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previous mett;ods .

ABSTRACT
ABSTRACT

Broadcasting is the process of information dissemination in a

~ communication network in which a message, originated by one member,

is transmitted to all members of the networki A minimal broadcast
network {mbn) is a communication network in which a message can be
broadcast in minimum time regardless of originator. A minimum

broadcast graph (mbg) is an mbn which has the 'fe:west number of

commuriicati ion links. No techrique is known for constructing mbgs of ~—
* arbitrary size. We present new methods for constructing mbns which

have approximately the minimum number "of links possible. The
resuiting networks often have feﬁer links than previously described
networks of this type. Fault-tolerant (ft) Broadcasting is to broadcast
with enough redundancy so that the broadcast can be completed even if

links fail. We also present new methods to construct 1-ft and 2-ft

mbns. The number of links' of our 1-ft and 2-ft mbns is just a little

more than half of the edges of the 1-ft and 2-ft mbns constructed by
‘ , \ i g

’ . f
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Chapter 1 , N
Definitions and Previous Results . ;

y
4 . - R fld

1.1 Definitions - .
. N -
In a communication network, a member has a message which is to be
disseminated to all other members. The series of calis to inform the

other members is constrained by the following :

1. Each call requires one unit of time.
2. A member can only call an adjacent member.’
3. A member can participate in at most one call per time unit.

This process is called broadcasting and the member that sends the

' message is called the originator [Mitchell 80}.
. F" .

Let G = (V, E) be a graph that represents a communication network.
The set of vertices V corresponds to the members of the network and
the set of edges E correspvonds‘,to the communication links connecting
pairs of members. Let. n denote the number of vertices in G, e(G)

denote the number of edges in G and t{u) denote the time required to
broadcast using u€V as the originator. Let t{(G) = Max { t(u) : ueV ).

i.e. Every ue€V can broadcast in less than or equal to t{G) units of

time. ( i

Let T(n) denote the minimum time i'equired to broadcast a message in

any communication network G with n members. T{n) is equal to ceiling

of logyn because at each time unit, the number of informed vertices can
be at most double the number of informed vertices in the previousi time

unit [Mitchell 80}.



Definition 1: A minimal broadcast network (mbn) is a graph G

. such that [Farley 79] s g
te) = Ttn) .
= [logzn].

4
M - -

An mbn represents a communication netwogrk that can complete"a

broadcast regardless of originator, in minimum time.

Definition 2: A minimum broadcast graph (mbg)} is a graph G

such that G is an mbn and e(G) is minimum. An mbg is an

4nbn having the minimum number of edges [Mitchell 80}'.

’

2

An mbg represents a communication 'network with the fewest
communication links between members that can compliete a_broadcast in

minimum time regardless of originator.

ket ‘B(n) denote the number of edges of an mbg of size'n. The value

- of B(n) for arbitrary n is not known and. it is conjectured that to
determine B(n) is NP-Complete [Farfey, et al. 79]. The value of B(n)

is only known for n <= 17 [Mitchell 80] (see fig;ure 1.1) or for n = 2K

[Fariey, et al. 79] where '

8(n) = nf2*flogznl. - - ' ,
Themiykmnm}bwmmaiaJs&mmmmnmgm i
must be connected . Therefore, B(n) >= n-1. This is a very poor
lower bound and it does not make use of any other properties of mbgs.

Upper bounds for B(n) can be obtained‘from the size of known mbns. :
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&

The existing upper bounds for B(n) are [Férley 79]
) <= n/2flogan] “for 3*2(flogan}-2) < n <= 2[logan}

n) <= n/2flog2n] - n/2  for 2llogan| < n <= 3*2(flog2n]-2)

n 2 3 4°5.6 7 8 9 10
Bt | 1 2 4 5 6 8 B2 10 12

n 1 2 13 14 15 16 17
B(n) 13 15 18 21 28 32 22

Figure 1-1: The value of B(n) for n <= 17

4

Definitiapn 3: A broadcasting scheme is a sequence of calls

- between members of a communication network which complete a

broadcast.

{

Mbgs represent tf;he cheapest efficient ‘communication netwc;rks. They
may be used for message broadcastif!g in commun.icatio‘n, paralle!
processing and distributed computing. No technique is known fto
generate an mbg of arbitrary size and the recognition problem for mbgs
is NP-complete {Farley, et al. 79]. Only mbgs of size n <= 17 or n =
2K are known. Heuristics ,caﬁ be used to generate mbns which havé a
small number of edges to approximate mbgs. In the following sections,

emshﬂgalgoﬂthmsteeenswuetmbﬁswpresentedv p
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1.2 Farley's algorithm -~
. H - - . ,(

Broadcasting can be accomplished in minimum “time*if there is a

broadcast tree rooted at the originator. The most obvious graph/s«-thaitk_,,/”{
I . B

satisfy this condition for each verte;_( are the complete gi:aphs..

Complete graphs have n{n-1)/2 edges and the problem become whé\h?r

we can reduce the number of edges 'and still ,maintaink conditions—
"Farley discovered that a subclass of star polygons als isfies the
above condition and they havejewer edges than complete hs. The

star polygons give an upper bound of
" B(n) <= nflog2n]

which is significantly less than the number of edges in complete’

graphs. Furthermore, Farley pr;eLsented' the first heuristic to gene'rate
mbns which have fewer edges than star polygons. The idéa of his
algorithm }s(to construct mbns by connecting two or three smaller size
mbns together in a special way. By applying his algorithm recursively,
mbns of arbitrary size can be constructed and m"‘::mber of edges-in

the resulting mbns is no more than -‘hgjL of. the edges of the star

-

polygons.

ry
/

" 1. Farley's two-way split

" An mbn of size n can be formed by connecting‘j} mbns Si,
S2 each of size ny and n3 respectively such that n1 + n2 =.n
and [fog2ni] = [logan] - 1. Assume Ry >= n2. Connect every

vertex in 52 to a distinct vertex in Si. The resulting

graph G is an mbn of size n [Farley 79].
' ' /

The broadcasting scheme for G is .as follows: ‘ If the

originator is in St then start to broadcast within Sj. After

St has finished its own broadcasting, conduct calls between

Sy and S through the links that connect them together. If

the originator is in Sz then in the first time* unit the

originator calls a vertex in Si. After the first time unit, S

e

B N )

YRR TR PRI VSR GG FU

ik R b s s oo




5

and S; each have an informed vertex. Starting from time
unit two, both mbns can broadcast internally.

’

The time required to broadcast within either S1 or Sz is
[logan]-1 and one .additional time unit is required to conduct

calls between Sj and S3. The total time required for G to
complete the  broadcast is ﬂogzn_l. Thus, the graph G

constructed by the 2-way split is an mbn. ,

;R

Figure 1-2: Example of an mbn constructed by
' Farley's 2-way split

S o
Farley's three-way split

An mbn of size n in the range
2llog2n) < n <= 3+2([Togzn]-2)
can be generated by connecting three mbns 53, S and 53 of

size ny, n7 and n3 respectively such that ny + nz + n3 = n

and [legynj] = [logan] - 2.

If n is even them -connect each member of the three
components to a different member of 5 different component.
If n is odd then do as above for n-1 of the members; then
connect the remaining member to a member of a different
componernt to which no member of its comporent is aiready

connected. The resulting graph G is an mbn [Fariey 79].



6

The calling schemé for G is as follows: Without loss of

generality, assume the originator is in S1 and it is connected

to a \éertex in S2. In the first time unit the originator calls
. the vertex in S;. Starting from the second time unit, Si

and S; each cohtain an informed vertex and>they can
brOadcast.internaHy. After they have finished their own
broadcasts, conduct calls from St and S; to S3. The time =
required for either Sy, Sz or S3 to broadcast internall;y is
ﬂ'ogzn']-z. The calls between components \require two extra
time units. The total time required to complete é
broadcasting in G is [logzn]. Hence, the graph :G

constructed by the 3-way split is an mbn.

—
I——— P
L ——_— T T =4
S1 S2 S3
— ’Q.- — — ‘1
e —_— \‘ / — —
S1 S? S3
- L
e : Figure 1-3: Examples of mbns constructed by X
“Fariey's three-way split <

By applying Farley's two-way split and three-way‘ split methods
recursively, mbns of arbitrary size can be ger_&era{éd. In the two

methods deszﬁed above, no detail is given on how to split n into two

s

i
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or three parts. These methods wogk for any nj which satisfy the

7

conditions set forth. However, F'arley chooses to split n under the

-

following conditions :

1. For 2-way split, |ny=-n3| <= 1.
2. For 3-way split, |ny-n3| <= 1, |nj-n3] <= 1 and |nz-n3| <= 1.
That is, he always splits as 'evenl-y as possible. Under these

conditions, the mbns G generated by Farley's algorithm give

e(G) <= n/2fiog2n]
as an upp"é?bound for the number of edges in G for the two-way split

and

e(G) <= nljl‘ogzn'[ - nf2

for the three-way split. Since the 3-way split has a better bound than

the 2-way split, Farley always uses the 3-way split when it is possible,
For certain sizes slight ‘improvement on the above result can .be
obtained by using the best split for n recursively [Liestman 83]. This
approach is computationally inefficient. In this thesis, we assume that
splitting is done according to Fariey's conditions. The result obtained
by Farley is not bad if we compare mbns generated by Farley's
algorithm to mbds of size n=2K, Actuaily, Farley;'s algorithm generates
mbgs when n=2K, However, it is not ’possible to judge whether other
mbns generated by Farley's algorithm are good approximations of mbgs
since we know neither the value of B(n) nor a. good lower bound for

B(n) when n#2K and n>17.

)

=



4 Chapter 2

Algorithms to Approximate Minimum Broadcast Graphs

Using Farley's idea of generating mbns recursively, Dbetter
approximations can be found. Instead of constructing mbns from two or
three smaller mbns, we can use five, six or seven smaller mbns to
construct Iarge'f" mbns, in the «<following three sections, different/

heuristics to generate mbns bhased on Farley's idea are presented.

2.1 Five-way split method

The. most straightforward way to extend Farley's algorithm is to ,
construct mbns using more than three smaller mbns. However, it turns
oui that the simplest way does not work very well. Consider an mbn
constructed by 5 smaller mbns. They are connected together in such a
way that each mbn can be considered as a vertex in ah mbg of size 5
(see figure 2-1), Every vertex in each small mbn is connected to t§vo
other vertices from different small mbns. Suppose that each smalier
mbn is constructed by Farley's. 2-way split and each requires [log2n]-3
units of time for broadcasting. We can send messages from the
originator to a vertex in two other different smaller mbns in the first
two time units, In the third time unit, the two just informed vertices
can send messages to a vertex in the remaining two small mbns. Thus‘,
after three time units each small mbn has one informed vertex and they
can broadcast internally., The total time required for broadcasting in G
is also flogan]. Hence, the graph G constructed by the straightforword

5-way split is an mbn, .

The number of edges in G is

N




Each line represents that every vertex in one set
is connected to at least one vertex of the other set .

Figure 2-1: Constructing mbns using straight-
forward S5-way split

5- . vﬁ
e(G) <= ), (ni/2floganil) + [n/5]*s.
. - <= i(niIZ(ﬁogzn_] - 3)) +n+5
x= r;:}2(j'logzn'] - 3) +n+5

<= n/2[logan] - n/2 + 5

Thus, no improvement on the bound is achieved by the straightforward

5-way split. Better results may be obtained by a less obvious

approach.

Consider the graph constructed by the straightforward 5-way split.
In the first three time units, some of the informed vertices are not
involved in calls. We can make use. of thesg’unutilized but informed
vertices to reduce the number of edgeé. The following is an improved

version of the straightforward 5-vway split,

e

P
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Definition 1: Given a graph G=(V, E) , a partition of the set
of vertices V into V, and 'Vb is called an even adjacency split

of V if

11 Val = Ivol | <= 1

2. For every ve;':jtex VE&Vga, there is at least one vertex
u€Vp that is adjacent to v.

3. For every vertex- uevy, there is at least one vertex
vEVa that is adjacent to u.

Definition 2: Given graphs A = (V,, Ea) and B = (Vp, Eb)

such that '
C1val - Vel | <= 1.

DA graph G is formed by adding edges between V3 and Vp. A

and B are said to be connected by a minimum adjacency

connection if

1. The number of edges added is Max(|Val, |Vbl).
2. Va and Vp constitute#n even adjacency split of G.

Note that if |Va| = |Vb| the edges added are a perfect matching
from Va to Vp. If |Va| = |Vp|+1, the edges added are a perfect

matching from Vp to V,; plus an edge from the unmatched
vertex of V5 to a vertex in Vp. Similarly, if [Vp| = [y/élﬂ, the
edges added are a perfect matching from V4 to Vp plus an edge

from the unmatched vertex of Vp to a vertex in V,.

Lemma 3: An mbn G = (V, E) constructed by Farléy‘s 2-way
split algorithm has an even adjacency split. -
./

Proof: Let A = (V5, Ez) and B = (Vp, Ep) be the two smaller




1

mbns used by the 2-wéy split algorithm to lzgnstr’uct G. Assume

that [Val = Vol <= 1. - o

Two cages : -
/ E

1. If n is even then V5 and Vp are an even adjacency split -
_of G. ; R

2. If n is odd then let vEV, be the vertex that is not
connected to any vertex in Vp. Split V into two sets Kj , -
- and K3 such that -

'~Va\{v} . | :
vp U {v}

Since- v must be .adjacent to at least one vertex in Vg,

LS

.\4

and

K2

each vertex in Kj must be adjacent to at least one ' H
vertex in K3 and vice versa. Kj and Kz are an even

adjacency split of G. —_—

o bbbt eles Lemme ey v e

Hence, the graph G constructed by Farley's two-way split has , =

acr sl b

an even adjacency split.

N

it 4 e,

Five~way split method

Given n such that

fiogzn] - [legz[n/s]l = 3,

¢
an mbn of size n can be constructed as follows :

Az

s s et

(I

t. Partition n vertices into 5 sets S such that

fn/8] = IS3) >= IS) >= ... >= |Sg) = |nis)

2. For each Sj, construct an mbn with an even adjacency split
Aj, Bj such that [Aj]-|Bil <= 1. This may be done
recursively or using other heuristics such as Farley's 2-way

S, SRR e
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split.

"

-

3. Add edges to form minimum adjacency connections ‘between
the following pairs : (A1, A2), (B2, A3), (B3, Ay), (By,
Bs), (As, B1), (B3, B3), (B2, Bs).

Each line represents a minimum adjacency

connection between the Ajs' and the Bjs' . ;

Figure 2-2: Constructing mbns Vusing 5-wa\; split .
. ’

Theorem 4: The qgraph G constructed by the 5~way split

method is an mbn,

Proof: Refer to figure 2-3 and consider an originator in Sg.

Without loss of generality, assume that the originator is in Ay.

Consider the following calling scheme :

‘1. Time unit 1 : Conduct call bétween the pair (v4€Ay,
ugeBy). This is possible because Ay and By are an
even adjacency split of Sy. ‘ '

=

b L i e Méw@,;m@.;_gwmmw&wmwﬂWWW*‘* R
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2. Time unit 2 : Conduct call between the pairs (vy€ Ay,
u3€B3), (uy€By, usEBs). This is Possible because the

sets Ay, ‘83 and By, Bs are connected by minimum
adjacency connections. ’

3. Time unit 3 Conduct call between the pairs (u3€B3,

"u1€81), (usSB8s, uz€B3). Again, the sets.are connected
by minimum adjacency connections.

Each mbn S; has at least one informed '»VLrtex after the first

three time units. In time unit four; each Sj can start to

broad}cast internally. The time required for each small network '
is [logan/5]. ‘

The total time required to complete broadcasting in G is
Tt(G) = flogafn/5l + 3 -

Since

Y

fiogzn] - [ioga[n/s] = 3

CLtG) = flogan] -~ 3 + 3

' - = [log2n].

.
Y

Therefore, G can complete a broadcast in minimum time if the
originator is in Sy.

L 4
L

Referring to figure 2-4 and 2-5 and usinqg similar argun‘ents,
G can complete a broadcast in° minimum time if the originator is
in Sy, S2, S3 or Ss.

Therefore,' G is an mbn.

)

G "im‘nlur*lriwliiﬁ‘a‘@)éﬁ&ma‘m%&ﬂm s B R 1

Theorem 5: The graph G constructed by the 5-way split
method has v
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2 | S

Figure 2-3: Calling scheme for the first three time
, units if the originator is in Sy
for mbns constructed by the 5-way split

/\’F\i?uré\%-ﬂ: Calling scheme for the first three time
. units if the originator is in S3 or Ssg
-~

for mbns constructed by the 5-way split

1
ik
=
k-
T
&
2
=
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Figure 2-5: Calling scheme for the first three time
units if the originator is in Sy or Sp
for mbns constructed by the S-W

.~ e(G) <= n/2ffogyn] - 4n/5 + 7.

Proof: Let nj be the number of vertices in eaéh Sj. Assume

the Si's are constructed by Farley's 2-way split yr/nethod.

Tnerefore, the Sis will have a tot3l of

(nij/2[fog2ni]) -

At most [n/10]*7 edges are needed to form minimum adjacency
connections between pairs (A1, A7), (A3, B7),
B1). (B1, B3), (B2, Bs), (Byg, Bs).

(Ay, B3), (Asg,

The total number of edges in G.is
3

e(G) <=“E'(n512ﬁogznﬂ) + [n/16]*7

<= i(n;/uﬂogrzn_l -3} +7n/10 + 7
<= ;1.;2(ﬁog2n-] -3) +In/10 + 7

b [k kd‘a‘blm‘l"" vl
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<= n/2flogan] - 4n/s + 7

Theorem 6: The graph G = (V, E) constructed by the 5-way
split method has an even adjacency split. & ’

Proof: Split V into two sets K} and K2 such that

1

K1 A1 U B U A3 U By U Ag

K2

"

81 U Ap U B3 U Ay U Bg

Every V€Ki must oe adjacent to at least one u€éK, and vice
versa since the Aj's and the Bj's are even adjacency splits of

the Sj's. —

Let = n mod 5. That is, j is the number of Si's of size

[n/s]+1. : .

Three cases : . |

[n/s} for all i and Lnlsﬁ'sﬁ even, then |Ki|=|K2]. ‘
|[n/5] for all i and [n/5] is odd, then |K1|=|K2[+1. -

1. If |Sj]
R
b isi|-

2. If j#0 and and {nf5}is even, then [Ajl = |Bj| for i>=j+1
and |A;] = IBjl +1 for 1<=i<=j. Therefore, [Kj| = [Ka[+1
if j is odd and |K1] = |K3| if j is even.

3. If j#0 and and |[n/5] is odd, then |Aj{ = [Bjl +1 for i>=j+1
and |Ajl = |Bj] for 1<=i<=j. Therefore, |Ki| = |Ka| if j is
odd and {K1| = |[K2[+1 if j is even. '

G has an even adjacency split K1 and Kj3.

From theorems 4, S, and 6, the graph G constructed by the 5-way

4

split method has the following properties :
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1. G is an mbn.

2. e(G) <= n/2[logan] ~ 4n/5 + 7.

3. G has an eQen adjacency split.

2.2 Six-way split metho

-~

Given n such that )
[flogzn] - floga[n/é]l = 3,

an mbn of size n can be constructed as follows :

T. Partition n vertices into 6 sets Sj sych that

[n/6] = |S1] >= |S2] >= ..v>= |Sg| = [n/6].
2. For each Sj construct an mbn with an even adjacency split
Aj, - Bj such .that |A{|-|Bj] <= 1. . This may be done
recursively 'or using other heuristics such as Farley's 2-way

split. »

A

3. Add edges to form minimum adjacency connections between
the following pairs : (B3, A3), (83, As), (Bs, Az), (B3,

Ay), (By, Ag), (Be, A7), (B7, B82), (B3, By), and (Bs,

Bg).

e, o
L

- Theorem 7: The graph G constructed by the 6-way split
method is an mbn.

Proof: Referring to figure :2-7 and using similar arguments to
those used in the proof of theorem 4, each mbn Si has at least

one informed vertex after the first three time units. In time

unit four, each S; can start to broadcast internally. The time
required for each set is [log2[n/él. '

Y
&

The total time required to complete broadcasting in G is

t(G) = floga[n/é]j+ 3

/

Ll‘HmL s vhbdedat ki s et

wuk}f}:L;.vnwmjmw{va}mi«a!m%ﬂ&*ﬂ'*‘"w“”w““”“*“ st v
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b

!

Each line represents a minimum adjacency
connection between the Aj's and the Bj's

Figure 2-6: Constructing mbns using 6-way split

A/ . N\
© Since i .

~ [logzn] = [log2[n/6]] = 3

y
, J. t(G) = [logan] - 3 +3
“\ Sh = [logzn] .
Therefore, G isvan mbn. N
., -
é Theorem 8: The graph G constfueted by the b-way split

method has
e{G) <= n/2flegan] - 3n/4 + 9
Proof: Let nj be the number of vertites in each Sj.

the Si's are constructed by Farley's 2-way split method.

Assume

Therefore, the Si's will have a total of
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Figure 2-7: Calling scheme for the first three time
: units regardless of originator for mbns
constructed by the 6-way split .

6
2. (ni/2flog2ni])

RS

edges.

At most 51/12—]*9 edges are needed to form minimum adjacency
connections between pairs (81, A3), (B3, As), (Bs, A3z), (B2,
Ay), (Bu, Ag), (Bs, A7), (81, Bp), (B3, B4), and (Bs, Bg).

The total number of edges in G is %
L \

= i(nilz(ﬁogzrﬂ - 3)) + 9n/12 + 9.

e .
<= n/2({Togyn] - 3) + 9n/12 + 9

n/2{logan] - 3n/4 + 9
o

<

Theorem 9: The graph G = (V, E) constructed by the 6-way
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split method has an even adjacency split.
Proof: Split V into two groups K1 and Kz such that
F K1 = A3 UB2 UA3 U By UAg U Bg

K2

By U A2 U B3 U Ay U Bs U Ag

Using similar arguments to those used in the proof of theorem

6, K7 and Ky are an even adjacency split of G.

v From theorems 7, 8, and 9, the graph G constructed by the 6-way

spiit method has the following properties :
. N

1.. G is an mbn.
2. e(G) <= n/2[|_ogzrﬂ --3n/4 + 9.

3. G has an even adjacency split.

—

\
2.3 Seven-way split method "

Given n such that

flog2n] - floga[n/7]l = 3,

an mbn of size n can be constructed as follows

1. Partition n vertices into 7 sets Sj. If |n/7] is even then
N n/7) = |S1] >= |S2] >= ... >=|S7] = |n/7]
If [n/7] is odd then '
[n/7] = |S1] >= |Su| >= |S7] >= [S2] >=
ISs| >= [Se| >= [S3] = [n/7]

AY

-

2. For each S; construct an mbn with an even adjacency split
Aj, Bj such that 0 <= ]Aj|-|Bj] <= 1. This may be done
recursively or using other heuristics such as Farley's 2-way

split.

. ]
//_

-
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»

3. Add edges to form minimum adjacency connections between
the following pairs : (81, As), (Bs, Bgl), (Ag, B2), (A2,
A7), (B7, A3), (B3, By), (A4, A1), (Ay, Agl), (B, A3),
(A2, As}, (B2, B3), (Bg, B7), (Ay, A7), and (B4, Bs]).

Each line repr:esents a minimum adjacency
connection between the Aj's and the Bj's"

Figure 2-8: Constructing mbns using 7-way split
j

—

.

Theorem 10: The graph G constructed by the 7-:wa§f split
method is an mbn, ? 5

Proof: Referring to figure 2-9 and usir;g similar arguments to-
those used in the proof of theorem 4, each mbn Silhas at l'easi
one informed vertex after tl'):.l Li(Lst three time units. In time

unit four, each S;j can start to'broadg:ast internally, The time

required for each set is ﬁogzrn/fﬂ. Ve

The total time required to complete a broadcast in G is

A

t(G) = [Toga/n/7]+ 3

"

/|
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Since
flogzn} - ﬁOg;l"n/7T| =3
flogan} - 3 + 3

N flogznl

<. t(G)

Therefore, G is an mbn.

Figure 2-9: Calling scheme for the first three time
units regargless of originator for mbns

constricted by the 7-way split

/
The graph G constructed by the 7-way split

/
\Theorem 11:

“method has

elG) <= n/2flogan] - nf2 +
Let nj pe the number of vertices in each Sj.

Proof ;

the Sj's are

Therefore, the Si's will nave a total of

;(m/Zﬁoqznﬂ)

constructed by Farley's

»

2—-way

split

Assume

method.
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edges.

At most [n/14]*14 edges are needed to form a minimum
adjacency connection between pairs (By, As), (Bs, B8g), (Ag,
B2). (A2, A7).7(87, A3}, (B3, By), (A4, A1), (A1, Ag), (By,
A3), (A2, As), (82, B3), (86, B7), (A4, A7), and (B4, Bs).

The total number of edges in G is ’ . =
e(G) <= g;(ni/zﬁogznﬂ + [/ 1]* 14
<= i(n;/ﬂﬁogzn—] -3)) +n+ M1
<=.L;'/2(ﬁogzn-[ -3} +n + 4 .

<= n/2flogan] - n/2 + 14

e
Theorem 12: The graph G = (V, E} constructed by the 7-way

; split’ method has an even adjacency split.
Proof: Split V into two sets Kj and K2 such that

K1 A]UBZUA3UBQVUA5UBGUA7

K2 =Bt U A UB3 U Ay UBs U Ag U By

g

Using similar arguments to those used in the proof of theorem

6, Ky and K3 are an even adjacency split of G.

7

From theorems 10, 11, and 12, the graph G constructed by the 7-way
split method has the following properties :

1.> G st an mbn.
2. e(G) <= n/2logan] - n/2 + 14,

3. G has an even adjacency split.
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2.4 An algorithm to approximate mbgs Ve
From .the previous sectionsi ﬁbn’s cbnstructed by the 5, 6 and 7-way
splits and Farley's 2-way split all have ‘the property that ,ghe\} contain
even adjacency sp}its. Because of this pr'oberty, we can combine all
(thes;e methods in an 3Jlgorithm to approximate mbgs. Furthermore,' this
algorithm will be bettdr if it can utilize the known mbgs as the basis

4

for the algorithm. 5/
‘ ¥

Lemma 13: There is an mBg of size n with an even adjacency
split for each n in the range 2<= n_<=17, '

Proof: The vertices of each mbgv in figure 2-10 are divided
into two sets A and B. Set A contains all the vertices that are °
marked with a "x® and t B contains all those marked with an
LI L Cleafly, A and -B satisfy the conditions for even
adjacency split in G. A and B are an even adjacency split of

G. : .

An Algorithm to Approximate Mbgs

1. If n <= 17 then return the known mbg and stop.

Else
For m := 18 to f_n_/ﬂ do
begin '

Find the number of edges for mbn of size m
cons;tructed by Farley's 2-way split,
S-way split, 6-way split and 7-way
split if possible. L

Find and store the method that give the
fewest edges.

end ‘

2. Find the number of edges for an mbn of size n constructed

L



=
Figure 2-10: Known mbgs for n <= 17
which have an even adjacency split
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» .
py Farley's 2-way split, S5-way split, 6~way split and 7-way
split. Construct the mbn using the method that give the

fewest number of edges.

s

“~

LLemma 14: If Farley's 3-way split can be used to construct an
mbn of size n, then we can also use the 6-way split for the

N

construction.

Proof: Farley's 3~way split method can be used when
A\
2llog2n| < n <= 3*2([logan] - 2)

. n <= 3%2(fegzn] - 2)

> n/6 <= 2({logan] - 3)

Since 2([Togzn] = 3) is an integer,
>. [n/6] <= 2(flogzn] ~ 3)
> flogz[n/6]] <= flogan] - 3

Hence, the 6-way split method can be employed whenever the 3-

way split method Is applicable.

From the above lemma, this algorithm gives a better bound on B(n)

than Farley's algorithm when

2llogan] < n <= 3%2([logan] - 2)
because the 6-way split has a better bound for e(G) than the 3-way
split. Furthermore, this algorithm also gives a better better bound on

B(n) when '
3x2{flogan] - 2) < n <= 7%2tflogzn] - 3)
for-*we can use the 7-way split in this fange,instead of Farley's 2-way

split. 'Ehe bound of e{G) for the 7-way split is also better.

-

Mo improvement has been made for
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- P

7x2(flogan] - 3) < n <= 2ffogynl, . ' -

’ b

It might be possible to proceed with the same technique as 5, 6 and 7~ -

way split and split n vertices into 15, 31 or 63 sets to get improvement
witnin this range. The method will become very complicated and no
improvement can be made for alt n within this range with this approach.

This direction has not been investigated.

2.5 Summary

An algorithm to approximate mbgs is presented. This algorithm gives
a better béeund on B(n) than Farley's algorithm.
For -2lloganl < n <= s*2(flogan] - 3)
_B(ﬁ) <= n.lzﬁogzn-l - 4n/s5 + 7.
For 5*2([logan] = 3) < n <= 3*2(flogzn] - 2) .
B(n) <= n/2[logan] - 3n/4 + 9.
For 3*2(ffogan] = 2) < n <= 7*2(flogzn] - 3)
B{n) <= n/2flogan] - n/2 + 14, .

The bound for B(n) is improved in the range

~

2llogan} < n <= 7*2(Tlogzn] - 3),

That is, the bound is improved three-quarter of the time. Further
reduction in edges for constructing mbns of size
7%2(fTog2n] - 3) < n <= 2ffogan]

may be possible by using the same technique to construct mbns with
1‘25, 31 or 63 'é;aller mbns. The number of edges in mbns constructed
by this algorithm and Farley's algorithm have been computed for
18<=n<=1024. The mbns generated by this algorithm have an average of
approximately 8% fewer edges than the mbnsi generated by Farléy's
algorithm within the range‘where there is improvement and n>=36. A
’ tébie for the comparison of e(G) between this algorithm and Farley's

algorithm is given in Appendix A, . . -
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It is interesting to note in the table of Appendix A that the 6-way
split alw?ys performs better than the 5-way split which seems to
contradict the bounds qgiven abové. This; is ‘probably due to the fact
that the proof of the oour‘wdé assume that the small mbns are
constructed by the 2-way split. However, in practice the small mbns
used will be the mbns having the fewest edges which may be
constructed by. th’e'Z,aS,fG or 7-way split or may be known mbgs.
Consider the case n=160. Th‘e/s-way split will break the vertices into 5
sets of ?2 vertices. Each small mbn is cpnétrdcted by the 2-way split
and contains 80 edges. Thus, the small mbns contain 400 edges gnd
the total number of edges in the :esultinq mbn on 160 vertices is 512,
The 6-way split will utilize 2 mbns on 26 ’vertices and 4 mbns on‘—27
vertices. These small mbns can be' constructed by the 7-way split
yielding a Rotal of 308 edges in the 6 small mbns. Thus, the resulting
mbn ‘on 160. vertices has only 427 edges. This significant savings in
the number of edges in the small mbns compensates for the extra edges
added be‘tween the small mbns by the 6-way split method., Thus, the
6-way split may actually outperform tHe 5-way split in spite of the
bounds. . The behaviour of the 7-way split is similarly influenced 'by

the actual method used to construct the small mbns. . >
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Chapter 3

Algoritﬁms to Approximate 1-ft Mbgs

3.1 Definitions

Let G = (V, E) be a graph that represents a communication network,
and a subgraph G' = (V, E') with E' = E - E® where>E' is a set of k
edges in E., The set E* represents faulty communication links in the
network. Broadéasting in G with enough redundancy so that brogdca"st
can be completed with any set E® of faulty links s "Called

k-fault-tolerant broadcasting (Fault-tolerant will be abbreviated ft

below). A k-ft broadcasting scheme is a broadcasting scheme which

contains k+1 mutually edge disjoint calling paths from the orian‘ator to
each m\ér‘nber of the network. Ft broadcasting is desirable if reliability
is considered as an important factor in a communication network. The
ft broadcasting scheme does not detect which communication link fails.
The broadcast problem discussed in chapter 2 corresponds to 0-ft

broadcasting.

Let n denote the number of vertices in G, e(G) denote the number of
edges in G and tk(u) denote the time required to complete a k-ft

broadcast using u€V as the originator. Let tkx(G) = Max(tk(u) : u€Vv).
That is, every u€V can complete a k-ft broadcast in less than or equal

to tk(G) units of time,

¥

In general, the minimum time Tg(n) required to complete a k-ft
Y o ‘
broadcast in any -communication network G of n members is not known.

It has been shown that

Tk(n) >= flog2n] + k

F.
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The only known values for Tk(n) for k > 0 are those for k=1,2

{Liestman 81]. For k = 0 the result is given in tHe previous chapter.

Fork=lat:\dn>=3,

Ti(n) = [logzn] + 1. '
Fork=2,r;>=Sandn=2i-l,
! T2(n) = [logzn] + 2.
For k =2, n>=5andn =2 -1,
| T2(n) = [logzn] + 3. | .

Definition 1: A’ k-fault-tolerant minimum ‘broadcast network (k-

ft mbn) is a graph G such that a k-ft broadcast can. be

completed in minimum time [Liestman 81].

-

e

A k=-ft mbn represents a communication network that can complete a k-

ft broadcast regardless of originator in minimum time,

Definition 2: A k-fault-tolerant minimum broadcast graph (k-ft

mbg) is a graph G such that G is a k-ft mbn and e(G) is
minimum. A k-ft mbg is a k-ft mbn having the minimum

number of edges. [Liestman 81]. .

A k-ft mbg represents a communication network with the fewest

communication links between members that can complete a k-ft broadcast

in minimum time regardless of originator.

-
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Let Bygin) denote the number of edges of a k-ft mbg of size n. The

value of Byk(n) for arbitrary n is not known. The follqwi"ng upper

‘bound for Bk(n) where k =°1, 2 are from Liestman [Liestman 81].
For n =2i, _
81(n) <= nflogan] - n/2..
B2(n) <= nflog2n] " n/2.
For n = 2llogan] + 2i,
By(n) <= nflogan] - n.
B2(n) <= nfiog2n].
For other n, »
B1(n) <= nflogzn].
B2(n) <= nflog2n] + n.
The above results are obtained fr&m Liestman's heuristiss to generate 1~

ft mbns and 2-ft mbns. Other heuristics to generdte 1-ft mbns and 2-

ft mbns are presented in the following sections.

3.2 1-ft two-way split method

. ,
The method used in the 0-ft algorithms is not directly extendable to

the k-ft cases for k=1,2. Let n be even., Suppose we partition n
vertices into two sets of equal size and forﬁ two smaller k-ft mbns.
Each of these can complete a k-ft broadcast in Tk(n/2} units of time,
'As before, we add edges to connect the small 1-ft mbns together
forming a graph G. If we use the first k+1 calls to ensure that each

component has at least one informed vertex, we get

tk{G) = Tk(n/2) + kK + 1 > Tk(n)

for k=1,2 and even n. Thus, using the first k+1 calls in this fashion

4Ayill notproduce the desired results.

i.et us consider the case for k=1.

Titn) = [logan] + 1 = flogan/2} + 2 = Tp(n/2) + 2
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We propose a scheme using two 0-ft mbns of size n/2 connected by
additional edges. In the first time unit, the originator (in‘componen)t
A) calls a member qf’ the other component (B). The two components
then proceed with 0-ft broadcasts internally. This takes Tg(n/2) units
of time. . During the last time unit, each member of one component calls
a member of the other component, Thus, two calling paths frofn the

originator to each vertex are completed. For a vertex in A, the two

calling paths are

1. The calling path within A.

2. Tne first call to B, a calling path within B and a call back

to A.
Note that it is impoptant that the originator calls two distinct members

of B. The following heuristics to approximate 1-ft mbns are based on

the above idea.

1-ft 2~way split for even n
Given n is even, a 1-ft mbn of size n can be constructed as follows
1. Partition n vertices into two equal sets Si and S, and for

each Sj construct a 0-ft mon. This may be done by either

the 2,.5, 6 or 7-way split.

2, Number the vertices in S1 and S3. Add edges to connect

vj€Sy to ujeSy for =tean/2,

3. Add edges to connect vj€51 to uj+1€S2 for j=1..(n/2;1) and

vn/2 1o ujg.

Theorem 3: The graph G constructed by the 1-ft 2-way split

algoritnm for even n is a 1-ft mbn,

Proof: without loss of generality, assume that the originator is

i
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Figure 3-1; Constructing 1-ft mbns using 1-ft 2-way split

VJ€S1 and j=n/2, In the first time unit, vj calils Uj+1. After
the first time unit, each 0-ft mbn has an informed wvertex.
Starting from time unit two, each 0-ft mbn broadcasts
internally. ~ This takes f[logzn]-1 time units. in time unit
floganl+1, conduct calls between vk and uk for k=1..n/2. The
tot.al time required for this calling scheme is ﬁogzrﬂﬂ. Thus,

the time constraint is not violated.

For the wvertices in Sj, each has one calling path which is
obtained by broadcasting internally and another calling path
which is from vj to\uj+1, calls within S; and fr:m Uk to Vi.
Similarly, each vertex in S has one calling path which is from
vy to uj+1 and calls within Sj. Moreover, each aliso has a

second calling bath from calls in S1 and then from v to uy.

Clearly, the two calling paths for each vertex in the Sjs are
disjoint. Hence, the graph C constructed by the 1-ft 2-way

soiit for 'even n is a 1-ft mbn,

PN
N
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Figure 3-2: Possihle method to construct 1-ft mbns
when n is odd

if n is odd, the above scheme for the construction of 1-ft mbns does
not work because not every vertex can participate in the calls at the
last time unit. Consider the following scheme. Suppose n is odd and
we partition n vertices into two sets Sj, S2 such that [S]s|So]+1.
Number the vertices and add edges to connect ujeSy to vjeSy, uj=57 to
Vi+1€Sy, where i=1..n/2 fsee figure 3-2). Let the originator be vi&Sjy.
In the first time unit, vk calls uk. |In the second time unit, each S;
has one informed vertex and they can broadcast internally. This takes
flogan]-1 time units. {n the last time unit, conduct calls between v;
and uj if i<k, vij4+1 and uj if i>k. In this way, only the originator Vk -
does not participate in the calls at the last time unit. Thus, fﬁé’lf|
vertices except the originator have two calling paths. However, this
scheme does not work if the originator is in S3. In fact, this scheme
only works if the Ofiginator is in the larger set. '” we can "force" the

originator to be in tne larger set all the time then this scheme will work
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for all odd n. The "forcing" of the originator to be in tHe larger set
can be done by splitting n vertices into two equal sets Sy, Sz and a
single vertex w. Construct 0-ft mbns for S1U{w); and S2U{w} with the
property that Sy, Sz are also 0-ft mbns themselves. If the originator
is in S7 then we can consider S]U{w} as the large'r set and S as the
smaller set, Similarly, if the originator is in S; then we can consider
SZU';w} as the larger' set and Sy as the smaller set. Hence, our aim
pecomes to find a method to construct 0-ft mbns which have the desired
property. If suchia method exists, we can use the scheme dederived
above to construct 1-ft mbns when n is 'odd. It turns out that a

subset of 0-ft mbns constructed by Farley's 2-way split has this

property.

Lemma #4: At least one 0-ft mbn G on n>=2 vertices
constructable by Fariey's 2-way split method contains a vertex
v such that tne graph G' obtained by deleting v and all edges

incident with v from G is a 0-~ft mbn on n~1 vertices,

Proof: Farley's 2-way split forms an mbn of size n by
connecting two mbns S; and Sy of size [n/2] and |n/2]
respectively with |n/2] edges. These edges connect each vertex
in Sy to a distinct vertex in Sy. Any such set of connections
is allowed by Farley's 2-way split method. Let us consider
those mbns constructed by this method sand also satisfy the

following conditions

1. If n=1, the vertex is a removable vertex.

Z. If n=2, the mbn is a K7. Choose either vertex and call

it a removable vertex,

3. If n>=3, connect two small mbns Sy and Sy of size [n/2]

and n/Zl respectively such that

y

a. 1if n is even, then add a perfect matching petweem__

4
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St and S3. Choose one of the removable vertices
from Sy and S; to be the removable vertex of the

new mbn of size n.

8% If n is odd, then add a perfect matching between
S}\{the removable vertex in S]} and S;. The
removable vertex from S71 is designated to be the

removable vertex of the new mbn of size n.

Let G be a 0-ft mhn constructed by Farley's 2-way split and

satisfy the above condition at each step of the construction. G

is constructed from two 0-ft mbns S7 and S of size [n/2] and

In/2]

respectively, Let G' be the graph obtain from G by

deleting the removable vertex v of G and its incident edges.

For n=2, the remaining graph G' is still a 0-ft mbn for it has

only one vertex,

Assume that the lemma is true for n<=k and consider n=k+1,

Two cases

1.

Suppose k+1 is odd. Tne smaller mbn S; and the edges

;o

that connect the two mbns are not affected by th
removal of v. Consider the larger set Si. Condition 3

assures that v is also the remgvable vertex of Sty and S

has less than k vertices. From our assumption the
&

qgraph formed by deleting v and its incident edges from

Sy is also an mbn. Hence, the graph GC' is an mbn.

Suppose k+1 is even and the removable vertex v is in
St Sy is not affected by the removal of v. Consider
the set S3; that contains the removable vertex
v. Condition 3 assures that v is also the removable
vertex of 5) and Sy has less than k vertices., From our
assumption the aqraph formed by deleting v and its

inciaent edges from Sy is aiso an mbn, Hence, the
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- graph G' is an mbn.

r

~

The lemma is true for n=k+1,

-~

. +
.~ The lemma holds.

1-ft 2-way split for odd n
Given n such that n is odd, an 1-ft mbn of size n can be constructed

as follows

1, Partition n vertices into two equalrsets S1, $2 and a single

vertex w,

2. Construct 0-ft mbns for S]U{wj'- and Szu{w} such that Sj,

Sy are also 0-ft mbns. This can be done by 'using Farley's

2-way split (lemma 4).

w

. Number the vertices in S and Sj3. Add edges between
Vi€S1 and ujiSy for j=1..|n/2], VvjSS1 and uj+1sSy for
j=1..([n/2}-1), Vv|n/2} and u1. Note that the edges added

form two disjoint perfect matchings from S to Sj.

»

.
Theorem 5: The graph G constructed by the 1-ft 2-way split
algorithm for odd n is a 1-ft mon.,

Proof: without loss of generality, assume that the originator
vi©S1. Let S-;U-fwi% pe the larger set and call it A. We can

consider the (_éraph G consisting of 0-ft mbns A and S3. In the

first time un‘&_t, vj calls uj+1. After the first time unit, each

mon has an informed vertex. Starting from time unit two, each

mbn oroadcasts internally. This takes [logyn]-1 time units, In
: N .

time unit ﬁoggn_éﬂ, conduct calls between vy and uyx for k>j,
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between vk and ukﬂ‘for k<j, and between w and ut. The
total time required for this calling scheme is ﬁogzn-lﬂ. )Thus,‘

the time constraint is not violated.

For the vertices‘in A, each has one calling path which is
obtained by broadcasting internally and another calling path
which is from vj to uj+1. calls within Sz and from uy to vy for
k>j, or from uk+} to vk for k<j, or from uji to w. Similarly,
each vertex in S2 has one calling path which is from Vj to uj#
and calls within S, Moreover, each also has a second calling
path from calls within A and then from vi to ukx for k>j, or
from vk to uk+l for k<j, or from w to uj. Clearly, the two

calling paths for each vertex in A 'and S2 are disjoint.

Suppose w is the originator. We can let S]U{_w} be the larger
set. We can use the same broadcasting scheme as described
above for the first ﬁogzn-l time Qnits. In the last time unit,
conduct calls between the vertices in S1 and S). Thus, every
vertex except the originator w has two calling paths. Hence,
the graph G constructed by the 1-ft 2-way split for odd n is a

1-ft mbn.

Theorem 6: The 1-ft mbns constructed by the 1-ft 2-way split
algorithms give

e(G) <= [n/2]*{logzn] + n/2.
Proof: At most c2*lfn!2‘l/2'*ﬁ0q2[}s!2i edges are needg;i ‘to
construct the two smaller 0-ft mbns of size f—n/ﬂ. At most n
edges are needed to connect vj to uj, Vj 10 Uj+1, and vp/y to
ut for j=l..nf2.

S

e(G) <= [n/21*llogyn/Z] + n

I
1

<= [n/2{Mogyn] - 1) + n
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<= [n/Z]*[logn] + n/2.

Although ‘lemma 4 does not hold directly for 0-ft mbns constructed by '
the 5, 6, and 7-way splits, a similar result can be obtained by adding
a small number of edges to the 0-ft mbn. However, the bound of e(G)

for the resulting 1-ft mbns will n_o_t{ be better than the above graph.

3.3 1-ft Six-way split method

As ,we have seen in chapter 2, better results can be obtained by
using more small 0-ft mbns to construct large 0-ft mbns. It is natural
to think that the same idea may work for 1-ft mons., The following is a

scheme based on the same idea.

1-ft 6-way split for even n
If n is even and
flogan] "g flogam/e]l = 3,
a 1-ft mbn c\\ be constructed as follows :

1. Partition n vertices into 6 sets 35 such that

a. |[n/6] <= |Sj] ><= [n/s].
b. |S1] = |S2}. IS3| = [S4| and [Ss| = |Se].

2. Construct 0-ft mbns with even adjacency splits A; and B; for

each Sj such that

0 <= |Ajl - |Bj] <= 1.

3. Add edges to form minimum adjacency connections to connect
the following pairs (B3, Bg), (Ag, Ay), (Byg, 83), (A,
As), [(Bs, 83}, and (A3, A1).

4. Add edqges to form perfect matchings petween Sy and S, S3
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ﬂf)‘

Each line represents an even adjacency
connection between the Aj's

and the Bj's

Figure 3-3; Constructing 1-ft mbns using 1-ft 6-way ‘split

and Sy, and Ss and Sg.

Theorem 7: The graph G constructed by the 1-ft 6-way split

for even n is a 1-ft mbn,

Proof: without loss of generality, we can assume. that the

. . . ™, . .
originator is v i€Aj1. Consider the following broadcasting

scheme : R

1. In time unit 1, the originator vj] calls ui€81 sucn that

ui is also the first vertex that vi call§ when v starts

4 to broadcast internally within Sj. This is possible
because A7 and 87 are an even adjacency split of 51 and

from theorems 6, 9, 12 and lemma 5 in chapter 2, a

vertex always starts to broadcast by cal‘l‘mg‘a vertex in

the other set of an even adjacency split.

2, kn time unit 2, v1 and uj call elements v35A; and u%B;
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respectively. This is possible because there is a perfect
matching between Sy and Sj.
3. In time unit 3, conduct calls between the following pairsr
: {vi€Aq, V3éA3), (u1€B1,” ugeBg), (v2€A2, VsEAS),
“and (u2€B3, uy€By). These calls are possible because
they are connected by minimum adjacency connections.

4, In time unit 4, each mbn starts to broadcast internally
which takes [logyn]~3 time units. No collision will occur
in Sy or S for their first call in broadcasting internally
are between the informed vertices vi and uj, and v
and uj. . /

5. In time unit [logyn]+1, conduct calls between the vertices
of the following pairs : Sj3 and Sy, S3 and Sy4, Sg and
S6. These calls are possible for tnere are perfect
matchings between them. l

- >

The time required for this slcheme is flogznl+1,, Thus, the

time constraint is not violated.

For the vertices in Sy, each has a calling path from
broadcasting internally, another calling from vy to v2€S;, calls

within\ Sy, and calls between Sy and Sj. )

For the vertices in S; except v2, each has a calling path from
vi to v2, calls within S and another calling path from calis
within Sy, calls between Sy and /Sz. For vz, it has a calling
path from v to vz and another &alling path from vi to uj, uj

to w2, and uz to v2.

“~

Clearly, the two calling paths for vertices in S} and S; are
disjoint. Using similar arguments, each vertex in 53, Sy, Ss5,
and Sg also has two disjoint calling paths. ‘HeaAee, G is a 1-ft

mbn., - !

. . I B 103
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rTheorem 8: The 1-ft mbn G constructed by the 1-ft 6~way
split for even n has ’
u‘a;

e(G) <= n/2flogan] - nf2 + 6. h
Proaof: Let nj be the number of edges for each Sj, and assume
':':t':hath the Sji's are constructed by Farley's 2-way split. Each

small 0-ft mbns require at most n;/2[logan;] edges. The total

" number of edges for ali six 0~ft mbns is i(ni/Zﬂogznﬂ).

inh
At most [n/12]*6 edges are required to form miniﬁﬁmf adjacency
connections between pairs (Bj, 86)‘, (Ag, Ay), (By, B2), (A2,
As), (Bs, B3), and (A3, A1).

~

At most n/2 edges are required to form perfect ﬁatchings

between the pairs (Sy, S2), (S3, Su), (S5, Sgl.

The total number of edges

b
e(G) <= 7 (nj/2flogzni]) + n/2 + [n/12]*6

=y

<= n/Z(ﬁqun—l -3)+n/2+n/2+6

<= n/2flogan] - n/2 + 6.

~

As with the 1-ft 2-way split for even n, if n.is odd, not ail vertices
can participate in the calls at the last time unit. Thus, the 1-ft 6-way
split for even n method cannot be used for odd n. The approach used
in the 1-ft 2-way split for odd n is to let every vertex except the
originator participate in calls during the last time unit compteting .the
second calliﬁg path for every'vertex. Another approach is to make
sure that one vertex has two calling Paths pefore the last time unit,
The remaining vertices can all complete their second paths during the

, . - : . ,
last time unit. Tne following structure is useful in constructing

)
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networks in which the second approach can be used.

-

Sink Structure , - ;

Sink

Mdﬂ—c““vﬁC} MI

- = Hc‘-rdn‘na MZ

Figure 3-4: Example of an sink structure

¢

A sink structure for odd n such that

n <= 2[logan] - 3,
catt be constructed as follows

1. Partition n vertices into 2 sets A, B such that |Al=|8]+1.

2, Construct 0-ft mbns for A and B using Farley's 2-way split.
Let A be constructed by mbns Py and Py with |Pi|=|Po|+1.
Let B be constructed oy mbns Q7 and Qj with [Q1]=]Q2]<2k.

3. Choose a vertex s in Pz, called the sink and add edges to

conmect s to every vertex in B.

4, Add edges to construct two disjoint perfect matchings Mj
and M3 from B to A\{s} such that each vertex in 8 has at

least one edge that is connected to Py,
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Lemma 9: A sink structure is a 1-ft mbn.”
Proof: 2 cases :

1. Assume that the originator is in 01. In time unit 1, the
originator «calls a wvertex in P]IV through- a perfect
matching (say Mj). In time unit 2, Pj and Qp start to
broadcast internaliy which takes I—Iogzn-l-Z time units.
Since |Q1|<2K; at least one informed vertex must be idle
at some time unit during the irternal broadcast of Qj.
This idie informed wvertex can call the sink s which is
‘not participating in any call during this period of time.
In time unit ﬁogzn_], conduct calls between the vertices
in (Py, ¥32) and (Qy, Q2). Thus: pefore the last time
unit, the sink s already has two disjoint calling patns.
The first calling pe'yth is from calls within Q1 and to
s. The seconﬁ calling path- is from tne originator to a
vertex in Py, calls within Py and ™ s. In time unit
ﬁogzn-lﬂ, conduct calls between) the vertices in A\’{s}
and B using the other perfect matching M. For ~
vertices in A\{s}, they have a calling p’éth form the
originator to a vertex in A and calls within A. They
have another calling path from calls within 8 and then
calls between B8 and A\{s}. For vertices in B, they
have a calling path from broad.castin‘g; internally. The“y
have another calling path from the originator to ‘a vertex
in A', calls within A and then calls between B a'nd‘
A\{s}. Hence, G is a 1-ft mon, Sismilarly, we can use

the same arguments if the originator is in either Q7 or

Ple

Z(. Assume that the originator v is in P2. In time unit 1,

5

—~,

-
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'the originator calls a vertex in A using an edge from a
perfect matching (say Mj). In time unit 2, A and B
start to broadcast internally which tal;es I_logzn-]-1 time
units. In time unit I-Iogzn-l+1, conduct calls between the
vertices in B and A\{v} through the perfect matching M)
‘and an édge conhected to the sink. Thus, every wvertex
except the originator has two disjoint calling paths.

Hence, G is a 1-ft mbﬁ.

. ,
The sink structures have more edges than the 1-ft mbns constructed
by the 1-ft 2-—wayl split foq odd n. However, the sink structure can be
incorporated in schemes “that use' more than 2 small 0-ft mbns to Build

T

1-ft mbns. The following scheme to.construct 1-ft mbns for odd n uses
7a sink structure as part of the building blocks, The construction is
similar to the one used in the 1-ft 6-way split for even n. The
difference is that Sy and S; are replaced by a sink ’structure. Extra
edges are then added to "for"ce" the first informed vertex of A to be in

Py whenever the originator is not in A,

1-ft 6~way split for odd n /
If n is odd and n < 2K-1 and

logzn] = flog2[n/6]l + 3,

a 1=ft mbn of size n can pe constructed as follows

1. Partition n vertices into 6 sets S; as evenly as possible such

that
a. |S1] is odd and S| < 2Kk-1,

b. |5yl
c. |S3]

IS2] +1. s
[Sul and [Ss| = [Sgl. )
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2. Construct 0-ft mbns with even adjacency splits Aj, Bj for
each Sj, i=3..6, using either 2, 5, 6, or 7-way splits such
that

0 <= |Aj]l - IBj] <= 1.

Construct a sink-§tructure for Sy and S; where Sp consists
of Py, P7 and Sy consists of Q1, Q3. :

3. Add edges to connect the vertices in the following pairs
(Ay, Ag), (B3, Bs), (8s, P2), (A3, P1), (As, Q1), (Ba,
Qz2), and (Bg, Pj1) such that every vértex in one set is
connected to at least one vertex of the other set.” The
reason to connect the pair (Bg, P31}, is to "force® Py to
have the first informed vertex in $1 whenever the originator

T

is not in S7.

4. Add edges to form perfect matchings between the pairs (S3,
Sy), and (Ss, Sg).

Theorem 10: The graph G=(V, E) constructed by the 1-ft 6-
way split for odd n is a 1-ft mbn.

Proof: Let*s be the sink in thé’/sink structure for S1 and S3.
Using similar arguments to those used in the proof of theorem
7,‘the vertices in V\{s} all have two disjoint calling paths.
Moreover, using similar arguments to those used in the 5proof of
lemma 9, the sink s also has two disjoint calling paths. Hence,

G is a 1-ft mbn.

s

Theorem 11: The 1-ft mbn G constructed by the 1-ft (vaay
split for odd n has
S
e(G) <= n/2flogyn] ~ n/12 + 9,

Proof: At most’i(njuﬂogy_nﬂ) = n/2{[logzn] - 3) edges are

=

Q
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needed to construct 0-ft mbns for the Sj's.

At most [?1/12_]*7 edges are needed to connect the pairs (Ay,
Ag), (B3, Bs), (Bg, P2), (A3, P1), (As, Q1), (By, O2), and
(B6l p1)'

At most [n/6]*2 edyes are needed to form the perfect matching

between pairs S3 and Sy, and S5 and S5¢.

At most [_n/6_j*3 edges are needed to form the two perfect
matchings and the edges connecting to the sink in the sink

structure consisting of Sy and S3. -

Tre total number of edges is
e(G) <= n/2(flogan] = 3) + [n/12]*7 + [n/6]*2 + |n/6]*3
. <= n/2[logyn] = 3n/2 + 17n/12 + 9

<= n/2{ingan} - n/12 + 9

3.4 Summary

Four different metnods to construct 1-ft mbns are presented. The
methods greatly improve the upper bound for By(n). In fact, the new
sound is approximately one half of tne old bound.

For n is even, n >= 12 and 2logon] < n <= 3*2(1_'092”—' = 2),
81(n) <= n/2[logan] = n/2 + 6.
Far nois odd, n > 12 and 200920} < n <= 3*x2(flogzn] - 2} - 3,
Byfn) <= n/2flogzn’ - nf12 + 9.
Fzr other n,
Biin) <= [n/Zi*flogen: + n/2.
* is onssinle that similar constructions using other numbers of small 0-

mons may result in furtner improvements.,

[ Zr
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Chapter 4
-

v
Algorithms to Approff‘Mlg 2-ft Mbgs

As we have seen in chapter 3, for 1-ft mbns every vertex must have

two edge disjoint cailing paths. Similarly, for 2-ft mbns every vertex
must have three edge disjoint calling paths. F:J\:the»rmore, the approach
used in constructing 1-ft mbns can 2also be extended to construct 2-ft
mbns, That is, we can use 0-ft mbns as building blocks to construct
2-ft mbns. WUsing similar broadcasting schemes as in 1-ft mbns, we can
use Tz{n)-2 time units to construct one calling path to every vertex
and use the last two time units to complete two more edge disjoint

calling paths to every vertex. The following methods tc construct 2-ft

mbns are based on this idea.

4,1 2-ft Four-way split for n mod 4 = 0

K}
if n mod 4 = 0, a 2-ft mbn can be constructed as follows
1. Partition n vertices into 4 sets S such that
n/4 = |Sy] = |S2] = |IS3] = ISul.

2. Construct U-ft mbns for each S; using any method.

3. Add edges to form two edge disjoint matchings between tAhe
vertices of each of the pairs (S1, S2), (S3, Su), (Sy, S3),
and (S22, Sy).

Theorem 1: Tne nrapn G constructed by the 2-ft 4-way split

il
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Each line represents an even adjacency
connection between the two connected sets

Figure 4-1: Constructing 2-ft mbns using 2-ft 4-way
split for n divisible ny 4

for n mod 4=0, is a 2-ft mbn.

Proof: without loss of generality, assume that the originator

v1is in S1. Consider the follow'ing broadcasting scheme

1. In time unit 1, the originator vi calls a vertex vz in 5S).

e
2. In time unit 2, vy calls v3 in S3 and V3 calls vy in Sy.

s
3. After 2 time units, each Sj has an informeg-vertex.

They can broadcast internally during the next [logyn]-2

time units.

4, In time unit [logzn]+1, conduct calls between the vertices
from the pairs (Sy, S2), and (S3, Sy) through the other

perfect matchings between them,
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L S ¥

Ny
R

A single line denotes that a vertex in
one set calls a vertex in the other set

A double line denotes that each vertex in
one set calls a distinct vertex in the other set

Figure 4-2: The three disjoint calling paths for the
vertices in the Sj's in 2-ft mobns
constructed by the 2-ft 4-way splitamethod
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5. In time unit [logzn]+2, conduct calls between the vertices
from the pairs (S, S3), and (S, Sy) through the other

perfect matchings petween them,
7

Consider the vertices in S3. They have one calling path from .

the originator vi to v and calls within S2. They have another
‘path from calls within S1 and calls between the verticés in 51
and S; througn a different matching. Their third calling path
is from vi to wv3 in S3, calis within 53, calls petween the
vertices in S3 amd Sy, and calls between vertices in &y and S3.
The three %ﬂing paths for each vertices in S are 'clearly edge
disjoint. Thus, every vertex in S; has three edge disjoint

calding paths.

Referring to figure 4-2 and using similar arguments as for
vertices in S, every vertex in each Sj nhas three disjoint

calling paths. Thus, G is a 2-ft mbn,

L\

.
Theorem 2: The 2=ft mon G constructed by the 2-ft 4-way

split for n mod 4=0 has

e(G) <= n/2[logyn] + n. -
4
Proof: At most y, (nj/2[loqani]) edges are needed to construct

13

0-ft mbns for each 5j.
A

-

At most n/u4u*8 edges are needed to form perfect matchings

between pairs {Sy, S2}, (S3, Sy}, (Sy, S3). and (S3, Sy).

The tota! number of -edges is T
a4

e{G) <=Z(ni/2ﬂoggnﬂ) + n/u*s

=1

<= n/2{fleqan] - 2) + 2n

<= n/2ﬂogzrﬂ + N,
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Since every vertex has to participate in the last two c/alls, the 2-ft 4-
way split for n divisiple by 4 cannot be used if n mod 4 > 0.
However, as we have seen in chapter 3, we can use sink structures to ’
overcome this difficulty. The following sections describe methods to

construct 2-ft mbns for n not divisible by 4, using sink structures as

part of the puilding blocks.

4,2 2-ft Four-way split for n mod 8 = 1

The construction of 2-ft mbns for n mod 8 = 1 is very similar to the
one used in the 2-ft 4-way split method for n mod 4 = 0. The
 difference is that the connection between S1 and Sy is replaced by a
sink structure with S1 being the jarger set.” The connection betv»)een
S1 and S3 is also replaced by a sink structure with S1 being the larger
set and having a different sink from the previous sink structure. The
two si_nk structures ensure that the two sinks st and sy have two edqg
disjoint calling paths in the first To{n) time units. In the next to lask
time unit, every vertex except si participates in the calls. Similarly,
in the last time unit, every vertex except s participates in the calls.

Thus, every vertex can have three calling paths.

2-ft 4-way split for n mod 8 = 1

If n mod 8 = 1 and n.>= 16, a 2-ft mbn can be constructed as follows

¢

h}

]

1. Partition n vertices into 4 sets Sj such that

a. |Sy] is even

o. - IS2] = |S3] = [Syl.
co ISyl = |n/ul
d. 1St = ISl s 1.
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-

2. Construct 0-ft mbns for Sy using any method. Construct
sink structures for Sy and S, St} and S3 having different

v sinks s1 and s respectively.

s

3. Add edges to form” two edge disjoint matchings between the

pairs (S;, Sy), and (S3, Sy).

Theorem 3: The graph G constructed by the 2-ft 4-way split

for n mod 8 = 1 is a 2-ft mbn.

Proof: Using the sam@ broadcast scheme and the same
arguments to those used in the proof of theorem 1, every ™
- vertex except the two sinks has three edge disjoint calling
paths. Using similar arguments to those used in the proof of
lemma 9 of chapter 3, ‘the two sinks have two edge disjoint
calling paths in the first Ty{n)} time units. Furthermore, each
s)ink participaties in one of the calls in the last two time units
which gives them another calling path. Hence, the two sinks
also have‘three edge disjoint calling paths. Thus, G is a 2-t;t

'
i
mbn.

Theorem 4: The 2-ft mn G constructed by é’"«e 2-(( 8-way
split for n mod 8 = 1 has ) ’
e{G) <= n/2[logan] + 3n/2.
Proof: The number of edges in G is equal to the number of
edges in a 2-ft mbn constructed by the 2-ft d-way split method:

fﬁfﬂfﬂﬂﬁ4=9’ﬁjrtf5 theextraeegesaéaed.

At most |n/4}*2 edges are needed to connect tne sinks to

vertices in S and Sj. \

Tne total number of edges is
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e - e(G) <$ n/2ﬂ(}g2n-| + N+ ,Ln/thz‘
<= n/2flogan] + n + n/2

<

n/2{logan] + 3n/2. .

4,3 2-ft Four-way split for n mod 4 = 2

~The ‘construction of 2-ft mbns forr n mod 4 = 2 is very similar to the
one used in the 2-ft u-way sph( method for n mod 4 =0. The
difference is that Sy and S, S3 and Sy are replaced by sink structures
with S22 and Sy being the larger set, The two sink structures ensure
that the two sinks have two edge disjoint caHJ'ng paths -in the first
Tol(n) time wnits. In the last two time units, every vertex except the
sinks participate in two calls but the two sinks only participate in one

of the calls in the last two time units. Thus every vertex can have

three calling paths.

2-ft 4-way split for n mod 4 = 2

o

If A mod 4 = 2 and n < 2K =2 and n >= 8, a 2-ft mbn can be

constructed as follows

~~

1. Partition n vertices into 4 sets S such that
a. [Silvis even. .
20 [n/a].

y 74l

o
v

H

{Sq!

1S3

"
i

O
U'a

7. Construct sink structures for Sy and Sy, S3 and Sy,

.5

3. Aad eages .to form two edge disjoint matchmgs between the

pairs (Sy, Sz, ang {Sp, S4t.
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Theorem 5: The graph G constructed by the 2-ft 4-way split

for n mod 4 = 2, is a 2~ft mbn.

Proof: Using similar  arguments to those used in the proof of

theorem 3, G is a 2-ft mbn. b

N o

Theorem 6: The 2-ft mbn G constructed by the 2-ft 4-way

.

split for n mod 4 = 2 has
e(G) <= n/2flogan] + 3n/2.
Proof: The number of edges in G is equal to the number of

edges in a 2-ft mpbn constructed by the 2~ft 4-way split method

for n mod 4 = 0 plus the extra edges added.

At most |n/4]*2 edges are needed to connect the vertices in S

and S3 to their sinks.

The total numoer of edges is
e{G) <= n/2flogan] + n + |n/4]*2
<= n/2[lagan! + n + n/2

<= n/2flogynl + 3n/2.

4.4 2-ft Four-way spht for n mod 8 = 3

The construction of 2-ft mbns; for n mod 8= 3 is exactly the same as
tne construction used n constructing 2-fl mbns for n mod 4 = 2. Tne
anty  Adifference 1s that Sy is the smaller set n tne sink structures
zonsisting of Sy ard S, St and S3 instead of tne larger set. Let 5y
consist of two sets 3y and Uz such that Q;-=()2<= 2i-2,  There will pe
3t leas! two idle nformed vertices when Oy or Oz broadcast internally,
M2 ~an use tnese twn cdie informes vertices to call tne sink m Sz and

-

~
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the sink in S3 giving two edge disjoint ‘calting paths to the two sinks in
the first [logon] time units. In‘the last two time units, every vertex
except the two sinks participate in two calls and‘ each sinkaarticipates

in only one call. Hence, every vertex can have three edge disjoint

calling paths.

2-ft 4-way split for n mod 8 = 3
iIf n mod 8 =3, n >= 16, and n # 2K -5, a 2-ft mbn can be

constructed as follows
° -

1. Partition n vertices into 4 sets $; such that

1S3 |= [Sl = fo/dl.
ISq] + 1. ' : ,

a. ISyl
b. [S2]

c. |Sy] is even.

d. |Sq] <= 2k - 4, -
2. Construct a sink structure for Sp-and S, S7 and S3 such
that Sy is the smaiiler set in the sink structures. Let 5 be

constructed by two 0-ft mbns Py, P2 such that

[Pl = P2 + 1.
Let S3 pe constructed by two 0-ft ‘mbns. Fq, F2 such that
IFal = |F2 + 1.
) . =
3. Add edges to form two ‘edge disjoint matchings between the
pair (5:2, Sy), and (S3, Sy) such that each vertex in 5y is
connected to at least one vertex in Py and F1. This is to
ensure that the first informéd vertex is in Py if the
originator is not in S and the first informed vertex is in Fj

~if the originator is not in S53.

Tneorem 7: The graph G constructed by the 2-ft 4-way split

V

for n omod %=3, s a 2=-ft mnn,
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Proof: Using similar arguments to those used in the proof of

theorem 3, G is a 2-:ft mbn.

Theorem 8: The 2-ft mbn G constructed by the 2-ft 8~way
split for n mod 8 = 3 has
e(G) <= n/2flogyn] + 3n/2. : 5
Proof: The number of edges in G is equal to the number of
edges, in a2 2-ft mbn constructed by the 2-ft 4-way split method

for n mod 4 = 0 plus the extra edges added.
\

=

At most |n/4]*2 edges are needed to connect the vertices in

S2, and S3 to their sinks.

The total number of e%es is
e(G) <= n/2flogan] + n + |n/4]|*2
<= n/2logan} + n + n/2

<= n/2[logan] + 3n/2.

As we have seen in previous chapfers, we can use more 0-ft mbns as
our building hlocks to construct 1-ft mbns. The following methods to

construct 2-ft mbns use eight 0-ft mbns to construct 2-ft mbns instead

of four,
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4,5 2-ft Eight-way split for n mod 4 = 0 ) _

Each line represents an even adjacency
connection between the connected sets

Figure 4-3: Constructing 2-ft mbns using 2-ft 8-way
split for n divisibie by 4

if n?nod 4 = 0, a 2-ft mbn can be constructed as follows :

1.

“vertices of each of the pairs (S1, S2), (S3, S4), (Ss. Sgl,

Partition n vertices into 8 sets Sj such that
In/8) <= S} = |S2] = |S3]
In/8} <= |Su| = |Ss| = |S7]

IS4l <= [n/8], and

IS8} <= [n/8].

1]
il

1]
]
]

Constr/ﬁct 0-ft mbns for each S; using any method.

/
/

Add edges to form two edge disjoint matchings between the

and (S7, Sgl.
[
i

Add edges to form perfect matchings between the vertices of
each of the pairs {S3. S3). (S2. S4)., (Ss, S7), and (Sg, B
Sgl.
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5. Add edge's to formy minimum adjacency connections between -
the pairs (Sy, Ss5), (S1, Ss), (S2, S7). (S2. Ss). (S3, Se),
(S3, S7). (S4. Ss), and (Su. Sg).

Theorem 9: The graph G constructed by the 2-ft 8-way split.

for n mod 4=0, is a 2-ft mbn.

(
Proof: Withouf loss of generality, assume that the originator

vi is in S1. Consider the following broadcasting scheme

1. In time unit 1, the originator vi calls a \éertex vy in Sj.

2. In time unit 2, vz/éﬁs vg in Sg and V3 calls vg in Sg.

3. In time wunit 3, v1 calls vg in Sg, V2 calls v7 in 57, vg

calls v3 in S3, and wvg calls vy in Sy.

b
4, After 3 time units, each S; has an informed vertex.

They can broadcast internally during tne next [logyn]-3

time units.

5. In time unit [logyn]+1, conduct calls between the vertices
from the pairs (Sy, S2), (S3., S4), (Ss, S7), and (Sg,
Sg) through the perfect matchings between them. For
the pair (Sq1, 5S3) use the perfect matching that has not

heen used in time unit 1.

6. In time unit flogan]+2, conduct cails oetween the vertices
from the pairs {Sy, S3), (S, Sy)., (Ss, Sgl), and (S7,
Sg)} through the perfect matchings petween them.

Consider tne vertices in Sg. They have one calling path from
the originator vi to vs and calls within Ss. They have another

patn from vy to vy in 5, vz to vz in 57, calis within 57 and
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4

~

A single line represents that a vertex in
one set calls a vertex in the other set

A double line represents that every vertex in
one set calls a distinct vertex in the other set

Figure 8-4: The three disjoint calling paths for the
vertices in the Si's in 2-ft mbns
constructed by the 2-ft 8-way split method
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calls petween the vertices in Sy and Ss. Their third calling
patnh is from vy to vg in Sg, calls within 5g, calls between the
vertices in Sg and Sg, and calls befween vertices in Sg and Sg.
The three calling paths for each vertices in Sg are clearly edge

disjoint, Thus, every vertex in Sg has three edge disjoint

calling paths.

-

Referring to figure 4-4 and using similar argquments as for

vertices in Sg, every wvertex in each S; has three disjoint

calling paths. Tnus, G is a 2-ft mbn,

Theorem 10: Tne 2-ft morn O constructed oy the Z-ft 3-way
sglit for n mog 4= ~as

a(C) «= ru'Zﬂcrgzr\“: « o+ 10,

Proof: At most {n,/ 2700771 edges are needeq 'o construct
J-ft mons for eacr >,

At most in B *F eqges are reedes (g form mMinimum adjacency
cannection oSetweer pairs (31, Sgi, (Sy, Sy, (57, S71, {57
Sed. (1S3, S, 1S3, Sz, iSy, Szi, ara (34, 531,

*i1Z =ages are needsqd o form perfact matcnings

netween pairs 1Sy, Sy:. (53, sut, 1Sy, Sgt, 157, Sg), (57,
330, (53, Sy, {5z, S74, ama i5x, Syt
Tre tortal cumoar OF 2a32s s

o - - i e e T,
el i} <= Ir 2 by + 5Ty
— Z
-~ - -
Simgce ~ A <F in . S E,
. - - e - - ~ -
el J1 «= nflidog-m = 4 < 5~ L = 14
e

o
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Since every vertex has to participate in the calls in the last two time
units, the 2-ft 8-way split for n divisiole by 4 cannot be used if n mod
4 > 0. Simitarly, we can use sink siructures to overcome this
Arfficuity., Tne foliowing sections describe methods to construct 2-ft
mons for n ~ot givisinle v 4, Using sink structures as part of tne

3

Bullding nlocxs,

~-.n 2-fr Fignt-way spiil for oo omoa o 3o= )
Tre cornstruction o I-fv omnneg for o momo 4= 1 5 ovsers simiar o 1he
. - 'S . b B - N . ~ %
she gsen st tne p=ft Beway $oiit method fer o~ omoa - = G, The
Tifferarmce 1o Tnal tne oounnecl:ion Detween 57 oarnt Sy o3 relaced v 3
Sime 3iruCloers aiiT Sp o oopeit ne jarger sel, T re ooTeclion Detwsernr
e 2 3y % 2IST rEnaceT o, A St Siructire wTiCT a5 oniy One
perfect malcring Detwser rem arc 2 differenl simk from o tne presicus
-
SiTe. mEireggtoes, Exirz sanes are Ines aggen o Tloirzce® tne firel
(mfoemett yarisx T Da 1T D2 T TOE Arcer TGS 'rUal oomStlUleEs Dy, The
THT Sime SErLCtirEs 275uTE T 3T 'Te Ywa Simm e 3t 3nT ST TAVEe Cwo oedge
45 it ocabt oo pRtte oo tee firgr Treiog time ot i e mext tooiast
Ty 7,—v = = ~ = e ~ -, - Lo d < - b o - . ‘ 3 .
tmE AL SEr, YeErisex sxcell s oarucinaies or e TATS. imiiariy
o Ime 33ttt ot &ver, yeriay excer' S7 parncipatEs o tne calis,
TroLs, Bver, Lsertex C2ac ~ane Three 23lhing Datts.,
-

J=F m=way spiit for o mod 4= 0
T s omoet . 2 Y s »=Ekpoaen ooz FF-3 @ (-t muoo car ne constructed
3T "Il ws

T, oRartiuns o yernices nln B osetls 3 sucn tnat

Z. S5 5 smpern ozra 5w <17,
r - A ez L= S = S5y o= 5 L= roK
PN e > 2 23 iy -2
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c. |Ss| = [Sel = IS7l]. '
d. |Sg| = ISs| + 1.

2. Construct 0-ft mpbns for each 5i, i=1..5 using any method.
Construct a 0-ft hbn for Sg using the 2-way split and
construct a sink structure for Sy, Sg. - Let Sg De
constructed by two 0-ft mbns Py, Pz such that

jP” = isz + 7.‘!

yd r

Choose a vertex w in P other than the sink\s in the sink

structure.

3. Add edges to form two edgﬁ disjoint matchigs petween the
pairs (Sy, S2), (S3, Sy), and {Sg, Sgl.

4. Add edges <to form peffect matchings between the pairs (57,
S3J, (Sz, Sul, (S5, S7), and (Sg, Sg¥ w-).
e :
3. Add edqges to connect the following pairs @ {51, Sg ), (S}b,
Sgi, (537, S79. (S, Sg). (S3. Sg). (53, S7), Sy, Ss), and
(Sy, S&J such that every vertex in one set is connected to

- at least one vertex of the other set,

6. Add edges 1o connect! the vertices in Sg to w. These edges
will pe G&Ed to give w two disjoint calling patnhs in the first

Tol(n) calls.

7. Add edges to connect the vertices in Py to the vertices in
Sy and Sy which are not connected fo any vertices in Py,
‘These edges will be used to “"force® the first informed vertex
(i Sg 1o pe v Py if the originator is not in Sg. h

/
ﬁ_r{
Theorem 11: The graph G constructed by the 2-ft 8-way split

for n mod 4 = 1, is a 2-ft mbn.

Proof: Using 1the isame proadcast’ scheme and the same
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arguments to those used in the proof of theorem 9, every

\vertex ‘except the two sinks has three edge disjoint calling

L ]
paths. .Using similar arguments to those used in the proof of

lemma 9 of chapter 3, the two sinks have two edge disjoint
calling paths in the first Tg(n} time units. Furthermore, each
sink participates in one of the calls in the last two time units
which gives them another ca‘mng path. Hence, the ‘two Sinks
also have three edge disjoint calling paths, Thus, G is a 2-ft

mon.,

-

Theorem 12: The 2Z-ft mbn G constructed by the 2-ft 8-way
spiit forl n mod 4 = 1 has
el G) <= ni2flogan] + 1In/8 + 19,5,
Proof: The number of edges in G is equal to the number of
edges in a 2-ft mon constructed by the 2-ft- 8-way split method

for n mod 4 = 0 plus the ex!ira edges qddeg.

At most §;_ﬁ/8_!'2 edges are needed to connect ibe sinks 1o

vertices in Sg and Sy.

At most n/i6l*2 edges are needed to connect the vertices in

P1 to vertices that are not connected to Pj in Sy and Sy.

~

The total nurrmer.of edges 1Is
elG) <= n/2(flogan] - 3) + [n/8]*20 + |n/8j*2 + [n/16]*2
Since [n/81 <= fn + 7}/8,
. elG) (;MW&Q& 19.5 + 3n/8

<= nf2floganl + 11n/8 + 19.5.

l(,
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4,7 2=ft Eight-way split for n mod 4 = 2

The construction of 2-ft mbns for n mod‘ 4 = 1 is very, similar to the

one used in the 2-ft 8-way split method for n mod 4 =0. The

difference is that Sy and-S3, S3 and Sy are repiaced by sink structures

with S; . and Sy being the larger set. Extra edges are then added to
*force® the fir;;t informea wvertex in S to be in the larger‘mbn that
constitutes Sy, and the first informed vertex in 54 to De in the larger
mpn that constitutles Sg.  The two sink struclures ensure that the two
sinks have two edge disjoint calling paths in the first Tgin) time units.
in the last two time units, every vertex except the sinks participates n
two calls put the two sinks only participate in one of the calls in the

fast two 1ime units, Thus every vertex can have three calling paths,

*

t

2-ft B-way split for n mod 4 = 2

1f m mod 4 = 2, n >= 8, and n = 2K =2, a 2-ft mbn can be constructed.

I

as ‘foliows : . .

. Partition n vertices into ¥ sets 5§ such that

a. iS4yi 5 even,
o. {n/8! <= |S5| = |Sg| = IS7} = |Sg| <= [n/8].
c. ISy = iS3] ama [S7] = iSul.
g. ISz = 1Sy + 1. .
s e. ISpi < 2K, . %

F 4
2. Construct 0-mbns for each 5i, i=5..8 using any method.

N §
Construct a sink structure for Sy and Sp, S3 and 54. Let
S; be constructed by two 0~ft mbns P, P2 such that

Pt = Pt + .

Let Sy be constructed by two 0-ft mbns Fq, F; such that

iFyl = {Fal + 1. ;

\
3. Add edges to form two edge disjoint matchings between the
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pairs (S5, S¢), and {S7. Sg).

4. Add edges to form perfect matchings between the pairs (S,
S3), (Sz. Sa), (Ss. S7). and (S¢, Ss).

5. Add edges to connect the pairs : (Sy, Ssg), (Sf, Sg). (S,
S7)., (Sz, Se)., (S3, Sg), (S3. S7), (S4, Ss}, and (Sy4, Sg)
such that every vertex in one set is connected to_at least

one vertex of the other set.

e

6. Add edqges lo connect the vertices in Py to the vertices in
Sg and S7 which are not connected to any vertices in Pj.
These edges will De used to *force® the first informed vertex
“in S to be in Py if the originator is not in Sz. Similarly,
add edg;es to connect the vertices in ¥} to the verticés in Sg
and 5g which are not connected to any vertices in Fy.
These edges will be used to "force" the first informed vertex

in Sy to pe in Fy if the originator is not'in Sy.

- Theorem 13: Thne graph G constructed by the 2-ft 8-way split
F

for nsmod ® = 2, is a 2-ft mbn,

Proof: Using the similar arguments to those used in the praof

of theorem 11, C is a 2~ft mbn,

Theorem 4: The 2-ft mbn G constructed by the 2-ft 8-way
i
split for n mod 4 = 2 has
e{G) <= n/2{logzn} + 3n/2 + 19,

Proof: The number of edges in G is equal to the numper of
edges in a 2-ft mbn constry y the 2-ft 8-way split method

for n mod 4 = 0 pius the extra edges sdded.

Al most fn/16_\’2 edges are needed to connect the vertices in

: /
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4

P to vertices that are not connected to Pj i‘n S¢ and S7, and
at most [n/16]*2 edges are needed to connect the vertices in Fj

to vertices that are not connected to Fy in Sg and Sg.

-

At most |n/8]|*2 edges are needed lo connect the vertices in S

and S3 to their sinks.

The total number of edges is
- e{G) <= n/2{[logan] - 3) + [n/8]*20 + [n/16]*4 + |n/8|*2
Since [n/8] <= {n + 6)/8,

S, e(G) <= nf2flogan] + n + 19 + nf4 + nf4

bt

<= nIZﬁoggrﬁ + 3nf2 + 19,

4.8 2-ft Eight-way split for n mogd 4 = 3

The construction of 2-ft mons for n mod 4 = 3 can be done by

compining the structures used in constructing 2-ft mbns for n mod 4 =

2, and for n mod 4 = 1, we can partition n vertlices into 8 sets S; and

construct Sy, S22, S3, and S4 in lim}same way as we have constructed
them in the 2-ft B~way split for n mod'n‘ = 2, Similarly, we can
construct Sg, Sg, S7, and Sg in the same way as we have constructed
them in the 2-ft 8-way split for n mod 4 = 1. The size of the combi,ned
graph G will have a remainder of 3 when divide by 4., Ffurtnermore, we
can use the same Droadcasting scheme as in theorem 11 and give every

vertex three edge disjoint calling paths,

2-ft 3~way split for n mod & = 3 - -
If nmod 4 =3, n»=32, nt 2 -5 and n §£ 2} -9, a 2~ft mbn can be
consiructed as follows ' *

¥, Partition n vertices into 8 sels S; as evenly 3s possible such

'8

NPT

RN (I l‘r e L ‘rm a1 b
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that o )
" a. |Ss] is even,
* bo l58' < zk.
c. |Sel = ISs |= IS7l.,
Is71 + 1.

d. |Sg}

e. |Sy| is even. . -

f. |Sql < 2K.
g. 831 = Is3} and |2l = Isal.
n. 12| fSﬂ + 1.

I

2. Construct a sink structure for Sy and 52 S3 and Sy. Let

S be constructed by two 0-ft mbns ¥y, P2 such that
Pyl = P2l + 1.

Let Sy be constructed by two 0-ft mbns Fy, F2 such that

I's

AR R TR o THE S

3. Construct a sink strai:ture for S7 and Sg. Let Sy be
eéﬁs{r*féi'ed by tweo 0-ft mons My, M such that .

re

il = lmab e r T

Construct a sink structure for Sg and Sg which has only one
I\; i

matching between them and choose a vértex w ‘whnich is
differemt- from the sink in the previous'sink structure in M),
4. Add edges to form two edge disjoint matchings between the

pair (Ss, Sgl. -

5. Add edges. to form perfect matchings between the pairs (351,
S3J, (S2. SaJ, (Se: Ss\{wj). and (S5, S7}. :
I 4 ’ . »

6. Add edges to connect the pairs : (Sy, Ss), (Sy,. Sg). (S,
S7), (S2. Se). (53, Se), (S3. S7). (Su, Ss), and (Su, Ss)
such thal! every vertex in one set is connected o at least

i one vertex nf the olher set.

-
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7. Add edges to connect the vertices in P} to the vertices in
S¢ and S7 which are not connected to any verﬁn’.:esﬁih 7P1~.
These edges will be used to "force® the first informed vertex
in S7 to be in Py if the originator is not in 53.. Similarty,
add edges 1o connect the vertices in Fj to the verlices i‘n Sg
and Sg which are not connected {o any vertices in Fj, ;nd
add edges to connect the vertices in Mj to the vertices in Sy

and Sy which are not connected to any vertices in My,

~

Theorem 15: The graph ( constructed by tne 2-ft 8-way split

for n mod 4=3, is a 2-ft mbn.

Proof: Using similar arguments to those used in the proof of

"theorem 11, G is a 2-ft mbn,

Theorem 16: The 2-ft mbn G constructed by the I-ft sd-way

split for n mod 4 = 3 has

e(G) <= n/2flogynl + 15n/8 + 18.5.

Proof: The numpber of edges in G is equal 1o the number of
‘edges in a 2-ft mbn constructed by the 2-ft 8-way split method

for n mod 4 = 0 plus the extra edges added,

At most [n/16]*2 edges are needed to connect lhe vertices in
P1 to vertices tha! are not connected to Py in S5¢ and S7, and
at most [n/16]*2 edges are needed to connect the vertices in Fi
to vertices that are not connected to Fy in S5 and Sg.
Similarly, at most [n/161*2 edges are needed to  connect the
vertices in My to vertices that are not connected to Mi in 3

and Sy.

At most [n/8/*s eages are needed lo connect the vertices in

S1. S3, 5, and 57 to their sinks.

Y T S
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The total number of edgés is -
elG) <= n/2{fiogzn} - 3) + [n/8]*20 ?— [n/16]*6 + Ln‘/l!j*l&
Sincean/S-l <= {n + 5}/8, ‘ .
C.e(G) <= nf2flogan] +'n + 18.5 + 3n/8 + n/2

<= n/2flogan] + 15n/8 + 18.5.

7 !

4.9 Summary

Eight: different methods to construct 2-ft mbns are presented. The
‘methods qive a better bound on Bjinj for atmost aH n than the

previous methods.
For 'n rod 4 = 0,

B2(n} <= nj2fiogan} + n.
For n mod 8 =3 or nmod 4 = 2, n # 2i-2, n#)i-:S, angd n >= 16,
83{n) <= n/2flogyn] + 3n/2.
For n mod 8 = 1, and 16 <= n <= 116,
Bz(n)A <= n/2[logyn] + 3n/2.
For n mod 8 = 1, and n > 11§,
87(n} <= n/Zﬂ;qzn—l + Tin/8 + 14,5,
For n mod 8 = 5, n >= 32 and n # 28 - 3,
Ba{n) <= n/2flogyn] + 11n/8 + 19,5.-
For nrmoo 8§ =7, n>=32 and.n # 2‘- 9,{
87(n) <= n/2flogan] + 15n/8 + 18.5.
These metnods do not work for n=2i~2, n=2i-3, n=2i-5, and n=21-9. I;&
is interésting to note Lha!"*the‘ 2-ft a-wa; split for n mod 4 = 3 does
work far n = 2i-1 pecause t'he‘ minimum time T(n) for n = 2i-1 is equ.al

to fogynl+3 instead of Hog;thl_. That is, we have one extra time unit

for n .= 2i=1. .Finally, it may De possible to use other splits and other
. ¥
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approaches to get a ‘better bound on Ba{n} for n=2i=2, n=2i-3, n=2i-5,

and n=2i-9, These approaches have not been investigated. -

(

+
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Chapter 5

a : Conclusion

Minimum broadcast graphs represent the cheapest possible
communication networks of n members which can broadcast in minimum
time regardless of originator. Mbgs may be used for message
brdadcasting in communication, paraliel processing, and distributed
computing.. Unfortunately, no technique is known tq generate these
graphs for arbitrary n. Farley [Farley 78] suggested algorithms to
construct minimal broadcast networks which are sparse graphs allowiné
minimum time Droadcast from any originator. New methods to construct
such networks are presented in chapter 2. The resulting graphs have
fe;;er edgesv‘than' Farley's graphs foc three-quarters of the possible
values of n. The improved graphs are}estimated to have an average of
8% fewer edges than those of Farley's for 36<=f\<=102l{. Fuf_:thermore,ix
improvement for some of the remaining values of n may also be' possible

by using similar methods.

Fault-tolerant proadcasting is desirable if reliability is considered to
be an important factor in a communicgtion network. The set of k fault-
tolerant minimum bDroadcast graphs represént th‘e cheapeit possible
communication networks of n mempers which can complete ‘; k fault- '
toleraht broadcast in minimum time regardless of originator. No
technique is known to generate these grapns for arbitrary
n. Algorithms to construct k fault-tolerant minimal broadcast networks
have been suggested by Liestman [Liestman 81] for k=1 and k=2. In
chapters 3 and 4, new methods to construct such graphs are presented.‘
In notn cases, the graphs produced by the new methods contain

approximately one-half the number of edges of the previously known

i
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graphs. Howéver, in the 2 fault-tolerant case, the new method cannot
be used for n=2i+j, j=2,3,5,9 and séme(sma” n < 32. Using §pproaches
other than those used in chapter 4, it may be possible to construct

improved 2 fauit-tolerant mbns for these values,

Methods to construct k fault-tolerant mbns depend on the results on
Tk(ni. It is not ppssible to describe such constructions without
knowing the exact value of Tki(n). Thus, more general resulits to
construct k fault-tolerant mbns cannot be found without first finding
more general results for Tk(n'}. The multi-way split approach to
construct 1 faulvt-tolerant and 2 fault-tolerant mbns does give some
insight on tl;e vafue of Tk{n} for k>=3. For example, it may be
possiple to use an 8-way split to construct 3 fault-tolerant mbns. We
can/u]se the first [logzn] time units to create a calling path fon_ every
vertex and use three more time units to complete three more edge
disjoint calling paths to each vertex. If this is possible then T3(n) is
equal to [logan]+3 for n mod 8=0. Using similar arguments, we may use
a 2K ‘way split to construct k fault-tolerant mbns. We can use the first
. ﬁngérﬂ time units to create a calling’path for -every yertéx'and use K
more time units to give k more edge disjaint calliﬁg paths to each
vertex. (f such a scheme exists then Ty(n) is equal to [logan}+k for n
mod 2K=(, No‘ further investigation has been done in tﬁis direction,

However, we conjecture that Tk(n} is equal to [iogyn]+k for at least

some values of n.
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Appendix A

Table to compare the value of e(G) between
Farley!s algorithm and the Hybrid algorithm

n Farley split Hybrid split difference
18 27 3 - 27 6 0
19 . 30 3 30 6 0
20 32 3 32 6 0
21 35 3 '35 6 . 0
22 - 37 2 -37 6 0
23 39 2 39 2 0
24 42 pi 42 | 6 0
25 ', 45 2 45 2 -0
26 <49 2 49 2 0
27 52 , 2 52 2 -0
28 56 : 2 56 7 0
29 59 2 59 2 0
30 63 2 63 2 0
31 n 2 71 2 0
32 . 80 2 80 2 0
33 . 56 3 59 5 -3
34 58 . 3 60 - 6 -2
35 ¢ 61 3 62 6 -1
36 - 63 - 3 63 6 0
37 67 3 66 6 1
38 70 3 69 . 6 1
39 74 3 72 6 2
40 77 3 75 6 2
41 81 3 78 6 3
73@ 84 3 . 81 6 3
88 3 . 86 6 2
4y 9 3 90 6 1
45 95 3 9y 7 1
46 101 2 97 7 4
47 104 2 100 7 4
4 - 108 2 103 - 7 5
49 m 2 107 7 4
50 115 2 1 7 4
51 119 2 116 7 3
52 124 2 121 7 3
53 127 2 126 7 - }
54 131 2 131 7 0
55 135 2 135 2 0
56 140 2 140 7 0
57 143 2 143 2 0
58 147 pJ 147 2 0
59 ~15% 2 151 2 0




75

Farley split ) Hybrid split difference

156 2 156 2 0
164 2 164 2 0
173 2 173 2 0
182 2 182 2 0
192 2 192 2 0
142 3 127 6 15
144 3 129 6 15
147 3 132 6 15
149 3 134 6 15
152 3 137 6 15
155 3 139 6 16
159 3 142 6 17
162 3 144 6 18
166 3 148 6 18
169 3 152 6 17,
173 3 156 6 17
177 3 160 6 17
182 3 164 6 18
186 3 168 6 18
190 3 172 6 18
193 3 175 6 18
197 3 179 6 18
201 3 182 //’e 19
206 3 186 6 20
210 3 189 6 21
214 3 193 6 21
217 3 197 - 6 20
221 ©3 201 6 20
225 3 205 6 20
230 3 209 6 21
234 3 213 6 27
241 2 219 7 22
248 2 222 7 26
251 2 226 7 25
255 2 230 7 25
259 2 234 7 25
264 2 238 7 26
267 2 242 7 25
271 2 245 7 26
275 2 250 7 25
280 2 254 7 * 26
284 2 258 7 26
289 2 262 7 27
294 2 266 7 28 z\
300 2 270 7 30 ‘
‘303 2 275 7. 28
~307 2 283 7 24
317 2 292 7 - 19
316 2 301 7 15
320 2 310 7 10 . .
325 2 319 -7 6
330 2 328 -7 - 2
336 2 336. 7 -0
339 2 339 - 2 0
343 2 343 2 - 0
347 2 , 3u7 2 0
352 2 352° 2 .0



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

135

135
136
137

138 °

139
140
141
142
143
144
145
146
147

164

165

166 .

167
168
169
170
171
172
173

Fariey

356
361
366
372
380
389
398
408
417
427
437
448
329
332
336
339
344
348
353
359
366
372
376
379
383
387
392
396
400
403
407
a4
416
420
425
429"
434
439
445
450
454
457
461
465
4790
474
479
483
488
493
499
504
508
511
515
519
~--524

split

AN

wwwwwwwwwwwwwwwwwwwwwwwwwwww‘wwwwwwwwwwwwwwwwwwwwwwwwwwwww
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Hybrid

356
361
366
372
380
389
398
408
417
427
437
448
314
316
319
321
324
327
330
333
336
339
343
346
350
353
357
360
364
368
372
376
380
384
389
393
398
402
407
411
415
419
423
427
431
435
440
444
449
453
458
462
466
470
474
478
482

split

mmcr\c\cncncrsmmmmmmmmmmmmmmO\mmmmm0\0\mmmmommmmmmmmmm@wwwwwwwwwwwu

difference
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n

174
175
176
177
178
179
180
181
182
183
184
185

186.

187
188
189
190
191

192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
- 215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

Farley

528
533
537°
542
547
553
558
565
573
580
588
591
595
599
604
608
613
618
624 -
627
631
635

" 640

644
649

- 654

660
664
669
674
680
685
691
697

© 704

707
11
715-
720
724
729.
734
740

- 744

749
754
760
765
771
777
784
787
791
795
800
804
809

77

split

3

NN NN W W)W W

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Hybrid

486
491
495
500
504
509
513
521 |
525
530
534
538
542
546
550
555
559
S64
569
574
579
584
548
593
597
601
605
609
613
618
622
627
632
637
bu2
647
651
661
670
679
688
697
706
716
725
735
745
755
765
775
784
787
791
795
800
804
809

split

6

-

NNNNNN\J\'\J\I\I\J\I\J\J\J\‘\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\J\]Na\ma’\ma’\m
B

difference

42
42
42
42
43 -
4y
45
4y
48
50
54
53

COQOCOCHKMON
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n Farley split Hybrid split difference
231 814 2 814 z 0
232 820 2 820 2 0
233 824 2 824 2 0
234 824 2 829 2 0
235 834 2 834 2 0
236 840 2 840 2 0
237 845 2, 845 2 0
238 851 2 851 2 0
239 857 2 857 2 0
240 864 2 s64 2 0
241 872 p) 872 2 0
242 881 2 -~ 881 2 0
243 890 2 890 2 0
uu 9u0 2 900 2 0
245 909 2 909 2 0
2u6 919 2 919 2 0
247 929 2 929 2 0
248 944 2 940 2 0
249 949 2 949 2 0
250 959 2 959 2 0
251 969 2 969 2 0
252 980 2 980 27 0
253 990 2 990 2 0
254 1001 2 1001 2 0
255 1012 2 1012 A 0.
256 1024 2 1024 2 0
257 777 3 705 6 72
258 780 3 71 6 69
259 785 3 716 6 69
260 789 3 720 ) 69
261 794 3 725 6 - 69
262 798 4} 729 6 69
263 - 803 3 734 6 69
264 L 807 3 738 [ 69
265 Fo813 3 743 - 70
266 818 3 748 6 70
267 . 824 3 753 6 71
268 828 3 758 6 70
269 833 3 762 7 71
270 B37 3 766 7 71
271 B45 3 770 7 75
272 852 3 “774 -7 78
273 860 3 779 6 81
274 867 3 782 6 85
275 875 3 786 6 89
276 882 3 . 789 6 93
277 B86 3 793 6 93
278 889 3 797 6 92
279 833 3 801 6 . 92
280 897 3 805 6 92
281 902 3 809 6 93
282 306 3 813 6 93
283 911 3 817 6 94
284 915 3 820 6 g5
285 920 3 824 6 96
286 925 3 827 6 98

3 831 6 100

287 931



300
301
302
303
304
305
306
307
308
309
310
3N
312
313
314
315
316
317
318
31y
320
321
322
323
324
325
326
327
328
329
330
331

333
334
335
336
337
338
339
340
341
342
343
344

Farley

936
940
943
947
951
956
960
965
969
974
979
985
990
995
999
1004
1009
1015
1020
1026
1031
1037
1043
1050
1056
1060
1063
1067
1071
1076
1080
1085
1089
1094
1099
1105 -
1110
1115
1119
1124
1129
1135
1140
1146
151
1157
1163
1170
1176
1180
1183
1187
1191
1196
1200 .
1205
1209

79

split
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

Hybrid

834
839
844
849
854
858
861
868
873
878
882
887
891
897
903
909
915
921
927
933
938
94y
949
954
959
964
969
975
978
982
986
990

994

998
1001
1006
1010
1014
1018
1022
1026
1031
1034
1038
1042
1046
1050
1054
1057

1063

1068
1073
1078
1083
1088
1094
1098

split

\l\l\l\l\l\l\l\'l\lNJ\I\J\I\J\I\I\I\I\I\J\J\J\I\J\I\I\I\J\I\I\I\I\J\Joﬁaﬁmmomcﬂmmc‘mmc\c‘m\l\l\lmc‘\o’ia\m

difference

102
101
99
98
97
98
99
97

117
115
114
113
113
112
111
111

hi
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Farley split Hybrid split difference
345 1214 3 1103 7 M
346 1219 3 1108 7 114
347 1225 3 1113 7 112
348 1230 3 1118 7 112
349 1235 3 1123 7 112
350 1239 3 1127 7 112
351 1244 A 3 1134 7 110
352 1249 3 1140 7 109
353 1255 3 1146 7 109
354 1260 3 1152 7 108
355 1266 3 - 1158 7 108
356 1271 3 1164 7 107
357 1277 3 1171 7 106
358 1283 3 1176 7 107
359 1290 3 1182 7 108
360 - 1296 3 1188 7 108
361 1303 2 1194 7 109
3 1311. 2 1200 7 11
343 1319 2 1206 -7 113
364 1328 2 1211 7 117
365 1335 2 1218 . 7 117
366 1343 2 1224 7 119
367 1351 2 1230 7 121
368 1360 2 1236 7 124
369 1363 2 1242 7 121
370 1367 2 1248 7 119
37 1371 2 1255 7 116
372 1376 2 1260 7 116
373 1380 2 1266 7 114
374 1385 2 1272 7 113
375 1390 2 T 1278 7 112
376 1396 2 1284 7 112
377 1400 2 1290 7 110
378 1405 2 1285 7 110
379 1410 2 1301 7 109
380 1416 2 1306 7 110
381 1421 2 1311 7 110
382 1427 2 1316 7 1
383 . W33 2 1321 7 112
384 1440 2 1326 7 114
385 > 1443 2 1332 7 11
386 1447 2 1337 -7 110
387 . 1451 2 1343 7 108
.388 1456 2 1349 7 107
389 1460 2 1355 7 105
390 1465 2 1361 7 104
391 1470 2 1367 7 103
392 + 1478 2 1372 7 104
333 . 1480 2 1377 7 103
394 1485 2 1381 7 104
385 1490 2 1385 7 105
396 1496 2 1389 7 107
397 1501 2 1393 7 108
398 1507 2 1397 7 ‘110
399 513 2 1402 7 111
400 1520 2 1406 7 114
401 1524 2 1411 7 113



n Farley  split Hybrid spiit difference —
402 1529 2 1416 7 113 , .
403 1534 2 1421 7 T 113 >

© 404 1540 2 1426 7 114
405 1545 2 1431 7 114
406 1551 2 1435 7 116
407 - 1557 2 14u1 | 116
408 1564 . 2 1446 7 118
409 1569 2 1451 7 118
410 1575 2 1456 7 119
411 1581 2 1461 7 120
412 1588 2 1466 7 122
413 1594 2 1472 7 122 -
414 1601 2 . w477 7 124 e
415 1608 2 1483 7 125
416 1616 2 1489 7 127
417 1619 » 2 1495 7 124
418 1623 2 1501 7 122
419 1627 2 1507 7 120
420 1632 2 1512 7 120 =
421 1636 2 1522 7 114
422 1641 2 1531 7 110
423 1646 2 1540 7 106
424 1652 2 1549 7 103
425 1656 2 1558 7 98
426 1661 2 1567 7 9y -
427 1666 2 1577 7 89
428 1672 2 1586 7 86 :
429 1677 2 1596 7 81 :
430 1683 2 1606 7 77 :
431 1689 2 1616 7 73 =
432 1696 . 2 1626 7 70 .
433 1700 2 1636 7 64 :
434 1705 2 1645 7 60 B
435 1710 2 1656 7 54 K
436 1716 2 1666 7 50 -
437 1721 2 1676 7 55 .
438 1727 2 1686 7 41 x
439 1733 2 1696 7 37 =
440 1740 2 1706 7 34
441 1745 2 1717 7 28 H
u42 1751 2 1727 7 24 - <
443 1757 2 1738 7 19~ 3
uyy 1764 2 1749 7 15 B>
445 1770 2 1760 7 10 <
446 1777 2 1771 7 6 %
uy7 1784 } 2 1782 7 2 B
448 1792 2 1792 7 0 %
449 1795 2 1795 2 0
450 1799 2 1799 2 0
451 1803 2 1803 2 0
452 1808 2 © 1808 2 0
453 1812 2 1812 2 0
454 1817 '~ 2 1817 2 0
455 1822 2 1822 2 7 0
456 1828 2 1828 2 0 .
457 1832 2 ” 1832 ) 0 —
458 1837 2 1837 2 0
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n Farley split Hybrid split difference
459 1842 2 1842 2 0
460 1848 2 1848 2. ' 0
461 1853 2 1853 - 2 0
462 & 1859 2 1859 2 0
463 1865 2 1865 2 0
464 1872. 2 1872 "2 0
465 1876 2. 1876 2 0
466 1881 2 1881 2 0
u67- 1886 2 . 1886 2 0
468 1892 2 1892 2 0
469 1897 2 1897 2 0
470 1903 2 1903 2 0
471 1909, 2 1909 2 0
472 1916 2 1916 2 0
473 1921 2 1921 2 0
474 1927 2. 1927 2 0
475 1933 2 % 1933 2 . 0
476 1940 2 1940 2 0
477 1946 2 1946 2 0
478 1953 "2 1953 2 0
479 1960 2 1960 2 0
480 1968 2 1968 2, 0
481 1976 2 1976 2 0
482 1985 2 1985 2 0
483 1994 2 1994 2 0
484 2004 2 2004 2. 0
485 2013 2 2013 2 0
486. - 2023 2 2023 2 0
487 . 2033 "2 2033 2 0
488 - 2044 2 2044 2 0
489 2053 2 2053 2 0
490 2063 2 2063 2 0
491 2073 2 2073 2 0
492 | 2084 2 2084 2 0
493 . 2094 2 2094 2. 0
49y 2105 2 2105 2 , O
435 2116 2 2116 2 © 0
496 2128 2 2128 2 0
497 2137 2 2137 2 0

498 2147 2 2147 2 0
499 2157 2 2157 2 0
500 - 2168 2 2168 2 0
501 2178 2. 2178 2 0
502 2189 2 2189 2 0
503 2200 2 : 0 .2 0
504 2212 2 ,.33?5 2 0
505 2222 2 2222 ‘2 0.
506 - 2233 2 2233 2 0
507 2244 2 2244 2 0
508 2256 2 2256 2 0
509 2267 2 2267 2 0
510 2279 2 2279 2 0
511 2291 - 2 2291 2 0
512 2304 2 2304 2 0




[Fartey 79]

[Farley, et al.

[Hedetniemi: 81]

{Liestman 81]

{Liestman 83]

83

Referencés

Fariey, A. M,
Minimal Broadcast networks,
Networks 9{u4):313-332, 1979, )

791 .

Farley, A. M., S. T. Hedetniemi, S. Mitchell and
A. Proskurowski.

Minimum Broadcast Graphs,

Discrete Mathematics 25:189-193, 1979.

Hedetniemi, S. M. and Hedetniemi, S. T. —

A Surwvey of Gossiping and Broadcasting in™
— Tommunication Belworks. -
Technical Report Cl5-lR-81-5, University of Oregon,

1981.

Liestman, A. L.

Fault- Tolerant Scheduﬂ?g and Broadcast Problems,
Technical Repor SR-87-1063, University of

Illinois at Urbana-Champaign, 1981,

dl

Liestman. A. L. ‘
Optimal Two-way Split to Approximate Minimum Broadcast

Networks.

"1983. )

PR
-

[Mitchell 80])

Private Communication.

i
Mitchell, S. L. and Hedetniemi, S. T.
A Census of Minimum Broadcast Graphs.
J. Combin., Inform. & Systems Sci. 9:119-129, 1980,






