National Library ot Canada Canadian

Theses Service
Ottawa. Canada KIA ONE

Bibliotheque rationale
du Canada
Services of theses cacadiemes

CANADIAN THESES

THĖSES CANADIENNES

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproducion possible

If pages are missing. contact the university which granted the degree

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the universilty sent us an inferior photocopy

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full of in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authonzation forms which accompany this thesis

Abstract

AVIS La qualité de cette microfiche dépend grandement de la quaité de la these soumise au microfimage. Nous avon tout fat pour assurer une qualite superieure pe reproduction.

S'il manque des pages. veuillez communiquer avec l'universite quit a conferee le grade.

La qualité d'impression de certaines pages pout laisser a desirer, surtout si les pages originates ont été dectylographiees a l'aide dun ruban use ow si l'universite nous a fit parvenir une photocopie de quality inferieure.

Les documents qui font deja l'objel dun droit o' auteur (articles de revue, examens publies, etc.) ne cont pas microfilmed.

La reproduction, meme partiefle, de ce microfilm est soumise a la Lo canadienne sur le droit d auteur, SRC 1970, c. C-30. Veuillez prencre connaissance dee formules d'autorisajion qui accompagnent cette these.

> THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

LA THESE A ÉTE MICROFILMÉE TELL QUE NOUS L'AVONS REÇUE

National libracy
of Cmade

d Canam

CAMADAM THESES
CN Mencricit
rimes Camiantiners
sum nocnorticwe

MAME OF AUTHON NOM OF L'MUTELS \qquad Teresa F Raymend fince or thess hitit or lathest \qquad
\qquad

\qquad

CANADA to microtilm this thesis and to lend or sell copies of the film.

The author reserves other publication rights, and neither the thesis nor extensive extrects from it may be printed or otherwise reproduced without the author's written permission.

QUE NATIONALE DU CANADA de microfinmer cette these of de prêter ou de vendre des exemplaires du film.

Liouteur se réserve tes sutres choits de publication: ni la theseni de tongs extraits de celle-ct ne doivent être impormes ou outrement reproduits sans fiavtorisgtion ocrite de rautetr.

DATED OMF \qquad SIGNED/SIGMÉ \qquad

PERMANERT ADORESS MÉSHOENCE FILE

by

Teresa Raymond B.Sc., Simon Praser Dniversity, 1979

.

A THESIS SUBMITMED IN PARTIAL PULPTEGMRAF OP

THE REQUIREAENTS POR THE DEGREE OF MASTER OF SCIENCE in the Department
of

Mathematics

(C) Teresa Raymond, 1983

STMON PRASER UNTVERSITY

November 1983

All rigits reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

AFPRCYAL

Hem:	Tereen mayend
Digret:	neter of science
ritle of Thesas: A Survey of i-factorizations.	

Examining Comittee:

T.C. Bromn

External Examiner
Simon Fraser Universit:

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon fraser University Library, and to make partial or single coolies only for such users or in response to a request from the iorary of any other university, or other educational institution, on -

- its own betti of for one of iss users. it further agree that permission * or multiple copying of this work for scholarly purposes maybe granted Dy me or the Dean of Graduate Studies. it is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

\qquad
\qquad
\qquad

Author:

ABSTRACT

A survey of results on the existence of 1-factoriations or colourings of graphs is given. The first chapter deals with the existence of l-factorizations of certain graphs. These graphs include complete graphs, bipartite graphs, circulants, line graphs of some graphs and products of some graphs. The latter includes cartesian, lexicographic, tensor and strong products of graphs.

The second chapter deals with the existence of I-factorizations Whth certain properties. Perfect l-factorizations, kotzig factorizations and graphs with certain 0 -indices are studied.

ACOMOUREDEMATS

TABLE OF CONTENTS

1
Approval. (ii)
Abstract (iii)
Acknowledggonent. (XY)
Table of contents (v)
List of Pigures. (vi)
Introduction1
Chapter 1. The Existence of 1-factorization of Graphs 3
Section 1. Basic Results 3
Section 2. Line Graphs 7
Section 3. Products of Graphs 14
Chapter 2. The Existence of 1-factorizations with Cextain
Properties 19
Section 1. * Perfect 1-factorínations 19
Section 2. Q-indices 36
Section 3. Kotzig Factorizations: 44
Bibliography 50
inst of figures

Figure 1

Figure 2

Figure
Figure 3
Finn \qquad

IntRODUCTIOM

The definition of a graph which is used is that of an undirected graph with no loops ox multiple edges.

Definition 0.1. A graph G is a set of vertices $V(G)$ and a set of edges $E(G)$ which are unordered pairs of elements of $V(G)$ such that if $v_{i} \nabla_{j} \in E(G)$, then $\nabla_{i}, \nabla_{j} f V(G)$ and i $A I=$

A 1-factor or perfect matching and a l-factorization or a colouring are defined as follows.

Definition 0.2. A 1-factor P_{i} of a graph G has $F_{i} \subseteq E(G)$ such that each vertex of $V(G)$ has degree 1 in F_{i}. A l-factorizetion $F=\left\{F_{0}, F_{1}, \ldots, F_{n}\right\}$. of a graph G is a partitioning of $E(G)$ into 1 -sactors F_{i} where $i \in\{0,1, \ldots, n\}$.

Another way to viev a l-factorization of a graph. G is as a colouring of the edges of G so that each vertex is incident with exactly one edge of each colour. In 1879, the problen of the existence of colourings of graphs was mentiond by kempe [13]. The concept of factorizations of graphs was dealt with by könig in a book on graph theory [14) which was published in 1936.

Note that necessary conditions for the existence of a 1-factorization of a graph G are that G be regular and $|V(G)|$ be even.

A near l-factorization is defined on the complete graph X_{n} where n is odd.

Definition 0.3. A near 1-factor F_{i} of a graph G has $F_{i} \subseteq G(G)$ such that each vertex of $V(G) \backslash\left\{v_{i}\right\}$ has degree 1 and v_{i} has degree 0 in P_{i}. A near 1 -factarization $F=\left\{F_{0}, F_{1}, \ldots, F_{n-1}\right\}$ of K_{n} is a partition of $E\left(E_{n}\right)$ into near 1 -factors F_{i}, where $i\left\{\{0,1, \ldots, n-1\}\right.$, for K_{n} a complete graph on the vertices $\left\{\nabla_{0}, v_{1}, \nabla_{2}, \ldots, \nabla_{n-1}\right\}$. \qquad
The first chaptry deals with the existence of l-factorizations of certain graphs including complete graphs, bipartite graphs, line graphs and certain products. The second chaptex deals with the existence of 1-factorizations having oertain properties including perfect l-factorizations, a generalization called a Q-index and KotzAfactorizations.

THE EXISTEMCE OF 1-PACTORIZATIONS OF GRAPHS

Section 1. Basic Results

Although l-factorizations of K_{2}, K_{4} and K_{6} are isomorphic all other complete graphs having an even number of vertices have more than one non-isomorphic, l-factorization. For each complete graph $k_{2 n}$ one of these 1-factorizations is the pyramidal l-factorization described * in definition 2.1 .2 using the abelian group $Z_{2 n-1}$ with generator 1 and another is the bipyramidal 1-factorization described in definition 2.1 .3 using the abelian group $\mathrm{Z}_{2 n-3}$ with generator 1 .

A l-factorization of every complete bipartite graph $X_{n, n}$ exists.

Definition 1.1.1. A bipartite graph is a graph having a vertex set $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1} * v_{2}, \ldots, v_{m}\right\}$ such that each edge is of the form $u_{i} v_{j}$ for some i in $\{1,2, \ldots, n\}$ and j in $\{1,2, \ldots, m\}$. A complete bipartite graph $K_{n, i}$ is a graph on the vertices
$\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{m}\right\}$ with edges $\left\{u_{i} v_{j} \mid i \in\{1,2, \ldots, n\}\right.$,
$j \in\{1,2, \ldots, \underline{m}\}$.

Hote that the existence of a l-factorization of $K_{n, m}$ implies
that $n=m$. For $n \geq 4$ there is more than one l-factorization of
$X_{n, n}$. One of these is $F=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ where
$F_{i}=\left\{v_{1} u_{i+1}, v_{2} u_{i+2}, \ldots, v_{n} u_{i}\right\}$.

A result of stern and Lenz [S] leads to the existence of l-factorizations of some circulants. The proof of this result uses Vizing's theorem \{27].

Definition 1.1.2. A circulant is a graph $G(n, S)$, on n vertices $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ with symbol s such that $s \leq(1,2, \ldots, n-1)$, if $i \in S$ then $n-i \in S$ and $(i-j) \bmod n \in S$ if and only if $v_{i} v_{j} \in E(G(n, S))$.
\because
Theorem 1.1.1. (Vizing (271). The edges of a graph G With maximum degree k can be coloured in k or $k+1$ colours so that no two distinct edges incident with a vertex have the same colour.

Theorem 1.1.2. (Bolletino [51). If a circulant $G(n, 5)$ has an $s \in S$ such that the order of the subgroup of Z_{n} generated by s is even, then a l-factorization of $G(n, s)$ exists-

Proof: If $s, s^{\prime} \in S, s \not \mathcal{F}^{\prime} s^{\prime}$, with the order of the subgroup generated by each of s and s ' even, then $G(n,\{s,-s\})$ consists of even length cycles and forms two I-factors unless $s=-s$ and then $G(n,\{s)$ itself is a 1 -factor. Thus if $G(n, S \backslash\{s,-s) y$ has a 1 -factorization then $G(n, S)$ has a I-factorization. By induction, this leaves the case where S contains only one s winch generates an even order subgroup of Z_{n}.

Suppose there is only one $s \in s$ such that the order of the subgroup of Z_{n} generated by s is even. As above the subgroup $G(n,\{s,-s\})$ consists of even length cycles and forms two 1-factors F_{0} and F_{0}^{\prime} unless $s=-s$ and then $G\left(n,\{s)\right.$ is a i-factor F_{0}. The
remaining edges $G(n, S) \backslash\{s,-s\})$ form two vertex disjoint isomorphic subgraphs on $\frac{n}{2}$ vertices. By Vizing's theorem stated in Theorem 1.1.1. each of these subgraphs can be coloured in $\frac{|S \backslash(5,-s)|}{2}$ or $\frac{|s \backslash(s,-5)|}{2}+1$ colours. Colour with corresponding colours in each subgraph so that vertices joined by edges F_{0} have the same colour edges incident with them. If $\frac{\mid s \backslash\{s,-s\}}{2}$ colours are used then a 1-factorization of $G(n, S)$ is formed. if $\frac{\mid S(\{s,-s\} \mid}{2}+1$ colours are used then each pair of corresponding vertices is incident with edges of all but one colour. Colour the edges of F_{0} with the corresponding missing colours. A 1-factorization of $6(n, 5)$ is formed. 0

This leaves circulants $G(n, S)$ where $G(n,\{s,-s\})$ consists of odd length cycles for each $s \in S$. Note that if n is even, say $n=2^{k} n$ where n^{\prime} is odd, then 2^{k} divides each $s \in s$ and the components of $G(n, s)$ each contain an odd number of vertices. Therefore $G(n, s)$ does not have a l-factorization if each $s \in s$ generates an ad order subgroup of Z_{n}. This leads to the following corollary. Corollary 1.1.3. A circulant $G(n, S)$ has a l-factorization if and only if there exists an $s \leq 5$ such that $n / g c f(n, s)$ is even. 3

A Tait solouring is a l-factorization of a regular graph of degree 3. Tait conjectured that other than a few specified exceptions ail regular graphs of jegree 3 have Tait colourings. Mark Watkins [29] and Castagna and prins 77 prove the existence of Tait colourings for a class of regular graphs of degree 3 with one exception. The class of graphs is called generalized Petersen graphs and the exception is tie Petersen grach.

Definition 1.1.3. The generalized petexsen graph $G P(n, k)$ is the
graph on $2 n$ vertices $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ with
$E(G P(n, k))=\operatorname{lu}_{1} v_{1}, u_{2} v_{2}, \ldots, u_{n} v_{n}, u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{n} u_{1}, v_{1} v_{k+1}$,
$\left.v_{2} v_{k+2} \ldots, v_{n} v_{k}\right\}$.

Theorem 2.2.4, (Castagna and Prins [7]). A 1-factorization exists for every generalized Fetersen graph other than the Petersen graph $G P(5,2) . \square$

Section 2. Line Graphs

A class of graphs where some results are known on the existence of l-factorizations is line graphs of regular graphs.

Definition 1.2.1. A line graph $L(G)$ of a graph G has vertices $E(G)$ and edges $E(L(G))=\left\{e_{i} e_{j} \mid e_{i}{ }^{\prime} e_{j} \in E(G)\right.$ and e_{i} and e_{j} are adjacent in G.

Two theorens of Jaeger are useful in proving that the line graphs of certain regular graphs have i-factorizations.

Theorem 1.2.1. (F. Jaeger [11]). Given a connected, regular graph G with a l-factorization and $|E(G)|$ even, then $L(G)$ has a 1-factorization.a

Theorem 1.2.2. (F. Jaeger \{12]). Given a regular graph G with $E(G)$ even, then there exists a l-factorization of $L(G)$ if there exists a partition of $E(G)$ into Eamiltonian cycles.
proof. Suppose there are an odd number of Hamiltonian cycles in the partition of $E(G)$ then since $|E(G)|$ is even, each Hamiltonian cycle has even length and G has a 1-factorization. By theorem 1.2.1 L(G) has a 1-factorization.

Suppose $E(G)$ is partitioned into an even number of
Hamiltonian cycles $H_{1}, \ldots, H_{2 k}$. Note that if $|V(G)|$ is even then the proof can be done as above. This is not the case if |V(G)| is odd. Now $E(L(G))$ can be partitioned into $2 k$ cycles each of length
|V(G) and corresponding to one of the cycles H_{1} with a factor between each pair of cycles. In the original graph the edge $\mathbf{v}_{\mathbf{i}} \mathbf{v}_{j}$ is adjacent to two edges in the same Hamiltonian cycle and is adjacent to two edges at v_{i} and two edges at v_{j} in every other Hamiltonian cycle.

To pair off these cycles a l-factorization $F=\left\{F_{1}, F_{2}, \ldots, F_{2 k-1}\right\}$ of $X_{2 k}$ on the vertices $\left\{H_{1}+u_{2} \ldots \ldots u_{2 k}\right\}$ is used. If $u_{i} u_{j}$ is an edge of $K_{2 k}$ this corresponds to the pairing of H_{i} with $H_{j} \quad F_{i}$ corresponds to pairs of Hamiltonian cycles and the 4-factor between those pairs including the edges of the cycles. $F_{2}, F_{3}, \ldots, F_{2 k-1}$ each pair off the cycles and correspond to the 4 -factor between each pairing, not including edges of the cycles. Now $F_{2}, \ldots, F_{2 k-1}$ each correspond to regular bipartite graphs of degree 4 each having á 1-factorization. This leaves the edges corresponding to F_{1} which is a graph isomorphic to $L\left(H_{i} \cup H_{j}\right)$ where H_{i} and H_{j} are Hamiltonian cycles.

Now $L\left(H_{i} \cup H_{j}\right)$ is two cycles of length $|V(G)|$ with a 4-factor in between. $L\left(H_{i} \cup H_{j}\right)$ can be partitioned into three hamiltonian cycles each of even length, giving a l-factorization of $Z_{i}\left(H_{i}\right)$. To do this the 4 -factor is partitioned into two Ramiltonian cycles and then the cycles of length $|V(G)|$ and one of the Hamiltonian cycles are partitioned into two Hamiltonian cycles.

To partition the 4 -factor into two Hamiltonian cycles direct
the edges of H_{i} into a directed cycle and then define the following

Hamiltonian cycles B^{+}and B^{-}in $I(G)$.

$$
\begin{aligned}
& \operatorname{Let}^{+}=\operatorname{le}_{i} e_{j} \mid e_{i} \in H_{i}, e_{j} \in H_{j} \text { and } v_{i} \in e_{i} \cap e_{j} \text { where } v_{i} \\
& \\
& \text { is the out-vertex of } \left.e_{i}\right\}
\end{aligned}
$$

and $B^{-}=\left\{e_{i} e_{j} \mid e_{i} \in \ddot{a}_{i}, e_{j} \in \mathbb{R}_{j}\right.$ and $\nabla_{i} \in e_{i} \cap e_{j}$ where v_{i}
is the in-vertex of e_{i} \}.
Looking at B^{+}, suppose e_{j}, e_{j}, and $e_{j "}$ are consecutive edges in H_{j} with e_{i} incident with and directed away from $e_{j} e_{i}$ incident with and directed away from e_{j} and e_{j}, and e_{i} incident with and directed away from e_{j}, and $e_{j "}$ where $e_{i}, e_{i},{ }^{\prime \prime}{ }_{i n} \in H_{i}$. A cycle is formed in $L\left(H_{i}, H_{j}\right)$ around the edges $e_{j} e_{i}, e_{i}, e_{j}$, , $e_{j} e_{i}, e_{i} e_{j "}$ around to $e_{i} e_{j}$ going around the edges of H_{j}. Note that each edge of each of the two cycles occurs twice, thus a Hamiltonian cycle is formed.

The reasoning is the same for B^{-}.

Now take B^{+}and the two cycles of length $|V(G)|$ in
$L_{i}\left(H_{i} H_{j}\right)$ coming from H_{i} ard H_{j}. Name these two cycles A_{i} and
A_{j}. Choose an edge in H_{j} and label it e_{0} with end vertices labelled ∇_{1} and v_{2} Label the edges of H_{j} adjacent at v_{1} and v_{2} by e_{1} and e_{2} and the edges of H_{i} coming from v_{1} and v_{2} by e_{1}^{\prime} and e_{2}^{1}.

In \bar{A}_{i} there are two paths between e_{1}^{\prime} and e_{2}^{\prime} Colour the vertices and edges of one of these with one colour and of the other with the other colour ieaving the vertices e_{1}^{\prime} and e_{2}^{\prime} not coloured. If e_{k} and e_{i} in A_{j} are adjacent to $e_{i} \not e_{i}^{\prime}$ or e_{2}^{\prime}, then colour $e_{i} e_{k}$ and $e_{i} e_{l}$ with the colour with which e_{i} is not coloured and colour $e_{k} e_{i}$ with the same olour as e_{i}. Note that e_{k} and e_{ℓ} are adjacent to the same out going edge of H_{i} and are adjacent in H_{j}. Thus $e_{k} e_{\ell}$ is an edge of A_{j}.

In each olour there are two vertex disjoint chains. One in A_{i} ends at $e_{i}^{\prime}, e_{2}^{\prime}$ and one in $A_{j} \cup B^{+}$ends at e_{1}, e_{2}. $B y$ colouring $e_{1} e_{1}^{\prime}, e_{2} e_{0}, e_{0} e_{2}^{\prime}$ in one colour and $e_{2} e_{2}^{\prime}, e_{1} e_{0}, e_{0} e_{1}^{\prime}$ in the other colour, two gamiltonian cycles are formed.

* These rimiltonian cycles and B^{-}are of even length: Therefore $L\left(\vec{F}_{i} \quad \ddot{H_{j}}\right)$ has a l-factorization for any Hamiltonian cicles H_{i} and i_{j}.

Thereforergiven that G can be partitioned into Hamiltonian cfcles, $L(G)$ tas a l-íactorization. 0

The technique of this proof can be used to show that $E(G(n, 1, k, n-k, n-1 ;))$ for any n and $k \in\left\{2, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}$ has a 1-factorization using a decomposition into one Hamilonian cycle and one 2-factor. This result can also be proved as a corollary of Theorem 1.2 .2 and theorem 1.1.4.

Corollary 1.2.3. Given any n and $k \in\left\{2,3, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}$ there exists a 1 -factorization of the circulant $L(G(n,\{1, k, n-k, n-1))$.

Proof: The circulant $L(G(n,\{1, k, n-k, n-1\}))$ can be partitioned into a copy of GP($n, k)$ and three 1-factors. By Theorem 1.1.4 $G P(n, k)$ has a l-factorization unless $n=5$ and $k=2$. Thus if $G(n,\{1, k, n-k, n-1\}) \neq G\{5,(1,2,3,4\})$ then $L(G(n,\{1, k, n-k, n-1\}))$ has a 1-factorization. ${ }^{*}$ By Theoren 1.2.2, $L(G(5,\{1,2,3,4)))$ has a 1-factorization as $G(5,(1,2,3,4))$ can be partitioned into two Hamitonian cycles. 0

Theorem 1.2.4. (B. Alspach [1)). A l-factorization of $L\left(K_{n}\right)$ exists if and only if $n \equiv 0$ or 1 (mod 4).

Proof. The number of vertices of $L\left(X_{n}\right), \left\lvert\, V\left(L\left(K_{n}\right) \left\lvert\,=\frac{n(n-1)}{2}\right.\right.$ is odd \right. for $n \equiv 2$ or $3(\bmod 4)$ and a 1-factorization cannot exist in these cases.

Now the number of vertices of $L\left(K_{n}\right)$ is even for $n \equiv 0$ or $1(\bmod 4):$ For all $n \equiv 0(\bmod 4), K_{n}$ has a l-factorization. Therefore by Theorem $1.2 .1 \mathrm{~L}\left(\mathrm{~K}_{n}\right)$ has a 1-factorization for $n \equiv 0(\bmod 4)$. For $n \equiv 1(\bmod 4)$ a partitioning of the edges of X_{n} into Hamiltonian cycles exists. Therefore by Theorem 1.2 .2 a 1-factorization of $L\left(K_{n}\right)$ exists for $n \equiv 1(\bmod 4) .0$

Corollary 1.2.5. Given n and S so that every component of $G(n / S)$ has an even number of vertices, then $L(G(n, S))$ has a l-factorization.

Proof. By Corollary 1.1.3 G(n,S) has a l-factorization. Thus by
Theorem 1.2.1 a 1 -factorization of $L(G(n, S))$ exists, since the numer of edges in $G(n, s)$ is even.

Corollary 1.2.6. The line graph of any generalized peteraen graph with an even nuber of edges has a 1-factorization.

Proof. This is a direct result of Theorem 1.2 .1 and Theorem 1.1.4.0 Corollary 1.2.7. The line graph of the complete bipartite graph $X_{n, n}$ has a l-factorization if and only if n is even.

Proof. If n is odd the number of edges is odd and $L\left(X_{n, n}\right)$ does not have a 1 -factorization. If n is even then the number of edges is even and since $X_{n, n}$ has a l-factorization, $L\left(X_{n, n}\right.$) has a

1-factorization by Theorem 1.2.1.0

Monar, Pisanski and Shawe-Taylor have two results dealing with line graphs of biregular graphs.

Definition 1.2.2. A biregular graph G with degrees ℓ and n is a bipartite graph with all vertices of degree ℓ or deqree n; if $\nabla_{i}, v_{j} \leqslant V(G)$ have the same degree then $v_{i} v_{j} \quad E(G)$.

Theorem 1.2.8. (Monar, Pisanski and Shawe-Taylor [23]). Let G be a biregular graph with degrees 2ℓ and $2 n$. Then a l-factorization of $L(G)$ exists.

The second result uses subdivision graphs.

Definition 1.2.3. Let G be a graph. Then a gubdivision graph of G, denoted $S(G)$. repiaces each edge $e=u y$ of G with a path ux v where x_{e} has degree 2 .

Note that if G is regular graph of degree d, then $S(G)$ is a biregular graph with degrees 2 and d. Miso if G is a biregular graph of degrees 2 and d, then a regular graph h of degree d exists such that $G=S(B)$.

Theorem 1.2.8. (Honar, Pisanski and Shave-Taylor [231). Let G be a biregulax graph with degrees 2 and d where a is odd. Then a 1-factorization of $L(G)$ exists if and only if a l-factorization of H exists where $G=S(n) .[$

Section 3. Products of Graphs

In this section the problem of the existence of 1-factorizations of cartesian, lexicographic, tensor and strong products of graphs is considered.

Definition 1.3.1. For graphs G_{1} and G_{2} the cartesian product
$G_{1} \times G_{2}$ has $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} \times G_{2}\right)=$
$f\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{1}\right)$ or $v_{1}=v_{2}$ and
$\left.U_{1} U_{2} \leqslant\left(G_{2}\right)\right\}$.

Definition 1.3.2. For graphs G_{1} and G_{2} the lexicographic product (wheat product) $G_{1}=G_{2}\left(G_{1}\left(G_{2}\right)\right.$ has $v\left(G_{1} \circ G_{2}\right)=v\left(G_{1}\right) \times v\left(G_{2}\right)$ and $E\left(G_{1} \circ G_{2}\right)=\left(\left\{u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right), u_{1} u_{2} \in E\left(G_{1}\right) \text { or } u_{1}\right\}_{2} u_{2}$ and $\left.\nabla_{1} v_{2} \in E\left(G_{2}\right)\right\}$

Definition 1.3.3. For a graph G and positive integer m, let $G(m)=G \cdot \bar{K}_{m}$.

Definition 1.3.4. For graphs G_{1} and G_{2} the tensor product
$G_{1} s G_{2}$ has $V\left(G_{1} * G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} \theta G_{2}\right)=$ $\left.\mathrm{in}_{1}, \mathrm{v}_{1}\right)\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \mathrm{u}_{2} \mathrm{t}_{2} \in \mathrm{E}\left(\mathrm{G}_{1}\right)$ and $\left.\nabla_{1} \nabla_{2} \in \mathrm{E}\left\{\mathrm{G}_{2}\right)\right\}$

Definition 1.3.5. For a graph G and positive integer , let Fin $=G \geqslant \mathrm{~K}_{\mathrm{m}}$.

Definition 1.3.6. For graphs G_{1} and G_{2} the strong product $G_{1} * G_{2}$
has $V\left(G_{1} * G_{2}\right)=\nabla\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} * G_{2}\right)=E\left(G_{1} \times G_{2} \cup E\left(G_{1} \otimes G_{2}\right)\right.$.
Kotzig's result, dealifg with cartesian productis of regular graphs, is given sirst.

Theore 1.3.1. (Kotzig [15]). Let $G_{1}, G_{2}, \ldots, G_{n}$ be regular graphs * such that G_{i} has a 1-factorization for some, $i \in\{1,2, \ldots, n\}$ or G_{i} and G_{j} each have a 1 -factor, for some $i, j \in\{1,2, \ldots, n\}$, ifj, then a l-factorization of $\mathrm{G}_{1} \times \mathrm{G}_{2} \times \ldots \times \mathrm{G}_{\mathrm{n}}$ exists.

- Proof. If there is a $G_{i} \in\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ such that G_{i} has a - 1 -factorization $F=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$, then colour the edges of the
\times cartesian product $G=G_{1} \times G_{2} \times \ldots \times G_{i-1} \times G_{i+1} \times \ldots \times G_{n}$ with $d+1$ colours where the degree of each vertex in G is d. This existence is a direct result of Vizing's Theorem [27]. Then a $d+1$ colouring or a l-factorization of $F_{1} \times G$ is formed, colouring the new edges with the missing colour at the corresponding vertices of G. Add a new colour for each F_{i}, $i \geqq 2$, colouring the edges of the form $(f, g)\left(f^{\prime}, g^{\prime}\right)$ with colour i for $f, f^{\prime} \in F_{i}, i \geqq 2$.

If there are G_{i} and $G_{j} \in\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ such that F_{i} and F_{j} are l-factors of G_{i} and G_{j}, respectively, then partition the edges of $G_{i} \times G_{j}$ into F_{i} / H_{j} and $H_{i} \times F_{j}$ where H_{i} and H_{j} are graphs on the vertex sets of G_{i} and G_{j}, respectively such that $Z\left(G_{i}\right)=E\left(F_{i}\right) \cup E\left(B_{i}\right)$ and $E\left(G_{j}\right)=E\left(F_{j}\right) \cup E\left(H_{j}\right)$. Now $F_{i} \times H_{j}$ and $H_{i} \times F_{j}$ are made up of disjoint graphs which foni two copies of H_{j} or H_{i} with corresponding vertices joined by a l-factor. Vizing's Theorem [27) is used again as above giving a 1-factorization of
$G_{i} \times G_{j} \cdot B y$ the first result, a 1 -factorization of $G_{1} \times G_{2} \times \ldots \times G_{n}$ may be formed. 0

To show that the conditions given in the above theorem are not necessary, Kotzig goes on to prove the following result.

Theorem 1.3.2. (Kotzig [15]). For C a cycle of length greater than 3 and G a 3-regular graph, a 1-factorization of $C \times G$ exists.0

The existence of 1-factorizations of lexioographic, tensor and strong products have been studied by Pisanski, Shawe-Taylor and Monar. A certain lexicographic product is looked at first.

Theorem 1.3.3. (Monar and Pisanski [22]). Let G be a regular graph. Then a l-factorization of $G(m)$ exists in each of the following cases:
a) A 1-factorization of G exists,
b) G is of even degree and I is even,
c) $m \equiv 0(\bmod 4)$,
d) G has a 1-factor and m is even,
e) G is cubic and m is even, and
f) G is bipartite.

Laskar and Hare [18] show that a 1-factorization of K_{n} (m)
exists if and only if $m n$ is even. Parker [25] shows that if G is a cycle on n vertices, a l-factorization of $G(m)$ exists if and only if mn is even.

Now a certain tensor product is looked at.

Thearem 1.3.4. (Pisanski, Shawe-Taylor and Monar [26]). Given a regular graph G and a positive integer m, then a i-factorization of $G\{2 m\}$ exists.0

Theorem 1.3.5. (Monar, Pisanski and Shawe-Taylor [23]). Let $G_{1}, G_{2}, \ldots, G_{n}$ be regular graphs such that G_{i} has a l-factorization for some $i \in\{1,2, \ldots, n\}$ or G_{i} and G_{j} each have a 1-factor for some $1, j \in\{1,2, \ldots, n\}, i \neq j$. Then a 1 -factorization of the lexicographic product $G_{1} \circ G_{2} \circ \ldots \circ G_{n}$ exists.

Proof. Their proof is reduced to proving the existence of a 1-factorization of $G \circ H$ where the edges of $G \circ H$ can ble partitioned into $G \times H$ and $G\{|V(H)|\}$. The proof is completed using Theorem 1.3.1 and 1.3.4 where H has a 1 -factorization or a l-factor since $|V(H)|$ is even. This leaves the case where a l-factorization of G, $F=\left\{F_{I}, F_{2}, \ldots, F_{m}\right\}$ exists, then $G\{|V(H)|\}=F_{1}\{|V(H)|\} \oplus$ $F_{2}\{|V(H)|\} \oplus \ldots \oplus F_{m}\{|V(H)|\}$. Since each $F_{i}\{|V(H)|\}$ for $i \in\{1, \ldots, m\}$ can be reduced to copies of regular bipartite graphs each of which is 1-factorable, a 1-factorization exists. This completes the proof.

To prove that the conditions given in the above Theorem are not necessary they go on to prove the following result.

Theoren 1.3.6. (Pisanski, Shawe-Taylor and Monar [26]). For C a cycie of length greater than 3 and G a 3-regular graph, a

```
    1-factorization of C[G] exists.
```

Theorem 1.3.7. (Monar, Pisanski and Shawe-Taylor [23]). Let $G_{1}, G_{2}, \ldots, G_{n}$ be regular graphs such that G_{i} has a 1-factorization for some $i \in\{1,2, \ldots, n\}$. Then a 1 -factorization of $G_{1} \otimes G_{2} \otimes \ldots G_{n}$ exists.

Proof. Since the tensor product is commatative, assume that G_{1} has the 1-factorization $F=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$. Looking at the graph $G_{1} \otimes G_{2}$, the set of edges $E\left(G_{1} \otimes G_{2}\right)$ is trade up of copies of $F_{i} \otimes G_{2}$ for $i \in\{1,2, \ldots, k\}$. Each of these can be partitioned into vertex disjoint copies of $H\{2\}$ By Theorem 1.3.4, the proof is complete.口

Theorem 1.3.8. (Monar, Pisanski and Shawe-Taylor [23]). Let $G_{1}, G_{2}, \ldots, G_{n}$ be regular graphs such that G_{i} has a 1-factorization for some $i \in\{1,2, \ldots, n\}$. Then a 1-factorization of the strong product $G_{1} \bullet G_{2} * \ldots \bullet G_{n}$ exists.

Proof. Now $E(G * B)$ can be partitioned into $G \times H$ and $G \otimes H$. Theorems 1.3 .1 and 1.3 .7 complete the proof.a

THE EXISTENCE OF 1-FACTORIZATIONS HITH CERTAIN PROPERTIES

Section 1. Perfect 1-factorizations

Definition 2.1.1. A perfect 1-factorization is a 1-factorization $F=\left\{F_{1}, E_{2}, \ldots, F_{n}\right\}$ such that for every $i, j \in\{1,2, \ldots, n\}$, ifjeE($\left.F_{i} \cup F_{j}\right)$ is a faxiltonian cycle.

A 1-factorization wich is formed from a 1 -factor by
Eixing a vextex and performing a grie permutation on the other vertices is called a pyramidal L-factorization by Mendelsohn and Rosa in [21).

Definition 2.1.2. Let $V\left(x_{2 n}\right)=\left\{v_{v^{\prime}} v_{a_{1}}, v_{a_{2}}, \ldots, v_{a_{2 n-2}}, v_{x}{ }^{\prime}\right.$, where $0, a_{1}, a_{2}, \ldots, a_{2 n-2}$ are the elements of an abelian group G of order 2n-1. Additive motation is used and far $a_{i} \in G, x+a_{i}=\infty$. Let F_{0} be a i-factor of $K_{2 n}$. Then $F_{a_{i}}=\left\{v_{a_{j}+a_{i}} v_{a_{k}}+a_{i}\right.$ where $\left.v_{a_{j}} a_{a_{k}} \in F_{0}\right\}$ is al-Eactor of $K_{2 n}$, If the collection of l-factors $F_{0}, F_{a}, \ldots, F_{a_{2 n-2}}$ is a l-factorization of $\mathrm{X}_{2 \mathrm{n}}$, then it is called a pyramidal

1-factozization.

A PYranidal 1-sactorization is used to construct a perfect
i-factorization of $X_{p+1}, x_{15} x_{28^{r}} x_{244}$ and X_{344}. A l-factorization
which gives a different perfect i-factorization of X_{a} and X_{24} is
salled a bipyranidal i-factorization and is defined as follows.

Definition g2.3. Let $F=\left\{F_{i} \mid i f z_{2 n-1}\right\}$ be the pyramidal
1-factorization of $x_{2 n}$ described in definition 2.1.2. Let
$v\left(K_{2 n+2}\right)=\left\{u_{0}, u_{1}, \ldots, u_{2 n-1}, u_{\infty}, u_{\infty}^{\prime}\right\}, T(x)=\left\{\begin{array}{cc}x & \text { if } x<\left\lfloor\frac{3 n}{2}\right\rfloor \\ x+1 & \text { if } x \geq\left\lfloor\frac{3 n}{2}\right\rfloor\end{array}\right.$
and
$F(\infty)=\infty$. Additive notation in the group $\mathrm{Z}_{2 \mathrm{n}}$ is used and for
$a \leqslant Z_{2 n} a+x=\infty$. The 1 -factors
$z_{i}^{\prime}=\left\{u_{i}(x)+i u_{(y)+i} v_{x} y \in z_{0}\right\}\left\{u_{\left[\frac{3 n}{2}\right]+i}^{u_{\infty}^{\prime}}\right\}$ for $i \notin z_{2 n}$ and
$F^{*}=\left\{u_{i} u_{i+n} \mid i=0,1, \ldots, n-1\right\} \cup\left\{u_{x}, u_{w}^{\prime}\right\}$ form a l-factorization F^{\prime} of
$K_{2 n+2}$. This l-factorization is called a bipyramidal 1-factorization.

The following lea reduces the number of subgraphs to be checked in proving that a pyramidal 1-factorization of $k_{2 n}$ is perfect, Leaving $n-1$ cases to be checked.

Leman 2.1.1. - (8.A. Anderson (2)). Let G be an additive group of order $2 n-1$ generated $b y a_{2}$, with $a_{i}=a_{i-1}+a_{1}$. Let the vertices of $X_{2 n}$ be labelled v_{x} and $v_{a_{i}}$ where $a_{i} \in G$. Let $F=\left\{F_{a_{i}} \mid a_{i} \in G\right\}$ be a pyramidal i-factorization of $X_{2 n}$ with $v_{a_{i}} v_{\infty} \in F_{a_{i}}$ for $a_{i} \in G$ such that $\vec{F}_{a_{0}} \vec{z}_{a_{k}}$ is a hamiltonian cycle for k in $(1, \ldots, n-1)$.

Then F is a perfect 1 -factorization.

Proof: All arithmetic is done in G with $a_{k}+\infty=\infty$ for $a_{k} \in G$. Let σ be a permutation of the vertices of $K_{2 n}$ defined as $\sigma\left(v_{a_{k}}\right)=v_{a_{k}}+a_{1}$ for $v_{a_{k}} \in V\left(X_{2 n}\right)$, with the corresponding permation on the edges $\sigma\left(\mathbf{v}_{\mathbf{a}_{\mathbf{i}}} \mathbf{v}_{\mathbf{a}_{j}}^{\prime}\right)=\sigma\left(\mathbf{v}_{\mathbf{a}_{\mathbf{i}}}\right) \sigma\left(\mathbf{v}_{\mathbf{a}_{\mathbf{j}}}\right)$.

Given $i, j \in\{1,2, \ldots, 2 n-2\}, i<j$ then $j-i \leq n-1$ or
$i-j=k(\bmod 2 n-1)<n-1$. If $j-i \leq n-1$, then
$\sigma^{-i}\left(F_{a_{i}}\right)=F_{a_{0}}, \sigma^{-i}\left(F_{a_{j}}\right)=F_{(j-i)} \quad$ and $\quad \sigma^{-i}\left(F_{a_{i}} \cup F_{a_{j}}\right)=F_{a_{0}} \cup F_{a}(j-i) \quad$.
If $i-j \equiv k(\bmod 2 n-1)<n-1$, then $\sigma^{-j}\left(F_{a_{i}}\right)=F_{a_{k}}, \sigma^{-j}\left(F_{a_{j}}\right)=F_{a_{0}}$
and $\sigma^{-j}\left(F_{a_{i}} \cup F_{a_{j}}\right)=F_{a_{k}} \cup F_{a_{0}}$ for $k<n-1$. Thus for i, j in
$\{1,2, \ldots, 2 n-2\} \quad F_{a_{i}} \cup F_{a_{j}} \cong F_{a_{0}} \cup F_{a_{k}}$ for same k in $\{1,2, \ldots, n-1\}$.

Therefore, if $F_{a_{0}} \bigcup_{a_{k}}$ is a Hamiltonian cycle for k in
$\{1,2, \ldots, \pi-1\}$, then F is a perfect 1 -factorization.

Theorem 2.1.2. (Kotzig [15]). For any odd prime p a perfect 1-factorization of X_{p+1} exists.

Proof: Using Lemma 2.1.1, with the group z_{p} and generator 1 with addition modulo p on residues $0,1, \ldots, p-1$, a pyramidal 1-factorization of x_{p+1} is shown to be a perfect l-factorization. Let the vertex set of X_{p+1} be $\left\{v_{0}, v_{1}, \ldots, v_{p-1}, v_{\infty}\right\}$. Consider the 1-factor ig.

Figure 1

Let $F=\left\{F_{0}, F_{1}, \ldots, F_{p-1}\right\}$ be the set of 1-factors described in Lemma 2.1.1 using the permutation σ. The edge $\nabla_{\infty} \nabla_{i}$ for i in $\{0,1, \ldots, p-1\}$ occurs in exactly one l-factor of F, namely P_{i}. Note that for $j, k \in\{1, \ldots, p-1\}, j \neq k, v_{j} v_{k} \in E\left(F_{0}\right)$ if and only if $k+j=0$ and thus, in general, $v_{k} V_{j} \in E\left(F_{i}\right)$ if and only if $k+j-2 i=0$. Since there is exactly one k such that $i+j=k$, the edge $v_{i} v_{j}$ occurs in exactly one l-factor, namely F_{k}. Therefore, F is a l-factorization of K_{p+1} and by definition a pyramidal l-factorization.
)
Given $x \in\{1,2, \ldots, p-1\}$, note that the edges of F_{0} are
in the form $v_{a}{ }^{y}-\alpha$ for $a \in\left\{1,2, \ldots, \frac{p-1}{2}\right\}$ and $v_{0} v_{\infty}$, while the
edges of F_{k} are in the form $v_{k+a} v_{k-\alpha}$ for $a \in\left\{1, \ldots, \frac{p-1}{2}\right\}$ and
$\nabla_{k} \nabla_{\infty}$. Thus $F_{0}\left[F_{k}\right.$ contains the cycle with the sequence of vertices
$\mathbf{v}_{k} \cdot v_{\infty}, v_{0}, v_{2 k}, v_{-2 k}, v_{4 k} \cdot v_{-4 k}+\cdots, v_{2\left(\frac{p-1}{2}\right)}=v_{-k}, v_{-\left(\frac{p-1}{2}\right) k}=v_{k}$.
For any $i, j \in\left\{0,1, \ldots, \frac{p-1}{2}\right\}$ any of $2 i k=2 j k,-2 i k=-2 j k$ or $2 i k=2 j k$ give $i=j$ or $i=-j$ since $k \neq 0$. if j is in $\left\{0,1, \ldots, \frac{p-1}{2}\right\}$ then $-j$ is not in $\left\{0,1, \ldots, \frac{p-1}{2}\right\}$ giving if $;$. . Thus a cycle of length $P+1$ is formed and $F_{0} \cup F_{k}$ form a Hamiltonian cycle for $k \in\{1, \ldots, p-1\}$.

Therefore, by lem 2.1.1, F is a perfect 1-factorixation.o

Theorem 2.1.3. (B.A. Anderson [21). A perfect 1-factorization of K_{16} exists.

Proof: Using Leman 2.1.1 with the group z_{15} and generator 1 with addition modulo 15 on residues $0,1, \ldots, 14$, a pyramidal
i-factorization is shown to be a perfect 1-factorization.
Let the vertex set of x_{16} be $\left\{v_{0}, v_{1}, \ldots, v_{14}, v_{\infty}\right\}$. Consider the 1-factor F_{0}.

Figure 2

Let $F=\left\{F_{0}, F_{1}, \ldots, F_{14}\right\}$ be the set of 1 -factors described in
Leman 2.1.1 using the permutation σ. The edge $\nabla_{\infty} \nabla_{i}$ for $i \in\{0,1, \ldots, 14\}$ occurs in exactly one 1 -factor of F, namely F_{i}. Note that $\left\{ \pm(i+-j) \mid \nabla_{i} v_{j} \in E\left(F_{0}\right), i, j \neq \infty\right\}=\{1, \ldots, 14\}$. Thus F is a 1-factorization of K_{16} and by definition a pyramidal l-factorization. By checking that F_{0} U F_{X} forms a Hamiltonian cycle for $k\{(1, \ldots, 7\}$, by Leman 2.1.1, it can be shown that F is a perfect 1-factorization. 3

The following construction of Mull in and lemeth for Room Squares gives a 1 -factorization of K_{p+1} where P is an odd prime, m is an integer, $F^{B}>3$ and $p^{m} \equiv 3$ (mod 4). This construction is used to prove the existence of a perfect l-factorization of $\mathrm{K}_{28}^{\prime} \mathbf{x}_{244}$ and K_{344}. The added structure allows for checking the union of only one pair of l-factors to prove that the l-factorization is perfect.

Definition 2.1.4. For an odd prise p and an integer m such that $p^{n}>3, p^{m} \equiv 3(\bmod 4)$, let x be a, generator of the multiplicative subgroup of order $p^{s}-1$ in $\operatorname{sp}\left[p^{m}\right]$. Let $V\left(x m^{m}\right)=$
$\nabla_{x} \cdot V_{a}\left\{G E\left\{P^{m}\right\}\right.$. Let E_{0} bedafined by $R\left(F_{0}\right)=$

$$
0^{4} x_{1} x^{\prime} x^{2} x^{3} \cdots, v x^{2} x^{-3} x^{-2}-2 \text { and } E\left(F_{x}\right)=\sigma^{k}\left(F_{0}\right) \text { were } 0
$$

is as defined in Lamer 2.1.1. The resulting collection of 1-factors is shown to be a pyramidal 1-factorization in the next result and is called a mallin-memeth 1-factorization.

Lemma 2.1.4. (Mullion and semeth [24]). Let F be a Mullin-Nemeth l-factorization, using the multiplicative generator x, of X_{p+1} where p is an odd prime and m is integer such that $p^{m}>3$, $P^{m} \equiv 3(\bmod 4)$, then P is a pyramidal l-factorization of $K_{P^{m}+1}$. Proof: All arithmetic is done in GF lp ${ }^{m}$). Since x is a generator of the multiplicative subgroup of $G P\left[p^{m}\right]$, each of the vertices of $\mathrm{X}_{\mathrm{P}+1}$ occurs in F_{0} exactly once.

Now look at the set $s=\left\{ \pm x^{0}(1-x), \pm x^{2}(1-x), \ldots, \pm x^{p^{m}-3}(1-x)\right\}$.
Note that $1-x \in G F\left[p^{m}\right]$ and $1-x \neq 0$ since $p^{m}>3$. If
$x^{2 \alpha}(1-x)=x^{2 \beta}(1-x)$ for some α, β with $0 \leq \alpha, \beta \leq \frac{p^{m}-3}{2}$, then
$x^{2 \alpha}=x^{2 B}, 2 \alpha \equiv a^{*}\left(\bmod p^{m}-1\right)=3^{\prime}\left(\bmod p^{m}-1\right) \equiv 2 B$, since x
generates $G P *\left\{p^{m}\right\}$, and $\alpha=\beta$ since $0 \leq \alpha, \beta \leq \frac{p^{n}-3}{2}$. If $x^{2 a}(1-x)=-x^{28}(1-x)$ for α, β such that $0 \leq \alpha, \beta \leq \frac{p^{m}-1}{2}$, then $x^{2 a}+x^{2 \beta}=0$. If $x=g$ then $2 x^{2 a}=0$ and $G F\left[p^{m}\right]$ has
characteristic 2 contradicting p an odd prime. If $\alpha \neq B$, say $y<3$, then $x^{2 a}\left(1+x^{2 \beta-2 \alpha}\right)=0$ and since $x^{2 \alpha} \neq 0, x^{2 \beta-2 \alpha}=-1$.

Thus $x^{2 \beta-2 \alpha}=-1$ since $0<2 \beta-2 \alpha \leq p^{m}-1 \quad$ which gives
$2 \beta-2 a=\frac{p^{m}-1}{2}$. Thus $p^{\text {m }}-1=4(j-i)$ and $p^{\text {m }} \equiv 1$ (mod 4)
contradicting $p^{m} \equiv 3(\bmod 4)$.

Therefore $\left.S=G F\left[p^{m}\right] \backslash 0\right\}$ and F is a pyramidal

1-factorization.0

Lemma 2.1.5. (B.A. Anderson [3]). Let $F=\left\{F_{0, \ldots, F}^{P-1}\right\}$ be a
Mallin and Nemeth 1 -factorization of $X_{p^{m}+1}$ using the generator x
where p is an odd prime, $p^{m}>3, p^{m} \equiv 3(\bmod 4)$, then F has the
property that for $i, j, i^{\prime}, j^{\prime} \in G E\left[p^{m}\right], i \neq j, i^{\prime} \neq j$,
$F_{i} \cup F_{j} ¥ F_{i} \cup \cup F_{j}$,

Proof: All arithmetic is done in $G\left[P^{\text {m }}\right\}$.
For $a \in\left\{x^{0}, x^{2}, \ldots, x^{p^{1}-3}\right\}$ define the permutation of the vertices
of $X_{p^{m}+1}, \tau_{\alpha}\left(v_{i}\right)=v_{a i}$ for $v_{i} \in V\left(X_{p^{m}+1}\right)$. The corresponding
permutation of the edges of X_{p+1} is defined by $\tau_{\alpha}\left(v_{i} v_{j}\right)=v_{\alpha i} v_{a j}$
for $v_{i} v_{j} \in E\left(X,{ }_{p+1}\right)$, Note that $T_{\alpha} F_{0}=F_{0}$.
Given $\left.k \in G\left(p^{m}\right] \backslash 0\right\}$ then either $k^{-1} \notin\left\{x^{0}, x^{2}, \ldots, x^{p^{n}-3}\right\}$

$\frac{p^{m}-1}{2} \equiv 1(\bmod 4)$. Let k^{\prime} be k^{-1} or $-\left(k^{-1}\right)$ such that

$$
k^{\prime} \in\left\{x^{0}, x^{2}, \ldots, x^{p^{n}-1}\right\} \text {, now } T_{k},\left(F_{0}\right)=F_{0} \text { and }
$$

$$
\begin{aligned}
& T_{k}, F_{k}= \begin{cases}F_{1} & \text { if } k^{\prime}=k^{-1} \\
F_{-1} & \text { if } k^{\prime}=-k^{-1} \quad \text { gince if } \nabla_{i+k_{j+k}} \nabla_{j} F_{k} \text { then }, ~\end{cases}
\end{aligned}
$$

For $k \in G P[p]$ define the permatation σ_{k} as before on the
 any $i, j \in G F[p], \sigma_{-i}\left(F_{i} \cup F_{j}\right)=F_{0} \cup F_{j-i} \cdot$ If
$(j-i)^{-1} \in\left\{x^{0}, x^{2} \ldots, x^{p^{m}-1}\right\}$ then ${ }_{\left.(j-i)^{-1\left(\sigma_{-i}\left(F_{i} \cup F_{j}\right)\right.}\right)^{j}=F_{0} \cup F_{1} \cdot}$
If $(j-i)^{-1}\left(\left\{x^{0}, x^{2}, \ldots, x^{p-1}\right\}\right.$ then $-(j-i)^{-1} \in\left\{x^{0}, x^{2}, \ldots, x^{p^{m}-1}\right\}$ and $\sigma_{1}\left(T_{-(j-i)}^{\left.-1\left(\sigma_{-i}\left(F_{i} \cup F_{j}\right)\right)\right)=F_{0} \cup F_{1} ~ . ~ . ~}\right.$

Theores 2.1.6.- (B.A. Anderson (3)).-A perfect 1-factorivation of x_{28} existe.
Proof: The polynomial $Y^{3}+2 y^{2}+1$ is irreducible over GP[3]. Thus the root x of $y^{3}+2 y^{2}+1$ is a generator of $G F\left(3^{3}\right)$.

Uning the Millin-kemeth 1-factorization let

and let $F=\left\{F_{k} \mid k \in G P\left\{3^{3}\right\}\right\}$. Now $F_{0} \cup F_{1}$ gives the Hamiltonian
cycle containing the sequence of vertices $v_{0}^{\prime} v_{x^{2}+2 x+1}, v_{x+2}$,
$x^{2}+x+1 \quad 2 x^{2}+x+2 x^{2}+2 \quad 2 x^{2}+2 x+1 x^{2}+2 x^{\prime} x^{2}+1 \quad 2 x^{2}+2 x^{\prime}$

$v_{2 x+1}, v_{2 x^{2}+1}, v_{2 x^{2}+x+1}, v_{2 x+2}, v_{x^{2}+2 x+2}, v_{x}, v_{1}, v_{\infty}, v_{0}$.

By Leman 2.1.5, F is a perfect 1-factorixation.o
Theorem 2.1.7. (B.A. Anderson and D. Morse (41). Perfect 1-factorizations
$o f K_{244}$ and K_{344} exist.
Proof: For K_{244} : $244=3^{5}+1$, the polynomial $y^{5}+2 y+1$ is
irreducible over GP [3]. The Mullin-tremeth 1-factorization using x^{37} as a generator gives a perfect 1-factorization of X_{244}.

For $X_{344}, 344=7^{3}+1$, the polynomial $y^{3}+6 y+2$ is
irreducible over GF[7]. The millin-memath 1-factorization using
x^{67} as a generator gives a perfect factorization of x_{344}. 0

A construction for a perfect l-factorization of $X_{2 p}$.
where p is an odd prime, uees a cyclic permutation of the vertices with corresponding permutation of the edges to partition the edges $\nabla_{i} \nabla_{j}$, where $|i-j|$ is even or $|i-j|=p$, inta l-factors. This leaves the edges of the circulants $G(2 p,\{k,-k\})$ for odd $k \in\{0,1, \ldots, p-1\}$. Now for odd $k \in\{0,1, \ldots, p-1\}, G(2 p,\{k,-k\})$ form a Hamiltonian cycle on an even number of vertioes, which has the obvious pair of 1-factors.

Theorem 2.1.8. (Kotzig [16]). For any prime p a perfect l-factorization of $X_{2 p}$ exists.

Proof: All arithoetic is done modulo $2 p$ on the residues $\{0, \ldots, ., 2 p-1\}$. Let the vertex set of $K_{2 p}$ be $\left\{v_{0}, v_{1}, \ldots, v_{2 p-1}\right\}$. Consider the 1-factor F_{0}.

Figure 3

Potate this configuration through $\mathrm{p}-1$ rotations using the permutation $\rho=\left(v_{0}, v_{1}, \ldots, v_{2 p-1}\right)$. The corresponding permutation on
the edges is $\rho\left(v_{i} v_{j}\right)=v_{i+1}{ }^{\boldsymbol{D}} \mathbf{j + 1}$. Thus P^{1}-factors F_{i} for
$i \in\{0, \ldots, p-1\}$ are formed where $E\left(F_{i}\right)=\rho^{i} E\left(F_{0}\right)$. Note that
for $j, k \in\{1, \ldots, 2 p-1\}, j \neq k, v_{j} v_{k} \in E\left(F_{0}\right)$ if and only if
$k+j \equiv 0(\bmod 2 p)$. Thus, $v_{k} v_{j} \in E\left(F_{i}\right)$ if and only if
$\frac{k+j}{2}=i(\bmod 2 p)$. For $i \in\{0,1, \ldots, p-1\}$ the 1 -factor F_{i} also
includes the edge $\nabla_{i} \mathbf{v}_{i+p}$.
This leaves the edges $v_{i} v_{j}$ where $|i-j| \in\{1,3, \ldots, p-2\}$
which are exactly the edges of the circulants $G(2 p,\{k,-k\})$ for
$k \in\{1,3, \ldots, p-2\}$, each of which is a Hamiltonian cycle. For
$k \in\{1,3, \ldots, p-2\}$, let $E\left(F_{k}^{\prime}\right)=\underset{\alpha \in\{1,3, \ldots, 2 p-1\}}{\left\{v_{\alpha k} v_{(\alpha+1) k}\right\}}$
and $E\left(F_{k}^{\sim}\right)=\bigcup_{\alpha \in\{0,2, \ldots, 2 p-2\}}\left\{v_{\alpha, k} V_{(\alpha+1) k}\right\}$. Note that
$F_{k}^{\prime} \cup F_{k}^{\prime \prime} \cong G(2 p,\{k,-k\})$.

$$
\text { Thus, } F={ }_{i \in\{0, \ldots, p-1\}} F_{i} \cup\left\{{ }_{i} \in\{1,3, \ldots, p-2\}{ }_{i}^{F_{i}^{\prime}}\right)
$$

$U\left(\underset{i}{ } \in\{1,3, \ldots, p-2\}_{i}^{F_{i}^{*}}\right.$ is a 1 -factorization of $K_{2 p}$.

$$
\frac{z}{v^{2}}
$$

F is a perfect l-factorization of $K_{2 p}$ if, for each
in' $\in\{0,1, \ldots, p-1\}$ and $j, j^{\prime}, k, k ' \in\left\{1,3, \ldots, p^{-2}\right\}$,
$F_{i} \cup F_{i^{\prime}}, F_{j}^{\prime} \cup F_{j^{\prime}}^{\prime}, P_{k}^{*} \cup F_{k^{\prime}}^{*}, F_{i} \cup F_{j}^{\prime}, F_{i} \cup F_{k}^{n}$ and $F_{j}^{\prime} \cup F_{k}^{n}$ form

Case 1: A proof that for $i, i^{\prime} \in\{0,1, \ldots, p-1\}, i \neq i^{\prime}, F_{i} \cup F_{i}$, is
a Hamiltonian cycle is given.

Note that for $i>i^{\prime}$ there is an $\alpha \in\left\{1, \ldots, p^{-1}\right\}$ such that $\alpha=i-i^{\prime}, \rho^{i^{\prime}}\left(F_{\alpha}\right)=F_{i}$ and $\rho^{i^{\prime}}\left(F_{0}\right)=F_{i}$. . Thus $F_{i} \cup F_{i}, \cong F_{\alpha} \cup F_{0}$.

The edges of F_{0} are in the form $V_{\beta} V_{-\beta}$ for
$\beta \in\{1, \ldots, p-1\}$ and $v_{0} v_{p}$. The edges of F_{α} are in the form $v_{\alpha+\beta}{ }_{\alpha-\beta}$ for $\beta \in\left\{1, \ldots, p^{-1\}}\right.$ and $v_{\alpha} v_{\alpha+p}$. Thus, for each
$a \in\left\{1, \ldots, p^{-1}\right\}, F_{0} \cup F_{a}$ contains the path given by the sequence of vertices $v_{p}, v_{0}, v_{2 \alpha^{\prime}}, v_{-2 \alpha^{\prime}}, v_{4 \alpha^{\prime}}, v_{-4 \alpha}, \cdots, v_{(p-1) \alpha^{\prime}} v_{-(p-1) a}$ If α is odd, then $-(p-1) a \equiv p+\alpha(\bmod 2 p)$ and $p a \equiv p(\bmod 2 p)$. Since $\nabla_{p+a_{a}} \nabla_{a}$ is an edge of F_{a}, the path continues with the sequence of vertices $v_{\alpha}, v_{-\alpha}, v_{3 \alpha}, v_{-3 \alpha}, \ldots, v_{p \alpha}$ forming a cycle with $2 p$ vertices. If α is even, then $-(p-1) \alpha \equiv \alpha(\bmod 2 p)$ and $\mathrm{p}+\mathrm{pa} \equiv \mathrm{p}(\bmod 2 \mathrm{p})$. Since $\mathrm{v}_{\mathrm{a}} \mathrm{v}_{\mathrm{p}+\mathrm{a}}$ is an edge of F_{a}, the path continues with the sequence of vertices $v_{p+a}, v_{p-a}{ }^{\prime} v_{p+3 a}, v_{p-3 a}$, \ldots, v_{p} forming a cycle with $2 p$ vertices.

Thus, for all $a \in\left\{1, \ldots, P^{-1}\right\}, F_{0} \cup F_{a}$ is a Hamiltonian cycle. Therefore, for $i, i \prime \in\{0, \ldots, p-1\}, i \neq i^{\prime}, F_{i} \cup F_{i}$, is a Hamiltonian cycle.

Case 2: A proof that for $j, j \in\left\{1,3, \ldots, p^{-2}\right\}, j \neq j, F_{j}^{\prime} \cup P_{j}^{i}$,
forms a Hamiltonian cycle is given.
In the 1-factor P_{j}^{\prime}, the vertex $v_{a j}$ is a vertex of the
edge $v_{a j}{ }^{v}(\alpha-1) j$ if a is even and of the edge $v_{a j}{ }^{v}(\alpha+1)_{j}$ if a $B=$
is odd. Thus, for each $i, i \prime \in\{1,3, \ldots, p-2\}, i \neq i^{\prime}, F_{i}^{\prime} \cup F_{i}^{\prime}$,
contains the path represented by the sequence of vertices
$\left.v_{0}, v_{-i}, v_{i^{\prime}-i}, v_{i}{ }^{\prime}-2 i, v_{2 i^{\prime}-2 i}, \cdots, v_{(p-1)(i},-i\right), v_{-i}, v_{0}$
since $\left|i^{\prime}-i\right|$ even (i,i) are odd).
Suppose $a\left(i^{*}-i\right)=8\left(i^{*}-i\right)$ then $a=B$ since $i \neq i^{*}$.

Now $a(i \prime-i)$ is even and $3(i \prime-i)-i$ is odd so that
$a(i \prime-i) \neq B\left(i^{\prime}-i\right)-i$. Thus there are $2 p$ distinct vertices in the above path and $F_{i}^{\prime} f_{i}^{\prime}$, forms a Hamiltonian cycle.

Case 3: A proof that for $k, k^{\prime} \in\{1,3, \ldots, p-2\}, k \neq k^{\prime}, F_{k}^{\prime \prime} \cup P_{k}^{\prime \prime}$,
forms a Hamiltonian cycle is given.

Note that $o\left(P_{k}^{\prime}\right)=F_{k}^{*}$ and $\rho\left(F_{k}^{\prime}\right)=F_{k}^{*}$, . Thus
$F_{k}^{\prime \prime} \cup F_{k}^{*} \prime \ni F_{k}^{*} \cup F_{k}^{*}$,
Therefore, $F_{i}^{*} F_{k}^{*}$ forms a Hamiltonian cycle.

Case 4: ${ }^{\circ}$ A proof that for $i \in\{0,1, \ldots, p-1\}$ and $; \in\{1,3, \ldots, p-2\}$.
$F_{i} F_{j}^{\prime}$ and $F_{i}, F_{j}^{\prime \prime}$ form Hamiltonian cycles is given.

Thus $F_{i} j F_{j}^{j}$ and $F_{i} \cup F_{j}^{*}$ are each isomorphic to on a of $F_{0} F_{j}^{\prime}$ and $F_{0} F_{j}^{m}$.

The edges of E_{0} are of the form $v_{k} v_{k}$, for
$k \in\left\{1, \ldots, p^{-1}\right\}$ and $V_{0} v_{p}$. In the 1-factor F_{j}, the vertex $V_{a j}$ is a vertex of the edge $\operatorname{laj}_{\text {(2-1) }}$ if a is even and of the edge $v_{i j} v_{(a+1) j}$ if a is ode. In the 1 -factor $F_{j} j$ the vertex $v_{i j}$ is a vertex of the edge $7_{y}{ }^{Y}(1+1) ; i f$ it is even and of the edge

 $F_{0}-F_{j}^{*}$ contains the pact. represented by the sequence of vertices

As an earlier eases it is easy to verify that the vertices

hamiltonian cycle is given.

is odd and in the 1-factor F_{k}^{k} the vertex $V_{a k}$ is a vertex of the edge; $v_{\text {ak }} v_{(a+1) k}$ if a is even and of the edge $v_{a k} v_{(a-1) k}$ if a is odd. For each $j, k \leqslant\left\{1,3, \ldots, p^{-2}, F_{j}^{\prime} \dot{U} F_{k}\right.$ contains the path represented by the gequence of vertices $v_{0}, v_{k}, v_{k+j}, v_{2 k+j}, \ldots$, $v_{p k+(p-1) j} v_{0}$.

As in earifex cabes it is easy to verify that the vertices are distinct so that she cycles are indeed Hamiltonian.

Therefore, F is a perfect 1 -factorization. 2
Another class of graphs wich has been stadied to determine the existence of perfect 1-factorizations is complete bipartite grapis $x_{n, m}$. Note shat che existence of a l-factorization of a bipartite graph requires that $n=$. The following result of Kotzig implies that for the existence of a perfect l-factorization of $\mathrm{K}_{n, n}, \mathrm{n}$ mist be ade.

Theorem 2.1.3. (Kotzig (15). If G is a bipartite graph, regulax of iegree greater Enan 2 with a perfect l-factorization then $\because(3)=2(\bmod 4) .=$
?.s. Laufer has proved the following result giving the existence of gerfect i-factorizations of complete bipartite graphs $\mathrm{K}_{20-1,20-1}$ dependind on the existence of a perfect l-factorization of $\mathrm{K}_{2 n}$.

Theorem 2.1.10. (P. Laufer [19]). If a perfect 1-factorization of $K_{2 n}$ exists, then a perfect l-factorization of $K_{2 n-1,2 n-1}$ exists;0

Section 2. g-indices.

This section deals with a property of a l-factorization F of a complete graph called a Q-index of F.

Definition 2.2.1. Gen an integer n, let $F=\left\{F_{1}, \ldots, F_{2 n-1}\right\}$ be a l-factorization of $X_{2 n}$ and Q be a class of regular graphs of degree 2. The Q-index of F, denoted $Q(F)$, is the largest integer II such that there exists a partition of the l-factors of F into classes $F^{(1)}, \ldots, F^{(r)}$ with $F^{(i)} \mid \geq m$ for $i=1,2, \ldots, r$ and if
 If Q is the class of graphs which are damiltonian cycles, then the 1-factorization F of $X_{2 n}$ is a perfect l-factorization if $Q(F)=2 n-1$.

Definition 2.2.2. If Q is a class of graphs with at most one graph on 2π vertices, then $Q_{2 n}$ is the graph on $2 n$ vertioes.

Theorem 2.2.1. (E. Mendelsohn and A. Rosa [20]). Let Q and Q. be classes of graphs of degree 2 such that for each n, Q or Q has at most one graph on $2 n$ vertices and $Q_{2 n} Q_{2 n}$. Then for any 1-factorization F of $K_{2 n}, Q(F)>(2 n-1) /(2 k+1)$ implies that $z^{\prime}(P) \leq 2 k-1$ for k in $\{1, \ldots, n-1\}$.

Proof: Suppose $\mathrm{f}(9) \rightarrow(2 n-1) /(2 k+1)$. By definition of the Q-index, there exists a partition of the l-factors of P into classes

and $\left|F^{(i)}\right| \geq Q(F)>(2 n-1) /(2 k+1)$ for each i in $\{1,2, \ldots, r\}$. Thus $r<2 k+1$.

To find $Q^{\prime}(F)$, look at any partition of the $1-f a c t o r s$ of F into sets $G^{(1)} \ldots G^{(s)}$, such that $G \cup G^{\prime} \geqslant Q_{2 n}^{\prime}$ for $G, G^{\prime} \in G^{j}$. Iote that for any two l-factors F and F^{\prime} of $F^{(i)}, F$ and F^{\prime} must belong to distinct $G^{(j)}$'s. For any two 1 -factors G and G ' of G^{j}, G and G^{\prime} must belong to distinct $F^{(i)}$'s. Thus $\left|G^{(j)}\right| \leq r<2 k+1$.

Therefore $\frac{2}{2}(F)<2 k+1.0 \quad$,

In [21] E. Mendelsohn and A. Rosa give two results concerning the existence of 1 -factorizations with certain Q-indices where Q is a cextain class of regular graphs of degree 2 .

The first of these requires a result on Steiner loops.

Definition 2.2.2. A Steiner loop G with the binary operation ${ }^{\circ}$ is defined by the following properties.
(1) For any a, b in G the equations $a \circ b=x$, $a \cdot x=b$ and x a $a b$ each have a unique solution. -
(2) There exists an element 1 in G such that $a<1=a=10 a$ for every a in G.
(3) a a $a=1$ for all a in G.
(4) $a \circ b=b=a$ for $a l l$ a,b in G.
(5) $a=(a-b)=b$ for all a, b in G.

Lema 2.2.2. (R. Brack (61). A Steiner loop of order $n+1$ exists if and only if a Steiner triple system of order n exists.

Proof: Suppose a Steiner triple system T of order n exists. If $a b c$ is any block of T, let $a \cdot b=c, b \circ c=a$ and $a \cdot c=b$. Since T is a steiner triple system any pair of elements occurs exactily once and each of $a \cdot b=x, a \circ x=c$ and $x \circ b=c$ would have a unique solution for x. Note that $a \cdot b=c=b \cdot a$. If $a \circ b=c$ then $a \cdot(a ; b)=a \circ c=b$ for any a, b, c in T. Add an element 1 to the set of elements of T and define $1 \circ a=a \cdot 1=a$ and $a: a=1$ for all a in T. Thus, the elements of T with I and the above operation form a loop of order $n+1$.. Therefore, there exist's a steiner loop of arder $n+1$.

Suppose a Steiner loop T with operation o and identity 1 of order $n+1$ exists. Let a, b, f be in \dot{T}^{\prime} and $a, b, c \neq 1$. Let the block of a block design be $a b c$ when $a \cdot b=c$. If a $b=c$, then $a \circ(a \circ b)=a \circ c=b, c \circ a=b, b \circ a=c, b \circ(b \circ a)=$ $b \circ c=a$ and $c \circ b=a$. Since $a \circ b=x, a \circ x=c$ and $x \circ b=c$ each have a unique solution for x, each pair of non-identity elements will occur together in exactly one block. Therefore a Steiner triple system of order n is formed.o

Theorem 2.2.3. (E. Mendelsohn and A. Posa [21)]. Let Q be a class

```
Of regular graphs of degree 2, so that for each n, Q contains
at most one graph on 2n vertices, Q 2n . Then for any n m 4 there
is a l-factorization }F\mathrm{ of }\mp@subsup{X}{2n}{}\mathrm{ such that Q(F)=1.
```

Proof: Lat $n \geq 4$ be fixed.

Case 1: iet $Q_{2 n}$ be disconnected.
Look at the bipyramidal 1-factorization of $X_{2 n}$ described in Definition 2.1 .3 coming from the pyraidal l-factorization with F_{0} as described in Theoren 1.2. The union of F^{*} and F_{0}^{\prime} is the Hamiltonian cycle ($u_{x a}, \vec{u}_{0}, u_{n-1}, u_{n-2}, u_{2 n-3}, u_{1}, u_{n}, u_{n-3}, u_{2 n-4}$, $\left.\left.u_{2}, \ldots, u^{u}\left\lfloor\frac{3(n-1)}{2}\right\rfloor+1,\left\lfloor\frac{3(n-1)}{2}\right\rfloor+n-1 \quad, \quad u \frac{3(n-1)}{2}\right\rfloor, u_{\infty}^{\prime}, u_{\infty}\right)$. Now $F *$ is the same if a cyclic permation is applied to the vertices $u_{0}, u_{1}, \ldots, u_{2 n-3}$. Thus for any 1-factor $F_{i}^{\prime}, F^{*} \cup F_{i}^{\prime}$ forms a Hamiltonian cycle. Therefore, since $Q_{2 n}$ is disconnected, $Q\left(F^{\prime}\right)=1$.

Case 2: $Q_{2 n}$ is connected.
Let $n \equiv 1$ or $2(\bmod 3)$. By Leman 2.3.2, since a Steiner
triple system of order n^{\prime} exists if and only if $n^{-} 1$ or 3 (mod 6)
there is a Steiner loop T of order $n^{\prime \prime}$, if and only if $n^{\prime \prime}=2$ or $4(\bmod 6)$. Thus there exists a Steiner loop of order $2 n$. Set up a l-factorization E of $X_{2 n}$ as follows. For $a, b, a \not b$, in T if $a \cdot b=c$ is in T let the edge $a b$ be in the 1 -factor F_{c}. Prom property 1 of a Steiner loop each edge is in one 1-factor and each vertex is an endpoint of an edge in each l-factor exactly once. Let b, c be in T, then there is an a in T such that a. $b=c$. Thus $l e$ and $a b$ are edges in 1-factor F_{c} and $I b$ and a C aré edges in l-factor F_{b}. Thus $F_{c} \cup F_{b}$ has a component wich is a 4-cycle (1 b a c 1) and at least one more component since $n \geq 4$.

Let $n \equiv 3(\bmod 6)$. Label the vertices of $X_{2 n} V_{i}$
where $i \notin S, i \neq 1$, and S is a Steiner loop of order
$n+1 \equiv 4(\bmod 6)$ with elements $\{1,2, \ldots, n+1\}$. Form near
I-factorizations $F^{V}=\left\{F_{2}{ }^{v}, P_{3}^{v} \ldots, F_{n+1}^{v}\right\}$ and $F^{u}=\left\{F_{2}^{u} \ldots, F_{n+1}^{u}\right\}$ on K_{n}, on the vertex sets $\left\{v_{2}, \ldots, v_{n+1}\right\}$ and $\left\{u_{2} \ldots \ldots, u_{n+1}\right\}$ as

 of a Steiner loop, each edge is in one near I-factor and each vertex is in each near 1 -factor $F_{i}{ }^{V}, F_{i}{ }^{\text {n }}$ as an end vertex except v_{i} or u_{i} which stand alone. For the l-factor F_{i}, take the two near 1-factorizations $F_{i}{ }^{\mathbf{V}}, F_{i}{ }^{\mathbf{u}}$ and the edge $v_{i} u_{i}$. To complete the 1-factorization form any 1-factorization of the edges between the two sets of vertices deleting the l-factor already used. By the same argument as above any two l-factors of the first type will have at least three corpopents, 4-cycle in each get of vertices and at least one other component since $2 n \geq 18$. There are n-factors of the first type and $n-1$ of the 1 -factors formed from cross edges. sone of the first can occur together. Therefore $Q(F)=1$:

Let $n \equiv 0(\bmod 6)$. Label the vertices
$c_{1}, c_{2}, \ldots, c_{n}, x_{1}, x_{2}, \ldots, r_{n}$, Take a l-factorization $H=\left\{H_{1}, \ldots, H_{n}\right\}$ of $X_{n, n}$ on the sets $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ and $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$
 corresponding to a unipotent the element 1 down the main diagonal) latin square $c=\overbrace{i j}{ }^{j}$ fond from the latin square A with object set 1 through $\frac{n}{2}$ minion is unipotent and the latin square B on

the object set $\frac{n}{2}+1$. . n. Let the object set of n be relabelled so that there are all 1 's down the main diagonal. Label the columen of $C_{1} c_{1}, c_{2}, \ldots, c_{n}$ and the rows of $c_{i} r_{1}, r_{2}, \ldots, r_{n}, \ldots$ If $c_{i j}=k$, then let the edge $r_{i} c_{j}$ be in 1 -factor k, H_{k}. Note that for each $k \in\{2 ; 3, \ldots, n\}$ there is a proper subsquare containing k and 1 . If k in $\left(1,2, \ldots, \frac{n}{2}\right)$, then $k \in A$, a proper subsquare. If k in $\left\{\frac{n}{2}+1, \ldots, n\right\}$ then there is a subsquare of order 2 containing k and 1 . Thus the union of H_{1} and H_{j} forms a disconnected. graph for j in $\{2,3, \ldots, n\}$. To complete the 1-factorization F, take a l-factorization on n vertices and take two copies of it; one on the vertices c_{i} and one on the vertices r_{i} sugh that when one 1-factor is taken from each set to form a 1-factor of $x_{2 n}, c_{i} c_{j}$ will be in the 1 -factor if and only if $r_{i} r_{j}$ is. Thus H_{1} with any of these new 1 -factors will form many 4-cycles. Therefore H_{1} zust occur by itself in a partition used in finding the Q-index of F. Therefore $Q(F)=1.0$

Another result of E. Mendelsohn and A. Fosa deals with Q being a class of regular graphs of degree two where $Q_{2 n}$, is made up of 4 -cycles with possibly one 6 -cycle if n is odd. Here the Q-index is called the tightness index.

Definition 2.2.3. Let Q be a clasg of regular graphs of degree 2 .
such that for every integer $n \geq 3, Q_{2 n}$ is made up of 4 -cycles with possibly one 6-cycle if n is odd. For any l-factorization F. the 2 -index of $F, Q(F)$ is called the tightness index of $F, T I(F)$.

Theorem 2.2.4. If $n \equiv 0(\bmod 2)$, then there is a 1-factorization F of $K_{2 n}$ such that $T(F) \geq 2$.

Proof: Let $n=2 k$. Label the vertios of $K_{2 k}, u_{i}$ and v_{i} for $i=1,2, \ldots, k$ let F be a 1-factorization of $K_{2 k}$ with
$F=\left\{F_{1}, F_{2}, \ldots, F_{2 k-1}\right\}$ where $F_{1}=\left\{u_{i} v_{i}: i=1,2, \ldots, k\right\}$. Label
 i in $\{1,2, \ldots, k\}$. Construct a partitioning of $K_{4,4, \ldots, 4}$ into 4-cycles as follows. Let the 4-cycles ($u_{\ell}^{\prime} v_{m}^{\prime} u_{\ell}^{\prime \prime} v_{m}^{\prime \prime} u_{\ell}^{\prime}$),
 $\mathrm{X}_{4,4, \ldots, 4^{\prime}}$ if and only if $u_{\ell} v_{m}, u_{\ell} u_{m}$ or $v_{\ell} v_{m}$ is in F_{j} for j in $\{2,3, \ldots, 2 k-1\}$. Partition each G_{j} into two 1-factors G_{j}^{\prime} and G_{j}^{n} for j in $\{2,3, \ldots, 2 k-1\}$. By definition $G_{j}^{\prime} \cup G_{j}^{m}$ forms a graph whose components are 4-cycles.

The above 1 -factors leave k disjoint copies of \mathbf{K}_{4} to partition into 1 -factors. Let G_{1}^{\prime} be the set of edges $v_{i}^{\prime} v_{i}^{\prime}$ and $u_{i}^{\prime} u_{i}^{\prime \prime}$ for i in $[1,2, \ldots, k)$, let $G_{i}^{\prime \prime}$ be the set of edges $v_{i}^{\prime} u_{i}^{\prime}$ and $v_{i}^{\prime \prime} u_{i}^{\prime \prime}$ for i in $\{1,2, \ldots, k\}$ and let $G_{i}^{\prime \prime \prime}$ be the set of edges
$v_{i}^{\prime} u_{i}^{\prime \prime}$ and $v_{i}^{n} u_{i}^{\prime}$ for i in $\{1,2, \ldots, k\}$. Note that the union of any pair of these last three l-factors forms a graph whose components are 4-cycles.

The l-factors in $\left\{G_{i}^{\prime}, G_{i}^{\prime}, G_{1}^{\prime \prime ' ~} \mid i=1,2, \ldots, 2 k-1\right\}$ form a I-factorization, F of $K_{4 k}$. The partition of the 1-factors $F^{(1)}=\left\{G_{1}^{\prime}, G_{1}^{\prime \prime}, G_{1}^{\prime \prime \prime}\right\}$, and $F^{(i)}=\left\{G_{i}^{\prime}, G_{i}^{M}\right\}$ for i in $\{2,3, \ldots, 2 k-1\}$ shows that $\mathrm{TI}(\mathrm{F}) \geq 2.0$

Another Q-index defined for a particular class of graphs is called the Dundas index.

Definition 2.2.4. Let Q be a class of graphs such that $Q_{2 n}$ is a Hamiltonian cycle for each $n, n>1$. For any l-factorization F the Q-index of F is called the Dundas index of F and denoted DI (F).

Note that for F a 1-factorization of $K_{2 n}$, if $D I(F)=2 n-1$ then F is a perfect 1-factorization.

Section 3. Kotzig Factorizations.

A Kotzig factorization contains both a near l-factorization and a Hamiltonian decomposition.

Definition 2.3.1. A Hamiltonian decomposition $H=\left\{H_{1}, \ldots, H_{n}\right\}$ is a partitioning of the edge-set of a graph into Hamiltonian cycles.

Definition 2.3.2. A Kotzig factorization $K(H, F)$ of $K_{2 n+1}$ is a Hamiltonian decomposition H of $K_{2 n+1}$ with 1-factorization F of $K_{2 n+1}$ such that each Hamiltonian cycle of H intersects each near 1 -factor of F in exactly one edge.

A construction of E. Mendelsohn and C. Colbourn exhibits a Kotzig factorization of K_{p} where p is an odd prime. This construction is used by J. Horton in proving the existence of Kotzig factorization of $K_{2 n+1}$ for all integers n.

Theorem 2.3.1. (E. Mendelsohn and C. Colbourn (20]). A Kotzig factorization of $X_{2 n+1}$ exists for $2 n+1$ a prime.

Proof. Let $V\left(K_{2 n+1}\right)=\left\{\nabla_{0}, v_{1}, \ldots, v_{2 n}\right\}, F_{i}=\left\{v_{j} v_{i-j} \mid j=0,1, \ldots, 2 n\right\}$ for $i \in\{1,2, \ldots, n\}$ and $H_{i}=\left\{\nabla_{j} \nabla_{i+j} \mid j=0,1, \ldots, 2 n\right\}$ for i in $\{1,2, \ldots, n\}$. Now $F=\left\{F_{0}, F_{1}, \ldots, F_{2 n}\right\}$ is a near 1-factorization of $\mathrm{K}_{2 \mathrm{n}+1}$ and $\mathrm{G}=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{2 \mathrm{n}}\right)$ is a Hamiltonian decomposition of
$K_{2 n+1}$. To prove that $K(f, F)$ is a Kotzig factorization of $X_{2 n+1}$, for $\ell \in\{1, \ldots, n\}$ let $\nabla_{i} \nabla_{j} \in H_{t}$ and $i-j \equiv \ell(\bmod 2 n+1)$ where
$i+j=k(\bmod 2 n+1)$. Then $V_{i} V_{j}$ is in F_{k}. Since
$j \equiv\left\{\begin{array}{ll}\frac{t+k}{2}(\bmod 2 n+1) \\ \frac{(t+k)(\bmod 2 n+1)}{2} & \text { for } \ell+k \text { even } \quad t+k \text { add }\end{array} \quad\right.$ and $i=\ell+j(\bmod 2 n)$,
each edge of H_{ℓ} is in a different 1-factor.a

Mendelsohn and Colbourn [20] also construct Kotzig
factorizations of ${\frac{K_{2}}{2 n+1}}^{\text {for } n} \operatorname{smaller}$ than 21.
A construction of J. Horton [l0] gives Kotzig factorizations
of $K_{2 n+1}$ for all n. In this construction strong starters are used.

Definition 2.3.3. Wen considering abelian groups, additive notation is used. A strong starter of an abelian group G of order k is a set A of unordered pairs of elements frow G with the following properties.
(a) For x in $G, x \neq 0$, there exists Y in $G, Y \neq 0$, such that $\{x, y\}$ in A.
(2) If $\{x, y\}$ and $\{x, z\}$ are in A, then $z=y$.
(3) $\quad((x+-y) \mid\{x, y)$ in $A\}=G(0)$.
(4) For $\{x, y\}$ in $A,(x+y) \neq 0$ and for any $\left\{x^{\prime}, y^{\prime}\right\}$ in A, $\left[x^{2}, y^{\prime}\right] \neq\{x, y)^{\prime}$, then $\cdot(x+y) \neq\left(x^{\prime}+y^{\prime}\right)$.

Strong starters in $G P\left[p^{n}\right]$ are known to exist ([8], [9],
and [241) where F is any odd prime and n is an integer except for $p^{n}=3,5$ or 9 . Por $p=3$ the set $A=\{\{1,2\}\}$ is used and
for $p=5$ the set $A=\{\{1,2\},\{2,3\}$ is used. In the first cage A is not a strong starter since $(1+2) \equiv 0(\bmod 3)$ which does not affect the construction, but in the second case the basic construction must be altered.

Theorem 2.3.2. (J. Horton [10]). Suppose a Kotzig factorization of $K_{2 n+1}$ exists, then a Kotzig factorization of $K_{p(2 n+1)}$ exists where p is an odd prime.
prof. Let $K(H, F)$ be a Kotzig factorization of $X_{2 n+1}$ on the vertex set $\left[v_{0}, \ldots, v_{2 n}\right.$, labelled so that $H_{1}=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{2 n} v_{0}\right\}$ and where $F=\left\{F_{0}, \ldots, F_{2 n}\right.$, with $v_{\text {n }}$ having degree 0 in F_{m}. Let $\mathrm{K}\left(\mathrm{A}^{\prime \prime}, \mathrm{F}^{\prime \prime}\right)$ be a kotzig Eactorization of K_{p} on the vertex set $\left\{u_{0}, \ldots, u_{p-1}\right\}$ described in theorem 2.3.1. Let A be a strong starter of GE\{p\} using the set $\{0,1,2, \ldots, p-1\}$ for $p=3$, let $A=\{\{1,2\}\}$ and for $p=5$, let $A=\{\{1,2\},\{2,3\}$. Now relabel the vertices u_{0}, \ldots, u_{p-1}) so that for $p>5$,
$A=\left\{\{1,2\},\{3,4\}^{\}}, \ldots,\{p-2, p-1\}^{2}\right\}$. Let H^{r} be the Hamiltonian decomposition corresponding to A^{*} and F^{\prime} the near 1-factorization corresponding to F^{*}.

Using Z, E Bamiltonian cycles will be formed for each Samiltonian cycle of $\mathrm{K}_{2 n+1}$. The edges of one of these Hamiltonian aycles, along with the edges of the $2 n+1$ edge disjoint X_{p} 's, are partitioned into $\frac{p+1}{2}$ Eamiltonian cfcles. The partitioning into a
near 1-factorization tses the near 1 -factorizations P and P^{\prime} * In order to ensure that a rotrig factorization is formed, in using F^{\prime} the latter $\frac{p^{+1}}{2}$ \#amilconian cycles are taken into account. Let $\#_{i}$ be a familtonian cycle of $k_{2 n+1}$ in H with edges $\nabla_{0} v_{h}, v_{h_{1}} v_{h_{2}}, \ldots, v_{2 n} h_{0} ;$ then for $\ell \in\{0,1, \ldots, p-1\}$ define

$$
\cdots(p-1)_{n_{2}}^{(p-1+t)_{n}, \cdots,(p-1)_{n}} n_{2 n-2}^{(p-1+t)_{n} n_{2 n-1},}
$$

$$
(p-1+t) n_{2 n-1}\left(p-1+2 t i_{n_{2 n}},(p-1+2 t) n_{2 n} n_{0} ;\right.
$$

$$
\left.\therefore(k+1)_{h_{2 n-1}}(k+2 t) \lambda_{2 n},(k+2 t)_{h_{2 n}}(k+1)_{h_{0}} \text { for } k: n i 0,1, \ldots, p-1\right)
$$

Thus partition the edges corresponding to $k_{2 n+1}$ into Hamiltonian

This leaves the edges interior to $2 n+1$ disjoint copies

are used to connect these opies of X_{p} and to form another $\frac{p+1}{2}$ tyamiltonian cycles.

Now ielete the edges $i_{k} j_{k}$ for $k \in\{0,1, \ldots, 2 n\},\{i, j\} \in A$. In each copy of X_{p} this leaves $\frac{p-1}{2}$ Hamiltonian paths from H^{\prime} since each differenge occurs in a different hamiltonian cycle of $\mathrm{H}^{\prime \prime}$. Define $\mathrm{E}_{\mathrm{i}}{ }^{\ell}$ to be the damiltonian path on the vertices
$\sigma_{\ell}, j_{\ell}, \ldots, p_{i}$ geterained by the Hamilonian cycle H_{i}^{\prime} from H^{\prime}. Let $H_{i}^{\prime \prime}=\left\{a_{0} a_{1}, b_{1} b_{2}, a_{2} a_{3}, \ldots, b_{2 n-1} b_{2 n}, a_{2 n} b_{0} \mid a_{j} b_{j}\right.$ is the edge deleted from $H_{j}^{\prime} ;-H_{0}^{i} \cup H_{1}^{i} \cup \ldots \cup H_{2 n}^{\prime i}$ for
$2 \in\left\{1,2, \ldots, \frac{p-1}{2}\right.$, and $\left.\mathrm{H}_{0}^{\prime \prime \prime}=\dot{b}_{\dot{k}} b_{k+1} \mid b_{k} b_{k+1}\right\} H_{i}^{\prime \prime \prime}$ for
$2 \in\left\{1,2, \ldots, \frac{p-1}{2} ;\right.$ and $\left.b_{k} b_{k+1} \in H_{1}^{0}\right\}\left\{j_{k}(j+1)_{k}\{\{j, j+1\} \in A\right.$,

$i \in\{1, \ldots, n\}, \therefore \therefore, 2, \ldots, \frac{z^{-1}}{2}$ is a partitioning of
the edges into Hamiltonian cycles.

To construct a rear. 1-factorization of $\mathrm{K}_{\mathrm{p}(2 n+1)}$ the edges
not internal to the K_{P} 's are partitioned as follows:

The edges internal to the copies of X_{p} are partitioned into near
i-factors as follows: $\left.G_{i}^{\prime Z}=\sum_{i} k_{i} \quad u_{j} u_{k} \in F_{\ell}^{\top}\right\}$ for each $F_{\ell} \in F^{\prime}$ and
$i \leq 10,1, \ldots, 2 n\}$ at this point, sone care must be taken in choosing
the G_{i}^{ℓ} to go with $G_{j}{ }^{\prime \prime}$ for given $j \in\{0,1, \ldots, 2 n\}$ and
$m \in\{0,1, \ldots, p\}$, since both G_{i}^{\prime} and $G_{i}^{\prime \ell}$ may contain an edge of $H_{j}^{\prime \prime \prime}$, Relabel the 1 -factors as $G_{i}^{\prime \prime m}=G_{i}^{\ell}$ if $\left|E\left(H_{j}^{\prime \prime}\right) \cap E\left(G_{i}^{\prime \prime}\right)\right|=1$ and $E\left(G_{i}^{\prime \prime}\right) \cap E\left(H_{j}^{\prime \prime \prime}\right)=\varnothing$ for all $j \in\left\{1, \ldots, \frac{p-1}{2}\right\}$ and $G_{i}^{\prime \prime \prime \prime}=G_{i}^{\prime \prime}$ if $E\left(H_{j}^{\prime \prime \prime}\right) \cap E\left(G_{i}^{\prime M}\right)=\rho$ for all $j \in i 1, \ldots, \frac{p-1}{2} j$ and $G_{i}^{+* m}$ is not defined for m. Let $G_{i}^{\ell}=G_{i}^{\prime \ell} G_{i}^{\prime \prime \prime}$. Then $G=\left\{G_{i}^{\ell} \mid i \in\{0,1, \ldots, p-1\}\right.$, $\ell\{\{0,1, \ldots, 2 n\} ;$ is a near 1-factorization. Now, $K\left(G, H^{\prime \prime \prime}\right)$ is a Kotzig factorization of $K_{p(2 n+1)} \cdot \square$.
[1] B. Alspach, A l-factorization of the line graph of complete graphs, J. Graph Theory $\underline{6}$ (1982). 441-445.
[2] B.A. Anderson, A perfectly arranged room square, Proc. Fourth Southeastern Conference of caminatorics, Graph Theory and Computing (1973), 141-150./
[3] B. A. Anderson, A class of starter induced 1-factorizations, Graphs and Combinatorics, Lecture Notes in Math. 406, Springer-Verlag, (1974).
[4] B.A. Anderson and D. Morse, Some observations on starters, Proc. Fifth Southeastern Conference of Combinatorics, Graph Theory and Computing (1974), 229-235.
[5] G. Stern and H. Lenz, Steiner triple systems with given subspaces; another proof of the Doyen-Wilson-theorem, Bollet., U.M.I. (5) 17-A (1980), 109-114.
 A. A. Albert, Math. Assoc. of America and Prentice-Hall, 1963.
[7] F. Castagna and G. Prins, Every generalized Petersen graph has a Tait coloring, Pacific J. Math. 40 (1972), 53-58.
[B] B. C. Chong and K. Chen, on the existence of normalized room squares, Nanta Math. 7 (1974), 8-17.
[9] J. F. Dillon and R.A. Morris, A skew room square of side 257, Utilitas Math. 4 (1973), 187-192.
[10] J. Horton, The construction of Kotzig factorizations, Discrete Math. 43 (1983), 199-206.
[11] F. Jaeger, Sur L'indice Chromatique du Graphe Representatif des Aretes d'un Graphe Regulier, Discrete Math. 9 (1974), 161-172.
[12] F. Jaeger, The 1-factorization of some line graphs, Discrete Math., to appear.
[13] A. B. Kempe, on the geographical problem of the four colours, Amer. J. Math. 2 (1879), 193-200.
(14) D. König, Theorie der endlichen und unendlichen Graphen, Akademische Verlagsgesellschaft, Leipzig, (1936). Reprinted: Chelsea, Niew York, (1950).
iij) A. Kotzig, Hamiltonian graphs and Hamiltonian circuits, Theory of Graphs and Its Applications, Proc. of the Smolenice Syuposium, Academic Press, New York (1964), 63-82 and 162.
[16] A. Kotzig, Combinatorial structures and their applications, Gordion and Breach, New York (1970), 215-221.
[17] A. Kotzig, l-factorization of Cartesian products of Regular Graphs, J. Graph Theory 3 (1979), 23-34.

1211 E. Mendelsahn and A. Rosa, On some properties of l-factorizations of complete graphs, Proc. tenth Southeastem Conference of Combinatorics, Graph Theory and Computing, Boca Raton (1979), 739-752.
[22] B. Monar and T. Pisanski, Edge-colouring of a family of regular graphs, (preprint).
B. Monar, T. Pisanski and J. Shawe-Taylor, Edge-colouring of Composite Regular Graphs, (preprint).
R. C. Mullin and E. Hemeth, An existence theorem for room squares, Canad. Math. Bull. 12 (1969), 493-7.
E. T. Parker, Edge-coloring numbers of some regular graphs, Proc. Amer. Math. Soc. 37 (1973), 423-424.
[26] T. Pisanski, J. Shawe-Taylor and B. Monar, l-factorization of the camposition of regular graphs, (preprint).
V. G. Vizing, on an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964), 25-30.
W. D. Wallis, Room Squares, Springer Verlag, Berlin (1972).
M. E. Watkins, A theorem on Tait colourings with application to the generalized Petersen graph, J. Combin. Theory 5 (1969), 152-164.

