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t 

T&t &finition of a graph which is used is that of an 

undirected graph w i t h  sr, loops' or multiple edges. 

if P v C E(G), th.n v .  6 V and i j j . 
i f 3 

A I-factor or prfeet .ratchtrrg and a L-factarizaticm or a 

Aaother way  to view a 1-fzbctorizatian of a graph.  G is arm a 

colooring of tbe edges of G scr that each vertex 1s inc idsnt  w i t h  

e x a c t l y  orp edge of eacfi culoar, In 1879, tbe prablu of tbt 

concept of factorizations of g n p b  w a s  &at w i t h  by 6 n i g  in a book 



Elofinitiw (2.3. A naw 1-factor Pi of a graph G has c B(G1 - 

degree 0 in Pi . A near I-factarimtion F - ~ P ~ , P ~ ,  .. . ,Fn-l) of 

is a partition of E t a )  into mar 1-factors Pi, wbam 

. . . - 1  i Kn 
a -late graph m the vcr r icu  

of c e r t a i n  graphs indttding w l e t e  graphs, bipartite grqhs, l i ne  

p r f e c t  1 -factorizations, a getaaralization cal led a p i n -  and 



Section 1. Basic m u l t s  

in definition 2 -1.2 using tbe abelFan group Z 
2n-1 

with generator 1 

and another is the bipyrarnidal l-factorization &scribed.in definition 

2.1.3 using Uu a b e l i ~  g m ~ p  Z2n-3 w i t h  generator 1 . 
A 1-factorization of wary camplete bipartite graph K 

n, n 

exists. 

Definition 1.1.1, A bipart i te  graph is a graph having a vertex s e t  

u r r  u v v , Y svch that each edqe is of the form u . v  n 1 2  m 1 j 

fur s- i in {1,2,,,.,ni and j in 2 , .  A coleplete 

uipartite graph K is a graph an the vertices 
,a 

i q , u  2 , . . . .  u .v .v ,..., v 1 vith edges {u.v.li C !1,2 ...., nl, n 1 2  IB 1 7  

j 6 fI.,2r.*.,mII- 

t ha t  a = m . For n E 4 tbere is more than one l-factorization of 

K . Oae of these is P = {P F F where 
5 9  1' 2 n 



Def in i t ion  1.1.2.  A circritant is a graph ~ ( n , S f ,  on n vertices 

v , .  v w i t h  s-1 S such tha t  S c 11.2 ..-.. n-1). if 
n-1 - 

+P -=w degree k can be ar10;rred in k or k+l eolours so that no tuo 

distinct edges inc ident  k i t h  a vertex have the sane colour. 

Theorem 1.1.2 . (Bolletino [51) . If a circularit G(n,S) h a s  an 

s 6 S such that the order of the subgroup of Zn 
\ 

generated by s is 

exists. - - 
-- - - --- -- wen,  then a l-fxzbrization ~f Gars> 

Proof: If s,sl 6 S ,  s f ' s '  , w i t h  the order of the subgroup generated 

by each of s and s' even, then ~fn,(s,-s)) consists  of even length 

cycles and forms two I-factors unless s = -s and t h e n  Gfn,(sf) itself 

is  a 1-fa&r, Thus i f  ~fn,s\{s,-s& has a 1- factor izat ion  tben 

S fn,S) has a 1-factorization, By induction; this leaves the case where 

S contains only one s vftich generates an even order subgroup of Z . 
n 

- - -  S u p ~ s e t k K P y  '-m@ s f S sucb +h- t- 

sukpoup of Z generated by s is even. As above the subgroup 
11 

~fn,{s,-s)) consists of even length cycles and forms two l-factors 

Po and F; unless s = -s  and then ~(n.ts.1) is a 1-factor F~'. The 
- 



re;n-g edges ~ ( n , ~ i \ i s , - s 3 )  form tuo vertex d i s j o i n t  isomorphic 
- - 

n 
*rap& on - vertims, By Viziog's theorem stated in Theorem 1.1.1, 

2 i 

each of these sw,.-aphs can be coloured in J s - 1  or f 5 y 3  t. + 

colours. ( a l o u r  viti  corresponding co lou r s  in  each subgraph s o  t h a t  

vertices joined by edges fo have the same colour edges incident with 

therrt. If 
Js\{s,-s! 

2 
co lou r s  are used then  a 1 - f a c t o r i z a t i a n  of 

~ f n , S )  is forrrred. I f  + m l o u r s  are uscd then eacfl pair 
2 ,  

of carresponding verrtioes is  incident with  edges of a l l  but  one colour .  I 
mlaur the edges o f  FG w i t h  t he  corresponding missing co lours .  A 

1s-a ~f &&sl f~&& 

,This  leaves cirazfants 'Gfn,S) w h e r e  ~ ( n ,  f s , - s ) )  c o n s i s t s  

of odd l eng th  cycles for each s C S . Note t h a t  i f  n is even, say 

k 
n = 2 n t  where n' i s  aid, then  2k d i v i d e s  each s C S and t h e  

coqmnents of G i n , S f  each cdntaFn an odd number of v e r t i c e s .  Therefore I 
2 ( n , S )  d m s  no t  have a 1 - f a c t o r i z a t i o n  i f  each s f S gene ra t e s  an -I 
odd o r d e r  subgroq of Z . T h i s  l e a d s  t o  the fo l lowing  mrollary. 

3 

Comllary 1.1.3. Acir,-ulant G(n,S) has a 1 - f a c t o r i z a t i o n  i f  and 

m l y  if t h e r e  exists an s L 5 such that n / g c f ( n , s )  i s  even.3 

A Tait colouri-g i s  a 1 - f ac to r i za t ion  of a regular graph o f  

- cfqree 3 . T a i t  cmnjectured that o t h e r  than  a f e w  s p e c i f i e d  except ions  I 
b L P  regular qr~@;?s of 5qree 3 have ~ a i t  colour ings ,  nark Watkins [291 1 

cif ~ r a w  i s  called gecerafized Petersen  graphs and t h e  exception is 



. . .  
3 ~ ~ ~ g r a p n - ~ ( n , k ) - ~ s - -  

graph an 2n vertices (ul,u 2 , . . . ,  u ,v ,v ,..., v 1 with 
n l 2  n 

E ( t P h . k ) )  = ~ U ~ Y ~ , U ~ V ~ ~ . . .  . Y ~ V ~ , U ~ U ~ , U ~ U  3 , . . .  ,u u ,v v 
n l  l k + l c  

v v ,..., v v 1 .  2 k+2 n k  

Thorent  1.1.4 , f Castagna and ~ r & s  171 1 . A 1-factorization ex is ts  

fw every generdtfzed Petersen graph other than the Petersen graph 

Q f 5,2) ,a 



Section 2 .  LinqGraphs 

A class of graphs where sonre results are known m the 

existence of 1-factorizations is line graphs of regular graphs. 

mf inition 1.2.1, A line graph L(G1 of a graph G has vertices 

EfGf andedges Z f L f G l f  = I e . e . / e . , e . C E ( G )  and e and e .  are 
1 3  1 7  i 3 

adjacent in G 1 .  

Theorem 1.2.1. (F. Jaeger [Ill). Given a connected, regular graph G 

w i t h  a 1-factorization and I E ~ G I  f even, then L(G1 has a 

1-fact0rization.a 

Q?eurent1.2.2. f f .  Jaeger f l t l ) .  Givenaregulurgraph G w i t h  - - 

j ~ ( ~ f  i even, then there exists a 1-factorization of L f G )  if there . 
exists a partition of E(G) into Hamiltonian cycles. 

3 m f .  Suppase t h e r e  are an odd n-r of Hamiltonian cycles in the 

partitian of E (GI then since I E (G) i is even, each Hdltonian cycle 

:has even length and G has a 1-facturization. By theorem 1.2.1 L(G1 

has a 1-factorization. 
/ 

Suppose E (G)  is partitioned into an even nlmnber of 
- - -- - - - 

Ei&ltd?ias cycles f;i l,. . . . that if / Y (GI / is even then 

&. How E(L(G)) can be partitioned into 2k cycles each of length 



between each pair of cyc les ,  In the original graph the edge v . v  is 
j 

adjacent t o  tuca edges in the sane H d l t o n i a n  cycle and is adjacent 
d 

to two edges a t  v and t w o  edges a t  v in every other Hamiltonian 
i j 

cycle. 

To pair off these c y c l e s  a 1-factorization F = b 1 . F 2 .  ..., F } 2 - 1  

edge of %k this corresponds t o  the pair ing  of Hi with H . F1 
j 

t%se pairs including the edges of the cycles. F2,F3, ..., each F2k-1 

pair off the cycles and correspond t o  the 4-factor between each pairing, 

nut including edges of the cycles. Now P2, . . - ,F  2k-1 each correspond 

to regular bipartite graphs of degree 4 each having d 1-factorization.  

Tnis leaves the edges corresponding to Fl which i s  a graph isom~rphic  

to L(Bi  2 H.) where H .  and H are Hamiltonian cycles. 
I 1 j 

NOW L (B. d 8.) is tuo cycles  of length 1 v (GI f with a 
1 I 

tiaetiltonian cycles each of even length, giving a I-factorization o f  

s ix i  - H.) . To do t h i s  the 4-factor is partit ioned into two Eiamiltonian 
3 

cycles and then the  cycf es  of length I V(G) I and one o f  the HirrPiltcrnian 

- 

To partition tfie 4-factor into two Hamiltmian cycles direct 

t3e edges of 3 .  rnto a directed cycle and then define the f o l l w h g  
1 

L- 1 

2 
t 

2 
P 



is the out-vertex of e i j  

Looking at 3+ . suppose E ,e and e 
j 

are consecutive 
3 3" 

fdgesin a- with a- i n a r k n t v i t ' n a n h d i r e c G d ~ ~ ~  e e  Ff= - - 

7 I - - -  - 
incident with and directed away from e. and e and el, incident 

I j ' A 

with and b e c t e d  away f znm e and e . w h e r e  ei .ei, ,e . 
j ' 1" 

f Hi - 
f 

A cycle i s  f o m d  i n  L(H. d H 1 around the edges e . e .  ,,eL,e3,, 
1' 7 3 1  

ej ,ei,,ei,,e 
jW 

around to e.e going around the edges of H . N o t e  
1 1  j 

that each edge of each of t h e  t w  cycles occurs twice, thus a 

aaniltonian cycle is  fornred. 

- I 

The reasoning is tbe sane for 3 . t 

HOY take B+ and the N o  cycles of length Iv(G) 1 i n  

L(Hi A H.) can ing  f m  9 .  and X . ";i= these two cycles A .  and - I 1 j 1 

A .  . C l s e  an edge i n  3 .  and 1-1 it eo w i t h  end vertices labelled 
3 3 i 



colour e.e and ejsG w i t h  the colour w i t h  w h i c h  ei is not 
l k  

wloured and colcr~r eket w i t h  tbe sam colour as e .  . Note that 
I 

ek and eC are adjacent to the sa~ee out going edper o f  H and &xe i 

ed~ac#t in H. . 'Lhw e e is an edge of A . k t 3 j 

+ 
in Ai e m  at e;,e; and one in A. il B ends at el,e2 . By 

3 

colouring e e' in one wlour and e e1  e e e e' in 
=lei, e2e0' O 2 22' 10' 0 1  

the other colour , Two liamiftonian cycles are formed. 

- 
i Zhese iiacniftonian cycles and B are of even length. 

7 

nierefore LIHi j. E . )  .has a 1-factorization for any ~aniltodiun 
3 

- %%ere fare ,given that G can be partitioned into Hamlltonian 

- q c l e s  , L(G) ;?as a 1- factorization,^ 

The t e w c p e  of this proof can be used t o  show that 

- k  for any n and k F { 2 , .  . ., r:l? has a 

1-factorization us ing  a declcrrpwition into one Haniltonian cycle 

&id cwre: 2-factor. This result can also b? proved 8s a corollary of 

exlsts a 1-factorizatroc of the circularkt L ( G ( ~  ,il,k,n-k,n-1)) f . 



ai copy cd GPfn,kf and three 1-factors, BwThuorsm 1.1.4 GFfn,k) 
i 

has a 1-factorization unless n = 5 and k = 2 . Thus if 

1-factorization as ~ ~ ~ , i 1 , 2 , 3 , 4 ) )  can be partitioned into tw, 

for n f 2 or 3 (mod 4) and a l - f a c t o r i z a t i o n  cannot exist in these 

Now the n-r of vertices of LMn) is even for 

n Z Uor I €mod 41. For aII n 5 0  Cmod42,- 
Kn has a I-factorization. 

Iherefore by Theorem 1.2.1 L(K,) has a 1-factorization for 

n E O (md 4 ) .  For n E I (d 4)  a partitioning of the edges of K 
n 

into Efailtonian cycles exists, Therefore by heorem 1.2.2 a 

L(K 1 exists for n E 1 Inrod 41.0 
n 

G i v e n  n and S so that  every ootpp0nent of Gln 

of vert ices,  then L(G(n,S)f has a 1- factor izat ion .  

Proof .  Sy CbmPlary 1-1.3 Gfn,S! has a I-factorization. Thus by 

%orem 1.2.1 a I - f a c U c i z a t i o n  of L(G(n,S) f exists, sine the 

number of edges in S{n,S) is even.2 



with an even n e r  of edges has a l-factorizaticm. 

Proof. This is a direct result of 'theorem 1.2.1 and Theorem 1.1.4.o - 
Corollary 1.2.7, T h e  l ine graph of ttme coaaplete bipqrtite graph 

K has a 1-far=toritation i f  and only i f  n is even. 
n *n 

Proof .  If n is the number of edges is odd Md LCKn 1 &es 
~n 

n o t  have a 1-factorization, If n is even then* nlnber of edges 

w, P i s a n s k i  and Shawe-Taylor have tM results daaling 

with l ine  graphs of biregullar graph. 

Definit ion 1.2.2. A t,ireguhx paph G with degrees 4 axid n is 

a bipartite graph with a l l  vertices of degree 8 or deqree n~ if 

Theora1.2.8. [Mmar, Pisanski and Shaw-Taylor 12311. IRt G bs a 

biregular graph vith degrees 2 4  and 2n . Then a 1-factarizaticm 

The second result uses suMivision graphs. 

& m t ~ d  4 b.1 , E . = - ( , -  piaces ea& edge c - - sf G w i t h  a puth ux v where 
e 

x has degree 2. 
e 



\.bixhgular graph of & p e e s  2 aad d , then a regular graph B of 
i 
\ 

b d eziits mch that G 1 518). 



In this s.ec.tzicm tfLe problem of the o r i s w c e  of 1-factorizations 

Definition 1.3.1. -Par g r a M s  GI and G2 the cartesian product 

Wfiz i i t ion 1-3.2, ?or graphs fl and G2 the lexicographic product 

-finition 1.3.3, G and positive integer m , let 



graph,  is given first. 

sueh that G~ baa a 1-factorization for sane i < n or G~ 

- - i "  ,, .;,if 7 tIfierr --=- Or - -==: - ---- =-- =- 

-:I* 2 k / - 
cmrtesian prc&ue G = GI x G2 x ... x Gi,l X Gi+l x ,.. X Gn w i t h  

d + 1 colours where the degree of each vertex in G is d . This 

existence is a direct result of Vizing's Theorem 1271. Then a d + 1 

co3-ouring or a I-facturization of PI X G is • ’ o m ,  colcsuring the 

new edges vith the missing calour at  the corresponding vertices of G . 
Add a new wluur for each P i G 2 , mlouring the edges of the form C i ' 
f,g) lf*,g') vith mlour i far f ,fl f F i r  i Z 2 . 

rf there are G~ and ti. C G ~ , G ~ . . . ,  G such that P 
3 i 

and F i  are 1-factors of Gi and G , respectively, then partition 
j J 

tke edges of 

are graphs on the vestef sets of Gi and G , respectively such that 
j 

C U . . 
€3 L 

A- U - &1 1 P - +'j - "i Cp Frmd 
a A r-* 

Vizing's Theorem 1271 is used again as above giving a 1-factorization of 



To show that the conditions given i n  the above theorem are 

not necessary, Kotzig goes on t o  prove the following resu l t .  

Theorem 1,3,2. (Kotzig f15 1 , For C a cycle of 1 ength greater than 

3 and G a 3-regular graph, a l-factarization of C x G exists.0 

The existence of 1-factorizations of lexicographic, tensor 

and strong products have heen studied by Pisanski, Shawe-Taylor 
- - - -- - - - - - -  - - 

7 
- - - - 

and mnar. A certain lexicographic product i s  looked at f i r s t .  

Theorem 1.3.3, (Hxar and Pisanski 1221). Let G be a regular graph. 

Then a 1-factorization of ~ ( 4  ex i s t s  i n  each of the following cases: 

a) A 1-factorization of G exis t s ,  

b) G is of even degree and m is even, 

dl G has a 1-factor and m i s  even, 

e) G is cubic and 

f) G is b ipar t i te .  

Laskar and Hare 

exists i f  and only i f  QUI 

m is eve- and 

1181 show that a 

is even. Parker 1251 shows that i f  G is 

a cycle on n vert ices ,  a 1-factorization of G(m) exists i f  and 

NOW a certain tensor product is looked at. 



regular graph G and a positive integer m , then a 1-factorization 

Theoreat 1.3.5. (Ibnar, Pisanski and Shawe-Taylor [231 I .  L e t  

G1,G2*...,G be regular graphs such tha t  Gi haq a l-factorization n d 

f o r  s r m  i C f1.2,. . . ,n) m Gi and G each &ve a 1-factor 
j 

for s- k, j .f f 1~2,. , . ,n3, i f j , men a 1-iactorizatiop of the 

lexicographic product GI o G2 . . . Gn exists.  

Proof. q e i r  proof i s  reduoed - to - proving - the - - existence of a - - - - 
- - 

1-factorization of G o H where the edges of G o H can f$ partit ioned 

in to  G x H and G{IV(H)I). . The  prczof is completed using Theorem 1.3.1 

and 1.3.4 where H has a f -f actorizatim o r  a 1-f actor since / V(H) I 
is even. This leaves the case where a 1-factorization of 

IS. F =JP 1' F 2 .... ,F=I then G~Iv(H)II = F~{]V(H) JI B) 

i C { l , .  can be redumd t o  copies of regular bipartite graphs 

each of which is 1-factorable, a 1-factorization exists.  This 

canpletes the proaf .n 

TQ prove that the ooad;itions given' in the afxrve Theorem 

are not neoessary they go m to prove the following result. 

cycle of length greater than 3 and G a 3-regular graph, a 

1-factorization of C [GI exists. 
3 ~ 



G1,G2,. . . ,G be regular graphs such that Gi has a 1-factorization n 

for some i C 1 2 , . . , .  Then a 1-factorization of 

GI O G2 @ ... 8 Gn exists. 

Proof. Since the tensor pr&uct is cgmrmtative, assume that GI has - 
the 1-factorization F = b1,F2 ,. . . ,F 1 . Looking at the graph k 

I G1 B G2 , the  set of edges E(G1 8 G2) is $de up of copies of - - 
A-  

, 

Fi @ G2 f o r  i C (1,~. . . . ,kj . Each of these can partitioned 

T h e o r e m  1.3 -8, (&mar, P i s a n m  and Shawe-Taylor f 231 1 . L e t  

Gl,G2,... ,G be r q l a r  graphs such that Gi has a 1-factorization 
n 

far some i C 1 2 . n  Then a 1-factorization of the strong 

product GI S2 * , ,. Gn exists. 

P r o o f ,  Now E ( G  * 5 )  can be partitioned into G x H and G @ H . 
Theorems 1.3.1 a ~ d  1.3.7 ampfete the proof.o 



Section 1. Perfect I-factorizations 

Definit ion 2.1.1, A perfect 1-factorization is a 1 -factorization 

A 1-fattoriat ion which is farrred from a 1-factor by 

S , a p 2 , .  ..,a are tk e l ~ n t s  of an abelian group G of order 
2n- 2 

Zn-I. Addit ive mtatlon IS used for a 6 G ,  T a. = . m t  Fo 
1 f 

'be a I-factor of K Ln - %en ? = !v v where v a 6 F ~ )  
a. a.+a. 

1 1 %L*"i "j ZLk 

is a f-factor of K Z f  the a r f l e c t i o n  of 1-factors Fg,Fa, +. . *F 
2n a 2n- 2 



F! = {a, j v v  ~ , P ~ J { u  u&,) fur 
I ; i X l + i " ~ f u i t i  r y  D ' ?n and 

L2 

'2n +2 
This 1-factorization is called a bipyraplidal 1-factorization. 

order 23-1 generated by  2, w i t h  

1-factorization of K2n is perfect, 

wt G be an additive group of 

1. = a 
I i-l + P Let the vertices 

dxse iii C G .  Let P -  {\ lai ( G I  
i 

be a pyrgaidal 1-factorizattm of K w i t h  v v C P for a. 6 G 
2n a. CD a L 

1 3. 

mch that r' rs a Mltcnim cycle for k in {I, .-. ,n-11. 
a 
0 - %  



P m ~ f  s All a r i U l r t i c  is &ne in G w i t h  + = for RfG' 
+ - - - - -- 

Let o h a penaukation of the vertices of Kh * f w d  as 

a f v  ) = v far v 6 V f l n f ,  w i t h  the oorresponding permutation 
3' %+"l 4 

Given i, j E lf , 2 , .  .. ' - 21 ,  i < j then j - i 5 n - -1 or 

i -  j t k  (IIDd2n-lf  < n - 1 .  If j - i I n - 1  , t h e n  

and J-'(F J F a )  - F  i F  for - 1 .  Thusfor i,j in 
a 
i 3 % a o 

2 - 2  F d ?  J F  f o r s o e  k i n  i1,2 ..... 1~11. 
a a 
i 2 o a k 

Therefore, if P d F is a Hdltonian cycle for k in 
a 
0 4r 

f 1,2,. . . ,n- l ) ,  then f is a perfect 1-factorization.n 
- 

- 

P r o o f :  Using 2 .f ,I, with the gmup Z and generator 1 with 
P 

addition &do p on resibs O,l,.,.,pl, a pyranidaf 

1-factorization of X 
P+l 

is sham to be a perfect 1-factorization, 



Let F = {F~,F~, . . . ,F be the s e t  of 1-factors described in 
pf 

mxma 2.1.3, .w&iq. the permutation o . !i%e edge v_vi for i in 

0 . .  1  occurs in exactly one 1-factor of P , n a r l y  Pi . 
lbte that for j , k  6 {l. ..., p l l ,  j f k, v.v C E(FO) if and only if 

I k 

k + j - 2 i  = 0 . Since there is exactly one k such that i + j = k , 

the edge v. v occurs in exactly one 1-factor, n i s ~ f y  Pi . 
1 1  

Therefore, F i s  a 1-factorization of K 
P+l 

& b y  

& f i n i t i o n  a pyracrtidzd I-•’ actarieaticm, 
t 

fld 

vkvm . &US PO L; f conta ins  the cycle w i t h  the sequence of vertices 
ir 

9 



Rwtorem 2.1.3, 4 B . L  ZLndersm f21). A perfect 1-faztorization of. 56 



~t F = P ,  . . , bC ths set of 1-factars described in 

k f f f  ,,,., 7) , by rmau 2.1.1, it can be shown that P- is a perfect - 

to prove the existence of a perfect 1-factorization of k* 544 

m.ly m e  pair of P-factors to prove that the 1-factmitatian is 

perfect, 



is s b w n  to be a matid83 l-factarization in tbe result and is 

1-factorization, tbe adltiplicative generator x , of 
Kpp+l 

pm E 3 {mod 4 ) ,  then P is a pyradda.1 1-factorization of 
>+I 

2a r < S , t h e n  x / 1 + x  2a ''-9 - o an, since x + o x 2%-2u 
= -1 . 



U i n  and raemeth 1-factoritation of K using the generator r 
p +1 

Proof: 



For k 



v 2x+f B &2+= 1 ,  let ~ ~ - i v ~ ~ ~ ~ ~  I v.v % ,  6 PJ 

cycle rmtsinLnq the .aqrrarr of vertices so. v 
x +&+I * Vx+2* 

\ 1 

P e r f e c t  1- factorizaifono 



A c m s t r u c t i c r a  far a perfect 1-factorization of 

wbes p is an odd prire, - a cyclic m t a t i a o  ef the d a c s  

with cartxespaading pemtatioxt of tbe edges to partition the edges 

v.v -re ti-jf is eeen or fi-$1 = p , into 1-factors. This  
1 j' 

ha- the &q!ts of tbc circuiants ~(2p,{k,-k)) fur o&l 

lboren 2-1-8. (koUig (161 . For any prizPe p a perfect 1-f actorization 

of K exists. a? - 
Proof: All a r i a t i c  is done nmdulo 2p on the residues - 

m i d e r  the 1-factor Po . 

M a t e  this configuration through p-1 rotations using the 



k+j Z 0 (a 2p). T h z ,  v v C E(Fi) if and only i f  
k j 

k+j 
2 

= i (& 2p). For i 6 0 , , , 1  the 1-factor Pi also 

k t (1.3. ... .p-21, let E(F;) = U {'a? (a+l) k 1 
a C h131...,2p-1} 

and EtP;) = iJ 1 , Note that 
a € (0,2,,,,,2p~1 

'% ,rv 4 a+=) r 

J (  J F;) is a 1-factorization of K . 
,2p i E {1~3,....p-21 

-r - $ 

9- 

P i s  a perfect I-factorization of K i f ,  for each r 

ZP 



a H & l t o d a n  cycle is gieen. 

mte that for i > is there is an a € 1 , .  such 

that a = i-i' it i ' . P (%I = Pi and p (Po) = Pi* . Thus 

9 C {l, *.., p-1) and v v - The edges of Fa am in the fom 
O P  

+ 

v V Yer tb?s  va, qa, 3a, -3n, .. . . v fonning a cycle w i t h  2p 
. Pa 

;ztpa 5 p (mod 2p). Since v v 
gp+a 

is an edge of F the path . a' 

oontinues vith the seqoeace of verrioes v 
pcct' vw' vp+3rrf Vp-3a~ 

. . . , v f a w i n g  a cycle w i t h  2p mrtices. 
- P 

cycle. merefore, for i,i' C {O ,..., ~-11, i # i f , P .  d P i ,  i s a  
1 



In the I-factor ff , the vertex v is a vertex of the 
j ~j 

edge v 
at jvfa-f 1 j if a is even and of the edge vajvco+ljj if a 

L 
is odd. Tnus, for each i,i' C {1,3 ,..., p21, i # i*. P: V Pi, 

1 

- )  # - - . there are 2p d i s t i n c t  -awtices in the  above 

a s e  3: A p m f  that for k,k' 6 11.3 ,..., p-2). k # k'. Pi J P;, 



Thus f - * m d  P. , F'! are each is-rphic to one- 
I 3 1 3 

c 1 . 1 ~  kli v,v . In t?e 1-factor Fj, , t'rte vertex v . 
w 3 1  

represented by :hft s e q A e r . c e  of ver t ices  r._, I:,, v _, 'a' , .r , '2 t - - - 2 2: -23 



t h  existence of _perfect l-factoruatians is arsrplete bipartite 

t n = H . The following r e d t  of 

existence of a perfect 1-f a c t o r k a t i o n  of 

- 

i .  If G 1s a bipartite: graph, regular 



iE. ex is ts ,  then a perfect l-factorization of 
2n K2n-1, ~ r r - 1  exists, 0 



a q l e t e  graph called a *index of F . 

a 1-factorization of K) and Q b a class of regular graphs of 
2n 

degree 2 -  The g-index of f , denoted QfFl , is the largest intaQer 

m such that there exists a partition of the 1-factors of F into 

then the 1-factorization F of X2* is a perfect I-factorization 

if 2(F) = 2n-1. 

Def ip i t ion  2 . 2 . 2 .  - If Q is a class of graphs w i t h  at mait czne graph 

classes of graphs of degree 2 such that for each n, Q or Q' has 

at =st one graph on 2n -krtices and Q f Q;, .  hen for any 
2n 



4 

Tb find 9' fFt , look at any partition of the 1-factors of F 

iir , . of G' , G and G *  m u s t  belong to distinct F s. Thus - 

Therefore m F )  < 2k+l.u -3 
In 1211 E. Hendelsohn and A. Fbsa -give two results? ' ' . . - 

concerning the existence of 1-factorizations w i t h  mrtain Q-indices 

where Q is a certain class of regular graphs of degree 2 . 

T9-e first of these requires a result on Steiner loops. 
- 

~efinition 2 . 2 . 2 ,  A Steiner loop G w i t h  the binary 6pxat ian 

For any a,b G the equations a e D = x , 

a v x = b and x o a = b each have a unique safutian, 

There exists an elerrent 1 in G such that 



1 

if and only if a Steiner t r i p c y s t e n  of order n exists, 

P w f :  Suppose a Steiner triple system T of order n exists. If 

abc isanybfockcrf  T , f e t  a o b = c ,  b o c = a  and a o c = b ,  

Since T ig a Steber triple systen any pair of el-ts occurs 
* - 

e x a d y  once and each of a 0 b = x ,  a o x = c and x 0 b = c 

uo)ifd have uni- sulutZOn for x . Rote that a o b = c = b o a2 .  ? .  

and the above operation fana a loop of order n+l . -  Therefore, there - 
exists a SteFnet  Imp of mder n+l . 

Suppose a Seiner  loop T w i t h  operation Q and identity 1 

or order n t l  exists. t a, b, - p  be in T and. a,b,c # i , ut 

- b O c = a  a n d 3 c o b = a ,  Since a * b = x ,  o x = c  and x o b - c  9 
each haare a unique solutiau for x , each pair of &-identity e l a n t s  

'. 
w i l l  occur together in ezactly cne block, There fore  a Steiner triple 

system of order n is f 0 m . o  

at mos: me graph on ht vertices, Q2n . Thenforany n 1 4  tbere 

is a 1-factorization P of KZn such that QIF) = 1. 



Look at the bipymaidal I-factorizatian of lCZ, descrihd in 

UG,\, ... ,u . 'Lhus for any 1-factar Pi, F* J F' forms a 2n- 3 i 

Hamiltmian cycle. fierefore, since Qh is disconnected, Q(Fe) = 1 . 

uiple system of order n' exist& if d l l y  i f  n '  2-1  %r3 {x 6 )  

w e  is a Steiner bop T of or&r n', if and only if 

n' - 2 or 4 farod 61. TLttts there e x i s t s  a Steinex loap of order 2n . 
I 

Set up a 1- actorization F ,of K as follows, For a, b, a # b, i 2n 
irz T if a o b = c is in T let tbe edge a b be in the 1-factor 

r - > 5 
. P r u  p w y  f of a Sttinex loop each edge is in ane 1-factor 

\ 

arrd eta& verttu is w eadpcrbt of an edge in each 1-factor exactly 
f 
1, 

oace. Let b, c be in T , *_Fk4~ then is an a in T such that 

a b = c , lc aad a b are edges in I-factar PC and 1 b and 



-- af a Stainer loop, each edcp is i n  one near I-fact& and each v%l;tBx 

which s tanda lone .  For the f-factar Pi, take the trro near 
L 

v a 
1 -factoritat ions F c Pi aad th edge viui . Tu coq1ate the 

sets of vertices deleting tAe t-factor already used. By the 'm 

u g u m ~ ~ ~ t  as above any m 1-factura of the first type w i l l  haM at 

Let n f 0 i d  6 ) .  Paba3 tbe vertices ,, 
ell,c2, ..., c ,r ,r ,..., r . Take a 1-factorization ff - 

n 1 2  n iffl, .- -,en) 



n k and f . If k in $1,2,.-.,-I , t b n  k f A , a proper subsquare. 2 

disconnected. graph for j in { ? , 3 , .  .. ,n) . To cartpiete the 

1-factorization P , take a 1-factorization on n vertices and take 
\ i 

eweeepieo&i+-oataa +bt-.areieap-t. a n d a x e a r t t r s t n r r i o c t r  ri 
1 

t,lt when one 1-factor is taken from each set to fom a 1-factor 

of 12ntcicj will be in the 1-factor if and only if r.r. is. ~ h u s  
1 3  

Hl 
w i t h  any of thee aew f-factors w i l l  fone many 4-cycles. 

Therefore HI must occuf by itself in a partition u& in f inding  the 

i s  aaQ up of 4-cycles with possibly one 6-cycle if a i s  Mtd, &re 
'--, 

t h e  Q-index is called the tightness index. 



such that for emry integer n 1 3, Qh is m%de up of 4-cycles w i t h  

p s i b l y  one 6-cycfe if n is odd. For any 1-facterizatioh F , 

the pindex of P, QW) is called the tightness index of F , TI(F). 

'Iheorem2.2.4. If n 5 O tsod2) .  then there is =I-factorization F 

P r m f :  Let n - 2k. -1 the vertices of KZk, ui "nd v for 
i 

i = 1,2 ,..., k . ljet F be a 1-factorization of K with 
2k z+ 

-- ----p--pp------p------- --- 
- - -  - - -- - -- -- - 

the vertices of the k-partite graph K , u ! ,  U\V!,V? for 
4,4 ,  ..., 4 1 1 1 1  

i in , 2 k  Construct a partitioning of K into 
4 , 4 ,  ..., 4 . 

4-cycles as folfws.  Let the 4-cycles (u; v' u i  vm u i l ,  
m m 

A 

K if and only if u~v,, uCum or v v is in f for 
4,4,... ,4', C m j 

j in f 2 , 3 ,  ..., 2k-11 . Partition each G into two l-factors G' 
j j 

and G" for j 2 3 , .  . - 1 .  By definition G! U G* forms 
j I j 

a graph whose c a p n e n t s  are 4-cycles, 

The m v e  1-factozs leave k disjoint copies of 
K4 to 

partition into 1-factors. Let Gi be the set of edges v; q- and -.. , 
I 

p- 

e 
u' uw for i 2 e G' be the set of edge\ v' u' 
i i 1 

\ 
i i 

and vn ua for i in {1,2, ..., k) and let Gi" be the set of edges i i 



I v! u k d  vR u' for i h 1 2 . k  . Note that the union of  
- i i 

any pair of these l a s t  three 1-factors forms a graph whose 
.x,. 

camponents are 4-cycles. 

Ihe 1-factors in I G ~ ,  G I ,  Gi" I i = 1.2,. . . ,a-1) form a 

I-factorization,  F of K4k . The pa r t i t i on  o f  the  1-factors 

shows that T I  (F) L 2 -0 

C 

Another Q-index defined fo r  a pa r t i cu l a r  c l a s s  of graphs is 

Definition 2.2.4. Let Q be a class of graphs such t h a t  Q i s  a 2n 

H d t o n i a n  cycle f o r  ea& n, n > 1 . For  any 1-factorization F 

the Q-index of P is ca l led  t h e  lXIlldas index of F and denoted 

DI ti?) . 

Note t h a t  fo r  F a 1-factorization of K 2n ' i f  D I ( F )  = 2n-1 

then F is a perfect 1-factorization. 



A Kotzig factorization contains both a near 1-factorization 

and a IIamiltonian decatposition. 

Definition 2.3.1. A Eamiltonian decolposition H = {B~. . . . ,R 1 is n 

a partitioning of the edge-set of a graph into Hamiltonian cycles, 

Definition 2.3.2. AL Kobig factorization K la, F1 of KZEl+l isa 

Hanriltonian decaitposition 
Of Kh+l with 1-factorization F 

near 1-factor of F in exactly one edge. 

A construction of E. Mendelsohn and C. Colbaurn exhibits 

a Kotzig factorization of K where p is an odd prime. This 
P 

construction is used by J. Hcrrton in prwing the existence of Kotzig 

factorization of K 
2nil for all integers n . 

Theorem 2.3.1. (E. Mendelsohn and C. Colbourn 12011. A Kotzig 

factorization of K 
2nil exists fur 2n+l a pr-, 



each edge of Ht is in a different 1-factor-a 

A mstractim of J. Horton ' f 103, gives Kutzig factorizations 

f k f i n i t i o n  2 . 3 . 3 .  When cansidering abelian groups, additive notat ion  

is used. A strong starter of an abelian group G of order k is a 
1 

set A of unordered pairs'ctf elea~ents frat G with the following 

properties. 

For x in G , x # 0, there exists y in G, y # 0 , 

such that x in A . 
If f ~ , ~ )  and ! x , z )  are in A , then z = y . 

fx + -TI ix ,Y) in A )  = 2+). 

F o r  ir,,y) in A . b+y)  # 0 and for any f in A , 

fxL,y*j f then . fx+y) f [x'+ptl . 

aDd 1241) where p is any crdd priae and n is  an integer except 



is not a strong starter since (f+2) Z O ~~ 3) which does not affect 

I i 
t h e  construction, but in tIze second case the basic construction arrrrt 

b altered. 

Theorem 2 . 3 . 2 .  (3. Ebz%on 1103 J . Suppose a K-ig factorization of 

%+I exists, then a rotzig factorization of Kpt2n+L) ex is ts  where 

P r o o f ,  b?t K ( H , P )  b a Rotzig factorization of 
L + l  on the 

ppp - - - 
-- - pp- -- -- - -- 

vertex set Tvo,;;; ,v I ~&Ilea so that H~ - {vgvl ,olv2,. . . ,v v 1 bL' 2n o 

and where F = {P .P , with v having degree O in Pm . 
2n a - 

Let K(R",F*) ke a Kotzig factorization of K on the vertex set 
P 

f 

"U'3"- 'rU p-l described Theor- 2-3.1, k t  A be a strong 

starter of Wfpl u s i t  Erte set f0~f.2 ,..., p-1). For p = 3 ,  let  
- - - - - - - - - - - - - - - - - - -- 

A = i!1,2f) and for p = 5 ,  l e t  A = 2 2 . H w  relabel the 

vertices u ,  . . . , ; so that for p > 5 , 
3-1 

~ r t l t i o n e d  Lrtto E h u l t o n i a n  cycles. B e  gartitiorzing into a 
2 



order to ensure that a .Wt.zig factorization is fomd ' ,  in using lD1 

7 v, , vh vh , ..., :. %en for 8 C I , .  . define 
%, -1 f 2 Y1 2n'fhg 



?iou Jelett the edges i j for k C t 0 , l 1 . .  . ,2111, {i, j) E A . 
k k  

= 7 

P J t t  4 t 8  ... f p-lC determined by the Hamiltonian cycle Hi fro. H' . 

L e t  H:' ' = lagall blS2, a2a3, .. . , b2wlb2n, a 2n b a is 
3 j 

' i '1 , '-w edqe deleted f- P": iI H ... ,, H ' i 
3 0 1 

for 
2n 

I l *  1 1 1  

I. *.1,2 f . . . ,  pl; m d  = i b  j 
2 ' V' r k + i  1 bkbk+l f Hi for 

< ~ e  edges in to  Fiiamiltman cycles, 
i 

To c o n s t r u c t  a near 1-factorization of K 
p (2n+ll  

the edges 

rat internal to t:w K ' s  are partitioned as follms: 
P 

for and 

%e edges i n t e r n a l  to the copies of 2 are partitioned into near 
P 

i c . .r .T 1 # .  ..,2n.-. A t  <-is p i n t ,  srxae care =st be taken in choosing 



* m 
the G I C  to g o w i t h  G for given j C {0,1, ..., 2n) and 

3 

1 1 1  " Im 

H. R e l a b 1  the I-factors as G .  
1 = +f 3 

t I t m  I t 1  

j 1 ,  and G. I = G.' if E ( H  1 1 E ( G ( 4  = 0 for 
1 I 1 

+ t t p  

1 ,  - 2 & G. is not defined for m .  
f 

' 1 
€ 0 1 .  2 is a near 1-factorization. 

W, K (G,S " ' ) is a K o u i g  factorization of Kp lzn+l, .a 
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