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Broadcasting is the p r e s s  of i n f o r m a t h  dissebinatim in a 
, cmtmunication nctwark in which  a r#sSagc, wiginated by m e  member, . * 

is  t rmra i t t ed  to all members of the network; A minimal broadcas't 

4 
network (mbn) is a communication network in which a message can be 

I $ broadcast in minimum time regardless of a i g i na tw .  A minimum 

broadcast graph (mbg) is an mbn whi* has the fewest number of  

'a rb i t rary  size.. We present m w  methods for constructing mbns which 

have approximately the minimum number ' of l inks possible. The 
> .. 

resulting networks often have fewer links than p rev iws l y  described 

networks of this type. Fault-tolerant ( f t )  broadcasting is to broadcast 

with enough redundancy so that the broadcast can be completed even i f  

mbns. The number of finks' o f  our T - f f  an3 2-?I mb-s 7s Jiu$t a tittte 

more than half of the edges of the I ~ f t  and 2-ft mbns constructed b y  

previous nrttlods. 
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. L  r Definitions 

1.1 Definitions 
w -  

i n  a cmmunicat ion network. 

-- 
and Previws Results - 

a member has a message which is to  be 

disseminated t o  al l  other members, The series of calls to  inform the 

other members is constrained b y  the foltowing : 
* 

1. Each call requires m e  uni t  of time. 

2 .  A ntember can m\y  cat1 an adjacent member. ' 

3. A member can participate in at most one call  pe r  t i* unit, 

This process is called broadcastinq and the member that sends the 

> messkge is called the originator [Mitchell 801. 

? 

Let G = (V, € 1  be a graph that represents a communicai~ion - netwo*. 

The set of vertices V corresponds to the members of  the network and 

the set of edges E corresponds ,to the communication l inks connecting . 
- 

pairs of members, Let n denote the number of  vertices in C, e(C) 

denote the n u m b  of edges in C and t f u )  denote the time required to 

broadcast us ing M V  as the originator. Let t (C)  = Max ( t ( u )  : u€V ). 

i.e. Every u€V can broadcast in less than or 

time. \ 

Let T(n1 denote the minimum time required to 

any communication network G with n members, 

equai to t (G)  uni ts of 
0 

broadcast a message in 

TInf is egual to re_iling 

of  l o g p  because at each time unit, the number of informed vertices can 

4 at most double the number of informed vertices in the previous time 

un i t  [Mitchell 80) .  



&finition 1: A minimal broadcast net;wk I m b n l  is a .graph G 

such that  LFarley 791 

t f G )  = T ( n )  

An mbn represents a communication network that  can complete a 
C 

broadcast regardless o f  or ig inator ,  in minimum time. 

Definition 2: A -minimum broadcast graph (mbg l  i s  a g raph  C 

such that G i s  an mbn and e(C) i s  minimum. An mbg i s  an 

a n  having the minimum number of edges [Mitchel l  801. 

An  mbg represents a communication 'network w i th  the fewest 
3 

communication l i nks  be tween members that can complete a . broadcast in 
' minimum time regardless of  or ig inator .  

bet  .B  ( n )  denote the number of edges of  an mbg o f  size In. The value 

of  B ( n )  for  a rb i t r a r y  n is not  known and i t  i s  conjectured that t o  

& 
\ 

determine B ( n )  i s  NP-complete [Far y, e t  al. 791. The value of  B f n )  

is only k n o w n  fo r  n <= 17 [Mitchel l  801 (see f i b r e  1.1) or for n = 2k 

[ f a r l ey ,  e t  al. 791 where 

T h e o n l y l r n n t v n L O w k ~ f O - f R l n l k f r m n ~ ~ L h a t ~ = ~ h  

must be connected . Therefore, B ( n )  >= n-1. This  i s  a very' poor 

tower bound and i t  does not make use of  any o ther  propert ies of  mbgs. 

Upper bounds for  B ( n )  can be obtainedAfrom the size o f  known mbns. 



, The exist ing upper bounds tor 0 f n f  w e  [Fwley 791 

I 

D e f i n i t i q  3: A broadcastinq scheme is a sequence of' c a l k  

. between members of a communication network wh ich  complete a 

Mbgs represent the cheapest eff icient 'communication networks. They 

may be used for  message broadcasting in communication, paral lel 
4 

processing and distr ibuted computing, No technique is  known to  

generate an m b g  o f  arb i t rary  size and the recognition problein for mbgs 

is NP-complete [Farley, et al. 791. Only mbgs of size n <= 17 or  n = 

2k w e  known. Heuristics can be used to generate mbns which have a 

smlt number of edges t o  approximate m b g s ,  In the foiiowing sections, * 

~ a k p F w m s * f e f t s t f t # t t f f e R s ~  
f 
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1. f- 

- 

/ 
. . 

1.2 Farley's algorithm A 
7 

.. 1 

Broadcasting can be  accomplished in minimum timeAif there is  a 

broadcast tree root@ at the originator.   he moit obvious graph~-tk+--/~; 
1 w 

satisfy th is  condition for each vertex are the complete c&aphs. 
- (  \ / 

Complete graphs have n(n-1)/2 edges and the pr'oblern b - - i 
,/ '- 

we can reduce the number of edges 'and st i l l  maintain 

Farley d i kove red  that a subcfass o f  star polygons als 
+% 

above condition and they have+&er edges than complete 
-.- 

I star polygons give an upper bound of 

B [ n )  <= npg24 
which i s  signif icantly less than the number of  edges in complete 

-i 
7 

graphs. Furthermore, Farley presented the f i rs t  heur ist ic to generate 

mbns which have fewer edges than star polygons. The id ia  of h is  , 

algorithm to construct mbns by connecting two o r  three smaller size , Y 
m t i n s  together in a special way. By applying his algorithm recursively, 9% 

-** 
mbns of a rb i t ra ry  size can be constructed aGd the number 06 edges-in 1 

the resulting' mbns is  no more than h + l ~  gf, the edges of M e  star 
i L 

i - 1. Farley's two-way spli t  
d 

' An mbn of size n can be formed by connecting,2 mbns S1, 
c 

3 

S2 each of size n l  and n2 respectively such that n l  + n2 =.n 

and F o g ~ n ]  = fjog2nl - 1. Assume FQ, >= n2. Connect every 1 
vertex in S2 to a distinct vertex in St. The resul t ing I z 

B 
! 3 

graph G is an mbn o f  size n [Farley 79 I .  f 

The broadcasting scheme for C is .as follows: I f  the 
- - -  - 

originator is in St then star t  to broadcasf within 51. After - a 

S1 and S2 through the l inks that connect them together. I f  

the originator is in S2 then in the f i rs t  time* unit the 
- 

originator calls a vertex in S1. After the f i rs t  time uni t ,  S1 



\ 

an d 

u n i t  

The 

5 

\ 

S2 each have a h  in formed vertex. S t a r t i n g  f rom t ime  

two, b o t h  mbns can broadcast  in terna l ly .  

time r e q u i r e d  to  broadcast  

log2nf-1 and  one .additional time 

' 
w i th in  e i ther  S1 o r  S2 i s  

u n i t  is r e q u i r e d  t o  conduct  , 

cal ls between S1 and S2, The total  time r e q u i r e d  'for C t o  

c m p t e t c  the broadcast  i s  FrogZ"], Thus, t h e  gfaph C 

const ruc ted by  the 2-way sp l i t  is  an mbn. / 

, 3  

F igu re  1-2: Example o f  an  mbn const ruc ted b y  
Farley's 2-way sp l i t  

2. Far ley 's  three-way sp l i t  

A n  rnbn o f  size n in the range  

2p092"J n <= 3*2(r092"1'2) 

can be generated b y  connect ing  th ree mbns S t ,  S2 a n d  S3 o f  

s i ze  nl ,  n2 and n3 respect ive ly  such tha t  n l  + n2 + n3 = n 
I 

\ 
and pog2nd = pog24  - 2. 

if n is evert t ~ e ~ t  each member o f  h e  three 

components to a d i f f e ren t  member of a d i f f e ren t  component. 

I f  n i s  odd then do as above fo r  n-1 o f  t he  members; t hen  

connect the rema in ing  member to a member o f  a d i f f e ren t  

component t o  which no m e m b e r  o f  i t s  component i s  & ready  

connected. The r e s u l t i n g  g r a p h  C i s  an rnbn ( F w l e y 7 9 1 .  



- 
T- caf- w ' f w  G is  as ~ s :  of * 

k 
generality, assume the originator is in S1 and i t  i s  connected 

t, 

to a sertex in 52. In the f i rs t  time' unit the originator calls , 
_ the vertex in S2, Star t ing from the second time ,unit, St 

and $2 each ctrhtain an informed vertex they can 

broadcast internally. After they have finished their own- 

broadcasts, conduct calls from S1 and S 2  to S3. The 'time ' . 

required for either S1, 52 or Sa to broadcast internal ly is  

fTog2i+t. The calls between components ,require two ex t ra  
.. 

time units. The total time required to complete a 

broadcastif@ in  G i s  /iog24. Aence, the graph : C 

cwtstruct& by the +way sptit is an mbn. 
* 

I 
Figure 1-3: Examples o f  mbns constructed b y  

Far ley's three-way spl i t  
I 

B y  applying Farley's two-way split and three-way spli t  methods 

recursivety, Wns of arb i t ra ry  size can be genwat&. In the t w o  

methods des d above, no detail is given on how t o  spli t  n into two '* . 



or three parts, These methods wock for any  ni which sat is fy the 

condit ions set forth. However, Farley chooses to  sp l i t  n under  the - 
following condit ions : 

1, For 2-way spl i t ,  Inl-n21 <= 1. 
f ---. 

2, For  3-way spl i t ,  In1-n2( <= 1, Inl-n31 <= 1 and  ln2-n31 <= 1. 
, 

That is, he always spl i ts  as evenly as possible. Under these 
b 

conditions, the mbns C generated b y  Farley's algori thm g ive 

as an upper bound for the number o f  edges in G fo r  the two-way sp l i t  

and 

for  the three-way split. Since the 3-way spl i t  has a be t te r  bound than 

the -2-way spl i t ,  Far ley always uses the 3-way sp l i t  whe-n i t  is  possible. 

For cer ta in  sizes s l ight  'improvement on the above resu l t  can be . 

obtained by us ing  the best sp l i t  fo r  n recursively [Liestman 831.  This  . 

approach i s  computationally inefficient. In th is  thesis, we assume that  

sp l i t t i ng  i s  done according to  Farley's conditions. The resu l t  obtained 

by Fartey i s  not  bad if we compare mbns generated b y  Farfey's 

algori thm to  mbgs o f  size n=2k. Actually, Farley's algori thm qenerptes 
I 

mbgs when n=2k, However, i t  i s  no t  possible to  judge whether other 

mbns generated b y  Farley's algori thm are good approximations of mbgs 

since we know nei ther the value o f  B ( n )  nor  a. gwd lower bound for  

8 ( n  when n#2k and n> 17, 



4 Chapter  2 

A lgor i thms t o  Approximate Minimum Broadcast Graphs 

U s i n g  Farley's idea of genera t i ng  mbns recurs ive ly ,  b e t t e r  

approximat ions can b e  found. Ins tead  of cons t ruc t i ng  mbns f rom t w o  or - 
th ree  smaller mbns, we can u s e  f ive, s ix  o r  seven smaller mbns t o  

.8 . 
cons t ruc t  la rger  mbns. In the   following three sections, d i f f e ren t  0 
heuristics to generate mbns based on Farley's idea are  presented, 

- 

2.1 Five-way sp l i t  method 

- - 
The  + '  most s t r a i g h t f o r w a r d  way t o  ex tend  Farley's a lgor i thm i s  to  , 

cons t ruc t  mbns us ing  more than  th ree  smaller mbns. However, i t  t u r n s  

o u t  t h a t  t h e  simplest way  does not  work  v e r y  well. Consider an mbn 

cons t ruc ted  b y  5 smaller mbns. They  are  connected toqether  in such. a 
+ 

way t h a t  each mbn can b e  cons idered as a ve r tex  . i n  ah m b g  o f  size 5 . 

(see f i g u r e  2-1). E v e r y  ve r tex  in each small mbn i s  connected to  two 

o the r  ver t ices f rom d i f f e r e n t  small mbns. Suppose tha t  each smaller 

m b n  i s  const ruc ted b y  Farley's. 2-way sp l i t  and each requ i res  pog2n1-3 

u n i t s  o f  time fo r  broadcast ing. We can send messages f rom t h e  

o r ig ina to r  t o  a v e r t e x  in two o the r  d i f fe rent  smaller mbns in t h e  f i r s t  

two  time uni ts .  In  t h e  t h i r d  t ime unit, t h e  two just  in formed ver t ices  

can send messages to  a ve r tex  in t h e  remaining two small mbns. Thus, 

a f t e r  t h ree  time u n i t s  each small mbn  has one in formed v e r t e x  and  t h e y  

can  broadcast in terna l ly .  The to ta l  time r e q u i r e d  fo r  b roadcast ing  In C 

is  also Dog24, H e n c e ,  Vie graph C constructed by the s t r a i g h t f o r w o r d  

5-way sp l i t  i s  an rnbn. 



Each line r e p r k n t s  that every vertex in one set 
is connected to at least one vertex of the other set . 

Figure 2-1: Constructing mbns using straight- 
forward 5-way split 

Thus, no improrernent on the bound is  achieved by the straightforward 

5-way split, Better results may be obtained by a less obvious 

approach. 
*- 

> 

Consider the graph constructed b y  the straightforward 5-way split. 

In Lhe f i r s t  three t ime units, some of the informed vertices are not 

involved i n  calls. We can make use of these unutil ized b u t  informed 

vertices to reduce the number of edges, The folfowing is an improved 

version of the straightforward 5-way split. 



Definition 1: Given a graph C=(V, E) , a p a r t i t k n  of the set 

of vertices V into Va and Vb is  called an 'even - adjacency spli t  
' 

of  V i f  I 

'9 

1. I Iva l  - lvbl I <= 1 

2 .  For every vet tex v€Va, there is at least one vertex 

u€Vb that is adjacent to  v. 
3 * 

. . 
3. For every ver tex-  uWb, there is at least one ver tex 

vEVa that is  adjacent t'o u. , 

Definition 2: Given graphs A = (Va, Ea) and B = (Vb, Eb) 
, 

such that 

: A graph C i s  formed by adding edges between Va and Vb. A 

and 6 are said to be  connected by a minimum adjacency 

connection if 

1. The number of edges added is  ~ a x ( l v a l .  IVbl).  

2. Va and Vb constitute* even adjacency spli t  o f  G. 

Note that i f  J ~ a l  = I ~ b l  the edges added are a perfect matching 

from Va to Vb. I f  (val = Ivbl+l, the edges added are a perfect 

matching from Vb to  Va plus an edge from the upmatched 

vertex of  Va to  a vertex in Vb. Similarly, if IVb/ = IWal+l, the 

edges added are a perfect matching from Va to Vb plus an edge 

from the unmatched vertex of Vb to a vertex in Va. 

Lemma 3: An  mbn G = (V,  E)  constructed b y  . Farley's 2-way 

split algorithm has an even adjacency split. - .  
, /. 

Proof: Let A = (Va, Ea) a& 8 = (Vb, Eb) be the two s m a l k  



I 
mbns used by the 2-way split algorithm to bonstruct G. Assume 

Two ca)es : 
/' 

1. I f  n  i s  even then Va and Vb are an even adjacency spli t  

, o f  G. 

2. I f  n i s  odd then let vEVa b e  the vertex that i s  not 

connected t o  any vertex in Vb. Split V in to two sets K 1  

and K2 such that 

and 
/ 

Since. v must be $adjacent to at least one vertex in Va, 

each vertex in K1 must be adjacent to at least one 

vertex in K2 and vice versa. K1 and K2 are an even 
/ 

adjacency spl i t  of G. - 
Hence, the graph G constructed by Farley's two-way sp l i t  has 

an even adjacency split. 

Five-way spli t  method - 
Given n such that 

C0s2n1 - ~ ~ r n l s i l =  3. 
i 

an mDn of size n can be constructed as follows : 

. L 

2. For each Si, construct an ,mbn with an even adjacency spli t  a 
a 

3 
Ai,  Bi S U C ~  €hat t~ i f - f f34 < 1. This m y  k d 2 - 

& 
recursively or using other heuristics such as Farley's 2-way 

w 4 

1 
-k 
Yk 

3 



split. 
f ,  

3. Add edges to form minimum adjacency connections between 

- 

Each l ine represents B minimum adjacency 
connection between the Ajs' and the Bjo' I 

Figure 2-2: Constructing mbns using 5-way sptit 

Thewern 4: The graph G constructed by the 5-way spl i t  - - 
method is an mbn. . - 

Proof: Refer t o  f igure 2-3 and consider an wig inator  in Sq. 

Without los,s of gbnerality, assume that the w i g i n a t w  is in Aq. . 
4 
3 
24 

Consider the following call ing scheme : 
-- --- 

I -1 .  Time uni t  1 : Conduct call between the pai r  ( V & A ~ ~  3 
G 

u&B4). This is  possible because 14r) and 84 are an 5 

even adjacency sptit of Sq. a 
f 

s, 
iY 
1 

3 



2. Time "nit 2 : Conduct' cal l  between the pa i rs  (vt#?&, 
- 

-3), k m=~&k w C M ~ e  the 
sets ,Aq, 8 3  and 04,  8 s  are connected by minimum 

- 
ad j k e n c y  emnec t ions. 

. . 
3. Time unit 3 : Conduct cal l  between the pa i rs  (u3EB3, 

- u1E0 1 f , (u5E85, ~ ~ € 6 2 ) .  Again, the sets-are connected 

by  minimum adjacency connections. 

Each rnbn Si has at least one informed v k e x  aft& the f i r s t  

t h ree  time units. In time unit four, each Si can s ta r t  t o  

b r o q a s t  internal ly. The time requ i red  f o r  each small network  

i s  Vog2n/51. 

The total time requ i red  to  complete broadcasting in G i s  

Since 

Therefore, C can complete a broadcast in minimum time i f  the . 

or ig inator  is  in %. * 

c, 

Refer r ing  to  f i gu re  2-4 and 2-5 and us ing  similar argun$ents, 

C can complete a broadcast in' minimum time i f  the or ig inator  i s  
=3 . -- 

in St, 52, S3 o r  S5. a $ 

Therefore, C i s  an mbn. 

Th-em 5: The gr-h C constructed by the 5-way sp l i t  

method has 



Figure 2-3: Calling scheme for h e  first three time 
units if the originator is  in Sy 

for mbns constructed by the 5-way split 
1 

-;e32-4: Calling scheme for the first three time 
units i f  the originator is in S3 or Sg 

A for mbns constructed by the 5-way split 



Figure 2-5: Calling scheme for the first three time 
units i f  the originator is in S1 or S2 

for mbns constructed by the 5- 
7 

Proof: Let n i  be the number of vertices in  e g h  Si. Assurne 

the Si's are constructed by Farley's 2-way split h t h o d .  

Therefore. the Sis wi l l  have a tots of 

[ \  At most b/107*7 edges are needed to form minimum adjacency 



Theorem 6: The g raph  C = -  (V ,  E )  constructed by the  5-way 
C 

sp l i t  method has an even adjacency split. 

Proof: Spl i t  V in to  two sets K 1  and K2 such that  

Every  VGKI must be adjacent to  at least one uEK2 and v i c e  - 

versa since the Ai's and the Bi's are even adjacency spl i ts  of 

the S~*S. - - 

Let j = n mod 5. That is, j i s  the number of  Si's of size 

Three cases : 
6 

. 2. I f  j #O  and and t e i s ' e v e n ,  then 1 ~ ~ 1  = l ~ i l  for  i>=j+l 

and / A ~ /  = ISi/ +1 for  l<=i<=j. Therefore, lKl[ = I K ~ ( + ~  

i f  J i s  odd and lKll = 1 ~ 2 1  i f  j is  even. 

3. If j#O and an& [n/5j i s  odd, then ( ~ ~ 1  = lei( +1 fo r  i>=j+l 

and 1 ~ ~ 1  = for l<=i<=j. Therefore, I K ~ /  = 1 ~ ~ 1  i f  j i s  

odd and 1 ~ 1 1  = IK2l+t i f  j is even. 

G has an even adjacency spl i t  K 1  and K2. 
s 

r u c  t 

- il 

From theorems 4, 5, and 6, the graph C const 

sfl l i t  method has the fo i lowing propert ies : 

ed by the 5-way 



2. e ( C )  <= n/2pog261 - 4n/5 + 7. 
- 

3. G has an  &en adjacency split. 

2.2 Six-way sp l i t  method - 
Given n such that  

an mbn of  size n can be  constructed as follows : 

l'. Part i t ion n vert ices in to  6 sets Si sych that  

f 

2. For each Sj construct  an mbn w i th  an even adjacency sp l i t  

Ai, B i  such ,that I ~ i l - l l 3 ~ l  <= 1. . ThKs may be  done 

recu rs i ve l y ' o r  us ing other heur ist ics such as Farley's 2-way 

split. A. T 

s ., . 
0 

Theoreni 7: The. g raph  C constructed b y  the 6-way sp l i t  

method i s  an rnbn. 

Proof: Re fe r r ing  to f i gu re  2-7 a n t  wing similar arguments to 

those used in the proof  o f  theorem 4, each mbn Si has at  least 

qte infbrmed vertex after the first three t i m e  units. In time 

un i t  four, each Si can s ta r t  to  broadcast internal ly. The time 

requ i red  for  each set is  k 2 r n 1 6 a  

. The total t ime requ i red to  complete broadcMRing i n  C is  

t ( ~ )  = pq2rn/+ 3 



Each line represents  a minimum adjacency 
! 

- connection between the  Ai's and the Bi's 

Figure 2-6:  Construct ing  mbns using 6-way split 

/ 

Since 

Therefore ,  G i w a n  mbn. 

f h e a r t m  8 :  The graph G c o n s t i t s t e d  by the  6-way split 

met hod has 

e ( G )  <= n/2Feg2nl - 3n14 + 9 

P,roof: Let ni be the number o f  vertvces in each Si. Assume 

t h e  Sits are constructed b y  Farley's 2-way split method. 

Therefore ,  the Sits w i l l  h a v e  a total of 



F i g u r e  2-7: 

edges. 

Ca l l ing  scheme for  the f i r s t  th ree time 
un i t s  regard less  of o r ig ina tor  fo r  mbns 

cons t ruc ted  by the 6rway sp l i t  - 

The tota l  number of edges in G i s  
4.. 

Theorem 9: The graph C = (V ,  E )  const ruc ted by  t h e  6-way 



sp l i t  method has an even adjacency split. 

Proof: Sp l i t  V i n t o  two g roups  Kl a d  K2 such  tha t  

Us ing  similar arguments t o  those used in t h e  p r o o f  o f  theorem 

6,  K 1  and K 2  are an even adjacency sp l i t  o f  G. 

From theorems 7, 8, and 9, t h e  q r a p h  G const ruc ted b y  the  6-way 

sp l i t  method has the fot towing p roper t i es  : 
w- 

1 .  G i s  an mbn. 

3. C has an even adjacency spl i t .  

r- 
\ 

2.3 Seven-way sp l i t  method % 

an mbn o f  size n can be  const ruc ted as follows : 

1. Pa r t i t i on  n ver t ices i n to  7 sets Sj. I f  b/7_1 i s  even then 
'a 

rn/q = IS11 >= Is2! >= ... >= IS71 = Ln/7J 

2 .  For each Si const ruc t  an rnbn w i th  an even adjacency sp l i t  

Ai, t3i  such that  0 <= J A ~ J - J B ~ ~  <= 1. Th is  may be done 

recu rs i ve l y  o r  us ing  other heur is t i cs  such as Farley's 2-way 

spl i t .  



Each l ine rep;esents a minimum adjacency & 

connect ion between the  Ai's and t h e  e i 's  n. 
Figure 2 - 8 :  Const ruc t ing  mbns u s i n g  7-way sp l i t  

1 

Thwrern 10: The r a p h  G const ruc ted by the  7 - w a i  sp l i t  P I 
7 

method i s  an mbn. . 
Proof:  R e f e r r i n g  t o  f i gu re  2-9 and us ing  similar arguments to-  

those used in the  proof of theorem 4, each mbn Si  has at least , fir 
2 L  

one informed v e r t e x  a f te r  t h e  f y r t  th ree time un i ts .  i n  time - 

b S L  

w t i f  fwr, each Si can s t w t  to broadcast internally. The time - - 

r e q u i r e d  fo r  each set i s  ~ o g 2 ~ / 7 ~  / 

The tdtat time r e q u i r e d  t o  comptete a broadcast in G i s  



Since 

Therefore, G i s  an mbn. 
C 

Fiqure 2-9: Calling scheme for the f i rst  three time 
units regar  less of originator for mbns 

constr P cted by the 7-way split 

i 
I 
'Theorem 11: The graph C constructed b y  the 7-way split 

Proof :  Let n i  be the number of vertices i n  each Si.  Assume 

the  Si's are constructed b y  Farley's 2-way split method. 

Therefore, the Si's w i l t  have a total of 
7 



edges. 

The tota l  number o f  edges 

I 

Theorem 12: The g r a p h  G = (V ,  E) const ruc ted by the  7-way 

1 spl i t '  method has an even adjacency split. 

Proof: Spl i t  V i n t o  two  sets Kt and K2 such that  

K 2  = 81 U A2 U 8 3  u A4 U Bg U A6 U a 7  * 
Using similar arguments to  those used in the  p roo f  o f  theorem 

6, K 1  a n d  K 2  are an even  adjacency sp l i t  o f  G. 

From theorems 10, 1 I ,  and 12, the graph G cons t ruc ted  by the 7-way 

split method has the fo l lowing proper t ies  : 

1, G is an mbn. 

2. e ( ~ ) . < =  f i / 2~og2n l  - n12 + 14. 

3. G has an even  adjacency spl i t .  



' 9 
I I 

. 24 . 

f 4 

I 2.4 An  algorith-m to  approximate mbgs 

' 
From .'the p r t v i w s  sections, mb's constructed by the 5, 6 and 7-way 

sp l i ts  and Farley's 2-way ~ p l i t  al l  have .the p rope r t y  that  ,they contain 

; even adjacency splits. Because* o f  th is  pkoperty, we can combine al l  

these methods in an r i t h m  to  approximate mbgs. Furthermore, th i s  

algori thm wi l l  b e  be i f  i t  can ut i l ize the known mbgs as the basis 

for  the algorithm. 

Lemma 13: There i s  an mG9 o f  size n wi th  an even adjacency 

sp l i t  fo r  each n in the range 2<= n_<=17. 

Proof: The vert ices of  each mbg in f igure 2-10. are d iv ided 

in to  two sets A and 6. Set 'A  contains al l  the vert ices _that are 

marked w i t h  a ' x '  a n d b t  8 contains al l  those marked w i th  an 

'om.. ~ l e a r l ~ ,  A and B sat isfy the condit ions f o r  even 

adjacency sp l i t  in G. A and  B are an even adjacency sp l i t  of  

An Algor i thm to  ,Approximate M b g s  , 

1. I f  n <= 17 then r e t u r n  the known m b g  and stop. 

Else 

Fw m := 18 t o  r n / i  do 
begin 

Find the number of  edges f o r  mbn o f  size m 

constructed by Farley's 2-way split, 

5-way split, 6-way sp l i t  and 7-way 

split i f  possible. 

F ind  and store the method that  give the 

fewest edgks. 

end 

2 .  F ind  the number o f  edges for  an mbn o f  size n constructed 



* 
Figure 2-10: Known mbgs for n <= 17 

which have an even adjacency split 



by FartEyk 2- split* +way split, split'and I-- - 
split. Construct  the mbn us ing  the method that  g ive  the  

fewest number o f  edges . 
* 

Lemma 14: I f  garley's 3-way sp l i t  can b e  used t o  const ruct  an 

mbn o f  size n, then we can also use the 6-way sp l i t  for the 

construct ion. 

Proof: Farley's 3-way sp l i t  method can be used when 
3 

2Uoginj < n <= 3 * 2 ( b 9 2 d  - 2) 

Since 2 ( b 9 2 d  ' 3) i s  an integer, 

Hence, the 6-way sp l i t  method can  be employed whenever the 3- 

way sp l i t  method ts applicable. 

F rom the above lemma, th i s  algori thm gives a be t te r  bound on H ( n )  

than Farley's algori thm when 

2 b 9 2 d  < n <= 3*2([io92"7 22) 
k ,  

because the 6-way sp l i t  has a bet ter  bound for  e(G)'  than the 3-way 

split. Furthermore. th i s  algori thm also gives a bet ter  bet ter  bound  on  

R l n l  &hen 

3'21FFEn4 - 21 < " e ~ f i r w ~ l  - 3) 
.< * ,,' 

- . .> - . ,  for- 'we can use the 7-way sp l i t  in th is  range ,  instead o f  Farley's 2-way 

- I  split. The bound of ef G) fo r  the 7-way spl i t  i s  also better. 
.- 

/ 
No imptoverneni has been made fo r  



? t 

I t  might  b e  possib le t o  proceed w i t h  the  same techn ique as 5, 6 a n d  7- ' 

1 

way sp l i t  a n d  sp l i t  n ver t ices  i n t o  15, 31 o r  63 sets t o  g e t  improvement 

w i t h i n  th i s  range. The method w i l l  become v e r y  complicated a n d  n o  

improvement can  be made fo r  a l l  n w i t h i n  th i s  r a n g e  w i t h  th i s  approach. 

Th is  d i rec t i on  has not  been investigated. 

2.5 Summary 

A n  a lgor i thm t o  approximate mbgs i s  presented. 

a be t te r  bdund o n  B ( n ]  than Farley's algorithm. 

Fo r  .2Uog2nJ < n <= 5*2 (p92n1  - 3)  

2bg2nJ < n <= 7 * 2 1 f j E ~ n I  - 3). 
\ 

That  is, t he  b o u n d  i s  improved three-quarter  of 

reduct ion  in edges fo r  cons t ruc t i ng  mbns of size 

This a lgor i thm g ives  

t h e  time. F u r t h e r  

may be possible by u s i n g  t h e  same technique t o  cons t ruc t  mbns w i t h  
CI- 

15, 3 1  o r  63 .smaller mbns. The number o f  edges in mbns c o n s t r u c t e d  
\ 
by this algorithm and Farley's algor i thm have been computed f o r  

18<=n<=t024. The mbns generated by th is  a lgor i thm have an average o f  

approximately 8% fewer edges than  the  rnbns- genera ted by ~ a r & %  

a lgor i thm w i t h i n  the  range  where there  i s  improvement and n?=36. A 

table f o r  f#-te c-bison sf e { G )  between this algorithm and Far ley8s 

a lgor i thm is  g i v e n  in Appendix A. 



I t  is interesting to note in the table of Appendix A that the 6-way 

spli t  always perfotms better than the 5-way spl i t  which seems to 
3 1 

contradict the bounds given above. This Is probably due to the fact 
- 

that the proof of the bounds assume that the small mbns are 

constructed b y  the 2-way split. However, in practice the small mbns 

used wilt be the mbns having the fewest edqes wMch may be 

constructed by, t h e ' 2 ,  + 5,'. 6 o r  7-way spli t  or may be known mbgs. 
I /  Consider the cake n=160. The 5-way split w i l l  break the vertices in to  5 

sets of 32 vertices. Each small mbn is cpnstr jc ted by the 2-way spl i t  

and contains 80 edges. Thus, the small mbns contain 400 edges and 
C 

the total number o f  edges in the result inq rnbn on 160 vert ices i s  512. 

The 6-way spli t  will ut i l ize 2 mbns on 26 vertices and 4 mbns on-27 

vertices. These small mbns can be. constructed b y  the 7-way spli t  

yielding a Qotal of  308 edges in the 6 small rnbns. Thus, the resul t ing . . 

vbn 'on 160 vertices has only 427 edjes. This significant savings in 

the number of edges in the small mbns compensates for the ext ra  edges 

added between the small mbns b y  the 6-way spli t  method. Thus, the 

6-way spli t  may actually outperform the 5-way spli t  in spite of the . 
bounds. , The behaviour of the -?-way split is similarly influenced by  

the actual method used to construct the small mbns. P 



Chapter 3 

Algori thms t o  Approximate 1-ft Mbgs 

3.1 Definitions 

Let  G = (V, E) be a graph that  represents a communication network, 

and a subgraph GI = (v, El) wi th  El = E - E m  where E m  is a set o f  k 1 
edges in E. The set E* represents fatttty communication l i nks  in t h e  

network. Broadcasting in G wi th  enough redundancy so that  broadcast 
p i .  

can be completed w i t h  any set Em o f  fau l ty  l i nks  is  Called 

k-fault-toleran t broadcast inq (Fault-tolerant wi l l  be abbreviated f t  

below). A - k-f t  broadcasting scheme is a broadcasting scheme which 

contains k + l  mutual ly edge disjoint cal l ing paths from the o r i h a t o r  to 

each member o f  t he  network. F t  broadcasting is  desirable i f  re l iab i l i ty  
x 

i s  considered as an important factor in a communication network. The  

f t  br6adcast'ing scheme does not  detect which communication link fails. 

The broadcast problem discussed in chapter 2 corresponds t o  0-ft 

broadcasting. ' 

Let n denote the number* o f  vert ices in C, e(G) denote the number o f  

edges in G and t k ( u )  denote the time requ i red  to complete a k-ft 

broadcast us ing  u€V  as the originator. Let t k f  G) = Max ( t k (u )  : uEV). 

That is, every u f V  can complete a k - f t  bropdcast in less than o r  equal 

to t k (G)  un i ts  o f  time. 

In general, the minimum Zime T k l n )  requ i red  to complete a k - f t  
$ 

broadcast in any -communication network G of n members i s  not  known. 

I t  has been shown that 



\ .  The only k n o w n  values for  T k ( n )  f o r  k > 0 a r e  those for .k=1.2 

[Liestman 811. F w  k = 0 t h e  re'sult i s  g i ven  in tHe p rev ious  chapter ,  

- 
For  k = 1 and  n >= 3, 

F o r  k = 2, n >= 5 and  n = 2 i  - 1, 

Def in i t ion  1 : A '  k-fa(;lt-tolerant minimunCbroadcast ne twork  ( k -  

f t  mbn) i s  a g r a p h  G such  t h a t  a k-ft broadcast  can b e  

completed in minimum time [L iestman 811. 

A k-ft mbn represents  a communication network  tha t  can complete a k- 

f t  broadcast  regardless o f  o r i g ina to r  in minimum time, 

De f in i t i on  2: A k- faul t - to lerant  minimum broadcast  g r a p h  ( k - f t  

mbg) i s  a g raph  G such t h a t  G i s  a k-ft mbn and e (G)  i s  

minimum. A k - f t  m b g  i s  a k-ft mbn h a v i n g  t h e  minimum 

number o f  edges. [Liestman 811. 

A k-ft m b g  represents  a communication ne twork  w i t h  t h e  fewest 

communication l i nks  between members tha t  can complete a k - f t  broadcast  

in minimum time regardless o f  o r ig ina tor .  



Let  B k ( n )  d enote th e numbe :r o f  edges of  a k - f t  mbg  o f  size' n. The 

value of B k ( n )  for  a rb i t r a r y  n i s  not known. The followi-ng upper 

bound fo r  Bk[n) &ere k f i  2 bre from ~ i e s t m a n  [Liestman 811. 

For n = 2 i ,  
\ 

B l (n)  <= npug2n] - n/2. 

For n = ; ~ 0 4 2 n l  + 2i. 

For other n, 

The above resul ts are obtained from Liestman's heurist ics to generate 1- 

f t  mbns and 2-ft mbns. Other heur ist ics to mbns and 2- 

f t  mbns are presented in the fotlowinq sections. 

3.2 1-ft two-way spl i t  method 

t 

The method used in ihe 0-ft algori thms i s  not d i rec t l y  extendable to  

the k - f t  cases for  k=1,2. Let  n b e  even. Suppose we par t i t i on  n 

ver t ices in to  two sets of  equal size and form two smaller k - f t  mbns. 

Each o f  these can complete a k-ft broadcast in Tk(n12) un i t s  o f  time. 

As before, we add edges to connect the small 1-ft mbns together 

forming a g raph  G. I f  we use the f i r s t  k+l  calls' to  ensure that  each 

component has at least one informed vertex,  we get 

t k t C )  = T k ( n l 2 )  + k + 1 > T k ( n )  

for  k=1,2 and even n. Thus, us ing  the f i r s t  k + l  calls in t h i s  fashion 

&ill not  rproduce the desired results. 1 

Let  us consider the case for  k=1. . 

T l { n )  = pog2"1 1 = Dog2n1q + 2 = T0(n/2)  + 2 



We propose a scheme us i r i g  two 0-f t  mbns o f  size n / 2  connected by ' 

addi t ional  edges. In the f i r s t  time un i t ,  the  or ig ina tor  ( i n  component 
2 

A) cal ls a member o f  the  o ther  component (B) .  me two components 

then  prdceed w i t h  0-ft broadcasts in ternal ly .  Th is  takes T o ( n i 2 )  u n i t s  

o f  time. D u r i n g  the last time un i t ,  each member o f  one component cal ls  

a member o f  the  o ther  component. Thus, two ca l l ing  p a t h s  f rom the 

or ig ina tor  to  each v e r t e x  a r e  completed. Fo r  a v e r t e x  in A, t h e  two 

ca l l ing  paths  a re  : 

1. The ca l l ing  p a t h  w i th in  A. 

2. The f i r s t  ca l l  to  B, a ca l l ing  p a t h  w i th in  B and  a caif back  
"J 

to  A. 

Note that  i t  i s  i w a n t  tha t  the  or ig ina tor  calls two d i s t i nc t  members 

o f  f3, The fo l lowing heur is t ics  t o  approximate 1-ft mbns are  based on 

the  above idea. . a 

1-ft 2-way s p l i t  fw even n 

Given n i s  even, a 1-f t  mbn o f  size n can b e  const ruc ted as follows : 

1. Par t i t ion  n ver t ices  i n t o  two equal sets S1 and S 2 ,  and  fo r  

each Si cons t ruc t  a 0- f t  mbn. This may b e  done b y  e i the r  

the  2 ,  -5, 6 o r  7-way spl i t .  

2 .  Number the  ver t ices  in S1 and S 2 .  Add edges to  connect 
- VjGS1 t o  ujES2 for  j=l..n/2. 

3. Add edges to  connect vjES1 to  ~ j + l E S 2  for  1 n 2 - 1  and 

vn l2  to u t *  

Theorem 3: The g r a p h  G const ruc ted by the 1-ft 2-way sp l i t  

a lgor i thm fo r  even  r7 i s  a 1-ft mbn. 

Proof :  bJithout loss of general i ty ,  assume, that the o r ig ina to r  i s  

- 



F i g u r e  3-1: C o n s t r u c t i n g  1- f t  mbns u s i n g  1-f t  2-way s p l i t  

v jFS1 a n d  j=n /2 .  I n  the  f i r s t  t ime un i t ,  Vj cal ls  Uj+ l .  A f t e r  

t he  f i r s t  t ime u n i t ,  each 0-f t  mbn  has a n  i n fo rmed  ve r tex .  

S t a r t i n g  f r o m  time u n i t  two, each O-f t  m b n  b roadcas t s  

i n te rna l l y .  T h i s  takes flog2nf-1 t ime u n i t s .  In time u n i t  

f iog2nl+l, c o n d u c t  ca115 be tween  vk a n d  uk f o r  k=l.,n/2. The  

total  t ime r e q u i r e d  f o r  t h i s  ca l l i ng  scheme i s  pog2nl+1. Thus ,  

t n e  t ime c o n s t r a i n t  is not  v io la ted.  

Fo r  t he  v e r t i c e s  i n  S t ,  each has  one c a l l i n g  path '  w h i c h  i s  

ob ta i ned  b y  b roadcas t i ng  i n t e r n a l l y  and  ano the r  i a l l i n g  p a t h  
@- 

w h i c h  i s  f r om v j  to ' \u j+ l ,  cal ls w i t h i n  S2 a n d  f r om u k  t o  vk.  

Simi lar ly ,  each v e r t e x  i n  S2 h a s  one ca l l i ng  p a t h  w h i c h  i s  f r om 

V, t o  u l + l  and cal ls w i t h i n  S 2 .  Moreover ,  each also has  a  

second c a l l i n g  p a t h  f r om ca l l s  in S1 and  t h e n  f r o m  v k  t o  uk. 

C lea r l y ,  t he  two  ca l l i ng  p a t h s  f o r  each v e r t e x  in t h e  S ~ S  a r e  

d i s j o i n t .  Hence, the  p r a p h  G cons t ruc ted  b y  the  1-ft )-way 

s 2 i i t  f o r  .even n is  a 1 - f t  mbn.  



F i g u r e  3-2 :  Possible method to cons t ruc t  1-ft mbns 
when n i s  o d d  

ff n is  odd, the above scheme for the cons t ruc t i on  of I - f t  mbns does . 
no t  i o r k  because not  e v e r y  v e r t e x  can pa r t i c i pa te  in the  cal ls at the 

last time un i t .  Consider the  fo l lowing scheme. Suppose n i s  odd  and 

w e  p a r t i t i o n  n ver t i ces  i n t o  two sets S1, S2 such  tha t  I S ~ ~ = ~ S ~ ~ + I .  
Number the  ver t i ces  and add edges to connect uiCS2 to vieS2, ~ i ' S 2  to 

vi+lCS2, where i= l .  .n/2 {see f i g u r e  3-2). Le t  the  o r i g ina to r  b e  vkGS1. 

I n  the  f i r s t  time un i t ,  v k  calls uk. In the second time un i t ,  each Si 

has one in fo rmed v e r t e x  and they  can broadcast in te rna l ly .  This  takes 

PogZn1-l time un i ts ,  In the last  time un i t ,  conduct  calls between Vi  

and u; i f  i<k, V i+ l  and Ui i f  i>k. In th is  way, o n l y  the  o r i g ina to r  vk .. 

does not  pa r t i c i pa te  in the cal ls at the last time un i t .  Thus, gll 

ver t i ces  except  the o r i g ina to r  have two ca l l ing  paths, However, th i s  

scheme does not  w o r k  i f  the  o r i g ina to r  is in 52. I n  fact, t h i s  scheme 

* only w w k s  if the w i q i n a t o r  is  in the  la rger  set. I f  w e  can ' forceu the  

o r i q ina to r  to Se in the la rger  set al l  the time then th i s  scheme w i l l  wo rk  



f o r  all odd n. The ' forcing'  o f  the or ig ina toc  to  b e  in t ~ e  l a r g e r  se t  

can b e  done b y  s p l i t t i n g  n ve r t i ces  i n to  two equal sets S1, S2 a n d  a 

s ingle v e r t e x  r. Cons t ruc t  0- f t  mbns fo r  S~U{W'; and S ~ U { W )  w i t h  the 

p r o p e r t r  that  S1, S2 are  also 0- f t  rnbns themselves. I f  t h e  o r i g i n a t o r  

i s  in S1 t hen  we can cons ider  ~ ~ U f w - )  as the larq6r set  and S2 as t h e  . 
smaller set, Simi lar ly,  i f  the o r i q ina to r  i s  in S2 t h e n  we c a n  cons ider  

S2U- w -  as the  larger set a n d  S1 as the  smaller set. Hence, o u r  aim 
I 

becomes to find a method to  cons t ruc t  0- f t  mbns wh ich  have  the des i red  

p r o p e r t y .  I f  s u c h j a  method exists,  we can use the scheme d e k r i b e d  

above to cons t ruc t  1-ft mbns when n is odd. I t  t u r n s  ou t  t ha t  a 

subset o f  0-f t  mbns cons t ruc ted  b y  Farley's 2-way sp l i t  has t h i s  

p r o p e r t y .  

Lemma 4: At  least one 0-f t  mbn C on n>=2 ve r t i ces  

constructabie b y  Farfey's 2-way sp l i t  method conta ins  a v e r t e x  

v s u c h  tha t  the grwh G' obta ined b y  delet ing v and a l l  edges 

incident w i t h  v from G i s  a 0-f t  rnbn on n-1 ver t ices.  

Proof:  Farieyts 2-way spt i t  forms a n  mbrr of size rt b y  

connect ing two mbns 51 and S2 o f  size [ n / a  and Ln/2J 

respect ive ly  w i t h  b /  2f edges. These edges connect each v e r t e x  

in S 2  t o  a d i s t i nc t  v e r t e x  in S1. A n y  such set o f  connect ions 

i s  allowed h y  Farley'5 2-way sp l i t  method. Let  u s  consider  

. :hose n b n s  cons t ruc ted  b y  tn is  method end also sa t i s f y  t he  , 

fo l lowing condi t ions : 

I .  I f  n = l .  the  ve r tex  i s  a removable ver tex.  

t .  ff n=t ,  the mbn is a i(2. Choose either vertex a d  & t  

i t  a removaafe ve r tex .  

3. I f  n>=3, connect , t w o  s m a l l .  mbns S t  and S 2  o f  size 
' 

a n d  [n/23 respect ive ly  such that 

a. I f  i s  even, then add a pe r fec t  match ing  o e t w s  
< 



51 and S2. Choose one of .the removable ver t ices  

f rom S1 and S2 to  b e  t h e  removable v e r t e x  of t h e  

new mbn of size n. 

I f  n i s  o d d ,  then  add a pe r fec t  matching between 

sl\fthe removable v e r t e x  in sI7 and S2.' The 
j 

: , removable ve r tex  f rom S1 i s  designated to  b e  t h e  

removable ve r tex  o f  t h e  new mbn o f  size n. 

Let  G be  a 0-f t  mhn const ruc teb by Far leyfs 2-way sp l i t  anH 

sat is fy  the above condi t ion at each step o f  t h e  construct ion.  G 

k consJrur ter l  from two 0-f t  mbns S1 and S2 o f  size b/21 and  

b/2J respect ive ly ,  Le t  G' be  the  g r a p h  obta in f rom G b y  

delet ing t h e  removable ve r tex  v o f  G and i t s  inc ident  edges. 

For  n=2, the rernaininq g r a p h  G' is  s t i l l  a 0-f t  rnbn fo r  i t  has 

on ly  one ver tex .  

Assume tha t  the lemma is  t r u e  f o r  n<=k and consider  n=k+ l .  

Two cases : 

1.  Suppose k+1 is odd, Tne smaller m b n  S2 and t h e  edges 

tha t  connect the two mbns are  no t  affected b y  

removal o f  v. Consider the la rger  set S1. Condi t ion 3 

assures that  v i s  also the removable ve r tex  o f  S1 and S h 
has less than k vert ices. From o u r  assumption t h e  

A 

g r a p h  formed b y  de le t ing  v and i t s  inc ident  edges from 

51 i s  also an mbn. Hence, the  g r a p h  G' i s  an mbn. 

2 .  Suppose k + l  is even and the removable ve r tex  v i s  in 

51. 52 K net affected by Vre removal of  v. cons ide r  

the  set S1  that  contains t h e  removable ve r tex  

v. Conditior! 3 assures that  v i s  also the  removable 

v e r t e x  d 51 and S f  has tess than k vertices. from cur 

assumption the g r a p h  formed by delet ing v and i t s  

inciaert edges from 51 I S  also an mbn. Hence, the 



g r a p h  G' is an mbn. ' 
t 

_'. The lemma i s  t r u e  fo r  n=k+l. 

4 ,-. The lemma holds. 

I - f t  ?-way spt i t  fw odd n 

L i v e n  n s u c h  tha t  n i s  odd, an 1-ft mbn o f  size n can b e  cons t ruc ted  

as follows : 
- 

1, Par t i t ion  n ver t ices i n t o  two equal  sets S1, S2 and a s ingle 

ve r tex  w. 

2. Const ruc t  0- f t  mbns f o r  S~U{W'- and  d S 2 U $ w ~  . such  tha t  51, 

S2 are  also 0-ft mbns. Th is  can be  done by  'using Farley's 

2-way sp I i t  { lemma 4). 

P 

3. Number the  vert ices in ,S1 and S2. A d d  edges between 

v,ESl and ujiS2 for  i-1. .Ln/2], v j5S l  and uj+l.S2 for 

1 - 1 ,  vLn/2J and ul. Note tha t  t he  edges added 

form two disjoint per fec t  matchings from S1 t o  S2 .  

Theorem 5: The g r a p h  G const ruc ted by the 1-ft 2 - w a y s p l i t  

a lgor i thm f o r b o d d  n i s  a 1-f t  mbn. 

Proof :  w ~ t n o u t  loss o f  general i ty ,  assume that  the o r ig ina to r  

v i iS l .  Let S l V  be the  la rge r  set and cal l  i t  A. He can . , 
consicier the hrgn c cons is t ing  of  O-ft  mbns A and 52. I n  the 

i ft rs t  t ~ m  un t, vt calls u j+ l .  A f t e r  t h e  f i r s t  time u n i t ,  each 

rnbn has an informed vertex. S ta r t i ng  f rom time u n i t  two, each 

mbn Proadcasts internatly. This  takes frog2n1-1 time units. In 
7 - ' 4  

time u n t t  , ! q 2 c i : + l ,  conduct cal ls between vk and uk  fo r  k>j ,  



between vk a n d  u k + l  f o r  k<j, and between w a n d  u l .  The 

tota l  time r e q u i r e d  f o r  t h i s  ca l l ing  scheme i s  fiog2ni+l. ~ h u s ;  

the  time const ra in t  i s  not  violated. 
< 

F o r  the  ver t ices  in A, each has one ca l l ing  p a t h  wh ich  i s  

ob ta ined by broadcast ing  i n te rna l l y  and another  ca l l i ng  p a t h  

which i s  f rom v, to  Uj+l, ca l ls  w i th in  S2 a n d  from uk t o  v k  for 

k>j ,  o r  f rom u k + l  t o  v k  f o r  k<j,  o r  f rom u l  to  w. Simi lar ly ,  

each v e r t e x  in S2 has one ca l l ing  p a t h  which i s  f rom v, t o  u j + l  

a n d  cal ls w i t h i n  S2. Moreover, each also has a second ca l l ing  

p a t h  f rom cal ls w i th in  A a n d  t h e n  from vk t o  uk f o r  k>j, o r  

f rom v k  t o  u k + l  f o r  k<j,  o r  f rom w to ul. Clear ly ,  the two 

ca l l ing  pa ths  f o r  each v e r t e x  in A and S2 are d is jo int .  

Suppose w i s  the  or ig inator .  We can let  S~U{W) b e  t h e  l a rge r  

set. We c a n ' u s e  the  same broadcast ing scheme as descr ibed 

above fo r  t he  f i r s t  pog2n] t ime units.  In the last t ime un i t ,  

conduct  cal ls  between t h e  ver t ices  in S1 a n d  S2. Thus,  e v e r y  

ve r tex  except  the or ig ina tor  w has two ca l l i ng  paths. Hence, 

tne  g r a p h  G const ruc ted b y  t h e  1-ft 2-way sp l i t  f o r  o d d  n i s  a 

1-ft mbn. 

Theorem 6: The 1 - f t  mbns const ruc ted b y  the  I - f t  2-way s p l i t  

a lgor i thms g i ve  

e ( C )  <= rn121*/-tog2n1 + n/2.  
' 

- 
Proof: ~t must Z * F / ~ ? ! P P ~ ~ ~ / % / $  edges are needed ta 

cons t ruc t  the  two smaller 0-ft mbns o f  size rn/a. At most n 

edges are needed to connect v, to  u,, v j  to  u,+l, and Vn/2 to  

u l  fo r  j=l..n/2. k 

e ( G 1  <= fn/21*fjog2n/21 + n 

- 
<= ~ n l ? ! r i o q Z n ~  - 1 1  + n 



* .  

B 
i ~ l t h o u ~ h '  lemma 4 does no t  hold d i r e c t l y  f o r  0-f t  mbns cons t ruc ted  by 

\ t h e  5, 6, and  7-way spl i ts,  a similar resu l t  can be obta ined by adding 

a small number  o f  edges t o  t h e  0-f t  mbn. However, t h e  b o u n d  of e (G1 

\ for the r e s u l t i n g  I - f t  mbns wi l l  no t  be b e t t e r  than the  above graph.  
', 7 

3.3 1-ft Siq-way C- sp l i t  methud 

As ,we have seen in chapter 2, betier results can be obta ined by 

u s i n g  more small 0-f t  mbns t o  cons t ruc t  la rge 0-f t  mbns, I t  i s  n a t u r a l  

t o  th ink  tha t  t he  same idea may work  fo r  1-ft mDns. The fo l lowing is  a 

scheme based on the same idea. 

1-ft 6-way sp l i t  f o r  even n 

i f  n is  even and 

a 1-ft m b n  c b e  const ruc ted as follows : 2 
\ 

1. Par t i t i on  n ver t ices i n t o  6 sets S i  such tha t  

I , 2. Cons t ruc t  0-ft mbns w 
each Sj such that 

0 <= ( ~ i !  - /Bi l  <= 

3 .  A d d  edges to f o r m  minimum adjacency connect ions t o  connect 

the fo l lowing pa i r s  (81, 6 ,  ( ~ 6 ,  ~ 4 1 ,  (84, @ 2 ) ,  ( A 2 ,  

A 5 1 ,  (85, d3), and (A3 ,  A I ) .  

4. Add edges to  f o rm  pe r fec t  matching5 between St and S 2 ,  S j  



Each l ine rep resen ts  an even adjacency 
connect ion  b e t  ween the A i  's 

and  t h e  Bi's 

Figure 3-3: Cons t ruc t i ng  I - f t  mbns using 1-ft 6-way 'sp l i t  

and 54, and Sg and Sg. 

Theorem 7: The g r a p h  G const ruc ted by the 1-ft 6-way sp l i t  

f o r  even  n i s  a 1-ft mbn. 

Proof :  tJ 

or ig ina to r  

scheme : 

i thou t  loss o f  general i ty ,  we can assume, tha t  t h e  
1 

i s  v l f A 1 .  Consider the following broadcast ing  

1. In time u n i t  1, t h e  o r ig ina to r  v l  cal ls u l € B 1  s u c h  t h a t  

u l  is  also the f i r s t  v e r t e x  t h a t  v l  call4 when v l  s t a r t s  
'Y' t o  broadcast i n te rna t t y  w i th in  ST. Th is  i s  possible 

f rom theorems 6, 9, 12 and lemma 5 .in chap te r  2, a 
.i - 

v e r t e x  always s t a r t s  to  broadcast b y  cal l tng a v e r t e x  in 

the other  se t  of an even adjacency sptit. 

2 .  I-n t ime  unit 2 ,  v l  and  u1 cal l  elements v2GA2 and ~2582 



respect ive ly .  Th is  i s  possible because mere is  a perfect 

match ing between S t  and 52. 
1 

3. In time u n i t  3, conduct  calls between the fo l lowing p a i r s  

- \ : ( v ~ E A ~ .  ~ 3 f A 3 ) .  (u lEB1 ,  ugEt36), ( v z E A ~ ,  V ~ G A S ) ,  

and (u2€B2, uq€Bql. These calls a re  possible because 

they  are connected b y  minimum adjacency connections. 

4. In t ime u n i t  4, each mbn s ta r t s  to  broadcast  i n te rna l l y  

which takes ffog24-3 time uni ts .  No col l is ion w i l l  occur  

in S1 or S2 fw t h e i r  f i rs t  cal l  in broadcast ing  i n t e r n a l l y  

are between t h e  informed ver t ices  v l  and ul ,  a n d  v 2  

and  u2. 4 
. * 

5. In time unit frog24+1, conduct  calls between t h e  ve r t i ces  

o f  t h e  fol lowing pa i rs  : SI and S2, S3 and Sq, Sg and  

Sg. These cal ls are possible fo r  tnere are pe r fec t  

matchings between them. 

w" s: 
The time r e q u i r e d  fo r  t h i s  scheme i s  flog2nl+lt Thus. t h e  ' 

Z 
t ime const ra in t  is not  violated. 

f 

For the  ver t ices  in St ,  e has a calling p a t h  f rom 

broadcast ing internal ly ,  another  cal l ing from v 1 t o  v2ES2, cal ls  

wi th in iS2,  and  calfs between S1 and S2. 
+ 

For the  ver t ices  in 52 except  v2, each has a ca l l ing  p a t h  f rom 

v.1 to  v2, cal ls w i th in  S2 and another ca l l ing  p a t h  f rom cal ls 

w i t h i n  S1, cal ls  between S1 and ,&. For v2, i t  has a ca l l i ng  

p a t h  from v l  t o  v2 and another  Qalling p a t h  from v l  t o  u1, u l  

to u2, and u2 t o  v2. 

Clearly,  t he  two cal l ing pa ths  for  ver t i ces  in S1 and 52 are 

disjoint. Us ing  similar arguments, each v e r t e r  in S3, S4, 55, 

and Sg also has two d is jo int  ca l l ing  paths. H&e, G i s  a 1-ft 
H 

mbn. , 
& 



Thewem 8: The 1-ft mbn G cons t ruc ted  by the  1-f t  6-way 

sp l i t  f o r  even  n has 

.J e(G)  <= n I ~ f r o g 2 n l  - 1112 + 6 .  

Proof :  Le t  ni b e  the  number of edges f o r  each Si, and assume 

i h a t  t h e  Sj4s are const ruc ted by far leyts 2-way split. Each 

small 0 - f t  mbns r e q u i r e  at  most ni/2pog2nd edges. The to ta l  

. number of edges fo r  a l l  s i x  0-ft mbns i s  &(ni/2pog2nd). 
i= ! 

A t  most bf 121*6 edges are r e q u i r e d  to form mini  

connect ions b e t w k n  p a i r s  ( d l ,  B 6 ) .  ( A g ,  A q ) ,  (84, B2). (A2. 

A s ) ,  ( 6 5 ,  8 3 1 ,  'and f A 3 ,  A i l .  

A t  most n12 edges are  r e q u i r e d  to .form pe r fec t  matchings * 

The to ta l  number of edges 

As w i t h  t h e  1-ft 2-way sp l i t  fo r  even n, i f  n i s  odd, not al l  ver t i ces  

can pa r t i c ipa te  in the  calls at the last time un i t .  Thus, the 1-ft 6-way 

sp l i t  fo r  even n method cannot be used  for  odd n. The approach used 

in the I-ft 2-way spl i t  f o r  odd n i s  to  let e v e r y  ve r tex  except  t h e  

o r ig ina to r  par t ic ipa te  in cans during t h e  tast time urrit c c m p k i q  .the 

secgnd ca l l i ng  p a t h  fo r  eve ry  ver tex .  Another  approach i s  to make 

sure  tha t  one ve r tex  has two ca l l ing  paths  before the  last time un i t .  
* 

The remaining ver t ices can all complete the i r  second paths  during t h e  
- -  / 

last t ime unit, Tne fo l lowing s t r u c t u r e  i s  usefu l  in c o n s t r u c t i n g  



networks  in which the second approach can b e  used. 

+ 

Sink S t r u c t u r e  , - 
i 
k--3 

F igu re  3-4: Example o f  an s ink  s t r u c t u r e  

A s ink s t r u c t u r e  fo r  o d d  n such that  - 

c a h  be  const ruc ted as follows : 

Par t i t ion  n ver t ices i n t o  2 sets A, B such tha t  IA~=IsJ+I.  

Const ruc t  0-ft mbns fo r  A and B us ing Farley's 2-way spl i t .  

Le t  A be const ruc ted by mbns P i  and P2 w i t h  IP11=IP2(+1. i 

Let  0 b e  cons t ruc ted  oy mbns Q1 and Q2 wi th  / Q I ( = ( Q ~ ~ < Z ~ .  

Choose a vertex s in Pz, called the sink and add edges to  

cwrrrect 3 b e v e r y  w t e x  in 8. 

Add edges to  c o n s t r l ~ c t  two d is jo int  pe r fec t  matchinqs M i  

and M1 f rom B t o  ~ $ 5 1  such tha t  each vertex in 8 has at 

least one edge t h a t  i s  connected to PI. 



Lemma 9: A s ink  s t r u c t u r e  i s  a 1-ft mbn.- 

Proof: 2 cases : 

1. Assume that  the o r ig ina to r  is  '.in 01. In time unit 1, t he  

or ig ina tor  cal ls a v e r t e x  in P1 t h r o u g h  a pe r fec t  

matching (say MI). In time u n i t  2, ,Pi and Ql s t a r t  to  

broadcast in terna l ty  which takes rog2nf-2 time units.. 
a 

Since 1011<2k; at least one informed ver tex  must b e  id le 

at some time u n i t  during the  iq terna l  broadcast o f  01 .  

This idte ififOffRed v e r t e x  can cat1 the sink s w h i c h  i s  

not pa r t i c ipa t i ng  in any cal l  during th is  pe r iod  o f  time. 

In time unit pog2n), conduct  cal ls between tne  ver t ices  

in ( P i ,  P2) and (U1, U2). Thus, before the  last time 

uni t ,  t he  s ink s a l ready has two d is jo int  ca l l ing  paths. 
? 

The f i r s t  ca l l ing p&h i s  . f rom calls w i th in  dl and t o  

5. The secon8 ca l l i nq  p a t h  i s  from tne  or iq ina tor  t o  a 

v e r t e x  in P i ,  catts w i th in  Pi and ?% s. In t ime u n i t  
5 

Pog24+1, conduct cal ls be tweenhthe ver t ices in A\{!%] 

and B u s i n q  the  o the r  pe r fec t  matching ,' hl2. For 

ver t ices  in A\{s{, t h e y  have a cal l ing piath form the 

p r iq ina to r  to  a v e r t e x  in A and calls w i th in  A. They 

have another ca l l ing  p a t h  fr@n calls w i th in  B and then  

cal ls between B and ~ \ j s  . For vgr t ices in B ,  they  
6 

have a cal l ing p a t h  f rom broadcast ing  internal ly .  They , 

have another ca l l ing  p a t h  f rom the or ig ina tor  to a v e r t e x  

in A, calk within A a n d  then  calls between 8 and' 

A\{+ Hence, G i s  a 1-ft mDn. s&i lar ly.  we can use 

the  same arguments i f  t he  o r ig ina to r  i s  in e i ther  02 o r  

p 1  

!. Assume that the o r ig ina to r  v is  in P2. In time u n i t  1, 



t he  wigina4o-r calk a ver tex  in A u s i n g  an edge from a 

matching (say M i ) .  In time unit 2, A and B 
, - 

s t a r t  to broadcast in terna l ly  , . which takes Fog2n)-1 time 

units. In time unit fiog2ril+l, conduct calls between the 

vert ices in B and A\{") th rough  the per fec t  matching M2 

-and an edge connected to  the sink. Thus, every  ve r tex  

except the or ig inator  has two disjoint cal l ing paths. 

Hence, G i s  a 1-ft mbn. 

The s ink s t ruc tures have more edges than the l - f t  mbns const ructed 

b y  the l - f t  2-way spl i t  f 7 odd n. However, the s ink  s t r uc tu re  can b e  

incorporated i n  schemes'that use more than 2 small O-ft mbns to  g u i l d  
1 

r 
1-ft mons. The following scheme to.construct  l - f t  mbns for  odd n uses 

a s ink s t r uc tu re  as p a r t  of the bu i ld ing  blocks. The construct ion i s  

similar to  the one used in the 1-ft 6-way sp l i t  fo r  even n. The 

di f ference i s  that  S1 and S2 are replaced by a s ink s t ruc ture .  Ex t ra  

+ edges are then added to nforce' the f i r s t  informed ver tex  of A t o  be in 

PI whenever the or ig inator  is  not in A. 

.? 

l - f t  6-way sp l i t  fo r  odd n 

If  n i s  odd and n < 2k-1 and 

a Ir,ft mbn of  size n can be constructed as, follows : 

1. Par t i t ion n vert ices in to  6 sets Si as evenly as possible such 
. + 

that  

a. IS11 is  odd and ISl] < 2k-1. 

b. jS1l = IS21 + I .  

c. 1S31 = IS4[ and IS5( = /S61. 



2. Const ruc t  0-ft mbns w i th  even  adjacency sptits Ai, B i  for 

each Si, i=3..6, u s i n g  e i the r  2, 5, 6, o r  7-way sp l i ts  such  

tha t  

Const ruc t  a sink- gt-tyre fo r  S1 and S2 where S1 consists 

o f  P i ,  P2 and  S2 consists o f  01,  02. 

3. A d d  edges to connect the  ver t ices  in the fo l lowing p a i r s  

(A4, A 6 ) *  t 8 3 , '  B5) ,  (t36, P2), ( A 3 ,  P I ) ,  ( A S ,  Q1), (B4, 

2 ,  and  (86. P I )  such tha t  eve ry  v b r t e x  in one set i s  

connected to  at least 6ne v e r t e x  of t he  o the r  set: The 

reason to connect t he  p a i r  ( 6 6 ,  P i ) ,  is to  ' f o r c e V 1  to 

have the  f i r s t  in formed v e r t e x  in S1 whenever the  or ig ina tor  

is no t  in S1. 
T 

4. Add edges t o  form pe r fec t  matchings between the  pa i r s  ( 5 3 .  

S41, and (S5. 5 6 ) -  

Theorem 10: The g r a p h  G=(V, E) const ruc ted b y  the 1-f t  6- 

w a y  sp l i t  f o r  odd  n is a 1-ft mbn. 

Proof: Le tas  b e  the  s ink in t h F r s i n k  s t r u c t u r e  fo r  S1 and S2. 

Us ing  similar arguments to those used in the  proof  of theorem 
C 

7, t h e  ver t ices  in v\'s:. al l  have two d is jo int  ca l l ing  paths.  

Moreover, u s i n g  similar arguments to  those used in the  proof  o f  

lemma 9, t he  s ink s also has two d is jo int  ca l l ing  paths. Hence, 

G is  a 1-ft rnbn. 

Theorem 11: The I - f t  m-bn G const ruc ted by the 1-ft h a y  

spl i t  f o r  odd n has 

Proof: A t  n o . ~ t ' ~ , ( n ~ i 2 ~ o ~ 2 n ~ )  - = n / i ' ( ~ o c ~ ~ n l  - 3 )  edges a re  
is 1 



< needed  to  c o n s t r u c t  0- f t  mbns f o r  the Sits. 

At most  b/61*2 edges  are needed  to f o r m  t h e  p e r f e c t  m a t c h i n g  

b e t w e e n  p a i r s  S3 and S4, and  Sg and Sf,. 

A t  most l n / 6 i *3  edges a re  needed to  f o r m  the t w o  p e r f e c t  

match ings  and  t h e  edqes  connec t i ng  to  t n e  s i nk  in t h e  s i nk  

structure cmslsti-ng ~f S j  and 52, 

Tne  to ta l  numbe r  o f  edges  i s  

e ( G )  <= n / 2 ( P o g 2 n j  - 3 )  + f n / 1 q f 7  + [n/61*2 + Ln/6J*3 

<= n /2Pog2n i  - 3n!2 + 17nI12 + 9 

<= n / 2 n o q 2 n l  - n / 1 2  + 9 

3 . i  Summary 

F o i l r  d i f f e r e n t  m e t n o d s  to  c o n s t r u c t  1- f t  rnbns a re  p resen ted .  Tne 

m e t h o d s  g r e a t l y  imp rove  tho u p p e r  bound f o r  B l  ( n ) .  In fact, t he  new 

o,?:_rnd i s  a p p r o x i m a t e l y  one h a l f  o f ' t h e  old bound.  

' o r  n i s  even ,  n  >=  12  and 21092nJ < n <= 3*2(nog2"1 - 2  1, 

d l ! n )  <= n /2 f iog2n1  - n i2 + 6. 



Chapter  4 
'r- 

3- C 
Algor i thms to  A p p r o x ~ M e  2-ft Mbgs 

AS we have seen i n  chapter  3, f o r  I - f t  mbns e v e r y  ve r tex  must have 

two edge d is jo in t  ca l l ing paths. Similar ly,  f o r  2-ft mbns e v e r y  v e r t e x  
\ 

rnus t have th ree edge dis jo int  ca l l ing  paths. Furthe,rmore, t h e  approach 

u w d  in c o n s t r ~ t t n g  I - f t  9bns  r m  also be exte?lded to cons t ruc t  2-f t  

mPns. That is, w e  can use 0-ft rnons as buiidinq blocks to  cons t ruc t  

2- f t  mbns. Us ing  similar b roadcast ing  schemes as in 1-f t  mbns, we can 

use T2(n ) -2  time u ~ i t s  to cons t ruc t  one cal l ing p a t h  to  e v e r y  ve r tex  

and use the  las t  t w o  time u n i t s  t o  complete two more edge d is jo in t  

ca l l ing  pa ths  to  e v e r y  ver tex.  The fol lowing methods to cons t ruc t  2-ft 

mbns are based o n  Wis idea. 

4.1 2-ft Four-way spl i t  f o r  n mod 4 = 0 
-B 

I f  n mod 4 = 0, a 2-ft m b n  can b e  const ruc ted as follows : 

1. Pa r t i t i on  n ver t ices  i n t o  4 sets Si such tha t  

n / 4  = ISll = IS21 = IS31 = I % / .  

2. Cons t ruc t  0-f t  rnons fo r  each Si us ing  any method. 

3. Add edges to f o r m  t w o  edge d is jo int  rnatchings between the  

ver t ices  o f  each of the pa i r s  (S1, S 2 f ,  (53, S4), (51, S3I8 

a n d  (S2, '54) .  

Theorem 1 :  T n e  q r a p n  G const ruc ted b y  the 2-ft 4 -way  sp l i t  



E a c h  l ine represents  an even adjacency . 
connect ion between the two connected ,sets 

F i g u r e  4-1: c o n s t r u c t i n g  2-ft mbns us ing  2-ft 4-way 
sp l i t  f o r  n d iv is ib le  o y  4 

f o r  n mod 4=0, i s  a 2-ft mbn. 

Proof :  Without loss of general i ty ,  assume t h a t -  the  or ig ina tor  

in S1. Consider the  follow'ing broadcast ing  scheme : 

In time u n i t  1, the  o r ig ina to r  v l  calls a ve r tex  v2 in S2. 

,4br 
Y 

In t ime u n i t  2 ,  v l  cal ls v3 in S3 and' V 2  calls v q  in Sq. 

, 
/ 

A f t e r  2 time uni ts ,  each Si has an i n f o r m e w e r t e x .  

They can broadcast i n te rna l l y  during the nex t  pog2n]-2 

time un i ts .  

In time u n i t  'pog2nl+l,  conduct  cal ls between the  ver t ices  

f rom the pa i r s  (S1, SZ) ,  and (S3, Sq) t h r o u g h  the  o the r  

p e r f e c t  rnatchings between them. 



A s ingle l ine  denotes tha t  a ve r tex  in 
one set cal ls a v e r t e x  in the o ther  set 

A double l ine denotes that  each ve r tex  in 
one set calls a d i s t i nc t  v e r t e x  in the o ther  set 

F i g u r e  4-2: The th ree  d is jo in t  ca l l ing  pa ths  fo r  the 
ve r t i ces  in the  Si's in 2-ft mDns 

cons t ruc ted  b y  the  2-ft 4-way sptit,methd 



5, In t ime u n i t  pqn7+2, conduct  cafls between the ver t ices  

f rom the  pa i r s  (S1, S31, and  (Sl, 541 t h r o u g h  the o ther  

pe r fec t  matchings Detween them. 

d' 

Consider the  ver t ices in S2 .  They have one calling path  f rom , 

the o r ig ina to r  v l  to  v2 arid calls w i t h i n  52. They have another 

+ p a t h  from calls wi th in  S1 and cal ls between the ver t ices  in S1 

and S 2  t h r o u g n  a d i f f e ren t  matching. The i r  t h i r d  ca l l ing  p a t h  

i s  from v l  to v3 in 53, cal ls w i t h i n  S3, cal ls oetween the  

ver t ices  in 53 afid 54, and cal ls b e t w g i n  ver t ices  in 6a and S2 .  a The three [ling paths  fo r  each ver t ices  in S2 are c lear ly  edge 

Y dis jo int .  Thus, every  ve r tex  in S2 has three edge dis jo int  

0 caUing paths. 

, R e f e r r i n g  to f i gu re  4-2 and u s i n g  similar arguments as fo r  
1 

ver t i ces  in 52, every  ve r tex  in each Si has th ree  d is jo int  

calling paths.  Thus, C i s  a 2-ft mbn. 

Theorem 2.: The 2-ft mDn C cons t ruc ted  by  the  2-ft 4-way 

sp l i t  fo r  n mod 4=U has 

A 

Proof :  A t  most Z (n; /2pog2nd) edges are needed to  cons t ruc t  . 
I= I 

O - f t  mbns  fo r  each Sj* 
./ - 
A t  most n f4 *8  edges are  needed to  fo rm pe r fec t  matchings 

The tota l  number of -edges i s  -T-- 

I 



Since eve ry  ve r tex  has to pa r t i c ipa te  in the  last two ca l  

way  sp l i t  f o r  n d iv is ib le  by 4 cannot be used i f  n 

However, as we have seen in chapter  3, w e  can use sink 

Is, t h e  2-ft 4- .. 
mod 4 > 0. 

s t r u c t u r e s  t o  

overcome th is  d i f f i cu l t y .  The fol lowing sections descr ibe methods t o  - 
cons t ruc t  2-ft mbns for  n not  d i v i s i ~ l e  b y  4, u s i n g  s ink  s t r u c t u r e s  as 

p a r t  o f  the o u i l d i n q  blocks. 

4.2 2-ft Four-way sp l i t  fo r  n mod 8 = 1 
- 

The const ruc t ion  o f  2-f t  mbns fo r  n mod 8 = 1 i s  v e r y  simi lar t o  t h e  { 

one used in the 2-ft $-way s p l i t  method fo r  n mod 4 = 0. The , , . 
di f fe rence i s  tha t  t he  connect ion between S1 and S2 is  replaced b y  a 

s ink  s t r u c t u r e  w i th  S1 be ing  the b r g e r  set. The connect ion between 

S1 and  S3 i s  also replaced b y  a s ink  s t r u c t u r e  w i th  S t  be ing  t h e  l a rge r  

set and  hav ing  a d i f f e r e n t  s ink  f rom the prev ious  s ink s t ruc tu re .  The 

t w o  rink sl ructut -es ensure  tha t  the two s inks s l  and s2 have two edg  

d is jo in t  ca l l ing pa ths  in the  f i r s t  Tg (n )  time uni ts .  In the  n e x t  t o  l a s i  

t ime un i t ,  e v e r y  v e r t e x  except s l  par t ic ipates in the  calfs. Simi lar ly ,  

in the  last time u n i t ,  eve ry  v e r t e x  except s2 par t ic ipates in the  calls. 

Thus,  e v e r y  v e r t e x  can have th ree  cal l ing paths. 

2-ft 4-way sp l i t  f o r  n mod 8 = 1 

I f  n mod 8 = 1 and n >= 16, a 2-f t  mon can b e  const ruc ted as fol lows 

! 
'I, 

- 

1. Par t i t ion  n ver t ices  in to  4 sets Si such tha t  

a. / S ~ I  i s  even 

a. . Is2[ = ls3j = IS4]. 

c.. jsl i  = j n / 4 J  

d .  i S 1 j  = IS2/ - 1. 



2. Const ruc t  O ~ f t  mbns fo r  S4 u s i n g  any method. C o n s t r u c t ,  

s ink  s t r u c t u r e s  fo r  S1 a n d  52, S t  and S3 h a v i n g  d i f f e r e n t  
- s inks  s l  and s2 respect ive ly .  

3. A d d  edges to  form' two edge dis jo int  matchings between t h e  

Theorem 3: The graph G cons t ruc ted  by the 2-ft 4-way s p l i t  

fo r  .n mod 8 = 1 is a 2- f t  mbn. 

Proof:  Us ing the Sam- broadcast scheme and the  same 

arguments t o  those used in the  proof  of theorem 1, e v e r y  'gi, 

v e r t e x  except  the two s inks  has three edge d is jo in t  ca l l ing  

paths. Us ing similar arguments to those used in the  p r o o f  o f  

lemma 9 of chapter  3, t he  two s inks  have two edge d is jo in t  

ca l l ing  p a t h s  in the f i r s t  Tu (n )  time units.  Fur thermore,  each 

s ink  par t ic ipates in one o f  t h e  calls in the  last two time u n i t s  

which g ives  them another  ca l l ing  path. Hence, the  two  s inks  

also have th ree edge d is jo in t  ca l l ing  paths. Thus, C i s  a 2-ft 
t i 

mhn. 

Theorem 4:  Tne 2-ft rn by fiSe 2-ft 8-way 
* 

sp l i t  for n mod 8 = 1 has 

\ 
e ( G 1  <= n/2frog2nf + 3 n / 2 .  

Proof: The number o f  edges in C i s  equal to the  number of 

e d ~ e s  in a 2 - f t  mor! r o n s t r t r c t e d  by  the 7-ff d-way split  method* 

A t  most Ln/4j*2 edges are needed to connect tne sinks to 

v e r t i c e s  in 52 and 33. \ 



4.3 2-ft Four-way sp l i t  fw n mod 4 = 2 

The const ruc t ion  o f  2-ft mbns f o r  n mod 4 = 2 i s  v e r y  simi lar t o  t h e  

o n e  used in t h e  2-ft 4-r& spli< method for  n mod 4 =0. The 
& 

difference i s  t i d  53 and 52, S3 and Sq are replaced by sink s t r u c t u r e s  

w i t h  S2 and Sq b e i n g  the, 1arge.r set. The two s ink  s t r u c t u r e s  ensure  

tha t  t h e  . t w o  s inks  have two edge d y o i n t  ca l l 'ng  pa ths  ,in the  f i r s t  4 
T u f n )  t ime units. In the last t w o  t ime units,  e v e r y  v e r t e x  except  t h e  

1 

s i n k s  par t ic ipa te  in t w o  calls b u t  t h e  two s inks on ly  pa r t i c ipa te  in one 

of the calls in t h e  idst two t ime units.  Thus every v e r t e x  can have  

th ree  catling paths. 
I 

2-ft 4-way spl i t  f o r  n mod 4 = 2 
Z 

I f  n mod 4 = 2 and n < 2k - 2  and n >= 8 ,  a 2-ft mbn can be 

const ructed  as follows : 

i - 
1. ?ar t i t ion  n vertices into 4 sets 5;  such that 

a. I S ~ ~ Y S  even. 4 

2 .  Construcf sink sTructures for  f l '  and f 2 ,  f 3 and 5,3. 
w 

5 ,  4% edges to  two erfqe d t s j o ~ n t  matchtngs b e t w e n  the 

G a r s  [ S f ,  531, and I S 2 ,  S4 t ,  



55 
* 

Theorem 5: The g r a p h  G cons t ruc ted  by the 2-ft 4-way spl i t  

f o r  n mod 4 = 2 ,  is a 2-ft  mbn. 

Proof: U s i n g  simi lar,  arguments t o  those used in t h e  p r o o f  o f  

theorem 3 ,  G is  a 2-ft rnbn. b 

Theorem 6 :  The 2-f t  rnbn G cons t ruc ted  by t he  2-f t  4-way 

spl i t  f o r  n mod 4 = 2 has 

e [ G )  <= n/2[log2nf + 3n12.  

Proof :  The number o f  edges in 'G is equal  to  t he  number o f  

edges in a 2 - f t  m5n cons t ruc ted  by  the 2- f t  4-way sp l i t  method 

for n mod 4 = 0 p l u s  the  e x t r a  edges added, 

A t  most Ln/41*2 edges a re  needed t o  connect  the  ve r t i ces  in St 

and 53 t o  t he i r  s inks.  

The tota l  numoer  of edges is  

e ( G )  <= n / 2 ~ o g 2 n l  + n + Ln/4ft2 . 

4.4 2 - f t  Four -way sp l i t  for n mod R = 3 

The construction of 2-f!  rnhns for n mod 8- 3 is exactly the same as 

' ld; mfferenre 1s LhaL 51 is the smal ler  set in tne  sink s t r u c t u r e s  

z.;r;sts!inq of 51 a r d  52 ,  51 and 5 3  i n s t e a d  of the, farqer  set. Let  S1 



the s ink in S3 giving two edge dis jo int  ' c a ~ i n g  paths to the t w o  sinks in 

the  f i r s t  pog2nl time units.  In"  the  last two time un i ts ,  e v e r y  v e r t e x  

except  t h e  two s i n k s  par t ic ipa te  irj two calls and each sinkp&articipates 

in only one call. Hence, e v e r y '  ve r tex  can have th ree  edge d is jo in t  

ca l l ing paths.  

' 

2-ft 4-way sp l i t  f o r  n mod 8 = 3 

I f  n mod 8 = , 3 ,  n >= 16, and n # 2k -5, a  2-ft mbn can b e  

const ruc ted as fol lows : 
T 

1. Par t i t i on  n ver t ices  i n to  4 sets Si such tha t  

2 .  Cons t ruc t  a sink s t r u c t u r e  fo r  51- a n d  S i ,  S1 and S3 such  

tha t  S1 i s  the smatter set in the s ink s t ruc tu res .  Le t  52 h e  

cons t ruc ted  b y ,  two 0-f t  m b n s  P I ,  P2 such tha t  

Le t  S3 be const ruc ted by two 0-ft mbns Fl, F2 such  tha t  
. . 

J F ~ } .  = + I .  

4 

3. A d d  edge's to form two .edge d is jo in i  matchings between t h e  

p a i r  (j2, Sq),  and  ( S 3 ,  Sq) such that  each v e r t e x  in S4 i s  

connected to a t  teast one v e r t e  in P I  and F1. Th is  i s  t o  7 
ensure tnat the f i r s t  in formed v e r t e x  i s  in PI if the  , 

w i g i n a t o r  is not in S2 and the  f i r s t  in fo rmed v e r t e x  is in F 1 

i f  the o r ig ina to r  i s  not  in 53. 

Tneclrem 7 :  T h e  qrmh C const ruc ted by the 2- f t  &-way  spl i t  

:'3r. 7 T Q R  3 = j .  2s a 2 - f t  n n n .  



Proof :  Us ing  simiiar arguments t o  those used iq t h e  p r o o f  of t - 

theorem 3, G i s  a 2-ft mDn. J -. 

Theorem 8: The 2-ft mbn G const ruc ted by t he  2-ft 8-way 

sp l i t  f o r  n mod 8 = 3 has 

Proof:  The number of edges in G i s  equal to  the  number  of 

in a 2-ft mbn cons t ruc ted  by the 2-ft 4-way sp l i t  method 

f o r  edge$ n od 4 = 0 plus t h e  e x t r a  edges added. 
\ 

1 

At  most Ln/g*2 edges e r e  needed to  connect' the ve r t i ces  in 

S2, and S3 to the i r  sinks. 

The total  number of e Yes is 
e(G)  <= n 1 2 ~ o g 2 4  + n + b/4_)*2 

<= n12pq2n1 + n + n12 

As w e  have seen in prev ious  chapters, we can use more 0- f t  mbns as 

our building blocks to cons t ruc t  1-f t  mbns. The fo l lowing methods t o  

coAst ruc t  2-ft mbns use e igh t  0-f t  mbns to const ruc t  2-ft mbns ins tead 

o f  four .  



4.5 2-ft Eight-way sp l i t  f o r  n mod 4 = 0 

Each line represents an even adjacency 
connection between the connected sets 

Figure 4-3: Const ruct ing 2-ft mbns us ing  2-ft 8-way 
spl i t  for  n divisible b y  4 

I f  n ?nod 4 = 0, a 2-ft rnbn can be constructed as follows : 

1. Part i t ion n vert ices in to  8 sets Si such that 
' . 

Inls_] <= IS11 = ]s21 = IS31 = ISQ] = b/q, and 

Ln/8j <= Is41 = ls51 = 1s7/ = <= mltq. 

P 
2. Constf$kt 0-ft mbns for each Si using any method. 

3. Add edges to  form 

vertices o f  each of  

and S 0 ) .  

* .  

4. Add edges to form perfect  matchings between the vert ices of 

e x h  of the pairs fS1 .  5 3 1 .  { S Z .  S41, f S 5 ~  S7). and ( % *  
581. 



Theorem 9: The graph G cons t ruc ted  by the  2-f t  8-way s p l i t  

f o r  n mod 4=0, i s  a 2-ft mbn. 

i' - 
Proof: W i t h o u f l o s s  o f  general i ty ,  assume that  the  o r ig ina to r  

v l  i s  in S1. Consider the  fol lowing broadcast ing scheme : 

1. In time u n i t  1, t h e  or ig ina tor  v l  cal ls a e r t e x  v2 in S2. i 
2. In time u n i t  2, v calls v8 in Sg and V2  calls v g  in Sg. J, 
3. in time u n i t  3, v l  cal ls vg in S5, V 2  catls v7 in S7, v g  

cal ls  v3 in S3, and  vg calls v q  in Sq. 

0 
3. A f t e r  3 ti= un i ts ,  each Sj has an i n f w m e d  ver tex .  

They can broadcast i n te rna l l y  during tne next  pog2n1-3 

t ime uni ts .  

5. in  time u n i t  flog2nl+1, conduct  calls between the  ver t ices  

f r om the p a i r s  (S1,  SZ) ,  ( 5 3 ,  S4), ( 5 5 ,  S7L and (S6, 

5 8 )  t h r o u q h  the  per fec t  matchings between them. For 

the  p a i r  (S t ,  S2) use the pe r fec t  matching tha t  has no t  

been used in time u n i t  1. 

6. In time u n i t  pog2ni+2, conduct  calls oetween the ver t ices  

f r o m  the p a i r s  is,, 531, i S 2 ,  541, ( 5 5 ,  561, and f S 7 ,  

5 8 )  through t h e  perfect rnatct-rtrrgs between them. 

Consider the ver t ices in Sg. They have one ca l l ing  p a t h  f rom 

rne  or ig ina tor  v l  ic vg andC&l l s  wi th in  55. They have another 

~ a t t - !  f r o m  ~1 t~ v z  in 52,, v2 to v7 in 57 ,  cal is w i t h i n  S7 and 
< .  



A s ing le  l ine r e p r e s e n t s  t h a t  a  v e r t e x  in 
one set cal ls a  v e r t e x  in t h e  o t h e r  set  

A doub le  l ine represent-s  t ha t  e v e r y  v e r t e x  in 
one set cal ls a  d i s t i n c t  v e r t e x  in the  o t h e r  set 

F i g u r e  4-4: The  t h r e e  d i s j o i n t  c a l l i n g  p a t h s  f o r  t h e  
v e r t i c e s  in the  Si's in 2-ft  mbns ', 

cons t ruc ted  by  the  2-f t  8-way s p l i t  method  



calls between the ve r t i ces  in S7 a n d  Sg. T h e i r  third c a l l i n g  d 

path  i s  f r o m  v l  t o  v8 in Sg,  ca l l s  w i t h i n  S g ,  cal ls  between t h e  

v e r t i c e s  in Sg and Sg, and ca l l s  be tween v e r t i c e s  in S g  a n d  Sg. 

The t h r e e  cal l inq p a t h s  f o r  each v e r t i c e s  in S 5  a r e  c l e a r l y  e d g e  

d i s j o i n t .  Thus ,  e v e r y  v e r t e x  in Sg has t h r e e  edge  d i s j o i n t  

c a l l i n g  pa ths .  

K e f e r r i n g  to  f t g u r e  4-4 and {>s ing stmi lar  a rqumen ts  as f o r  

v e r t l c e s  in 55, e v e r y  , i e r t ex  in e a c h  Si has t h r e e  d i s j o i n t  3, 
-2 

ca l l i nq  p a t h s .  Tnus ,  L IS  a 2 - f t  m b v .  



S!nce e v e r v  v e r t e x  has  to p a r t l c f p a t e  ~ r t  the  cal ls In the  last t w o  time 

L I R I ~ S ,  the  2 - f !  8-way sptrt f o r  n d f w t s r ~ i e  by  4 cannot  be ~ s e c l ~ i f - n  m d  

4 > 0. S i ~ ~ l a r l < ,  we can d5e sink s t r u c t u r e s  to  overcome thls  

d ~ f f l c u l t y .  Tne  (oilawirla s e c t ~ o n s  lescrrbe methods to construct 2 - f t  

m 9 n 5  fo r  ri ? ~ t  i7r~t~t9 ie  'q 4 ,  u~rnrj  5ink S?I,ctzreS as par?  o f  tve 

3t-I !2{pc *> !QCKS.  



Construct 0-ft mbns for each Si, i= l . , 5  using any method. 

construct a 0-ft mbn for Sg using the 2-way split and 

construct a sink structure for S7, S8.  . Let 58 be 

constructed by two 0-ft mbns PI, ~2 such that 

p1t = fP2t + I * ,  
LJ 

Choose a vertex w in P2 other than the sink s in the sink 
1 

structure. 

< 4dd edges to form perfect matchtngs Setweep the palrs (51,  

S j J .  ( 5 2 ,  %I, ( 5 5 .  S71, and ( 5 6 ,  S g y h  w - ) .  
5 

A d d  edqes to connect the followlag p a r s  : (S1 ,  Sjj, ( S t ,  

5 6 l ,  tS2 .  5-77, ( S t ,  561, ( S 3 ,  561, ( 5 3 ,  S71, 154, 5 5 ) .  and 

f Sy,  Saj such that every vertex tn one set 1s connected to 

at least one ver tex  of tn* other set. 

Arid edges to  connect the vertices In 56 to w. These edges 

w i l l  D e  u h d  to  qtve r two dfsjotnt c a l i ~ n g  paths in the ftrst 

T g f n  ) calls. 

A d d  edges to connect the vertices in Pi to t n e  v e r t i c ~  in 

S1 and 54 which are not connected to any vertices' in PI. 
S 

T h e s e  edges w i l l  be used to 'force' the first informed vertex 
..i 

fn % t o w  tFt .tf +f  if Rd in k* 

Theorem 11: The graph C constructed by the 2-ft %-way split 

, for n mod 4 = 1 ,  i s  a 2 - f t  mbn.  

Proof: Using 
isame 

broadcasti scheme and the same 



arguments to those used in the proof  of  theorem 9, eve ry  

\ver tex  except the two sinks has three edge disjoint ca l l ing 
9 

- paths. .Us ing similar arguments to those used in the proof of 

lemma 9 of chapter 3, the t w o  s inks have t w o  edge disjoint 

ca l i inq paths in the f i r s t  To(n)  time units. Furthermore. each -- 
sink part icipates in m e  of the calls in the last t w o  time un i t s  

w h i c h  gives them *other caft ing path. Hence, the t w o  sinks 

also have three edge dfsjoint cal l ing paths, ~ h u s .  C i s  a 2-ft 

Theorem 12 :  The 2-f t  m b n  C constructed b y  the 2- f t  8-way 

spl i t  for n mod 4 = 1 has 

Proof:  The nunoer of edges rn G rs equal to  the nurnoer of 

edges rn a 2-f t  mDn constructea. ~y the 2 - f t -  8-way solit method 

for r: mon L( = 0 pius t he  ex t ra  edges sdde?. 

4 t  most ;rrf8_!*2 edges are needed to connect t k  s t n k s  t o  . 

v e r t c e s  rn 56 ana 57. 

At m o s t  ;n 1167'2 edges are needed to connect the vert ices 

? I  lo vertices that are not connected to  !n 51 and s4. 
I 

The total number of edges i s  



The construclion of 2-ft mbns for n mod- 4 = 2 IS very, similar to the 

one used in the 2-ft +way split method for n mod 4 =0. The 

difference i s  that S1 and. 52, S3 and S4 are replaced by sink structures 

with S2 .and 54 being the larger set. Extra edges are then added to 

' forcea the first informed vertex in 52 to be in the iarqer mbn that 

constitutes 52, and t k e  f i rs t  informed vertex in & lo De in the larger 

m n n  tnat m s t i t u t e s  The two. sink structures ensure that  the two 

s inks  have t w o  e d g e  disjotnt caiting patns in the f i r s t  T ~ f n f  time units. 

In the last t w o  time units ,  every ver tex  except the sinks participates in 

t w o  cal!s out tbte two  s inks only participate in one ,of the calls in the 

lart t w o  irme u n i t s ,  TRUS every  vertex can have three calling paths. 

2-ft  8-way spfit f o r  n mod 4 =. 2 

I f  n mod 4 = 2 ,  >= 8, and n * 2 k  - 2 .  a 2-ft mbn can D e  constructed 

I .  dart~trnn n gertrces rnto 8 sets St such that 

# 
2 .  Construct 0-mbns for ebth 5 ,  i=5..8 using any method. 

I 

Construct a sink structure for S1 and 52, S3 and 54, L e t  

51 be constructed b y  t w o  0-Ft m b n s  PI, P2 such t R a  
F 

Let Su be constructed b y  two  0-ft mbns F1, F2 such that 

1 
i. 466 edges t o  form two edge disjoint matchings Detween the 



Add edges to form perfect matchings between the pairs (S t ,  

531, f52. Ssf.  f S s l  S7), and (S6, S8l- 

~ d d  edges to cunnect the pairs : fS1. SS), (51,  S8). fS2. 

57) .  [Sl, 56). (53, S61, (53, S71, (So ,  S5) .  and (54, S8) 

s ~ h  that every vertex in one set is connected to- at least 

one vertex of the other set. - 
A d d  edges to connect the vertices in 1'1 to the vertnes in 

Sg and S7 which w e  not connected to any vertices in PI- 

edges H R  Be =e&f Fe -* * - +- - 
In S2 to he in P I  i f  the originator is not in 52. Similarly, 

add edges to connect the vertices in to the vertices in S5 

and Sg which are not connected to any vertices in 61. 

These e w e s  w i l l  be used to .forces the f i rs t  informed vertex 

in Sll to ole in F t  if the originator is not' in Sq. 

T h e e m  13: The graph C constructed by the 2 - f t  &way splii 
I 

for n-od O = 2 ,  is a 2-f t  mbn. 

Proof: tisiny the similar argument,s, to those used in t h e  prclof 

of theorem 1 1 ,  C' is a 2 - f t  mbn. 

Theorem 14: The 2-ft mbn G constructed by the 2-ft 8-way 
Ir 

split for n mod 4 = 2 has - 
e f C )  <= n f  lfiogtnl + 3n6t + 19, 

Proof: The number of edges in G is equal to the numDer of 

YY me 2-ft 8-way split method edges in a 2-ft mbn cmstru  

for n m o d  4 = O plus the extra edges h e d .  

At most rn1161'2 edges are needed to connect the vertices in 



67 
I 

PI to verlkes that are mt connected lo P1 i n  56 and 57,  and 

at most fn/16If2 e&es arr needed to connect the vertices in F) 

to vertices that are not connected to F t  in S5 and Sg. 
C 

At  most b/g*2 edges are needed to connect the vertices in 
f# 

and 3 3  to their sinks. P\ 
t 

The total nuwer of edges i s  

Since fniq <= tn + 6 f f S .  

11.8 E f t  Eight-way sptit for n mod ri = 3 

af-+strMt 51. 5 1 ,  5 3 .  and & in L 3  sanr way as we have cunstructtd 

t h e m  in the 2-ft 8-way split for n mod 4 = 2 .  Similarly,  we can 

The constrwtion of 2-ft  mns for n mod 4 = 3 can be done by A - 
cmmmirsg the rtmcmres esee iR &-4+ f# ;R - 4  = 

2 ,  and for n m o d  4 = 1. ue can partition n vertices tnto 8 sets Sj and 

construct 55, 56 ,  S7,  and 58 in the s a m e  way as w e  have constrwted 

them in the 2-f t  &way spl i t  for n mod 4 = 1. The size of the combi,ned 

graph C w i l l  have a remainder of 3 when divide by  4. furthermore, w e  

can use the same bmxkaSttt%g scheme as in thecvecn 11 and give every 

vertex three edge d i s p n t  catling paths, 

2-0 *-way qmt for rl l?$u&*= 3 - 

I f  n m o d  4 = 3 ,  n >= 3 1 ,  n # 2 j  - 5 ,  and n $ 2 ;  -9, a 2-ft mbn can be 

t .  Partrtion n vertices into 8 sets S i  as evenly a5 possible such 



2.  Construct a sink structure for St and s:. S j  and Sq, Let  

S l  be constructed by  two 0-ft .mns PI, ? Z  sbch that 

Let 54  be constructed by .two O-ft mbns Fl, F2 such that 

Construct a sink structure tbr Ss and 56 which hsAonfy one 
, j  

matcning between them and choose a vdrtex w 'wnich is  

differe-from the s ink  in the previous sink structure in M2. , 

4. A d d  edqes to form two edge disjoint matcninq~ between the 

5. Add edges, to f w m  perfect matchings betwee? the pairs fS1, 

such that every  vertex in o m  set is  connected to a t ,  least - 

one vertex of the other set. 



7. Add edges to connect t h e  vertices in PI to the  vertices in 
,- - 

Sg wzd 57 w h i c h  are not connected to any vertices in PI*. 

These edges wil t  be used 

in S2 to be in PI if the 

add edges to connect tne 

to @force8 the first informed vertex 

originator is  not in S2.. Simi lar ly ,  

vertices in F1 to the vertices in Sg 

and 58 which are not connected -to any vertices in €1, and 

add edges to connect the vertices in MI to the vertices in SF 

and S4 which we not connected to any vertices in 461. 

Theorem 15: The graph C constructed b y  the 2-ft 8-way split 
* 

for n mod 4=3, is a 2-'ft mbn. 

Proof: Using similar arguments to. those used in the proof  of 

theorem 11,  f; is a 2-ft rnbn. 

Theorem .16: The 2-ft mbn C constructed by the 2-ft 8-way 

spfit for n mod it = 3 has 

Proof: The numner of edqes in G i s  equal to the number of 

edges in a 2-ft mbn constructed by the- 2-ft 8-way split method 

for n mud 4 = 0 plus the e x t r a  edges added. 
- 

At m e ?  r r r d  161*2 edges we needed to connect the vertices in 

P I  to vertices that are not connected to PI In Sg and S f ,  and 

at most r n / l q f 2  edges ace needed to connect the vertices in F1 , 

to verttces that w e  n o t  connected to F )  rn 55 and 58 ,  

Stmtlarly, at m o s t  edges are needed to .cmmet * 
mtkces m MI LQ u e r W  & h a  are not connected to MI In 51 

and S4. 

51. 5 3 ,  56, and 57 to their sinks. 



Since b14 <= fn  + 5118, 

,'. ef G )  <= n/2pw2n7 + h +,  18.5 + 3n18 + n/2  

<= n/2wq2nf + 15n/8 + -18.5. 
f 

, . 

4'. 9 'Summary 

Eight. different methods to construct 2-ft rnbns are presented. The 

previous methods. 

F o r ' n  Xud 4 = 0 ,  

For n m o d  8 =  3 or  n mod 4 = 2 ,  n # 2 i - 2 ,  n # 21-5, and n >= 16 ,  

For n mod 8 = 5, n > = ' 3 2  and n f z i , -  3 ,  

-- 

Is tnterOsting to note that.4ttk 2-ft 8-ray split f a  n mod 4 = 3 does 
e. 

work for n = 21- 1 because the minimum tine T2 (n) for n = 2'-1 is  equal 

for  r7 = 2 ' - 1 .  t--tnatiy, i t  r t ~ y  .be poss~bfe to use other splits and other 
\ 



and n=2i-9. These approaches have not been investigated. ' 



Minimum broadcast g r a p h s  represent  the cheapest possib le 

communication networks  o f  n members which can broadcast  in minimum 

time regardless of o r ig ina tor .  .Mbgs may be used f o r  message 

broadcast ing in communication, paral le l  processinq, and d i s t r i b u t e d  

, .  computtng. Unfor tunate ly ,  n o  technique i s  known to  generate these 
L 

graphs  fo r  a r b i t r a r y  n. Far ley  [Fa r ley  791 sugqested a lgor i thms t o  

const ruc t  minimal broadcast  ne tworks  w h i c h  are sparse g r a p h s  allowinc] 

mlntmum time broadcast f rom any or ig inator .  New methods to  cons t ruc t  

such networks  are  p resen ted  in chapter  2. The r e s u l t i n q  g r a p h s  h a v e  

f&er edges than fa r l ey ' s  g r a p h s  fo r  three-quarters o f  t he  poss ib le  

values of n. The improvpd g r a p h s  are estimated to have an average of 

8% fewer edges than those o f  Farley's for  36<=7<=1024. Furthermore,', 

improvement fo r  some of the  remain ing values of n may atso be p o s s i ~ l e  

b y  us ing  similar methods. 

Fautt- tolerant   road casting i s  desirable i f  re l iab i l i t y  i s  considered to  

be an  i m p w t a n t  factor  in a communication network.  The set o f  k fau l t -  

tolerant minimum oroddcast g r a p h s  represent  the cheapest possib le 
'4- e. 

communication networks  o f  n members which can complete a k fault- 

to leraht  broadcast  in minimum time regardless of originator. No 

technique i s  known t o  generate these gmpBs for m?ritrarg 

n, 4Lgarithms LQ m L r u r r  k fzurtt-tolerant minimal broadcast  n e t w o r k s  

have been suggested by Liestman [Liestman 811 for k=1 ~ n d  k=2. In , 

chapters 3 and 4, new methods t o  const ruc t  such g r a p h s  a r e  presented.  

In 90th cases, the q r a p n s  p roduced  by the new methods conta in 

apprqx rmately one-half the numDer of edges of the  p rev ious l y  k n o w n  



graphs. However, in the 2 fautt-tderant case, the new metke4 

be used for n=2i+j, j=2,3,5,9 and some small n < 32. Using approaches 

other than those used in chapter 4, i t  may be possible to  const ruct  

improved 2 fault-tolerant mbns fo r  these values. 

Methods t o  construct  k fault-tolerant mbns depend on the resu l ts  on 

Tk(n) .  I t  is  not possible to hescribe such construct ions without 
*o 

knowing the  e x x t  vaCue @f Tk(n),  Thus, more general resu l ts  to  

r; construct  k fault-tolerant mbns cannot be found without f i r s t  finding 

more general resu l ts  for  Tk fn ) ,  The multi-way spl i t  approach to . 

construct  1 fault-tolerant and 2 fault-tolerant mbns does g ive some 
A" 

ins ight  on the vatue o f  Tkfnf  for  k>=3. for  e x m p k ,  -it m a y  be 

possi ie to use an 0-wax spti t  to construct 3 fault-tolerant mbns. We 9 can use the f i r s t  /iog2nl time un i ts  to create a catl ing pa th  fprJ.e~ery 

vertex and use three more time un i ts  to complete three more edge 

dtsjotnt cal l ing paths to each vertex. I f  this is  possible then T3(n)  is  \ 

equal to pog2nJ+3 for n mod 8=0. Using similar arguments, we may use 

a 2k -way sptit to construct  k fault-toferant mbns. Hie can use the f i r s t  

poq2d trme un i ts  to  create a cal l ing path for .every ver tex and use k 
- 

more t ime un i ts  to g ive k m o r e  edqe clisjaint cal l ing paths to  each 

vertex. i f  such a s d' heme eqists then Tkfnf  i s  equal to  fSoqZnf+k fo r  n 

mod Zk=O. No fu r t he r  investigation has been done in th is  direct ion. 

However, w e  conjecture that Tk (n )  is equat to fiog2nl+k for  at least - 
& 

some values of n. 



Appendix A 

Tabk to compare the value bf e ( G )  between 
Farlc$r atgwithm and the Hybrid .algorithm 

+ 

n Farley split Hybrid split difference 



Fwtey 

156 
I64 
173 
182 
192 
142 
144 
147 
149 
152 
15 5 
159 
162 
166 
169 
173 
177 
182 
186 
1 !lo 
193 
197 
20 1 
2 06 
2 10 
2 lll 
2 17 
22 1 
2 25 
238 
2 34 
24 1 
248 
25 1 
255 
259 
254 
267 
27 1 
275 
280 
2 84 
289 
294 

-3.00 
'30 3 

@ m 7  - 
3 ' t i  
316 
320 
325 
3 30 
336 
339 

. 343 
347 
352 

7 5 

split 

2 
2 
2 
2, 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 .  
2 
z 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

- 

hybrid 

156 
164 
173 
182 
192 
127 
'129 
132 
134 
137 
139 
142 
144 
148 
152 
156 
160 
164 
1-68 
172 
175 
179 
182 
186 
189 
193 
197 
20 1 
205 
209 
213 
219 
222 
226 
2 30 
2 34 
238 
242 
245 
250 
2 54 

' 258 
262 
266 
270 
275 
283 
292 
307' 
310 
3 19 
328 
33 6 .  
339 - 
343 

C 
347 
352 

1 

split difference 



Far ley 

356 
36 1 
366 
372 
380 
389 
3 98 
408 
417 
427 
437 
448 
329 
3 3 2 
336 
339 
344 
598 
353 
359 
3 66 
372 
376 _ 
379 
383 
387 
392 
396 
400 
40  3 
40 7 
41 1 
416 
420 
425 
429'  
434 
439  
W5 
450 
4 54 
457  
46 1 
465 
470  
474 
479 
48 3 
488 
493 
499 
504 
508 
511 
4 15 
519 
5 24 

split Hybrid split difference 



Far ley 

528 
533 
537 '  
54 2 
547 
553 
558 
565 
573 
580 
588 
59 2 
595 , 

599 
604 
608 
613 '  
618 
6 2 4 .  
627 
637 . 
635 
640 
644 - 
649 

. 654 
660 
664 
669 
674 
680 
6 85 
69  1 
697 
704 
707 
7-1 1 
715 
7 20 
7 24 
729 
7 34 
7 4 0  
744 
749 ' 

754 
760 
765 
77 1- 
373 
784 
787 
79 1 
795 
800 
8U4 
809 

7 7 

split 

3 
3 

' 3 
3 
3 
3 
3 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 - 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 .  
2 
2 
2 
2 
2 
2 
2 
2 

Hybrid 

486 
49 1 
495 
500 
504 
509 
5 13 
521 I 

525 
5 30 
5 34 
5 38 
542 
546 
550 
555 
559 
564 
569 
574 
5 79 
5 8-4 
5 88 
59 3 
597 
60 1 
605 
609 
613 
618 
62  2 
6 2 7  
ti 32 
637 
b42 
647 
65 1 
66 1 
ti 70 
679 
688 
69 7 
7 06 
716 
725 
7 3 5 
745 
75 5 
765 
775 
784 
787 
79 1 
795 
800 
804 
80 9 

split 

6 
6 
6 
6 
6 
6 
6 
1 
7 
7 
7 
7 
7 
7 
7 
7 
7 8 
7 

. 7  
7 
7 
7 
7 .  
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

" 7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
2 
2 
2 
2 
2 
2 

difference 

4 2 
4 2 4 
42  
4 2  
4 3  . 
44  
4 5 .. 
4 4  
4 8  
5 0 
54 
53 
5 3 
5 3 
54 
5 3 
5 4 
54 
5 5 
53  
5 2 
5 1  ' 

5 2 
5 1 
5 2 
5 3 
5 5 
5 5 
5 6 
56 
58 

- 5 8  
5 9 
6 0  
6 2 
6 0 
6 0 
54  
5 0 
4 5 
4 1 
3 7 
34 
2 8 
24 
19 
15 
I0 
6 
2 
0 
0 
0 
0 
0 
0 
0 



Far le y 

814 
820 
824 
829 
8 34 
840 
845 
85 1 
857 
864 
87 2 
88 1 
890 
900 
YO9 
919 
929 
94U 
949 
9 5 9 
96 9 
980 , 

990 
100 1 
10 12 
1024 
7 77 
780 
785 
789 
794 
798 
803 
80 7 
8 13 
818 

7 8 

split 

2 
2 
2 
2 
2 
2 
2 ,, 
2 
2 

Hybrid 

8 14 
820 
824 
829 
834 
840 
845 
85 1 
85 7 
864 
872 
88 1 
8 90 
900 
90 9 
9 19 
929 
940 
949 
959 
969 
980 
9 90 
100 1 
1012 
1024 
705 
711 
716 
720 
725 
729 
734 
7 38 
743 
748 
753 
758 
762 
Z6 6 
770 
7 74 
779 
78 2 
786 
789 - 793 
797 
80 1 
80 5 
809 
813 
81 7 
820 
824 
827 
83 1 

split 

2 
2 
2 
2 
2 
2 
2 
2 
2 

' 2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 * 
2 
2 

A 
2 
6 
6 
6 
6 
6 
6 
6 
6 
6 ,  
6 
6 
6 
7 
7 
7 
7 
6 
6 ' 

6 .  
6 
6 
Q 
6 
6 
6 
6 
6 
6 
6 
6 
6 

, 

difference 



Farley split Hybrid split difference 



F arley split Hybrid szlit difference 





n , Far ley 
r ' .  

s 459 ,1842 . 
4 6 0 . -  1848 

., 46 1 1853 
462 \ .  f859 
46 3 I865 
464 '1872. . . 465 , 1876 . 
466 I88 1 
467- 1886 
468 189 2 
469 1897 - 
470 1903 
471 , 1909, 
472 .19ltic 
413 192 1 
474 1927 
475 193 3 
474 1940 
477 1 946 
478 195 3 
479 1960 
4 80 1968 
48 1 1976 
482 11985 
483 1994 
484 2004 

. , 485 2013 
. 4 8 6 .  - 2023 
487 . 2033 
488 2044 
489 2053 

I . 490 2063 
49 1 2 0 7>3 
492 , 2084 
493 - 2094 
494 2 105 
49 5 2116 
496 2 128 
497 2 137 - . 498 2 147 
499 2157 
500 = 2168 
50 1 2 178 
50 2 2 189 

a 503 2200 
504 2212 
505 2222 
506 . 2233 . 
5 07 2244 
508 2256 
509 1267 

3 
510 2279 
5 1 1  2291 - 

. , .  5 12 2 304 
-, 

Hybrid 3pTit ntfference 
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