

National Library of Canada

Canadian Theses Service

Services des thèses canadiernes

Bibliothèque nationale

du Canada

Ottawa, Canada K1A 0N4

GANADIAN THESES

THÈSES CANADIENNES

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

AVIS

S'il manque des pages, veulllez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thése.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

<u>`anadä</u>

NL 339 (r. 86/01)

NE-91 13-74

National Library of Canada

Bibliothèque nationale du <u>Canada</u>

 \sim

CANADIAN THESES

THÈSES CANADIENNES SUR MICROFICNE

	-
NAME OF AUTHOR NON DE L'AUTEUR	heung than
TITLE OF THESIS/TITRE DE LÀ THÈSE NEW	Hethods to Generate Minimal
Broad	cast Networks and Fault-
tolera	at Minimal Broadcost Networks
UNIVERSITY/UNIVERSITESIMON	Fraser University
DEGREE FOR WHICH THESIS WAS PRESENTED /· GRADE POUR LEQUEL CETTE THÉSE FUT PRÉSENTÉE	Master of Science
YEAR THIS DEGREE CONFERRED ANNÉE D'OBTENTION DE CE G	RADE 1984
NAME OF SUPERVISOR /NON OU DIRECTER OF THESE	r. Arthur Lee Liestman
NAME OF SUPERVISOR/NUM DU DIRECTEUR DE THESE	
Permission is hereby granted to the NATIONAL LIBRAR	Y OF L'autorisation est, par la présente, accordée à la BIBLIOTHÈ-
CANADA to microfilm this thesis and to lend or sell co	pies. QUE NATIONALE DU CANADA de microfilmer cette thêse et
of the film.	de prêter ou de vendre des exemplaires du film.
The author reserves other publication rights, and neither	r the L'auteur se réserve, les autres droits de publication; ni la
thesis nor extensive extracts from it may be printed or of	ther- thèse ni de longs extraits de celle-ci ne doivent être imprimés
wise reproduced without the author's written permission.	ou autrement reproduits sans l'autorisation écrite de l'auteor.
DATED / DATE 12-4-84 SIGNED / SIGNED	
	<u> </u>
PERMANENT ADDRESS / RESIDENCE EI VE	

NEW METHODS TO GENERATE MINIMAL BROADCAST NETWORKS AND FAULT-TOLERANT MINIMAL BROADCAST NETWORKS

by

Siu-cheung Chau B.Ed., University of Lethbridge, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

in the Department

Computing Science

Siu-cheung Chau 1984 SIMON FRASER UNIVERSITY April 1984

0

All right reserved. This thesis may not be reproduced in whole or part, by photocopy or other means, without permission of the author.

APPROVAL

ſ

4

Name: Siu-cheung Chau Degree: Master of Science

3

Title of thesis: New Methods to Generate Minimal Broadcast Networks and Fault-Tolerant Minimal Broadcast Networks

Examining Committee:

- علمه - معر

Chairperson: Joseph Peters Arthur Lee Liestman Senior Supervisor Pavol Hell Sinay Bhattacharya Dana Richards External Examiner 5, 1987 Date Approved: F

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay Methods to Grenerate Minimal Broadcast New Networks and Fault-tolerant Minimal Broadcast. Networks Author: (signature) <u>Mr. Siu-cheung Chau</u> 18-4-84 (date)

To my wife, Lily

iii

ABSTRACT

Broadcasting is the process of information dissemination in a communication network in which a message, originated by one member, is transmitted to all members of the network. A minimal broadcast network (mbn) is a communication network in which a message can be broadcast in minimum time regardless of originator. A minimum broadcast graph (mbg) is an mbn which has the fewest number of communication links. No technique is known for constructing mbgs of arbitrary size. We present new methods for constructing mbns which The have approximately the minimum number of links possible. resulting networks often have fewer links than previously described networks of this type. Fault-tolerant (ft) broadcasting is to broadcast with enough redundancy so that the broadcast can be completed even if We also present new methods to construct 1-ft and 2-ft links fail. mbns. The number of links of our 1-ft and 2-ft mbns is just a little more than half of the edges of the 1-ft and 2-ft mbns constructed by previous methods.

Table of Contents

1. Definitions and Previous Results	1
1.1 Definitions 1.2 Farley's algorithm	r 1
2. Algorithms to Approximate Minimum Broadcast Graphs	. 8
 2.1 Five-way split method 2.2 Six-way split method 2.3 Seven-way split method 2.4 An algorithm to approximate mbgs 2.5 Summary 	λ 17 • 20 - 24 - 27
3. Algorithms to Approximate 1-ft Mbgs	29
3.1 Definitions 3.2 1-ft two-way split method 3.3 1-ft Six-way split method 3.4 Summary	29 31 39 47
4. Algorithms to Approximate 2-ft Mbgs	48
4.1 2-ft Four-way split for n mod 4 = 0 4.2 2-ft Four-way split for n mod 8 = 1 4.3 2-ft Four-way split for n mod 4 = 2 h h 2-ft Four-way split for n mod 8 = 3	48 52 54 55
4.4 2-ft Fight-way split for n mod 4 = 0	58
4.6 2-ft Eight-way split for n mod 4 = 1	62
4.7 2-ft Eight-way split for n mod 4 = 2 4.8 2-ft Eight-way split for n mod 4 = 3 4.9 Summary	. 65 67 70
5. Conclusion	* - 72
Appendix A.	74

List of Figures

Figure 1-1:	The value of B(n) for n <= 17	3
Figure 1-2:	Example of an mon constructed by Farley's 2-way split	5
Figure 1-3:	Examples of mbns constructed by Farley's three-	6
Figure 2-1:	Constructing mbns using straight- forward 5-way	9
Figure 2-2:	Constructing mons using 5-way split	12
Figure 2-3:	Calling scheme for the first three time units if the originator is in Sy for mbns constructed by the S-way split	14
Figure 2-4:	Calling scheme for the first three time units if the originator is in S3 or S5 for mons	14
Figure 2-5:	Calling scheme for the first three time units if the originator is in S1 or S2 for mbns constructed by the 5-way split	15
Figure 2-6:	Constructing mbns using 6-way split	18
Figure 2-7:	Calling scheme for the first three time units regardless of originator for mbns constructed by the formation of the formation	19
Figure 2-8.	Constructing whos using 7-way split	21
Figure 2-9:	Calling, scheme for the first three time units regardless of originator for mbns constructed by the 7-way split	22
Figure 2-10:	Known mbgs for n <= 17 which have an even	25
Figure 3-1:	Constructing 1-ft mbns using 1-ft 2-way split	33
Figure 3-2:	Possible method to construct 1-ft mbns when n is odd	34
Figure 3-3:	Constructing 1-ft mbns using 1-ft 6-way split	39
Figure 3-4:	Example of an sink structure	43
Figure 4-1:	Constructing 2-ft mbns using 2-ft 4-way split for n divisible by 4	49
Figure 4-2:	The three disjoint calling paths for the vertices in the Si's in 2-ft mons constructed by the 2-ft 4-way split method	50
Figure 4-3:	Constructing 2-ft mbns using 2-ft 8-way split for n divisible by 4	58
Figure 4-4:	The three disjoint calling paths for the vertices in the Si's in 2-ft mbns constructed by the 2-ft 8-way split method	60

「日本学校のなどのない」を見ていた。

all the second se

Ş.

Chapter 1

Definitions and Previous Results

1.1 Definitions

In a communication network, a member has a message which is to be disseminated to all other members. The series of calls to inform the other members is constrained by the following :

1. Each call requires one unit of time.

2. A member can only call an adjacent member.

 \sim

3. A member can participate in at most one call per time unit. This process is called <u>broadcasting</u> and the member that sends the message is called the originator [Mitchell 80].

Let G = (V, E) be a graph that represents a communication network. The set of vertices V corresponds to the members of the network and the set of edges E corresponds to the communication links-connecting pairs of members. Let n denote the number of vertices in G, e(G) denote the number of edges in G and t(u) denote the time required to broadcast using uEV as the originator. Let t(G) = Max (t(u) : uEV). i.e. Every uEV can broadcast in less than or equal to t(G) units of time.

Let T(n) denote the minimum time required to broadcast a message in any communication network G with n members. T(n) is equal to ceiling of $\log_2 n$ because at each time unit, the number of informed vertices can be at most double the number of informed vertices in the previous time unit [Mitchell 80]. Definition 1: A minimal broadcast network (mbn) is a graph G such that [Farley 79]

t(G) = T(n)

= [log2n].

An mbn represents a communication network that can complete a broadcast regardless of originator, in minimum time.

Definition 2: A minimum broadcast graph (mbg) is a graph G such that G is an mbn and e(G) is minimum. An mbg is an ambn having the minimum number of edges [Mitchell 80].

An mbg represents a communication network with the fewest communication links between members that can complete a broadcast in minimum time regardless of originator.

Let B(n) denote the number of edges of an mbg of size n. The value of B(n) for arbitrary n is not known and it is conjectured that to determine B(n) is NP-Complete [Farley, et al. 79]. The value of B(n)is only known for n <= 17 [Mitchell 80] (see figure 1.1) or for n = 2^k [Farley, et al. 79] where

 $B(n) = n/2*[log_2n].$

The only known lower bound for B(n) is from the fact that the graph must be connected. Therefore, $B(n) \ge n-1$. This is a very poor lower bound and it does not make use of any other properties of mbgs. Upper bounds for B(n) can be obtained from the size of known mbns. The existing upper bounds for B(n) are [Farley 79]

 $B(n) <= n/2[\log_2 n] \quad (or \ 3*2(\log_2 n) - 2) < n <= 2[\log_2 n]$ $B(n) <= n/2[\log_2 n] - n/2 for 2[\log_2 n] < n <= 3*2([\log_2 n] - 2)$

n	2	3 4	- 5	6	7	8	9	10
B(n)	1	2	45	6	8	2	10	12
n	11	12	13	14	15	16	17	
B(n)	13	15	18	21	24	32	22	2

Figure 1-1: The value of B(n) for $n \ll 17$.

Definition 3: A broadcasting scheme is a sequence of calls between members of a communication network which complete a broadcast.

Mbgs represent the cheapest efficient communication networks. They may be used for message broadcasting in communication, parallel processing and distributed computing. No technique is known to generate an mbg of arbitrary size and the recognition problem for mbgs is NP-complete [Farley, et al. 79]. Only mbgs of size $n \le 17$ or $n = 2^{k}$ are known. Heuristics can be used to generate mbns which have a small number of edges to approximate mbgs. In the following sections, existing algorithms to construct mbns are presented.

1.2 Farley's algorithm

 \mathfrak{V}

Broadcasting can be accomplished in minimum time if there is a broadcast tree rooted at the originator. The most obvious graphs that satisfy this condition for each vertex are the complete graphs. Complete graphs have n(n-1)/2 edges and the problem becomes whether we can reduce the number of edges and still maintain the condition. Farley discovered that a subclass of star polygons also ratisfies the above condition and they have fewer edges than complete graphs. The star polygons give an upper bound of

$B(n) <= n \log_2 n$

which is significantly less than the number of edges in complete graphs. Furthermore, Farley presented the first heuristic to generate mbns which have fewer edges than star polygons. The idea of his algorithm is to construct mbns by connecting two or three smaller size mbns together in a special way. By applying his algorithm recursively, mbns of arbitrary size can be constructed and the number of edges in the resulting mbns is no more than half of the edges of the star polygons.

1. Farley's two-way split

An mbn of size n can be formed by connecting 2 mbns S₁, S₂ each of size n₁ and n₂ respectively such that n₁ + n₂ = n and $\lceil \log_2 n_1 \rceil = \lceil \log_2 n_1 \rceil - 1$. Assume n₁ >= n₂. Connect every vertex in S₂ to a distinct vertex in S₁. The resulting graph G is an mbn of size n [Farley 79].

The broadcasting scheme for G is as follows: If the originator is in S₁ then start to broadcast within S₁. After S₁ has finished its own broadcasting, conduct calls between S₁ and S₂ through the links that connect them together. If the originator is in S₂ then in the first time unit the originator calls a vertex in S₁. After the first time unit, S₁

ī

and S2 each have an informed vertex. Starting from time unit two, both mbns can broadcast internally.

The time required to broadcast within either S₁ or S₂ is $\lceil \log_2 n \rceil - 1$ and one additional time unit is required to conduct calls between S₁ and S₂. The total time required for G to complete the broadcast is $\lceil \log_2 n \rceil$. Thus, the graph G constructed by the 2-way split is an mbn.

Figure 1-2: Example of an mbn constructed by Farley's 2-way split

2. Farley's three-way split

An mbn of size n in the range

 $2\log_2 n < n < 3 + 2(\log_2 n - 2)$

can be generated by connecting three mbns S₁, S₂ and S₃ of size n₁, n₂ and n₃ respectively such that n₁ + n₂ + n₃ = n and $\lceil \log_2 n \rceil = \lceil \log_2 n \rceil = 2$.

If n is even then connect each member of the three components to a different member of a different component. If n is odd then do as above for n-1 of the members; then connect the remaining member to a member of a different component to which no member of its component is already connected. The resulting graph G is an mbn [Farley 79].

The calling scheme for G is as follows: Without loss of generality, assume the originator is in S1 and it is connected In the first time unit the originator calls to a vertex in S2. the vertex in S2. Starting from the second time unit, S1 and \$2 each contain an informed vertex and they can broadcast internally. After they have finished their own broadcasts, conduct calls from S1 and S2 to S3. The time required for either S1, S2 or S3 to broadcast internally is The calls between components require two extra log2n-2. total time required to complete time The units. а broadcasting in G is log2n]. Hence, the graph - G constructed by the 3-way split is an mbn.

Figure 1-3: Examples of mbns constructed by 'Farley's three-way split

By applying Farley's two-way split and three-way split methods recursively, mbns of arbitrary size can be generated. In the two methods described above, no detail is given on how to split n into two

5

or three parts. These methods work for any n; which satisfy the conditions set forth. However, Farley chooses to split n under the following conditions :

1. For 2-way split, $|n_1-n_2| <= 1$.

2. For 3-way split, $|n_1-n_2| \le 1$, $|n_1-n_3| \le 1$ and $|n_2-n_3| \le 1$. That is, he always splits as evenly as possible. Under these conditions, the mbns G generated by Farley's algorithm give

 $e(G) \leq \pi/2 \log_2 n$

as an upper bound for the number of edges in G for the two-way split and

e(G) <= n/2[]og2n] - n/2

for the three-way split. Since the 3-way split has a better bound than the 2-way split, Farley always uses the 3-way split when it is possible. For certain sizes slight 'improvement on the above result can be obtained by using the best split for n recursively [Liestman 83]. This approach is computationally inefficient. In this thesis, we assume that splitting is done according to Farley's conditions. The result obtained by Farley is not bad if we compare mbns generated by Farley's algorithm to mbgs of size $n=2^{k}$. Actually, Farley's algorithm generates mbgs when $n=2^{k}$. However, it is not possible to judge whether other mbns generated by Farley's algorithm are good approximations of mbgs since we know neither the value of B(n) nor a good lower bound for B(n) when $n\neq 2^{k}$ and n>17.

Chapter 2

Algorithms to Approximate Minimum Broadcast Graphs

Using Farley's idea of generating mbns recursively, better approximations can be found. Instead of constructing mbns from two or three smaller mbns, we can use five, six or seven smaller mbns to construct larger mbns. In the following three sections, different heuristics to generate mbns based on Farley's idea are presented.

2.1 Five-way split method

The/most straightforward way to extend Farley's algorithm is to a construct mbns using more than three smaller mbns. However, it turns out that the simplest way does not work very well. Consider an mbn constructed by 5 smaller mbns. They are connected together in such a way that each mbn can be considered as a vertex in an mbg of size 5 (see figure 2-1). Every vertex in each small mbn is connected to two other vertices from different small mbns. Suppose that each smaller mbn is constructed by Farley's. 2-way split and each requires [log2n]-3 units of time for broadcasting. We can send messages from the originator to a vertex in two other different smaller mbns in the first two time units. In the third time unit, the two just informed vertices can send messages to a vertex in the remaining two small mbns. Thus, after three time units each small mbn has one informed vertex and they can broadcast internally. The total time required for broadcasting in G is also log2n. Hence, the graph G constructed by the straightforword 5-way split is an mbn.

The number of edges in G is

8

Each line represents that every vertex in one set is connected to at least one vertex of the other set Figure 2-1: Constructing mbns using straightforward 5-way split

$$e(G) <= \sum_{i=1}^{5} (n_i/2 \lceil \log_2 n_i \rceil) + \lceil n/5 \rceil * 5$$

$$<= \sum_{i=1}^{5} (n_i/2 (\lceil \log_2 n_i \rceil - 3)) + n + 5$$

$$= n/2 (\lceil \log_2 n_i \rceil - 3) + n + 5$$

$$<= n/2 \lceil \log_2 n_i \rceil - n/2 + 5$$

Thus, no improvement on the bound is achieved by the straightforward 5-way split. Better results may be obtained by a less obvious approach.

Consider the graph constructed by the straightforward 5-way split. In the first three time units, some of the informed vertices are not involved in calls. We can make use of these unutilized but informed vertices to reduce the number of edges. The following is an improved version of the straightforward 5-way split. 1. $|V_a| - |V_b| | <= 1$

of V if

2. For every vertex $v \in V_a$, there is at least one vertex $u \in V_b$ that is adjacent to v.

3. For every vertex $u \in V_b$, there is at least one vertex $v \in V_a$ that is adjacent to u_* .

Definition 2: Given graphs A = (V_a, E_a) and B = (V_b, E_b) such that

 $||V_a| - |V_b|| <= 1.$

A graph G is formed by adding edges between V_a and V_b . A and B are said to be connected by a <u>minimum</u> <u>adjacency</u> connection if

1. The number of edges added is $Max(|V_a|, |V_b|)$.

2. V_a and V_b constitute in even adjacency split of G. Note that if $|V_a| = |V_b|$ the edges added are a perfect matching from V_a to V_b . If $|V_a| = |V_b|+1$, the edges added are a perfect matching from V_b to V_a plus an edge from the unmatched vertex of V_a to a vertex in V_b . Similarly, if $|V_b| = |V_a|+1$, the edges added are a perfect matching from V_a to V_b plus an edge from the unmatched vertex of V_b to a vertex in V_a .

Lemma 3: An mbn G = $\{V, E\}$ constructed by Farley's 2-way split algorithm has an even adjacency split.

Proof: Let $A = (V_a, E_a)$ and $B = (V_b, E_b)$ be the two smaller

mbns used by the 2-way split algorithm to construct G. Assume that $|V_a| - |V_b| \le 1$.

Two ca≸es :

- 1. If n is even then V_a and V_b are an even adjacency split of G.
- 2. If n is odd then let $v \in V_a$ be the vertex that is not connected to any vertex in V_b . Split V into two sets K1 and K2 such that

and

 $K_2 = V_b \cup \{v\}$

 $K_1 = V_a \setminus \{v\}$

Since v must be adjacent to at least one vertex in V_a , each vertex in K_1 must be adjacent to at least one vertex in K_2 and vice versa. K_1 and K_2 are an even adjacency split of G.

· (

至うな 大学の世界の人生では、などのないで、「ない」のないで、「ない」ので、

Hence, the graph G constructed by Farley's two-way split has an even adjacency split.

Five-way split method

Given n such that

 $\lceil \log_2 n \rceil - \lceil \log_2 \lceil n/5 \rceil = 3,$

an mon of size n can be constructed as follows :

1. Partition n vertices into 5 sets Sj such that

 $[n/5] = |S_1| \ge |S_2| \ge \dots \ge |S_5| = [n/5]$

2. For each S_i, construct an mbn with an even adjacency split A_i, B_i such that $|A_i| - |B_i| <= 1$. This may be done recursively or using other heuristics such as Farley's 2-way split.

3. Add edges to form minimum adjacency connections between the following pairs : (A_1, A_2) , (B_2, A_3) , (B_3, A_4) , (B_4, B_5) , (A_5, B_1) , (B_1, B_3) , (B_2, B_5) .

Each line represents a minimum adjacency connection between the Ais' and the Bis'

Figure 2-2: Constructing mbns using 5-way split

Theorem 4: The graph G constructed by the 5-way split method is an mbn.

Proof: Refer to figure 2~3 and consider an originator in S4. Without loss of generality, assume that the originator is in A4. Consider the following calling scheme :

1. Time unit 1 : Conduct call between the pair ($v_4 \in A_4$, $u_4 \in B_4$). This is possible because A_4 and B_4 are an even adjacency split of S_4 .

12

- Time unit 2 : Conduct call between the pairs (V4EA4, u3EB3), (u4EB4, u5EB5). This is possible because the sets A4, B3 and B4, B5 are connected by minimum adjacency connections.
- Time unit 3 : Conduct call between the pairs (u3^{EB3}, u1^{EB1}), (u5^{EB5}, u2^{EB2}). Again, the sets_are connected by minimum adjacency connections.

Each mbn S_i has at least one informed vertex after the first three time units. In time unit four, each S_i can start to broadcast internally. The time required for each small network is $[log_{2n}/5]$.

The total time required to complete broadcasting in G is

 $t(G) = [log_2[n/5]] + 3$

Since

 $\lceil \log_2 n \rceil - \lceil \log_2 \lceil n / 5 \rceil = 3$

 $t(G) = [log_2n] - 3 + 3$

Therefore, G can complete a broadcast in minimum time if the originator is in S4.

Referring to figure 2-4 and 2-5 and using similar arguments, G can complete a broadcast in minimum time if the originator is in S₁, S₂, S₃ or S₅.

Therefore, G is an mbn.

Theorem 5: The graph G constructed by the 5-way split method has などのないというないになったないないのでないないである

Figure 2-3: Calling scheme for the first three time units if the originator is in S4 for mons constructed by the 5-way split

Calling scheme for the first three time units if the originator is in S3 or S5 for mbns constructed by the 5-way split

Figure 2-5: Calling scheme for the first three time units if the originator is in S₁ or S₂ for mbns constructed by the 5-way split

 $e(G) \le n/2 \log_2 n - 4n/5 + 7.$

Proof: Let n_i be the number of vertices in each S_i . Assume the S_i 's are constructed by Farley's 2-way split method.

Therefore, the Sis will have a total of

(ni/2[log2ni])

edges.

At most [n/10]*7 edges are needed to form minimum adjacency connections between pairs (A₁, A₂), (A₃, B₂), (A₄, B₃), (A₅, B₁), (B₁, B₃), (B₂, B₅), (B₄, B₅).

The total number of edges in G₀ is

$$e(G) <= \sum_{i=1}^{\infty} (n_i/2[\log_2 n_i]) + [n/10]*7$$

$$<= \sum_{i=1}^{\infty} (n_i/2([\log_2 n_i] - 3]) + 7n/10 + 7$$

$$<= n/2([\log_2 n_i] - 3]) + 7n/10 + 7$$

.-

Theorem 6: The graph G = (V, E) constructed by the 5-way split method has an even adjacency split.

Proof: Split V into two sets K1 and K2 such that

 $K_1 = A_1 \cup B_2 \cup A_3 \cup B_4 \cup A_5$

 $K_2 = B_1 \cup A_2 \cup B_3 \cup A_4 \cup B_5$

Every v \in K1 must be adjacent to at least one u \in K2 and vice versa since the Ai's and the Bi's are even adjacency splits of the Si's.

Let $j = n \mod 5$. That is, j is the number of S_i's of size |n/5|+1.

Three cases :

- 1. If $|S_i| = \lfloor n/5 \rfloor$ for all i and $\lfloor n/5 \rfloor$ is even, then $|K_1| = |K_2|$. If $|S_i| = \lfloor n/5 \rfloor$ for all i and $\lfloor n/5 \rfloor$ is odd, then $|K_1| = |K_2| + 1$.
- 2. If $j\neq 0$ and and $\lfloor n/5 \rfloor$ is even, then $|A_i| = |B_i|$ for $i \ge j+1$ and $|A_i| = |B_i| + 1$ for $1 \le i \le j$. Therefore, $|K_1| = |K_2| + 1$ if j is odd and $|K_1| = |K_2|$ if j is even.
- 3. If $j \neq 0$ and and $\lfloor n/5 \rfloor$ is odd, then $|A_i| = |B_i| + 1$ for $i \geq j+1$ and $|A_i| = |B_i|$ for $1 \leq i \leq j$. Therefore, $|K_1| = |K_2|$ if j is odd and $|K_1| = |K_2|+1$ if j is even.

G has an even adjacency split K1 and K2.

From theorems 4, 5, and 6, the graph G constructed by the 5-way split method has the following properties :

1. G is an mbn.

2. $e(G) \le n/2 \lceil \log_2 n \rceil - 4n/5 + 7$.

3. G has an even adjacency split.

2.2 Six-way split method

Given n such that

 $\lceil \log_2 n \rceil - \lceil \log_2 n / 6 \rceil = 3,$

an mbn of size n can be constructed as follows :

1. Partition n vertices into 6 sets S_i such that

 $[n/6] = |S_1| \ge |S_2| \ge ... \ge |S_6| = [n/6].$

- For each S_i construct an mbn with an even adjacency split
 A_i, B_i such that |A_i|-|B_i| <= 1. This may be done recursively or using other heuristics such as Farley's 2-way split.
- Add edges to form minimum adjacency connections between the following pairs : (B1, A3), (B3, A5), (B5, A2), (B2, A4), (B4, A6), (B6, A1), (B1, B2), (B3, B4), and (B5, B6).

Theorem 7: The graph G constructed by the 6-way split method is an mbn.

Proof: Referring to figure 2-7 and using similar arguments to those used in the proof of theorem 4, each mbn S_i has at least one informed vertex after the first three time units. In time unit four, each S_i can start to broadcast internally. The time required for each set is $\lceil \log_2 \lceil n/6 \rceil$.

The total time required to complete broadcasting in G is

 $t(G) = [log_2[n/6]] + 3$

- 1997 - 1997 - 1997

Each line represents a minimum adjacency connection between the A_i 's and the B_i 's

Since

 $\lceil \log_2 n \rceil - \lceil \log_2 \lceil n/6 \rceil = 3$ $t(G) = \lceil \log_2 n \rceil - 3 + 3$ $= \lceil \log_2 n \rceil$

Therefore, G is-an mbn.

Theorem 8: The graph G constructed by the 6-way split method has

 $e(G) <= n/2 \log_2 n - 3n/4 + 9$

Proof: Let n_i be the number of vertices in each S_i . Assume the S_i 's are constructed by Farley's 2-way split method. Therefore, the S_i 's will have a total of

Figure 2-7: Calling scheme for the first three time units regardless of originator for mbns constructed by the 6-way split

 $\sum_{i=1}^{6} (n_i/2[\log_2 n_i])$

edges.

At most $\lceil n/12 \rceil$ *9 edges are needed to form minimum adjacency connections between pairs (B₁, A₃), (B₃, A₅), (B₅, A₂), (B₂, A₄), (B₄, A₆), (B₆, A₁), (B₁, B₂), (B₃, B₄), and (B₅, B₆).

The total number of edges in G is

$$e(G) <= \sum_{i=1}^{6} (n_i/2[\log_2 n_i]) + [n/12]*9$$

$$<= \sum_{i=1}^{6} (n_i/2([\log_2 n_i] - 3)) + 9n/12 + 9$$

$$<= n/2([\log_2 n_i] - 3) + 9n/12 + 9$$

$$<= n/2[\log_2 n_i] - 3n/4 + 9$$

Theorem 9: The graph G = (V, E) constructed by the 6-way

split method has an even adjacency split.

Proof: Split V into two groups K1 and K2 such that

$$K_1 = A_1 \cup B_2 \cup A_3 \cup B_4 \cup A_5 \cup B_6$$

 $K_2 = B_1 U A_2 U B_3 U A_4 U B_5 U A_6$

Using similar arguments to those used in the proof of theorem 6, K_1 and K_2 are an even adjacency split of G.

From theorems 7, 8, and 9, the graph G constructed by the 6-way split method has the following properties :

1. G is an mbn.

2. $e(G) \le n/2 \log_2 n - 3n/4 + 9$.

3. G has an even adjacency split.

2.3 Seven-way split method 🦻

Given n such that

 $\lceil \log_2 n \rceil - \lceil \log_2 \lceil n/7 \rceil \rceil = 3,$

an mbn of size n can be constructed as follows :

1. Partition n vertices into 7 sets S_i. If $\lfloor n/7 \rfloor$ is even then

 $\lceil n/7 \rceil = |S_1| >= |S_2| >= \dots >= |S_7| = \lfloor n/7 \rfloor$

If [n/7] is odd then

 $\lceil n/7 \rceil = |S_1| >= |S_4| >= |S_7| >= |S_2| >=$ $|S_5| >= |S_6| >= |S_3| = \lfloor n/7 \rfloor$

2. For each S_i construct an mbn with an even adjacency split A_i , B_i such that $0 \le |A_i| - |B_i| \le 1$. This may be done recursively or using other heuristics such as Farley's 2-way split.

 Add edges to form minimum adjacency connections between the following pairs: (B₁, A₅), (B₅, B₆), (A₆, B₂), (A₂, A₇), (B₇, A₃), (B₃, B₄), (A₄, A₁), (A₁, A₆), (B₁, A₃), (A₂, A₅), (B₂, B₃), (B₆, B₇), (A₄, A₇), and (B₄, B₅).

Each line represents a minimum adjacency connection between the $A_i{}^{\prime}s$ and the $B_i{}^{\prime}s$

Figure 2-8: Constructing mbns using 7-way split

Theorem 10: The graph G constructed by the 7-way split method is an mbn.

Proof: Referring to figure 2-9 and using similar arguments to those used in the proof of theorem 4, each mbn S; has at least one informed vertex after the first three time units. In time unit four, each S; can start to broadcast internally. The time required for each set is $\lceil \log_2 \lceil n/7 \rceil$.

The total time required to complete a broadcast in G is

 $t(G) = [log_2 n/7] + 3$

Since

 $\left[\log_2 n \right] - \left[\log_2 \left[n / 7 \right] \right] = 3$ $\therefore t(G) = \left[\log_2 n \right] - 3 + 3$ $\therefore = \left[\log_2 n \right]$

Therefore, G is an mbn.

Figure 2-9: Calling scheme for the first three time units regardless of originator for mbns constructed by the 7-way split

(Theorem 11: The graph G constructed by the 7-way split method has

 $e(G) \le n/2[\log_2 n] - n/2 + 14$

 $\sum (n_i/2[\log_2 n_i])$

Proof: Let n_i be the number of vertices in each S_i . Assume the S_i 's are constructed by Farley's 2-way split method. Therefore, the S_i 's will have a total of edges.

At most [n/14]*14 edges are needed to form a minimum adjacency connection between pairs (B₁, A₅), (B₅, B₆), (A₆, B₂), (A₂, A₇), (B₇, A₃), (B₃, B₄), (A₄, A₁), (A₁, A₆), (B₁, A₃), (A₂, A₅), (B₂, B₃), (B₆, B₇), (A₄, A₇), and (B₄, B₅).

The total number of edges in G is

$$e(G) <= \sum_{i=1}^{n} (n_i/2 \lceil \log_2 n_i \rceil + \lceil n/14 \rceil * 14) \\ <= \sum_{i=1}^{n} (n_i/2 (\lceil \log_2 n_i \rceil - 3)) + n + 14) \\ <= n/2 (\lceil \log_2 n_i \rceil - 3) + n + 14) \\ <= n/2 \lceil \log_2 n_i \rceil - n/2 + 14$$

Theorem 12: The graph G = (V, E) constructed by the 7-way split method has an even adjacency split.

Proof: Split V into two sets K1 and K2 such that

 $K_1 = A_1 \cup B_2 \cup A_3 \cup B_4 \cup A_5 \cup B_6 \cup A_7$

 $K_2 = B_1 \cup A_2 \cup B_3 \cup A_4 \cup B_5 \cup A_6 \cup B_7$

Using similar arguments to those used in the proof of theorem 6, K_1 and K_2 are an even adjacency split of G.

5

From theorems 10, 11, and 12, the graph G constructed by the 7-way split method has the following properties :

1. G is an mbn.

2. e(G) <= n/2[log2n] - n/2 + 14.

3. G has an even adjacency split.

2.4 An algorithm to approximate mbgs

From the previous sections, mbns constructed by the 5, 6 and 7-way splits and Farley's 2-way split all have the property that they contain even adjacency splits. Because of this property, we can combine all these methods in an algorithm to approximate mbgs. Furthermore, this algorithm will be better if it can utilize the known mbgs as the basis for the algorithm.

24

Lemma 13: There is an mbg of size n with an even adjacency split for each n in the range $2 \le n \le 17$.

Proof: The vertices of each mbg in figure 2-10 are divided into two sets A and B. Set A contains all the vertices that are marked with a "x" and set B contains all those marked with an "o". Clearly, A and B satisfy the conditions for even adjacency split in G. A and B are an even adjacency split of G.

An Algorithm to Approximate Mbgs

1. If $n \le 17$ then return the known mbg and stop.

Else

For m := 18 to $\left\lceil n/2 \right\rceil$ do begin

Find the number of edges for mbn of size m

constructed by Farley's 2-way split,

5-way split, 6-way split and 7-way

split if possible.

Find and store the method that give the

fewest edges.

end

2. Find the number of edges for an mbn of size n constructed

ŧ

Figure 2-10: Known mbgs for n <= 17 which have an even adjacency split

25

by Farley's 2-way split, 5-way split, 6-way split and 7-way split. Construct the mbn using the method that give the fewest number of edges.

Lemma 14: If Farley's 3-way split can be used to construct an mbn of size n, then we can also use the 6-way split for the construction.

Proof: Farley's 3-way split method can be used when

 $2[\log_2 n] < n <= 3*2([\log_2 n] - 2)$

: n <= 3*2([log2n] - 2)

\n/6 <= 2([log2n] - 3)</pre>

Since $2(\lceil \log_2 n \rceil - 3)$ is an integer,

 $(n/6] <= 2(\log_2 n) - 3)$

 $\left[\log_2 \left[n/6 \right] \right] <= \left[\log_2 n \right] - 3$

Hence, the 6-way split method can be employed whenever the 3way split method is applicable.

From the above lemma, this algorithm gives a better bound on B(n) than Farley's algorithm when

 $2[\log_2 n] < n <= 3*2([\log_2 n] - 2)$

because the 6-way split has a better bound for e(G) than the 3-way split. Furthermore, this algorithm also gives a better better bound on B(n) when

 $3*2(\lceil \log_2 n \rceil - 2) < n <= 7*2(\lceil \log_2 n \rceil - 3)$

for we can use the 7-way split in this range instead of Farley's 2-way split. The bound of e(G) for the 7-way split is also better.

No improvement has been made for

٢.

It might be possible to proceed with the same technique as 5, 6 and 7way split and split n vertices into 15, 31 or 63 sets to get improvement within this range. The method will become very complicated and no improvement can be made for all n within this range with this approach. This direction has not been investigated.

2.5 Summary

An algorithm to approximate mbgs is presented. This algorithm gives a better bound on B(n) than Farley's algorithm. For $2\lfloor \log_2 n \rfloor < n <= 5*2(\lceil \log_2 n \rceil - 3)$

 $B(n) \le n/2[\log_2 n] - 4n/5 + 7.$

For $5*2(\lceil \log_2 n \rceil - 3) < n <= 3*2(\lceil \log_2 n \rceil - 2)$

 $B(n) \le n/2 [log_2n] - 3n/4 + 9.$

 $F_{0r} 3 \star 2(\lceil \log_2 n \rceil - 2) < n <= 7 \star 2(\lceil \log_2 n \rceil - 3)$

 $B(n) \le n/2 \log_2 n - n/2 + 14$.

The bound for B(n) is improved in the range

 $2[\log_2 n] < n <= 7*2([\log_2 n] - 3).$

That is, the bound is improved three-quarter of the time. Further reduction in edges for constructing mbns of size

 $7*2([log_2n] - 3) < n <= 2[log_2n]$

may be possible by using the same technique to construct mbns with 15, 31 or 63 smaller mbns. The number of edges in mbns constructed by this algorithm and Farley's algorithm have been computed for 18 <= n <= 1024. The mbns generated by this algorithm have an average of approximately 8% fewer edges than the mbns generated by Farley's algorithm within the range where there is improvement and n>=36. A table for the comparison of e(G) between this algorithm and Farley's algorithm is given in Appendix A.
It is interesting to note in the table of Appendix A that the 6-way split always performs better than the 5-way split which seems to contradict the bounds given above. This is probably due to the fact that the proof of the bounds assume that the small mbns are constructed by the 2-way split. However, in practice the small mbns used will be the mbns having the fewest edges which may be constructed by the 2, 5, 6 or 7-way split or may be known mbgs. Consider the case n=160. The 5-way split will break the vertices into 5 sets of 32 vertices. Each small mbn is constructed by the 2-way split and contains 80 edges. Thus, the small mbns contain 400 edges and the total number of edges in the resulting mbn on 160 vertices is 512. The 6-way split will utilize 2 mbns on 26 vertices and 4 mbns on -27 vertices. These small mons can be constructed by the 7-way split yielding a total of 308 edges in the 6 small mons. Thus, the resulting mbn on 160 vertices has only 427 edges. This significant savings in the number of edges in the small mons compensates for the extra edges added between the small mons by the 6-way split method. Thus, the 6-way split may actually outperform the 5-way split in spite of the bounds. The behaviour of the 7-way split is similarly influenced by the actual method used to construct the small mbns.

Chapter 3

Algorithms to Approximate 1-ft Mbgs

3.1 Definitions

Let G = (V, E) be a graph that represents a communication network, and a subgraph G' = (V, E') with E' = E - E^{*} where E^{*} is a set of k edges in E. The set E* represents faulty communication links in the Broadcasting in G with enough redundancy so that broadcast network. completed with any set E[®] of faulty links is called can be k-fault-tolerant broadcasting (Fault-tolerant will be abbreviated ft A k-ft broadcasting scheme is a broadcasting scheme which below). contains k+1 mutually edge disjoint calling paths from the originator to each member of the network. Ft broadcasting is desirable if reliability is considered as an important factor in a communication network. The ft broadcasting scheme does not detect which communication link fails. The broadcast problem discussed in chapter 2 corresponds to 0-ft broadcasting.

Let n denote the number of vertices in G, e(G) denote the number of edges in G and $t_k(u)$ denote the time required to complete a k-ft broadcast using uEV as the originator. Let $t_k(G) = Max(t_k(u) : uEV)$. That is, every uEV can complete a k-ft broadcast in less than or equal to $t_k(G)$ units of time.

In general, the minimum time $T_k(n)$ required to complete a k-ft broadcast in any communication network G of n members is not known. It has been shown that

 $T_k(n) >= \lceil \log_2 n \rceil + k$

٢,

The only known values for $T_k(n)$ for k > 0 are those for k=1,2[Liestman 81]. For k = 0 the result is given in the previous chapter.

For k = 1 and $n \ge 3$,

 $T_1(n) = [log_2n] + 1.$

For k = 2, $n \ge 5$ and $n = 2^{i} - 1$,

 $T_2(n) = \lceil \log_2 n \rceil + 2.$

For k = 2, $n \ge 5$ and $n = 2^{i} - 1$,

 $T_2(n) = \lceil \log_2 n \rceil + 3$.

Definition 1: A'<u>k-fault-tolerant minimum</u> broadcast network (kft mbn) is a graph G such that a k-ft broadcast can be completed in minimum time [Liestman 81].

A k-ft mbn represents a communication network that can complete a kft broadcast regardless of originator in minimum time,

Definition 2: A <u>k-fault-tolerant minimum broadcast graph</u> (k-ft mbg) is a graph G such that G is a k-ft mbn and e(G) is minimum. A k-ft mbg is a k-ft mbn having the minimum number of edges. [Liestman 81].

A k-ft mbg represents a communication network with the fewest communication links between members that can complete a k-ft broadcast in minimum time regardless of originator.

31

Let $B_k(n)$ denote the number of edges of a k-ft mbg of size n. The value of $B_k(n)$ for arbitrary n is not known. The following upper bound for $B_k(n)$ where k = 1, 2 are from Liestman [Liestman 81]. For $n = 2^j$,

 $B_1(n) \le n[\log_2 n] - n/2$. $B_2(n) \le n[\log_2 n] + n/2$. For $n = 2[\log_2 n] + 2i$.

 $B_1(n) \leq n \log_2 n - n$.

 $B_2(n) <= n \log_2 n$

For other n,

 $B_1(n) \leq n \log_2 n$.

 $B_2(n) <= n [log_2n] + n$.

The above results are obtained from Liestman's heuristics to generate 1ft mbns and 2-ft mbns. Other heuristics to generate 1-ft mbns and 2ft mbns are presented in the following sections.

3.2 1-ft two-way split method

The method used in the 0-ft algorithms is not directly extendable to the k-ft cases for k=1,2. Let n be even. Suppose we partition n vertices into two sets of equal size and form two smaller k-ft mbns. Each of these can complete a k-ft broadcast in $T_k(n/2)$ units of time. As before, we add edges to connect the small 1-ft mbns together forming a graph G. If we use the first k+1 calls to ensure that each component has at least one informed vertex, we get

 $t_{k}(G) = T_{k}(n/2) + k + 1 > T_{k}(n)$

for k=1,2 and even n. Thus, using the first k+1 calls in this fashion Awill not produce the desired results.

Let us consider the case for k=1.

 $T_1(n) = \lceil \log_2 n \rceil + 1 = \lceil \log_2 n / 2 \rceil + 2 = T_0(n/2) + 2$

We propose a scheme using two 0-ft mbns of size n/2 connected by additional edges. In the first time unit, the originator (in component A) calls a member of the other component (B). The two components then proceed with 0-ft broadcasts internally. This takes $T_0(n/2)$ units of time. During the last time unit, each member of one component calls a member of the other component. Thus, two calling paths from the originator to each vertex are completed. For a vertex in A, the two calling paths are :

9.

1. The calling path within A.

2. The first call to B, a calling path within B and a call back $\stackrel{>}{\sim}$ to A.

Note that it is important that the originator calls two distinct members of B. The following heuristics to approximate 1-ft mbns are based on the above idea.

1-ft 2-way split for even n

Given n is even, a 1-ft mbn of size n can be constructed as follows :

- Partition n vertices into two equal sets S₁ and S₂, and for each S₁ construct a 0-ft mbn. This may be done by either the 2, 5, 6 or 7-way split.
- 2. Number the vertices in S₁ and S₂. Add edges to connect $v_i \in S_1$ to $u_i \in S_2$ for j=1..n/2.
- 3. Add edges to connect $v_j \in S_1$ to $u_{j+1} \in S_2$ for j=1..(n/2-1) and $v_n/2$ to u_1 .

Theorem 3: The graph G constructed by the 1-ft 2-way split algorithm for even n is a 1-ft mbn.

Proof: Without loss of generality, assume that the originator is

 $v_j \in S_1$ and j=n/2. In the first time unit, v_j calls u_{j+1} . After the first time unit, each 0-ft mbn has an informed vertex. Starting from time unit two, each 0-ft mbn broadcasts internally. This takes $\lceil \log_2 n \rceil - 1$ time units. In time unit $\lceil \log_2 n \rceil + 1$, conduct calls between v_k and u_k for k=1..n/2. The total time required for this calling scheme is $\lceil \log_2 n \rceil + 1$. Thus, the time constraint is not violated.

For the vertices in S₁, each has one calling path which is obtained by broadcasting internally and another calling path which is from v_j to u_{j+1} , calls within S₂ and from u_k to v_k. Similarly, each vertex in S₂ has one calling path which is from v_j to u_{j+1} and calls within S₂. Moreover, each also has a second calling path from calls in S₁ and then from v_k to u_k.

Clearly, the two calling paths for each vertex in the Sis are disjoint. Hence, the graph G constructed by the 1-ft 2-way split for even n is a 1-ft mbn.

Figure 3-2: Possible method to construct 1-ft mbns when n is odd

If n is odd, the above scheme for the construction of 1-ft mbns does not work because not every vertex can participate in the calls at the last time unit. Consider the following scheme. Suppose n is odd and we partition n vertices into two sets S_1 , S_2 such that $|S_1| = |S_2| + 1$. Number the vertices and add edges to connect ujeS₂ to $v_j \in S_2$, $u_j \in S_2$ to $v_{i+1} \in S_2$, where i=1...n/2 (see figure 3-2). Let the originator be $v_k \in S_1$. In the first time unit, v_k calls u_k . In the second time unit, each S_i has one informed vertex and they can broadcast internally. This takes $\lceil \log_2 n \rceil - 1$ time units. In the last time unit, conduct calls between v_i and up if i<k, v_{i+1} and u_i if i>k. In this way, only the originator v_{k} does not participate in the calls at the last time unit. Thus, all vertices except the originator have two calling paths. However, this scheme does not work if the originator is in S2. In fact, this scheme only works if the originator is in the larger set. If we can "force" the originator to be in the larger set all the time then this scheme will work

for all odd n. The "forcing" of the originator to be in the larger set can be done by splitting n vertices into two equal sets S₁, S₂ and a single vertex w. Construct 0-ft mbns for S₁U{w} and S₂U{w} with the property that S₁, S₂ are also 0-ft mbns themselves. If the originator is in S₁ then we can consider S₁U{w} as the larger set and S₂ as the smaller set. Similarly, if the originator is in S₂ then we can consider S₂U⁺w⁻ as the larger set and S₁ as the smaller set. Hence, our aim becomes to find a method to construct 0-ft mbns which have the desired property. If such a method exists, we can use the scheme described above to construct 1-ft mbns when n is odd. It turns out that a subset of 0-ft mbns constructed by Farley's 2-way split has this property.

Lemma 4: At least one 0-ft mbn G on $n \ge 2$ vertices constructable by Farley's 2-way split method contains a vertex v such that the graph G' obtained by deleting v and all edges incident with v from G is a 0-ft mbn on n-1 vertices.

Proof: Farley's 2-way split forms an mbn of size n by connecting two mbns S_1 and S_2 of size $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$ respectively with $\lfloor n/2 \rfloor$ edges. These edges connect each vertex in S_2 to a distinct vertex in S_1 . Any such set of connections is allowed by Farley's 2-way split method. Let us consider those mbns constructed by this method wand also satisfy the following conditions :

1. If n=1, the vertex is a removable vertex.

2. If n=2, the mbn is a K₂. Choose either vertex and callit a removable vertex.

3. If $n \ge 3$, connect two small mbns S₁ and S₂ of size $\lceil n/2 \rceil$ and $\lceil n/2 \rceil$ respectively such that

a. If n is even, then add a perfect matching between

 S_1 and S_2 . Choose one of the removable vertices from S_1 and S_2 to be the removable vertex of the new mbn of size n.

If n is odd, then add a perfect matching between $S_1 \setminus \{ \text{the removable vertex in } S_1 \}$ and S_2 . The removable vertex from S_1 is designated to be the removable vertex of the new mbn of size n.

Let G be a 0-ft mbn constructed by Farley's 2-way split and satisfy the above condition at each step of the construction. G is constructed from two 0-ft mbns S1 and S2 of size $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$ respectively. Let G' be the graph obtain from G by deleting the removable vertex v of G and its incident edges.

For n=2, the remaining graph G' is still a 0-ft mbn for it has only one vertex.

Assume that the lemma is true for n<=k and consider n=k+1.

Two cases :

- Suppose k+1 is odd. The smaller mbn S₂ and the edges that connect the two mbns are not affected by the removal of v. Consider the larger set S₁. Condition 3 assures that v is also the removable vertex of S₁ and S has less than k vertices. From our assumption the graph formed by deleting v and its incident edges from S₁ is also an mbn. Hence, the graph G¹ is an mbn.
- 2. Suppose k+1 is even and the removable vertex v is in S_1 , S_2 is not affected by the removal of v. Consider the set S_1 that contains the removable vertex v. Condition 3 assures that v is also the removable vertex of S_1 and S_1 has less than k vertices. From our assumption the graph formed by deleting v and its incident edges from S_1 is also an mbn. Hence, the

The lemma is true for n=k+1.

. The lemma holds.

1-ft 2-way split for odd n

Given n such that n is odd, an 1-ft mbn of size n can be constructed as follows :

- Partition n vertices into two equal sets S₁, S₂ and a single vertex w.
- 2. Construct 0-ft mbns for $S_1 \cup \{w\}$ and $S_2 \cup \{w\}$ such that S_1 , S₂ are also 0-ft mbns. This can be done by using Farley's 2-way split (lemma 4).
- 3. Number the vertices in S₁ and S₂. Add edges between v_j∈S₁ and u_j∈S₂ for j=1..[n/2], v_j∈S₁ and u_{j+1}∈S₂ for j=1..([n/2]-1), v[n/2] and u₁. Note that the edges added form two disjoint perfect matchings from S₁ to S₂.

Theorem 5: The graph G constructed by the 1-ft 2-way split algorithm for odd n is a 1-ft mbn.

Proof: Witnout loss of generality, assume that the originator v_j S₁. Let S₁U(w) be the larger set and call it A. We can consider the graph G consisting of 0-ft mbns A and S₂. In the first time unit, v_j calls u_{j+1} . After the first time unit, each mbn has an informed vertex. Starting from time unit two, each mbn broadcasts internally. This takes $\lceil \log_2 n \rceil -1$ time units. In time unit $\lceil \log_2 n \rceil +1$, conduct calls between v_k and u_k for k > j,

between v_k and u_{k+1} for k<j, and between w and u1. The total time required for this calling scheme is $\lceil \log_2 n \rceil + 1$. Thus, the time constraint is not violated.

For the vertices in A, each has one calling path which is obtained by broadcasting internally and another calling path which is from v_j to u_{j+1} , calls within S₂ and from u_k to v_k for k>j, or from u_{k+1} to v_k for k<j, or from u_1 to w. Similarly, each vertex in S₂ has one calling path which is from v_j to u_{j+1} and calls within S₂. Moreover, each also has a second calling path from calls within A and then from v_k to u_k for k>j, or from v_k to u_{k+1} for k<j, or from w to u_1 . Clearly, the two calling paths for each vertex in A and S₂ are disjoint.

Suppose w is the originator. We can let $S_1 \cup \{w\}$ be the larger set. We can use the same broadcasting scheme as described above for the first $\lceil \log_2 n \rceil$ time units. In the last time unit, conduct calls between the vertices in S₁ and S₂. Thus, every vertex except the originator w has two calling paths. Hence, the graph G constructed by the 1-ft 2-way split for odd n is a 1-ft mbn.

Theorem 6: The 1-ft mbns constructed by the 1-ft 2-way split algorithms give

 $e(G) <= [n/2] * [log_2n] + n/2.$

Proof: At most $2 \cdot \frac{n}{2} \cdot \frac{1}{2} \cdot \frac{1}{$

 $e(G) <= [n/2] + [log_2n/2] + n$ <= $[n/2] ([log_2n] - 1) + n$ $<= [n/2] \times [log_2n] + n/2.$

Although lemma 4 does not hold directly for 0-ft mbns constructed by the 5, 6, and 7-way splits, a similar result can be obtained by adding a small number of edges to the 0-ft mbn. However, the bound of e(G)for the resulting 1-ft mbns will <u>not</u> be better than the above graph.

3.3 1-ft Six-way split method

As we have seen in chapter 2, better results can be obtained by using more small 0-ft mbns to construct large 0-ft mbns. It is natural to think that the same idea may work for 1-ft mbns. The following is a scheme based on the same idea.

1-ft 6-way split for even n

If n is even and

 $\lceil \log_2 n \rceil + \lceil \log_2 \lceil n / 6 \rceil = 3,$

a 1-ft mbn can be constructed as follows :

1. Partition n vertices into 6 sets Si such that

a. $|n/6| \le |S_i| \le [n/6]$.

b. $|S_1| = |S_2|$, $|S_3| = |S_4|$ and $|S_5| = |S_6|$.

2. Construct 0-ft mbns with even adjacency splits A_i and B_i for each S_i such that

 $0 <= |A_i| - |B_i| <= 1.$

3. Add edges to form minimum adjacency connections to connect the following pairs (B₁, B₆), (A₆, A₄), (B₄, B₂), (A₂, A₅), (B₅, B₃), and (A₃, A₁).

4. Add edges to form perfect matchings between S1 and S2, S3

Each line represents an even adjacency connection between the Aj's and the Bj's

Figure 3-3: Constructing 1-ft mbns using 1-ft 6-way split

and S4, and S5 and S6.

1

Theorem 7: The graph G constructed by the 1-ft 6-way split for even n is a 1-ft mbn.

Proof: Without loss of generality, we can assume that the originator is $v_1 \in A_1$. Consider the following broadcasting scheme :

1. In time unit 1, the originator v_1 calls $u_1 \in B_1$ such that u_1 is also the first vertex that v_1 calls when v_1 starts to broadcast internally within S₁. This is possible because A₁ and B₁ are an even adjacency split of S₁ and from theorems 6, 9, 12 and lemma 5 in chapter 2, a vertex always starts to broadcast by calling a vertex in the other set of an even adjacency split.

2. In time unit 2, v1 and u1 call elements v2fA2 and u2fB2

respectively. This is possible because there is a perfect matching between S1 and S2.

- 3. In time unit 3, conduct calls between the following pairs
 : (v1EA1, v3EA3), (u1EB1, u6EB6), (v2EA2, v5EA5),
 and (u2EB2, u4EB4). These calls are possible because they are connected by minimum adjacency connections.
- 4. In time unit 4, each mbn starts to broadcast internally which takes [log2n]-3 time units. No collision will occur in S1 or S2 for their first call in broadcasting internally are between the informed vertices v1 and u1, and v2 and u2.
- In time unit log₂n+1, conduct calls between the vertices of the following pairs : S₁ and S₂, S₃ and S₄, S₅ and S₆. These calls are possible for there are perfect matchings between them.

The time required for this scheme is [log2n]+1. Thus, the time constraint is not violated.

For the vertices in S₁, each has a calling path from broadcasting internally, another calling from v_1 to $v_2 \in S_2$, calls within S₂, and calls between S₁ and S₂.

「日本の日本の」の「日本の」

なるまままでは、おんちまた、金田を戸村できたのできた。 またい いたい いちょう しんたい しょう

For the vertices in S₂ except v₂, each has a calling path from v₁ to v₂, calls within S₂ and another calling path from calls within S₁, calls between S₁ and S₂. For v₂, it has a calling path from v₁ to v₂ and another galling path from v₁ to u₁, u₁ to u₂, and u₂ to v₂.

Clearly, the two calling paths for vertices in S_1 and S_2 are disjoint. Using similar arguments, each vertex in S_3 , S_4 , S_5 , and S_6 also has two disjoint calling paths. Heace, G is a 1-ft mbn.

Theorem 8: The 1-ft mbn G constructed by the 1-ft 6-way split for even n has

$$e(G) \le n/2[log_2n] - n/2 + 6.$$

Proof: Let n; be the number of edges for each S_i, and assume that the S_i's are constructed by Farley's 2-way split. Each small 0-ft mbns require at most $n_i/2[log_2n_i]$ edges. The total number of edges for all six 0-ft mbns is $\sum_{i=1}^{b} (n_i/2[log_2n_i])$.

At most $\lceil n/12 \rceil$ *6 edges are required to form minimum adjacency connections between pairs (B₁, B₆), (A₆, A₄), (B₄, B₂), (A₂, A₅), (B₅, B₃), and (A₃, A₁).

At most n/2 edges are required to form perfect matchings between the pairs (S_1, S_2) , (S_3, S_4) , (S_5, S_6) .

The total number of edges

5

 $e(G) <= \frac{6}{\sum_{i=1}^{n}} (n_i/2 \lceil \log_2 n_i \rceil) + n/2 + \lceil n/12 \rceil \times 6$ $<= n/2 (\lceil \log_2 n_i \rceil - 3) + n/2 + n/2 + 6$ $<= n/2 \lceil \log_2 n_i \rceil - n/2 + 6.$

As with the 1-ft 2-way split for even n, if n is odd, not all vertices can participate in the calls at the last time unit. Thus, the 1-ft 6-way split for even n method cannot be used for odd n. The approach used in the 1-ft 2-way split for odd n is to let every vertex except the originator participate in calls during the last time unit completing the second calling path for every vertex. Another approach is to make sure that one vertex has two calling paths before the last time unit. The remaining vertices can all complete their second paths during the last time unit. The following structure is useful in constructing networks in which the second approach can be used.

Sink Structure

------ Matching M1 ------ Matching M2

Figure 3-4: Example of an sink structure

A sink structure for odd n such that

 $n \leq 2 \left[\log_2 n \right] - 3$

cart be constructed as follows :

1. Partition n vertices into 2 sets A, B such that |A|=|B|+1.

- 2. Construct 0-ft mbns for A and B using Farley's 2-way split. Let A be constructed by mbns P₁ and P₂ with $|P_1|=|P_2|+1$. Let B be constructed by mbns Q₁ and Q₂ with $|Q_1|=|Q_2|<2^k$.
- 3. Choose a vertex s in P2, called the sink and add edges to connect s to every vertex in B.
- 4. Add edges to construct two disjoint perfect matchings M_1 and M_2 from B to $A \setminus \{s\}$ such that each vertex in B has at least one edge that is connected to P_1 .

Lemma 9: A sink structure is a 1-ft mbn." Proof: 2 cases :

1. Assume that the originator is in O1. In time unit 1, the originator calls a vertex in P1 through/ a perfect matching (say M1). In time unit 2, P1 and Q1 start to broadcast internally which takes [log2n]-2 time units. Since $|Q_1| < 2^{k}$; at least one informed vertex must be idle at some time unit during the internal broadcast of Q1. This idle informed vertex can call the sink s which is not participating in any call during this period of time. In time unit log2n, conduct calls between the vertices in (P_1, P_2) and (Q_1, Q_2) . Thus, before the last time unit, the sink s already has two disjoint calling paths. The first calling path is from calls within Q1 and to s. The second calling path is from the originator to a vertex in P1, calls within P1 and \mathbf{t} s. In time unit $\lceil \log_2 n \rceil + 1$, conduct calls between the vertices in A $\{s\}$ and B using the other perfect matching M2. For vertices in $A \setminus \{s\}$, they have a calling path form the priginator to a vertex in A and calls within A. They have another calling path from calls within B and then calls between B and $A \{s\}$. For vertices in B, they have a calling path from broadcasting internally. They have another calling path from the originator to a vertex in A, calls within A and then calls between B and $A \leq s$. Hence, G is a 1-ft mon. Similarly, we can use the same arguments if the originator is in either Q2 or P1.

 \dot{z} . Assume that the originator v is in P₂. In time unit 1,

the originator calls a vertex in A using an edge from a perfect matching (say M₁). In time unit 2, A and B start to broadcast internally which takes $\lceil \log_2 n \rceil - 1$ time units. In time unit $\lceil \log_2 n \rceil + 1$, conduct calls between the vertices in B and A $\{v\}$ through the perfect matching M₂ and an edge connected to the sink. Thus, every vertex except the originator has two disjoint calling paths. Hence, G is a 1-ft mbn.

The sink structures have more edges than the 1-ft mbns constructed by the 1-ft 2-way split for odd n. However, the sink structure can be incorporated in schemes that use more than 2 small 0-ft mbns to build 1-ft mbns. The following scheme to construct 1-ft mbns for odd n uses a sink structure as part of the building blocks. The construction is similar to the one used in the 1-ft 6-way split for even n. The difference is that S₁ and S₂ are replaced by a sink structure. Extra edges are then added to "force" the first informed vertex of A to be in P₁ whenever the originator is not in A.

7

- 1-ft 6-way split for odd n
 - If n is odd and $n < 2^{k}-1$ and $\lceil \log_2 n \rceil = \lceil \log_2 \lceil n/6 \rceil + 3$,

a 1-ft mbn of size n can be constructed as follows :

1. Partition n vertices into 6 sets S_i as evenly as possible such that

a. $|S_1|$ is odd and $|S_1| < 2^{k-1}$.

- b. $|S_1| = |S_2| + 1$.
- c. $|S_3| = |S_4|$ and $|S_5| = |S_6|$.

 Construct 0-ft mbns with even adjacency splits Aj, Bj for each Sj, i=3..6, using either 2, 5, 6, or 7-way splits such that

 $0 <= |A_i| - |B_i| <= 1.$

Construct a sink structure for S_1 and S_2 where S_1 consists of P_1 , P_2 and S_2 consists of Q_1 , Q_2 .

- 3. Add edges to connect the vertices in the following pairs (A4, A6), (B3, B5), (B6, P2), (A3, P1), (A5, Q1), (B4, Q2), and (B6, P1) such that every vertex in one set is connected to at least one vertex of the other set. The reason to connect the pair (B6, P1), is to "force" P1 to have the first informed vertex in S1 whenever the originator is not in S1.
- Add edges to form perfect matchings between the pairs (S₃, S₄), and (S₅, S₆).

Theorem 10: The graph G=(V, E) constructed by the 1-ft 6way split for odd n is a 1-ft mbn.

Proof: Let's be the sink in the sink structure for S1 and S2. Using similar arguments to those used in the proof of theorem 7, the vertices in $V \setminus \{s\}$ all have two disjoint calling paths. Moreover, using similar arguments to those used in the proof of lemma 9, the sink s also has two disjoint calling paths. Hence, G is a 1-ft mbn.

Theorem 11: The 1-ft mbn G constructed by the 1-ft 6-way split for odd n has

* $e(G) \le n/2[\log_2 n] - n/12 + 9$. Proof: At most $\sum_{i=1}^{6} (n_i/2[\log_2 n_i]) = n/2([\log_2 n_i] - 3)$ edges are needed to construct 0-ft mbns for the Si's.

At most $\lceil n/12 \rceil$ *7 edges are needed to connect the pairs (A4, A₆), (B₃, B₅), (B₆, P₂), (A₃, P₁), (A₅, O₁), (B₄, O₂), and (B₆, P₁).

At most $\lceil n/6 \rceil * 2$ edges are needed to form the perfect matching between pairs S₃ and S₄, and S₅ and S₆.

At most $\lfloor n/6 \rfloor$ *3 edges are needed to form the two perfect matchings and the edges connecting to the sink in the sink structure consisting of S₁ and S₂.

The total number of edges is

 $e(G) <= n/2(\lceil \log_2 n \rceil - 3) + \lceil n/12 \rceil + \lceil n/6 \rceil + 2 + \lfloor n/6 \rfloor + 3$ $<= n/2 \lceil \log_2 n \rceil - 3n/2 + 17n/12 + 9$ $<= n/2 \lceil \log_2 n \rceil - n/12 + 9$

3.4 Summary

Four different methods to construct 1-ft mbns are presented. The methods greatly improve the upper bound for $B_1(n)$. In fact, the new bound is approximately one half of the old bound. For n is even, $n \ge 12$ and $2\lfloor \log_2 n \rfloor < n <= 3*2(\lceil \log_2 n \rceil - 2)$. \sim

 $B_1(n) <= n/2 \log_2 n - n/2 + 6.$

For n is odd, n > 12 and $2\lfloor \log 2n \rfloor < n <= 3*2(\lceil \log 2n \rceil - 2) - 3$,

 $B_1(n) \le n/2 \log_2 n^2 - n/12 + 9$.

For other n,

 $B_1(n) \le [n/2] * [log_2n] + n/2.$

It is possible that similar constructions using other numbers of small 0filmons may result in further improvements.

Chapter 4 Algorithms to Approximate 2-ft Mbgs

As we have seen in chapter 3, for 1-ft mbns every vertex must have two edge disjoint calling paths. Similarly, for 2-ft mbns every vertex must have three edge disjoint calling paths. Furthermore, the approach used in constructing 1-ft mbns can also be extended to construct 2-ft mbns. That is, we can use 0-ft mbns as building blocks to construct 2-ft mbns. Using similar broadcasting schemes as in 1-ft mbns, we can use $T_2(n)-2$ time units to construct one calling path to every vertex and use the last two time units to complete two more edge disjoint calling paths to every vertex. The following methods to construct 2-ft mbns are based on this idea.

4.1 2-ft Four-way split for $n \mod 4 = 0$

- If n mod 4 = 0, a 2-ft mbn can be constructed as follows :
 - 1. Partition n vertices into 4 sets S_i such that

 $n/4 = |S_1| = |S_2| = |S_3| = |S_4|.$

- 2. Construct 0-ft mons for each S; using any method.
- Add edges to form two edge disjoint matchings between the vertices of each of the pairs (S1, S2), (S3, S4), (S1, S3), and (S2, S4).

Theorem 1: The graph G constructed by the 2-ft 4-way split

Each line represents an even adjacency - connection between the two connected sets

Figure 4-1: Constructing 2-ft mbns using 2-ft 4-way split for n divisible by 4

for n mod 4=0, is a 2-ft mbn.

Proof: Without loss of generality, assume that the originator v_1 is in S1. Consider the following broadcasting scheme :

- 1. In time unit 1, the originator v_1 calls a vertex v_2 in S₂.
- 2. In time unit 2, v_1 calls v_3 in S₃ and v_2 calls v_4 in S₄.
- 3. After 2 time units, each Si has an informed vertex. They can broadcast internally during the next [log2n]-2 time units.
- 4. In time unit $\lceil \log_2 n \rceil + 1$, conduct calls between the vertices from the pairs (S₁, S₂), and (S₃, S₄) through the other perfect matchings between them.

A double line denotes that each vertex in one set calls a distinct vertex in the other set

Figure 4-2: The three disjoint calling paths for the vertices in the Si's in 2-ft mons constructed by the 2-ft 4-way splitmethod

5. In time unit $\lceil \log_2 n \rceil + 2$, conduct calls between the vertices from the pairs (S₁, S₃), and (S₂, S₄) through the other perfect matchings between them.

Consider the vertices in S₂. They have one calling path from the originator v_1 to v_2 and calls within S₂. They have another path from calls within S₁ and calls between the vertices in S₁ and S₂ through a different matching. Their third calling path is from v_1 to v_3 in S₃, calls within S₃, calls between the vertices in S₄ and S₂. The three calling paths for each vertices in S₂ are clearly edge disjoint. Thus, every vertex in S₂ has three edge disjoint calling paths.

Referring to figure 4-2 and using similar arguments as for vertices in S_2 , every vertex in each S_1 has three disjoint calling paths. Thus, G is a 2-ft mbn.

Theorem 2: The 2-ft mon G constructed by the 2-ft 4-way split for n mod 4=0 has

 $e(G) \le n/2[log_2n] + n.$ Proof: At most $\sum_{i=1}^{4} (n_i/2[log_2n_i])$ edges are needed to construct 0-ft mbns for each S_i.

At most n/4*8 edges are needed to form perfect matchings between pairs (S₁, S₂), (S₃, S₄), (S₁, S₃), and (S₂, S₄).

The total number of edges is

$$e(G) <= \sum_{j=1}^{4} (n_j/2[log_2n_j]) + n/4*8$$

<= n/2([log_2n] - 2) + 2n
<= n/2[log_2n] + n.

Since every vertex has to participate in the last two calls, the 2-ft 4way split for n divisible by 4 cannot be used if n mod 4 > 0. However, as we have seen in chapter 3, we can use sink structures to overcome this difficulty. The following sections describe methods to construct 2-ft mbns for n not divisible by 4, using sink structures as part of the building blocks.

4.2 2-ft Four-way split for n mod 8 = 1

The construction of 2-ft mbns for n mod 8 = 1 is very similar to the one used in the 2-ft 4-way split method for n mod 4 = 0. The difference is that the connection between S₁ and S₂ is replaced by a sink structure with S₁ being the larger set. The connection between S₁ and S₃ is also replaced by a sink structure with S₁ being the larger set and having a different sink from the previous sink structure. The two sink structures ensure that the two sinks s₁ and s₂ have two edge disjoint calling paths in the first T₀(n) time units. In the next to last time unit, every vertex except s₁ participates in the calls. Similarly, in the last time unit, every vertex can have three calling paths.

2-ft 4-way split for n mod 8 = 1

If n mod 8 = 1 and n >= 16, a 2-ft mon can be constructed as follows

1. Partition n vertices into 4 sets S_i such that

a. $|S_2|$ is even b. $|S_2| = |S_3| = |S_4|$. c. $|S_1| = |n/4|$ d. $|S_1| = |S_2| + 1$.

- Construct 0-ft mbns for S4 using any method. Construct sink structures for S1 and S2, S1 and S3 having different sinks s1 and s2 respectively.
- 3. Add edges to form two edge disjoint matchings between the pairs (S_2, S_4) , and (S_3, S_4) .

Theorem 3: The graph G constructed by the 2-ft 4-way split for n mod 8 = 1 is a 2-ft mbn.

Proof: Using the same broadcast scheme and the same arguments to those used in the proof of theorem 1, every vertex except the two sinks has three edge disjoint calling paths. Using similar arguments to those used in the proof of lemma 9 of chapter 3, the two sinks have two edge disjoint calling paths in the first $T_0(n)$ time units. Furthermore, each sink participates in one of the calls in the last two time units which gives them another calling paths. Hence, the two sinks also have three edge disjoint calling paths. Thus, G is a 2-ft mon.

Theorem 4: The 2-ft mbn G constructed by the 2-ft 8-way split for n mod 8 = 1 has

 $e(G) <= n/2[log_2n] + 3n/2$.

Proof: The number of edges in G is equal to the number of edges in a 2-ft mon constructed by the 2-ft 8-way split methodfor n mod 4 = 0 plus the extra edges added.

At most $\lfloor n/4 \rfloor$ *2 edges are needed to connect the sinks to vertices in S₂ and S₃.

The total number of edges is

e(G) <= n/2[log2n] + n + 년n/4]*2

<= n/2[log2n] + n + n/2

<= n/2[log2n] + 3n/2.

4.3 2-ft Four-way split for n mod 4 = 2

The construction of 2-ft mbns for n mod 4 = 2 is very similar to the one used in the 2-ft 4-way split method for n mod 4 =0. The difference is that S₁ and S₂, S₃ and S₄ are replaced by sink structures with S₂ and S₄ being the larger set. The two sink structures ensure that the two sinks have two edge disjoint calling paths in the first $T_0(n)$ time units. In the last two time units, every vertex except the sinks participate in two calls but the two sinks only participate in one of the calls in the last two time units. Thus every vertex can have three calling paths.

2-ft 4-way split for n mod 4 = 2

If n mod 4 = 2 and n < 2^{k} -2 and n >= 8, a 2-ft mbn can be constructed as follows :

1. Partition in vertices into 4 sets Sj such that

- a. |S1 'is even.
- $|S_2| = |S_4| = [n/4].$
 - c. $|S_1| = |S_3| = \lfloor n/4 \rfloor$.
- 2. Construct sink structures for Sy and Sy, Sy and Sy,

3. Add edges to form two edge disjoint matchings between the pairs (S1, S3), and (S2, S4).

Theorem 5: The graph G constructed by the 2-ft 4-way split for n mod 4 = 2, is a 2-ft mbn.

Proof: Using similar arguments to those used in the proof of theorem 3, G is a 2-ft mbn.

Theorem 6: The 2-ft mbn G constructed by the 2-ft 4-way split for n mod 4 = 2 has

 $e(G) <= n/2[log_2n] + 3n/2.$

Proof: The number of edges in G is equal to the number of edges in a 2-ft mbn constructed by the 2-ft 4-way split method for n mod 4 = 0 plus the extra edges added.

At most $\lfloor n/4 \rfloor$ *2 edges are needed to connect the vertices in S₁ and S₃ to their sinks.

The total number of edges is

 $e(G) \le n/2[\log_2 n] + n + [n/4] \le$ $\le n/2[\log_2 n] + n + n/2$ $\le n/2[\log_2 n] + 3n/2.$

4.4 2-ft Four-way split for n mod 8 = 3

The construction of 2-ft mbns for n mod $\theta_{-}=3$ is exactly the same as the construction used in constructing 2-ft mbns for n mod $\theta_{-}=2$. The only difference is that S₁ is the smaller set in the sink structures consisting of S₁ and S₂, S₁ and S₃ instead of the larger set. Let S₁ consist of two sets O₁ and Q₂ such that Q₁=Q₂<= 2ⁱ-2. There will be at least two idle informed vertices when Q₁ or O₂ broadcast internally. We can use these two idle informed vertices to call the sink in S₂ and the sink in S3 giving two edge disjoint calling paths to the two sinks in the first log2n time units. In the last two time units, every vertex except the two sinks participate in two calls and each sink participates in only one call. Hence, every vertex can have three edge disjoint calling paths.

2-ft 4-way split for $n \mod 8 = 3$

If n mod 8 = 3, n >= 16, and n $\neq 2^{k}$ -5, a 2-ft mbn can be constructed as follows :

1. Partition n vertices into 4 sets S; such that

- a. $|S_2| = |S_3| = |S_4| = \lceil n/4 \rceil$.
- b. $|S_2| = |S_1| + 1$.
- c. $|S_1|$ is even.

d. $|S_1| <= 2^k - 4$.

2. Construct a sink structure for S_1 and S_2 , S_1 and S_3 such that S_1 is the smaller set in the sink structures. Let S_2 be constructed by two 0-ft mbns P_1 , P_2 such that

 $|P_1| = |P_2| + 1.$

Let S₃ be constructed by two 0-ft mbns F₁, F₂ such that $|F_1| = |F_2| + 1$.

57

3. Add edges to form two edge disjoint matchings between the pair (S₂, S₄), and (S₃, S₄) such that each vertex in S₄ is connected to at least one vertex in P₁ and F₁. This is to ensure that the first informed vertex is in P₁ if the originator is not in S₂ and the first informed vertex is in F₁ if the originator is not in S₃.

Theorem 7: The graph G constructed by the 2-ft 4-way split for n mod 8=3, is a 2-ft mbn. nilar arouments to those used

57

Proof: Using similar arguments to those used in the proof of theorem 3, G is a 2-ft mbn.

Theorem 8: The 2-ft mbn G constructed by the 2-ft 8-way split for n mod 8 = 3 has .

 $e(G) \le n/2 \log_2 n + 3n/2$.

Proof: The number of edges in G is equal to the number of edges in a 2-ft mbn constructed by the 2-ft 4-way split method for n mod 4 = 0 plus the extra edges added.

At most $\lfloor n/4 \rfloor$ *2 edges are needed to connect the vertices in S₂, and S₃ to their sinks.

The total number of edges is

e(G) <= n/2[log2n] + n + [n/4]*2

<= $n/2[\log_2 n] + n + n/2$ <= $n/2[\log_2 n] + 3n/2$.

As we have seen in previous chapters, we can use more 0-ft mbns as our building blocks to construct 1-ft mbns. The following methods to construct 2-ft mbns use eight 0-ft mbns to construct 2-ft mbns instead of four.

4.5 2-ft Eight-way split for in mod 4 = 0

1

Each line represents an even adjacency connection between the connected sets

Figure 4-3: Constructing 2-ft mbns using 2-ft 8-way split for n divisible by 4

If n mod 4 = 0, a 2-ft mbn can be constructed as follows :

1. Partition n vertices into 8 sets S_j such that

 $\lfloor n/8 \rfloor <= |S_1| = |S_2| = |S_3| = |S_4| <= \lceil n/8 \rceil$, and $\lfloor n/8 \rfloor <= |S_4| = |S_5| = |S_7| = |S_8| <= \lceil n/8 \rceil$.

2. Construct 0-ft mbns for each Si using any method.

3. Add edges to form two edge disjoint matchings between the vertices of each of the pairs (S1, S2), (S3, S4), (S5, S6), and (S7, S8).

4. Add edges to form perfect matchings between the vertices of each of the pairs (S₁, S₃), (S₂, S₄), (S₅, S₇), and (S₆, S₈). 5. Add edges to form, minimum adjacency connections between the pairs (S_1, S_5) , (S_1, S_8) , (S_2, S_7) , (S_2, S_6) , (S_3, S_6) , (S_3, S_7) , (S_4, S_5) , and (S_4, S_8) .

Theorem 9: The graph G constructed by the 2-ft 8-way split. for n mod 4=0, is a 2-ft mbn.

Proof: Without loss of generality, assume that the originator v_1 is in S₁. Consider the following broadcasting scheme :

1. In time unit 1, the originator v_1 calls a vertex v_2 in S₂.

- 2. In time unit 2, v_1 calls v_8 in Sg and V_2 calls v_6 in S₆.
- 3. In time unit 3, v_1 calls v_5 in S₅, V_2 calls v_7 in S₇, v_6 calls v_3 in S₃, and v_8 calls v_4 in S₄.
- 4. After 3 time units, each Si has an informed vertex. They can broadcast internally during the next [log2n]-3 time units.
- 5. In time unit $\lceil \log_2 n \rceil + 1$, conduct calls between the vertices from the pairs (S_1, S_2) , (S_3, S_4) , (S_5, S_7) , and (S_6, S_8) through the perfect matchings between them. For the pair (S_1, S_2) use the perfect matching that has not been used in time unit 1.
- 6. In time unit $\lceil \log_2 n \rceil + 2$, conduct calls between the vertices from the pairs (S_1, S_3) , (S_2, S_4) , (S_5, S_6) , and (S_7, S_8) through the perfect matchings between them.

Consider the vertices in S₅. They have one calling path from the originator v_1 to v_5 and calls within S₅. They have another path from v_1 to v_2 in S₂, v_2 to v_7 in S₇, calls within S₇ and

A single line represents that a vertex in one set calls a vertex in the other set

A double line represents that every vertex in one set calls a distinct vertex in the other set

Figure 4-4: The three disjoint calling paths for the vertices in the Si's in 2-ft mbns constructed by the 2-ft 8-way split method

.

calls between the vertices in S7 and S5. Their third calling path is from v_1 to v_8 in S8, calls within S8, calls between the vertices in S8 and S6, and calls between vertices in S6 and S5. The three calling paths for each vertices in S5 are clearly edge disjoint. Thus, every vertex in S5 has three edge disjoint calling paths.

Referring to figure 4-4 and using similar arguments as for vertices in S5, every vertex in each S_1 has three disjoint calling paths. Thus, G is a 2-ft mbn.

Theorem 10: The 2-ft mon G constructed by the 2-ft 8-way split for n mod 4=0 has

 $e(G) \le n/2(\log_2 n) + n + 10$. Proof: At most $\frac{1}{2}(n_1/2(\log_2 n_1))$ edges are needed to construct 0-ft mons for each S₁.

At most [n/8]*8 edges are needed to form minimum adjacency connection between pairs (S1, S51, (S1, S81, (S2, S71, (S2; × S6), (S3, S61, (S3, S7), (S4, S51, and (S4, S81.

At most $\ln/8712$ edges are needed to form perfect matchings between pairs (S_1, S_2) , (S_3, S_4) , (S_5, S_6) , (S_7, S_8) , (S_1, S_3) , (S_2, S_4) , (S_5, S_7) , and (S_6, S_8) .

The total number of edges is $e(G) \ll \frac{3}{2} (n_1 \cdot 2 \log_2 n_1) + \ln_8 \pi_2 \oplus$ Since $\ln/8! \ll \ln_4 + 1 \cdot 8$, $e(G) \ll \ln^2(\log_2 n_1 - 3) + 5\pi_2 + 16$ $\ll \pi_2 \ln_2 n_1 + \pi_1 + 1$.

Since every vertex has to participate in the calls in the last two time units, the 2-ft 8-way split for n divisible by 4 cannot be used if n mod 4 > 0. Similarly, we can use sink structures to overcome this difficulty. The following sections describe methods to construct 2-ft mons for n not divisible by 4, using sink structures as part of the building plocks.

-.6 2-ft Eight-way split for n mod 4 = 1

The construction of 2-ft mons for n mod 4 = 1 is very similar to the one used in the 2-ft 8-way split method for n mod 4 = 0. The difference is that the connection between S7 and S8 is replaced by a sink structure with S8 being the larger set. The connection between S6 and S8 is also replaced by a sink structure which has only one perfect matching between them and a different sink from the previous sink structure. Extra edges are then added to "force" the first informed vertex in S8 to be in the larger mon that constitutes S8. The two sink structures ensure that the two sinks structures S8. The two sink structures are the first T0 in the next to last time Ashit, even, vertex except s1 participates in the calls. Thus, eveny vertex calling paths.

2-ft 8-way split for n mod 4 = 1

If n mod = 1, n >=32 and n = 2K-3, a 2-ft mon can be constructed as follows :

1. Partition n vertices into 8 sets Sj such that

a. Spicsleven and Spick 24.

b. n 81 k= Ss = Sg = Sg = (S4 k= (n)8...

62

- c. $|S_5| = |S_6| = |S_7|$. d. $|S_8| = |S_5| + 1$.
- 2. Construct 0-ft mbns for each S_i, i=1..5 using any method. Construct a 0-ft mbn for S₆ using the 2-way split and construct a sink structure for S₇, S₈. Let S₈ be constructed by two 0-ft mbns P₁, P₂ such that

 $|P_1| = |P_2| + 1$.

Choose a vertex \tilde{w} in P₂ other than the sink s in the sink structure.

- 3. Add edges to form two edge disjoint matchings between the pairs (S_1, S_2) , (S_3, S_4) , and (S_5, S_6) .
- 4. Add edges to form perfect matchings between the pairs (S_1, S_3) , (S_2, S_4) , (S_5, S_7) , and $(S_6, S_8 \times w^2)$.
- 5. Add edges to connect the following pairs : (S_1, S_5) , (S_1, S_8) , (S_2, S_7) , (S_2, S_6) , (S_3, S_6) , (S_3, S_7) , (S_4, S_5) , and (S_4, S_8) such that every vertex in one set is connected to at least one vertex of the other set.
- 6. Add edges to connect the vertices in S₆ to w. These edges will be used to give w two disjoint calling paths in the first $T_0(n)$ calls.
- 7. Add edges to connect the vertices in P1 to the vertices in S1 and S4 which are not connected to any vertices in P1. These edges will be used to "force" the first informed vertex in S8 to be in P1 if the originator is not in S8.

Theorem 11: The graph G constructed by the 2-ft 8-way split for n mod 4 = 1, is a 2-ft mbn.

Proof: Using the same broadcast' scheme and the same
arguments to those used in the proof of theorem 9, every vertex except the two sinks has three edge disjoint calling paths. Using similar arguments to those used in the proof of lemma 9 of chapter 3, the two sinks have two edge disjoint calling paths in the first $T_0(n)$ time units. Furthermore, each sink participates in one of the calls in the last two time units which gives them another calling path. Hence, the two sinks also have three edge disjoint calling paths. Thus, G is a 2-ft mbn.

Theorem 12: The 2-ft mbn G constructed by the 2-ft 8-way split for n mod 4 = 1 has

 $e(G) \ll n/2[log_2n] + 11n/8 + 19.5.$

Proof: The number of edges in G is equal to the number of edges in a 2-ft mon constructed by the 2-ft 8-way split method for n mod 4 = 0 plus the extra edges added.

At most [m/8]*2 edges are needed to connect the sinks to vertices in S₆ and S₇.

At most [n/16]*2 edges are needed to connect the vertices in P_1 to vertices that are not connected to P_1 in S_1 and S_4 .

The total number of edges is

 $e(G) \le n/2(\log_2 n) - 3) + \lceil n/8 \rceil \ge 20 + \lfloor n/8 \rfloor \ge 2 + \lceil n/16 \rceil \ge 2$ Since $\lceil n/8 \rceil \le (n + 7)/8$,

 $(G) \le n/2[\log_2 n] + n + 19.5 + 3n/8$

 $<= n/2[log_2n] + 11n/8 + 19.5.$

4.7 2-ft Eight-way split for n mod 4 = 2

The construction of 2-ft mbns for n mod 4 = 2 is very, similar to the one used in the 2-ft 8-way split method for n mod 4 =0. The difference is that S₁ and S₂, S₃ and S₄ are replaced by sink structures with S₂ and S₄ being the larger set. Extra edges are then added to "force" the first informed vertex in S₂ to be in the larger mbn that constitutes S₂, and the first informed vertex in S₄ to be in the larger mbn that constitutes S₄. The two sink structures ensure that the two sinks have two edge disjoint calling paths in the first T₀(n) time units. In the last two time units, every vertex except the sinks participates in two calls but the two sinks only participate in one of the calls in the last two time units. Thus every vertex can have three calling paths.

2-ft 8-way split for n mod 4 = 2

If n mod 4 = 2, n >= 8, and n \neq 2^k -2, a 2-ft mbn can be constructed. as follows :

1. Partition in vertices into 8 sets Si such that

- a. Si is even.
- 5. $\lfloor n/8 \rfloor <= \lfloor S_5 \rfloor = \lfloor S_6 \rfloor = \lfloor S_7 \rfloor = \lfloor S_8 \rfloor <= \lfloor n/8 \rfloor$.
- c. $|S_1| = |S_3|$ and $|S_2| = |S_4|$.
- d. $|S_2| = |S_1| + 1$.
- e. 1521 < 2K.
- Construct 0-mbns for each S₁, i=5..8 using any method.
 Construct a sink structure for S₁ and S₂, S₃ and S₄. Let
 S₂ be constructed by two 0-ft mbns P₁, P₂ such that

 $|P_1| = |P_2| + 1.$

Let S_4 be constructed by two 0-ft mbns F_1 , F_2 such that

 $|F_1| = |F_2| + 1$.

3. Add edges to form two edge disjoint matchings between the

pairs (S5, S6), and (S7, S8).

- 4. Add edges to form perfect matchings between the pairs (S₁, S₃), (S₂, S₄), (S₅, S₇), and (S₆, S₈).
- 5. Add edges to connect the pairs : (S1, S5), (S1, S8), (S2, S7), (S2, S6), (S3, S6), (S3, S7), (S4, S5), and (S4, S8) such that every vertex in one set is connected to at least one vertex of the other set.
- 6. Add edges to connect the vertices in P1 to the vertices in S_6 and S_7 which are not connected to any vertices in P1. These edges will be used to "force" the first informed vertex in S_2 to be in P1 if the originator is not in S_2 . Similarly, add edges to connect the vertices in F1 to the vertices in S5 and S_8 which are not connected to any vertices in F1. These edges will be used to "force" the first informed vertex in S4 to be in F1 if the originator is not in S4.

- Theorem 13: The graph G constructed by the 2-ft 8-way split for namod = 2, is a 2-ft mbn.

Proof: Using the similar arguments, to those used in the proof of theorem 11, G is a 2-ft mbn.

Theorem 14: The 2-ft mbn G constructed by the 2-ft 8-way split for n mod 4 = 2 has

 $e(G) \le n/2 \log_2 n + 3n/2 + 19.$

Proof: The number of edges in G is equal to the number of edges in a 2-ft mon constructed by the 2-ft 8-way split method for n mod 4 = 0 plus the extra edges added.

At most $\lceil n/16 \rceil$ *2 edges are needed to connect the vertices in

 P_1 to vertices that are not connected to P_1 in S₆ and S₇, and at most $\lceil n/16 \rceil$ *2 edges are needed to connect the vertices in F₁ to vertices that are not connected to F₁ in S₅ and S₈.

At most $\lfloor n/8 \rfloor$ *2 edges are needed to connect the vertices in S₁ and S₃ to their sinks.

The total number of edges is

 $e(G) \le n/2(\lceil \log_2 n \rceil - 3) + \lceil n/8 \rceil \ge 20 + \lceil n/16 \rceil \le 4 + \lfloor n/8 \rfloor \le 2$ Since $\lceil n/8 \rceil \le (n + 6)/8$, $c_1 = e(G) \le n/2 \lceil \log_2 n \rceil + n + 19 + n/4 + n/4$

<= n/2[log2n] + 3n/2 + 19.

4.8 2-ft Eight-way split for n mod 4 = 3

The construction of 2-ft mons for n mod 4 = 3 can be done by combining the structures used in constructing 2-ft mons for n mod 4 =2, and for n mod 4 = 1. We can partition n vertices into 8 sets S₁ and construct S₁, S₂, S₃, and S₄ in the same way as we have constructed them in the 2-ft 8-way split for n mod 4 = 2. Similarly, we can construct S₅, S₆, S₇, and S₈ in the same way as we have constructed them in the 2-ft 8-way split for n mod 4 = 1. The size of the combined graph G will have a remainder of 3 when divide by 4. Furthermore, we can use the same broadcasting scheme as in theorem 11 and give every vertex three edge disjoint calling paths.

2-ft 8-way split for n mod # = 3

If n mod 4 = 3, n >= 32, n \neq 2¹-5, and n \neq 2¹-9, a 2-ft mbn can be constructed as follows :

1, Partition n vertices into 8 sets S₁ as evenly as possible such

and the second second of the second

a. |S5| is even.

- b. |S8| < 2k.
 - c. $|S_6| = |S_5| = |S_7|$.
 - d. $|S_8| = |S_7| + 1$.
 - e. |S1| is even.
 - f. |S₂| < 2^k.
 - g. $|S_1| = |S_3|$ and $|S_2| = |S_4|$.

h. $|S_2| = |S_1| + 1$.

2. Construct a sink structure for S1 and S2, S3 and S4. Let S2 be constructed by two 0-ft mons P1, P2 such that

 $|P_1| = |P_2| + 1.$

Let S4 be constructed by two 0-ft mbns F1, F2 such that

 $|F_1| = |F_2| + 1.$

3. Construct a sink structure for S7 and S8. Let S8 be constructed by two 0-ft mons M1, M2 such that

 $|M_1| = |M_2| + 1$.

Construct a sink structure for Sg and Sg which has only one matching between them and choose a vertex w which is different from the sink in the previous sink structure in M2.

- 4. Add edges to form two edge disjoint matchings between the pair (S5, S6).
- 5. Add edges to form perfect matchings between the pairs (S1, S3), (S2, S4), (S6, S8 $\{w\}$), and (S5, S7).
- b. Add edges to connect the pairs : (S1, S5), (S1, S8), (S2, S7), (S2, S6), (S3, S6), (S3, S7), (S4, S5), and (S4, S8) such that every vertex in one set is connected to at least one vertex of the other set.

the grand states of the second

to the second second

7. Add edges to connect the vertices in P₁ to the vertices in S_6 and S_7 which are not connected to any vertices in P₁. These edges will be used to "force" the first informed vertex in S₂ to be in P₁ if the originator is not in S₂. Similarly, add edges to connect the vertices in F₁ to the vertices in S₅ and S₈ which are not connected to any vertices in F₁, and add edges to connect the vertices in M₁ to the vertices in S₁ and S₄ which are not connected to any vertices in M₁.

Theorem 15: The graph G constructed by the 2-ft 8-way split for n mod 4=3, is a 2-ft mbn.

Proof: Using similar arguments to those used in the proof of theorem 11, G is a 2-ft mbn.

Theorem .16: The 2-ft mbn G constructed by the 2-ft 8-way split for n mod 4 = 3 has

 $e(G) \le n/2 \log_2 n + 15n/8 + 18.5.$

Proof: The number of edges in G is equal to the number of edges in a 2-ft mbn constructed by the 2-ft 8-way split method for n mod 4 = 0 plus the extra edges added.

At most [n/16]*2 edges are needed to connect the vertices in P1 to vertices that are not connected to P1 in S6 and S7, and at most [n/16]*2 edges are needed to connect the vertices in F1 to vertices that are not connected to F1 in S5 and S8. Similarly, at most [n/16]*2 edges are needed to connect the vertices the vertices in M1 to vertices that are not connected to M1 in S1 and S4.

At most $\left[\frac{n}{8}\right]^{*4}$ edges are needed to connect the vertices in S1, S3, S6, and S7 to their sinks.

The total number of edges is

 $e(G) \le n/2(\log_2 n) - 3) + (n/8) \le 20 + (n/16) \le 6 + (n/8) \le 4$

Since [n/8] <= (n + 5)/8,

 $(e(G) \le n/2[\log_2 n] + n + 18.5 + 3n/8 + n/2]$

<= n/2[log2n] + 15n/8 + 18.5.

4.9 Summary

Eight different methods to construct 2-ft mbns are presented. The methods give a better bound on $B_2(n)$ for almost all n than the previous methods.

For in \overline{m} and 4 = 0,

B2(n) <= n/2[log2n] + n.

For n mod 8 = 3 or n mod 4 = 2, n $\neq 2^{1}-2$, n $\neq 2^{1}-5$, and n >= 16,

 $B_2(n) \le n/2[\log_2 n] + 3n/2.$

For n mod 8 = 1, and 16 <= n <= 116,

 $B_2(n) \le n/2 \log_2 n + 3n/2$.

For $n \mod 8 = 1$, and n > 116,

 $B_2(n) \le n/2 \log_2 n + 11n/8 + 19.5.$

For n mod 8 = 5, n >= 32 and n $\neq 2^{1}$, - 3,

 $B_2(n) \le n/2[\log_2 n] + 11n/8 + 19.5.^{-1}$

For n mod 8 = 7, n >= 32 and $n \neq 2^{1} - 9$,

 $B_2(n) \le n/2[\log_2 n] + 15n/8 + 18.5.$

These methods do not work for $n=2^{i}-2$, $n=2^{i}-3$, $n=2^{i}-5$, and $n=2^{i}-9$. It is interesting to note that the 2-ft 8-way split for n mod 4 = 3 does work for $n = 2^{i}-1$ because the minimum time $T_2(n)$ for $n = 2^{i}-1$ is equal to $\lceil \log_2 n \rceil + 3$ instead of $\lceil \log_2 n \rceil + 2$. That is, we have one extra time unit for $n = 2^{i}-1$. Finally, it may be possible to use other splits and other approaches to get a better bound on $B_2(n)$ for n=2i=2, n=2i=3, n=2i=5, and n=2i=9. These approaches have not been investigated.

Chapter 5

Conclusion

cheapest possible Minimum broadcast graphs represent the communication networks of n members which can broadcast in minimum time regardless of originator. Mbgs may be used for message broadcasting in communication, parallel processing, and distributed Unfortunately, no technique is known to generate these computing. graphs for arbitrary n. Farley [Farley 79] suggested algorithms to construct minimal broadcast networks which are sparse graphs allowing minimum time broadcast from any originator. New methods to construct such networks are presented in chapter 2. The resulting graphs have fewer edges than Farley's graphs for three-guarters of the possible values of n. The improved graphs are estimated to have an average of 8% fewer edges than those of Farley's for $36 <= \eta <= 1024$. Furthermore, improvement for some of the remaining values of n may also be possible by using similar methods.

Fault-tolerant broadcasting is desirable if reliability is considered to be an important factor in a communication network. The set of k faulttolerant minimum broadcast graphs represent the cheapest possible communication networks of n members which can complete a k faulttolerant broadcast in minimum time regardless of originator. No technique ĬS known. to generatë these graphs for arbitrary n. Algorithms to construct k fault-tolerant minimal broadcast networks have been suggested by Liestman [Liestman 81] for k=1 and k=2. In chapters 3 and 4, new methods to construct such graphs are presented. In both cases, the graphs produced by the new methods contain approximately one-half the number of edges of the previously known

graphs. However, in the 2 fault-tolerant case, the new method cannot be used for $n\approx 2^{i}+j$, $j\approx 2,3,5,9$ and some small n < 32. Using approaches other than those used in chapter 4, it may be possible to construct improved 2 fault-tolerant mbns for these values.

Methods to construct k fault-tolerant mons depend on the results on It is not possible to describe such constructions without $T_k(n)$. knowing the exact value of $T_k(n)$. Thus, more general results to construct k fault-tolerant mbns cannot be found without first finding more general results for $T_k(n)$. The multi-way split approach to construct 1 fault-tolerant and 2 fault-tolerant mbns does give some insight on the value of $T_k(n)$ for k>=3. For example, it may be possible to use an 8-way split to construct 3 fault-tolerant mbns. ₩e canfuse the first log2n time units to create a calling path for every vertex and use three more time units to complete three more edge disjoint calling paths to each vertex. If this is possible then $T_3(n)$ is equal to log2n+3 for n mod 8=0. Using similar arguments, we may use a 2^k way split to construct k fault-tolerant mbns. We can use the first log2n time units to create a calling path for every vertex and use k more time units to give k more edge disjoint calling paths to each vertex. If such a scheme exists then $T_k(n)$ is equal to $\lceil \log_2 n \rceil + k$ for n mod 2^k=0. No further investigation has been done in this direction. However, we conjecture that $T_k(n)$ is equal to $\lceil \log_2 n \rceil + k$ for at least some values of n.

Appendix A

}•

¥

Table to compare the value of e(G) between Farley's algorithm and the Hybrid algorithm

n _.	Farley	split	Hybrid	split	difference
18	27	3	27	6	0
.19	. 30	3	30	6	0
20	32	3	32	6	• 0
21	35	3	35	6	0
22	. 37	2	-37	6	0
23	39	2	39	2	Ý 0
24	42	2	42	6	0
25	45	2	45	2	0
26	· 49	2	49	2	0
27	52	· 2	52	2	, U , O
20	50 -	2	50	. 7	U 0 .
30	53	2	13 ·	21	0
21	71 ·	2	71	2	0
37	80	2	807	2	Ő
33	56	3	59	5,	-3
34	58	3	60 .	6	-2
35	< 61	3	∵62	6	-1
36	63 -	. 3	63	6	0
37	67	3	66	6	1 ·
38	70	3	69	6	1
39	- 74	3	· 72	6	2
40	77	3,	75	6	2
41	81	3	· 78	6	3
42	84	3	, 81	6	3
43	88	3	86	6	2
44	91	5 .	90	. 7	1
45	90 101	י כ ר	· 94	. 7	1 //
40 117	104	2	100	. 7	<u> </u>
48 .	108	2	103	7	5
49	111	2	107	7 ·	4
50	115	2	111	7	4
51	119	2	116	7	3
52	124	2	121	7	3
53	127	2	126	7	- 1
. 54	131	2	131	7	0
55	135	2	135	2	0
56	140	2	140	7	0
-57-	143	2	143	2	0
58	147	2	147	2	Ø
22	15 1	2	151	2	U

n

. .

1562 156 20 164 2 164 20 173 2 173 20 182 2 182 20 192 2 192 20 142 3 127 6 15 144 3 129 6 15 144 3 129 6 15 147 3 132 6 15 149 3 134 6 15 152 3 137 6 15 155 3 139 6 16 159 3 142 6 17 162 3 144 6 18 166 3 148 6 18 166 3 164 6 18 169 3 152 6 17 173 3 164 6 18 186 3 168 6 18 190 3 172 6 18 193 3 175 6 18 197 3 189 6 21 210 3 189 6 21 214 3 193 6 21 214 3 209 6 21 234 3 213 6 21 248 2 222 7 26	Farley	split	Hybrid	split	difference
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Farley 156 164 173 182 192 142 144 147 149 152 155 159 162 166 169 173 177 182 186 190 193 197 201 206 210 214 217 201 206 210 214 217 221 206 210 214 217 225 230 234 241 248 255 259 264 267 271 275 280 284 289 294 300 303 ~ 307 311 316 320 325	split 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Hybrid 156 164 173 182 192 127 129 132 134 137 139 142 144 148 152 156 160 164 168 172 175 179 182 186 189 193 197 201 205 209 213 219 222 226 230 234 238 242 245 250 254 258 262 266 270 275 283 292 301 310 319	split 2 2 2 2 2 2 2 2 2 2 2 2 2	difference 0 0 0 0 15 15 15 15 15 16 17 18 18 18 18 18 18 18 18 18 18

n	Farley	split	Hybrid	split	difference
117	356	<u>j 2</u> .	356	2	0
118	361	2	361	2	0
119	366	2	366	2	· 0
120	3 72	2 ·	372	<u>2</u>	0 .
121	380	2	380	2	0
122	389	2	389	2	0
123	398	. 2	398	2	0
124	408	2	408	' <u>/</u>	0
125	41/ .	2	417	2	0
120	421 #77	2	427	2	0
127	448	2	457	2	0
129	329	3	314	6	- 1Š
130	332	3	316	6 -*	16
131	336	3	' 319 [,]	6	17
132	3 39 ,	3	321	6	18
133	344	3	324 '	6	20
134	348	3	327	6	21
135	353	3	330	6	23
136	359	3 . ว	333	6	26
137	300	3,	330	5	30
130	376	2	2/12	6	33
140	379	3	345	6	33
141	383	3.	350	6	33
142	387	3	353	6	34
143	392	· 3	357	6	35
144	396	3	360	6	36
145	400	3	364	6	36
146	403	3	368	6	35
147	407	3	372	6	35
148	411	3	3/6	6	35
149	416	3	380	р. 4	30
151	420	2	389	6	36
152	4291	<u>,</u> 3	393	6	36
153	434	3	398	6	· 36
154	439	3	402	6	37
155	445	3	407	6 ′	38
156	450	3	411	6	39
157	454	3	415	6	39
158	457	~3	419	6 6	- 38
159	401	3	423	D E	30
161	405	2	427 431	6	20 20
162	470	ر ج	435	6	39 °
163	479	3	440	6	39
164	483	3	444	6	- 39
165	488	3	449	6	39
166 ,	493	31 1	453	6	40
167	499	3	458 -	6	41
168	504	3	462	6	42
169	508	3	466	6	42
1/0	511	5	4/0	b	41
1/1	515	5	4/4	D F	44 // *
· 173	219 	2	чило Цяр	6 6	чн ДЭ
د 1	··· - 20 4 ··· 1	J			74

* 34

'n	Farley	split	Hybrid	split	difference
174	528	3	486	6	42 \
175	533	3 .	491	6	42 👘 🍡
176	537·	3	495	6	42
177	54 2	3	500	6	42
178	547	3	504	6	43 ·
179	553	3	50 9	6	44
180	558	3	513	6	45 👡
* 181	565	2	521 i	7	44
182	573	2	525	7	48
183	- 580	2	530	7	50
184	588	2	534	7	54
185	591	2	538	7	53
186	595 /	, 2	542	7	53
187	59 9	2	546	7	53
188	604	2	550	7	54
189	608 j	2	555	7	53
19 0	613	2	559	74	54
191	618	2	564	7	54
192 ·	624 ·	2	569	• 7	55
193	627	2	574	7	53
194	631 -	2	579	7	52
195	635	2	584	· 7	51 \
196	640	2	588	<u>7</u> ·	52
197	644	2	593	7	51
198	649	2	597	7	52
199	· 654	2	601	7	53
200	660	2	605	7	55
201	664	2	609	/	55
202	669	2	613	7	56
203	674	2-	618	/	56
204	680	2	622	/	58
205	685	• 2	627	/	_ 58
205	691	2.	632	/	59
207	59/	2	037	7	60
200	704	2	54Z	7	62 60
209	707	2	651	7	50 50
210	715-	2	651	· 7	5/1
211	715	2	670	7	50
212	720 724	2	679	7	45
213	729.	2	688	7	<u>4</u> 1
215	734	2	697	. 7	37
216	740	2	706	7	34
217	- 744	2	716	, 7	28 -
2.18	749 (2	725	7	24
219	754	2	735	7	19
220	760	2	745	7	15
221	765	$\overline{2}$	755	7	10
222	771	2.	765	7	6
223	777	2	775	7	2
224	784	2	784	7	0
2.25	787	2	787	2	0
226	791	2	791	2	0 .
227	795	2	795	2	0
228	800	2	800	2	0 ·
229	804	2	804	2	0
230	809	2	809	2	0

					•
n	Farley	split	Hybrid	split	difference
231	814	2	814	2	. 0
232	820	2	820	2	0
233	824	2	824	2	0
234	829	2	829	2	0
235	834	2	834	2	0
236	840	2	840	2	0
23/	040 951	2 0	042 951	2	0
230	857	2	857	2	0
240	864	2	864	· 2	ŏ
241	872	$\overline{2}$	872	2	0
242	881	2 🦟 "	881	2	0
243	890	2	890	2	0
244	900	2	900	2	0
245	909	2	909	2	U
240	919	2	919	2	0
247	940	2	92.9 92.0	2	0
249	949	2	949	2	õ
250	959	2	959	2	0
251	969	2	969	2	0
252	98 0	2	9 8 0	2	0
253	990	2	990	2	0
254	1001	2	1001	2	0
255	1012	2	1012	"	U,
230	777	2	705	6	72 .
258	780	3	711	6	69
259	785	3	716	6	69
260	789	3	720	6	69
261	794	3	725	6	÷ 69
262	798	3	729	6	69
263	803	3	/34	6 €	· 69
264	807	3	738	0 6. /	59 70
266	818	3	* 748	6	70
267	824	3	753	6	71
268	828	3	758	6	70
269	833	3	762	7	71
270	837	3	7.66	7	71
271	845	3	770	/	75
2/2	852	5	779	- / 	/8 v1
273 774	867	2	782	6	85
275	875	3	786	6	89
276	882	3	789	6	93
277	886	3.	793	6	93
278	889	3.	797	6	92
279	893	3	801	6.	92
280	897	5	805	b	92
201 282	902	5	009 812	с, р	03 27
283	911	ר ז	817	6	9Ц +
284	915	3	820	6	95
285	920	3	824	6	96
286	925	3	827	6	98
287	931	3	831	6	100

- --

7	9	

۳.

•

.

n	Farley	split	Hybrid	split	difference
288	936	3	834	. 6	102
289	940	3	839	6	101
290	943	3	844	6	99
, 291	947	3	849	6	98
292	951	3	854	6	97
293	956	3	- 858	7	98
294	960	3	861	7	99
295	965	3	868	7	97
296	969	3	873	6	96
29/	974	3	8/8	6	96
298	9/9	2	882	6	- 97 - 00
299	985	5	887	0	98
300	990	2	071 907	0	99
202	9.90 900	2	097	6	90
302	100/	2	903	- 6 ·	90
304	1004	2	915	6	94
304	1015	3	971	6	ў у ч 9Ц
306	1070	3	927	6	93
307	1026	3	933	6	93
308	1031	3	938	6	93
309	1037	3	944	6	93
310	1043	3	949	6	94
311	1050	3	954	7	96
312	1056	3	959	7	97
313	1060	3	964	7	96
314	1063	3	969	7	94
315	1067	3	975	/	92
310	1071	3	9/8	7	93
31/	10/0	2	902	7	94 0 <i>h</i>
210	1085	2	900	7	54 Q5
370	1089	2	330	7	95
321	1094	2	· 498	7	96
322	1099	3	1001	, 7	98
323	1105	3	1006	7	99
324	1110	3	1010	7	100
325	1115	3	10 14	7	101
- 326	1119	3	1018	7	101
327	1124	3	1022	7	102
328	1129	3	1026	7	103
329	1135	3	1031	7	104
. 330	1140	3	1034	/	106
331	1140	3	1038	7	108
332	4 13 1	2	1042	7	109
333	1163	2	1040	7	113
224	1170	3	1054	, 7	116
336	1176	ŝ	1057	7	119
337	1180	3	1063	7	117
338	1183	3	1068	7	115
339	1187	<u> </u>	1073	7	114
340	1191	3	1078	7	113
341	1196	3	1083	7	113 _1
342	1200	3	1088	7	112
343	1205	3	1094	7	111
344	1209	3	1098	/	111

łi .

)

a is Not control

د ت

•

.

,ar **80 :**....

· \$\$.

n	Farley	split	Hybrid	split	difference
345	1214	3	1103	7	111
346	1219	3	1108	7	114
347	1225	3.	1113	7	112
348	1230	3	1118	7	112
349	1235 .	3	1123	· /	112
350	1239	3	112/	7	112
351	1244 A	2	1134	7	100
252	1249	נ ר	1140	· /	109
25/1	1255	2	1152	7	103
355	1266	2	1152	7	108
356	1271	3	1150	7	107
357	1277	3	1171	7	106
358	1283	3	1176	7	107
359	1290	3	1182	. 7	108 🔨
360	· 1296	3	1188	7	108
361	1303	2	1194	7	109
362	1311	2	1200	7	111
363	1319	2	1206	7	113
364	1328	2	1211	/	117
305	1335	2	1218	7	110
267	1261	2	1224	י ר	121
368	1350	2	1230	.,	121
369	1363	2	1242	7	121
370	1367	2	1248	7	119
371	1371	2	1255	• 7	116
372	1376	2	1260	7	116
373	1380	2	1266	7	114
374	1385	2	1272	7	113
375	1390	2	1278	7	112
376	1396	2	1284	7	, 112
377	1400	2	1290	/	110
378	1405	2	1295	· /	100
3/9	1410	2	1301	7	109
381	1470	2	1311	· /	110
387	1427	2	1316	, 7	111
383	1433	2	1321	7	112
384	1440	2	1326	7	114
385	7 1443	2	1332	7	111
386	1447	2	1337	· 7	110
387	, 1451	2.	1343	7	108
-388	1456	2	1349	7	107
389	1460	2	1355	/	105
390	1405	2	1301	7	104
202	1470	2	1307	7	103
397	1480	2	1372	7	103
394	1485	2	1381	ź	104
395	1490	2	1385	7	105
396	1496	2	1389	7	107
397	1501	2	1393	7	108
398	1507	2	1397	7	110
399	~15 13	2	1402	7	111
400	1520	2	1406	7	114
401	1524	2	1411	7	113

G

-

ł

-

81

5

	n	Farley	split	Hybrid	split	difference
	402	1529	2	1416	7	113
	403	1534	2	1421	7	° 113
	* 404	1540	2	1426	7	114
3	405	1545	2	1431	7	114
	406	1551	2	1435	7	116
	407	1557	2	1441	. 7	116
	408	15 6 4 .	2	1446	7	118
	409	1569	2	1451	7	118
	410	1575	2	1456	7	119
	411	1581	2	1461	7	120
	412	1588	2	1466	7	122
	413	1594	2	1472	7	122
	414	1601	2.	1477	7	124
	415	1608	2	1483	7	125
	416	1616	· 2	1489	/	127
	417	1619	≯ ²	1495	/	124
	418	1623	2	1501	/	122
	419	1627	2	1507	/	120
	420	1632	2	1512	4	120
	421	1636	2	1522	7	114
~	422	1641	2	1531	7	100
	423	1645	2	1540	7	100
	424	1652	2	1549	7	10.3
	425	1000	2	1000	7	90 0/i
	420	1001	2	1507	7	94 80
	427	1670	2	1596	7	86
	420	1672	7	1506	7	81
	429	1683	2	1606	7	77
	430	1689	2	1616	7	73
	431	1696	2	1626	7	70
× 1	432	1700	2	1636	, 7	64
. *	434	1705	2	1645	7	60
;	435	1710	2	1656	7	54
	436	1716	2	1666	7	50
	437	1721	2	1676	7	45
	438	1727	2	1686	7	41
	439	1733	2	1696	7	37
	440	1740	2	1706	7	34
	441	1745	2	1717	7	28
	442	1751	2	1727	7	24
	443	1757+	2	1738	7	19~
	444	1764	2	1749	7	15
	445	1770	2	1760	7	10
	446	1777	2	1771	7	6
	447	1784) 2	1782	7	2
	448	1792	2	1792	7	0
	449	1795	2	1795	2	0
	450	1799	2	1/99	. 2	0
	451	1803	2	1803	2	U
	45Z 1152		2	1000	ב ב	U A
	433	1017	2	1012	ע ר	U A
	434 1155	101/ ~~	~	101/ 1077	2	
	400 1156	1022	· 2	1022	2 2	VA
	420	1020 1020	2	1020	2	U A
	43/	1034	2	1032	2	0
	400	1037	. 4	1021	∠	U

्रियम्बर्ग्नम् हो ने के किंग्रेस्ट कि

「こうない」の「「こう」」ではないないではない。「なまたないないない」では、「ない」」では、こうに、「こうない」ではない。

*

۶ چ

t

n	, í	Farley	S	plit		Hybr	id	spti	t d	diffe	renc	e
459	· _ 1	842		2		1842		2		ų	0	
460	., 1	848		2		1848		2	•	,	0	
461	1	853		2		1853	•	.2			0.	
462	<u> </u>	859		2		1859		· 2			0	
463	1	865		2		1865		2			0	
464	'1	872.		2		1872		· 2			0	
465	. 1	876		2		1876		2			0	
466	1	881		2		1881		2			0	
467-	1	886		2		1886		2			0	
468	1	892		.2	•	1892		2			0	
469	1	897 -		2		1897		2			0	(
470	1	903		2		1903		2			0)
471	1	909		2		1909		2			0	
472	· 1	916		~Ž		1916		2			0	
473	1	971		2		1921		2			0	
475	1	977		2.		1927		2			ō	
475	1	923	•	2	Ø	1933		2	م		õ	
176	1	900 900		2		1940		-2	•		ñ	
470	1	0//6		2		1946		2			ă	
477	1	052		2		1953		2			ů N	
4/0	1	950		2		1960		Ş			ň	
4/3	1	969		2		1968		2			ត័	
400	. 1	076		2		1976		2			õ	
401	1	570 095		2		1095		2			ñ	
402	1	00/1		2.		100/		2			ň ·	
403	1	334 000		2		200/	· .	2			ñ	
404	2	004		2		2004		2			0	
400	2	013		2		2013		2			0	
460	· 2	023	,	2		2023		2			0	
487	. 2	033		2		2033		2			0	
488	2	044		2		2044		2			0	
489	2	053	•	2		2053		4			0	
490	2	063		2		2063		2			0	
491	2	07.3		2		2073		4			0	
492	. 2	084		2	•	2084		2			0	
493	- 2	094		2		2094		2			0	
494	2	105		2 .		2105		2		1	0	
495	2	116		2		2110		2			0	
496	2	128		2		2128		2			0	
497	2	137		2		2137		2			U A	
. 498	2	14/		2		214/		2		-	0	
499	2	157		2		2157		2			0	
500	- 2	168		2		2168		2			U O	
501	2	1/8		1.		21/8		2			0	
502	2	189		2 .		2189		2			U A	
503	2	200		2		2300	۲	2			0	
504	2.	212		2	~	2212	,	<u>,</u> 2			U	
505	2	222		2		2222	•	2		(0.	
506	· 2:	233		2		2233		2		1	U	
507	22	244		2		2244	~	2			U	
508	22	256		2		2256		2		(0	
509	22	267		2 ⁷		2267		2		1	0	
510	22	279		2		2279		2		(0	
511	22	291	-	2		2291		2		(0	
512	23	304		2		2304		.2		(0	

References

[Farley 79]	Farley, A. M. Minimal Broadcast networks. Networks 9(4):313-332, 1979.
(Farley, et al.	, 79] Farley, A. M., S. T. Hedetniemi, S. Mitchell and A. Proskurowski. Minimum Broadcast Graphs. Discrete Mathematics 25:189-193, 1979.
[Hedetniemi+81	
	Hedetniemi, S. M. and Hedetniemi, S. T. <u>A Survey of Gossiping and Broadcasting in</u> <u>Communication Networks</u> . Technical Report CIS-TR-81-5, University of Oregon, 1981.
(Liestman 81)	Liestman, A. L. Fault-Tolerant Scheduling and Broadcast Problems. Technical Report UIUCDCS-R-81-1063, University of Illinois at Urbana-Champaign, 1981.
(Liestman 83)	Liestman. A. L. Optimal Two-way Split to Approximate Minimum Broadcast Networks. 1983. Private Communication.
[Mitchell 80]	Mitchell, S. L. and Hedetniemi, S. T. A Census of Minimum Broadcast Graphs. J. Combin., Inform. & Systems Sci. 9:119-129, 1980.