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The purpose 6f this thesis is to review some of the theorems
concerning boundedness of linear operators and vector valued measures.
Applications in the theory of topological vector spaces and gummability

are also discussed.” .-

Chapter 1 is of introductory nature. In a th‘.kerszl Qy

introducing the notion of K boundedness, we obtain a version of the

uniform boundedness theorem which is valid for any arbitrary topological

L SN

vector space. In Chapter 3 we employ a simple vergion of Rosenthal's

»

lemma to give a proof of a result which is due to J. Diestel and B. ;aires.
We also establish the Vitali-Hahn-Saks-Nikodym theorem for a new class
of rings of sets, namely the class of rings with property (QI).

N
Among the other results obtained in this Chapter are generalized versions

- of the Phillips and Schur lemmag. _In Chapter 4 the Nikodym Boundedness

Theorem is proved in several settings. At the end of "this Chapter we

-

obtain an improvement of the Orlicz-Pettis theorem.

\“\k_k -
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CHAPTER 1 ' i}

PRELIMIRARIES !

§1. Introduction. .

-

There are several results concerning continucus ‘linnar functions
and vector valued measures which derive a conclusion of mitou.homldednass
fm&hyptm&mmiuu setwise. M&wAsm e e ,M,M
results play a significant role in the théory ofr topological vector spaces, »

summability and integration. The purpose of this thesis is to review and

discuss some of these results and their immediate applications in the .
theory of topological vector spaces and summability. Of particular

interest are the following results.

1. The uniform boundedness principle for continuous linear functions.

2. The Vitali-ﬂahn-Saka—nj.kodyzthaorm for finitely additive vector

... measures,

3. The Nikodym Boundedness theorem ‘for finitely additive vector.

measures .

e 1 et

. We prove each of the above results in a more general setting.
. In proving (1) and (2) we use primitive sliding hump arguments of the type
originally used by Lebesque, Hahn and-Nikodym. In fact Baire category

methods seem to be unsuitable here.

The conclusion of the Vitali-Hahn-Saks-Nikodym theorem is

stronger than of the Nikodym Boundedness theorem. This indicates a

'kk%ﬁi’if%ﬁ*ﬂw**‘ A1 kI 3 S ebon ot TG WU S b IR b r e

possible existence of a more general type of ring than those for which

*

Spletd faril



a class of rings, namely the c of) PQO-rings. Interestingly this

clzass contains the ring of or)dfi,nﬁxy density zero subsets of positive
integers. Also we ptove the \Nikodya boundedness theorem for n ring
generated by a full fnily (3\ba£xnition 4) provided measures

concerned are regular over finite sets (3.4 Definition 2).

e Inthe ining sections of this Chapter we list some
results from r.trgheory of topological vector spaces we are going to .

make use of in the next three chapters. All results {except results

in section 5) are stated without proof and can be found in one of [4]

{131 and {19].

.




"§2. fTopological vector spaces.

The following notation will be used throughbout this thesis.

R - set of real nnnbets;

€ - set of complex numbers.

N -~ set of positive intege£s.
R+ - ,L,sgg.,Q,ﬁjnannggg;,izg real numbers.

27 - power set of a given set X -

Definition 1. A subset A of a vector space X 1is said to be

(i) absorbing if for each x* in X there exists a scalar ¢ with
x € aA ; (ii) balanced if AA C A for every A with [A] =1
{iii} convex if for each pair x,y € A, {ox + (1-a)y|o < qa < 1} E_A p) A

and {(iv) absolutely convex if A 1is balanced and convex.

.

befinition 2. A vector space X wi@h a topology T , which we write
ésirfi,Tf; iS'called”aitépdiogical vector spaée if the operations of
vector addition and scalar multiplication are contimous.

Proposition 1. A vector space X with a topology T 1is a topological
vector space if an3 only if there exists a fundamental neighbourhood

system n{0) at the origin of X such that:

(1) Bach U in n(0) is absorbing and balanced.

(2) Por each U in n{0} there exists V in n(0) with V +VvV CU.

Tl 2 it e

Definition 3. A topological vector space (X,T} 1is locally convex in

N :
case there exists a fundamental neighbourhood system 1n(0) at the origin

sl it SR Dot - b de b 1 e




» condition

(4} lim ;g,m, x) = 0 whenever
n.

of X satisfying, in addition to condition (2} of Proposition 1, the

i

(1'y EBach U in n(0)} is absorbing, balanced, and convex.

L 3
-
.

Definition 4. Let X be a vector séaoe. A function p: X * R+ is
called an F-seminorm, provided

{1) p(O) = 0. ..
e o M e
(2) plx+y) = plx)+ply) .
(3) p(ix) < plx) whenever |x} =1, x € X . -

(=) is a sequence of scalars with
T —— - e e

lima =0 and x € X .
n n

If, in addition, p{(x} > ¢ for every x 70, then p is called an
P-norm on X .

Proposit:ion 2. A vector spacev‘x with a topology T is a topological
‘ector space if and only if there exists a family F of P-seminorms
on X generating the topology T om X ; also, T is Hausdorff if
and only‘ if F is total. i.e., for x € X, x #0 , there exists

p € F such that p(x) # 0 .

Definition 5. 'Let X be a vector sbac'e. A function Pp: *4 R+ is
called a seminorm, provided

{1y pto)y =0 .

. (2) plx+y) < pxd+ply) .

3y px)y =2pix) for every scalar > —and x ¢ X

.



v - -

If{, in addition, pix} >0 for every x # 0 , then p is called a.
~

norm on X .

Remark. A vector space X with a topology .T generated by a seminorm

‘(respectively, norm} on X is called a seminormed (respectively, normed)

space. A complete normed space is called a Banach space.

. Proposition 3. (X,T) is a locally convex ,topologicai vector space... _ .. __.______.

if and only if T is generated by a family of seminorms on X .

Definition 6. & subset B of a topological vector space X is called

F

) pounded if for each neighbourhood U of zero in X there exists
4 € R+ such that B < AU . .
. Proposition 4. Let X be a topological vector Qpace and let A C X .
Then the following statements are equivalent. *’;.
, s
{1) A 1is bounded. : P 4
{2) For every seguence (tn) of positive numbers with 1lim tn =0
. , n
R . ) -and every sequence (x } in A, limtx =0 .
n n nn
i ’ - 7
If X is a locally convex space, then statement (1) is also
equivalent to (3} A is bounded with respect to each continuous
seminorm : ! on X .
o . Definition 7. If =z 1is any complex number, then sgnz is defined
— ,7by;”” —_——

-~ -
RS g
5

e



Remark.

'

2]

z.sgnz for any z € ¢ .




- 83. continuous linear maps.

Proposition 1. Iet, (X,7;) and (Y,T,) be two topological vector
spaces over the same field. The set of all continuous linear functions
from X to Y , denoted by L(X,Y), is a vector space with the point-

wise addition and the pointwise scalar multiplication.

Proposition 2. Let X,Y be seminormed spaces. A linear function f

from X to Y is continuous if there exists M > O such that

HE(x)i] = Mlixl] for every x € X .

Proposition 3. If [[f] =sup{{if(){[x € x, x] = 1} for £ € L(X,Y),

then || || is a seminorm on L(X,Y); moreover, it is a norm if Y is

a normed space.

Theorem 1. Iet f be a continuous linear mapping from a subspace A
of a topological vector space X into a complete Hausdorff topological
_vector space Y ; then there exists a unique continuous linear map

F from the closure A of A into Y such that F A= f .

Definition 1. Let F C L(X,Y) where X,Y are topological vector

spacés. Then F is called

(a) pointwise bounded if {f(x)|f € F} is a bounded subset of
Y for each x € X ;
(b) uniformly bounded if {f(x)]|f € F and x € A} is a bounded

subset of __ Y _for each bounded subset A of X .,

(¥

¥ into scalars, then f is called a linear functional. The set of



‘all continuous linear functionals on X , which is denoted by X* , is

called the dual space of X . The topology generated on X by X*

is called the weak topolggy of X . Incase X 1is a seminormed space
X* 1is a Banach space with the norm defined in Proposition 3; moreover
for each x € X the linear functional ¥ on X* , defined by

5‘:(1‘?):/= f(x), belongs to X** . The locally convex topolégy‘generated

by {X|x € x} on x* is called the weak* topology on X* .

Theorem 2. (Hahn-Banach). Let X be a vector space and p a
seminorm on X . Suppose f is a linear functional defined on a vector
subspace Y of X such that [f(x)| = p(kx) for every x € Y . “fhen

f can be extended to a linear functional‘ F on X such that

[F(x)| = p(x) for every x € X .

The following propositions are immediate consequences of the

Hahn-Banach theorem.

Proposition 4. Let Y be a closed subspace of ‘a locally convex
spéce X ,and a € X\Y . Then there exists £ € X* such that

f(a) =1 and f(v) =0 for y €Y .

Proposition 5. Let - X be a seminormed space. If “x € X with
ix4 # 0 , then there exists £ € X* such that f£(x) = jx{{ and

£l =1

Proposition 6. Let X be a seminormed space. Then for every x ¢ X

xi = sup{if(]|€ €x=, M€ =1} .

S
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- Remark: Proposition 4 implies that if X 1is a locally convex

Hausdorff space, then X* is total over X . i.e., for each x € X

with x # 0 there exists f € X* such that f(x) ¥ O .

- 2
Theorem 3. Let X be a normed space and [. a linear subspace of X*

which is also total. Then [ is a weak * dense subset of X* .

-
Theorem 4. {(Banach-Alaoglu). If X is a normed space then the unit

disc in x* , i.e., {f € x*[{lf]l =1}, is weak ® compact. If, in =~~~ = o

addition, X is separable, then it is weak ® metrizable.

Theorem 5. (Banach-Dieudonne). Let ¥ ~bea Banach-space-and -S—a . — ..

subspace of X* ., Then S is weak * closed if and only if

{f € s|ifll = 1} is weak *® closed.

We conclude this section stating same properties of the Banach

spaces Cg, ¢, and &1 . Let w be the set of all scalar sequences.

Then c, = {(xn) € w[lim x = 0} is a Banach space with the norm f {|_
n

defined by [(x )l Sugﬁlxnl n €N} . ¢y = {Ux) € colxnhb 0

for all but finitely many n} is a dense subspace of o -

b= 1tx) €uw l x ) is bounded} is a Banach space with

the same supremum norm. m, = {(xn) €| {xn[n ¢'N} is finite} is

a dense subspace of &m . Also note that c is a closed subspace

0
of £_ .

&£ ®
¢, = {(xn) € wil

fxnl < =} is a Banach space with the ;

o}

=

\': a0
: i o =
7 ?ef%ped by !(xn)n £1fxnf- o

=4

o is a dense suhspace of 61.
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pDefinition 1. A formal infinite series L x, ina topological vector
i=1

space (X,T} 1is said to be (1) convergent in (X,T) if

n
(Z xi)n ¢ §y Cconverges in (X,T); ' (ii) weakly convergent in (X,T)
. i=l
o
if there exists an x € X such that I f(xi) converges to f{(x)
T e e s - =l . . L

for every £ £ X* ; (ii) subseries convergent if for any increasing

[o-]
_ sequence (i) of positive integers, the series I x; converges
= e e e e e

in (X,T), and (iv) unconditionally convergent if for any permutation

T
o

o of N, the series I x

., converges to the same element x
i=1 G(i)

in X .

Remark: let A CN . L ki converges in (X,T) means that

o

o
lim z /xi exists in (X,T). Therefore z X is subseries
n i€aN{1,n}* i=1

eonvergent if and only if L x, converges for every A CN .
iea t -
o0
Theorem 1. If a series I x, in a locally convex space X 1is sub-
i=1 ’

series cohvergent, then it is unconditionally convergent.

The proof of the above theorem can be found in [9].

o A\

Theorem 2. Let (xn) }be a Cauchy sequence in a locally convex space

X . If (xn) converges weakly to x in X , then lim x =x.
n
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, a .
Definition 1. Let {} be an arbitrary set. A subfamily R of 2 is

said to be a ring in case A U B, AN B € R whenever A,B € R .
: oo .
If, in addition, J A, € R for every sequence (Ai) in R,
i=1 '
then R is called a 0-ring. . s
-

" Definition 2. A ring R of subsets of a set { is called an algebra

if Q €R .

- - Remarks %"m’%fﬁfmmﬁmmf’*’***"'* e e

/

j
Definition 3. A ring R is called a QU-ring (respectively, an

i
FQC-ring) in case for “ivery sequence (A.) of pairwise disjoint sets
\

(respectively, finite sets) in R , there exists a Stmaqunce (Ai )
‘ . b] -

oo N

of (A} such that A\\€ YR . /
3

. X N
=1 N
N _ . - el

Definition 4. A ring R is ca'lled‘hereditary (or an ideal) if R
is closed under subsets. If R is an ideal then F = {aS|an € R} is

called a filter. {Note that filters are closed under supersets.)
Example 1. A Q0-ring R which is not a O-ring.

Let F be a non-principal maximal filter of subsets of N .
This means that 1F = ¢ and if there exists a filter F' such that

F < F' then F' = F . The existence of such filters is implied by

the Zorn's lemma. Let R = {A®|A € F} . We claim that R is an

ideal satisfying the following:



PN SO
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.

(1) R contains all finite subsets of N_.

(2) R is a Qu-ring .

(3) R is not a O-ring. : .

By the definition of a filter it is clear that R is an ideal.
Let A C N . Suppose A,Ac ¢ F/ Since F is maximal, there exist
E,F ¢ F such that AN E =¢ and AcﬁF=¢; consequently

'ENF=¢. This contradiction shows that A € F or A° €F. 1o

prove (1) let n € N . Since F is non-principal {n} §{ F . Hence

mi{n} € F 'so that {n}. € R . This shows that every finite set is in R .

n
=3 Q0 =3
‘ . c
'rhen dnanFoz(dAzn) €F. 1f UAZREF,tI}en
n=1 n=1 n=1
o0 =3 oo [- 2]
. c
U A, c(u AZn—l) € F . Therefore U A, €R or U A2n—l €R.
n=1 n=1 n=1 n=1l

(3) follows from (1) and the fact that N § R .

Lemma 1. Let R be a ring of subsets of a set { . Suppose

a: R+ R+ is a unbounded function such that:

(1) afa UB) < af{A) + a(B) for A,B € Rwith AN B =¢.

N (2) a(aN\ B) = |ata) - a(B)] for A,B € R with B CA.

Then there exists a disjoint sequence (An) of members of R such

that lim a(A ) == .
n n

- W4mmw{a(s) |B € R, B c al.

*



a(E) = ©» such that for every F CE with P ¢ R and

a(P) > k, a{P) == .,

v

b » Since a(E) = @ , there exists F, CE with F € R such that —

a(F;) > k ; hence a{F;) => . Let F, CF with F, ¢ R such that

a(F,) > a(F)) + 1. Hote that G(F,) == since a(F) >X and

F, CE ; so by induction we can construct a decreasing sequen

> n V = i
of members of R such that a(rn+l) a(rn) +n. Set An Fn'_\ Fn+l.

2. Then a(a) = [a(F)) - G(Fn+1” by (2) and hence a(A) >n . This

implies that (A/) is a disjoint sequé'nce of members of R° such that

¢

- lim oA ) = @

v

Case 2. Suppose for each k$0 md;aach E;_C_X with Q(E) = ,
, _there exists F CE with E € R and a(F) :3,,5,,,%1:‘,@! ‘that Q(F) <= .
Since a(Q) =« , there exists an A CQ with A, € R such

that a(a)) 21 and —E(Aﬂ <= N’o‘.v‘we’,show that QRN Ay} = .
Let PéR - Then P = (PN A4) U (PﬂAl)»a and PN\ A, P,ﬂAl are
disjoint members of R Hence by 1, a(p) = ;z(P\ Al) + a(p N Al)-
Taking supremm over P.€R. we have—

a@) = 'S‘Ig; afP) < iup a(P\Al) + E\;g a(p N Al)

< - peR pER peR

A

a(Q\Al) + a(Al) .



Since a(R) == and G(A) <, this implies QBN A) == .

IS

.ctpose hzgﬂ\nl with'AZGR such that G(AZ)ZZ and

3y

a(Az) < w , Using the same argument we can show that :

STOAN A Yy A) <™ so by induction we can construct a disjoint

sequence (An) of members of R such that a(a) zn for n €N .

TR ———MAHe»neeb]:im-a(AH)Qnmgr~ S

-

n .,
4 . .
Definition 5. An algebra R of subsets of a set { is said to have the

interpolation property in case for every pair of sequences (A_)Li(B#)i

of members of R such that A c¢B_for n,m € N , there exists

C€R such that A CCCB for m,;n €N .
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CHAPTER 2

. .
THE UNIFORM BOUNDEDRESS PRINCIFLE

.§1. Introduction.

The material in this chapter is essentially contained in the

Antosik-Swartz paper [ 2] with the exception of corollary 1 of

~theorem 1 in section 3 which is a ,,géneralization of the Banach-Steinhaws .. .- .

theorem. The uniform boundedness principle, one of the most important

- theorems in Functional Analysis, is a result which derives a conclusion

of uniform ;oundedness fram a hypothesis concerning pointwise boundedness.

In proving this theorem our use of a matrix method in place of the Baire

category theorem paves the way for some genaralizatipn of the classical
version of the theorem. As a preliminary, in section 2, we obtain a

result concerning infinite matrices in a topological vector space which

is somewhat in the spirit of the Antosik-Mikusinski diagonal theorem [1]}.

By introducing the notion of a K-bounded set, we obtain an ana.lo;gous
statement of the uniform boundedness theorem which is valid for any

arbitrary .topologicai vector space.
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T §2.  Basic facts.

We start with a lemma which can be viewed as an elementary

sliding hump type argument. ~

¥

Lemma 1. Let (an) be an arbitrary infinite matrix of positive
: . . o
rmumbers. Suppose (xmn) is a given infinite matrix of non-negative
i . }
numbers such that lim x =0 for each n and limx =0 for
.Y ... mn e
each m . Then there existg a subsequence (mi) of positive integers

such that x
m

Proof. Set m, =1 . Suppose ml,;é,;.:-;,;i; have been chosen such
that x < A, for i,3 = 1,2,...,m and 1 #3j . Since {

lim x =0 and 1lim x =0 for i=1,2,...,n, we' can choose
p mP p Pmys ’ ird
\ y

m >m_  such that x < A, and x < A ., for
n .m i,n+1 m -.m, n+l,1i
in+l n+l i

S
i

1,2,...,n . By induction the result follows.

» #

We use the above lemma to obtain our maJ.n result in this
section.
Theorem 1. let (xm) be an infinite matrix in a topological vector

space X . Suppose (i) lim xmn=0 for each. n and (ii) each

m
Nond subsegquence (nj) of positive integers has a'subsequence (nj ) such
© v ’ : k
that lim I x =0, Then. limx__ =0 .
B ko ~m

Ix

Proof. Since every topological vector space X 1is generated by the set




of all continuous F-seminorms on X , it is sufficient to consider the

case when X is an P-seminormed spacé. We show that (xmm)mGN has a

subsequence which converges to zero. Since the same arqument can be

applied to an arbitrary subsegquence of(ﬁ“m) , we v;ll have that

méN

lim x =0 .
m ° mm

Let: (Aij) be an infinite matrix of positive numbers such
- \

- ' that L A'j < ® . Condition (ii) implies that 1lim X on = 0 for each
~ it 5 B il o R

[ PR

i,3

m . Thus, by lemma 1, there exists a subsequence (ni)v of positi

n.n,
o U s J

integers such that |{ix i < kij for i #3j . (}| || denotes the

F-seminorm.) To avoid double subscripts assume n, =i . Let (i)

be the subsequence satisfying the conclusion of condition (ii) . Then for

every k €8 ,

w =]

[’y
: fx, = Zx ;- Tx | .
- etk =1 k't =1 k2
, S L
_ }‘ , , o _
/-\_/ w oo
/* s;;Zx.i;§+ I, . .
(\ e=1 "kt =1 ke
- [v =]
Now note that 1lim || I x, il[:o by (ii)}, and
kK p=1 e
m .
» lim - A, ;= O by the fact that L A,. <= ., Hence lim x. i = 0.
ko op=1 x'e i3 ko '

- o ) Thls‘completes the proof. ‘ -

Remark.. In the above theorem it can be concluded tﬁat lim xun =0

n
g; uniformly for m € N . 7
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~

. _ To verify this let (m;) and (n.) be two subsequences of

e positive integers. It is readily seen that the matrix (xm n ) satisfies \

iy U

conditions (i) and (ii). An application of theorem 1 shows that ~
lim x =0 . This shows that lim x = 0 uniformly for m € N .
i m.n. n mn )
1 1 ) X 4 4
E
!
? /,t
— == e — - - - - - - T - '77.— T TS - R — R
' o
,«’/l-’
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33. Main results.

The classical uniform boundedness theorem states that a point-
wise bounded family of continuous linear operators on a Banach space
is uniformly bounded on bounded subsets. By introducing th%hzotion‘of

a K-bounded set we give an analogous statement of the unif

boundedness
s .

theorem which is valid for arbitrary topological vector s S.

‘Definition 1. Let B be a subset of a topological vector space X .
B 1is said to be X-bounded if for each seguence ’(xn) of elements of B

and each sequence of scalars (tn? which converges to zero, the sequence

— - - e e BB

(t. x ) has a subsequence (t_x } such that I t x € X .
nn n.'n, . n. n.
: i1 i=1 "1 1
<

Remark. It is easy to see that every K-bounded set is bounded. An

example of a bounded subset of a normed space, which is not K-bounded,

is given at the end of this section,

Definition 2. A topological vector space X is said to be a (K)-space

1f every bounded subset of X is K-bounded.

Proposition 1. Let X be an FP-seminormed space. Then X is a

{X)~space if and only if each sequence (xn) in X , which converges

o0

to zero, has a subsequence (xn }  such that z x €X .
i i=l 7i

Proof. To prove the necessary part suppose X is a (K}-space. Let

(xnl ne a sequence in X with l=m x = 0 . Pirst we show that
N N

‘there exists a sequence {tﬁ) of positive numbers, which diverges to

x
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¥ ) e a local base at zeroc in X with V c v
ﬂ -t >4 - - JE— .- - — - — —— !‘+! L%fi R
for n € X . Since lim x = Q , we can construct a?g_'bsequence (ni)
n
e 1 .
of positive integers such that x_ ¢ z—vi for n 2> n, . Define the
Sequence (tn) oy
1 if 1 = n <n
1
t =
o1
L e - . )
L if n T no<ng,
It is easy to <heck that lim t_ =% and that limctx =0 .

n th n

Hence {tnx ‘n £ Y is bounded. Sinece X
H
it x in € N:
nn

positive integers suczh that

is a {X)-space,

(n,) of
i
= w
l Z - . L od
s = (t x ) £ X . t.e., L% € X .
B £ n. n, . n.
1=l n, 11 i=1 1
The suffizient part can e easily checked.
corollary 1. Zwery complete F-seminormed space X 1s a (X} -space.
Procf. Let {x ; be a segquence in X with li= %= G . Choose a
. : L8 &
- '/ o
gubsequence {x_; of (x ; such cthat L Tx <= ., {Clearly
- r
A, T i=1 n,
Lox_ satisfies the Zauchy condition. Since X 1s complete,
i=1] ML ' ) '
==l
I ox 2 % ) Henoe the previous proposition implies
'T; =1 ‘,,‘,i R — . — -
g

that X 1g a
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Theorem 1. (The uniform boundedness principle.)

et F be a family of pointwise bounded continuous linear
functions of a topological vector space X to a topological vector
spacé Y . Then F is uniformly bounded on every K-bounded subset

A of X .

Proof. Let B = {f(x)|f € F and x € a} . We want to show that B

is a bounded subset of Y . Let (f (x )] be a sequence in B
n n né€N

and (tn) a sequence of positive numbers with 1lim tn =0 .
n

Y

Set a =t° f Ltl’ x) for nm=1,2,3,... . Since the
nm nn m m - R - i

sequence (fn) of continnous linear functions is pointwise bounded and

iimt° =0 ,
n n
(1) 1lim a =limt%f(t%x)=0 for m=1,2,... .
n nm n 0 nomm

Since A 1is K-bounded, each subsequence (mi) of {wm) has a

@

subsequence (mi ) such that C t: X € X . BAagain by the facts
3 j=1 i, i,
] ]
that (fn) is pointwise bounded and lim t: = 0 we have
n
w o
- - —_ 0 % £ Lad H -—
(2} 1lim ;am _IMtnn(Ltm xm)~0.
noo4=1 i, a 3=1 i, i
J 2 J

Therefore theorem } of the previous section implies that

\

lim :_\f_}(x y =lima =0 . This completes the proof.
T ! - T
2T n m

i




Remark. If X is a (K)-space, then F is uniformly bounded on every

bounded subset of X .

Corollary 1. {(Banach-Steinhaus).
Let (fn) be a sequence of continuous linear functions from
an F-seminormed (K)-space X to a Hausdorff topological vector space

Y . If lim fn {x) = £f{x) exists for every x € X , then f is a
n : )

continuous linear function from X to Y . Moreover, this convergence

is uniform on every compact subset of X .

°

Proof. Since Y 1is Hausdorff, f: X - Y is well defined and evidently
it is linear, Pirst we show that f 1is continuous. Since X is first

countable it suffices to show that for each sequence (xn) in X with

limx =0, 1lim f(x ) =0 .

Construct, as in proposition 1, a sequence (tn) of positive

numbers with 1lim ¢t = ® such that l1imt x = 0 .
n n n nn

{tnxn{n € N} is a bounded subset of X and, moreover, since

lim fn(x) = f{x) for each x € X , the sequence -(fn) is pointwise
n
bounded. Therefore theorem 1 implies that M ='{fn(tmgm)1n,m € N}
is a bounded subset of Y . Since 1lim f (t x ) = f(t x ) for each
m DT nn n'n
n €N, (f(tnxn))n€N is a sequence in M and moreover M is bounded.

Hence 1lim f(x ) = lim,—L-f(t x ) =0.
n n n tn nn

o
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subset K of X . Suppose (f.n-f)n€N does not converge to zero
R

"\

uniformly on K . Then there exists a subsequence (ni) of (n) , a

sequence (xi) in X and a neighbourhood U of zero in Y such that

E

(1) (£ =-f)(x.) U for i=1,2,... .
ni 1

Since X 1is first countable, X Qsequentially compact, and hence',’
perhaps by passing to a subsequence, .we may take (xi) converging to

a point x in K .

Set aij = (fn - £) (xj - x) . The pointwise convergence of
i .

(fn) to f implies that (2} 1lim aij=0 for j =1,2,... .
i

Since X is an F-seminormed (K)-space, proposition 1 implies that

has-a subsequence

every subsequence (xjk - X)kﬁz of (xj - x)jEN
- -
{x, - x)& such that I (x. - x) € X and hence
b €N 3
k =1 k
£ L
x oo
(3) lim Eai. = lim (f - £)( L x_ -x) =0.
it k, 1 W 2=1 x,

Hence theorem 1 of the previous section implies that

lim (£ - £)(x, - %) =lima_. =0 . Since 1lim (f - f)(x) =0 ,
i n, i i - ii i n,

we have lim (f{f ~ f) (xi) = 0 which is a contradiction to (1).
i : Ax. ) =V Wil

Therefore tfnT converges to T uniformly on K .
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Corollary 2. 1et X be an F-seminormed space, Y an F-seminormed
(K)-space, and Z a Hausdorff topological vector space. If the
bilinear map P: X X Y »Z 1is separately continuous, then F is

joeintly continuous.
Proof. Since X X Y is first countable, it suffices to show that

(F{xn,?n))néN conve?ges to ze?o whenéYer (xn) and (yn) .conyerge

to zero in X and Y respectively. Consider the seguence (fn) of

.(Jv - :
goéntinuous linear functions of Y to 2 given by fn(y) = F(xn y)
. ’

fonf?ch n . The éébarate continuity of F mghplies that lim fn(y) =0
: , n
for every y in Y . Since {O,yl,yz,......} is a sequentially
compact subset of X , the last corollary implies that °lim fn(y) =0
n

o

uniformly on {O,yl,yz,......} and hence lim F(xnyn) = l;m fn(yn)

éorollary 3. If E is a subset of a seminormed space X spghithat

f(B) 1is bounded for every f € X* , then E is bounded.

Proof. X* 1is a Banach space with the usual norm topology. Since

f(E) is bounded for each f € X%, E = {;Ig € E} is a family of point-

wise bounded continuous linear functions on X* . Therefore theorem 1

1A

implies that Sup{|x(f) | 1} <= , since for

x €E, £ €x*, £l

-

each x € X |xi| = Sup{lf(x)]ff € x* , #gll =1} , this implies that

supiixilix € B} < = |
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___The above results are usually derived by means of the paire
Category theorem (see [18]). The assumption of completeness or

barrelednessis needed there. ‘ The following is an example of a normed .

space for which the uniform boundedness principle does not hold.

Let 00 be the space of real sequences (tn) such that

t = 0 eventually and equip o0 with the sup norm. The dual of

00 is then 81 . Let e be the real sequence which has value 1
in the nth' place and zero elsewhere. Then (nen)nGN is pointwise

56 : SR e e e e

Note that the set {en[n € N} is bounded but is not

K-bounded. Also note that €50 is neither complete nor a.'ix) -space.

R ™
-

An interesting but complicated example of a non-complete ni
(k) - space is given in [10]. The following is-a simple example of
non-complete (K]-space. . - - R

Let X be a Banach space, We show that X with the weak
. rd

topology is a (K)-space. Let A C X be weakly bounded. The last
corollary implies that A is bounded and hence A is X-bounded by

the fact that every Banach space is a (K)-space. This shows that X

with the weak topology is a (K)-space. But in general thig space is

not complete.

&

Al

H
4
E
a
E
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CHAPTER 3

e s = checause-a—number-of—fundament al -theorams-of-vector-measure-thecry-—are—— - — - — -

r;;,-‘“x\

;

BOUNDED VECTOR MEASURES .

§1. Introduction.

The theory of vector measures, in addition to its major role

in integration theory, is also important in some areas of functional
analysis and summability. In this chapter we study this secondary role

of vector measure theory. In doing so our strategy is to begin with

some basic set theoretic manipulations. This is in fact necessary

based on the set theoretic structure of the corresponding domain ‘spac'e,

i

b
which is generally a ring of subsets of a given set { . In order to
s

generalize some important results, we define vector measures taking

values in an arbitrary topological vector space instead of a Banach

space. Since every topological vector space is generated by a class

- of F-seminorms, in most cases the results obtained for F-seminormed

. Y
paces can be readily generalized to topological\r‘yector spaces.

In section 2 we obtain same basic straightforward properties

of vector measures. Section 3 is started with a simple version of the

=

Rosenthal's lemma. Wef\uﬁthis lemma to establish a structural link

€

o

between the Banach spaces Cyr / and bounded vector measures. This

3

in turn beqomes a powerful tool to obtain some important results

concerning tc;f:o\lo\glcal vector spaces, including a generalization of

the Orlicz-pettis thecrem for locally convex spaces. The materials in
o A

sections 2 and 3, allﬁfxough generalized to some/extent, are essentially

-

}
- .\‘
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contained in Mathenatical,sﬁrveys - number 15 by J. Diestel gand
J.J. Uhl, Jr. I 6l. Section 4 deals with.convexgence and boundedness
;92 sequences of vector measures. The Vitali-Hahn-Saks-Nikodym

theorem, which is proved in a more general setting, plays a vital role

in this section. At the end of this section we introduce the notion
- of full classes and disd¥ls several applications of the previous results
in matrix summability.
L 2

\-\_‘n [« '.;
ty’ ‘,.
¢
—
E
3

B i
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As the title indicates, we group in this section all basic

. properties of vector measures which follow directly from definitions.
X -

Definition 1. Let R be a ring of subsets of a set R and X a
topological vector space. A function U: R + X is called a vector

measure if U(E U P) = l(E) + U(F) for every E,F € R with
R e o - oo - S S e e e
ENF = ¢ . If, in addition, u{ U En) = u(En) for every sequence
n=1 n=1
[oe]

(E ) of pairwise disjoint members of R with U En € R, then u is

e — e < ——

called countably additive. Moreover, if {1(E)|E € R} is a bounded

subset of X , then J is called bounded.

In what follows, unless otherwise stated, R " denotes a ring

of subsets of a set ! and X denotes a seminormed space.

“Definmition 2. Let pr R+ X be a vector measure. The variation -

/

of U is the extended non-negat}ée function |u] whose value on a

set E CQ is given by,

n

lu| (B) = sup{ Z ﬂu(Ei) ln €N, E iEyrees B are pairwise disjoint
i=1 .

B n

members of R such that U E; © E} .
i=1

If {u] (R} <= , then U 1is called a measure of bounded variation.

The semivariation of | 1s the extended nonnegative function

<

full whe€e value on a set E € Q is given by, ’ X



lull(8) = sup{|x*n|(E) [x* € x*, |lx*|l<1}, where |x*u| is the .

varjation of the real valued measure x*pn . If |jujf(Q) <= , then u

is called a measure of bounded semivariation.

The following proposition is stated without a proof since its

verification involves only simple computation/s:,fv

¥
s

J

 Proposition 1. a._  |ul(®) 3 flull(e). for every E CQ and- - . .

Hull () = lu(®)|] for every €R .

£iniTRYy subadditive on R .

c. |u] and lluj are both monotone, i.e.,

ul® = |[ul® and fuj(e) = full(®» for EcFcQ.

Ve use the following lemﬁa to obtain a few cother results. -

Lemma 1. If W 1is a finite®set of complex numbers, then there exists

V € W such that I |zl =8| z 2. y
z& z€y

‘Proof. Divide W into four disjoipt sets taking intersection with each

quadrant of the complex plane. For at least one of these sets, call

it V , we have

4 I |z| ) ] /
_ZfW ZEV

L |e]

1A

A

4 I (|Rez| + |Imz]) .
z€V : .
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{The last equality follows from the fact that all 2 €V are
in the same guadrant.)

4ilre T z| + |Im T 2|}
z€v - z€

- =
' Z€V Z€V zév
Remark. As a direct consequence of this lemma, we have the following.
[ o]

is a finite subset of N} < , then L Izil <o
i=1

1f sup{| Z z,|{ F
S it

Proposition 2. A vector measure U: R > X is of bounded semivariation
if and-only if @ is bounded. ’
Proof. Let x* € X* , |jx*}| = 1 and let El'EZ""'En be pairwise

disjoint members of R . Then the above lemma implies that there exists
v c {1,2,...,n} such that -

n
z ]x*u(Ei)‘ < 8| z X*U(E,) |

i= iev
— ——=glasp{ U-EH
. i
iev

41} Zz| + | 2 2|1 =8| T z| .
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7 Cdﬁéééﬁéntly, if 1 is bounded, then } is of bounded semivariation,

. . . . k)
The converse is obvious. .

- e
Remark. In view of Proposition 2 a vector measure of bounded semivariation

is also called a bounded vector measure.
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§3. Strongly bounded vector measures. JP

One obvious property of a countably additive vector measure u

-

defined on a O-ring R is that if (En) is a sequence of pairwise dis-
@ “ —

joint members of < R , then Z,u(En) is subseries fand unconditionally)
convergent. Nonetheless thiz—;roperty is shared by many noncountably
_,additivé vector measures. For instahce, every bounded scalar measure
has thés propérfy;rron the other hand the vector measﬁre v: A +7c6 ;
where A is the family of all finite subsets of N , defined by

Because of its importance in theory of vector measures we single out this

property.

Definition 1. Let R be a ring of subsets of a set [ and X a

topological vector space. A vector measure M: R+ X is called:

-
o

(i) ‘strongly additive in case L u(Eh) -converges for each seguence
n=1
(En) of pairwise disjoint membersjof R .
{ii)* strongly bounded in case 1lim u( n) = 0- for each s#quence (En)

n

of pairwise disjoint members of R .
Proposition 1. Let u: R+ X be a vector measure.

(a) sSuppose ¥ 1is a locally convex space. Then if U 1is strongly

is a bounded vector measure not satisfying the above property.

bounded, U 1is bounded.

(b) If X 1is sequentially complete then statements (i) and (ii) are

equivalent.



3 -

be a continuous seminorm on X . It is sufficient

to show that u is bounded with respect to || || . Define a: R + R+

by a(E) = jlu(B)¥ . Let A,B €R . If ANB=¢, then

1A

(1) oA UBy = y2{a ¢ B4 = (A + flum® = a(a) + a(B).

If ACB then,

B NAYE = du)y - w2l i - dua ]

It

T (2) 2B N_A)

fa(B) - a(A)| .

1

Since lim a(En) = 0 for each disjoint sequence (En) in R, 1.5
n .

lemma ] implies that 2 is bounded, i.e,, U is bounded.

(b) (i) always implies (ii). To show that {(ii} implies (i) let

(En) be a sequence of pairwise disjoint members of R . Suppose

;(Eh} does not-satisfy'the Cauchy condition. ~Then there exists an
1

o8

n

increasing sequence (ni} of positive integers such that
L3

Rt At
lim & W(E.) # 3 . Set ?i = U E. . Then (?i) is a sequence
i j=ni J j~=ni J

of pairwise disjoint members of K with lim u(?i} # 0 . This
- i

=1
Z 4(B ) satisilies the Cauchy condition ard
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Bemark 1. Suppose X iIs a locally convex space. If X is weakly

sequentially complete then (i) and (ii) are equivalent by virtue of

-~ .

1.4, theorem 2.

s

2. In statement (i) the convergence of z ;:(En) is subseries
and unconditionai., -

3. The set of all % +valued strongly bounded vector measures

a

defined on R forme a linear space,

The following definition extends the earlier one to a

sequence of bGunded vector measures,

Cefinition 2. Let K be a ring of subsets of aset i and X a

topological vector space. Purther let u: R - X be a bounded vector
n

oeasure for each =n £ N . Then the seguence (4)  is called:

n
{1} uniformly strongly addictive in case for any serzences (E ) of
‘ i B
, pairwise 3isioint mexbers of K , -z ul{Z ] converges uniformly
n=1 2 -
for m < 5, -
7iij wuniformly strongly b>ocunded in case for any seguence (E ) of
n
pairwise disioint menmpers 2f R, lim L\(EF} = 5 uniformly for
n om

@ 4N,
Proposition 2, If X iz seguentilally complete then (i) and (ii) are

eqpiivalent. - -

Proof. Follow the proof of rart o, of proposition 1.
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We need the following simplified version of the Rosenthal's

lemma [14] to establish our main theorem of this section. Although the
proof of this lemma is simple it represents one of the most important
results in measure theory.

‘Lemma 1. Let (i) be a sequence of uniformly bounded nonnegative rﬁal—
N n

valued. measures defined on ZN—the power set of positive integers. Then

for each € > 0 , there exists an infinite subset P of N such that

u(Pp\{p}) < e for every p € P .
-

)

Proof. Let € > 0 , Partition N into a sequence (Mn) of pairwise

disjoint infinite subsets of N . If there exists n € N such that

;-’(Mn\ {p}) < £ for every p ¢ Mn , our goal is achieved by setting
o

Mn =P . Suppose for each n ,\there exists pn € Mn such that

(1) w (Mn\{pnf) >c,

r = { ! =
Let P, P in € N} . Then Pl n (Mn\ {pn}) ¢ for
n=1,2,,.. and hence

1 1 { = i <
20w @y +u M NA{p }=up U MN\{p })) =M, vhere

Pn pn pn

M

"

sup{;i(E) in € N, E € N} . By (1) and (2) we have
n
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Next apply the same argument to (i )n€N and El . If

Py

the process does not stop, there is an infinite subset P2 of Pl

such that (4) u(Pz) =M - 2¢ for every p € P2 .
p )

Thus the process must stop before n iterations where n is
the smallest positive integer such that M-ne < 0 . This completes the
prooff

Now we are in a position to prove our main theorem in this
section, This theorem gives a characterization for vector measures which

are not strongly bounded./ Recall that c ,-the space of all finitely

0
nonzero sequences with t p norm, and mo-the space of all finitely

valued sequences also with the sup norm, are dense subspaces of <,

and &m respectively.

Theorem 1. Let R be a ring of subsets of a set I and X a
seminormed space. Suppose u: R+ X is ,.bounded vector measure. Then
L 1is not strongly bounded if there exists a linear topological

embedding T: c - X and a sequence (En) of pairwise disjoint

00
members of R such that T(en) = u(En) where e denotes the

sequence, 1 in the nth place and zero elsewhere.

If, in addition, R is a J-ring then the above statement

remains true if the space 50 is replaced by m, -

Proof. Suppose; Ve R » % is not strongly bounded. Then there

exists a disjoint sequence (E ) in R and an ¢ > 0 such that
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(1) Hﬂ(En}H >e for n €N . , L N .

By virtue of the Hahn-Banach theorem there is fn € X* for

each n € N such that
(2) anH =1 and £ (E)) = Hu(En) I >e .

For n € N , consider the variation |fn o u| of the scalar

valued measure £ o U . Since ]fn o uf(e) = ffull(@) for ‘

E € R, (Ifn o u|)n€ is a uniformly bounded sequence of nonnegative

A 3 :

For n€N define M: 2 + R+ by,
n

N

real valued measures.

u(p) = I |f o ul(E;) .
n iep T

The strong additivity of ]fn o p| implies that p is a measure.

n
Since for néN and P C N, U(P) = L |f o ul(Ei) < jlullen , M is
n i€p : n
a uniformly bounded sequence of nonnegative real valued measures. By *
Lemma 1 there exists an infinite subset P = {pl <p, < veeea ) of -/

¥ such that

(3) » (P\{p } < e/2 for every pﬁ E;P .

- X by T((xnn= . xnu(Ep ) . Since only
n=1 o Tn

finitely many terms are nonzero in the above series, it is readily seen

that T is linear. Moreover if f € X* with J|/fii =1 , then

RPNy SO P
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fo = b Z E
} V'I'((xn))l {:lﬂxnmpnnl
= | Z x fou(E_)|
n=1 n pn
.= I x ||feuE )]
n=1 pn
< Hx) i, I [foue_)|
It
n p=l pn

i !
A ) i@

Consequently (4) T( (x )) i = o) o lmll () .

On the other hand for m¢N ,

1

IT((x_))i 2 [£ o T((x))] (since [If_ 1] = 1)-
n P n p
m ) Cm
ke =3
= £ (.L x WE_))|
pm n=1 n n
= { Zx £ o }J(E )T
n=1 m - pn
2 ix £ e uw(E ), - [ LxE e p(BE )
m P n=1 P n
n#m '
> dx LI e - i)l I E e M(E
m pm ,» = m
n¥m
> - K 3
= fx_ e (x )i = e\ {p 5) (by (2))

P
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= S e

z |x |e -:iL@d) I, €/2 by (3) .

[N

Taking supremum over m on the right hand side we have

A

| 4> i )
(5) dT(xn))J > “(xn)”m.E/Z .

P

(4) and (5) implies T is a linear topological embedding. Finally

note that T(en) = H(Ep ) .

n —

Moving to the case in which R is’a O-ring, we proceed as

apove to preduce an € > 8 , a sequence (f ) in ¥* and a pajrwise - T

disjoint sequence (En) of members of R such that

~
(6) anﬁ =1 and !fn s u(En)] > € for n % N g .

Define L: 2 o re by

n - ;/,
| PN e

uey = {f_ o wled E;) .

n i€p '

It is readily seen that (}) 1is a uniformly bounded ségnence of
n e

nonnegative real valued measures. Again Lémma 1 implies thay there

exists an infinite subset P = {pl <p, < ...} of N such that"

(7 (P\{pn}) <e/2 for p_ £€p .

Py

R 4
If {xn) €=, we can write (xn) = milamxAm where

ALLA

1'Agre B are pairwise disjoint subsets of N such that

Fogtlh.+ 2



- k . - , - I
UA =N . Define T:m_ + X by,
m
=1
+ el ) k
T((xn)) = ZBuluy E ).

n=1-" iea Pj
m

set algebra. Moreover if ¢ £ € X* with ||fl = 1 , then

by

Sk '
HECZBu( U E N
w” iea Fi

om=1
\.
e S— -

H

3
(o]
|
%
bv
il

k
| 2B £u(y E_)|
m=1"° iea Pi

. : k
LR JlfptuU E_ )|
" m=l ® % iea Pi

1A

k
fxid_ L [f£ucy E_)
T e ©ia Pi .

1A

1A

ERERIT ().

- Cori 8) I D e )
;fjnsequently (8) ITx )i = 1= )i i)

On the other hand for ¢ ¢ N ,

»
ImCix )0 2 lf o« T((xn))i

e
ta




Finally we note that T(en) = U(E
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R k -
= |x,f o ME )+ LB Ef ou(U E_ )|
tp, Pg m=1 B Py ien Pi
iz
| k
2 [x,f o M(E_)| -] LBE oullU E_)
¢ Py m=1 " P iea Fi - | -
iFt
| Sle ol
z xyle - fx 2l Z £ oul(U E )] (by 6)
-t T me1 P iea Pi
' igt
A= dxgle - B Ve, o uf(U E_) o
— 4 B = R & T A NS £ 2 > G S
= |x,le - e, le(P‘\{pz})
I~
2 xgle - i), €72 by 7

Taking supremum over £ on the,righft,haxid,side we e Y

(9 lTtix 1l 2 dx )l /2

(8) and (9) implies that T is a linear topologicak embedding of
.

’

t .
mo o X

pn) .

n

and m

Remark 1. If X is a Banach space in this thecrem, then S50 o

T

can be replaced by Eéf"gﬁa%,&m respectivel?.

Remark 2. Let %X;Y be topological wector spaces. The statement "Y contains

a copy of X" means that there is a linear topological embedding T: X - Y. °

3
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Corollary 1. Let X be a Banach space containing no copy of S+ If
[+ 7

the series L X is unordered bounded, i.e. { I xn]A is a finite

n=1 neta
o
subset of N} is a bounded subset of X , then L x is subseries

n=1

convergent.

Proof. Let A be the ring of all finite subsets of N . Define
.

5

p: A > X by u(a) = X . Clearly | is a bounded vector measure.
n€a
Since X does not oontain a copy of Cq * theoren 1 implies that u ' ' \y
is strongly additive. Hence I x = I p({n}) is subseries conwvergent.
. Pl .
: ‘\; - n=1 n=1

;
-y
60rollary\21 Let R be a ring of subsets of a set  and X a locally

convex space. Suppose U: R - X 1is a bounded vector measure. If

lim p(En) exists weakly in X for every increasing sequence (En)
n :

of members of R , then L is strongly bounded.

Proof. We may assume that X is a seminormed space because of the
following reasons.
(1) 1f | I is a continuous seminorm on X and if the sequence

(xn) in X weakly converges with respect to the locally convex

topology on X , then (xn) converges weakly in (X, ) .

(2} ¥ 1is strongly bounded with respect tothe locally convex topology

if and only if 1 is strongly bounded with respect to each

S —

continuous seminorm § i on X .



there is a topoleogical linear embedding T: a0 + X and a segpeh P

(F ) of disjoint members of R such that T(exﬁ/ijp(?n). Set

m - m

E = UF . Then T(ZLe) = u(E).
m n n m
n=1 . n=1
- m
First we show that 1lim I e does not exist weakly in c
n n=1 . ‘
m :
. = . . ‘g=*
Suppose I;m nglen (an) weakly in cy For each k,ek € 1 cs

m
(Le) =e((a)). This means a =1 for each k ,

hence lim e
m n=1

which is a coﬂtradiction since (an) € cy -

Now let f € X* , Then foT € cao and moreover foT can be

extended uniquely over cq to a member of ca . We denote this

extension by be . On the other hand if g ¢ ca , then ngrl
continuous linear functional on the subspace T(COO) of X y virtue

of the Hahn-Banach theorem we can extend gDT_l over X
- =

of X* . We denote this extension by f . It is easy check that

foT = g . Therefore every member of ca can be writ¥en in the form
foT -for some f € X* . o ://

/.

Since 1lim U(En) exists weakly, theiy/;xists X € X such
n s

(1) 1lim f(H(En)) = f(x) for £ ¢
n

.



C - -

. s i

“Suppose X”*dUES'not’beiong'tb”thé*tﬁ6§ﬁfé*6f““T(coo) in~ X . Then i
|

l

by virtue of the Hahn-Banach,thsafem there exists g € X* -such that

g(x) # 0 and g vanishes on "1’(c‘00)'K - This contradicts the fact

1

that ,limvp(En) = x weakly in X . Hence x € T(cooé X . Therefore
n

there exists a sequence (an) "in 50 such that lim T(én) =x in X .

. n I . .

Let f € X*; then

(2) lim £ T(a ) = £(x) . .
n ©° n

' Also note that (éh) is Cauch§ in VCOO since (T(én)) is Cauchy in X .

Consequently there is a € c0 such that 1lim a = a in g - Since -
n
—— —— ——— e ’
£T € c* , (3) 1lim £ T{a ) = £ P(a) .
o 0] n ©° n o

n
Now !foT(;Elem) -fT@] = [fWE)) - f@] + (£ - £ T(a) |

+ £ r@) - £ T | . i ‘ L

By (1), (2) and (3) the right hand side tends to zero as n tends

n
to infinity. Consequently 1lim I e, exists weakly. This contradiction
n m=1l -

shows that § is strongly -bounded. This completes the proof.

Now we employ the above corollary to prove the Orlicz-pettis

theorem for locally convex spaces. This theorem was first proved by

Orlicz for weakly sequentially complete Banach spaces. Kalton [ 8]

recently obtained this theorem for separable topologicdi;groups and then

»

derived the result for separable locally convex spaces. For an

E
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alternative’ proof of the locally convex version of this theorem, the

reader is referred to McArthurs paper [11].

Corollary 3. (Orlicz-pettis). ILet X be a locally convex space. If
™~ . ) -}
I X is a weakly subseries convergent series in X , then I X is
n=1 ) ' , n=1

subseries, convergent.

.

Proof. Let A be the ring of all finite subsets of N . Define

g: A-> X by u(a = Z xh‘. Evidently U is finitely additive. To
. n€p ‘

a

show that § is bounded, it suffices to prove that 11 is bounded with

respect to each continuous seminorm || || on X . Consider the subset

F={1¢L ;nlA’é A} of (X, § Ih**; the second dual of X with respect
n€a ) .

to the seminorm topology. For every £ € (X,-H ln*, £ € X*; the dual

-

space of X with respect to the locally convex topology, and hence

=) i o

z £(x ) is subseries convergent so that I ]f(xn)l < @ _, (Conseguently

n=1 . . n=1
- . ; .
for'AeA,}(zx)(f1]=12f(xn))s Z]f(xn)]<°°. Since
n€a hea n=1
(X, I ©Y* is a Banach space, the uniform boundedness princple implies
that:

¥

supd{ Z £(x ) [|n €A, £ € (x,] D*, I S 1}< =,
.n&A n T o

Therefore Sup{fu(ﬁ) CiA € A} = sup{: T xn.,‘HA € A} <o | This shows
. n¢a

that 1 is bounded.

" 4 45

et e g

:

[
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Let (Ah) be an increasing sequence in. A . Then by - - -

hypothesis, 1lim u(An) = lim £ gmb exists weakly. Tnerefore the
n n m€An ’

last corollary impliés that U is strongly bounded and hence

L x satisfies the Cauchy condition for every ACN, Since
n€a

oz x exists weakly in X , 1.4 theorem 2 implies that I x_ is
nep néa

convergent in X . This cogpletes the proof.

Remark. In chapter 4 we obtain ., another version of the Orlicz-Pettis ]

theorem.

The following corollary establishes a characterization of

complete seminormed spaces not containing a copy of €50 *

Corollary 4. A complete seminormed space X contains no copy of o0

oo @©

if and only if every series I x_  in X , with I ]f(xn)! < ® for
n=1 ‘ n=1

every f € X*, 1is subseries convergent.

v o o]
Proof. First suppose X contains no copy of 50 * let Z x_ Dbe
) n=1 "
=]
a series in X with I if(xn)I <= for f € X*., We define
n=1

is A > X precisely as in the proof of the last corolléry and follows

the same argument to show that o is bounded. Since X contains no 1

copy of Sag , Theorem 1 iboplies that 3 is strongly bounded. The
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ccmplg;s:iss of X assures that u 1is strongly additive. Hggggiﬁqu -
oo fev)

I x = I pu({n}) is subseries convergent.

n=1l n=1

To show that the converse is true, suppose X contains a

00 in X

[==}

such that I [f(x)| <= for £ € X* . - p
n=1 '

o8
"

copy of ¢ . Then there are many nonconvergent series
: 1

Corecllary 5. Let X be a complete seminarmed space. If X* does

not contain a copy of ¢_ , then X* contains no copy of cy -

[oo] ~ w
Proof. lLet L fn be a series in X* such that I fF(fn)’ < ®
: n=1 o n=1

for P € X**x, If E E:N, then z ;(f Y{(= Z fn(x)) exists for x € X .

. nég O n?i*-

By virtue of the Banach-Steinhaus theorem, L fn converges with respect
n€E

to the weak?* topoiogy on X* ., Define \: 2N + X* by U(E) = L fn -
. . . n€E

weak* limit. Evidently u is finitely additive. To show that U is

bounded consider the subset F = { L £ -weaks limit|E € N} of X* . By
: n€E
the fact that 'f (x)! =
‘“n
1 n=1

0
z {x(£ )] <= for x € X, we have that F
n:

is pointwise bounded. Hence the uniform boundedness principle implies

A‘BT
ct
¥}
[
g
P

f_-weak* limiti|E C N} < = |

k-
i
I
1
f
£
E
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Since X* does not contain a copy aof Zm , the last part of theorem 1
N oo

implies that } is strongly bounded. Consequently L £ = Z u({nh
=1 n=1

is subseries convergent. Hence the last corollary implies that X*

4

contains no copy of ¢, . This zmpletes the proof.

~
o

The results we cbtained so far demonstrate the utility of

theorem 1 in the theory of topological vector spaces.
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§4, cConvergence and boundedness of a sequence of strongly

bounded vector measures.

The main result we obtain in this section concerning sequences
of strongly bounded vector measures is the Vitali-Hahn-Saks-Nikodym :
theorem. We prove this theorem for vector measures defined on a ring
with a weaker structure than of a g-ring. The proof is a modification
of the proof given in [ 7] by Barbara Faires. We use this improved
version of the theorem to obtain generalizations of boththe pPhilips and

Schur lemmas. We start with the following definition.

Definition 1. Let R be a ring of subsets of a set i . R is said

to have property (QI) 1if for every disjoint sequence (An) in R and
every sequence (Bn} in R with Am n Bn =¢ for m,n € N , there
exists a subsequence (An ) of (An) and C € R such that:

= =

A cc,c (4B =3 and cﬂAn=¢forn§{nl,nz,......}.

-
0ot
—
-

)

remarks 1. The class of ©O0-rings and the class of algebras with the

interpretation property noth have property (QI).

2. Let R be a ring of subsets of N with property (QI).

If R contains all finite subsets of N , then R is a QO-ring.

To verify {2; let (An) e a sequence of disjoint members

= =t w
3fF % . Then M\ _ 2 ) is countable. We write NN o An) =

n=l 7 n=1 -
{k1'k2"""'} and define B_ = ik_}. Property (pI) of R implies



50

that there 1s a subsequence (A ) of (a) and C € R such that
y
= .
Ja cc,CcT(WN\N(UA)=¢ and cN A =¢ forn § {n,n_,......}.
- ) n n 1" 2
=1 "3 n=1l
[=<]

This implies U A
i=1 7

C € R . Therefore R is a QO-ring.

Proposition 1. If R 1is a ring with property (QI), then R has the

. . 1
following property (we call this property (QI)7).

”/ For every disjoint sequence (An) in R and every sequence

(Bn) in R with An < Bm for m,n € N , there exists a subsequence

(An) of (An) and C ¢ R such that:

Proof. Let (An) pe a disjoint sequence in R and (Bn) a sequence

in R . Suppose A_ < B_ for m,n € N . Set D = Bl‘\ Bn for n € N .

n m

Since A CB for m,n €N, A NT7D =¢ for mn € N . Since R
n— "m n m

has property (QI), there exists a subsequence (An ) of (An) and

i

C ¢ R such that:
. x =
(1) ¢A <¢Cc,C(<-Dp)=% and CNA =4*%rn¢in,n,...... .o,

. n, — n n 172

i=1 1 =1
In fact we can choose C such that -C C Bl . By (1) ¢ (Bl\\ BP) = ¢
for n € N . Hence < T Bq for n €N .

=X
i.e., (2) << B

— ' n=1 n
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The proposition follows fram (1) and (2).

Theorem 1. (Vitali-Hahn-Saks-Nikodym).

let X be a topological vector space and R a ring of subsets

of a set {! with property (QI). Suppose (W) is a sequence of strongly
n

bounded X valued measures on R with 1im U(E) =0 for every E € R.

n n

Then the seq{:ence {4} 1s uniformly strongly bounded. i.e., for every
n .

disjoint sequence (En) in R lim u(En)' = 0 uniformly in m .
n nm
Proof. Since X 1is generated by a family-.of F—éem.imrms, we may assume

that X is an P-seminormed space. Suppose the contrary. Then there exists

a disjoint seguence (En) in R, an £ > 0 and a subsegquence (u ) of

m
n

fu) such that . u (E ;. > 3c for n ¢ N . For simplicity we relabel
mn m :

(4 )} by {u) and write 'i;;(En).‘ > 3c for n €N .
m n n

(3

A L Sy 1
Let 1 .=1 . rartition NN\ {i/} into a sequence (I ) of

pairwise disjoint i lfinite subsets 0f N . Consider the following two
=

disjoint sequences in R :

=7
- a -
By €Iy and {2016 L)} o "i . P
- - k=2 ’

IN

R such thart:



: 1 . 1 1
Suppose, for 1 =<k <n, Fo € R _’and an infinite A (c L) have

been constructed such that: ,\ .

(a) UiEli €a) cr

1 .
(bl) Fo N E;, =¢
- 1
. o
(c) FLAE =9 for j € U I
J p=k+1 P
(dl) F tFyrene /B2 nare palrwlss disjoint,

Consider the following two sequences in R .

1 Fl 1 b

i ©
1 . 1
. g ;- . ] ‘ H
{Eill € Hn} and {E i € {11} u U Ty {Fl'-g""'FIrl

p=n+l

Bya(cl) the members of both sequences are pairwise disjoint. Again

. P 1 ’
property (QI) implies that there exists an infinite subset An of

Hl and Fl E'Rrsuch that:
n n

GlE i €2l et and PP WiE i €{iu o T} U Uy
n° —'n n i 1 1 2
p=n+l
1
e U Fn—l) = § .

. li?ﬁa' ,
Clearly Fn ) ;1sf1es (al), (bl), (cl) and (dl). Therefore, by

Y

. , 1
induction, we can construct a segquence (F

k) of disjoint members of //R

and a segquence (Li) of disjoint subsets of N satisfying (al) . (bl) '

{c,* and idl} for k

;h
\
A4
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b (E) = suplily (MI|F € R and F CE} .

1 11

I | ' .
To show that 1im u (Fk) = 0, let £ >0 . Then for each k there is

k 11

1

N - 1 , . ‘
, such that iy (Ak)ﬁ > i (Fk) - € . Since J is strongly

! ae! . N

A (¢R cF

bounded, lim iy (Ak)i = 0 . Consequently lim B (Fi) = 0 .
koi L

Choose k. € N such that }:‘('Fi)"r: and then i eﬁi

1 2
1
11 1
. . : . 1
> } i .
(12 11) such that “u LEi 1. < e/ 5 - Note that, by (ai)t E1 E-Fk -
i 1 2 2 1
2 v
- . ll T 1 I II2 . . -
Partition ék \\112; into a sequence { n) of disjoint subsets of
1
21 \\{12}{. Use the same induction procedure to construct a seguence
1 -
(Fz) of disjoint members of R and a sequence (32) (’2 C ﬁi) of
k : X “k - A
-disjoint subsets of K such that:
. i - ,2\._ ,,“2
(az) uLEi;l ol T FL for k € N .
. 2 - o .
(b)) P H{E., _E. 3} =3 for k €N.
2 k i i, ,
1 2
- =
icz) F; ” E, =2 for 1 £ o 32 .
- o=k+1
Since .kim i+ (F ) =0 , 1lim u(E. ) =0 and 1lim W(E. ) =0 ,
kK oi, i 1 1 i i 2
. . - 2 ' . 2. -,
we can choose K. * N such that < {(F. ) < £ and then i_ £ 4 {(i_ > 1)
z . k, 3 “‘kz 3 2
=2
. . ) , _1 2
such that . {E. } , . [E, ; < =/ . Rote that E. < F  , F .
. i . 1. 3 i, — k k
1 1 i 2 2 3 1 i
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) Pfeéeeéiﬂg in this manner we can construct imductively a

sequence (F: ) = (Fn) say, in R and an increasing sequence (in) of
n ,

positive integers such that:

(1) E, CF_ for n<k

i n
= < <
(2) F_ 1 Eik ¢ for 1 =k = n (by (bl) and (bzn.
(3 [ (F) <e for n € N,
*n S
(4) i (B, )l <e/  for 1Sk=n.
i ok 2
n L)
(5) MW (E, )¢ >3e for n €N .
i ln
n
n
let H =F U (UE, ) . Then (1) implies E. CH for
" k=1 k- m
k,n € N . Since R has property (IQ)1 , there exists a subsequence
(i, ) of. (i} and ¢ € R such that:
kg 4
(6) JE, ccc 7 and CNE, =¢ fork ¢ {k ,k ,......} .
t=1 1k£ k=1Hk i 12

Therefore, for each p ¢ N ,

D p-1 ,
C=(CNJE. ) ud (d Ei ) 4 {E. ) and hence
=1 ¢ =1 kp o
P p-1
w (C)=A(El)+p(C\uEi)+}i(JE )
r{? lk k? lk =1 k£ lk £=1 k£ A
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. i
P <« p=1 7
Consequently H); (c)d > ILu - lLE LCLL_UL I=Ju (uEe,_ i
, " ﬁ"k =1 ’x, k e=1 k,
: p P P
. . | .
By (6) and the definition of Hk . C _C_I:Lk = Fk Jg Ei ) .
. P . P P m=1 m
' k k.
P b ~
Since F, 1 (U E, )=4¢ by (2), c\U E. ©€P_ . Also
k i i —'%k
P =l m m=1l "m P
P’ p
cC\NU E, =cCc\NUE, since CNE, =2¢ for m§ {k ,k_,o.i...}
) i i 1" 2
m=l Tm 2=1 x, m
P - .
Hence (3) implies that {{ u (CNUE. )il = p (F, ) <e .
i e=1 k i %p
k £ k
P . P
p-1 p-1 p-l
Also flu, (U E, )= Zlu (., )l= L g/ (by (4))
. 1 k
Yk 8=l 'k, t=1 x 'k, ¢=1 'p
b B
=€ .

Therefore |y (C)il » 3t = € - € =€ . This contradicts the fact
l M
k
P

that lim 4 (C) = 0 . Hence the sequence (U) is uniformly strongly
i i n

bounded.

Corollary 1. Let R, X be as in theorem 1. Suppose (i) is a sequence
n

of strongly bounded X-valued measures on R such that 1lim ¥ (E) = u(E)
n n

exists for E € R . Then U is strongly bounded and, moreover, the

sequence () 1is uniformly strongly bounded.
n

1f, in addition, X is canplete, then for each disjoint
sequence (E ) in R 1lim Z p(E ) = I U(E ) uniformly for A C N .
i Tt -
n m€A n méR
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Proof. Again we may dssume that X is an F-seminorimed space. Ilet
(Ei) be a disjoint sequence of members of R . First we show that

l:m E(Ei) = u(Ei) unlfor?ly in i . Suppose ‘(ﬁ(Ei))nEN is not

uniformly Cauchy in i . Then there exist two subsequences (nk) and

(1,) of positive integers such that:

k
(L Limf(u - wE If40. —]
ka1 Tk
Since and p  are both strongly bounded W - u is also strongly
nk+1 7 nk nk+l nk
bounded and, moreover, lim {( u - HW)(E) =0 for E € R . Thus theorem
k nk+l nk ’
1 implies that lim # p - u) (Ei)n = 0 uniformly in k . This
R 'OS T © ~
contradicts (1). Therefore (2) 1lim u (Ei) = u(Ei) uniformly in i .
n n

Por given £ > 0 , there is n; € N such that | H(Ei) - H(Ei)H < g/2 for

n
o]

i €N, Since limyp (Ei) = 0 , there is io € N such that
o

i nu (E)If < e/2 for i2 i . Thus HU(Ei) | = ““(Ei) - qu (Ei)H

n
o o)
+ipEI)I<Z+E=¢ for i2>i sothat lim B(E.) = 0 . Hence
i 2 2 o . i
n i
0 .
U is strongly bounded.
An application of theorem 1 to the sequence (u - U)nEN, shows
) i ' n

that the sequence (}) is uniformly strongly bounded,

n
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} : Toprcé-etherast‘partcfthecurcﬂarytetxﬁavcmplefz’

space and (E ) ja disjoint sequence of members of R . Then the sequence

(4) is unif

y strangly additive ahd U is strongly additive. Now we
n . .

show t (3) for ACN, lim I p(E) = L M(E ) '« This is true

n m€A n n - m€A

< <
{ml m, R

]

hen A 1is finite, so assume A is infinite, Let A

.
Since (y) 1is uniformly strongly additive, L u(Em }n=1,2,.,. are
n : j=1 n 3j

convergent uniformly in n . Therefore for given € > 0 , there exists

A

EOEH such that # I wi(E )i %fo; a € ¥ . In fact we can choose
n

° . m.
J"'no J
. oo
n  large enough to satisfy Nz 1.1(}2:In )it < -g— . Since
j=n_ j
lim P(E_ ) = u(E_ ) for J = l,2,...,n0—l , there exists m € N such
non 3 3 ' «
n -1
that I Hu(Em ) - u(Em )< % for n = m - Therefore for n = m
j=L n 7j J R
n -1
@ o oo
) - =z | - i
PIE ) - uE DI s 2ol uE ) - uE I+ E(Em.)”
j=ln 7j J =1 n 73 J j=ng 3
[#=]
i
+ 1; wE D
3 ° J

<e/3 +e/3 +€/3=¢

This proves (3)
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N

We define Vv ; 2 > X by v (Al = I uE ) for n €N
- mEA N !
~ @
and v: 28 > X by V(A = I u(E) . Since I u(E) is subseries
m : m
mEA m=1 n

convergent for n € N , (Vn) is a sequencé of strongly bounded vector

measures and,moreover, hm%MJ=vm)fu A SN by (3).
n

Therefore the first part of this corollary implies that (vn - v)nEN is

uniformly strongly bounded. To show that 1lim vn(A) = v(A) uniformly
n

for A - N , suppose the contrary. Then there exists a subsequence

(v - ) of (v - W) {for notational convenience we relabel -
k€N n néN

(vn - V) by (vk - J)), a segquence (Ak) of subsets of N and an

£ > 0 such that “vk - V)(Ak)“ > ¢ for k € N . By the definitions of

vk and Vv there is a finite subset Fk of Ak such that

H(Vk - V)(Fk)ﬁ > e for k €N . Now we use the induction to construct

a sequence (Gi) of disjoint subsets of N and a subsequence (vk - )
i

of (v - V) such that (v - (G '>€/2 . This leads to a

i
contradiction since (vn -~ V) 1is uniformly strongly bounded.

Set k, =1 and G, =F., ., Suppose G

1 1 "l G lo--[Gn dlsjolnt

1772

subsets of N, and kl < k2 < ,.. < kn have been chosen such that
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‘Muki - L@.ilu >g/2 for i =21,2,.ve,n, Let V-V (G UG, U... UG)
=Max {I(v, - (H)HcG UG, U .ovve. UG} for k € N. Since
k -1 2 ‘ n . -

. ,
i - C i - ‘ J ... =0 .
1}3(.m (vk V) (E)g¢ 0 for every E C N , l}](.m \)k v (Gl J 62 J U Gn) 0

3

(Note that Gl U G2 Joees Gn has only finitely many sSubsets.) Choose

> - i ! P < .
k kn such that Vi v (Gl U 'GZ J ... d Gn) /2 Set

n+l n+l
= F j ; ;
G = & \(Gl JG, U v Gn) . Then
n+l |
Qv =W (G 0= v, =W F, ) = (v, =) (F A (G, UG, Ueu dG )
kn+l ' n+l kn+l Kn+l kn+l . kn+l 1 2 n
{(by the additivity of Ve o TV )
: n+l
. - Yoo N -y e ’ | G
= (’k J)(Fk )i Vi \)(Glduzu---u n)
n+l n+l n+l
> g - g2 = £/2
Therefore 1lim ‘Jn(A) = v{A) uniformly for A S N .
n
fe., lim I u(E) = T K(E) uniformly for A SN .
n. méa n mEA

Remark 1. In the absence of the completeness assumption the last part

of the corollary can be modified in the following way.

£ {Em) is a disjoint sequence of members of R such that

lim = j_(‘::m) exists for every A C % , then lim Z &
n nfA n n mé2 n
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z p(Em) uniformly for A C N".
m<A

To see this it suffices to show that 1lim I "U(E ) = I u(E)
- n m€A n m€A n

for each A ©C N . The remaining part of the proof runs idéntically.

. w
let A = {ml <m, < ...} . The convergence of I u(E ) for
j=ln .7)

n € N, and the uniform strong boundedness of {}} assure that

n
= g
z u(Em )} converges uniformly for n € N . Therefore for given € > O,
3=l n j
@
there exists 2, <% such that 2 w(E ) <e/3 for n € N and
Jj*p n 3 ,
joR po . Let p =z Po Since lim u(E ) = ,J(ED y for 3 =1,2,...,p,
non 3
j=
there exists n < N such that ° H(E ) - w(E_ 3 < 2/3 for n=n
o ‘ m n, o
=l n 3 3
=
Alsc we can chocse n, 2 g such that ' Z L (E_ ) - lim - u(E_ )< €/3.
- j=lnl 5 n 3=l n 3
o = o =
NOwW - “(Em ;=lim - i ;= C ,(ED )= Z - ’Em)
. m ; - .
;=1 >oonoz=ln TE 3=1 3 3=1 n, 3
- - 'z - lim - iz 3= - p(E i = . ({E
121 n = -~ s=1 . 2. 4=1 = - m,
3 a. 3 noS=lon b h 3 2y 3
=x
= - = T OE 7T s TSY ST R o3 O T/ = T
s=pel oL -
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Remark 2. The last part of the corollary 1 may be treated as a e
generalized version of the Phillip's lemma [12]. To verify this we

derive the Phillip's lemma from the last corollary.

.

~

Corollary 2. (Phillip's lemma). Let (H)U¥be a sequence of bounded
0 .

complex valued measures defined on 2N . If 1lim p(E) = U(E) exists

n n
[=-]

for each E C N, then lim I | u({mb)- p({mh| =o0.
n m=1 n

Proof. Since un is bounded and scalar valued, it is strongly bounded.

Letting (Em) = ({m;) we have lim I u({m}) = I u({m}) uniformly
n mfA n meEA

for A C N by the last corollary. Thus for given ¢ > 0 , there exists

n_ £ N such that:

o
[ 2 utim}) - ~(‘a) <e/8 for ACN and n 2 n
I ’ - [o
m%A n
=
Therefore by 3.2 lema 1, - } w(im!) - u({mh} =& for n = ng -
i=l n

- Is

Corollary 3. Let R e a ring of subsets of P with propert: (DI}
L/ g L 7

arnd X a complete Hausdorff topological vector space. Suppose

R =%, o %N, is a countably additive and strongly bounded vector

measure. If lim »{Z; = .!Z; exists for £ ¢ R, then L 1s countably

addici/e and the segience (L; 13 uniformly countably additive.
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Proof. ILet (Ei) be a disjoint sequence of members of R such that

© o . © @
JE, € R. 'Then u( U Ei) = 1lim u( U Ei) = lim X U(Ei) since

i=1 * i=1 ¥ n ni=l n  i=ln

L is countably additive for n € N . Since X is complete the last

n
©

part of corollary 1 implies that 1lim £ u(Ei) =
n i=ln !

I} M‘B

U(E,) . Hence
1t o

is countably additive.

Uniform countable additivity of (u) follows from the fact
n

~ that (y) 1is uniformly strongly additive.
n

Corollary 4. Let X be a separable Banach space and R a ring of

subsets of a set { with property (QI). 1If the vector measure

u: R > X is bounded, then u 1is strongly bounded.

Proof. Suppose U is not strongly bounded. Then there exists a sequence

(En) of disjoint members of R and an € > 0 such that:
(1) ”U(En)H > for n€N.
-+ By virtue of the Hahn~Banach theorem, there is £ € X* with anH =1

such that (2) |f o U(En)l >eg for n €N,
n

By 1.3 theorem 4, the unit disc of X* 1is weak* compact and since X

is separable it is metrizable with respect to the weak* topology.

e

Therefore there exists a subseguence (fn ) of (fﬁ) and f € X* with
i

v



“£7 1 suech that lim 2 = f {weak*). This implies

P\‘)
[¢]
H
@®
w
1
b

™
ey
v
(o]
T

1s strongly bounded since f o L is
n

a scaiar valued pounded measure. Therefore corollary 1 implies that

v Dounced. This contradlicis 12} . Henee o

tn
0
I
b
;
(X3
1
i
ﬁ':
b
i
}
B

P ) -~ 1. Y S -
15 3TrongLsy DOGLGEeT.

cwer finite sets I Ior svery A C K and every neighoournood art
Zers in X toere exists a Iinlze set I - X guznn That L iB) o~ iR £ oL,
3. « rinz A of subseits of 4 setr . i1z s5aid to nave
g e mrrmys A m e = - ~NE F e < -
Lromerty gvery 4is-coint seguence A 2f firnite sets 1in
-
- ard every seslence = <. ol RS - .- = - for =m,n £ N
. arnc ey SeTiEnRCE = ey w1 T a_ = = - or T,0 N,
ThEere 2xXiSTS a suSsaTience A z= A and 7 - K such that:
- -
2 - - = = = = A ~ P = - for o ot - -
- A - - N = = - anc - A = < or o DL 0L e e el
. n.o— - n 172

.

Pemars. In trnecren 1 and subserusent corcllaries property (217 can

croviZed that measures concerned are

Thp yamairder ~F sris sectiar 1= Aevored to Aisc: |~ e

3

S ZCrollaries in LATrIX Surmactility Theory.

4



G 64
Every series in a topological véctor space gives rise naturally.to a
definition of a vecto¥ measure. The domain of this type of a vector
measure is determined by the nature of convergence of the series. In.
this context we use the notion of full classes to obt;in é;;tain results
concerning matrix summability. The notién of full classes was

introduced by J.J. Sember and A. rFreedman in their paper [17].
: S 4

Definition 4. A ring R of subsets of ¥ is cailed full in case

whenever (x } 1s a sequence of real numbers for which _ X exlsts

1 R o
nth

Y

for 2 = R, then T ix T2

of a full class given in [17]. s .

Rémark. Let R e a full ring. If (x ; is a sequence of compiex
S 3 mp

o

number s such that I x exists for 2 ¢ R , then o 'x =,
~.'n . nt
%A n=4i

proposition 1. Let R Dbe a full ring and X "a Banach space containing

ne copy of CO . If (x ) 1s a sequence in ¥ such that B X, £ X
n
n€a
js.o3
for a ¢ R, then z X, is subseries convergent.

n=1

proof. Suppose (xn) 1s a seqguence in X with z X € X for A €R.
neéa

Let f ¢ x* , Then % f(xn) converges for A € R . Since R is full,
né€a
0 ’ foa)
I |f(x )| <= . rTherefore I x_is subseries convergent by Corollary 4
n=ll " n=1 "

3

of 3.3 Theorem 1.
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~

In the remainder of this sectien R demotes a ring ef subsets -

of N .
Proposition Z. Let K be a )0-ring containing all finite subsets of N
and X a complete topological vector space. If {xn} is a quence in
X suech that z x_ ¢ X for A £ R, then C X, is subserses
nta nea o
convergent.
Procf. Let x ) Dbe a seguence in X such that °_ x_ € X for
o n<a
- - - N e - - N = ?
A ° X, Fforeach n ¢ N define u: K - X by -
n ,
u(a) = z X. .
n iEA.A‘. [l,n]
Clearly (u) 1is a sequence of strongly bounded vector measures which
n
converges setwise on R to u defined by u(A) = I x for A € R .

n
n€A

.It follows by corollary 1 of theorem 1, that u 1is also strongly

bounded. Since X is completé, M 1is strongly additive. Hence

20 o0 .-
L x = I u({n}) is subseries convergent.
n=1 n=1L
) L4
Next we establish our generalization of the Schur lemma. . '

"

Theorem 2. Let R be a Q0-ring containing all finite subsets of N and

(xmn) a infinite matrix in a complete topological vector space X .

Assume that L x exists for E € R and m € N . If lim I x
mn mn _
n€E m ne€E



exists for E € R, then (i} 1lim LI "exists for n £ N
n ,

{1} 1im o x =
mn

z x_ uniformly for E = N .
n  n€E n<E

m n€E
for every E ¢ R . Since X exists for every E ¢ R , the previous
nep ™ : .
e
proposition implies that. 7 x is subseries convergent. Define
mn
n=1
wt R =% by uwi{A) = T x . for m £ N, and u: R = X by
m m nek
-
w{a) = 1im  x . Since X is subseries convergent, L 1is a
_.mn mn
m nfA n=1 m
strongly bounded vector measure. Now letting (E ) = ({n>), we apply
the last part of corcllary 1 of Thecrem 1 to have lim I u{in’) =
m méA m

I s(in:) uniformly for A <N
nga

i.e., lim I x = 7 lim x

m né€A mn nEA( m

= X uniformly for A< N .
n€A

Remark. If R = 2N, in view of remark 1 after corollary 1, we can
the completeness assumption in the above theorem.

The following example shows that R can not be replaced

any ring containing all finite sets.

66

~pProef. (i} directly follows from the fact that 1im I X n exists

drop

by

o
£t



Let A be the ring of all finite subsets of W and let

X =

Then lim .
nm

n b

]

»
-

theorem 2 doeg nct hol

Corollary 1. Let (x

that 1f - » 7 , then
every m whenever Mi

Proof. By Theorem 2,

Therefore the sequence

hence there exists mo

for m,k = mo and E

exists £ N such that:
5 Py

{2y - x

1 0 0 0 eeeeee
1/2 /2 03 0 eeue..
) = 1/3 1/3 1/3 0 .vev... K1

. . e e e ]

. . . . cecens
7

5 v e

for every a ¢ 4 , but clearly the conclusion

¢

d for the matrix (x ) . ’
. E'_n

Y be as in Thecrem 2. The series

3

are unordered unifermly convergent in the sense

there exists n_ € N such that SLxX_ 4 E
o ) mn
n<E
nEn
e}
lim Z x_ = I x_ uniformly for E ¢ N .
mn n —
m nfE _ n€E : -
(- x ) is uniformly Cauchy for E C N
mn’ meN ? -

n€E

¢

€ N such that (1) i T (x - x )i < g/2
) mn - ‘kn
n¢E

N . Now we show that for each m € N there

< /2 for Min E = P

67

of
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Q
2l

and
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Fer, suppese:the contrary. Then there exists a sequence (Ei) of

subsets of N such that  lim Min E, == and I x_#=e/2. For
i n€gE T

each 1 choose a finite subset Py of Ei such that ! I xmnﬂ’> e/3

neér
i
and notice that lim Min Fi = o Set Gl = FI . Choose 12 € N such
i \ .
that Max Gl < min F and set 32;='?. . Inductively we can construct
i i '
2 2 : :

a disjoint sequence (5.} of finite sets.such that Max G, < Min G,
X A

x 1 »=c/3 for i € N . This contradicts the fact that

- xmn 15 subseries convergent.

n=1

Now let r o= Maxzp1,r2, ...... ,pm,' . Then, by (2),

) - o
{3 Lox 77 2/2 for 1 “m<m  and Min E * p . )
mn
N n&Ee

For m > m 4) -X < Zo(x - % 1) + Tex T2 f2 o+ of2

. ; : mn n

: n<E n<E o' neE g

/

for Min E 2 ¢ by {19 ‘and (3)

The result follows from (3) and (4).

We next show that theorem 2 can be viewed as a generalization

of the classical version of the Schur lemma.

a

Coroliary 2. 1Iet (xmrl pe an infinite matrix of complex numbers.
H .

B R T TR
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8

Suppose

N~

lx | <o for every m € N . If lim L x_ exists, for
mn nn .

n=1 m né€E

each E C N and if lim xmn =x for each n € N , then

m
[o2]
(i) 1lim ZI-|lx  -x | =0 and
mn n
m n=1
(ii) the series I lxmn!, m=1,2,..., converge uniformly in m .
n=1 ‘ .

Pproof. (i) Iet £ > 0 . By Theorem Z, there exists m_ € N such

that | _ (x_ -x) <</8 for m>m_and E < N . Therefore by
- mn n [ —_
nck
js of
3.2 Lemma L, T o'x -x ' <2 for m>m
mn n o
n=1
(i1} By Coroiiary 1, there exists p € N such that
- s o
- K . 7T £/8 far m £ N and Min E > p . Hence Toix §*< £
. mn : mn
neég n=p

for m £ N . This implies (ii)

memark. (ii) mp-oiesS that Sup 1 x__ i < =,
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“THE NIKODYM BOUNDEDNESS THEOREM

1. 'Introduction.

The subject of this chapter is one of the truly impressive
theorems of measure theoiy, the Nikodym Boundedness Theorem, which derives
a conclusiqﬁ of uniform boundedness from a hypothesis concerning setwise ‘
" boundedness. It also has a strong impact on the theory of Banach spaces.
“fhgyalidigy of this theorem depends entirely on the structareof the
;ing’dn which measures are defined. An algebraic characterigation of such
structures is still unkn§wn. The recent developments in ;his areé are
largely contributed by the papers of G.L. Seever [l6], Barbara Faires [7],
R.B. Darst'iSI and Corneliu Constantinescu [ 31. Consﬁantinescu\
‘oktained :his‘fheorem for measures defifed on a g?—ang‘{see 1.5
ﬁefinitzon 2. glthough a Q0-ring has a nice aiéebraic structure, it
is extremely difficult to construct sdch a ring explicitl?. One ‘aim in
'this chapter is to prove the Nikodym“aoundednéss'Theorem for a more
general class of rings, namely PQS-rings. Unlike the class of=QG—ringS,
ghis class céﬁlains some well known examéles of rings of sets. 1In this
chapter we also deal witﬁ éhe measures.defigéd on spbstru;turés 6f ZN .
Thesermeasuréérare eséecially important in sumﬁability theo¥y. séme

of the results in this chapter appearAin the joint paper {15] by

J.J. Sember and myself.



§2, Definitjionsg and sgme examples,

The purpose of this section is £o study a n¢u~clgss Qf rings
—of sets introduced below. It will be sﬂown in the next section that the
Nikodym Boundedness Theorem holds for measures defined on this typg‘of
ring. One of the important features of this class is that it contains

some well-known examples of rings of sets. In what follows, unless b

signified otherwise, R denotes a ring of subsets of a set { .

Definition 1. A ring R is called a PQU-ring (respectively, an -
FPQC~-ring) in case for every disjoint sequence (Aﬂ) of sets (respectively,
finite sets) in R and every sequence (tn) of real numbers with

limtn = > there exists a subsequence (An ) of ((An) satisfying the
n . i

following:

n, n, n,
- . : o i i i )
For each + 1 there is a partition A  ,A . ,...,A of A (s, = ¢t
1 2 5. n. 1 n.
i i i
n n. ol * n,
i 1 D SN N .
and Al AL B E R) such that 2 Ak € R for every sequence (ki)
i i=1 1
with 1 =k 3 s, i
i i )
Remark. It is easy to ve{ify that every 27T-ring is a - POTI-ring-and

that every FQJ-ring is an FPQTI-ring. _ .

k]

& - ,
Example 1. An increasing sequence’ (gn) _of positive integers is called =~

lacunary if 1im (?n+1 - pn) = = . We show that the ring [ .of subseﬁé

— n . - .
of N  genarated by lacunary sequences is FPQU 'but not PQd. sTo this

\ - :
and let (Aﬂ) be a sequence of pairwise disjoint finite subsets of N-

and (th) a sequence of positive integers with ‘lim t = =% .
I . n
n



N

Choose a subsequence (An ) -of (An) such that Max An + i o
’ i . i P

‘

< Min A and then partition each A = {p. < p. < ... <p } in to .
n, . ' : n, 1 2 k7. T
i+l . i . ]
ni nl : -
A, ,A ,......,At such that: Y
n,
i
ni, ‘ o
A = ¢ ) ces s : -
1 {Plrpl+t 'pl+2t ' } -
. n. n.
i i
. 2
“.ni
o By = dpyupo, Poype reeesee)l
: n, . n,
O
1% ni - :
: A = e .
. Py /Py Py v b
n. n. n, n. -
; 1 - 1 i 1
. 7 % ng
It 1is readily seen that o Ak is lacunary for every sequence (ki)
i=1 i

This shows that L is

with 1 = k. = t . FP¢ N
! i n, <0
1
. : ' . <
To show that L 1is not 2Q0 , let a = Py S S :
. - 4
be an infinite lacunary sequence. Setting A = (§O+n)‘\(Ao u Al u
. N
~
...... v A ), wheré A <+ n = {(p. + n},. we can define inductivel
n-1"" o By ieN ! - , Y
the disjoint sequence {An) in L .
et (A } Dbe a subseguence of iAqi . Further for each t
- n. T .
o.on; a. -
15N let Al ,A VA pe any finite partition of A . We
y s
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!

. » \
show that there is a seguence (ki), where 1 = ki = S; v such that

[2e] n . -
Ui . e s as , < <
g Ak § L . since Anl is 1nf1§1te there exists 1 =k =5 such
n ’ ) nl B
that Ak ~ is infinite. Consequently Ak = Fl +.nl for some infinite,

subset Fl of AO . A similar arqument shows that there exists

1= k2 = 52 and an infinite subset F2 of Fl such that F2 +,n2_g 2 .

Inductively we can construct a decreasing sequence’ (Fi) of infinite

subsets of AO and a sequence {ki) of positive integers such that P
':,, n,
F. + n. C x
i i —- Ak.
i
x n . .
. i
Suppose d Ho-d oo 'J N where N, = ‘
pp Ak J D i (pm)mEN ! .
n
Al T 1= are lacunary sequences. Since F C p+l
R T 2 - p+l —Ak '
there exists 1. .such that Ni P (F +n ) is infinite. .

such that

)
s
"y

Conseguently, there is an infinite 3 +1
E p

5. +n_ . =N . 3Since I[F) 1is a decreasing sequence of sets,
. - - i

n
F and hence 3’ < Ak . Also since N. is
- = i
1

ko]

+
et
|
&}

+
'...A
{1

'

ko]
+

N, , (G +n7J TR, iz finite.
i o b} 3

Therefore, there exists 1 {# 1 ) such that (Gp +n } N, is

+
(8N
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infinite. Consequently there is an infinite %Eﬁmlsmhwx

Gp + np < Ni . Proceeding in this manner we can find an infinite set
o 2 . . - - .

G, CF CF. at the (p+l)th step such that (Gl +-nl) N Ni is

ptl 1

finite for 1 < i < p . This contradiction shows that L' is not PQO .

Example 2. Let A C N . We denote by A(n) the number of eleménts of

aN{1,2,......n}. A is said to be a set of zero density if
lim A(n) = 0 . We show that the class of sets of zero density, denoted
‘n n

by . ng , 1s a PQOU-ring.

Let (An) be a disjoint sequencée of members of ng and (tn)

a sequence of real numbers with lim tn =o . If (An) has a subsequerice
n
(An ) consisting of finite sets, then it can be easily shown that the
i .

seguence (An) satisfies the condition given in the definition of a

PQO-ring. So let us assume that all An?s are infinite.

Set ny o= 1l . Suppose n < n, < teeen < n, have been chosen.
Now choose n. . > n. such that:

i+l i

1 A {(n)/n < ff' for 1 =k =i and n~=n A
) n, ! i+l - - T Ui+l T
3 2 ;

2 Min A > n

n, i



3. 0t > 2t
Bidl
i+l
>
4. Ah.(ni+l) 2
i
Such an ni+l exists since (1)°' An ,An ,...,A.lrl are of density zerg,

1 2 i

(2)' limmina =%, (3)' limt_ =© and (4)° A is infinite.
n n i

Inductively we can construct a subsequence (An ) of (An)

i
satisfying conditions (1), (2), (3) and (4).
Partition each A = {pl <SP, < eeenns } into
i
n, n n
Al ,Azl, ...... /A +1 in the following way.
21 T
ni .
A = {p /P R o) P
l; 1 l+2].+l l+2.2l+l
ni x
A = {p,,p . .. .,p i reeen .}
2 2 2+2J.+l 2+2.21+l
hy
A = {P .. D . 0P . vsennenn }o.
21+l 21+l 2‘21+l 3 21+l
. . ‘~i+41
If n = ni+l ; (4) assures that An (n) > .2 . Therefore,
: i
o 7y i+l
by the way A is partitioned, Akl(n) =A (n/ . for 1=%k=2 .
ny ny 2t

Iet i be a fixed positive integer and j > i . Then for
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n,
. 1 < . <
(1) Ak (n) /n = Ani(n)/zi,n < 1/2..23. .

The "last ingquaiity follows from (1). Also fog'any n € N and

P

. . . n. n. : , .
l1=sk= 2}+l we have Akl(n) <1 or Akl(n) =< Ani(n)/2i and hence
‘n, ~ 1
(1i) Akl(n)/n,f max{l/n,a_(n)/ ; } = max{l/n,~} .

i 2'n 2

Let (k,) be a sequence of positive integers such that

i

i+l

. ©® n,
1=k, =2 . We show that J Akl is of density zero. Let 3j € N and
i=1 i

1.

n. <n=<n, .. Then by (2) An N [l,n] =¢ for i > j+1 . Therefore,

3 j+l i
o ni i+l ni
(UAk)(n)/n= (J A ") (n)/n
i=1 i i=1 i ?
3+l ni n,
= I A (n)/n  (the A ''s are disjoint)
. . k.
i=1 i i :
31 on n, DL
= Lz A (n)/n + Akj(n)/n + AkJ (n) /n
i=1 %3 i 341
* o1
1
e S T maxd(S, A s Max(D, =) L
' i=1-2%73 27 | 27

The last unequality follows from (i).and (ii).



The right hand side of the inequality tends to zero as j ébes to
. ) n, ’ B .
infinity. Hence 1lim ( U Akl)(n)/n = 0 . This shows that ng is a
. n i=1 i

PQU-ring.

We conclude this section with the following proposition.
Proposition 1. Every FPQU-ring R of subsets of N containing all

El

finite sets is full.

o

[ +]
Proof. Let (xn) be a sequence of positive real numbers with z X, =
| ' n=1
Choose positive integers ny < n, < wneaan < n, < ... such that
z x> i for i=1,2,...... . Let - (t,) = (1) and
n,<k<n, “ +
i i+l .
a, = {n,,n+1 n. _-1}. Now for any partition at,at al
AR LA T i s ) Rl Y P i R 5,
(s, =i} of A, there exists 1 =< k, < s. such that £ x 21 .*
i ) 1 i 1 i k
it kEAk
i

This completes the proof.
. N L. L.
Remark. For/subrings of 2 containing all finite sets we have

{Full rings} > {FPQU-rings} 2’{PQO-rings} ; {go-ring}
Jh
{Fpo~rings} .

We have not come up with an example of a full ring which is not FPQO .
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by
§3. Main results,

Although the Nikodym Boundedness Theorem is subject to many

generalizations, it is difficult to find one generalization that fits

the others. We therefore consider here several situations for

which the theorem holds.

Theorem

1. (Nikodym Boundedness Theorem) .

?

et R be a ring of subsets of a set [ satisfying one of’

the following:

(a)

(b)

R has property (QI). o

R. is a PQU-ring with the hereditary property.

Also let X be a locally convex space. Suppose W: R > X, n=1,2,.....,

n

are bounded vector measures such that {u(A)|n € N} is a bounded subset

n
of X for every A ¢ R . Then {u(d)in € N and A € R} is a bounded
n
subset of X .
In addition, if the &, n =1,2,......, are regular over

n

finite sets, then (a) and (b) can be replaced by the following:

(a') R has property (FQI).

(b') R is an FPQCc-ring with the hereditary property.

(c') R is a full ring with the hereditary property and containing

Proof.

all finite sets. (In this case §l = N.).

First we establish the theorem for scalar valued measures;

i.e., we assume that X =€ .
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Suppose (1) Sup{|[H(A)|in € N and A € R} = .,
n

Define a: R > R+ by «(A) = Sup|u(A)| . Since the sequence (}) -is
n n n

setwise bounded, a is defined and,moreover, by (1) 0«  is unbounded.
L _

N

’ \
We also show that: : N\

\

(2) of(A U B) = o(pA) +0(B) for A,B € R with AN B =¢ .
(3) |a(B) - a(a)] = a(B\A) for A,B € R with A C B
Let A,B € R .

(2) If ANB =29, then a(A U B) = Sup|u(a U B) | < sup|u(a)| + sup|u(®) |
n n n n n n

= a(a) + «(B).

(3) Suppose A C B . For given € > 0 there exists no € N such that

2(B) - ¢ < |u (B) .
n
o]
Hence o(B) - a(A) = £ < ;2 (B)| - ju (A)] = |u (BNA | = a(B \A);
n n n
o] @] [o]
consequently &(B) - 2(A) = a(B \ 4). Similarly «(A) - a(B) = a(B \ A).

Now an application of 1.5 remma 1 to o shows that there exists a

disjoint sequence (Em) of members of R ‘such that lim d(Em) =
’ m

Thus by the definition of o we can find .subsequences (1) and (Em )

n, . i
i
of (p) and (Em) respectively such that 1lim l L (E_)| == ., For
n i n, i
i
simplicity we relabel the sequence (U (Em.))iGN by (1'J(E:i))iEN . Then
B n, 1 1
i
we have L
(4) Iim | u(Ei)I =w

1 1
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First we consider case (a) R 1is a ring with property (QI) .
Let (ti) be a sequence of positive numbers with the limit zero such

that: . N

(5) lim | t, W (E,)| = = .

. i 7171

i
It is readily seen that (ti H) 1is a sequence of strongly bounded scalar '

i
valued measures (note that every bounded scalar valued measure is strongly
bounded) with 1lim ti U(E} = O for every E € R . Therefore 3.3
i i .
Theorem 1 implies that 1lim tl U(Ei) = 0 uniformly for j € N . This
i 9

contradicts (5}. Hence the Nikodym Boundedness Thecrem holds when R is

a ring with property (QI).

Now we consider case (b) R is a PQO—;:irig with the hereditary

C 3
property. Recall (4) 1lim | _u(En)I == . let t = [u(En)f * . since
n n n ‘
R is a PQU-ring, there exists a subsequence ‘(En ) of ,(En) and a
n, ‘\'ni ’ ny *
partition E. ,E. ,.....,E (s. =t ) of each E such that
1 2 S. i n, n,
i i i
® n, ‘
UE T €R for every sequence (k.) with 1 < k. = s, . For each
. X, E 1 i i
i=1 i
n, n,
T 2 I foo— oty 1 R 1
i €N we have t = (2w (E_ )| =-ju (E.7) +u (E)7) + .o.vae +
. n. -on, 1 2
i n, i n, n.
i i i
n, o oy n, n,
- B S e E D] 4 E ] e ‘(ESQ)I. since s, St
n, i n, n, n, i i
i i i i
it
there exists 1 < k, < s, such that |u (E_.)| >t .
i i - k. n. .
n.. i i
i
n, @© o
Let By = A, . Then (6) U A €R and limju (a)] == .
i i=1 i n,

g
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i

Since R 1is hereditary, U A_ € R for P CN'. Let vy N + C be

pE€pP

defined by vi(P) = pu (U A). Since (y) 1is a sequence of bounded
n, Ppé€p n,
i
scalar valued measures with Sup lu (E)| <o for every E € R, it
i n,
i
readily follows that‘kvi) is a sequence of bounded scalar valued

. ' . N
measures with Sup’vi(P)[ <= for every P CN . Since 2 is a
i

O-algebra (hence it is a ring with property:- (QI)), we have

'Sup{!vi(P)| i €N and P E_N} < ® , This contradicts that

lim fvi({i})l = lim |u (Ai)[ = o , Hence the Nikodym Boundedness
i i n,
i

Theorem holds when R is a PQO-ring Qith the hereditary property.

)

To prove the last part let us assume that the

cl,=1,2,00.0.., , are reqgular over finite sets. Then in (3) (En) can

be replaced by a disjoint sequence (Fn) of finite sets in R, so we have .

(7)  lim {p(F )| == .
n n
n
Now cases (a') and (b') can be treated exactly the same

way we treated cases (a) and (b). Therefore we only have to consider case
(c'Y R 1is a full ring with the hereditary propetrty and containing all

finite sets. Pérhaps by passing to a subsequence we can assume that

in (1), JuF)| > 2" and min F_ . > Max F_ . Since lim |u(F )| = o
n n+l n n -
n n n
implies that lim |Re u(Fh)[ =® or lim |Im u(Fn)| = » , we also can
n n n n .
assume that the U; n = },2,,....., are real valued measures..

n
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l ' B
Let tn = ——— for each n .

u(F )
n
(o] oo l o
Then (8) L |t | = I =< and Lt QW(F) = .
. n n n n
n=1 n=1l 2 n=1. n
. [0.0] (e o]
‘Since Fn is finite for n €kN, z tn p(pn) = 7 tn .z ui{ily.
. n=1 n n=1 1€Fﬁ n

t u({n}) if n€F for some m ,
m m

m .
Letpn=4
(o]
0 if n§ U F_.
=1 m
.
o ,
From (8) it is clear that £ |p | = ® . without loss of generality we’
n=1 n :
o + -
can assume that I p; = @ ywhere P, = Max{pn,o} . Since. R is full,
n=1 S

there exists A € R such that J p;

© ., since R 1is hereditary we
né€a - S

can choose A such that p;7> 0 for every n € A . Then clearly

AC U F_. let G =ANF for n € N .
- n n n
n=1
o o
Then z p+ = I t z p{{il) = I tn H{(G ) = ® , Since
néa * p=1 P i€Gn n n=1 "n O -
(o] .
L]t | <=, this implies that Sup|u(Gn)| =@ . Also notice that (G )
n=1 o n n
o ) ©-
is a disjoint sequence in R such that U G =A € R . To complete
n=1

¥

the proof one can follow the last portion of the proof for the case R

is a PQU-ring.
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- To extend the Nikodym Bouhdedness Theezem for loeally eonvex B -
spaces, let X be a ldzally convex space as stated in the theorem.
Suppose || |- is a continuous seminorm on X . Now consider the following
collection of bounded scalar valued measures defined on R .
G={faulf € (x| D*, Ifl =1 and n €N} . -
n -

We show that G is uniformly bounded on R . Let (fio u )i€N be
- n,

i
a sequence in G . Then for each E € R,
sup|f.o u (E)| = supll u (E)}| since el =1 . -
i n, i n,
1 1
< ® sgsince ( Y ) 1is setwise bounded.
n,
1

Since the Nikodym Boundedness Theorem is true for scalar valued measures

defined on R , we have (fio U ) is uniformly bounded on R . Hence

n.
1

G is uniformly bounded on R . This implies Sup{||U(E)|l|n € N ana

n

E € R} < since [[u(E)] = sup{|fou(E)]||f € (X,]] D* and J/f]] =1} by
n n

virtue of the Hahn-Banach theorem. Since || || is an arbitrary continuous

is uniformly bounded on R ,

seminorm on X , the sequence (u)neN
n

Remark 1. If- R is a 6-ring; i.e., closed under countable intersection,
then the hereditary property in cases (b)-and (b') may be dropped.

} ’2. The Nikodym Boundedness Theorem is true for any sequence of
vector measures for which the Vitali-Hahn-Saks-Nikodym theorem is true.

The following example shows that the converse does not hold.
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Let ng be tﬁe ring of sets of zero density. We have shown
that, in section 2, ng is a RQO-ring. Also it is'easy to check that

h§ is hereditary. Let u:’ng + [0,1], n=1,2,......, be defined

by u(a) = Aln) ,'wheré IA(n) is’ the humber of elements of A {1 {1,n].
n

n
Then clearly () 'is a sequence of strongly bounded measur such that
n : e
lim 1(A) = 0 . But it is easy to construct inductively a disjoint
n n :
sequence (Ai) of finite sets and a subsequence ( W ) of (p) such
n, n
i

that lim p (Ai) #0 . Let A = {1} and n, =1 . Suppose disjoint
i n.
i

finite sets A ’AZ""'Ai and positive integers n, <n. € teeeee < n,

1 2 i

have been chosen such that U (Aj) > %- for j =1,2,...,1 . Choose

n.
J
1
>n,) ' J ... Un) <3
ni+l( ni) such that u (Al J A2 Joees U Al) 3 Set
In.
i+l
= : i >
A = Wzpeciom INGA U R U U R Clea’lyﬁ (a,,)
i+l ’

The following corollary is useful in applications.

Corollary 1. Let R be a ring of sets as stated in (a) or {b) of
Theorem 1 and X a Banach space. Suppose HU: R + X 1is a function such
that f ol 1is bounded and finitely additive for every f in some total

subset T of X* . Then I is a bounded vector measure. In addition,

1
2

if fou is regular over finite sets.for f € I and if X is separable,

then the conclusion remains true if R is as in (¢') of Theorem 1.

Proof. To show that u 1is finitely additive, let A,B be two disjoint

members of R . Since fol 1is finitely additive for f € I' , we have



@, - -

£(L(A U B)) = Fou(a U B) = fou(A) + £oll(B) = £(W(A) + L(B)).  Sinee [

Y .o~ ¥

© is total this implies (A U B) = u(d) + u(B): - i <
To show that , i is bquﬁded, let "M = {f € X*|fou is bounded}.
. P 4. [ z

-

Then M is a linear ,subspace of X* containing the total sgt“TF ;
consequently M is a weak*-dense linear subspace, of X* by 1.3 Tbeofem 3.
If it cah be shown that M, = {£ € M[IEl = 1}, is weak* closed, then an

appeal to 1.3 TheoreﬁAS (Banach-Dieudohne Theorem) establishes that M

is a weak* closed subset-of X* - and hence M = X* . Let “(ﬁa)GEA "be a

1 such that lim fa =‘fl“ exists in the weak* tqpology on X*,
s B toe . .

Then 1lim fa(x) =_fi(x) for every x € X . Sinceymﬁf&ﬂ <1 for each’
. ! €
o

net in M

a € A, this implies jf il =1 . -
~ To show +hat flozu is boupdéd we apply the Nikodym Boundé@ness~

-

Theorem to the colléction {fao ufo € AY of beunded scalar valued

measures on R . First we observe that Suplfao WE) | =
- . a‘

B
Ve El

Supﬁfaﬂ Ju(e) | = du(E)i. for every E € R . Therefore by the Nikodym
, ) , =

o ‘ K

Bounde&ness Theorem we have that Sup{|fao W(E)||a € A and E € R} < = .,

Since lim fa(H(E))—= fﬁu(E)) for every E € R, this implies that
. a + ' "

Sup{£fl(u(E))l E € R} <= . Hence. fl € Mf so that M) is weak* closed.

¥

Now a simiLar application of the;Nikodym Boundedness .Theorem
to the collection {fou|f € x* and [f| £ 1} of bounded scalar ‘valued

E € R, f € X* "and

measures shows that sup{/'u(B) ||| € R} = sup{|f.u(m)

~

1) <@,
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To prove the last part,-let M = {f E‘X*Vfoﬁ isabohnded, and_

regular oveiafinite sets}. First we show that M is a linear subspace

. N

of X*, Let f,g €M and let A € R . Since fol is regular over.

finite sets, for each € > 0 there exists a finite subset Bl of A

K

such that ‘}foU(AX - gou(Bl)}§'€/4 - Since .gelU 1is regular over finite

sets there exists a finite subset -D- of A \*Bi' such that

k4 a
- )

4 .

Jger(a \B)) = goud | <e/4 . i.e.s fgeu(A) - gep(, UD)| < £/4 . Let

BpUp=¢ . A similar application to foi and A \ c, shows that

there exists a f%nite'set B, 7.C, such that [fou(a) - fou(Bz)L < /4 .
. = S i+ :

2 1

e . 3 . -
So 'inductively we gan coristruct sequences (Bi) .and (Ci) of fimite

sets in R such that:;“ S0 -

¢

. lgou(A) - fou(Bia},_[gou(A) -’gouxci)[ <e/4 for 4 €N . )

C....SB, CC, C...... Ca. o

“(2) B. cC cC
= = i=5= <

_—
1 B

2

1 2

Since feou is bounded and scalar valued, it is‘strbngly bounded and hence

lim f°p(ci,\‘3i) = 0 . Consequently there exists il € N such that:-

B

(3) lfou(Ci NGB, )| <esa
1 1

|EoM(A) - £ou(B, ) - fou(C, \_B, )|
i) A

Now (4) |fsu(a) - fou(c, )|
. = ll

. s o= |fou(a) -,fou(é_\)f + | fep(C, N B, )|
‘;l ll ll

<'e/4 +€/4 by (1) and (3) .



87

.

Therefore |(fok + gol) (B) = (fou + gai) (C, V[ = {feu(a) ="feutc, )|
.. . l " l
+ |gou(ar - gep(c, )|

1

'

< e/2 +£/4 by (4) and (1).

This implies that foL + geu  is regular over finite ‘sets and hence

£ + g €M . Itis clear that Af € M for ¢ ¢ and £ €M . Therefore
M. is a linear subspace  of X* containing the total set [ . To show
that M = X* again we claim that Ml = 1f € M]ﬁfn S 1}  is weak* Closed.

Since X 1s separable, the unit disc in X* is metrizable with respect
to the weak* topology and it is also weak* closed. Therefore it suffices

to show that if (fn) is a sequence in Ml such that 1lim fn = £
n ,

exists in weak* topology, then f ¢ Ml . First we claim that f is

regular over finite sets. Let A € R . Since R is hereditary,

2Aj5 R . Now (fnou; A)nEN 1s a sequence of scalar valued bounded vector
2

<

measures defined on a U-algebra. Also, since (fn) weak* converges to

f, lim f o U (E}) = foL(E) for every E C A. Setting E_ = {n,},
. 0 n 2A - 'k k

' where A = {nl,nz,......}, we apply the last part of Corollary 1 of

3.4 Theorem 1 to “(f o u| ) . Then we have lim Z f o u{{n }) =
n A’ n&N k
' 12 n k¢€p
Z f?#({nk}) uniformly for P C N . In particular taking P finite
kEP, '
we have

A5) lim £ o L(F) = £ou(F) uniformly on finite subsets F of A .
n . - ’
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- . n

Therefore for given ¢ > 0 , there exists no such that:

(6) ffno L(F) = fou(F)| <'g/3 for every finite subset F of A and n > n_-.

Also since lim fno U{A) = fou(A), there exists n_, > n, such that: Yo

n ' 1 L4

(7)1 op(a) - £ou(a)] <eg/3 .
»nl :

Since fn ou is régular'oVer finite sets there exists a finite subset
1 .

F of A such that: (8 [|f o u{(dA) - £ o W(F)| <&/3 . _
It n -

1 1 ,
Now " [fol(A) - feu(F)| < [fou(a) - £ o u(A)| + [f o (A - £ ou(m| +
' : "1 M m

[f: o U(F) - £ oL(F)]
LM )

by (7), (8) and (6).

+
wim

wim
wim

This shows that fou 1is reqular over finite sets. As in the proof of
the first part of this corollary we apply the Nikodym Boundedness Theorem

to the sequence (fno 1) of bounded scalar valued measures to show that

f o1 is bounded. By this we can conclude that f € Ml and hence Ml

is weak* closed.

Now a similar application of the Nikodym Boundedness Theorem
to the collection {f ou|f € X* and [f{l 2 1} of bounded scalar valued
measures shows that U 1is bounded.

We use the above result to derive an Orlicz-Pettis type

result for Banach spaces satisfying certain conditions.




Corollary 2. - Let the ring R of subsets of N and the Banach space X
satigéy one of the following : T 5y

(1) R =.2N . X contains no copy of 1_ ..
N ,
(2) R 1is a Qo-ring containing all finite sets. X 1is separable.

(3) R is a Qo-ring containing all finite sets. X contains no copy

<

of ¢, .
o}

(4) R is a hereditary PQO-ring containing all finite sets. X con-

tains no copy of CO .

(5) R is a full ring with the hereditary property and containing all

finite sets. X 1is separabie and contains no copy of cO .

8

x is a series

Further let ' be a total subset of X* . Suppose
. (, l

n o™

n

in X such that z X is T'-convergent for every A € R in the sense
ne€a )

that there exists x_ € X such that L f(x ) = f(x.) for every f €T,
A n A :
n€A ™
o]

then z xh is norm subseries convergent.
n=1

Proof. Define u: R+ X by u(a) = Xy as above. Since I 1is total,

U is well defined and,moreover, fou is finitely additive and regular

over finite sets for every f € I' . Also since for each f ¢ T

L f(x )} < for every A € R, L f(k Y| <® . (Note that R is
n A
n€a ’ n€a

full.) This implies foli is bounded for every f € I' . By corollary 1,
=
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L3 . -

M isaboundedve%éure. If X is as inoneof (1), (3), (4), -

' (5) then 3.3 Theored 1 implijes that p is strongly additive. If x

.
is as in (2), then Corfllary 4 of 3.4 Theorem 1 implies that is
- : w w c
strongly additive. "Hence Z:xn = I u({n}) is subseries convergent
_ n=1 n=1
in norm." .
'S; L]
hY
N
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