ring R which is not a a-ring. 

L e t  F be a mn-principal -1 f i l ter  o f  subaets of  N . 
r h i s  mans that 3 F  = 9 and if there exists a filter F' such #-at 

F - c F' then F' = F . The existence of such f i l t e r s  is implied by 

ideal satisfying the •’011 owing : 



R contains a l l  finite subsets of N,. 

R is a QG-ring . 
R is not a G-ring. , 

By the definition of a filter it is clear that - 
A - C N , Suppose A,A' f F Since F is maxisml,  there exist 1 

prove (1) let n 6 H . Since F is mn-principal In} 4 F . Henee v 

%(n) 6 F vso that fn). f R , This shows that every f i n i t e  set is in R . 
- 

-- - - - - - - - pp -- . . . . .  --m-pj73 h i  ) -Ard-w--I_8f %=-===- 
n 

U8lara 1. I e t  R be a r ing  of subsets of a set  Q . suppose 

a: R + Ft+ is a unbarnded function such that: 

Then a r e  exists a disjoint sequence (A,) of members of R such 

that lim a(A,) = * . 
a 



of menbars of R such that a ( ~ ~ + ~ )  > a(Fn) + h . set A~ = ~~y F.+~. 

-- ~ ~ ----- --p-------- ~ p-p------- -- 
-- ... %n a ( A  r la(P) - a(Fn+ll I by (2) and hence a(An) > n . This 

n !" i m p l i e s  that (A is a disjoint -&ce of mabers of R, such that 
t 

-. 
case 2 .  Suppose for ead-i k > 0 and each E C X with G(EI = = ,  - 

disjoint mmskrs of $2 . Hence by 1, a(P1 C a(P\ 51 + a ( P  fl 5) .  

Takingsupreraaa+r P C R - w e h a w e  - 



A2) < - ; so by induction we can constmct a disjoint 

(An) of members of R such that .(An) b n for n 6 N . 

6 
Definition 5. An &&bra R of &sets of a set 0 i s  said to have the 

- - - - - - - - - - - - 
-- -- 

terwlaatio_n_ propert2 in p-pppp case r --- even  pair of sequences ( A  a ) 1 ( B )  p--pp , - 

. . 
of m s  of R 'mch that An - C Bm for n,m C N , there exists 



51. Introduction. 

The material i n  t h i s  chapter i s  essentially contained i n  the 

Antosik-Swartz paper [ 2 f with the exception of corollary L of 

theorem. The uniform boundedness principle, one of the  most important 

theorems i n  Functional Analysis, is a result which derives a conclusion 

category theorera paves the way for ~ a m e  generalizatipn of the classical 

~ r s i o n  of the theorem. A s  a preliminary, in  section 2 ,  we obtain a 

result concerning infinite matrices i n  a topological vector space which 
m - 

is sawwhat in the s p i r i t  of the Antosik-Hikusinski diagonal th601em 1 11. 
- - - - 

By introducing the notion of a K - m d e d  set ,  we obtain an analogous 

s t a w n t  of the uniform boundedness theor* which is valid for any , 

arbitrary *topological vector space, 



W e  start with a lemma which can be viewed a s  an elementary 

sliding hump type argument. - , ,  

Lemma 1. Iet ( A  ) be an arbi t rary  i n f i n i t e  m a t r i x  of posit ive nm 
* / .  

numbers. Suppose (xmn ) i s  a given in f in i t e  m k t r i x  of non-negative 
* i 

nwnbers such t h a t -  l i m  x = 0 for each n and lk xm = 0 fo r  
- z i  mn_ - - , 

each m  . !t'hen there exis t?  a subsequence (mi) of posi t ive  integers 

Proof. Set  m, = 1 . Suppose ml ,m2, t m  have been chusen such 
n I 

2 
1 , 2  ,..., n and i # j . since/ 

that Xm. m < A i j  f o r  i , j  = 
1 j 

o fo r  i = 1,2,...,n, can choose - / l i m x  = O  and l h x  = 
P miP P mi a 

i 
and xm ' '.+I, i for 'i,n+l , n+lmi m n+l > en' s u d  tha t  xm 

i n+l 

the resu l t  f o l l w s .  i = 1 2 , .  . n . By induction 
- 

We use the above 1- t o  obtain our m a i n  r e s u l t  i n  this 

section. 

Ihwrem 1. Tet ( x ~ )  be an i n f i n i t e  matrix i? a topological vector 

space X . Svppose (i) lin xm .= 0 for  each. n and (ii) each 
m 

subsequence (n. ) such 
'k 

subsequexe (n.1 of posit ive integers has a 
3 

m 

is generated by the s e t  Proof. Since eve- t o w l w i c a l  vector space 



of all continuazs F-SeDZiTlOrms cm X , it is sufficient to consider the 
- -- A- 

case when X ' is  an P-seminoneed space. We shim that 
(Xmm)m~N . has a 

subsequence -which converges to zero. Since the same argmm=nt can be 

applied to an arbitrary subsequence of (x ) ma meN 
, we A1 b~ that 

of posi t ive  nlllabers such 
4 

that lim x,,, = 0 for each 
n s 

*tz ( A .  . be an i n f i n i t e  matrix 
13 

that C A .  . < a . Condition (ii) implies 
- 2 ,  j - 1 3  - 

m . Thus, by iencaa 1, there exists a subsequence (nil 
Of -itiY 

F-seminorm.) To avoid h u b l e  subscripts assume n = i . L e t  (ik) i 
be the subsequence satisfying the conclusion of condition (ii). Then for 

' J" 

., 
every k 6 W , 

:Ix. ii = / ] C X .  - C X .  If 
=kik &=I 9 . 5  kl 'ki8 

C f  k 

bD 

;ow note that lim if Z x 11 = 0 by f i i )  , and 
k G=l 9 . 5  

P 

m 

lim E X .  = O  b y t h e f a c t t h a t  C X < m .  Henoel imx = O .  
k 8=l ' 2 8  i , j  i j k lkik 

- 

Renta rk .  In the above theorem it can be concluded that lim xm = 0 
n 

uniformly for m t N . 



TO verify this let (mi ) and in. ) he two subsequences of 
- -- - - 

positive integers. I t  is  readily seen that the matrix bx ) sat i s f ies  m. n 
1 j 

conditions (i) and (ii). An application of theorem 1 s h s  that 

lim x = 0 . This shas &at lira xm = 0 uniformly for rn C N . 
i m.n 

1 i I n 



The classic& unifonn bouadedness theorem states that a point- 

wise bounded fan i ly  o f  continuous l i n e a r  operators on a Banach space 

i s  uniformly bamded on bounded subse ts .  By in t roduc ing  the notion 'of  - 
a K-bounded set w e  give an analegous statement of the 

theorem which is  v a l i d  f o r  a r b i t r a r y  t opo log ica l  vec to  

a - -A - - L - - - - - A - 
Def in i t ion  1. Let  B be a subse t  of a topologica l  vector spa& X . 
3 is  said t o  be K - h x m d e d  i f  for each sequence fxn) o f  elements of B 

and each sequence of s c a l a r s  (t 1 which converges t o  zero ,  the sequence 
- - - L L  - 

--- 

(t x ) has a subsequence (tn xn 1 such that ' tn.xn C x .  n n i i i=l r i 
< 

Remark. It is  easy to see that every K-bounded set is bounded. Bn 

example of a bunded subse t  of a no& space, which is not  K-bounded, 

is given at t h e  end of this sec t ion .  

De f in i t i on  2. A topological vec to r  space X is said t o  - ix - -  a (#)-space - - - 

a 

i f  every bounded subset of X is  K-hunded. 

- p s i t i o n  1. Let X 'be an P-SaDind~gaecf space, Thgn X is a 

(:c) -space if and o n l y  i f  each sequence (xn) in X , w h i c h  w r m r g e s  
OD 

to zero, has a subsequence 
"ni 

I s u c h t h a t  Z x  f X .  
i=l ni 

C 

?roof. To prove Zecessaxy part suppose X is a (XI -Space- Le t  



wfij+& Se a local - - base at zero in - X with V c V 
+. 

- nsl-* 

')r 
for n C N . Since lin x = D , we can construct a @sequence ini) 

n n  

1 
of gesitive mtqers such t h a t  x f Vi for n 2 n i 

Define #e 
n 

- 1 
posi t ive  i i t e g e r s  SJL-. <:at - 

- t  
(t x ) < . i . .  , Z x 6 X . 

n .  n. n. i=I r, 1 1  i=l 1 
i 



meorem I. (The uniform boundedness principle.) 

& 
- - -- 

x,et f be a family of pointwise bounded continuous linear 

func t ions  of a topological vector space X t o  a topologicd vector 

space Y . Then F is unifomly bounded on every K-bounded subset 

A 0 f  X .  

P K O O ~ .  ut B = i f w i  

i s  a bounded subset  of 

and (tn) a sequence o 

f f f and x C A) . We want t o  show tha t  B 

Let be a sequence in 

f p o s i t i v e  n-rs with l i m  tn = 0 . 
n 

4 'I 
S e t  am = tn fni t  xm) for n,m = 1.2.3 ,... . Since the 

m - 

sequence f f  ) of tontinaas l i n e a r  functions i s  pointwise bounded and 
n t 

II 
(1) l i m  a;= l int '  f ( t  x ) = o for  m = 1.2, ... . 

n n n m m  

Since A i s  K-5ounded, each subsequence (mi] of bf has a 

P 4 
~ u h e p e n c e  In. ) such t3at L t x f X . Again by the facts 

1. m rn 
J j=l i i j j 

f ? ~ t  (fn) i s  p i n t v i s e  bounded and lim t' = 0 we have 
n 



- - - - - - - 

~ ~ m n r k .  I f  X i s  a fK)-space, then F is  uniformiy bounded on every 

' bounded subset of X . 
1 

Corollary I. (Banach-Steinhaus). 

Let (in) be a sequence of  continuous l i n e a r  functions from 

an F-seminormed (K)-space X t o  a Hausdorff topological  vector space 

Y . I f  l im f n  fx) = f l x )  e x i s t s  f o r  every x F X , then f is a 
n 

continuous l i n e a r  function from X t o  Y . Moreover, t h i s  convergence 

is uniform on ever). ampact subset  of X . 

P m f .  Since Y i s  Hrmsdorff, f :  X -+ Y i s  w e l l  defined and evidently 

it is l inear .  F i r s t  w e  s h w  that f is  continuous. Since X is f i r s t  

countable it suf f i ces  to show t h a t  f o r  each sequence (xn) in X with 

l i m  f (xn) 
n 

Construct, a s  i n  proposi t ion 1, a sequence ( t  ) of pos i t ive  n 

numbers w i t h  l i m  t = OJ such that l im t x = 0 . 
n n  n n n  

{tnxn\  n t N) i s  a bounded subset of X and, moreover. s ince  

l i m  f ( x )  = f (x )  f o r  each x 6 X , the  sequence (f  i s  pointwise 
n n  n 

bounded. Therefore theonem 1 implies that I4 =. ifn(tmxm)'ln.m C N) 

is a bounded subset  of Y . Since l i m  f (t x ) = f (t x f o r  each 
IB m n n  n n 

n C N , (fftnxn)fntN i s  a sequence i n  h and moreover fi is bounded. 

1 
Hence f (xn) = lim - f (t x 1 = 0 . 

tn 
n n 



subset  K of X . Suppose (in-f) ,+ does not  mnverge to  zezo 

1, 
uniformly on K . Then there exists a  sequence (nil of (n) , a 

sequence (x. )  in K and a neighbazrhood U of zero i n  Y such that 
1 

Since X is first camtable. I[ 'A sequent ia l ly  -act, and hence. 

perhaps by passing to a subsequence, , w e  may take (xi) converging to 

a point  x in K . 

S e t  a. . = ( f  - f) (X - x . The pointwise convergence of 
1 3  n.. j 

(f,) t o  f implies that (2) lim aij  = 0 f o r  j = 1.2 .... . 
i 

Since X i s  an F-seminormed (K)-space, proposition 1 implies that 

every subsequence ( x .  - x ) ~ ~  of (I - x I j f H  has - a subsequence 
Ik j 

- x) f X and hence 

(0 m 

3 lim C a  = lim (f - f ) (  E x .  -X I  = O .  
i j 

i C = l  8 
i i ~ = l  ]kt 

Hen= theorem d of the  previous sec t ion implies that 

l + n  t fn - f t  (xi - XI = aii = O .  Since 1 9  Ifn - f ) ( x )  = O R  
1 i 1 i 

w e  have l i m  (f - f )  (xy) = 0 which is  a wnt rad ic t ion  to (1) .- 
I X; - - 

1 



(K) -space, and Z a Hausdorf f topological  vector  space. If the 

b i l i n e a r  map P: X x Y + Z is separately continuous, then F is 

jo in t ly  continuous. 

~ r o o f .  Since X x Y is f i r s t  countable, it s u f f i c e s  t o  show t h a t  

t o  zero in X and Y respectively.  Consider t h e  sequence ( fn )  of 
f'- = 

cxhtinuous linear functions of Y t o  Z given by f (y) = F(xn,y) 
n 

- - 
7; - 

- 

for-e h n . The separate continuity of F implies t h a t  lim f, ( y )  = 0 S n 

f o r  every y i n  Y . Since {oIy ,y ,...... is  a sequent ia l ly  1 2  

compact subset of x . the l a s t  corol lary  implies t h a t  lim fn(y?  = 0 
n 

1 2  n n n n 
'i uniformly on {O ,Y ,y . . . . . . .) and hence lim F(x y ) = li. fn(yn) = 0 . 

Corollary 3. If  E -is a subset of a seminormed spa* X such t h a t  

f (E) is bounded f o r  every f € X* , then E is  hunded.  
/ 

Proof. X* is a Banach space v i t h  the usual  norm topology. Since 

A A 

f(E) is bounded f o r  each f € X*, E = (xlx 6 E} i s  a family of  point-  

wise bounded continuous l i n e a r  functions on X* , Therefore theorem 1 



The above results are usually deriv mans Qf thee 

C a t e g w  theorem (see 1 . The assweption of canpletaness or 

barrelednessis needed there. The following is an exaaple of a nolrmed 

space for which the uniform M e d n e s s  principle does not hold. 

Let c be the space of real sequences (t,) such that 
0 0 

tn 
= 0 eventuallj. and equip c w i t h  the sup no=. The dual of 

00 

coo is then C1 . Let e be the real sequence which has value 1 
n 

in the nth place and zero elsewhere. Then 
n e ~  

is pointwise 

Note that the set fe,ln € N] is bounded but i s  not 

K-bounded. ALso n o t e  that coo is  neither complete nor a fK) -space. 
i' 

An interesting but caaplicated example of a non-complete n& 

f ii) - space is given in LloJ . The fullowing is- a siraple example of 

L e t  X be a Banach space, 
i 

topology is  a (K) -space. b t  A c X - 
corollary iiPplies that A is bounded 

the fact that every Banad space is a 

We show that X with the weak 

be weakly bounded, The l a s t  

and hen- A is K-bounded by 

( K f  -space. TPris shows that x 

with the weak tppoloqy is a W-space. But  in general this space i s  

not complete. 



Introduction. 

fie theory of vector  rrreasures, in addit ion to i t s  major r o l e  

i n  in tegra t ion  theory, is also important in some a reas  of f u n c t i o k ~  

of  vector measure theory. In doing so our  s t ra tegy is t o  begin with 

xrare bas ic  set theoretic manipulations. This is i n  f a c t  mcessary 

based on the s e t  theoretic structure of the corresponding domain space, 

t 
which i s  generahly a r i n g  of  subsets  of a given set R . I n  order  t o  

,- 
#' 

generalize suk important results, we define vector  measures taking 

values in an arbitrary topological vector space instead of a Banach 

space. Since every topological vector space is generated by a class 

of F-semiiSonns, i n  =st cases the r e s d t s  obtainea To=F-seminornrea 
k-. I 

\ )  

y c e s  can be readi ly  generalized t o  topological\ f e c t o r  spaces. 

i 
In  sect ion 2 ve obta in  s a ~  bas ic  s traightforward proper t ies  

!?--% 

i of vector  measures. Se!ction 3 is s t a r t e d  with a simple version of  thk 

concerning Gs~qai+ vector spaces, inbluding a general izat ion of  

I i 

msentha l ' s  lemma. this 1- t o  e s t a b l i s h  a s t r u c t u r a l  l i n k  "it3 
betveen t& a a ~ c h  spaces co, 8- and bounded vector  measures. This 

in t u r n  beqonses a porrerful tool t o  obta in  some important results 

the Orl icz-pet t i s  theorem for locally convex spaces. The mater ia ls  i n  

1 sec t ions  2 and 3, al$muc generalized t o  some ex ten t ,  are essen t i a l ly  



J.J. Uhl, ~ r .  1 63. Section 4 deals with convergence and boundedness 

Sf sequences of vector measures. The Vitali-Hahn-Saks-likodym 

theorem, which is proved i n  a mare general set t ing,  plays a v i t a l  ro le  

i n  this section. A t  the end o f  t h i s  section-we introduce the notion 

of full d a s s e s  and disc& several applications of the previous results 

in matrix sumnability, 
- - - 



As the t i t l e  indicates, we group in this section all basic 

properties of vector measures which follow directly from, definitions. 

*. 
- Definition 1. Let R be a ring of subsets of a se t  i2 and X a 

topological vector space. A function y: R + X  is  called a vector 

called countably additive. Moreorrer, i f  (C(E) I E  E R l  is a bounded 

subset of X , t h e n  p is called bounded. 

I n  what follows, unless otherwise stated, R 'denotes a ring 

of subsets of a set fi and X denotes a seminonaed spaoe. 

Definition. 2. fPt pr R + x be apector nasasnre. The variatkon 

of p is  the extended non-negat function 1 p 1 whose value on a 

set E 5 fi is given by, 

1111 (El = sup{ L ilp(l?ii) 11 In C N. El .EZI.. . ,E are pairrise disjoint 
n i=l 

n 
rabers of R such that U Ei - C E) . 

i=l 

If Ip] (R) < - , then is called a measure of bounded variation. 



varJation of the real valued measure x 9  . If Ifpll (Q> < , then p 

is  galled a measure of bounded semivariation. 

!The folloving proposition is  s ta ted without a proof since its 

ver i f icat ion involves only simple computations f 
,f' 

* - t/ 
Pm=sition 1. a. /ul  LEI Z /~I .I /~CE) f o r  every E c Sd and - - - - 

c. 1 !J 1 and IIpII are both monotone, i.e. , 

W e  use the fo l lw ing  1- t o  obtain a f e w  other results. 

- 

 emm ma 1. I f  w is a f i n i t e t s e t  of ccrnplex numbers, then there exists 

Proof. Divide W into four d i s jo ip t  s e t s  taking intersection with each 

quadrant of the complex plane. For at  l e a s t  one of these s e t s ,  c a l l  

it V , we have 



(The l a s t  equality follows from the fact that all z € V are 

%mark. As a direct consequence of t h i s  lemnra, we have the f o l l ~ g .  

rf sup{ 1 C zi 1 1 P is a f in i te  subset of N) < , then Z 1 zi 1 < - 
i €F i=l 

Proposition 2. A vector measure p: R + X is of bounded semivariation 

proof. ~ e t  x* C X* , l/x*!l 5 1 and let El,E 2,..., E be pairwise n 

disjoint members of I? , Then the above lemna implies that there exists 



- -  ~. - -  -~ 

Consequently, i f  P is bounded, then JA i s  of bounded semivariation. 

The converse is ubvious. 

Emuark. In view of Proposition 2 a vector measure of  bounded semivariation 

' ' ~  - 
is also called a bounded vector measure. 

tr 



- ---L t--- --- 7 
5 3 ,  strongly bounded vector  measures. 

O m  obvious property of a countably additive vector  measure y 

defined on a O - r i n g  R is  that i f  (E is a sequence of pairuise dis- 
a3 

n - 
j o i n t  members of R , then C u(E ) i s  subseries' $and unconditionally) 

n n=l 
convergent, Nonetheless this property is  shared by many noncountably 

. additive vector  measures, For instance, every bounded s c a l a r  mxisure 

has this property. On the other  hand t he  vector  measure V: A + co , 

&eke A i s  the family of all f i n i t e ' s u b s e t s  of H , defined by 

V(A)  = X, is a bounded - vector  measure - - not sa t i s fy ing  the -eve-pro_perty. - - - 

Because of i ts  importance i n  theory of vector  measures*we s ing le  ou t  t h i s  

Defini t ion 1. Let R be a r i n g  of subsets  of a s e t  2 and X a 

tapolog+cdL vector  space, A vector  measure p: R -+ X i s  cal led:  

(i) 'strongly additive i n  case I3 p iE ) csnvarrfes for each sequence 
n n=l  

(E ) of pairwise d i s j o i n t  
n 

( i i l  + strOngly bcunded in case lim p( i ) = 0 for each sCquence (En) 
n 

n 

of pairwise disjoint members of R . 

Proposition 1. be t  p: R + X be a vector  measure, 

(a) Suppose X i s  a l o c a l l y  mnvex space. Then i f  p is  strongly 
- - -  - - - - - - - 

bounded, Li is  ?munded, 
- - --- 

(bl If X is sequentially complete then s ta tements  (i) an?3 (ii) are 

equivalent.  



- -- - - 

mf. (a1 Let 1: be a continuous seminorm on X . It is sufficient 

t o  show that p is bounded w i t h  respect to 11 . Define a: R + R+ 

If A C B  then, - 

S i n c e  lim z(E f = (I for each dis jo in t  sequence hn) in k? , 1.5 
n n 

fernna 1 implies that 3 is bound&, i . e . ,  p is bonnded. 

(b) (i) always -lies (iil, To shov t h a t  (ii) implies (i) let 

(En) be a sequence of p a i m i s e  d i s j o i n t  members of . Suppose 

2 ;;!Xf d w s  not s a t i s f q  &&e aubng ~ K d f t i o n .  Then there exis ts  an 
n=l  

increasing sequence (n.1 of positive integers such t h a t  
1 

lin 2 u ( E . )  # 3 . se t  ? = i' u E . *en Pi) ie a sequence 
i j=n. I] i j-7 . j 

1 1 



-. 
f,4, theorem 2 .  

I * 
Z 

2 .  In sCid+ieaezt i i l  t h e  convergence of 7 :(En) is subseries 
n = l  

l%.e foi',ffr'rr.rj Aefrni t icn extends  the earlier one to a 

& f i n i t i o n  2 .  *i.e-, be a ring of subsets of a set 5 and X a 

p i v i s e  &s:obr d e r s  ~f 4 , lim ;i (E j = 2 unifornly for 
f. 

n m 



W e  need the fozfowinq shpfffi;e& version of tfre Ruseni3zFs 
1 

l e ~ t c e a  I143 t o  es tabl ish air A n  theorem of t h i s  section. Although the 

proof of t h i s  lemma i s  simple it represents one of the  most bpor t an t  

resu l t s  i n  measure theory. 

(2) be a sequence of uniformly bounded nonnegative %a1 - 
n 

L e m m  1, Let 

valued- measures 

for each E > 0 

N defined on 2 -the power set of posit ive integers. Then 

, there exis t s  an infinite subset P of N such tha t  

lif~\fp)) < E for every p f P . 
P' 

"5 
P r o o f .  Let E > 0 . Part i t ion N into a sequence (M,) of painvise 

disjoint i n f in i t e  subsets of N . I f  there ex is t s  n € N such tha t  

M f E for every p t Mn , our goal is  achieved by se t t ing  
n p 

M = ? . Suppose for  each n , there exis t s  pn f Mn such tha t  
n 

u t  P = !pn j n c nl . Then P n ( M ~ \  {pnl) = + for  
1 1 

n = 1,2,.. . and hence 

( 2 )  (PI) + 2 (X n \!pnj = 2(P1 8 ( M , \ { ~ , ) ) )  5 M , where 

'n Pn n 



the process does not stop, there is an inf in i te  subset P2 of P 
1 

such that ( 4 )  v(P2)  5 M - 2 €  for  every p f p2 . 
P 

Thus the process must stop before n i terat ions where n  i s  

the smallest positive integer such tha t  M - n ~  < 0 .  his completes the 

proof* 

Now we are in a position t o  prwe our main theorem i n  th is  

section, This theorem gives a characterization for  vector measures which 

are not strongly bounded, Recall that  coo-the space of all f in i t e ly  

nonzero sequences with t 6 p norm, and m -the space of a l l  f in i te ly  0 

valued sequences also w i &  the sup nonn, are dense subspaces of co 

and Cm respectively. 

Theorem 1. Let R be a ring of subsets of a s e t  .Q and X a 

seminonned space. Suppose p: R -+ X is  7 bounded vector measure. Then 

D is not strongly bound& i f  there exis ts  a l inear topological 

embedding T:. coo + X and a sequence (E ) of pairwise dis joint  n 

mxnkers of R such that T(en) = p ( E  1 where e denotes the 
n n 

sequence, 1 in the nth place and zero elsewhere. 

I f ,  in addition, R is a g-ring then the above st-atement 

r-s t rue  i f  the space c is  replaced by m 
00 0 

- - 

P r a o f .  Suppose 2: k? + X i s  not strongly bounded. Then there 
- 

exists a dis joint  sequence (En) in R and an E > 0 such that 



By virtue of the Hahn-Banach theorem there i s  f f X* for 
n 

each n f N such that 

For n f fJ , consider the variation Ifn o p 1 of the scalar 

valued measure f o p . Since 1 f 0 p 1 E 5 ( 1  for  
n a 

E f ( I f n  !J/)nCN is a uniformly bounded sequence of nonnegative 

real valued measures. r 
For nfN 'define p: 2N + R+ by, 

n 

?he strong additivity of I fn 0 p 1 implies that p is a measure. 
n 

Since for nQ? and p 5 N , il(P) = Z 1 f E 5 p ( 1  , (11) is  
i E P  n 

n n 

a uniformly bounded sequence of nonnegative real valued measures. By 1 . 

:emma 1 there exists  an i n f i n i t e  subset P = {pl < p2 < ...... 1 of ,/ 

?i such that 
i 

( 3 )  :! ( P \  ipn! < E/Z  for every p F P . n 
Pn 

Q) 

Define T: c + X  by ~ f ( x , ) ) =  i;' xnp(E ) . Sinceonly 
00 n = l  'n 

- - 

f i n i + e l y  nany t e r n  are nonzero in the above series,  it i s  readily seen 
- - - - -&at L T i s  linear. %reover i f  f C X *  with •’ 5 1 , then 



On the other hqnd for mEN , 
1 

i n  1 c I f  T( (x,) ) I (since l l f  ! = 1) ' 
pm .Pm 



Taking supremum over m an the right hand side me have 

1 

(4) and (5)  implies T i s  a linear topological enbeddkng.  hall^ 

note tha t  T(en l  = 2 lE ) . 
Pn - 

Moving to the case in which R is'a a-ring, we proceeq as ' 

- . I 

, . 
disjoint sequence (En) of im&ers of R such that 

It is readi ly  seen t h a t  ( 1  i s  a uniformly bounded s4tguence of 
n 

mnnegative real valued nreasures . Again ~ b m a  1 implies th& there 

exists an i n f i n i t e  subset P = ip1 < p2 < ...I of N such that. 

If tx,] f ma, ue can w r i t e  fxn) = C Z d A  uhem 
m=l m 

,A2 , .  . ,%< are pai rwix  disjoint subsets of N such that 



U A = N , Define Tt m + X by, 
= 0 

The linearity of T can be' as i ly  verified by using same elementary P 
set  algegra. w i t h  ]If 11 5 1 , then 



Taking supremum over 4 on the right h& side w e  667 

(8) and (9) implies that T i s  a linear to pol^@&^&. embedding of 
> t- 

m to X .  
0 

F i n a l l y  we note that T ( e  1 = p (E ) . 
n Pn 

3 

a copy of X" means that there is a linear topological enbedding T: X -t Y. 

Y 



-- 

Corollary 1. Let X &-a  B G c h F p a i c o n t a i n i n g  no mpy of c I f  
OD 0 .  , 

the series Z x is umrdered bounded, i.e. 1 ZX,]A is  a f i n i t e  
n n=l n€A 

00 

subset of 14) is a bounded subset of X , then Z xn is subseries 
n=l 

convergi?nt. 

P m f .  Let A be t h e  r i n g  of all  f i n i t e  subsets  of M . Define 
L, Z 

p: A + X by 11 (A) = Z xn . Clearly L1 is a bounded vector  measure. 
nfA 

Since X does not  m n t a i n  a copy of c theoren 1 implies that 11 
0' 

is stronqly addit ive.  aence C x = C ~ ( { n ) )  is subser ies  convergent. 
~ \ n 
', = n=l n=l 

t 
1 ' 

~ o r n l l a q k .  bt R be a r i n g  of  subsets  of  a set i2 and x a l o c a l l y  

mnvex space. Suppose p: R -+ X i s  a bounded vector  measure. I f  
P 

lim p (E 1 e x i s t s  weakly in X f o r  every increasing sequence (E,) 
n n 

of members of R , then p is strongly bounded, 

Proof W e  may assume that X is a seminolmed space because of the 

following reasons. 

(1) I f  11 !I i s  a continuous seminonn on X and i f  the  sequence 

(x,) i n  x weakly - a n v e r g e s  with ' r espect  t o  the l o c a l l y  convex 

topology on x , then (xn) Converges weakly i n  ( X , i l  11) . 

( 2 )  p i s  strongly M e d  with respect  t o t h e  loda l ly  convex topology 
- - - - - - - - --- - - - - - -- 

if and only i f  is  strongly bounded with respect  to each 
- - r - - 

continuous semiaorm j l  on X . 



L - 

' there  i s  a topological  l i n e a r  embedding T: coo + X  and a sew'n 
V-=-----d 

(Pn) of d i s j o i n t  renhers of R such that p(Pn) . S e t  
\ 

E = U Fn . Then T (  C en) = P(E,). m n=l = n=l 

First we show that l i m  
m 

m 
Suppose lim C en = (an) weakly 

m n=l 
m 

hence l i m e k (  C e = e k ( ( a  1 ) .  
m A It n=P 

does not e x i s t  weakly 

extended uniquely w e r  c t o  a member of  c; . We denote this 
Q - 

extension by foT . m Me other  hand it g i c; , then g T - l e #  
0 

continuous l i n e a r  functional  on the  subspace T(cOol of X .A v i r t u e  

-1 of the Hahn-Banach theorem w e  can extend g T over X t a member 
- -7 0 P; - 

of X* . W e  denote t h i s  extension by f . It  is  
t - 

foT = g . Therefore every member of c* can be 
0 f 

- 
f T f o r  some f C X* . 
0 



of the Hahn-Banach theorem there exists g 6 X* such that 1 

and g vanishes on T ( C ~ ~ )  - lhis m n t r a d i c t s  the f a c t  

' 
p(En) = x weakly i n  X . Hence x C T(cO04 . * l he re fo re  

t he re  e x i s t s  a sequence (an] ' in c such that l im T(a ) = x i n  x . 00 
n !? 

~ e t  f 6 X*; then  

(2) l i m  f T(a ) = f Cx) . 
o n n 

Also note  t h a t  (an) i s  Cauchy i n  c 00 s ince  (T(a,) 1 i s  Cauchy i n  x . 
Consequently t h e r e  is a f c such t h a t  l im an = a' i n  co  . 

0 
Since - 

n 

By ( I ) ,  (2) and (3 )  t he  r i g h t  hand s i d e  tends t o  zero as n tends  

n 
t o  i n f i n i t y .  Consequently lin Z em e x i s t s  weakly. This  cont rad ic t ion  

n m = l  

shows t h a t  p i s  s t rongly  bounded. This completes the  proof,  

Nuw w e  employ the above c o r o l l a r y  t o  prove the O r l i c z - ~ e t t i s  

theor- f o r  l o c a l l y  convex spaces. This theorem was f i r s t  proved by 
- - - -. - - - - - - - - - - - - - - - 

arlicz f o r  veakly sequen t i a l l y  c m p l e t e  Banach spaces. Kalton 1 8  J 
- --- -- - -- -- - - - - - - 

r ecen t ly  obtained t h i s  theorem for separable topological ,groups and then 

derived the r e s u l t  f o r  separable  l o c a l l y  convex spaces. For an 



- - - -  - -  - -- 

a l t e r n a t i v e  proof o f  the  l o c a l l y  convex version of t h i s  theorem, the  

reader is re fe r red  t o  McArthurs paper 1111. 

> 
corol lary  3. ( o r l i c z - ~ e t t i s )  . Let X be a l o c a l l y  convex space. I f  

00 w 

1 x is a weakly subseries convergent series i n  X , then C x is 
n n=l n n=l  

subseries. convergent. 

Pmof. Let A be the  r i n g  of a l l  f i n i t e  subsets  of N . Define 

I .  lJ: A -+ X by I-I (A) = C x* - . Evidently y is  f i n i t e l y  addit ive.  To 
n CA 

n 

sh& t h a t  p is  bounded, it s u f f i c e s  t o  prove t h a t  is bounded with 

. . 
respect t o  each continuous seminorm 11 /I on X . Consider the  subset - 

h 

F = { .Z xn ~AIC A )  of X ! 1 )  ; the  second dual of X with r e s p e e  
n f A  

t o  t h e  seminorm topology, For every f f  (x, / /  /I) *, f C X*; the dual 

space o f  X with respect  t o  t h e  loca l ly  convex topology, and hence 

m m 

L f (x ) i s  subierie; convergent so that L I f (xn)  I < . COnse4uently 
n=l n . n=l 

( X I  I! * is  a Banach space, the  un i fom boundedness pr incple  implies 

t h a t  : 

that i: is bounded. 



hypothesis,  l im p(An) = l im C x e x i s t s  weakly. Therefore t he  
n ma, m .  n 

last co ro l l a ry  impl ies  that p is s t rongly  bounded and hence 

C x s a t i s f i e s  the Cauchy condit ion f o r  errery A 
nfA n 

C x e x i s t s  weakly i n  X , 1.4 theorem 2 implies  
- n 
~ C A  

convergent i n  X . This ~ l e t e s  t h e  proof. 

. I n  ch-er 4 we obtain , anot3er  version 

theorem. 

c N . Since - 

t h a t  - C xn is  
nfA 

of  the  Or l i cz -Pe t t i s  

The following c o r o l l a r y  e s t a b l i s h e s  a chaxac ter iza t ion  of 

complete seminoxed spaces n o t  conta in ing  a copy of c 
00 

Corollary 4. A complete smimnned space X conta ins  no copy of c 
w 00 

i f  and only i f  every s e r i e s  L x i n  X , with  i 1 f (x , )  1 < f o r  n 
n=l n= l  

every f f X*, i s  subser ies  convergent. 

Proof. F i r s t  suppose X conta ins  no copy of c 
00 ' 

L e t  Z x  be 
n n=l 

a series in X with 2 i(xn) / < = f o r  f C X*. iie def ine 
n=l  

2: A + x prec i se ly  as i n  the proof of t h e  last  co ro l l a ry  and follows 



TO show that t h e  converse is t m e ,  suppose X conta ins  a 

copy of coo . Then t h e r e  a r e  many nonconvergent series C x i n  x 
n 

n=l  

such t h a t  C f f (x) f < f o r  f f X* . 
n=l 

Corol lary 5. Let X be a complete s e n i n q d  space. If X* does 

not  conta in  a copy of 4- , then X* conta ins  no copy of c 0 -  

Proof. Let 1 fn be a series i n  X*  such that E / p ( f n )  ] < 
n=l n=l 

A 

f o r  F C X**. I f  E c N, then Z x( f  (= C f (x)) exists f o r  x € X . - 
n a  n c  

By v i r t u e  of the Banach-Steinhaus theorem, .Z f converges with respec t  
n e  

t o  the weak* topology on X* . Define p: 2N + X* by g ( E )  = i: f - 
n f~ 

n 

weak* l i m i t .  Evident ly p is f i n i t e l y  addi t ive .  To show that U is 

bounded consider  t h e  subset F = f E; f -weak* l i m i t f ~  c N} of X*  . BY 
n - 

n GE 
CO cn 

A 

t h e  f a c t  t h a t  E j f ( x )  / = Z x < rn 
r. f o r  x C X ,  we have that F 

n = l  n=l 

is p i n t w i s e  Munded. Hence the uniform boundedness pr&ciple implies 



Sin- X* sbot mtain a copy a•’ tco , the last part of t h e a e m  1 
cv m 

implies t h a t  is  strongly bounded. Consequently 2 f = 2 ~ ( { n ) )  
n 

n=l n=l  

is su5series c o n v e q e n t .  Hence the l a s t  co ro l l a ry  implies that X* 

contains no copy of c . 5 ~ s  szzpletes t h e  proof. 
J 

The res l~ l ts  ire obtained so far demonstrate the u t i l i t y  of 

theoren 1 in the tiieorl of topologi-a1 vector spaces. 



94. Convergence and boundedness o f  a sequence o f  s t r o n g l y  

bounded v e c t o r  measures. 

The main r e s u l t  w e  o b t a i n  i n  t h i s  s e c t i o n  concerning sequences 

of s t r o n g l y  bounded v e c t o r  measures i s  the V i t a l i - H a h n - S a k s - ~ i k o d p  : 

theorem. We prove this theorem f o r  v e c t o r  measures d e f i n e d  on  a r i n g  

w i t h  a weaker structure than o f  a 3-ring.  The proof  is a m o d i f i c a t i o n  

of the proof g imn  in 1 7 I by Barbara  F a i r e s .  We use  t h i s  improved 

v e r s i o n  of t h e  theorem to o b t a i n  g e n e r a l i z a t i o n s  of b o t h t h e  p h i l i p s  and 

S c h u  lemas. Fie start wi th  the fo l lowing  d e f i n i t i o n .  

D e f i n i t i o n  1. Let R be a r i n g  o f  s u b s e t s  o f  a set 3 . R is  s a i d  

to have property (31) if f o r  every  d i s j o i n t  sequence (A,) i n  R and 

every  sequence [9,i in R with  Q B = @ f o r  m,n f N , t h e r e  
Am n 

exists a subsequence ( A  o f  (A,) and C C such t h a t :  
n. 
1 

- A c c c i J 3 -  = ; and c 1 = f o r  n f fnlrn2'  ...... 1 .  n .  - . L 

i=l r n=l 

"narks 1. Tie class of %-r ings  and the c l a s s  of a l g e b r a s  w i t h  the 

L?terpretaxior .  ?ro-pe,rty 50th  have p r o p e r t y  (QI) . 

2 .  Let 2 S e  a r i n g  of subsets of N w i t h  p r o p e r t y  (QI) . 
If 2 costairs all f i r i t e  s.&sets of N , t h e n  R is a QG-ring. 



u t  there is  a subseweme (A 1 of (An) and c F P such #at 
n: 

j A C C ,  C 7 ( a \ (  J A )  = :  and C 1  An = + f o r  n  t in l ,n2 ,...... 1 .  n .  - i=l 1 n  n = l  

03 

This i m p l i e s  d A = C E R . There fore  R i s  a Qa-ring. 
i=l n i 

P r o p o s i t i o n  1. I f  R is a r i n g  wi th  p r o p e r t y  (PI) , t h e n  R h a s  t h e  

1 
fol lowing p r o p e r t y  ( w e  ca l l  t h i s  p r o p e r t y  (21) ) . 
i 

For  qvery d i s j o i n t  sequence (An) i n  R and  every  sequence 

(8,) i n  R with An 5 B f o r  m,n C N , t h e r e  e x i s t s  a subsequence 
m 

(An. ) o f  ( A ~ )  and C F R such that: 
1 

Li A C C 5 l B and C ? A = 0 f o r  n f 1x5,n2, ...... 1 . 
n .  - i=l i n n 

n=l 

?roof .  t (A,) be  a d i s j o i n t  sequence i n  R and (B  a sequence 
n  

i n  R . Suppose An f Bm f o r  n , n  C N . se t  Dn = B1\ B n  f o r  n  t N . 

S i n c e  A C B f o r  m,n F N , A 7 D = $ f o r  n ,n  f N . Since  R 
n -  m n m 

.has p r o p e r t y  (QI) , t h e r e  e x i s t s  a subsequence ( A  o f  (An) and 
n; 

C C R such that: 

(11 A = c ,  c ' n  - 1 ( - D = ; and C 3 A = $ for n f {nl,n2 ,...... 1 .  . 
i=l i n 

n=l n  



The proposition follows fram (1) and ( 2 )  . 
Theorem I. (Yitali-Hahn-Saks-~ik&ym). 

t X be a topological vector space and R a ring of subsets 

of a set 2 with property (QI) . Suppose ( 1  i s  a sequence of strongly 
n 

bounded X valued measures on R w i t h  l i m  u ( E )  = 0 for every E C R . 
n  n  

Then t h e  seqlr?nce ( u )  is uniformly strongly bounded. i.e.. f o r  every 
n 

d i s j o i n t  seq-wnce (En) i n  R lim u(E 1' = 0 uniformly in m . 
n  

n m 

proof.  S i n c e  x rs generated by a family .of F-seminarhs, we may assume 

t h a t  X i s  ar. F-semmnwd space. Suppose the contrary.. Then there exists 

a d i s j o i n t  sequence (En) in R , a n  E ; 0 and a subsequence ( ) of 
m 

n  

lairvise disjoint u ( f i n i t e  subsecs of N . Consldar the f o l l o u h g  tra 

d l s j o i n t  s e q u e x e s  in i? : 

The croperty i 21 j - E  d i  R implies that there exists  an i n f i n i t e  subset 



\ been constructed such that: 

(dl) F1,F2,. . . ,EN- ,are pairwise d i s j o i n t .  
n-1 

m n s i d e r  the fol lowing tw sequences in R . 

By G I elf the nrembers of both sequences are pairwise d i s j o i n t .  Again 

p roper ty  (QI) implies that there e x i s t s  an i n f i n i t e  subset A' of 
n  

2' and F1 C R such that: 
n n  

Clearly F 
n  3 )  , b , c and (dl). There fore ,  by 

1 *=tion, we sur construct  a sequence (Fk) of disjoint members of 'R 
- - 

1 
and a sequence i '  1 of d i s j o i n t  subsets of Ii s a t i s f y i n g  (al) , (bl) , 

-k 



1 
To show that Tim (Fk) = 0, l e t  E > 0 . Then for each k there is 

k il 

1 1 + ( c  R) - c Pk such that ig (%) 11 > )i (F,) - E . Since p is s t r o n g l y  
i 
I 

i 
1 

i 
1 

1 m d d ,  l i m  'ii: = 0 . Consequently l im 11 (P 1 = 0 . 
k i k il k 

1 - 
1 

Choose k1 C N such t h a t  I. (P ) & and then  i 
2 k, 

I 
Partition A i n t o  a sequence (If) of disjoint subsets of 

k1 
n 

* \ i . one t he  same induc t ion  prooedure t o  construct a sequence 
-1 

2 - 

2 2 
(F. 1 of d i s j o i n t  nmLers o f  R and a sequence r '  1 (< 5 of 

K -k 

& i s  joint 

L -. - F. ( E .  , r  1 = A  fo r  k 6 N .  
K 1 

1 - 2  

such +kat . , .- E ; < - 1 1, 
l7 5 

, i i i n  d ( ~ .  1 1 = O and l i m  MEi ' =I0 , 
i i  1 i i  2 

- 2 
(P  1 < and then  1 ' z  
k, 3 %, (is i 2 .  1- 

L 
: j  . Note that E . : F Fk2 . 

2 
1 - kl 

3 



s e w n -  (F; ) = (F ) say. in R and bn increasing oequ~ce (i of n 
n n 

positive integers such that: 

(1) E C F n  for n <  k 
5 -  

(2) Fn 1 E = (I for 1 l k 5 n (by (bl) and (b2f). 
'k 

(5) . 1 > 3 for n C N . 
i 1 

n 
n  

Let H = P  L! ( Li E .  ) . Then (1) implies E C H for 
n  n - 

k=l 5 ik n 

k,n C N . Since R has property (IQ) ' , there e x i s t s  a subsequence 

1 o f .  ( i  f and C f R such that: 
k 

(6) d E i  - C C C  - 1 % and C I Ei =$I  f o r k  f {kl,k2 ,...... 1 . 
E=l kt k=l k 

Therefore, for each p C N , 



P 
J 

p-1 
a m s e p e n t l y  IIui ( ~ ) f l  ? kfi (E 11 - lrW+ L= U!J. ( 1 1  1 II 

k 5-3 k trl kt 
P p P 

t 4.1 %,' " 
P P - 

k 
P 

By ( 6 )  an? the  d e f i n i t i o n  of % , C c q  = F  U ( U  E i ) .  
P 

k 
P p m=l m 

k 
P 

k .  
P 

Since F Q ( U  E .  1 = +  by (21, c \ U  E~ cpk . A ~ S O  
1 

kp m=l m m = l  m P 
k 
P ' P 

C \ U  E~ = c \ J E .  since c n E~ = . $  f o r  m f fk l ,k2 , .  ..... 1.  
msl m c=1 'kc m 

- C E .  

'JTherefore ! p i  C 1 > 3 - E - E = E . This cont radic ts  the  f a c t  
k 
P 

that  lim p (C) = 0 . Hence the  sequence (p) is  uniformly strongly 
i i 

bounded. 

Corollary 1. Let R ,  X be a s  in theorem 

of strongly bounded X-valued measures on 

e x i s t s  for E € R . Then p i s  strongly 

e 

1. Suppose 1 i s  a sequence 
n  

R such that l i m  p (El = p(E)  
n  n 

boundea and, moreover, the 

sequence (PI is uniformly strongly bounded. 
n  

- -- 

I f ,  i n  addit ion,  X is  complete, then for each d i s j o i n t  

= q u e n e  f E  1 in R l i m  Z P CE 1 = C p (E 1 uniformly f o r  A c N . m m m - 
n m f A  n mCA 



(E. 1 be a d i s j o i n t  sequence of  members of I? . F i r s t  we show that 
1 

limLI(Ei) = p ( E i )  uniformly i n  i . Suppose (p(Ei))nCN is  not 
n n n 

uniformly Cauchy i n  i . Then there  e x i s t  t w o  subsequences bk) and 

(i 1 of pos i t ive  in tegers  such tha t :  
k 

Since p and p are both strongly bounded - p i s  a l s o  stzrongly 

"k+l "k "k+l "k 4' 

bounded and, moreover, lim ( p - p ) (El = 0 f o r  E C ?? . ~ h u s  theorem 

%+l % 

1 implies t h a t  lim i !  p - p) (Ei) 11 = 0 uniformly in k . This 

rfr+l 4 c  -3 
1 

contradic ts  (1) . Therefore (2) 1 p E ) = p E l  uniformly i n  i . 
1 

n n 

For given E > 0 , there is n f LI such that 11 p(Ei) - L I ( E ~ ) ~ ~  < E/Z f o r  
0 

n 
0 

i F N . S i n c e  l i m  p (E.) = 0 , there is  i C N such t h a t  
1 

i n 0 

0 

E E + i /  p (Ei)i ;  < - + - =  E f o r  i l i so t h a t  lim U(E.1 = 0 . Hence 
n 

2 2 0 1 

0 

is  strongly bunded. 

An applicat ion of theorem 1 t o  the  sequence (p - plnEH shows 
n 



space and fE ) 'a disjoint sequence of members of R , Then the equence 
- n /  

y strongly additive &d p is strongly additive. NQW we 

(3) for A i N ,  lim C P(E = C pfE 1 . %is is true 
m 

mEA 
m 

n m€A n 

en A is finite, so assume A is infinite, t A = {nil < m2 < ...... 1 .  

m 

Since is u n i f m m l y  strongly additive, Z E m  n = 1 2  . . are 
n j=1 n j 

convergent uniformly in n . merefore f a r  given € > 0 , there exists 

m 

t n large enough to satisfy / I  i U (Ern 111 < 7 . Since 
0 

j =n 
0 j 

l i m  p (E = ;1 (Ern. for j 4 1,2,. . . ,n -1 , there exists mo E N such 
m 0 .  n n  j 3 

n -1 
0 

E t h a t  L ! 1 - E m  1  fa^ n 2 r n o .  Therefore for n z m  
j=1 n j 0 

j 

This prwes ( 3 )  . 



define vn; zN + x by V, = E parn] for n F N 
m€A n 

03 

and V: 2N + X by s W  = i il (Em) . Since  L p(Em) i s  s u b s e r i e s  
rn €A m = l  n 

convergent f o r  n C N , (,on) i s  a sequence of s t r o n g l y  bounded v e c t o r  

measures and ,moreover, lim v CAI = vCA) for A 5 N ( 3 )  . 
n 

n 

Therefore  the f i r s t  part  of t h i s  c o r o l l a r y  implies t h a t  (vn - i s  

uniformly s t r o n g l y  bounded. To show t h a t  lim v (A)  = v ( A )  uniformly 
n 

n 

f o r  A : N , suppose t h e  c o n t r a r y .  Then t h e r e  e x i s t s  a subsequence - 

(V - ' J ) ~ ~ ~  of (.; - t ~ ) ~ ~ ~  ( f o r  n o t a t i o n a l  convenience we r e l a b e l ,  
n k 

n 

( ' J  - v)  by l ' ik - -.)I ) , a sequence 
n 

(%I o f  s u b s e t s  o f  N and an 
k 

E 0 such t h a t  "-3 - 'J) ( % ) ' I  > 5 for  k i N . By t h e  d e f i n i t i o n s  of 
k 

' J  and t h e r e  i s  a f i n i t e  s u b s e t  k Fk of  qc such t h a t  

i ' (v  - u) (Fk) 1 > E f o r  k C N . N o w  w e  use t h e  i n d u c t i o n  t o  c o n s t r u c t  
k 

a sequence ( G . )  of d i s j o i n t  s u b s e t s  of N and a subsequence (v, - '2) 
1 

i 

of (Vk - 'l) such t h a t  ! (v  - J G !I > 2 . This  l e a d s  t o  a 
ki 

c o n t r a d i c t i o n  s i n c e  (vn - v) i s  uniformly s t r o n g l y  bounded. 

Set kl = 1 and G1 = . Suppose G ~ , G ~ ,  ..., G d i s l o i n t  n 

s u b s e t s  of 9 , a n d  kl ( k2 < ... ': kn have been chosen such t h a t  



B -  

lim (vk-Y) (E)(F U for every E 5 N , lim V -V (GI J G2 d .. . U Gn) = 0 . 
k 

k 
k ' 

(Note t h a t  G a G2 J ... 0 Gn 
1 

has only f i n i t e l y  many subsets.) Choose 

kn+l ' kn 
such t h a t  vk -v (G ii G2 d . . . d Gn) < € / 2  . Set 

n+l 
1 

= F G,+l - \ ( G  d 5 u  ... v G n )  . Then 
kn+l 

1 
8 

(by the add i t iv i ty  of v -v 1 ' 

kn+l 

merefore 'lim ' i  (A) = v ( A )  uniformly for A N . n - 
n 

: . e . ,  lim Z (Em) = (En) uniformly for A 5 N . 
n ~ E A  n n F a  

m a r k  1. In the absence of +the ccmpleteness assumption the last part 

of the corollary can 'be modified i n  the following way. 

R -  - 
i: !E ) is a disjoint sequence 

a 
of lierbers of i? sucn that 



C p(E$ uniformly for A - c N". 
mCA 

To see t h i s  it s u f f i c e s  t o  show that lim C u ( E ~ )  = 1 u ( E ~ )  
n ~ C A  n m CA 

for each A - C H . The remaining part of t h e  proof r u n s  i d e n t i c a l l y .  

OD 

t A = :m < r n  . . . I  . The convergence o f  L p(Em) f o r  
1 2 

j=l  n , j 

n E R , and t3e uniform s t r o n g  boundedness of ( 1  a s s u r e  t h a t  
n 

;9 a 
Z ;1 (E converges un i fo rn ly  for  n C N . There fo re  for given E > 0 ,  

m. j=l n 1 
z 

P 

there e x i s t s  f S such t h a t  & (E ) < ~ / 3  f o r  n f N and 
0 m. 

1 - n  I 



Remark 2. The last part of the cordLLary 1 may be tre&e& as a 

generalized version of the  P h i l l i p ' s  lemna 1121. 'ib ver i fy  this w e  

derive the P h i l l i p ' s  lemma from the l a s t  corol lary.  

Corollary 2.  ( P h i l l i p ' s  lemma) . Let (plWbe a sequence of bounded / 
n 

Proof. Since 2: i s  Sounded and sca la r  valued, it i s  strongly bounded. 
n 

f o r  A - c N by the last corol lary .  Thus f o r  given E > 0 , there  e x i s t s  

n 5 N such that: 
0 

* ,  
3 e r e f o r e  by 3.2  l m a a l ,  n - )  5 E for n r n . 

i=l n 0 

Z ~ r o l l a r ;  3 .  Let  Le a r i n q  of s ir jsets  of 2 w i t h  pro-perty (QI) 

- 5  X a cscplete :;,axschrff topolqica.1 vector space. Suppose 

- : , 7; i , is a ~zu,-~taij;l; xiciitive and strongly bowtded vector -. ,. 
- . . 



Proof. Let fE.1 be a d i s j o i n t  sequence of members of R such t h a t  
1 

w m m w 

U Ei C R . "Then u (  U Ei) = lio U (  U Ei) = lim l l  (Ei) s ince 
i=l i=l n n. i=l n i=l n 

1-I i s  countably addi t ive  fo r  n E N . Since X is  complete the  last 
n 

OD CO 

p a r t  of corol lary  1 implies t h a t  l i m  C p (Ei) = C u (Ei) . Hence p 
n i=l n i=l 

is countably addit ive.  

Uniform countable a d d i t i v i t y  of (p) follows from the  f a c t  
n 

t h a t  (IJ) i s  uniformly strongly addit ive.  
n 

Corollary 4. Let X be a separable Banach space and R a r i n g  of 

subsets  of a s e t  R with property (QI). I f  the  vector  measure 

u: R -+ X i s  bounded, then is strongly bounded. 

Proof. Suppose p i s  not  s trongly bounded. Then the re  e x i s t s  a sequence 

(En) of d i s j o i n t  members of R and an E > 0 such t h a t :  

(1) / I u ( E ~ )  / /  > E f o r  n E N . 

By v i r tue  of the  Hahn-Banach theorem, there i s  f n i X* with /Ifn/\ = 1 

such t h a t  (2 )  If p(En) I > E fo r  n C N . 
n 

By 1.3 theorem 4 ,  the  u n i t  d i sc  of X* i s  weak* conpact and since X 

is separable it is metrizable with respect  t o  the  weak* topology. 

 heref fore-there e x i s t s  a subsequence ( i n  ) of (in) and f 6 X* with 
i 



( 3 )  LLD. 5 3 -:': = - ~ ~ ( 5 1  f o r  E ~ R .  
7- .. . 0 



Every s e r i e s  in a topological vector  space g ives  r i s e  n a t u r a l l y  t o  a 

d e f l n l t l o n  of a vector measure. The domaln of t h l s  type of a vector 

measure 1 s  determined by t h e  na ture  of convergence of +he se r l e s .  In 
~, 

t h s  context  we use  =he notlon of f u l l  classes to obta ln  c e ~ t a ~ n  r e s u l t s  

concerning rnatrlx surmnabiiity. T h e  notion of f u i l  c l a s s e s  uas 

introduced by J.J. Sember and A. Freedmn ~r t n e i r  paser 1171. 
t 

I- 

numbers suck t - ~  3 x e x l s t s  fo r  A ; k ' ,  :her, x - = .  
.? 

.?'A 
n 

n= i 

Pro_PSltlon 1. L e t  2 be a •’1~11 rlng and x a Banach space =on tammg 

no corn  of  p 

- 0  
If (x,) 1s a sequence m X such ~ M K  1 x L x 

n . s .  

33 n f A  

f o r  A ' R , then Z x i s  subser ies  convergent. 
n 

n= 1 

proof. Suppose (x,) 1 s  a sequence in x with C x F X f o r  A C R . 
n 

n CA 

~ e t  f f X* .   hen Z f (xn) converges f o r  A C R . s i n c e  R i s  f u l l ,  
n CA 

30 a 

x- I 
f x 1 < Therefore 1 x i s  subser ies  convergent by Corol lary 4 

n= 1 n 
n=l  i 



Proposi t ion 2 .  %t ? $= a :x-rL?g containing all f i n i t e  subse ts  of N 

w 
axi x a emplete t o p l o g i c d  MCtQr space. IP ixni is a +rice in 

/ 

convergest .  

P r m f .  L e t  J se a seqience 12 X sucz t h a t  3 x t X f o r  
n 

n i A  

- @ A . :or each c 5 B define i: R - x by 

n 

C l e a r l y  ( 3 )  i s  a sequence of s t rongly  bounded vector  measures which 

* 

converges setwise on i< t o  def ined by +I ( A )  = Z x f o r  A 6 R . 
n f A  

n 

I t  follows by co ro l l a ry  1 of theorem 1, t h a t  p i s  a l s o  s t rongly  
.P 

bunded,  Slnqe X i s  complete, p i s  s t rongly  additive. Hence 

C x = 1 ~ ( { n ) )  is subser ies  convergent. 
II 

n = l  n=L 
m 

Next we e s t a b l i s h  our  genera l iza t ion  of t h e  Schur lemma. 
r* 

Theorem 2 .  Let  I? be a W-r ing  containing a l l  f i n i t e  subse ts  of  N and 

(xmn) a i n f i n i t e  matr ix i n  a complete topologica l  vec tor  space x . 

Assume t h a t  1 x e x i s t s  f o r  E f I? and m f N . I f  l i m  C x 
nfE 

mn 
m n€E mn 



e x i s t s  for E C R , tinen (i) lim x x " e x i s t s  f o r  n f N mn rl rn 

fii) lim x = 1 x un i fo rmly  f o r  E : N . 
mn n  - 

n nCE n f E  

Proof.  (if d i r e c t l y  f o l l o w s  f r m  t h e  fact t h a t  l i m  f x exists 
mn 

m n f E  

f o r  e v e r y  E 6 R . Slnce  C x exlsts for e v e r y  E C !? , t h e  previous . mn 
n FE i 

groposL t ion  LnF l i e s  L%at t? x i s  subseries conve rgen t .  3 e f i n e  
mn n-1 

- ( A )  = l a  1 x . S i n c e  1 x is  s u b s e r l e s  c o n v e r g e n t ,  1 s  a 
mn mn 

m n 6 A  n=1 m 

s t r o n g l y  bounded vector measure .  Now l e t t i n g  (E = (!n + )  , we a p ~ l y  
n 

? .  

tine last part of Z3r-liar? 1 of ~ h e c r e m  1 to have 1x11 , (. n . )  = 

- - Z x u n i f o r m l y  f o r  
n 

n CA 

Remark. I f  R = ZN, i n  v iew o f  remark 1 

t h e  comple t eness  a s sumpt ion  i n  t h e  above 

a f t e r  c o r o l l a r y  1, we c a n  d r o p  

theorem. 

The f o l l o w i n g  example shows t h a t  R can  n o t  be r e p l a c e d  by 

any r i n g  c o n t a i n i n g  a l l  f i n i t e  sets.  



f ~ t  4 be We ring of all f in i t e  subsets of ?T an& l e t  

- 
m e n  1x1 _ x = : far every A C 4 , but clearly t he  conclusion of 

m. 
r, Z I C A  

t h e o e m  2 does not hold for the 
5c 

- 
x m = 7 -  , are unordered uniformly convergent In the sense 

m '  
n= 1 

:?.at lf , 
- 

? ,  then t h e r e  e x ~ s t s  n E N such  that  - x  E, for 
3 inn. 

n FE 
-- R 

every a whenever ??in Z 2 n . 
0 

Proof. 3y Theorem 2 ,  lim x = 
mn 

C x uniformly for E - N . 
n - 

s nLE n GE 

$ 

Therefore t h e  sequence  ! 1 x ) i s  uniformly Cauchy io r  E = N and 
mn rnCN - 

n FE 

hence there  e x l s t s  m F N s u c h  t h a t  (1) ' 1 (x,, - x ) I !  < € / 2  
0 

n EE kn 

for m,k 2 m and E Z N . Now we show thac  for each m C N t he re  
0 - 

ex1st.s pm L N such  t h a t :  

(2 )  I x  c 5 / 2  f o r  ~ i h E z p  . 
n EE 

mn m 



For, qm the  conttarp. men there e x i s t s  a sequence (Ei) of 

subsets of N such that lim S i n  E = and ' 1  x i '  1 &/2  . For 
i m n  

1 n CE 

each 1 choose a finite s u b s e t  " of E .  such that " Z x > ~ / 3  
' i 1 

n f F  
mn 

and notice that l i m  %in F = = . *t = F 
i J 1 i -  Choose i C N such 

i 2 

that %x G .< min F and s e t  - = 7 
1 

- I n d u c t i v e l y  we  can c o n s t r u c t  
l 2 > Z  -i2 

a drslolnt sequence ( 5 , )  of f ~ n ~ t e  se ts  such that Xax 3 H l n  2 - 1 1+1 

a rid 
- 

x : . I 3  fo r  i f N . T h l s  c o n t r a d i c t s  t he  fac t  t h a t  
nFG mn 

1 

L. 
- 
- x 1s  s u b s e r l e s  c o n v e r g e n t .  

5.m 
n= l  

? 

f o r  Yln E i c 5y (1) and ( 3 )  . 

The result follows from ( 3 )  and ( 4 )  . 

We n e x t  show that theorem 2 can be viewed as a generalization 

of t h e  classical verslon of the Schur  lemma. 

c-1 fr17 2 .  ~ ~ t f  fx  1 be an i n f i ~ i t e  matrix of mrplex nuznbers. 
m1 



~lppnse .I bm/ < far every m E N .  If- lim 2 %  exisfs, for 
n = l  m nEE . 

e a c h  E c N and i f  l i m  x = x for each n € N , t h e n  - mn n m 

(i) lim Z -  lxm - xn1 = o and 
m n = l  

(ii) the series : /xm / , m = 1.2.. . . , converge uniformly i n  m . 
n = l  

Proof .  f i )  Jiet 2 i 0 . B;' Theorem 2, there exists m f N such 
0 

that (xm - x ) 7  ' E/B for m 3 m  and E - N  . Therefore by 
n o - 

n i E  

for 

( i l l  B:: 2 r r c l l ~ : :  1, there exists c C N such t h a t  

for m E Y . This implies (ii) . 

?emark. (1:) m&-:t=c t h a t  Sup - x < Ic . 
mn 

m n=l 



51. I n t r o d u c t i o n .  

The s u b j e c t  of t h i s  c h a p t e r  i s  one o f  t h e  t r u l y  i m p r e s s i v e  d 

theorems o f  roeasure t h e o r y ,  t h e  N l ~ o d y m  Boundedness Theorem, which d e r i v e s  

a c o n c l u s i o n  o f  uni form W n d e d n e s s  from a h y p o t h e s i s  c o n c e r n i n g  s e t w i s e  

boundedness.  I t  a l s o  h a s  a s t r o n g  impact  on t h e  t h e o r y  o f  Banach* s p a c e s .  . 

r i n g  oq which mezwires are d e f m e d .  An a l g e b r a i c  characterization o f  such 

structures is s t i l l  unknown. The r e c e n t  developments  i n  t h i s  a r e a  a r e  

l a r g e l y  u u n t r i b u t e d  by  t h e  papers of G.L. s e v e r  1161, Barbara  F'aires [ 7 1 , 

R B .  %rst 151 an2 corn ell.^. C o n s t a n t i n e s c u  [ 3 1 .  i ; o n s t a n t l n e s c u '  

4 e f l n l ~ ~ m  - I .  Alt3ougF. a 23-rmg 5as a n l c e  a l g e S r a r c  s t r u c t u r e ,  ~t 
, 

1s ex t r eme ly  d l f f l c u l t  t o  c o n q t r u c t  such  a r l n g  e x p l l c l t l y .  h e  a m  I n  

this chap te r .  1s t o  p rove  t h e  Nikodym'Eoundedness Theorem f o r  a  moce 

g e n e r a l  c l a s s  o f  x i n g s ,  namely PW-r ings .  g n l i k e  t h e  c l a s s  of QO-rings, 
* 

t h i s  c l a s s  c o n t a l n s  same w e l l  known examples of r i n g s  o f  sets. I n  t h i ~  

c h a p t e r  w e  a l s o  d e a l  w i t h  t b e  measures  d e f i n e d  on s u b s t r u ~ t u r e s  o f  2* . 

Tnese measu res  are e s p e c i a l l y  i m p o r t a n t  i n  summabi l i ty  t h e o r y .  SO= 

of the  r e s u l t s  i n  this c h a p t e r  appear i n  t h e  j o i n t  paper 1151 by 

J.2. Sember and m y s e l f .  



52. D e f j n j , t j , ~ n ~  and qgnpe ex*leg, 

The purpose o f  this s e c t i o n  is t o  s t u d y  a new c l a s s  o f  r i n g s  

of sets in t r&ced  below. It w i l l  be shown i n  t h e  n e x t  s e c t i o n  t h a t  t h e  

Nikodym Boundedness Theorem ho lds  f o r  measures d e f i n e d  on t h i s  type  of 

r i n g .  One o f  t h e  important  f e a t u r e s  of t h i s  c l a s s  i s  t h a t  it c o n t a i n s  

some well-known examples 

s i g n i f i e d  o therwise ,  R 

D e f i n i t i o n  1. A r i n g  R 

of  r i n g s  o f  s e t s .  I n  what f o l l o w s ,  u n l e s s  ?ee 

denotes  a ring of s u b s e t s  of a set R . 
d 

i s  c a l l e d  a  ~ p - r i n g  ( r e s p e c t i v e l y ,  an 

F P g - r i n g )  i n  c a s e  f o r  every  d i s j o i n t  sequence ( A  ) of s e t s  ( r e s p e c t i v e l y ,  
Ti 

f i n i t e  s e t s )  i n  and every  sequence (t of r e a l  numbers wi th  
n  

l u n t  = * t h e r e  e x i s t s  a subsequence (An ) of (An)  s a t i s f y i n g  t h e  
n 

n i 
I 

fol lowing : 

: I  n - ~ O T  each there ;s a p a r t r t i o n  i i 1 
n .  

Al ' A 2  , . " , A  of X is. > t 
S .  
1 

n. 1 n .  
1 1 

and such  that for every seqwnce 

Xemark. I t  i s  eas? t o  ve f - -  nat e v e r v  27-rlng 1s a P a r - r ~ n g  and f -  
t h a t  ever:#- P2:-rmq is  an YPF-r ing.  

5 

F w p l e  1. 4n i n c r e a s i n g  sequence ( F . ~ )  of p s l t i v e  i n t e g e r s  is c a l l e d  - . 

lacunary Lf 1m ( c ~ + ~  - F ) = = . W e  show that t h e  r m g  L of subseas 
n n 

fi 

of B cJenirated by lacunary sequences is  ipw ,but k t  -I?@. \To this 

i 
end  l e t  CA,) 5e.a sequence of pa i rwise  d i s j o i n t  f i n i t e  s u b s e t s  of 8 - 

- 

- and (t a sequence of p o s l t l v e  l n t e g e r s  w i t h  l l m  t = P . 
n n 

n  



choose a subsequence (An 1 .of (A,) such t h a t  Max An + i 
i i 

< Min A and then p a r t i t i o n  each A = lpl < pa < . . . < pk] i n  t o  
n 
i+l 

n 
i 

- 
\\ 

n.  - .  
It i s  readily seen that i %: i s  Lacunary for every sequence (ki) 

i=l 1 

with 1 L x 1 t . T& snows t h a t  L 1s F P ( ~  . 
1 r-k 

1 

To snow -&at L i s  no t  2QC , l e t  -1 = :pl T: F, ' . .. .. .l 
0 L 

be a n  m f l n l t e  l a c u n a q  sequence. 3e t tmg A = ( A o + n )  \ ( A  A1 , 
n 3 

--. 
. . . . . . A 1 ,  w h e r e  + n = i p .  + n f .  , w e  can define inductively 

n-1 1 i CN 

the dis2oint sequence i A  j in i . 
n 

Let ( A  5e a subsequence f ;A j , Pd-r-her f o r  each 
r, . n 
1 

n 11- n - 
' 1  1 1 

' 1 l e t  A - 7  ,A2  , . . . .- . ,  A 5e any f l n i t e  p a r t i t i o n  af A . ne 
- 1  s :  3 .  



, 
show that there i s  a seqpmce (k i ) ,  where 1 5 ki 5 s such t h a t  

i '  

. U %1 f L . Since An i s  i n f i n i t e  t he re  e x i s t s  1 5 kl 5 sl such 
i=l .i 1 

t h a t  is i n f i n i t e .  Consequently 
I IjE = F  + n  

1 1  
f o r  some i n f i n i t e .  , 

1 1 

subset  F o f  A. . A similar argument shows t h a t  t h e r e  e x i s t s  
1 

- a l .  1 5 k2 5 s and an i n f i n i t e  subse t  L 
2 FZ of F1 such t h a t  E2 + .nZ 5 . 

Induct ively w e  can cons t ruc t  a 

subsets of A and a squefie 
0 

n  
i Suppose J %,  = Nl 

i=l 1 

decreasing sequence (F . o f  i n f i n i t e  
1 

tk. ) of -gmsitiue i n t e g e r s  such t h a t  
1 

1 7 i 5 F , are lacunary sequences. - Since F 

cnere exists i .such t h a t  N'. 7 (FW1 + n is i n f i n i t e .  . 
1 1 

1 * p+l 

Consequently, +&ere is an i n f i n i t e  .s c p such t h a t  
-p+l - p+l 

* - + 2 - , - S l n c e  F ) is a decreasmg sequence of sets, 
_3+L p+L - -, L 

2s a :  a -3 + 2 r 3  , t t ~  t n i --7 M, i s  f i n i t e .  
p t i  L - i -pi1 p 

i -1 

--,. -.-iernfore, t h e r e  exis ts  1 ;  such t h a t  (G + r, -- Pa. is 
i F+.I P 1 - 



i n f i n i t e .  Consequently t h e r e  i s  an i n f i n i t e  G c G such t h a t  
P - p+1 . .  
' . 

G + n  c N i  . proceeding i n  ;this manner we can f i n d  an i n f i n i t e  s e t  
P . P -  2 h 

c F a t  t he  (p+l )  t h  s t e p  such t h a t  (G1 + nl) n Idi i s  G1 5 Fp+l - 1 

. . 
f i n i t e  f o r  1 5 i 5 p . This contradicti ,on shows t h a t  L is not PQO . ' 

Example 2 .  Let A - c N . W e  denote by A(n) t h e  number of elements of 

A I {1,2, ....... n}. A is  s a i d  t o  be a s e t  of zero d e n s i t y  i f  

l im A(n) = 0 . We show t h a t  t he  c l a s s  of s e t s  of zkro dens i ty ,  denoted 
-, 

' n  n 

kt ( A  ) M a d i s j o i n t  sequence of members of q0 and (tn) 
n 6 

a sequence of r e a l  numbers with lin t = . I f  ( A  1 has a subsequence 
n n 

n 

( A  1 cons is t ing  of f i n i t e  s e t s ,  then it can be e a s i l y  shown t h a t  the 
n: 

3 
sequence (An) s a t i s f i e s  the  condit ion given i n  t he  d e f i n i t i o n  of a 

PQcr-ring. So l e t  u s  assume t h a t  a l l  A ' s  are i n f i n i t e .  
n 

S e t  n = 1 . Suppose n 
1 

< n 2 <  ...... < n  have been chosen. 
1. i 

Now choose n .  > n such t h a t :  
1+1 i 



Such an n e x i s t s  s ince  (1)' An ,An ,..., A a r e  of  dens i ty  zero, 
i + l  

1 2  n i 

(2) ' 1.b Min A = , ( 3 ) '  l in t  = m  and ( 4 ) '  An is i n f i n i t e .  
n  n 

n n i 

Induct ive ly  

s a t i s f y i n g  condit ions 

we can cons t ruc t  a  subsequence ( A  ) of (A,) 
n', 

P a r t i t i o n  each An = {pl < p2 < . . . . . . I  i n t o  
i 

1 i i A1 , A2 , . . . . . . , A i n  t h e  following way. 
Z i + l  

I f  n 3 n .  
- i + l  

1+1 ' ( 4 )  as su res  t h a t  A (n) > 2 . Therefore,  
n  i 

n 
by the way A i s  p a r t i t i o n e d ,  ~ ~ ~ ( n )  C 

n i 

Let i be a fixed p o s i t i v e  in t ege r  and j > i . Then f o r  



i+l 
l Z k 5 2  and f o r  n 5 n  > n we have 

j  i 

Tne ' l a s t  inequai i ty  fol lows f r a n  (1). Also fo; any n C N and 

n n 
i + l  * , . 

l 5 k 5 2 -  we "have qxi (n) 5 1 o r  $i (n) 5 A (n) / and hence 
n i 2 

Let (k, ) be a sequence of  p o s i t i v e  in t ege r s  such t h a t  
I 

i +l 
a n  

1 5 ki 5 2 . We show t h a t  qri i s  of dens i ty  zero. Let j  C N and 
i=l i 

3 

n < n l  n Thenby ( 2 )  A 9 [ l , n ]  = $  f o r  i > j + l  .  heref fore, 
j  j + l *  n .  1 

j + l  n n .  
= 1 n n  ( t h e  A~''.s are d i s j o i n t )  

i=l 1 i 

The last unequal i ty  follows from (i) and (ii) . 



The r i g h t  hand s i d e ' o f  t h e  inequality tends t o  z e r o  as j gbes to 
m n  

i o 
i n f i h i t y ,  Hence l i m  ( IJ qc 1 (n ) /n  = 0 . This shows t h a t  qg  i s  a 

n i=l i 
i 

We conclude this s e c t i o n  with the  following propos i t ion .  

~ r o p o s i t i o n ' l .  Every FPp-ri .ng R of  subse ts  of N conta in ing  a l l  

f i n i t e  s e t s  i s  f u l l .  

Proof.  Let (x,) be a sequence of  p o s i t i v e  r e a l  numbers with 1 x = w . 
n 

n= l  

Choose p o s i t i v e  i n t e g e r s  n < n2 < ...... < n < ... such t h a t  
1 i 

C -. > i f o r  i = 1 , 2 , .  .... .. . Let a (ti) = (i) and 
n .  5k<n 

^k ;P 

1 i+l 

i i i 
A. = i n  , n + l . . . . . . . .  n -1). Now f o r  any p a r t i t i o n  A l r A  Z,......, A 
1 i 1 I. +l s .  

1 

- .  
0.. * 

( s .  5 i) of Ai t h e r e  e x i s t s  1 5  k 5 s .  such t h a t  C xk 1 1 ." 
1 i 1 - 4  . 

i kc%. 
1 

This completes t h e  proof .  

Remark .  Forfiubrings of  2N conta in ing  a l l  f i n i t e  s e t s  w e  have 

!Full r i n g s }  - 3 ~FPQU-rings} 2 t p p - r i n g s }  3 {Qo-ring} 
f 

W e  have no t  come up with an example of  a f u l l  r i n g  which is n o t  FEQ3 . 



i 
53. Main r e s u l t s .  

-- 

Although the Nikodym Boundedness Theorem i s  sub jec t  t o  many 

gene ra l i za t i ons ,  it i s  d i f f i c u l t  t o  f i n d  one gene ra l i za t i on  t h a t  f i t s  

t h e  o the r s .  w e  t he re fo re  consider  here  severa l  s i t u a t i o n s  f o r  

which the  - theorem holds.  

Theorem 1. (Nikodym Boundedness Theorem). 
b 

Let R be  a r i n g  of  subse t s  of a s e t  s a t i s f y i n g  one of 

t h e  f 01 lowing : 

( a )  R has proper ty  ( Q I )  . I 

(b)  f ? ,  i s  a PQ7-ring wi th  the  he red i t a ry  property.  

Also l e t  X be a l o c a l l y  convex space. Suppose p: R + X I  n = 1 , 2 ,  ....., 

a r e  bounded vec to r  rneasures such t h a t  { p ( ~ )  In E N) i s  a bounded subse t  
n 

of X f o r  every X f R . Then ,;$(A) In C N and A C R )  i s  a bounded 
n 

subse t  of X . 

I n  add i t i on ,  i f  t h e  ,, n = 1 , 2 ,  ......, axe r egu la r  over 
n 

f i n i t e  s e t s ,  then ( a )  and (b)  can be replaced by t h e  following : 

( a '  ) R has property (FQI) . 
( b ' )  R IS an FPW-rlng with t h e  he red i t a ry  property.  

(c') R i s  a f u l l  r i n g  with t he  he red i t a ry  proper ty  and containing 7, 

a l l  f i n i t e  sets. ( I n  t h i s  case R = N.) . 

Proof.  F i r s t  w e  e s t a b l i s h  t h e  theorem f o r  s c a l a r  valued measures; 

i . e . ,  we assume t h a t  X = C . 



Define a: R -t R+ by a (A) = Sup / l-I (A) 1 . Since the  sequence (u) B s  
n n n 

setwise bounded, a i s  defined and,moreover , by (1) a * i s  unboqded. 
'\ 
\ 

We a l s o  show t h a t :  \ 

( 3 )  lol(B) - a ( A ) l  I C I ( B \ A )  f o r  A,B 6 R with A C B  . , - 

Let A,B C R . 

( 2 )  I f  A I B = $, then % ( A  L! B)  = S U ~ ~ U ( A  J B) I 5 S U ~ ~ U ( A )  I + S U ~ ~ P ( B )  I \ 

n n n n n n \ 
\ 

(3)  Suppose A c B . For given E > 0 t he re  e x i s t s  n N such that - 0 

consequently a ( B )  - ' a ( A )  5 a(B \ A) . Simi lar ly  C ~ ( A )  - a ( B )  5 CY(B \ A) . 

Now an app l i ca t ion  of 1.5 3emnz 1 t o  a shows t h a t  t he re  e x i s t s  a 

d i s j o i n t  sequence (Em) of members of R such t h a t  l im 3 ( E  = . 
m 

m 

Thus by t h e  d e f i n i t i o n  of a we can find.subsequences (p) and (Em ) 

i 

of ( and (Em) r e spec t ive ly  such t h a t  l i m  1 p (Em.) I = m . FOT 

n i n 1 
i 

s impl i c i ty  we r e l a b e l  t h e  sequence (p (Em by ( l - I (Ei ) ) i fN . Then 
n. i i 
I 

we have 
- 



F i r s t  w e  cons ider  case  (a )  R i s  a r i n g  with property (QI), 

Let  ( t . )  be a sequence of p o s i t i v e  numbers with t h e  l i m i t  zero such 
1 

t h a t  : 

It is r e a d i l y  seen t h a t  (ti p )  is  a sequence of s t rong ly  bounded s c a l a r  
i 

d 

valued measures (note  t h a t  every bounded s c a l a r  valued measure is s t rong ly  

bounded) with l i m  t .  p ( E t  = 0 f o r  every E f R . Therefore 3 . 3  
1 

i i 

Theorem 1 impl ies  t h a t  l i m  t . p (E. 1 = 0 uniformly f o r  j f N . This 
i ' j  

1 

con t r ad i c t s  (Sf. Henee the  Hikodym Boundedness T h s r e m  holds  when R i s  

a r i n g  with proper ty  (PI). 

N o w  we consider  case  (b) R i s  a P p - r i n g  with t he  he red i t a ry  

property.  Recall  ( 4 )  l i m  1 .U (En)  / = . L e t  f n  = 1 !' . Since 
n n n 

R is a P p - r i n g ,  t he re  e x i s t s  a subsequence (E of (En) and a 
n .  
1 

n n n 
i i i 

p a r t i  t i o n  El ,E2 ,....., E fs. 5 t  ) o f e a c h  E s u c h t h a t  
s .  1 n .  n 
1 1 i 

n. 
1 

E R f o r  every sequence (ki) with 1 k .  5 5 .  . For each 
k. 1 1 

i=l 1 
2 n .  n 

1 i i C N w e  have t = ; (En,) 1 = ;' (El  ) + il ( E 2  ) + ...... + n. - 1 n .  I. n .  n .  
1 1 1 

n n. n n 
i '  

L (Es, 1 1 5 1; (E 
1 + E 2 + + E s .  1 .  s i n c e  s I s t  n , 

n .  1 n .  n n .  ' 1 i 
1 %-- i 1' 

n 
i 

the re  e x i s t s  1 C k s .  such t h a t  / p (E I 3 t n  . 
i - 1 

n.. ki 1 
1 -, 

n 13 

i 
Let Ek = A i  . %en (6)  d A .  i R  and limlp ( A i ) /  z r n .  

1 
i i=l i n i 



Since R is he red i t a ry ,  U A C R f o r  P c N - .  kt vi: 2N -s c 
P - 

PCP 

defined by vi (PI = p ( U Ap) . Since ( ~ 1 )  i s  a sequence of  bounded 
n pfP n 
i i 

s c a l a r  valued measures wi th  Sup I U  (E) 1 < w f o r  every E f R , it 

r e a d i l y  fol lows t h a t  (vi ) is a sequence of bounded scalar- valued 

measures with sup / vi (P)  
i 

0-algebra (hence it is a 

I 

r i n g  w i t $  p roper ty  ( Q I ) ) ,  we have 

N) < . This  c o n t r a d i c t s  t h a t  

I = . Hence the  Nikodym Boundedness 

Theorem holds when R i s  a 

To prove t h e  l a s t  

PQa-ring with t he  he red i t a ry  property.  

p a r t  l e t  us assume t h a t  t he  

. ;I, n -  = 1 , 2 , .  . . . .. , a r e  regular  over f i n i t e  sets. Then i n  (3) (E can 
n n 

be rep1 aced by a d i s j o i n t  sequence f P  f of f i n i t e  s e t s  i n  I? , s o  we have 
n 

Now cases  (a') and (b') can be t r e a t e d  exac t ly  t h e  same 

way w e  t r e a t e d  cases  ( a )  and (b) . Therefore we only  have t o  cons ider  case 

( c ' )  R i s  a f u l l  r i n g  with t h e  heredi taxy proper ty  and conta in ing  all 

f i n i t e  sets. Perhaps by pass ing  t o  a subsequence we can assume t h a t  

i n  ( 7 )  , / p  (F,) I > 2N and min F > Max Fn . Since l im  l i l  (F,) 1 = 
n+l n n n 

implies  t h a t  lim f ~e u ( F  ) 1 = a o r  l i m  11m p ( F  ) I = a I w e  a l s o  can n n 
n n n n 

ass= t h a t  t h e  p; n = 1 ,2 ,  ......, a r e  real valued measures. 
n 



1 
Le t  t = - 

n u(Fn) 
f o r  each n . 

n 

w w w 

< a  Then (8)  L Itn] C E - and 
C tn Ll(Fn) = . 

n=l  n=l 2" n=l .  n 

Since F i s f i n i t e f o r n C N .  ,Itn P(F,) = E t  Z p t ~ i ) ) .  
n n 

n= l  n n=l  iCF n 
n 

tm ~ ( { n ) )  i f  n C Fm f o r  some m . r m 

Let pn = 
03 

o i f  n U F ~ .  t m = l  

From (8)  it is  c l e a r  t h a t  L I p n l  = . without l o s s  of  g e n e r a l i t y  w e *  
n=l  

m 

- w 
+ can assume t h a t  E p: - where pn = ~ a x { p ~ . ~ )  . Since  R i s  f u l l ,  

n=l  

t h e r e  e x i s t s  A C R such t h a t  + - ' Pn 
- . Since R is he red i t a ry  w e  

nfA 

+ can choose A such t h a t  p > 0 f o r  every n f  A . Then c l e a r l y  
n 

m 

A s  U F . L e t  G n = A n F n  f o r  n t ~ .  n 
n=l  

03 m 

Then + = z t E ~ ( { i } )  = 
pn ' 

n CA 
n 

n=l  ifG n tn 
n=l  

n 

p (Gn)  = OD . Since 
n 

Itn 1 < , t h i s  implies  that supl ll ( G ~ )  
n=l n n 

I = . Also no t i ce  t h a t  (G,) 

F w 

i s  a d i s j o i n t  sequence i n  i? such t h a t  U G = A C R . To complete 
n n=l  

t h e  proof one can fol low the  last por t i on  of  t h e  proof f o r  t h e  case R 
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Te a&& the  FFikcdys ~ o u h s f ;  ~~ f m  LoealLy eon- 

8 
spaces, l e t  X be a l o c a l l y  convex space as s t a t e d  i n  the  theorem. 

Suppose / I  / I ,  i s  a continuous seminorm on X . Now consider t h e  following 

col lec t ion  of bounded s c a l a r  Valued measures defined on R . 

We show tha t  G is  u&formly bounded on R . Let (fro p ) i C N  be 

a sequence i n  G . Then f o r  each E € R , 

< since ( i s  setwise bounded. 
n 
i 

Since the  Nikodym Boundedness Theorem is  t rue  f o r  sca la r  valued measures 

defined on R , we have ( f , o  p ) i s  uniformly bounded on R . Hence 

G i s  uniformly bounded on 

E € R)  < since I lp(~1 11 
n 

v i r t u e  of the  Hahn-Banach 

seminorm on X , t he  sequence 
(') ncN 

is uniformly bounded on . 
n : .  

Remark 1. I f  i s  a &ring;  i .e. ,  closed under countable in te r sec t ion ,  

then the  hereditary property i n  cases (b) -and (b') may 

, 2.  The Nikodym Boundedness Theorem i s  t rue  f o r  

vector  measures f o r  which the  Vitali-Hahn-Saks-Nikodym 

The following example shows t h a t  the  converse does not 

l -' 

be dropped. 

any sequence of  

theorem . i s  t rue.  

hold. 



L e t  r1•‹ be the r i n g  o f  sets of  zero d e n s i t y .  W e  have shown 6 

t h a t ,  i n  s e c t i o n  2. 11; is  a Ppo-ring. Also it i s  easy  t o  check t h a t  

0 
11: i s  h e r e d i t a r y .  L e t  p: q -r [O,l] , n = 1 , 2 , .  . . . . . . be  def ined  

n 
6 

A (n) by A = - , where A(n) is t h e  number o f  e lements  o f  A fI [ l , n ] .  
n n - - f S  

Then c l e a r l y  ( 1  is a sequence o f  s t r o n g l y  bounded measur 
n 4 

l i m  p(A) = 0 . But i t  i s  easy  t o  c o n s t r u c t  i n d u c t i v e l y  a d i s j o i n t  
n n 

sequence ( A .  o f  f i n i t e  s e t s  and a subsequence ( o f ,  (p )  such 
1 

n n 
i 

t h a t  l i m  !J (A.)  # 0 . L e t  5 = 11) and nl = 1 . Suppose d i s j o i n t  
1 

i n 
i 

f i n i t e  sets A , A  ,...,A. and p o s i t i v e  i n t e g e r s  n < n2 < .,.... < n 
1 2  1 1 i 

1 
have been chosen such that p ( A . )  > 2  f o r  j = , 2  . Choose 

7 
n 4  

I 
n ( > n . )  s u c h t h a t  p ( A ~ L J A  2 L l . . . d A . )  < T "  S e t  
i+l 1 1 

n .  
1 +1 

The fo l lowing  c o r o l l a r y  i s  u s e f u l  i n  a p p l i c a t i o n s .  

Coro l la ry  1. L e t  R be a r i n g  o f  s e t s  as s t a t e d  i n  (a) o r  {b) o f  

. ~ h q o r e m  1 and X a Banach space.  Suppose p: R -+ X i s  a f u n c t i o n  such 

t h a t  f  o p i s  bounded and f i n i t e l y  a d d i t i v e  f o r  every  f  i n  some t o t a l  - 
s u b s e t  r of X* , Then U is a bounded v e c t o r  measure. I n  a d d i t i o n ,  

i f  f  p i s  r e g u l a r  o v e r  f i n i t e  sets- f o r  f € r and i f  X i s  s e p a r a b l e ,  

t h e n  t h e  conclus ion remains t r u e  i f  R is  a s  i n  ( c ' )  of Theorem 1. - 
Proof.  To show t h a t  y i s  f i n i t e l y  a d d i t i v e ,  l e t  A,B be two d i s j o i n t  

m e m b e r s  of  R . S i n c e  f o p  i s  f i n i t e l y  a d d i t i v e  f o r  f  C r , w e  have 



To show t h a t  . b. is bounded, le t  ' M = {f f -x* 1 f oy i s  bounded). 
% .- 

~ h ; ? n  M i s  a l inear ,subspace of X *  contaming the t o t a l  s e t .  I' ; 

consequently M is a weak*-dense l l n e a r  subspace,of X* by 1.3 Theorem 3. 
i 

I f  it cah be shown t h a t  M = if f M fljfll 5 1). is weak* closed, then an 
1 

69 

i s  a weak* clo-sed subset;of X *  and &nce M .= ax*. . Let d f a ) a f h  a 
P ,  

net  i n  such t h a t  l i m  f = . f l"  e x i s t s  in the  we+* tspology on X*. 
1 ,  &a 

.a  ., . 
Then l i m  f (x) = *i (x)  .fbr hvery x ' C  X ; Sknce."/lf i /  5 .l f o r  each a 1 4 0. a .  

To show t h a t  flo p 1s bounded we apply the Nikodym Boundedness 

Theoreg t o  the  col lec t ion  {f o U[a 6 .A!)' of bsunded s c a l a r  valued . 
9 ,  

measures on R . F l r s t  we observe t h a t  Suplfao U ( E )  / 5 
.. . a '  

F 

Sup1;f 1 I ~ U ( E )  / 5 / P I E )  I .  for ever) 'E F R . ~ h e r e f o r e b ~  the  Nikodyn a 
C1 P 

I Boundedness Theorem w e  have t h a t  sup{ 1 f o u (33) 1 a f A and E 6 R )  < -. a 

Since l i m  f a ( p ( E ) )  = f l ( ~ ( ~ ) )  f o r  every E 6 f? , this implies t h a t  
CY 

s u p { / f l ( p ( ~ ) )  I Hence f E Mi so t h a t  M is weak* closed. 
1 1 

. . 
Now a shnlpr application of the.Nikodym Boundedness Theorem 

t o  the  col lec t ion  Ef 0u1-f C X* and ilf 1 1  5 1)  of'bounded s c a l a r  valued 

measures shows t h a t  sup{ 'jg ( E l  /i I E  f t?) = sup{ 1 fop (E)'"I E f ,R, f x* and 

rqt 5 1 )  < a . 



Tb prove the last part ,  + l e t  M = { f C- x*/ h i ,  is 'ixqnded, and. 

regular  over , f i n i t e  s e t s} .  F i r s t  we show t h a t  M is a* l i n e a r  subspace 
- .  . , 

.of X*. Let- f .g  C M and l e t  A f . ~ i k c e  • ’09 .is r e g i l a r  over. 
. > 

f i n i t e  s e t s ,  f o r ,  each e > O t he re  e x i s t s  a f l n i t ~  subset  B of A 
, 

1 

such t h a t  / f 0p (A), - fop (B1) 1 5 i/4 . Since gou ' i s  r egu la r  over f hite 

s e t s  t he re  e x i s t s  a f i n i t e  subset  - D - -  of A \IB such t h a t  . 
1 -  

. . 
B i l D = C  A s imi l a r  appl ica t ion  t o  f o p  and A \ C1 shows t h a t  
1 " 1 .  

Since fop i s  bounded and s c a l k  valued. it is' s t rongly  bounded and hence . . 
*- 

lim fop(Ci \ B i )  = 0 . Consequently t he re  e x i s t s  i C N such t h a t : .  
i 1 



This  u n p l l e s  t h a t  f s c  + gob '1s r e g u l a r  over f l n l t e  sets and hence 

f + g M . It 1 s  c l e a r  t h a t  I f  ' M f o r  ' 6  C and f 6 N . Therefore  

1 i s  a l i n e a r  subspace of X* c o n t a l n l n g  t h e  t o t a l  set  . To show 

t h a t  M = X* a g a l n  e c l a m  t h a t  M1 = ~f F M I  ~f 5 1: is weak* c l o s e d .  

S ince  X is  s e p a r a b l e ,  t h e  u n i t  d i s c  i n  X* i s  m e t r i z a b l e  w i t h  r e s p e c t  
- . 

t o  t h e  weak* topology and it i s  a l s o  weak* c losed .  There fo re  it. s u f f f c e s  

t o  show t h a t  i f  (in) is a sequence i n  M such t h a t  lim f = f 
1 n 

n 

e x i s t s  i n  weak* topo logy ,  t h e n  f 6 M 
1 - F i r s t  w e  c l a i m  t h a t  f i s  

r e g u l a r  over  f i n i t e  sets. Le t  A C R . Since  R i s  h e r e d i t a r y ,  

z A ' ~  R . Now ( f  opJ ) - i s  a sequence of s c a l a r  va lued  bounded v e c t o r  n A ncN 
2 

measures de f ined  on a 3-a lgebra .  Also ,  s i n c e  ( f n )  weak* converges  t o  

f o r  eve ry  S e t t i n g  

wnere A = {n n ' we app ly  t h e  l a s t  p a r t  of C o r o l l a r y  1 of 
1' 2 ' " " " : '  

'. ' 

3.4 Theorem 1 t o  ? ( f n s  Then w e  have l i m  Z f n o  p({nk]) = 
n k6P - 

+ ,  

' 
5 fo& tink}) uniformly f o r  P i N . I n  p a r t i c u l a r  t a k i n g  p f i n i t e  - 

~ C P  . 
we have 

. ( 5 )  l im f o U ( F )  = f o $ f ~ )  uniformly on f i n i t e  subsets F o f  A . 
.n n ,  



Therefore f o r  glven E > 0 , t he re  e x i s t s  n  such t h a t :  
0 

0 

. . 
( 6 )  fno  L(F) - fop (F) 1 i/3 f o r  every f i n i t e  subse t  F of A and n 3 n . 

0 

Also s m c e  l m  f  o 4 ( A )  = f o;i (A)  , t he re  e x i s t s  n  > n such t h a t :  
n  1 0  

n k 

Since f n  o u i s  r egu la r  
1 

F of A such t h a t :  ( 8 )  

' ove r  f i n i t e  s e t s  t he re  e x i s t s  a  f i n i t e  subset  

f ' E  
< r + 2 + -  

3 3 3  
by ( 7 )  , ( 8 )  and ( 6 ) .  

This shows t h a t  f o y  i s  regular  over f i n i t e  s e t s .  A s  i n  t h e  proof of 3 
d 

the  f i r s t  p a r t  of t h i s  corol laky we apply the  Nikodym Boundedness Theorem 

t o  the  sequence ( fno  p) of bounded s c a l a r  valued measures t o  show t h a t  

f  Q,?,! i s  bounded. By t h i s  we can conclude t h a t  f C M1 and hence M 
1 

is  weak* closed. 

Now a similar appl ica t ion  of t he  ~ ikodym Boundedness Theorem 

t o  the  co l l ec t ion  {f Q pl f  'C X *  and /If 1 1  2 1 )  of bounded s c a l a r  valued 

measures shows t h a t  u i s  bounded. 

We use the  above r e s u l t  t o  der ive  an Or l i cz -Pe t t i s  type 

r e s u l t  f o r  Banach spaces s a t i s f y i n g  c e r t a i n  condit ions.  



Corollary 2. - Let t he  r i n g  ?? of subse ts  of N and t h e  Banach space x 
- &- 

satig7fy one of t he  following : Q 

*, 

(1) R = 2" . x conta ins  no copy of lW .. - 

$ 

( 2 )  R i s  a @-ring containing a l l  f i n i t e  s e t s .  X i s  separable .  

(3 )  R is  a Qcr-ring containing a l l  f i n i t e  s e t s .  X conta ins  no copy 
i 

(4)  R is  a he red i t a ry  P p - r i n g  containing a11 f i n i t e  s e t s .  X con- 

t a i n s  no copy of c 
0 -  

( 5 )  I? i s  a f u l l  r i n g  with the  he red i t a ry  property and containing a l l  

f i n i t e  s e t s .  X i s  s e ~ a r a b i e  and contains  no copy of c 
0 -  

I 
w 

Further  l e t  r be a t o t a l  subse t  of X* . Suppose C x is  a s e r i e s  
n 

n= l  

i n  X such t h a t  C x i s  r-convergent f o r  every A E R i n  t h e  sense 
n EA 

n 

t h a t  t he re  e x i s t s  x E x such t h a t  C f (x  = f (xA) f o r  every f € r ,  
A n 

n €A -1- 

.then C x i s  norm subser ies  convergent. 
n 

n=l  

Proof. Define U :  R + X by U ( A )  = x a s  above. Since r is  t o t a l ,  
A 

i s  well  def ined and,moreover, f u i s  f i n i t e l y  add i t i ve  and r egu la r  
0 

over f i n i t e  s e t s  f o r  every f € . Also s ince  f o r  each f C r 

I 1 f (xn) 1 < f o r  every A C R , If (xn) I < . (Note t h a t  f? is  
n6A n a  

f u l l .  This implies  f o p  i s  bounded f o r  every f € . By co ro l l a ry  1, 



4 ( 5 )  then 3 . 3 b k r  1 implies thht p is $tr6ngly additive, If x - 
? 

is as in (21,  of 3.4  heo or em 1 *lies that p is 
OD 

f strangly additive. Hence C = 2 U (fn)) is subseries convergent 
- n=l 

L 

n=l 

in norm. ' 
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