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ABSTRACT

A survey of results on the existence of l-factorizations
or colourings of graphs is givm; The first chapter deals with the
existence of l-factorizations of certain graphs. These gfnphs include
ccnpieie g};phs, bzpa.rtlte Vgraé'h'sr, ::iixfcrulalnts, line graphs of some
gzapi:x and products of some gra?h§; The latter includes cartesian,

- rrrgig}cographic, tensor and strong products of :graphs.

5“‘\.

The second chapter deals with the existence of l-factorizations
with certain properties. Perfect l-factorizations, Kotzig factorizations

and graphs with certain Q-indices are studied.
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INTRODUCTION

y

The definition of a graph which is used is that of an

undirected graph with no loops or multiple edges.

Definition 0.1. X graph G is a set of vertices V(G) and a set of

edges E(G) which are unordered pairs of elements of V{G} such that

> ‘ )
;f . vivj T ,,g (,G,),’,,t‘m,,vi!vj § AV(G) m,d i .# j ® - Lo

A l-factor or perfect matching and a l-factorization or a

colcuring_;ue defined as follows.

pefinition 0.2. A l-factor P’i of a graph G has Fi__C_E(G) such that

each vertex of V(G) has degree 1 in I-‘i . A l-factorizstion

P o= {?O,Pl,...,i‘n}. of agraph G is & partitioning of E{G} 4nto
l-factors P, where i € {0,1,...,n}.

Another way to view a l-factorization of a graph . G is as a
colouring o;frthe edges of G sSo that each vertex is incident with
exactly one edge of each colour, In 1879, the prablam of the
existence of colourings of graphs was nam:iorlby Kempe [13]. The

oconcept of factorizations of graphs was dealt with by Xonig in a book

on graph theory [14) which was published in 1936,

Note that necessary conditions for the existence of a

l-factorization of a graph G are that G be regular and fV(G)I

N
L

be even, w
N

T e

A near l-factorization is defined on the complete graph ln

where n  is odd.
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Definition 0.3. A near l-factor Fi of a graph G has Pi_C_B{G)
such that each vertex of V(G)\{vi} has degree 1 and v, has
degree 0 in P, . A pear l1-factorization F={P0,Fl,...,rn_1} of

l:n is a partition of E(l:n) into near l-factors Fi' where

i€ {0,1,...,11-1}' for Kn a complete graph on the vertices
{v.,v.,v v .}
1 01 l, 2,0707.,7 nfl.‘\b

The first chapler deals with the existence of l-factorizations

of certain graphs including complete graphs, bipartite graphs, line

existenoce of l-factorizations having certain properties including
yerfeét l-factorizations, a gemeralization called a Qg~index and

mtz!q_cfactorizations .

A2

-

g et



* . CHAPTER 1

THE EXISTENCE OF 1-PACTORIZATIONS OF GRAPHS

Section 1. Basic Results

Although l-factorizations of K?’ K4 and KE are isomorphic
all other ébd?lété gfiéhérhaving an ebén nunbér of verticésrh&ve ﬁoré 7

than one non-isamorphic l-factorization. FPor each complete graph K2n

A
one of these l—factorzga;icngﬁégmthe pyramidal 1-factorization described

»in definition 2.1.2 using the abelian group 2 with generator 1

2n-1
and another is the bipyramidal l-factorization described in definition

2.1.3 using the abelian group 2 with generator 1 .

2n-3
A l-factorization of every complete bipartite graph Kn N
. exists.
Definition 1.1.1. A bipartite graph is a graph having a vertex set

. )
{ul,uz,...,un,vl,vz,...,vmr such that each edge is of the form uivs

for some i in {1,2,...,n} and 3 in {1,2,...,m}. A complete

bipartite graph Kn n is a graph on the vertices

L

¢ : . i
‘ul,uz,...,un,vl,vz,...,vm} with edges {uivjlx € {1,2,...,n},

i€ {1,2,...,m}}.

Note that the existence of a l-factorization of K n implies

R4

that n =m . For n 2 4 there is more than one l-factorization of

X . One of these is F = {Fl,P ,...,Pn} where

2

F,o= {v u, 9 u. 7... vou.lt .
) ! 27 "'n'i




,

A result of Stern and Lenz £5] leads to the existence of

1-factorizations of some circulants. The ?roof of this result uses

" Yizing's theorem {27].

pefinition 1.1.2. A circulant is a graph G(n,S}, on n vertices

{vo,vi,...,vn_l} with symbol S such that s ¢ {1,2,...,n-1}, if

i¢€s thenpei €5, and (i-j) modn € S if and on}ly i€ ..

.

. ?ivj € E(G{(n,S)). A

- “Theorem 1. 1% ';"’ﬁ’:*rzmq'*“**’ﬁ:%ﬁ""ﬁre—eﬁges—or‘ & graph G widn maximum

e

degree Xk can be coloured in k or k+l colours so that no two .

distinct edges incident with a vertex have the same colour.

Theorem 1.1.2 . (Bolletino [51). If a c¢irculant G{n,5) has an

. AN
s € S such that the order of the subgroup of Zn generated by s isg

even, then a l-factorization of G{R,S} eXiSES. — — v e

Proof: If s,s' €S, s #s' , with the order of the subgroup generated

by each of s and s' even, then G(n,{s,-s}) consists of even length
cycles and forms two l-factors unless s = -s and then G(n,{s}) itself
is a l1-factor. Thus if -G(n,s\{s,-s})' has a l-factorization then

G{n,S) has a l—factori;ation. By induction,‘ this leaves the case where

S contains only one s which generates an even order subgroup of Zn .

- Suppose there is only ome s € S such that the order of the

subgroup of Z_ generated by s is even. As above the subgroup
P23

G(n,{s,-s}) consists of even length cycles and forms two l-factors

F, and F} unless s = -s and then G(n,{s}) is a l-factor ,Pg.,,', The




remaining edges 3G(n,S)\{s,-s}) form two vertex disjoint isomorphic

subgraphs on 92— vertices. By Vizing's theorem stated in Theorem 1.1.1,
Is\{s,-s}| 1s\{s,-s}|
5 or 3 + 1

each 0of these subgraphs can be coloured in
colours. Colour with corresponding colours in each subgraph so that

vercices joined by edges F have the same colour edges incident with

o}
s\{s,-s}!

> colours are used then a l-factorization of

iSA\{s,-s}i
2

them, If
G{n,s) 1is formed. If + 1 colours are used then each pair
of corresponding vertices is incident with edges of all but one colour.

Colour the edges of F with the corresponding missing colours. A

G
l-factorization of - 5i{n,5! is formed.n

‘This leaves circulants G{n,S) where G{n,{s,-s}) consists
of odd length cycles for each s € S . Note that if n 1is even, say

X, . X L.

n=2n where 0 is odd, then 2 divides each s € S and the
components of Gi{n,5) each contain an odd number of vertices. Therefore
G{n,5) does not have a l-factorization if each s € S generates an

odd order subgroup of Zq . This leads to the following corollary.

Corollary 1.1.3, A circulant G(n,3) has a l-factorization if and

-

only if there exists an s ¢

wn

such that n/gcfi{n,s) 1is even.d

A Tait colouring is a l-factorization of a regular graph of

degree 3 . Tait conjectured that other than a few specified exceptions

-

all regular graphs of Jegree 3 have Tait colourings. Mark Watkins [29]

and Castagna and Prins [7] prove the existence of Tait colourings for

a class of regular graphs of degree 3 with one exception. The class

of graphs is called generalized Petersen graphs and the exception is

the Petersen gragh.
N
¢




Definition 1.1.3. The generalized Petersen graph GPin,k} is the

graph on 2n vertices {ul,uz,...,un,vl,vz,...,vn} with

E{(GP(n,k})) = tulvl,uzvz,....unvn,uluz,u2u3,...,unul,vlvk+l,

vzvk+2,...,vnvk}.

Theorem 1.1.4 , (Castagna and Prins {71y . A l-factorization exists

for every generalized Petersen graph other than the Petersen graph

GP({5,2).a




Section 2. Line\grqpﬁs

A class of graphs where some results are known on the

existence of l-factorizations is line graphs of regular graphs.

Definition 1.2.1. A line graph L(G) of a graph G has vertices

E(G) and edges =(L{G)) = {e.e.|e.,e. € E(G) and e, and e, are
131" 1 3
adjacent in G }.
T™wo theorems of Jaeger are useful in proving that the line

graphs of certain regular graphs have l-factorizations.

Theorem 1.2.1. ({F. Jaeger [l11}). Given a connected, regular graph G

with a l-factorization and QE(G)I even, then L(G) has a

l-factorization.o

Theorem 1.2.2. {F. Jaeger [12]}, Given a regular graph G with

[E(G) ] even; then there exists a l-factorization of L{(G) if there

exists a partition of E(G) into Hamiltonian cycles.

proof. Suppose there are an odd number of Hamiltonian cycles in the
partition of E(G} then since IE(G)E is even, each Hamiltonian cycle

has even length and G has a l-factorization. By theorem 1.2.1 L(G)

e

has a l-factorization. ,)//

Suppose E(G) is partitioned into an even number of

Hamiltonian cycles' él"';’HZki' Note that if %ViG)li is even then
the proof can be done as above. This is not the case if |V(G)| is

odd., Now E{L(G)}) can be partitioned into 2k cycles each of length



iviG) | and corresponding to one of the cycles H, with a 4-factor

between each pair of cycles. 1In the original graph the edge viv, is

adjacent to two edges in the same Hamiltonian cycle and is adjacent

—

to two edges at v, and two edges at vj in every other Hamiltonian

cycle.

To pair off these cycles a l-factorization F = {Pl,F «u F

2" Zk—l}

of X, on the vertices {nl;uz,...,uQK} is used. If uju is an

edge of sz this corresponds to the pairing of Hi with Hj . Fl

corresponds to pairs of Hamiltonian cycles and the 4-factor between =

those pairs including the edges of the cycles. FZ,F gase F

3 ea?h

2k-1
pair off the cycles and correspond to the 4-factor between each pairing,

not including edges of the cycles. Now Fz,...,F

ok-1 each correspond
to regular bipartite graphs of degree 4 each having & l-factorization.
This leaves the edges corresponding to Fl which is a graph isomorphic

to L(Hi J Hj) where Hi and Hj are Hamiltonian cycles.

Now L(H, J Hj) is two cycles of length |V(G)| with a

4-factor in between. L(Hi u Bj) can be partitiocned into three

Hamiltonian cycles each of even length, giving a l-factorization of

L(Hi - Hj). To do this the 4-factor is partitioned into two Hamiltonian

cycles and then the cycles of length |V(G)| and one of the Hamiltonian

cycles are partitiocned into two Hamiltonian cycles.

To partition the 4-factor into two Hamiltonian cycles direct

the edges of Hi into a directed cycle and then define the following

‘E"E"x%l*‘éi'-"éi’;f“”’“"” B R 4



Hamiltonian éyéieém"ﬁi"giﬁa B in LI{G).

1]

(1]

[ ]
W]

[ ]

%B+ { je. ¢H.,a, fH, and v. € e Ne. where v
i i3 3 i i 3

is the out-vertex of e.;

and B = {e.e. le. €id. ,e €H. and v, ¢ e, e where v,

is the in-vertex of ei}.

Looking at st , suppose és,ej,, and ej, are consecutive
edges in ai with e incident with and directed away fraom . %Lalq
-incident with and directed away from ej and ej, and e a incident
with and directed away from e., and e., where e . ,e.  ,e_, € H. .

, 3 b1 i1 i i
A cycle is formed in L(Hr < Hj) around the edges ejei,,ei,ej,,

LT - 3N und -0 i i, .
ej,ei, el,e], aro to eleJ going around the edges of h; Note
that each edge of each of the two cycles occurs twice, thus a
Hamiltonian cycle is formed.

The reasoning is the same for 3 .

Now take B’ and the two cycles of length |V(G)]| in

L{g, J Hj) coming from Hi and Hj . Name these two cycles Ai and

Aj . Choose an edge in Hj and label it e, with end vertices labelled

vy and v, . Label the edges of H, adjacent at v, and v, by e,

and and the edges of H., ocoming from Vi and v, by ei

2

and e! .

(8]




. 10

In Il there are two paths between ei and es . Colour

/s

the vertices and edges of one of these with one colour and of the other

with the other colour leaving the vertices ei and ei not ooloured,

If&kandet

X . . .
in Aj are adjacent to eiy‘e1 or e! , then

colour e.e and eiel with the colour with which e, is not

coloured and colour eket with the same colour as e, . Nots that

e and e, are adjacent to the same out going edge of Ei and are T

adjacent in Hj . Thus ee, is an edge of Aj .

In each colour there are two vertex disjoint chains. One

. . . +
in Ai ends at e!,e! and one in A. UB ends at e, ,e_. . By

1772 3 ) R

, e el in

colouring e 10 0%

] L} 1 L]
lel' ezeo, eoe2 in one qolour and ezez, e

the other colour, two Hamiltonian cycles are formed.

These Hamiltonian cycles and B  are of even length.

Therefore L(H; U K, fas a 1-factorization for any Hamiltonian

cycles H., and #H,K6 .
1 3

Therefore ,given that G can be partitioned into Hamiltonian

o>

cycles , L{G) nas a l-factorization.3>

The technique of this proof can be used to show that
L{3{n,{1,x,n-k,n-1})) for any n and k € {2,...,!-%.” has a
l-factorization using a decomposition into one Hamiltonian cycle
and one 2-factor. This result can also be proved as a corcllary of

Theorex 1.2.2 and Theorem 1.1.4.

Corollary 1.2.3. Given any n and k ¢ {2,3,...,?%}} there

exlsts a l-factorization of the circulant L{G(n,{1,k,n-k,n=1}11}.



s

if and only if n =0 or 1 (mod 4).,

11

- The circulant ALK n=k,n=- c i9; into
a copy of GP{(n,k} and three l-factors. By Theorem 1.1.4 GP(n, k)
has a l-factorizxtion.mless n=5 and k = 2 . Thus if
Gin,{1,k,n=k,n=-11 ¥ 6{5,{1,2,3,4}) then L(G(n,{1,k,n~k,n~1})) has a
l-factorization. ' By Theoream 1.2.2, L(G(5,{1,2,3,4})) has a

l-factorization as Gi(5,{1,2,3,4}) can be partitioned into two

Hamiltonian cycles.s ) . . . o

Theorem 1,2.4. {B. Alspach {1}). A l-factorization of L{Kn) exists

Proof. The number of vertices of L(Kn) ' ’V(L(Kn)i =

for n £ 2 or 3 {(mod 4) and a 1-factorization cannot exist in these
/7

4
cases. §

Now the number of vertices of L(Kn) is even for

"n T 0or'l (mod 4). For all n = 0 (mod 47',7"1(1) ‘has a 1-factorization.

Therefore by Theorem 1.2.1 L(Kn) has a l-factorization for
n =0 (md 4). Por n = 1 {(mod 4) a partitioning of the edges of Kn
into Hamiltonian cycles exists. Therefore by Theorem 1.2.2 a

1l {mod 4).0

i-factorization of L(Kn) exists for n

Corollary 1.2.5. Given n and S so that every component of G(n/S)

has an even number of vertices, then L{G{n,S)) has a l-factorization.

Proct. By Corollary 1.1.3 G{n,3}) has a l-factorization. Thus by

Theorem 1.2.1 a iI-factorization of L{G(n,S)) exists, since the

mumber of edges in G{n,S) is even,o



-~ .- denoted S(G), replaces each edge e = uv of G with a path uxyv where

-

is even and since K

with an even nu;ber of edges has a l-factorizatiom.

Proof. This is a direct result of Theorem 1.2.1 and. Theorem 1.1.4.0

Corollary 1.2.7. The line graph of the complete bipartite graph -

Kn n has a l-factorization if and only if n is ewven,
*

Procf. If n 1s odd the number of edges is odd anﬁ"L(Khﬂh)

not have a l-factorization. If n is even then the number of edges

has a l-factorization, L(K ) has a
e S + 75 + 1

does

l-factorization by Theorem 1.2.1.0

Monar, Pisanski and Shawe-Taylor have two resgultsg dealing

#ith line graphs of bireqular graphs.

Definition 1.2.2. A biregular graph G with degrees ¢ and n is

a bipartite graph with all vertices of degree £ or deqree n; if

Vv € V(G) have the same degree then AL ¢ B(G).

Theorem 1.2.8. (Monar, Pisanski and Shawe-Taylor {23]). Let G be a

biregqular graph with degrees 2Z and 2n . Then a l-factorization

of LI{G} exists.o

The second result uses subdivision graphs.

x, has degree 2,



~ Note that if G is a regular graph of degree d , then
S(G} isahitegulargrxpi:withdeqrees 2 and & . Also if G is a’

\&birequlu: graph of degrees 2 and d , then a regular graph H of

%, -
dégree d exists such that G = S{H).
Theorem 1.2.8. (Monar, Pisanski and Shawe-Taylor {23]). Let G be \,

a bireqular graph with degrees 2 and d where 4 is odd. Then a

. - _ . . 2N
1-factorization of L(G) exists if and only if a l-factorization

of H exists where ~G = S{H).C

%
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Section 3. Products of Graphs \<

In this section the problem of the existgnce of l-factorizations
of cartesian, lexicographic, tensor and strong products of'graphs is

considered, -

Definition 1.3.1. PFPor grapns Gl and G2~ the cartesian product

Gl x GZ has V{G}. x G2) = V(GI} x V{Gz) and E(Gl X Gz) =

I g = ; =
t(ul,vl} (uz,vz)gul u, and Vi, £ E{Gl) or v, = v, and

e e e e
uyu, € E(Gz)}.

Definition 1.3.2. Por graphs Gl and G2 the lexicographic product

iGliGZE) has V(Gl e GZ) = V(Gli x V(C€2) and

(w#eath product) S}. s 32

{ o G = { [} € (
1 f"2) \(ul,vl} (az,vz) Lugu, Z{Gl) or u/=u, and

v,v, £ EIG)} . T

i
/

i

Definition 1.3.3. For a gz/abh G and positive integer m , let

Glm) =5 s K_ . )
n |

Definition 1.3.4. Por graphs G and G the tenspr product

1 2
Si = 52 has V{Gi 2 Gz} = V{Gi} x V{Gz} and EI(G1 2 Gz} =
g v')(u v.}iu,z, £ E(5.) and w.v, £ B(G.)}} '/
hiint S S-S S R - 2 T 172 2 “{

Definition 1.1.5, For a graph & and positive%ﬁ\tegex m , let

3mr = G?K
-

[T

i

=

%)

and G, the strong product G, * G

PO
efinition 1.3.8. For graphs 1 2 1 P

-

T o TR ]



P ™

S - & = '3 % { = X
has viG, * G_) ViG, Y * V{(G,Y and E{G1 * Gz) Eisl Gz} J E(Gl @ Gz)'

1 2 1 f
Kotzig's resuit, with cartesian .products of reqular

graphs, is given first,

Theorem 1.3.1. {Kotzig [15}). Let Gy+Gys.-.,G  be regular graphs ‘

such that G, has a l-factorization for some 1 € {1,2,...,n} or Gy

7

and c;j each have a 1-fact§: for same i,3 € {1,2,...,n} , i ¥ 3,
752 X ... X G exists.

then a l-factorization of X
=]

-Proof. If there is a G, € {GI'GZ""'Gn} such that G, has a

— - - -i=factorization T = {F P, e+, F ), then colour the edges of the T

1772 k P

i + = x X ... X G. x G, X ... % i
-« cartesian product & Gl G2 GJ.-l Gl+1. Gn with

d + 1 colours where the degree of each vertex in G is 4 . This
existence is a direct result of‘ vizing's Theorem [27]. Then a d + 1
colouring or a l1-factorization of Fl X G is formed, colouring the
new edges with the missing colour at the corresponding vertices of G .
<tdd a new croloﬁrrfor era;:hr Fl, i ;7 2, éolouring ﬁhe edéés”of the Nfor;ni

f,g){f*,g') with colour i for f£,f' € Fi’ iz2.

If there are G, and G, ¢ {G,,6,,...,G } such that F,

i 3 1772 n i
and Fj are l-factors of Gi and Gj , respectively, then partition
the edges of &, X 6. into F.-ss-{?. and H, X P, where H., and H.

i 3 1 3 i 3 i 3
are graphs on the vertex sets of G; and Gj , respectively such that

E(Gi} = E(Fi) J E(Ei) and E(Gj} = E(Fj) U E(Hj). Now Fi x aj

angd H O r’j are made uUp of disjoint graphs which form two coplies

PP NN : : . e R
of —H or H, withr corresponding vertices joined by a l=factor.

3 1

Vizing's Theorem {27] is used again as above giving a l-factorization of



Ly,

. ,,% —r——. x 2 — i i - " w
S ' ' 1 %2

may be formed.o

To show that the conditions given in the above theorem are

not necessary, Kotzig goes on to prove the following result.

Theorem 1.3.2. (Kotzig [15]). PFor C a cycle of length greater than

3 and G a 3-regular graph, a l-factorization of C X G exists.O

The existence of l-factorizations of lexicographic, tensor

and strong products have been studled by Plsanskl, Shawe-Taylor

¥

and Monar. A certain lexlcographlc product is looked at first.

Theorem 1.3.3. {(Monar and Pisanski [22]). Let G be a reqular graph,

Then a l-factorization of G{(m) exists in each of the following cases:

a) A l-factorization of G exists,

b) G vis of ewven degrgeiépd m is even,
c} m=0 (mod 4), |

d) G has a l-factor and m 1is even,

e) G 1is cubic and m is even, and

f) G is bipartite. o

Laskar and Bare [18] show that a l-factorization of Kh(m)
exists if and only if mn is even. pParker [25] shows that if G is

a cycle on n vertices, a l-factorization of G(m) exigts if and

only if mn is even.

Now a certain tensor product is looked at.
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_ Theorem 1.3.4. (Pisanski, Shawe~Taylor and Monar {26]). Given a

reqular graph. G and a positive integer m , then a l-factorization

of G{2m} exists.o

Theorem 1,3.5. (Monar, Pisanski and Shawe~Taylor [23]) . Let

Gl ,Gz,...,Gn be regqular graphs such that Gi has a l-factorization
P :

for same i € {1,2,...,n} or G; and Gfl each have a l-factor

for same i,j € {1,2;...,0n}, 1 #3 . Then a l-factorization of the

lexicographic product Gy o Gy ° een e Gn exists.

Proof. Their proof is se@ceﬂ,t-?: proving the existence of a_
l1-factorization of G s H where the edges of G ¢« H can bk partitioned
into G xH and G{|v(®|}. The proof is completed using Theorem 1.3.1
and 1.3.4 where H has a 1-factorization or a l-factor since [v(R) |

is even. This leaves the case where a l-factorization of

g, ¥ ={F,,F,,...,F,} exists, then c{lvam |} = F v |} @
r{lva |} @ ... @ F_{[v@)|} . since each F {|vim]|} for
i€{1,...,m} can be reduce>d-t>o copies of regular bipartite graphs

each of which is l-factorable, a l-factorization exists. This

completes the proof.n

To prove that the conditions giveni in the above Theorem

are not necessary they go on to prove the following result.

Theorem 1.3.6. {Pisanski, Shawe-Taylor and Monar [26]). Por C a

cycle of length greater than 3 and G a 3-regular graph, a

l-factorization of C[G] exists.
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Theorem 1.3.7. {Monar, Pisanski. and Shawe-Taylor [23]}. ILet
Gl,GZ,...,Gn be regular graphs such that Gi has a l-factorization
for some i € {1,2,...,n}. Then a l-factorization of

Gl ® G2 @ e ® Gn exists.

Proof. Since the tensor product is commutative, assume that Gl has

the l-factorization F = {F ""’Fk} . Looking at the graph

1°F2
G, ® G, , the set of edges E(G; ®G,) is ;éde up Of copies Of -« e

Fi 2 G2 for i ¢ {1,2,.;.,k} . Each of these can be partitioned

into vertex disjoint copies of H{2}, By Theorem 1.3.4, the proof

is complete.O

Theorem 1.3.8. (Monar, Pisanski and Shawe-Taylor [23]). Let

Gl’GZ""’Gn be regular graphs such that Gi has a l-factorization
for some i € {1,2,...,n}. 'Then a l-factorization of the strong

.G * LR » i L4
product G, * G, G, exists. B

Proof. Now E{(G * H) can be partitioned into G xH and G @ H .

Theorems 1.3.1 and 1.,3.7 complete the proof.n
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THE EXISTENCE OF l-FACTORIZATIONS WITH CERTAIN PROPERTIES

Section }, Perfect l-factorizations

Definition 2.1.1. A perfect l-factorization is a l-factorization

P o= EEI‘FZ""‘?n} such that for every i,j € {1,2,...,nl,

1 ; 5;“é¥?i [$ F;i is a Hamiltonian cycle.

A l-factorization wnich is formed from a l-factor by *
~£ix£sgfaw#e;%exfgadr;ezfcxziﬁgf&feyciafgeraata£i£&f{Et{££f9£h££fye££isaﬁ,, S —
is called a pyramidal l-factorization by Mendelsohn and Rosa in {21].
Definition 2.1.2. Let W{X_ ) = {v ,v_,v_ ,...,v v i , where
o Oy, 3on-2

Q,al,az,...,azn_z are the elements of an abelian group G of order
2n-1. Additive notaticn is used and for a; € G, = + a, == Let FO
be a I-factor of X, . Then 7 = {v v where v_a_ € F }

n a. a. +a. ak+a, a. 0

i 3 1 i 3

is a l-factor of K ., If the collection of l-factors F,,F ,...,F

Zn 0" a a0

15 a l-factorization of KZr . then it 1s called a pyramidal

l-factorization.

A pyramidal l-factorization is used to construct a perfect

and X . A l-factorization

i-Factorization of £p+l’116'128’124& 144

which gives a different perfect i-factorization of xg and x24 is

called a bipyramidal 1-facterization and is defined as Icilows.



Definitiom$71.3. Let P = {F |i €2, .} be the pyramidal

i-factorization of X described in definition 2.1.2. Let

2n
x 1if x < EED‘—'{
- = T ¥ =
ViR, o) = gy e ur), Tix) and ‘
. 3n ,
x+l1 if x = Lz-:l )

T(=) =% , Additive notation in the group Z?.n is used and for

af€zZz ,a+=== _, The l-factors

211 -
o= { : £P }ruq , :
i 7 Urpasitr i ey f Tl ¢ 1“'gan‘ﬁ“m*} for 1 €2, amd :
7+ = fyu  li=20,1,...,0-1} 0 {u_,u'} form a l-factorization F' of :
i oi+n i ] E

2(21“_2 . This l-factorization is called a bipyramidal l-factorization.

The following lemma reduces the number of subgraphs to be

checked in proving that a pyramidal l-factorization of K2n is perfect,

leaving n-l - cases to be checked. - - S S

Lemma 2.1.1. n%_ Anderson [2]}). let G be an additive group of

order 2n~1 generated by 3y, with a, =a _, +ta - Let the vertices

2n 1

of X, be labelled v_ and v where a, €G. Let F={p |a €g}
‘ i i

be a pyramidal l-factorization of X with v _v_€F for a. € G
n ai R ai i

such that 7 L7 is a Hamiltonian cycle for kx in {1,...,n-1}.

»

o N “F

Then F is a perfect l-factorizatiom. i

]




Consider the 1-factor Pg .
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Proof: All arithmetic is done in G with ak+°°==’ for ak(G.

Let o 7be a permutation of the vertices of KZn defined as

oiv&k} = v for vﬁ € V(KZH}, with the corresponding permmtation

By ey

on the edges o(va-va:) =‘0(va.)a(va‘) . /
i3 3 3 =

4

Given i,3 € {1,2,...,2n-2}, i <j them j~i<n-1 or

i~3=%k {md 2n~1} <n-~1. If j-1i=<n-1, then
TMF ) =F , 3 F ) =p and 0 (F. UF ) =F UF .
a, a a. a,. . a. a. a a,. .
i 0 3j {3=-1) i 3 0 (j-1)

If i~3 =k (mod 2n-1) < n-1, then o‘J(pa) =F ,U-J(Fa)zf‘

and J-J(F JP ) =P UF for k < n~-1 ., Thus for i,j in
a. a. a a :
b ) ) 0
{1,2,e..,2n-2} F JF =P UJF for some k in {1,2,..e,n-1}.
a, a, a, a

Therefore, if Fa J P is a Hamiltonian cycle for k in
0

{1,2,...,n-1}, then F is a perfect l-factorization.o

Theorem 2.1.2, {Kotzig {15])). For any odd prime p a perfect

l-factorization of X exists.
p+l

Proof: Using Lemma 2.1.1, with the group Zp and generator 1 with
addition module p on residues O0,1,...,p-1, a pyramidal

l1-factorization of le is shown to be a perfect l-factorization.

Let the vertex set of X be {v.,v ,...,v_.,v } .
— = P 12t e

i AR S S ¢ E N ——

Pl —




[ Yvu
v > - Vv
p-1 Ivs 1
Vp-2 B!
Vp_3g ﬁ.v:‘l
F 3 .
0 .
v 3 " — v 3
i e e 2 S S
Pl "p1
2 2
Figure 1

Let P = {FO'Fl""'Fp-l} be the set of l-factors described in

Lemma 2.1.1 uaing.the permutation O . The edge v,v; for i in
{0,1,...,p~1} occurs in exactly one l-factor of P , namely P, .

Note that for 3,k € {1,...,p-1}, 3 # k, ViV € E(F,) if and only if

k+ 3] =90 and thus, in general, "vk'lj”g rz(sijﬁr if andonly if -

k + 3 -21i =0 . Since there is exactly one k such that i + j =k ,

the edge vivj occurs in exactly one l-factor, namely P

k
Therefore, P is a l-factorization of Kp+1 and by
definition a pyramidal l1-factarization. y -~
Given x € {1,2,...,p-1}, note that the edges of P, are
in the form v v_  for u € {1,2,...,2§£} and vV, ., while the ¥

edges of T are in the form v

L
X xea'x-q fOF @ € {1,..., > } and

v v_ . Thus {-’0 i ?k contains the cycle with the sequence of vertices



Ve Vg Ve Vg e Vo sV oV reresV . =2V 4V -V .
e R t 2(5599% M= ] T

Por any i,} € {0,1,...,523} any of 2ik = 2jk, -2ik = -2jk or |

2ik = 2jk give i =3 or i=-j since Xk # 0. If j is in

»

{0,1,,..,2;—5-} then -j is not in {0,1,...,%1} giving i F -j .
' ~

Thus a cycle of langth p + 1 is formed and Fori}?krfoma :

Hamiltonian cycle for x € {1,...,p-1} .

Therefore, by Lesma 2.1.1, F is a perfect l-factorization.o

Theores 2.1.3. (B.A. Anderson [{2}). A perfect l-factorization of Klﬁ

exists.

Proof: Using Lemma 2.1.1 with the group 215 and generator 1
with addition modulo 15 an residues 0,1,...,14, a pyramidal

i-factorization is shown to be a perfect l-factorization. — - -

Let the vertex set of K be {vo,vl,...,vl“,vm}‘ Consider

the l-factor PO -




14} be the set of l-factars described in

let F = (PQ, PyreeeoF

Lesma 2.1.1 using the persutation o . 7The edge VoVs for
i € {0,1,...,14} occurs in exactly ome l-factor of F , namely F. .
Mote that {#({i + -j}ivivj €B(P ), i,5 7 ©} = {1,...,14} . Thus F is

a l-factorization of “16 and by definition a pyramidal l-factorization.

By checking that F P forms a Ba-iltgn:igx cycle for.

4
g7 k. U

x ¢ {1,...,7} , by Lesma 2.1.1, it can be shown that F is a perfect S—

l-factorization.c

The following constyuction of Mullin and lemeth for Room

Squares gives a l-factarization of K a where p 1is an odd prime,
P +1
m is an integer, p‘>3andp’53(uod4). mismuuqtimis

y

L
used to prove the existence of a perfect l-factorization of x,js. S

and X,, . The added structure allows for chec

only one pair of l-factors to prove that the l-factorization is

perfect.

el b el | L e <thi

Definition 2.1.4. For ann odd prime p and an integer m such that '

o
v
W

-

e}
)

= 3({mod 4), let x be 3 generator of the multiplicative

sabgroup of order p’-l in GP{p.}. Let v(lk'.'I ] o=
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is as defined in Lesmma 2.1.1. 7The resulting collection of 1-factors

is shown to be a pyramidal l-factorization in the next result and is

called a Mnllin-Nemeth I-factorization.

lemma 2.1.4. {Mallin and Nemeth {24]). Let F be a Mullin-Nemeth

l-factorization, using the multiplicative generator x , of K ®
P +1

where p is an odd prime and . m is an integer such that p‘>3;

P =3 (md 4), then P is a pyramidal l-factorization of K o "

p +1

== Proofs AEX ﬁﬂ‘mﬁm—m—@@!}im X 185 a generator
L. . m
of the multiplicative subgroup of GFp ], each of the vertices of

»

X ocqQurs in PD exactly once .
P +1

m
Now look at the set § = {ixo(l-x),ixztl—x),...,txp '3(1-x)}.

Note that 1-x € GPlp'] and 1-x # O since p” >3 . If

Y
m
xza(l-x) = x28(1-x) for some qﬁs with 0 < qa,B < 51551 , then

xZu = xze, 2a = o' (mod p‘—l) = 3' (mod pn—l) = 2B , since x

generates GF*{p}, and a = 8 since 05&,85&5—3—. if

- B
xza(l-x) - - xzﬁﬁl-x) for a,8 such that 0 < q,B8 < P—Ei ; then

xzﬁi-xzsao. If a=£2 then szuno and GF[pnlhas

ek,

\/\
acteristic 2 contradicting p an odd prime. If a ¥ B , say

2

2 < 8§ , then x°(1+x28'2€‘ 2a

} =0 and since x°O § o , x2°°2

-lc



ST

Thus x = -1 since 0<26-23$pn-l which gives

B
28-20=B-2 . mus p%1=4G-1) and P =1 (mod 4)

k-

contradicting po = 3 (mod 4).

Therefore S = GP{pn]\{O} and F is a pyramidal

l-factorization.o

Lema 2.1.5.  (8.A. Anderson [31). et F = (Fg...F_ } bea

P -1

Mallin and Nemeth l-factorization of K m using the generator x

p +1
where p is an odd prime, pn>3, p‘£3(nod4),then P has the

property that for i,j, i',3' € GFip ), i £ 3, i' £ 3',
FUF, =F  UP,, .
i 3 i' J

Procf: All arithmetic is done in GFip ).

m
For a € {xo,xz,....xp -3} define the permitation of the wertices

of Kn . Ta(vi) = vy for viGV(Kn }. The corresponding

p +1 P+l

permutation of the edges of l:p“"1 is defined by Tu(vivj) - vaivaj

ﬂPo.

for wv.v. € E{X } . Note that T P
i3 » a o

p+l

-1 .0 2 "3
Given k € GF(p J\{0} then either k © € {x",x°,....x* °}

n n
or -(k'l) £ {x°,x2,...,xp "3} gince -k = k(xg-zll-‘i and

e

»n
— -y -}
?—zizxtmdu. Let X' be kK = or -(k ) such that

& 2 xp' 1
s ! =
k* € {x ,x",..., } . Now '{k,(Fo) 1’0 and
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N
o C‘W’” T 'Flﬁ’*ff'i+”i” Tl"”"" : -
ﬁ,ﬁ'f“‘“ TyeFy = ) ! since if vi-l-kvj-i-k € F then 7
/ {F ¥k
-1
! =
SR if k
vivj € ?O'vk'ivk'j £ FO and thus vk'(iﬂc)vk“(jﬂd L .

F ., if k' = -k

\ 4 -

Por k € GR(p'] define the permitation 0, as before on the
vertices of X n .| Then c;k(Pk} = PO for k € GF{p-l. Thus for
S s A S e e e e

any i,j € GPlp1. o (P UF) =F U R . If

~1

a
(j—i}—l € {xo,xz,...,xp -1} then <

y (3-1)"HO_ Py U B =B U P

-~ ==
n n
1f (j—i)'l ¢ (x%,2%, ... 1} then -(5-0)71 ¢ &%, x%,....% 1) ana

o, (T

1T gy MO (B 9 B D) = B U P

Therefore F U F, ¥F,, UF, for i,i', 5,3’ ¢ GP(pl.C

e sorew 2. 1.6 — {B:A.Anderson{3}).— A perfect l-factorizatiom of

x28 exists.
3 2
Proof: The polynomial y~ + 2y + 1 is irreducible ower GF[3]. Thus

the oot x of y3+2y2+1 is a generator of GF{331 .

Using the Mallin-Nemeth l-factorization let

F.={v_ v ,v. v, v ._% . v v , v v .
2
o ¢ = 1l x x2 x2+2 x2+2x+2 2x+2 sz+Zx x +1

v v
2 2 ¥ v + ¥ V., v
x‘oxe2 2x 4242 glezger X2 gl 2 W 2
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v v N v y v v . ¥V v T

Y+l

2 2 2 2 2 2 2
2x +1 2x +x+1 x 42  2x +2 2x +2x+1 x +x+l 2x" 4x42

}, let F= {vi& vj&

' 3
Vorr1 ¥ 2 ! vivs € Po} for k € GF[37]

2x +x
and let F = {7 {k € GP(3%}}. Now P, U P, gives the Hamiltomian
cycle containing the sequence of vertices v., v , v R
0 2 x+2
X +2x+1
NS .o
T e S Y 'i‘*"“‘z"*“’**’r V‘"‘z“”“,‘“v 2 *\r*z VT, 7 e

x +x+1 2x +x+2 2x 42 2x +2x+1 x +2 X x +1 2x +2x

v 2 ’ V:‘Pl, V2, v s sz; v 2, v 2 r v 2 r Vv 2 »
X +x +2 b J

oy
Yaxe1” v212+1’ v2x2<vx+1’ axs2! vx2+2x+2' ' Y1 Y=t Vo

By Lesma 2.1.5, P is a‘i&d l-factorization.o

Theorem 2.1.7. (B.A. Anderson and D. Morse [4]). Perfact l-tactbriza"iionlv

,,,K,;:,_,,_,,,,,,,, S

of KZM and K344 exist.

5 ' .5 .
Froof: Fcr&z‘4,2un3+l,thepolyrm1uy+2y+l is
irreducible over GP{3]. The Mullin-Nemeth l-factorization using -
37

x as a generator gives a perfect l-factorization of 12“ -

Por K ... 344 = 741, the polynomial y> + 6y + 2 is

irreducible over GF{7}. The Mullin-Nemeth l-factorization using

87 ato i of X o
x BMLAMX&M&M 34




A construction for a perfect l-factorization of K .

where ' P 1is an odd prime, uses a cyclic permutation of the vertices
with corresponding permutation of the edges to partition the edges

vivy: where |i-j| is even or [i-j| = p , into 1-factors. This

leaves the edges of the circulants G(2p,{k,-k}) for odd

k € {0,1,...,p4} . Now for odd k € {0,1,...,p-1} , G(2p,{k,-k})

forms a Hamiltonian cycle on an even number of vertices, which has the

obvious pair of l-factors.

Theorem 2.1.8. (Xotzig {16]). For any prime p a perfect l-factorization

of X exists. , :
2p .
Proof: All arithmetic is done modulo 2p on the residues
{0,¢4.,2p-1}. Let the vertex set of sz be {vo,vl,...,vzp_l}.
Consider the l-factor PO .
Yo - B
R , S S . S
2p-1 + 61
Vop-2 - * V2
—
V2p-3 3 .
FO.
oV
Vp+2 p-2
Vpel * = Vp-1
4
vp .
Figure 3

Rotate this configuration through p-l1 rotations using the

permutation p = (vo,vl,...,v

2p-1) . The corresponding permutation on




e

3
i 30
> the edges is p(vivj) = vi+1vj+1" Thus p l-factors F. for
i €{0,...,p~1} are formed where E(F;) = p" E(F,). Note that :
for j,kx € {1,...,2p-1}, j # k, Vi € E(F,) if and only if
k+j = 0 (mod 2p). Thus, vkvj € E(Pi) if and only if
k—;l =i (mod 2p). For i € {0,1,...,p-1} the l-factor Pi also
includes the edge v.v, . ' :
This leaves the edges ViV where |i-j| € {1,3,...,p-2} 1
which are .exactly the edges of the circulants G(2p,{k,-k}) for :
x € {1,3,...,p~2}, each of which is a Hamiltonian cycle. For
k € {1,3,...,p-2}, let E(F') = U {v v } i
kK a€{1,3,...,2p-1} K (a+lk :
and E(FY) = U {v. . v } . Note that 3
X aef{0,2,...,2p-20 Ok (o¥Dk :
T [ e e - - - _
P, U Fp =G6(2p,{k,~kx}D . B - B 4
Thus, F = U FiU( U Fl)
i € {0,...,p-1} i€ {l,3,...,p—2}‘ 7
g { U F") is a l-factorization of K

- i v ] e ] - i 1 hod b -

i€{1,3,...,p-2} * 2p

P
A

F 1is a perfect l-factorization of sz if, for each

i,i* € {0,1,...,p-1} and 3j,i', k,k' € {1,3,...,p-2},

s A ] g e




Case 1: A proof that for i,i' € {o0,1,...,p-1}, i # i*, F,UP, is

a Hamiltonian cycle is given.

Note that for i > i* there is an a € {1,...,p~1} such

it i
= =it = =
that a = i-i', p (Fa) Fi and p (POJ Fi‘ . Thus

£ =
FiUPi._FaUFO

-

0

The edges of F_ are in the form VSV-B -for

8 ¢ {1,...,p~1} and Vo%p " The edges of F_ are in the form

-

for B8 € {1,...,p-1} and v v . Thus, for each

Ya+s¥a-8 a a+p

a € {1,...,p-1}, P, U P, contains the path given by the sequence of

P4 cess ¥V If

vertices vp, Vo' Your Vooa’ Van’ V-aa’ (p-1)a’ vr(p—l)a'

«

a is odd, then -{(p-1)x = p+a (mod 2p} and pa = p {(mod 2p). Since

Vosa'a is an edge of Fa,thepathcontim:es with the sequence of

t eees vpu forming a cycle with 2p

vertices v v v
a’ -a’

3a’ Y-

3a

‘vertices. If « l.‘.‘; even, then -{p-l)a = a {mod 2p) and

p+pa = p (mod 2p}. Since v,V is an edge of Fa' the path

continues with the sequence of vertices v , v R vp*}u, vp—3a'

ceey vp foa:ning a cycle with 2p wvertices.

Thus, for ali a € {1,...,p-1} , F, U P, is a Hamiltonian

cycle. Therefore, for i,i' € {0,...,p-1}, i # i', P d F, is a

Hamiltonian cycle.
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Case 2: A proof that for 3,j € {1,3,...,p-2}, 3 #3°', rs U r&,

_ contains the path represented by the sequence of vertices

fotms a Hamiltonian cycle is given.
In the l-factor P; , the vertex vaj is a vertex of the

is odd. Thus, for each i,i' € {1,3,...,p2}, i #1i°*, F: UF!,

edge v if a 1is even and of the edge v

23" (a-1} 3

v, v , Vv

. .. V. e V. s sars ¥
0 1 it=if Tit-217 "2it'-2i’ ’

» YV .., ¥

{p-1){i*-1i) -1 0

s

i  ELEE I S n i.3* odd)
— ,&Lﬂﬁb%l— L’L ayen {1.1i' are odd)

Suppose @f{i‘-i} = §(i'~i) then a = & since 1 # i' . .
¥Now a(i'-1i)} is even and B{i'-i}-i is odd so that
a{i'=-1i) # B(i'-i}~i . Thus there are 2p distinct vertices in the above

path and Fi o E‘;, forms a Ramiltonian cycle.

case 3: A proof that for k,k' ¢ {1,3,...,p-2}, k ¥ k*, P J P,
forms a Hamiltonian cycle is given.
Note that sé?;t} = E‘; and Q(P;(,) = P*, . ' Thus

kl

Therefore, E’; o ?;, forms a Hamiltonian cycle.

case 4: A proof that for i € {0,1,...,p-1} and 3 € {1,3,...,p-2},
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% are each isomcrphic to ona_

(W)

i 1 e
; .if I is even
2p—-i
and ¢ e (g} =
oif 1 is odd
Thus 7. . F' and F. < F
. i 3 i
of ¥ < F and ?_ o "o,

The edges of Fs are of the form v Vi

x € {1,...,p~1" and. VoY -

v

i the ed v .
is a vertex of the ge 25 (a-17 3

o'

In the l-factor F_, ,

for

the vertex v
J -

if a1 is even and of the edge

vV, ., if 2 is odd., In the l-factor FT the vertex v__. |1is
23 {a+d) 3 43
a vertex of the edge v__. ¥, . if. 2 is even and of the edge
’ 23 (a+l}3 \
7.7 . 1f 2 i3 cdd., g
23 {(a3~1)3
-
For eash ;Y 1i1,3,...,p-%;, F, . F! contains the path
represented Iy the sequence of vertices v, v, ¥V .,V , ¥,V .,
L - -2 p <3 <]
. SN v . > T Tl S
Z-B}' ! v(?‘l}w’ ~tp-Li3z’ T-p3 For each 3 1ETEL
T . P® contains =whe patlh regrasented by the seguence Of vertices
o 3 4
s v v W V4 E . e 5 . X , v .
pl G: dl; --3. 4-23: .{:; J;e + "(P‘i}:’ ;I-‘-.\)]’ P2
As an earlier sases 1L L5 £asy to verify that the vertices
are dlstincT 30 That tThe Iyfies ars Ilndeed Hamilionlan.
case 3: A zroof =haw for 3,k < ¢ ; forms a

_ - B _
- ~ z - et =«
In =Toe L-faz-or F wnEe v
-
adge v " . ¥ X s =ven ans
23 {2=11:
4 v -

ercex W . .5 2 vertex 2I +he
o
sf the edge v ; . E o2
Y [ U
- -~ .

Pl
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is odd and in the l-factor FI

- of the
ol the vertex v is a vertex

2 is even and of the edge if a

edge: V.. Via+lix Vax Y(a-1)k

is odd. For eacn 3,k ¢ i1,3,...,p~2}, ?5 J Fr contains the path

represented by the sequence of vertices Vo Vk’ vk+j' v2k+j' oo

Yok+(p~113" V0

AS in earlier cases it is easy to verify that the vertices

are distinct so that the cycles are indeed Hamiltonian.

Therefore, F i1s a perfect l-factorization.o R

Another class of graphs which has been studied to determine
the existence of perfect l-factorizations is complete bipartite
jraphs Kn,m . lMNote that the existence of a l-factorization of a
hipartite graph requires thar n = m . The following result of
Xotzlg implies that for the existence of a perfect l~factorization of

, & =Zmust be odd.

Thecrem 2.1.3. iKotzig {13];. If $ 1is a bipartite graph, regular

2f degree greater than 2 with a perfect l-factorization then

{191
]
29
lé-
'
1!

?.J. Laufer has prowved the following result giving the

axistence of perfect i-factorizations of camplete bipartite graphs




Theorem 2.1.10. (P. Laufer {19]). 1If a perfect l-factorization of

35

K2n exists, then a perfect l-factorization of x?n-

s
g

1,2n-1

exists.o




Soprsimet

Section 2. QO-indices.

This section deals with a property of a l~factarization P of -

a complete graph called a Q—index of F .

Definition 2.2.1. ven an integer n , let F = {Fl""'FZn-l} be :

a l-factorization of Kin and Q be a class of regqular graphs of

degree 2. The Q-index of F , denoted Q(F), is the largest integer

m such that there exists a partition of the l-factors of F into

classes F(l),...,F(r} with i?ti)] >m for i=1,2,...,r and if %
1 Ei € g(k) then there is a graph %'*%Qr’m’%’?i"ﬁg'??' T J/%

If Q@ is the cléss of graphs which are Hamiltonian cycles, %
then the l-factorization F of KZn is a perfect 1-factorization d

if 2(F) = 2n-1.

[ R R

Definition 2.2.2. If { 1is a class of graphs with at mast one graph ;

on 2n vertices, then g is the graph on 2n vertices. o rr T e
2n gr

Theorem 2.2.1. (E. Mendelschn and A. Rosa {20]). et Q and Q' be

classes of graphs of degree 2 such that for each n, Q or Q' has

ar nost one graph on 2n  wvertices and Q0 2 Qén . Then for any

WL

1-factorization F of K, » Q(F) >.(2n-1)/(2k+1) implies that

2'{P) < 2k-1 for k in {1,...,n-1} .

1

B T Y

#roocf: Suppose g > {2n-1)/{2k+1) By definition of the Q=index,

(1)

1)

, iin <1,...,r’, such that Fj J 'Pj

1

T T A
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- e

and !P(‘)i 2 g{F) > {2n~1)/(2k+1l) for each i in {1,2,...,r} . Thus

r < 2k+1 .

-

To find Q'(F), look at any partition of the l-factors of F

(1) {sr '

into sets G ',...,6 , such that G UG' Q) for G,G' € Gl . -

Hote that for any two l-factors F and FP' of F(l}, F and P/

. ’ /
must belong to distinct G(j)’s. Por a*fxy two l-factors G and G° )

(i},

of GJ » G and G' must belong to distinct F s. Thus

6 < r <2k L ‘ ‘

- e ———

Therefore S (F) < 2k+l.O0 ‘\

In [21] E. Mendelsohn and A. Rosa-give two results.

-

concerning the existence of l-factorizations with certain R-indices

where © 1is a certain class of regular graphs of degree 2 .

The first of these requires a result on Steiner loops.

Definition 2.2.2. A Steiner loop G with the binary operation °

-

is defined by the following properties. ' : U

(1) For any a,b in G the equations a ¢ b = x ,

a+sx=Db and x ¢ a =b each have a unique solution.

-

{2} There exists an element 1 in G such that a sl =a=1 o a

for every a in G .

(3) aesa=1 for all a in G .

o S A

(4) a o b=Lt =2 a for all a,b in G .

{3} a = {a ¢« =pb for all a,b iﬁ G .



»"‘

£

lemma 2.2.2. (R, Bruck [6}). A Steiner loop of order n+l exists

e
if and only if a Steiner triple system of order n exists.

Proof : SWR a Steiner triple gsystem T of order n exists., If
abc is any block of T , let ae¢b=c¢c, boeoc=a and aec=b.

Since T 1ig a Steiner triple éystm any pair of elements occurs

*

exactiy once and each of a e b=x, a e x=¢ and X ¢ b = ¢

~ would have a unique solution for x . Note that a eb=c=bea .

If asob=c then as+ {aob) =asc=Db for any a, b, c in T .

s - -

Add an element 1 to the set of elements of T and define 1 c a= a o ]l = a

and as a=1 for all a in T .  Thus, the.elanentsof T with 1

-

and the above operation form a loop of order n+l.. Therefore, there

existé a Stexner loop of order n+l .

Suppose a Steiner loop T with operation o and identity 1

of order n+l exists. Let a, b, ¢ bein T and- a,b,c ¥ 1 . Let

the block of a block design be ab c when aob=¢c. If ae<b=c¢c,

then a < {aeb) =acecc=b,cea=b,bea=c¢c,b-=*(b-*°a) =

" bec=a and 'c 2 b =a . Since aobtx,K'o\xzc and x « b = ¢

each have a unique solution for x , each pair of n‘m—identity elements
‘\
will occur together in exactly one block. Therefore a Steiner triple

system of order n 1is formed.o

Theorem 2.2.3. {E. Mendelschn and A. Rosa {21]). Lat O be a class

of reqular graphs of degree 2 , so that for each n , £ contains

at most one graph on 2n vertices, Q,, - Then for any n 2 4 there

is a l-factoriration F of KZn such that Q(F) = 1. .

©en by el U Bobin, R el gen
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?i.

let n 2 4 be fimed.
Case 1: Ilet be disconnected.

QZn
Look at the bipyramidal l~factorization of ‘Zn described in

Definition 2.1.3 coming from the pyramidal l-factorization with 'FO

as described in Theorem §.1.2. ' The union of F* and F6 is the

N ~o
Hamiltonian'cycle (u,, Ug, Uy _js W, ps YUpn 3¢ Uys Upe By 30 Yyp e

U, evssp U - , 4 - s _ » 2, u. ). Now F*
2 E(nzl)iﬂ E(nzl)jﬂ]_]_ Lsmzn{

VA

___is the same if a cyclic permtation is applied to the vertices

- l; % 1} ]
uc,ul,...,uZn_3 . Thus for any l-factor Fi' F* U Fi forms a

Hamiltonian cycle. Therefore, since an is disconnected, Q(F') = 1 .

Case 2: Q is connected.
——— 2n .

It n = lor 2 {(mod 3}. By Lemma 2.3.2, since a Steiner

triple system of order n' exists if and only if n' Z 1l or 3 (mod 6) =

there is a Steiner loop T of order n", if and only if

n® = 2 or 4 (mod 6). Thus there exists a Steiner loop of order 2n .

1

Set up a l-iactorization F of KZn as follows. Por a, b, a # b,

in T if a.ab=c is in T 1let the edge a b be in the l-factor
?c . Prom property 1 of a Steiner loop each edge is in one l-factor
and each vertex is an endpo},nt of an edge in each l-factor exactly

I

once. Let b, c be in T , tHen there is an a in T such that

A sb=c. Thus lc and a b are edges in l-factor Fc and 1 b and

ac m'edgasin i-factor Pb. Thus FCUFb has a component which

is a 4-cycle (1l b a c i} and at leagt one more component since n = 4 .,
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=3 {aoée}. Label the vertices of ‘Zn ?i' “1

)
o
=]

where i €S, i#¥ 1, and 5 is a Steiner loop of order

PR TR T SN SFR. SPUNPITY S

n+lz4 (mod 6) with e ts {1,2,...,n+1} . Form near :

v :

, v v _|v v u u u

l-factorizations P = {?2 B he B } and F = {Pz ERRTE Y } ,
Yy

on K_, on the vertex sets {vz,...,vml) and {uz,...,um_l} as

follows. For a, b, afb and apl, bl thenif asb=c
‘iet-the edge v v € 1’“3 'Wth&"ﬂd;"’*ﬂ"us €r 'u":*' From property 1T

ab c a ol ;
of a Steiner loop, each edge is in one near l-factck and each vertex

is in each near l-factor Fiv, Fi“ as an end vertex except v, or u,

i

which stand alone. For the i-factor P take the two near - 3
. i E

l1-factorizations Fi?' rin and the edge v,u, . To complete the ’ q

-l—fa@ctorization form any l-factorization of the edges between the two

sets of vertices deleting the l-factor already used. By the same
argument as above any two l-factors of the first type will have at
least three compopents, a 4-cycle in each get of vertices and at least
one other component since <2n 2 18 . There are n l-factors of the |
first type and n-1 of the l-factors formed from cross edges. None ' ;

" of the first can occur together. Therefore Q(F) = 1.

let n = 0 {mod 6). Label the vertices -

S rCprenesCiT  Fyueua T . Take a l-factorization H = {Hl,...,ﬁn}/_\\\
of K . on the sets {c.,c ,...,cn} and {rl,t ,‘...’,rn}
3 o i & =& .‘ & 2 = = = oA T - = AL - > YT ' -~ i ~ . F " ‘ :

2

1°°2

\

RO F L MRy

latin square C = ic__: formed from the latin square A with obiject

i3
set 1 through % which is unipotent and the latin square B on
-
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A |8
C:
B+ A
H .
the object set = + 1, .\, n . Let the object set of A be |
A o

relabelled so that there are all 1's down the main diagonal. Label =

Y

L
the columns of c,cl,cz,...),cn and the rows of - C,rl.rz,...,rnA A..”Ir

<:ij = k , then let the edge ricj be in 1-factor k,&k . Hote that

for each k € {2,3,...,n} there is a proper subsquare containing

kand 1 . If k in {1,2,...,%} , then k ¢ A , a proper subsquare.

If kin{-g-«rl, ..., n} then there is a subsquare of order 2

containinqkmdl.ﬁmst&nemionéf Hlandﬁj forms a N

disconnected, graph for j in {2,3,...,n} . To complete the
l-factorization P , take a l-factorization on n vertices and take

-two copiesof it; one on - the W**ti —and-one on-the ,mim,,,f{,,,,,,,,,,,,,,,, e

.

that when one l-factor is taken from each set to form a l-factor

of K2n'cicj will be in the 1-factor if and only if 'rirj is. Thus

Hl with any of these new l-factors will form many 4-cycles.

Therefore Hl must occur by itself in a partition used ;.n finding the

Qo-index of P . Therefore 9Q(F} = 1.0

Another result of E. Mendelsochn and A. Rosa deals

the Q-index is called the tightness index.
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Definition 2.2.3. et Q be a class of reqular graphs of degree 2

such that for every integer n = 3, @ is made up of 4-cycles with

2n

possibly one é-cycle if n is odd. PFor any l-factorization F ,

the Q-index of P, Q(P) is called the tightness index of F , TI(F).

Theorem 2.2.4,. If n =0 (mod 2), then there is a l-fictorization F

of K2n such that TI(P) = 2 ,

Proof: Let n = 2kx. Label the vertices of X_,, ui and vi for

the vertices of the k-partite graph K ' ui, u;,v!,v? for

4141---14 1 1

i in {1,2,...,k}. Construct a partitioning of K, 4 4 into
t2ypeaey

- [ IIOKII
4-cycles as follows. Let the 4-cycles (uc vooup ve uc):

v

2k
i=1,2,...,k . let F be a l-factorization of Kox with s
F={F,F,....F, )} where P, = {ujv, i =1,2,...,k} . Label

k] ] " 1 - ) | 5 . -
(ué Qmﬁuswgmﬂué) or (Vé !mﬁvtﬂlg,yzl,,beﬁlnMWG,+mwafszactor~o£lﬂr

L'
K4'4,___’4a if and only if u,v . utum _or vyv, 1is in ?j for
j in {2,3,...,2k-1} . Partition each Gj into two l-factors G5
and Gg for 3 in {2,3,...,2k-1}. By definition 93 U G; forms

a graph whose components ére 4~cycles.

The above l-factors leave k disjoint copies of K4 to

partition into l-factors. Let G! be the set of edges v; vgﬁ’and -

1

!

1 " i 3 I 1 " L] )
ul ui for i im {1,2,...,kl, let Gl be the set of edgesklvi ui

and v} u for i in 11,2,...,k} and let G;'' be the set of edges



&
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vi uE and v; ui for i in {1,2,...,k} . Note that the union of

any pair of these last three l-factors forms a graph whose

components are 4-cycles.

The 1-factors in {G}, 6}, GJ'' | i = 1,2,...,2-1} form a

l1-factorization, F of LI The partition of the l-factors

(1

) - t - [} (i
F = {Gl'Gl'Gl' }, and F

) - {Gi,G;} for i in {2,3,...,2k-1}

shows that TI{P) = 2.0

Another O-index defined for a particular class of graphs is

called the Dundas index. o~

Definition 2.2.4. et Q@ be a class of graphs such that an is a

Hamiltonian cycle for each n, n > 1 . Por any l-factorization F
the Q-index of F is called the Dundas index of F and denoted

DI(P).

Note that for F a l-factorization of K , 1f DI(F) = 2n-1l

2n

then P is a perfect l-factorization.
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A Kotzig factorization contains both a near l-factorization

and a Hamiltonian decomposition.

Definition 2.3.1. A Hamiltonian decomposition H = {Hl,...,ﬂn} is

a partitioning of the edge-set of a graph into Hamiltonian cycles.

Definition 2.3.2, ~A Kotzig factorization K(H,F} of KZﬁ;l is a =

Hamiltonian decomposition H of K2n+l with l-factorization F

such that each Hamiltonian cycle of H_ intersects each

"K3ﬁ¥f"

near l-factor of P in exactly one edge.

A construction of E. Mendelsohn and C. Colbourn exhibits
a Kotzig factorization of Kp where p is an odd prime. This

construction is used by J. Horton in proving the existence of Kotzig
factorization of X for all integers n . ;
2n+l

Theorem 2.3.1. (E. Mendelsohn and C. Colbourn [20]). A Kotzig

factorization of K, ;1 eXxists for 2n+l a prime.

) = {vo,v .,v2n}, P, = {vjvi-j | 3 =0,1,...,2n}

i

for i € {1,2,...,n} and H = { =0,1,...,2n} for i in

ViV |3

{1,2,...,n}. Now P = {FO'?I""’FZn} is a near l-factorization

= I . . .
,,gi”,xzﬁxl,%and,4H4:44EI*B2+4444H2ﬁl44154a4Haniltnn;angdgcq-pgalgign of

one1 - ’ 2n+l ’

for £ ¢ {1,...,n: let vivj-e H, and i - j = £ (mod 2n+l) where



T i,L'}g,,L,jlod_ZntlL._mn_‘liy_j_is_in_Ek_._SﬂQ

é%E {(mod 2n+1) for &4k even
I =V (44k) (mod 2n+1) and i =12+ j (mod 2n) ,

5 for &+k odd

each edge of H is in a different l-factor.po

L
Mendelsohn and Celbourn [20] also construct Kotzig

,factarizationsmof,hxzﬁ4I, for n s=smaller than 21.

A construction of J. Horton [10) gives Kotzig factorizations

uged.

pefinition 2.3.3. Wwhen considering abelian groups, additive notation

is used. A strong starter of an abelian group G of order k is a

set A of unordered pairs of elements from G with the following

properties.

{a} Por x in G , x # 0, there exists y in G, y # 0 ,
such that {x,y} in A .

{2y 1f {x,y} and ix,z} are in A , then z =y .
: o (3) {(x+-v)lix,y} in a} = &\{o}.

(4) Por {x,y} in A, (x+y) # 0 and for any {x*,y*} in A,

{x‘;Y’} # {X,y}, then - {x+y) # (x'+y'}.

Stiong starters in G?{pn] are known to exist (B}, [9],

and [24]) wvhere  is any odd prime and n is an integer except

for pn =3, Sor9. ®Por p=3 the set A = {{1,2};} is used and
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for =5 the set A = {{1,2}, {2,3}} is used, In the first case A
Lo pE o

is not a strong starter since (1+2) = 0 (mod 3) which does not affect
the construction, but in the second case the basic construction must

be altered.

Theorem 2.3.2. {3. Horton [10]l). Suppose a Kotzig factorization of

exists where

exists, then a Kotzig factorization of Kp

x2n+1 ) {2n+1}

p is an odd prime.

proof. Let K(H,P) be a Xotzig factorization of L the
_——- = e T T T - 'jr' TT T TTIT I/ e = -
vertex set fbo""'vZn" labelled so that Hy {vcvl,vlvz,...,vznvo}

and where F = {?é,-..,?

3 N . :
an’’ with Vo having degr%e 0 in Fm .

Let X({H",F") be a Xotzig factorization of Kp on the vertex set

} described in Theorem 2.3.1. Let A be a strong

4
DA SR

5 .,up_1
starter of GF{p] using the set {0,1,2,...,p-1}. for p = 3, let

A=1{{1,2}} and for p =5, let A = {{1,2}, {2,3}} . Now relabel the

...:4_ .} so that for p > 5 ,

vertices fu ]
o-1

0[
a = {{1,2}, 3,4}, ..., {p~2,p-1}}. Llet H' be the Hamiltonian
decamposition corresponding to H" and F' the near 1l-factorization

corresponding to 7" .,

Using H©, © Hamiitonian cycles will be formed for each

Jamiltonian cycle of Kz y - The edges of one of these Hamiltonian

cycles, along with the edges of the 2n+l edge disjoint Kp‘s' are

partitioned into %l Eamiltonian cycles. The partitioning into a
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near i-factorization uses the near 1-factorizatigns £ and F' . In

order to ensure that a Xotzig factorization is formed, in using P’

, 1 ) . .
the latter % familvonian cycles are taken into account .

Let B, Dea Hamiltonian cycle of K25+1 in H with edges

v, v, 9. % . .., %, ¥ . Then for ¢ € ‘0,i,...,p-1} define
By By By B 2n g
.o =i & L 3 ;3 4+ 0, ..., 5 4 , ¢ {28} ,
A 0y o By 7‘ G2 %5 Aon-1 Pan-l 2n-1 Pon
(28) 1, i ilely , {dely 1, ..., (&+1} (22+1). .
hgﬂihg, N fy nl‘hz ngﬁ_i hzﬁ

weer (p=1F, dp~1+#f},. , ..., (p—l)h (p-1+2) ,

2 "1 2n-2 Yane1
(p~1+l), o—=1+22;.  , {(p~1+2f) 0. 1.
2n-1 in 2n 0
{’ x, fx+dy, for 1 £148,2,4,...,2n=27
ay By
= ard fzr kn ‘0,1,...,p~1}
(kely, X, for 3 ¢ ‘1,3,5,...,2n-3}
sl S
Litked) (ke28),, (k+20) 7 (k#D)_ for k :m{0,1,...,p-1}].
“a-r . 2n “zn 0

Thus partition the edges corresponding to K2n+l into Hamiltonian
Z - . K
cyclies Hi, / "Z,1,...,01; for each Hl in H .

LATh

This leaves the edges interior to 2n+l disjoint copies

£ X . T 2f 25 = Y50, ,3.0.,...,0 yeen G_r
o) < The edges o ) 0.5, lJz, zan ,(p-l)ZnuO

.
o i z



are used to connect these ocopies of xP and to form another &;:, S
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Hamiltonian cycles.

Now delete the edges i for k ¢ {0,1,...,2n}, {i:j} €A .

xIx

In each copy of Ko this leaves %l Hamiltonian paths from H'

since each diffezfer}cn gccurs in a different Hamiltonian cycle of H" .

Define i:’i' to be the Hamiltonian path on the vertices

3

Y 34, ey p-lz determined by the Hamiltonian cycle Hi from H' .
{
- = b
y Let H; ‘agal, blb2' a2a3, R bZn—len' a2n o f ajbj is ~
- 'i‘ li li Ii B
€ a ted £ H 7 U H . | ees U H_ fo
ne edge delete rom 3 5 Hl J >n r :
‘ z
. l’ "Ili _ :. ) 101
r £ -1,2,. "E—?_ and nu “Dkok«»l ; bkbk+l f Hi for
1 .
P 2,...,5= a 3 ooy 3+ t {5,541} €
1,2, 3 an bkbﬂ+l Hl, \]k(] l)k i LJ.3 1} A,
. . L 1 ~—— .
£ ¢ 7iC,1,...,n}. Thus H''' = «‘Hl, B for ¢ € {0,1,...,p-1},
cog O 3 . L . :_l‘ L 5 1t 1 i
1 “hesee,y Do- 2,1, .= 15 a partitioning of
the edges into Hamiltonian cycles. .
1
To construct a near'l-factorxzatlon of Kp(2n+l) the edges
not lnternal to the Kp's are partitioned as follows:
ld . .
3. 0= 5 (L-3 £ ' ere .
5 L‘:(( ])m where V. Ve Fi’ for Fi €F and ¢ € {0,1, ,p~1}
™he edges internal to the copies of KP are partiticned into near
'Z . B - T oo T [
i-factors as follows: 3. = 13 k. u € F,} for each P, € F' and
i i1’ 3 (4 14
i € 40,1,...,2n7. At this point, some care must be taken in choosing

L

e Con



)
the G~ to go with cj“ for given j € {0,1,...,2n} and

- ] ]
m € {0,1,...,p}, since both Gi” and Git may contain an edge of
LI I I‘lm -8
Bj = Relabel the 1-factors as Gi = Gi if
171 t -8 ire
ECHI E(G, M| =1 and E(G ) 1 (M, ) = § forall

Tt ¥ t
j € {1,...,2§l} and G, . Gi& if E(Hj )y A E{Gi“) = @ for all

. + x4
j € {1,...,%1} and G, 2 is not defined for m .

k / ' 11 z
Let G. = G. < 5. . Then G = {G,
1 1 1 1

C

? € :0,1,...,2nr+ is a near l-factorization.

AN 3 3 : 4
Now, K{G,H ) 1is a Kotzig factorization of Kp(2n+l)'D

| i € {0,1,...,p~1},
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