National Library
of Canada

Canadian Theses Serviqe

i

du Canada

Ottawa, Canada
K1A ON4

CANADIAN THESES

NOTICE

The quality of this microfiche is heavily dependent upon the

quaiity of the original thesis submitted for microfilming. Every K

effort has been made to ensure the highest quality of reproduc-
tion possible.

if pages are missing, contact the university which granted the
degree.

Some pages may have indistinct print especially if the original
pages were typed with a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published
tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the
Canadian Copyright Act, R.S.C. 1970, ¢. C-30. Please read
the authorization forms which accompany this thesis.

- THIS DISSERTATION
HAS BEEN MICROFILMED
- EXACTLY AS RECEIVED

NL 339 (r 86/01)

Bibliothéque nationale

Services des théses canadiennes

THESES CANADIENNES

1 AVIS

La qualité de cette microfiche dépend grandement de la qualité
de ia thése soumnise au microfilmage. Nous avons tout fait pour
assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec I'univer-
sité qui a conféré le grade.
La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylographiées
a I'aide d'un ruban usé ou si Funiversité nous a fait parvenir
une photocopie de qualité inférieure.

Les documents qui font déja I'objet d’un droit d’auteur (articles
de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, méme partielle, de ce microfilm est soumise
& la Loi canadiehne sur le droit d'auteur, SRC 1970, ¢. C-30.
Veuillez prendre connaissance des formules d’autorisation qui
accompagnent cette thése.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L’AVONS REGUE

Canadi

/

" NAME OF AUTHOR/NOM DE L' AUTELR

TITLE OF THESIS. T/TRE DE LA THESE

UNIVERSITY A UNIVERSITE,

DEGREE FOR WHICH THESIS WAS PRESENTED/)
GRADF POUR LEQUEL CETTE THESE FUT PRESENTEE

YEAR THIS DEGREE CONFERRED /ANNEE D OBTENTION DE CE GRADE

‘NAME OF SUPERVISOR/NOM DU DIREC TELR DE THESE

w.o/
-

i

National Library
of Canada

#-315-28295-~9

Bibliothdque nationaie ,. CANADIAN THESES THESES CANADIENNES
du Canada '

ON MICROFICHE SUR MICROFICHE

-Pau Yen Yong

Minimization of Pages Fetches

in Query Processing in Relational Databases

Simon Fraser University

Master of Science

1984

Tiko Kameda

Permission is herepy granted to the NATIONAL LIBRARY OF L'autorisation est, par la présente, accordée 8 la BIBLIOTHE-

CANADA 1o microfilm this thesis and to iend or sell copies QUE NATIONALE DU CANADA de microfilmer cette thése et

de préter ou de vendre des exemplaires du film,

of the fiim,

The author reserves other publication rights, and neither the L auteur se réserve les autres droits de publication; ni la
thesis nor extensive extracts from it may be printed or other- thdseni de longs extraits de celie-ci ne dojvent étre imprimés
wise reproduced without the author’s written permission. ou autrement reproduits sans /autorisation écrite de I'auteur.
DATED DATE Feb. 2, 84, SIGNED/SIGNE,

PERMANENT ADDRESS/RESIDENCE FI

HINIHiZATION OF PAGE FETCHES

IN QUERY PROCESSING IN RELATIONAL DATABASES

bv

-

Pau Yen Yong

B.Sc., Dalhousie Tiniversity, 1981

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE -DEGREE OF
MASTER OF SCIENCE
}n the Department
of

Computing Science

C) Pau Yen Yong 1984
SIMON FRASER UNIVFRSITY

January 1984

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

P

PART AL COPYRIGHT LICENSE S

| hereby grant to Simon Fraser University the right to iend ™’
my thesis, project or extended essay (the title of which is shown betow)
+to users of the Simon fFraser University Library, and to make partial or
single copies oniy for such users or in response to a request from the
tibrary ot any other university, or other educational institution, on
its own behaif or for one of its ysers. | further agree that permission
for muitiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. |t is understood that copying
or publication of\fhis work for financial gain shali not be allowed

without my written permission,.

Title of Thesis/Project/Extended Essay

Minimization of Pages Fetches

in Query Processing in Relational Databases

.

Author:
(signéfurqb

Pau Yen Yong

(name)

Feb. 2, 84.

(date) N

i

=~

estanill i eni

s gl

R T T T P

Ll

Name : P#u Yen Yong
Degree: Master of Science
Title of Thesis:
Minimization of Page Fetches
in Query Processing in Relational Databases

5t

Examining Committee:

Chaitperson:r © Pavol Hell

’

Tiko Kameaa
Senior Supervisor

wo~Shun- Luk -
Art Liestmap

Toshihide Tbaraki
External Examiner
(in absentia)

hate Approved: vaw /2 [104

- {1 -

~

This thesis investigates nested loops wmethods for computing joins in s

relational database. These methods try to determine the optimal nesting

order of relations in the evaluag}bn progr#m (that 1is, to minimize the
number of page fetches). Since true minimization is in genera} NP-hard,
several heuristic algorithms (C, D, r?nd D2) have been developed and
compared with the currently knownifglgorithms (AAand B)., The @euristic
solutions obtained from’these algorithms are improved by interchanging
ad jacent relations. Experiments are conducted for tesﬁing the algorithms,
The results indicate that-among the four algorithms (whiih are applicable
to general queries), algorithm D gives the best closeness~of-solution to
the optimal one. For over 200 example queries 1involving 6_ or fewer

relations, the number of ﬁage fetches required by the solutions of

algorithm D were never more than 38 percent greater than the optimal

values, and on the average less than*5 percent greater than optimal. Two

special céses,have been id;niifi;diﬁﬁiéﬁiégg géigdiﬁéarf;eéiseij : 1) fﬁé
input query is a general query inveolving three'relations; and 2) the input
query is a loop query. Further experiments indicate that, for all the
sample queries used above, the nested -loops outperform the ﬁort-merge
method of query evaluation. Under the assumption that the A;Vay merge sort

is wused and that every time two relations are merged they must be sorted,

algorithm D did better than the sort-merge method for all of the sample

queries used above. S o o S

- 11i -

To my parents in Johor Bahru.

~d

- iv -

ACKNOWLEDGEMENT -—

-

I wish to thank my senior supervisor Dr. Tiko Kameda for his guldance
and patience throughout the course of this work, I am particularly grateful
to Dr. Teshihide Ibaraki of Toyohashi University of Technology, Japan for

his many thoughtful contributions tp my work. Sincere thanks are due also

e

to Dr. Wo Shun Luk, Dr. Art Liestman, Dr. Pavol Hell, and Mr. Charles G.

Brown for making valuable comments and proofreading my thesis.

- v -) - e =

TABLE OF CONTENTS

Approval L R N A A N N R N N R NN NN N RN EREENENNNEE NN RN KRR k\ii

Abstract 4 0 0 0 5 8 O A S N OH SO A LSOO S O 0 E S G S DTS EO IO L e NS OONEEEeN NS iii
Dedication # 0 0 00 ¢ a8 A8 N O SS DA SO PSSO OR 0SS e e ' 8 A & 586 9600 08w oY EeNEDS iv
ACKNOW]lEedgement ...scerssessssssocesnscscconssssncsacsnnnnnsnessssasssas v

LiSt Of Tables R R E R R N A A A B S S R A A R S B A R S I N R A A A A N N I N] viii

Listof Figures --.'--.'-'--".".."............‘.."’..."-..'..'.'.. ig
1' Introduction '."........‘...I..............'.qll'...".‘...l.. l

2. Query Evaluation R R R NI A I I O S A I I NS I W N N 5
2.1 Notatrions and Kss‘mptions Cee LI PP PIOLIIOEBRRRSOGEBRER SO N OEHERDEDES 5

2.2 Different Strategies for Query Evaluation Drogram ...esceess 8
3. Xested Loops Method fbf Ouerv Evaluation ..cccececcssnconcncons 12
3.1 Reasons for Using Nested Loops Method;....... 12

3.2 Nested Loops Method with Special Pointers .eeeecescveceseass 12

Bl
3.3 Algorithms for Finding Goqé?ﬁ;ating OYQEY sensennssesssscsess 17
e

‘3?1---..nn1...‘!....0-..0.0.....; 27

4, Performance Evaluationf?l
“".l— Assumprtions O B S O A RS T OO RS O RET SO S OTEEE O OO LSOO OE RO IO RN 27

&.2 Normalization L N N A N N N N N RN N NN NN RN N NN NEENE NN NS 29

e

4.3 General Queries%ﬂ..................................... 30
4'6 Treg Qlleries 2 E S P B U S OO S E 0% O O P 0O EOPEE A RSN eE eSS O ES e 37

5. Improving a Heuristic Soluéiongﬁ;.............;........... 44
S.1 Interchanging Adjacent RelationS .e.ececisccoscacssscccroccncse 44
5.2 Performance of Heuristics with Interchanging cseesceesecssee 45

6. Comparison of Nested Loops Method with Sort-Me;ge Method .eeans 56
6.1 Assumptiéns Peeseessesrsscares et easasesaenssresrarenanssans 56

6.2 Results RN N NN RN AN AR NN RN NI NI I AN A N R R 60

- yi -

7. Conclusions and Open Problems ll".'l'l..".ll'.5".......”......

7.1 Conclusions

7.2
Appendix.
Appendix.
Appendix.
Appendixf
Appendix.,
Appendix.
Appendix.
Appendix.

Appendix.

References

€r

[N N N N NN NN NN R NN NE N AR NENENNEREER)

Open PrOblemS IR N R N S N N NN R NN NI NN N ERE RN N NI NI N N

1

2

£~

~i

Notation ...
Algorithm A
Algorithm B
Algoritim C

Algorithm [

i Algorithm D2

Interchange

L I R R N N N N A I A R I I I I A A A B A O O)

P N N R NN RN RN RN R RN NN

& & B @ 8 5 ¥ T F S WS BT SERSEENEE P N ST EE PSSR

45 ¢ 0 8 4 4800 LA CEPASRIID ESPEE LA NUS BSOS BERe N
.

S % 5 90 5 08 &5 S 4R 80 E SN NTEANNTAN LSS OIS SS

A4 50 5 4840 NP .03 CTESESBSESEENELALEBEPEEe N

H Algorithm 3R I N N N R RN NN NNENNENE R NN ENERERERENNENENS

H AlgOtithm LQ [(EEEEEEXEERNNEE BRI EEIN RN NN NN NS NI NN R R I NS

P I I AR I S AR A A A B AR A A R N N I S NI S LR N I N R SN A I

N N RN RN NN YR EFENER NN R ERNRERE NN NI I SRR NI NI A RN A

- vii -~

64
64
66
67
o8
69
71
72
74
76
77
78

79

5.3

The ranges
Average FR
The ranges
Average PR

The ranges

Average PR

LIST OF TABLES

of PR's of various algoTitims suevvessessvvsssconsns
ranges of various algorithms R R
of PR's of algorithms A and D seecececacccnsnananaes
ranges of algorithms A and D ..eceececssecsancccsnses
of PR's of various algorithms after interchanging
ranges of various algorithms after interchanging

I E X E NN ENNERNNFER NN NERENENERENERENNNNENE I NI I NN A W X

Time {(in percent) needed for implementing interchange ececececcsee

- viiit -

32
33
40

40

47

47

53

4.5

)

4,7

5.4

5.5

5.6

5.7

LIST OF FIGURES

A relation R (N A NN NENEER NN N RN RN N RN RN NI NI NN NI NN NN NN 1
A query graph '..llll.l..l.....'..l....ll...;l.......'......... .8
A nested lOOpS structure ...Q.QQ.Q.IQl..l...;..l...l....-...... 10

A 3-node query Braph eeessccessecsssnvacsasssacssrsscccasccssce 18
Average PR’s for general query structures : A, C, D, D2 ..cce.s 35
Average PR’s for general query strﬁctures P A, Cy D seneesconne 35
Standard deviations of PR’s for general query structures :

A’ C’ D 0..............lll....;...-..'l..ll.....".... 39

Average running time for sample used of each general query

Structure".'...I..I.Cl....;}.l.................. 39

'Average PR’s for tree query Structures : D seseececcsscsscsssse 42

Standard deviations of PR’s for tree queries : D ceeecccccencss 43
Average running time for samples used of each tree query
Structure : A’ B, D ® 05 200 &0 000G USE OGO OEDOEOODOOOES e OS 43

Starting positionlafter interchanging ecececsccscccecccssevccss 46

Average PR’s of solution§ after interchanging cececceseccccccsces 48
Average PR’s of various algorithms with interchanging

S teestesscccsetsoteessnssesstestsrasstootscsstnoobonn 50
Standard deviations of PR’s of solutions after interchanging

Cecsesescesssssresssesesacsenessareacsssecsesnsserens 51,
Standard Deviations of various algorithms ﬁith interchange

..........................;......;................... 52
Running times of algorithms with and without interchange +.eca. 54
Running times of algorithms with interchange of relationg assee 55

One-relation predicate ylelded from merging of relations eesees 58

- ix -

A

XY
ey
-~

6.2

6.3

%

Average relative costs for SMM and NLM 50lutions eeceecssssscases

Sorting cost function f=2[HilogZMi‘]oc"oo..tttt-'t'--v"'-'--vv

Running times for sort-merge and nested 100ps methodsS eseseoses

- -

61

63

63

CHAPTER 1

INTRODUCTION

The term "Relational Database System" has beén widely used since
F.F.Codd published his influential paper on this'topic {copp~-70]. The
relational model suggests that all data in a database managememwt system may
be represented Ey a set of simple two-dimentional tables namedxfelations.
Within each relation the columns are usually referred to as attributes (or
domains), and the rows as tuples (or records). Fach attribute 1is
associated with a field name. An example of a relation describing students
information 1s shown 1in Figure 1.1, This relation consists of three
tuples, each of which is made up of three different fields :

STUDENT XUMBER, NAME, and ADDRESS,

LSTUDENT;ﬁUHBER | NAME | ADDRESS |
:78233-7731 ——r Ann Cooper i 607 Keel St.,, Van. }
}79161-2435 ; Oing D, Li t 1933 Esi Drive, Van. ;
579313-4971 -.§ Yen R, lewis : 565 High Park Ave., Vaﬁ%:

o

Figure 1.1 A relation R.

Tuples of relations are stored in physical (or secondary) storage

space which is divided into fixed-size blocks called pages. The unit of

storage allocétion and the unit of tfansfer between main storage and
secondary storage is a page. The Vtransfer of a page from secondary
storage to main storage is called a page fetch. In order to access a tuple
from a page, a page fetch is incurred if the page does not'already reside

in main storage.

Oueries to a database for extracting desired data are posed through a
specialized 1language called gquerv language. The guery language is usually
designed from a high-level computer language and mnade easy to use for
inexperienced wusers. Relarional queries (questions about a relational
database) can be expressed in high-level query languages simply and
concisely. A wide Qériety 0of gquery languages have been proposed. Such as,
QUEL, run undeav INGRES; OQUERY-BY-EXAMPLE and SQL, run under SQL/Data
System., Ther:L are a number of methods for accessing data in response tdr
queries, Since a page fetch is costly, these methods attempt, through

different approaches, to minimize the number of page fetches needed for

answering a query.

Answefing a query very often requires coﬁputing joins of relationﬁ.
However, the join operation is the most fime consuming and difficult
operation, for a gfeat number of page fetches are ogten required. Much has
heen done on the investigation of different approaches for computing joiuns
of relations [ARO-79, ASTR~80, DEMO-80, fBAR-az, KIM-80, MERR-83, PERC-76,
ROSE~80, SELI-79, WONG-70, YA0-79]. These optimization studies in query

evaluation include simplistic exhaustive searches as well as complex

heuristic methods. The purpose of this work is to investigate the nested
loops methods for computing joins in a relational database. These methods

attempt to determine the optimal nesting order of relations in the query

-2 -

evaluation program. Optimal nesting order is defined as the nesting order

which minimizes the number of page fetches.

In Chapter 2, important assumptions and different strategies for query

evaluation programs will be presented and discussed.

Chapter 3 will discuss the nested loops method with special
construction [IBAR-82]. The expected number of page fetches needed for
answering a query is a function of the nesting structure of relations.
This function 1is defined as the cost function we want to minimize. Since
the true minimization of the expected number of page fetches 1is NP-hard,
several heuristic algorithms are developed. It wili be also shown that in

two special cases the problem can be solved exactly when the assumptions of

cost function heold.

Two sets of experiments will be conducted in Chapter 4. In the first
set, the algorithms proposed in this thesis as well as the existing ones
are run. The input query structures contain cycles, The heuristic
sclutions are compared with the optimal solutions obtained by éxh:uétive
vsearch. In the second set of experiments, "tree queries™ will “be tested.
The comparison criteria for the experiments are 1) the closeness of the
solution obtained by a heuristic algorithm to the optimal solution and 2)

the funning time of the algorithm.

In Chapter 5 a scheme is developed for improving the heuristic
solutions obtained by the heuristic algorithms of Chapter 4. A set of
experiments will be conducted for determining improvements achieved by this

scheme.

In Chapter 6, we shall compare the number of page fetches required in

the nested loops method with that of the sort-merge method.

The appendices consist of the notation used and the formal

descriptions of the algorithms discussed in this thesis.

L

CHAPTER 2

QUERY EVALUATION

2.1. Notations and Assumptions

The relations referenced in a given query are denoted as RI’RZ""’Rn’

Ri'A is the attribute A of relation R A query Q/is defined as a

i.
conjunction of simple predicates :
QgPlAPZ/\..",\Pn’
where
Pi=Ri.A 8 Rk'B
and 8 1s one of the following comparison operators,

8 e{=, ¢, >, &, Z}'

It should be noted that the set of comparison operators does not
include the not-equal (#) sign. Rosenkrantz [ROSE-SO] proves that when #

comparisons between variables are allowed, minimization as well as most of

the correspondingiapproximation problems are NP-hard.
The predicates are generally gfouped into three categories:

1. Ri.AGC
¢ represents a constant., This type of predicate is known as a one--
relation fredicate [WONG-T761. In order to test a predicate of this

type, all the tuples of relation R, have to be checked (that is, scan

i

the relation -- all the data pages that store the tuples must be
I
fetched) through the attribute A.

-5 -

2. Ri.AGRiIB
This form of predicate 1is. also known as a one-relation predicate
because there 1is only one relation involved. However, Ri has to be

scanned only once.

3. Ri.ASRj.B (1#3)
This type of predicate, involving two relations, 1is called a oin-
predicate. Both of the relations Ri and Rj are examined in processing
the predicate.

The join operation is the most time consuming and difficult
operation. In the present thesis, only the JOIN opération is considered.
The one-relation predicates are not of direct interest. Intuitively, the
cost of processing a one-relation predicate is line;r in the number of
tuples of the relation involved. It is often desirable to process the
one-relation predicates before the join-predicates are considered. It has
been shown that this tactic is beneficial [SION—]ﬁ]. For 1ns£ance, after
processing a one-relation predicate the size of the relation involved is

smaller. The unqualified tuples -— which do not satisfy the one-relation

predicate -~ need not be examined in the following join operations.

In what follows, the sizes of relations are assumed to be those after
the processing of one-relation predicates. - The number of tuples of a

relation R, is denoted, by Ni' M, is the number of pages that is needed to

i i

store all the tuples of Ri' It is assumed that tuples from different

relations do not co-reside in a page.

Given a predicate P=R1.A9Rj.B, the selectivity factor fP associated

with P is defined as the probability that a randomly chosen tuple pair from

-6 -

Ri and Rj satisfies P. The selectivity factors of predicates are assigned
by the system program [SELI-79}, whichfcgmputes the selectivity factors

from the known parameters such as Ni’ Mi’ number of distinct values in a
join attribute. The . distribution of the values in'a joln attribute is

assumed to be uniform. This assumption is adopted from [IBAR-82].

Graphical Representation

A query may be represented graphically. Each relation is represented
by a node in the graph. An edge between two nodes indicates the existence

of & predicate P in which both relations are referenced. Such an edge is

labelled by its associated predicate P.

G(Q)=(V,E)
where V=the set of relations referenced in query Q,

E={(1i,3)|1,3j6V and there exists some predicate
of O which references relation Ri and Rj}'

Example
Given query : QEPYAPZAijPA ;
where P1=(R1.A=R2.B), P2=(32.C=R3.D),
Py=(Ry.E=R,.F), P,=(R;.G=R,.H).

and fP =0,001, fp =0.,002,
1 2

fp3aooz , fP4-0.003 .

The corresponding query graph G(Q) is shown in Figure 2.1.

Figure 2.1 A query graph

The selectivity diagram of Q is the same as its G(Q) except that the
label P of each edge is replaced by the corresponding selectivity factor

f .

. s o

2.2. Differgnt Strategies for Query FEvaluation Program

- The query evaluation programs attempt to process queries from

different approaches. This section gives a brief introduction to the

proposed strategies.
2.2.1. Sort-Merge

The ma jor operationsvof this method are the sorting 2and merging of
relations., Given a predicate, the vfirst step is to sort the relations
individually on their join attributes. If a z-way merge-sort is used lfor
sorting, the cost (in number of page fetches) of sorting a relation Ri can
be given as [BLAS-77] :

sort cost = 2(k11°gzMiT

The next step is to merge the two sorted relations. Both of them need
to be scanned only once since they are alreadvy sorted on the join
attribute., The scanning cost (in terms of page fetches) 1is simply the

total number of pages of the relations referenced.

-8 -

Although the basic strategy of sort merye is rather straightforward,
it can be costly .to implement. For queries with many pfedicates, the

sequence of evaluating the predicates obviously affects the number of page

fetches required. The process of selecting the optimal order of predicates
tends to be very comﬁlicated. If there are m predicates 1involved, there>
can be as many as m! different sequences. The overheads in comﬁuting the
’ estimated costs are far too high if each sequence 1is aétempted. Much

research has been done on this problem of finding the optimal sequence

[SELI-79, MERR-83].

2.2.2. Decomposition

The general procedure for this strategy [WONG-76] is to decompose the
multi-variable quefy (a query which references more than one relation) into
a sequence of single-variagle (that 1is, single-rglation)ﬂ queries by
applying,reduction of query and tuple substitution., _Reduction is a process
of breaking off the components of the query which are joined to it by. a -
single wvariable. When these components -cannot be further detached to

single~variable subqueries, tuple substitution 1is used to complete the

decomposition. One of the variables is selected for substituting a tuple

at a time.

2.2.3. Nested Loops Method

The loop 1s the major structure of this method. Figure 2.2 shows the
:Eésic structure of a nested loops program. Assume that relations Rl and R2
cohsist of M, and M, page‘s,_7 respectively. In order to compute the join of .

*

the two relations, for each data page of Rl' all the data pages of R2 must

be examined if Rl is nested outside (see Figure 2.2) R2. Thus the total

-9 -

total number of page fetches needed to compute the joimds M1+M1M2.

For i=1 to Ml do
Begin

For j = 1 to MZ do

Begin
Access the tuple pair(i,j)

 End
Fnd

Figure 2.2 A nested loops structure.

This method 1is quite straightforward. However, for queries
referencing many relations, the evaluation can be costly. Suppose, for
example, that five relations are referenced in a given query. The

corresponding sizes are M,=10, M2=20, M3=30, H4=40, M.=50, The cost

1 5

formula

‘ M
M M P MMM MMM M MMM M

gives a total number of page fetches, which is over twelve million.

-
e g o

One way to reduce the total number of page fetches is given by [KIM-

80}. Instead of automatically scanning the relation R, of Figure 2.2 in a

2

top-down manner{i.e., fetching the data pages from the first page to the
last page), some conditions are added. After the first scan of relation

R,, the second page of Rl is fetched. Since rthe last page of R, 1s gtrill

ir the main memory, the join operation can be performed without fetching a

new page from R,. Thus the scanning of R is earried out in Dbottom—up

2

- 10 -

manner and we save one page in fetching., The next scan of R2 starts from
the top again and one page is saved for the first page of RZ is already in
the memory. It can be seen that the savings are insignificant if the sizes

of the relations are large.

Another way of reducing the number of page fetches is shown in [IBAR~-
82}. More structure is superimposed and a data page is fetched only if it

is necessary to do so. Ve shall see this in Chapter 3.

- 11 -

CHAPTER 3 g

NESTED LOOPS METHOD FOR OUERY EVALUATION

' 3.1. Reasons for Using Nested Loops Method

The nested loops method 1in processing relational queries 1is the
approach taken iq,ﬁhe'present thesis. It has various advéntages over the
other methods. The ease of programming is highly atf}active to
programmers, Furthermore, tﬁe number of page fetches negded in this method

- can be kept small in the situation where Vall th; data pages of each
| relation are not automatically fetched [IBAR-82} (This differs from the
automatic fetch tactic used, for example, in [PERC-76]). Some tests are
performed hefore the above access 1is nade, the details of which are

presented in the following section.

3.2. Nested Loops Method with Special Pointers

3.2.1. Basic Structure

The structure of the nested loops method with special pointers is

based on the following idea

Some useful pointers associated with relations are creaged/ during the

soro#ng of relations, These pointers are used in query evaluation
programs to fetch only those pages of the corresponding relations which

contain the tuples satisfving a predicate of an input query [IBAR-82}.

- 12 -

Without Iossbbf generality, Rl’RZ""’

Rn are assumed to be processed .

in that order. For a predicate P1=Rk.x9Ri.y,k<i, R, 1is assumed to be

i

sorted on attribute ;. For each tuple in Rk, two pointers associated with

i

P are created. One of them points to the first page of R, on which

i

there is a tuple such that the tuple pair (i.e., a tuple from Rk and a

tuple from Ri) satisfies the predicate. The other pointer points to the

last such page. The following example will make this clear.

Given query graph :

=P)/\P/\P 4

where P1=(R1.A=R2.B),. P2=(R2.C=R3.D),

P3=(R1.E=R3.F).

- R, R R,
A E B C D F
a tuple —— 3 2 :fiZE 11 PQ———* 0 4
1 3{‘(——533 : 1 2
4 2 3 1 1 4
P —y
1 PN
13| 4 NJ 13
a page 5 1 . 5 1 p. 11 1
31 6 3 2\,“3 1

sorted on

attr.

Relations Rl’ R2, and R3 are processed in that order., R, and R

B

sorted on
attr. D

) 3 are

sorted on the join attributes B and D respectively. For instance, the join

=13 -

/‘

0

&

attribute A of the-first tuple of R1 has value 3. The pointers (associated
@

with P;) of the this tuple both point to the first page of R, because this
page contains both the first and the 1last tuples; which satisfy the
predicate Pl'
The tuples of R3, which satisfy P2 with R2.C=1, span the firsf two pages of

the relation. Thus the corresponding pointers of the first tuple of R2
point to pages 1 and 2 in R3 respectfzgi;}' Note that there is no pointer

created for P3 as it can be processed after a page of R3 is fetched by P2.

3.2.2. Construction of the pointers

In [IBAR-82], the pointers from Rk to R with réspect to P

i i

(P1=Rk'a9Ri'b) are created in the following way, without any additional

e

page fecthes:

(1) VWhile sorting the relation Ri a list is constructed in main memory.

™

i

(2) For each page of Ri’ the distinct values of Ri'b are kept in the

"™ 1ist,

(3) The 1list is maintained until the pointers. for Rk with respect to Pi

are constructed,

Step 2 can in fact be improved by storing, f9r each page of *Ri .

merely the minimum and maximum values of Ri'b'

3.2.3. Cost Function

Some definitions are first introduced.
pred(1) = {P|P="R,.abR,.b", k,h < i}

F, = PRODUCT [FOR P IN pred(i)] OF fp.

- 14 =

For the first tuple in R2’ the join attribute C has value 1.

Using the nested loops method without pointers, the total number of

page fetches for Ri is Mle...Mi. Let P1=Rk.a9Ri.b, Ibaraki [IBAR-82]

shows that using the pointers technique this number can actually be reduced

to

Hi = Fi_lrzloooNi_lfPiMi, i.-(3.1)
where Fi—lNl"'Ni-l is the expected number of tuple combinations (from
Rl...Ri_l) that satisfy the pred(i). Ml"'Mi is indeed reduced by the
factor

‘; * * e *
(Fi—lNl""i—l) fPi / (Hl Mi-l)

Note that formula (3.1) is only an approximation function of the
general function derived in [IBAR-82]). The general function of (3.1) has

been given as follows :

K
i-1
MluuuMi[l-(l"fPi)]o

Ki-l is the average distincE Rk.a—value. Other important parameters used

in the general cost function have been given as follows :

J
_ 1o i-1
(1) Ky = [1-(1=1/r) 7])
Ii--l
(2) 3,y = (s/t)[1-(1-t, /) T
/
(3 Ii-l = Fi—lﬁl"'hi-I/MI"'Mi-l
d £

r, is the number of distinct values that Rk.a can take. Ji-l is the

expected number of distinct tuples chosen from a page of Rk and Ii-l is the

- 15 -

tuple combinations per page combination of Rl""’Ri—l' Using the

S

approximation formula

1-(1-a)N‘— 1-exp(-aN) for small a

~ aN for small aN,

K

[1-(1—fP) i-1] is approximated as (l—exp(—fP K

i-l)) under the assumption
i i

that fP << 1. Furthermore, K

is approximated as Ii—
i

i-1

1 when fPi, Ji-l/rk’

and tin-l/S are all small. Hence, 1f fPiIi-l <{ 1, the function

M. .Mi[l-exp(-fP.Ii_l)]

1.

is approximated as (3.1). This approximation 1s valid only when the
assumptions stated above are all valid. Thus, the assumptions made in this

thesis are adopted from [IBAR-82].

There are n relations involved in.a query. Only the relation nested
in the outermost loop need not be sorted whereas the others have to be

sorted at most once. The cost formula we want to minimize is :

n
COST = M, + 152 (Hi + S(P)) , eee(3.2)

where S(Pi) is the number of page fetches for sorting R

»

g on Rifb’ i.e.,

0 if i=1 or Ri is already sorted on Ri'b

S(p;) = prior to the evaluation of query Q,

2 rMilogzy.i‘l otherwise,

assuming that a z-way merge sort is used.

- 16 -

3.2.4. Role of Nesting Structure

The expected cost (i.e., number of page fetches) is a function of the
nesting structure of relations. Given a nesting nger, the corresponding
estimated cost can be computed from '(3.2). However, the greatest
difficulty 1is the determination of the best order of thé relations. To

find the optimal order from among the n! possible choices by exhaustive

search may not be practical, In fact true minimization is NP-hard.

Therefore, we utilize some heuristic search methods.

3.3. Algorithms for Finding Good Nesting Order

}_oéoio Algorithm éo [IBAR-§—2_]

This élgorithm is applicable to general queries. The method is based
on the assumption that Hn is the most dominant term in (3.2), followed by

Thus, H,’s are minimized in this order. The algorithm 1is

Hn—l,...,Hl. i

shown in Appendix 2.

Ties may occur in choosing Ri (s;ep 2.la of the Appendix) when there

is more than one minimum Hi' In the worst case, all the possibilities are

explored, and the running time of the algorithm may increase exponentially.

This gives a time cemplexity of O(p!).

.

'3_020_2_0 Algorithm .B‘. [IBAR"&%]

This algorithm applies to the special case where the input query is a
"tree query". It give$ the optimal solution of a tree query only if all
the assumptions made for the approximation cost function (3.1) are valid.

In the algorithm, rank values are computed for single relations or groups

- 17 -

of relations (see Appendix 3). Relations are then ranked in such a way
that the corresponding rank values are in ascendingiorder. The optimal
solution 1is produced in polynomial time. The time complexity is

O(nzlog n). The details of the algorithm are shown in Appendix 3.

This algorithm is applied to general queries. Its basic structure is
supportéd by algorithm B. A minimué spanning tree of the input query graph
is first determined. Using this tree, the nesting order of relations 1is
then comqued bv B, Cost for the input query graph is finally computed

from the formula (3.2).

>The edges of the 1input query graph are weighted by selectivity
factors. The smaller the selectivity factors used, the fewer the needed
number of page fetches of relations. The graphical representation of the
following example makes this clear. Given the query graph shown iﬁ Figure

-

3.1la, there are three possible spanning trees(3.lb,c,d).

> 2
QS Q
o v
0.02 0.02
a. b. c. d.
LS
Figure 3.1 A 3-node query graph.
8 '

Suppose that relations 1, 2, and 3 are of the same size M, and have
the same number of tuples N. For each spanning tree, the total number of

page fetches needed is as follows :

- 18 -

spanning tree b : M+0.01NM+0,.01%0,02NNM;
spanning tree ¢ : M+Q,01NMH0,.01*0,03NNM;

spanning tree d : M+0.02NM+0.02%0,03NNM.

Figure 3.1b is clearly the best choice among the three. In choosing the

predicate, the one with smaller selectivity factor has higher priority to

be .picked. The algorithm is shown in Appendix 4.

A drawback of this algorithm is that if a given n-node query graph is
couplete and all the selectivity factors are the same, there are nn-2
minimum spanning trees in which case the time complexity is O(nnlog n) for

each tree regquires O(nzlog n) time. In order to avoid such excessive

computation, in algorithm C, we test minimum spanning tree.

We now take a closer look at the Hi formula :

1 1
H2 = FlleP M2
2
> Hi = Fi_lNloc.lePiMi
Hipp = FyNpeee®yfp Miy
i+l
Suppose that Rl to Ri-l have been chosen in the above order. The
factor Fi—1N1°"Ni—1 (hereafter FNi—l factor) in Hi cannot be changed at
the later stages. This FNi_l factor becomes the common factor in the

- 19 -

remaining H, s (H This implies that it 1is highly

i 1+1'H1+2""’Hn)'

desirable to keep the smallest common factor at every step of choosing Ri'

Thus, 1in order to choose R » We use a one-step look ahead method. The FN

i i
factor in Hi+1 is first minimized. The relation associated with the
smallest FNi is chosen as Ri- The next step is to determine fP from the

i

set of selectivity factors which are assoclated with the predicates in

pred(i)-pred(i-1). We simply pick the one with minimum value.

When there are more than one minimum FNi’ all the possible choices for
Ri are tried. In the worst case, the time needed for running the algorithm
grows exponentially. This is samé as the time complexity of algorithm A

(0(n!)). The complete algorithm D is presented in Appendix 5.

3.3.5. Algorithm D2

In algorithm D, the relation with minimum F N ...N, is picked as R

i1 i i

without considering the fP Mi factor in H In this algorithm we try to

i i

take the neglected factor into account when R, is being considered. Some

i

-useful symbols are defined as follows:

PRED(x,1)={P|P="R, .a6R_.b" and k < i}
(the set of predicates which reference only

relations RX and Rk with k < 1),

F{1,2,...,i}=Fi (the product of all the selectivity factors

assoclated with the predicates in pred(i)),

F{1,2,.,.,i|x}=the product of all the selectivity factors

f/\xgsggciated with the predicates in PRED(x,1i).

- 20 -

ctas F
1

Given Rl’RZ"°"Ri-1’Rx’Ry’ without loss of generality it 1is assumed

RisRy,eee,R,_| are choseft in that order. The next step is to choose R,

from RX and Ry. Therq are two possible cases:
(1) R =RX, R =R';
(2) R =Ry, R =Rx'

In the first case the total number of page fetches for H, to Hy,, 1s

shown as
= s0 e i - 1. wee 1
s(x,y) H1+H2+...+F{1,2, 1 I}I'I1 Ni_lfpxbX
2 i — 8 N N » .
+F{1,2,...,1 1,x}n1...ni_lgfony. eee(3.3)

s(x,y) indicates that Rx is followed by Ry in the nesting order. The

-

latter case is shown as

S(y,X)=H1+H2+...+F{1’2’.'.’i—l}Nl...Ni—lfP My
¥
+F{1,2,..t,i-l,y}hloo.Ni_lNnyXNXo -co(3.4)
Vle subtract (3.4) from (3.3) and obtain
s(x,y)-s(y,x) = F{1,2,...,i—1}N1...Ni_lfPXMX
pi - *
+F{1,‘.,...,i ‘I’X}Jl.'.Ni—lNXfP M_V
y
SF{L, 2,00, 1IN N, N
y
-F{l’z,.‘.,i—l,y}Nl."Ni—lNnyXMX

RN

“:
1f s(x,y)-s(y,x) > O then

s(x,y) 2 s(y,x) (=

- 21 =

foMx(F{l,...,i—l}—F{l,...,i-l,y}Ny) >
nyMy(F{l,...,i—l}—F{l,...,i-l,x}Nx) see(3.5)

{=>

(F{l,evu,i=1,y}N ~F{1, 00, d-1D/Ep M <

(F{l,...,i-l,x}NX-F{l,...,i-l}?/foMX

Both sides are divided by F{l,...,i-1},

(F{l,...,i-lly}Ny—l)/vaMy 5_(F{l,...,iwllx}Nx—l)/foMx.

For a relation Rk’ let

(F{l,...,i—1|k}Nk—1)

f
p 1

Ratio(k)=

Therefore,

s(x,y) > s(y,x) <=> Ratio(x) > Ratio(y).

The derivation implies that the nesting order Rl"2""’ is

Ry_1oRyoR,
better than Rl’R7""’Ri—1’Rx’Ry if and only if Ratio(y) is less than

Ratio(x). Therefore, to choose Ri from a set of relations we simply

compute the Ratio for, each of those relations. Among those relations the
o=

one with the smallest Ratio is selected as R Similarly, ties may occur

i.

in choosing R for there may be more than one minimum Ratio. If the

4

=

Ratios corre nding to Ri are all same and each choice of Ri is attempted,

the time complexity of this algorithm is 0(n!).

- 22 -

Incorrect Ratio

Let us take a closer look at the Ratio derived from the above section,

We find that the fp in (3.3) does not necessarily have the same value as
X

the one in (3.4) because the former, fP is the minimum selectivity factor
X

chosen from the set of selectivity factors associated with PRED(x,i-1),
whereas the latter is chosen from the set associated with PRED(x,i). These
two sets of predicates may contain different predicates. The choices of

fP ‘s in (3.3) and (3.4) can be different. Similarily in the case of fP -

X y

In order to distinguish the difference, the fP in (3.4) is replaced by
. x .

fP’, and fP in (3.3) by fP'. The derivation in (3.5) is no longer wvalid

X y y
because fP Mx and fP M _ cannot be factoreé. Instead, we have the following
X Sy Y
expression ‘

(F{l,...,i-llx}Nfo;-ny)/Mx >

(F{l,e0u,i-1|yIN f_"=f)/M .,
y Px Px bZ

Y

Hence, the measure of the Ratio is actually not correct 1if fP # fP’ and

X X

fP $ fP’. The drawback caused by the incorrect Ratios is shown in the

y y

experiments conducted in Chapter 4.

- 23 -

3.3.6. General Query Involving Three Relations

Given query Q with the following selectivity diagram SD(Q) :

0= S /¥,

where P_=(R_.A=R .B), Py=(Ra.C=RC.D), P,=(R,.E=R_.F),

and fP s fP , and fP are the corresponding selectivity factors.

y z
| \

)3
The query can be solved in constant time as follows : The three given
relations are named Ra’ Rb and Rc.. The choice of Ra is important whereas
the choice of Rb and RC is not important. Each given relation referenced
in the query is chosen as Ra in turn. For each choice of Ra’ the nesting
order RaRbRc is better than RaRcRb if and only if the following is true

(f)=f5) (fp NCMIN(fP o f

z y < y X 'z x

Y M

p NUMINCE, £,
X y

Proof.

Let s(a,b,c) denote the total cost of the nesting order RaRbRc’ and

let MIN(f fP) be the minimum of fP and fP . We have

P 3
X X y

- 24 -

P)Mc

= A N 1M
s(a,b,c) \{a+'1afoM'b+fP NaIbLilN(fP ,f i

s(a,c,b)

[

M4 M +f M) 13 ' !
a+-rafP . fP awaI (fpx,fpz)bb

Py

s{a,b,c) - s(a,c,b)

= N M NN M 8!
afP b + fP Ja\bl‘ll(fp ,f p)IC
X x z
- N f_M - £_ N N MIX :
‘afP c P a’ {Ij(f ’ P)Nb
y v z
= N [f, - £, MIN(fP 353)]
X v .
- N M - 1)
e L £, NMINCE, L,)]
v e v z
If s(a,b,c) - s(a,c,b) > 0 then
s(a,b,c) > s(a,c,b) <=>
M [E, = £, NMINCE, ,£,0] >
X v X z
M - MIN
M (£, = £, NMIN(E, ,f,)]
v X v z
- - A
=> [f, = £, WMINCEL LE,)1/M >
X v p z

<=> [fy Vbblv(fp sfp)=ty]/Mb >
L z v
[fP NCMIN(EP ,fP)ffP]/MC.

v pd z X

S

0.E.D.

Since each given relation 1is chosen as Ra in turn, the optimal
solution 1is, therefore, determined from the three choiqes. The algorithm

is formally described in Appendix 7. j

3.3.7. Loop Queries

We can now describe a polynomial algorithm, which gives the optimal
solution, when the input querv is a loop gquery. The query graph of a loop
gquery involving n relations is a cvele with exactly n nodes énd n edges.
Bv removing one edge at a time, there are at most n spanning trees. Each
of them can be solved individually by applying algorithm B. Since the
removed edge of each tree would not be used in the cost formula (3.1),
algorithm B gives the exact ranks and provides the optimal nesting order
for that spanning tree. Among the n nesting orders produced from different
spanning trees, the one with smallest cost is chosen as the optimal nesfing
order, The details of the algorithm are shown in Appendix 8. The time

»

complexity is O(n310g n).

CHAPTER 4

PERFORMANCE EVALUATION

4.1. Assumptions

Performance is a significant factor in the choice of algorithms. The
predictability of algorithm performance is important to the user. In this
section we investigate the performance of the various algorithms introduced
in Chapter 3. Simulation experiments are conducted to evaluate the
~algorithms. The major criteria of evaluation are : closeness of the
solution obtained bv an algorithm to the optimal solution, and the running
time of the algorithm.,. The following data for the experiments are

generated by random number generators
(1) Mi : number of pages of relation Ri'

(2) s/ti : nunber of tuples per page of relation Ri'

N, : number of tuples of R

, o % .
i is computed by M S/ti

i

(3) Selectivity factors associated with predicates.
The following ranges are assumed

(1) 10 < Mi < 500, for all ij;

(2) 10 < s/t, < 30, for all i;

i

(3) 0K« fP < 0.02, for all P;

[}

(4 =z 4, i.e., 4-way merge sort is used;

(3) 512 bytes, page size.

n
il

Ve believe that the ranges (1 and 2) chosen above are sufficiently
large because the sizes' of relations are assumed to be the sizes after
processing the one-relation predicates. The irrelevant tuples and columns

are eliminated. The range of s/t, is adopted from the example used in

i
[BLAS-77]. 1In his paper an average number of tuples per page from a

relation is 20. The S/ti range chosen above includes this value.

The choice of fP is based on the assumptions made for the Hi cost
formula (3.1l). The range of fP must be sufficiently small (see Chapter 3)
such that the approximation is valid. For convenience, we adopt the rénge

used in [IBAR-82].

The choice of 4 as the merge factor 1in sorting is not restrictive
because the relationships between two merge factors, say zl and z2, can

always be found as follows

log2X log2X
logle S e— and logzzx = —
log,z1 log222

Hence,

log,zl*log .¥ = log.,z2*log .X
2 zl 2 z2

- 28 -

and,

‘- log2zl*logzlx

log22
log222

Therefore, if we want to change the merge factor 2zl to z2 we simply
multiply the sort cost Miloglei (before it is doubled) by the factor

logzzl/log222.

Typically a page size ranges from 256 bytes to 4K bvtes, In these

experiments, we have adopted 512 bytes as our page size.

4.2, Normalization

In order to normalize the performance of the algorithms, heuristic
solutions are compared with the optimal solutions. These optimal solutions
can be obtained by exhaustive search., The normalization of a heuristic

solution 1is denoted by performance ratio (PR), which is defined as follows

cost obtained by heuristic solution

optimal cost - eeslbol)

The PR indicates the closeness of the heuristic solution to the
optimal solution. It is either greater than or equal to 1. It cannot be
less than 1 as the cost obtained by a heuristic cannot be smaller than the

optimal cost,

- 29 -

4.3, General Queries

In the following experiments, algorithms A, C,

D,

evaluated. A collection of 1l query structures were chosen :

(1) a1l
O OR0
(2) 02
(3) 03
(4) 04
{3) 05

and D2

are

pa

(6) 96 :

(7) Q7 :

(8) n8 :

(9) Q9 :

(10) 010

{11y 011 :

- 31 -

4.3.1. Page Fetches

For each query structure, 24 sets of random numbers were generated.

The heuristic solutions to these inputs are normalized as explained above.
The following values are computed for the purpose of comparing the
performance of the different algorithms
(1) PR range.
(2) Average PR for each query structure.
(3) Range of average PR’s.
(4) Standard deviation of the PR’s.,

The PR range is defined to be the difference between the largest and
the smallest values 1in a set of PR’s. The PR range of each algorithm is

shown in the following table

| A : 1 --1.6087 | i
f C: 1 — 2.8660 | ’
| D: 1 --1.3750 |
I D2 + 1 — 109.5281 |

Table 4.1 The ranges of PR’s of various

algorithms.

Among the four algorithms, D has the

nunber of page fetches needed in
more than the optimal solution. The
slightly larger than this, The

algorithm A in the above experiments

smallest range of PR's.

answering a query can be

worst

The expected

37.50 percent

range of PR’s of alpgorithm A is

heuristic solution obtained for

is 60,87 percent larger than the

optimal solution. The PR range of C is fairly large. It varies from 1 to
about 2.9. In other words, a heuristic solution produced by C can be
almost triple the exact solution. The most unsatisfactofy algorithm, as
far as the PR range is concerned, is D2, One sample query produced a very
large PR of 109.5281. This shows that the heuristic solution by D2 can be

very costly.

Since the PR range of each algorithm appeared to bé greatly affected
by the query structure, the average of PR’s was computed for each algorithm
and query structure. For each query structure, 24 sets of random numbers
were generated and the mean of 24 PR’S was computed. In Figure 4,1, the
curves show the relationship between the average PR’s and the query
structures used, 0Ql to lel. Each curve corresponds to one of the four
algorithms. Among the four curves in the figure, curve A and D can hardly
be distinguished, whereas curve C and D2 have some obvious high peaks which
have very large values. In order to examine the curves A, C, and D more

closely, curve D2 is not shown in Figure 4.2, It should be noted that the

Y axis has been expanded in the figure. Table 4.2 belcocw shows the rarnges

in terms of numerical wvalues

[A : 1.0009 — 1.0967 |
I C: 1.0061 — 1.2810 |
| D : 1.0044 — 1.0410 |
| D2 : 1.0004 -- 5.5885 |

Table 4.2 Average PR ranges of various
algorithms,

- 33 -

It can be seen that the upper end of the range of average PR’s for D2
is much smaller than the corresponding value 1in Table 4.1. This indicates
that the PR’s obtained by D2 are not uniformly distributed in the range
1shown in Table 4.1. The heuristic solutions obtained by D2 can be very
bad. Due to this large variation in PR’s, D2 is dropped from the
experiments, Our interest will focus on algorithms A, C, and D. 1In Table
4,2, D, again, shows the smallest vari#tion. Out of eleven average PR’s,
there 1is only one case (02) in which D has a value larger than the runner-
up (A). Out of the eleven average PR’s, there are seven values of A which
are smaller than those of C, 1In addition, the range of average PR’s for A

is much smaller than that for.C.

By comparing Tables 4.1 and 4.2 one can easily see that the PR range

and the range of average PR‘s of each algorithm are very different.

Variance (sz), defined as follows, is used to measure the variation in
PR’s

2 o 2 2
Sx° = (¥ (%1 - n’X")) /[('-1)
i=1

where x1 = data value,
X = the mean of the data values,
n’ = number of data values,

In this experiment, data value, xi, is the PR of each example; X is
the average PR for each query structure; and n” is the number of samples
tested (which is 24). We want to compute the variance for each query
structure. Data fluctuating over a wide range of values will have a large
variance. Conversely, a large variance indicates that the data have a wide

spread about the mean. The standard deviation is defined as the positive

- 34 -

Average PR

Average PR

-~

— = -
1-

~ ~
CSIIIPFIFSLS

Query Structure
Figure 4.1 Average PR’s for general query
sturctures : A, C, D, D2

1.30
1.25
1.20 |)
115 L
1.10

1.05 -

Query Structure

Figure 4.2 Average PR’s for general query
structures : A, C, D

- 35 -

square root of the variance.

Sx =] sz

Figure 4.3 shows the standard deviation of each query structure. It
can be seen that the standard deviation' curves are similar to the
corresponding average PR curves in Figure 4.2, That 1is to say, the
algorithms with large average PR’s also have large standard deviations.
For example, for algorithm C, Q3 and Q& have large average PR’s as well as

large standard deviations. This indicates that an algorithm that‘perfotms

poorly does not perform poorly all the time. ﬂamely, the PR 1is not

consistently large for such an algorithm.

At this point a general conclusion can be stated. Among the four
algorithms, D tends to produce the best heuristic solutions, whereas A
gives reliable heuristic solutions which do not fluctuate widely. C is
not as stable as the two algorithms. It tends to produce 'unacceptable' as

well as acceptable sclutions.

4.3.2. Computation Time

o

In this section the average running time of each algorithm for 24
examples of each query structure 1is presented, Figure 4.4 shows the
running time for each algorithm. There 1is no significant difference
between the exhaustive search and the heuristic methods when the number of
relations referenced in a query is less than 4. As for the exhaustive
search method, when the number of relations is greater than 4, the time
required grows exponentiallv, while the time required for the heuristic

methods appears to grow much slower than the exhaustive search. Among the

- 36 -

heuristic methods, A requires more time than the others for most of the
gquery structures, wheareas C requires less time than A, and D needs the

least time for computing a heuristic solution.

4.4. Tree Queries

Vhen the assumptions being made in Chapter 3 for the approximation
cost function are all valid,Aan optimal nesting order for a tree query can
be solved efficiently. Algorithm B gives an optimal solution in polynomial
time. In order to test the performance of algorithms A, and D when applied
to tree gqueries, the following eight tree query structures were chosen as
the 1input to the second set of experiments. For each query structure; 12

examples are tested.

(1) ol :

o=
(2) 02
(3) 03 :

- 37 -

(4)

(5)

(6)

(7)

(8)

04

05

Q6 :

07

- 38 -

Seconds

ime in

T

0.6 T

i
- n
;k
C 0.5-
.0 /)
kS F
= 0.4+ ’
> [
Q [
' 0.3 1
T P
. 1 i
@) _ / \
Re) 0-2] PR ! \
c / | / 1
@) ——
4(/—) 0.1 ‘ ‘ Aigorlithm A
X o Algarithm C
A e N L AReditm ©
PN e T | Algorithm D
O-O 'l T T T T T T T T T T : "
© A S
SEEILELSSLS
Query Structure
Figure 4.3 Standard deviations ¢of PR’s for general
" query structures @ A, C, D
0.25
0.20 - f
!
1
i
0.15 /
/
i
0.10 Ir
A
C e
0.05_' v =% D -
T Exhaustive Search
o, . r%.—._—..-?_‘f_—..—.;—..—..—.:z::.".
0.00 i'“ v" "1““1" T T /\i T T '7'1 &
©
CIFIFIPITIEELS

Query Structure

Eigure 4.4 Average running time for samples used
~of each general query structure

- 139 -

A

4.4.1. Page Fetches

In this set of experiments, the heuristic solutioné obtained from
algorithms A and D are also nqrmalized as PR’s. The optimal cost in
formula (4.1) is substituted by the optimal cost obtained from algorithm B.
Thus, the same set of statistics (that is, PR range, average PR for each
guery structure, range of average PR’s, standard deviation of PR’s) was
collected for analvsis. The average PR’s for different query structures

are shown in Table 4.3 and 4.4.

| A: 1 — 169.5106 |
| Dt 1~ 1.1707 |

Table 4.3 The ranges of PR’s of algorithms A and D.

| A4 : 1 == 15.2193 |
' D:1 — 1.0207 |

Table 4.4 Average PR ranges of algorithms A and D.

It is surprising to note that algorithm A does not behave as well as

it does 4in processing general queries (see Figure 4.2). Both ranges are

much larger than the ranges shown in Tables 4.1 and 4.2. This makes

algorithm A relatively unattractive compared to algorithm D.

N

Since algorithm B gives optimal solutions for tree "~queries, its
" average PR‘s have value 1. Figure 4.5 is included to show how the average

PR’s of D behave relative to those values ! of B (A is not shown because
J

)

“the corresponding range is too large). In general, the average PR’s of D
increase as the number of nodes in the query graph increase. That is, when
a query references fewer relations, the heuristic solutions obtained from D
are more accurate. The worst case appearing for D in the experiments 1is

only 18 percent more than the optimal solution.

The standard deviations of heuristic solutions obtained from each
algorithm are computed. Since the optimal curve B does not fluctuate at
all, the standard deviation for algorithm B is zero. Among <algorithms A
and D, A has very large range whereas D does not deviate very much. 1In the

worst case, Q8, the average PR given by D deviates only about 5 percent.

Figure 4.6 shows the standard deviations of D in comparison with those of

B. ’) . N

4.,4.2., Computation Time

Figure 4.7 shows the time required for rupning each algorithm.

Algorithm A obviously requires more time than the others to produce a
heuristic solution; whereas B and D need about the same amount of tiﬁe.
Generally the time required increases with the number of relationms.
However, as shown in Figure 4.7, the amount of time needed by algorithm A

grows more rapidly than that required by the other algorithms.

- 4] -

Average PR

1.03 5

1.02

1.01+

Query Structure

Figure 4,5 Average PR’s for tree query

structures : D

- 47 -

Standard Deviation

Time in Seconds

0.05

0.04 -

0.03 -

0.02

0.01+

0.00 T T LA T T
MY D 0 AN D

O OO0 OO OO

Query Structure

Figure 4,6 Standard deviations of PR’s for tree

queries : D

0.5

0.4- /

0.3

0.2 4

0.1+

0.0

T
S

Query Structure

Figure 4.7 Average running time for samples used of
each tree query structure : A, B, D

- 43 -

CHAPTER 5

IMPROVING A HEURISTIC SOLUTION

2.1, Interchanging Adjacent Relations

As the previous chapter has shown, the nestiﬁg orders of relations
given by the four heuristic algorithms are not always optimal. Comparing
the heuristic sequences with the optimal ones, we find that most of the
heuristic sequences are =unear-optimal, in the sense that they are very
sinilar to the optimal segquences except that a few relations are out of
order. This . suggests that if those adjacent relations in reversed order
are interchanged, the near-optimal solutions could be improved or even
upgraded to the desired optimal solutions. Thus, an optimal solution can
be obtained with sufficient interchanées. For the purpose of achieving
efficiency, the 1interchanging tactic must be done within a reasonable and

acceptable time. |

In this thesis, the interchanging tactic is applied as follows : given
a sequence of relations corresponding to a heuristic solution, an adjacent

pair of relations is interchanged. If the resulting sequence gives a

smaller number of page fetches, the former sequence is discarded and the
same process is repeated with the latter. Otherwise the latter sequence is
ignored and a new adjacent pair of nodes in the former is chosen.
Interchanging is repeate@ until all adjacent pairs have been tried without
improvement in the number of page fetches. At this point the current

sequence is consideted as the solution.

There are many ways to’ find an adjacent pair of nodes in a sequence.
Relations can be scanned, one by one, from left to right or from right to

left. Assuming that the left to right method is wused, the leftmost two

<

adjacent relations are examined first. If they are not interchanged, we
then try the second and the third relations, and so for;h. If no pair is
interchanged this process stops when the end of the sequence is reached.
Suppese that a pair of adjacent relaticons is interchanged at som; poinf
{see Figure 5.1). The question is how to pr;ceed from here. The left part
of ghe sequence has been scanned without succeeéing in reducing of cost.
Therefore, it is not necessary to rescan the entire left subsequence as the
interchanges 1involved dc¢ not alter its order of relations. We simply

-

backtrack one position to the left and repeat the same process.

The left to right scanning method is adopted in the algorithm used in
"this thesis (shown 1in Appendiz 9). The results of these experiments are

shown in the next section.

5.2. Performance of Heuristics with Interchanging

In, order to conmpare the performance of the algorithms with and without
interchanging, the same set of general querv structures and data as used in
Chapter & will be used again. - Algorithm A with interchanging 1s referred
to as A*, C with interchanging as C*, and so forth., Furthermore, the same

parameters, such as the PR range, are computed for comparison. ar

5.2.1, Page Fetches

Tables 5.1 and 3.2 show the PR ranges and the average PR ranges for

the three algorithms with interchange. The ranges are all strictly smaller

“

Current sequence of relations:

eleJolole}e

pointers

Figure 5.1 Starting position after interchanging

- 46 =

than the corresponding ranges in Tables 5.1 and 5.2.

1 — 1.5457 |
1 — 2.6531 |
1 — 1.3540 |

A
*
. s

Table 5.1 The ranges of PR’s of various
algorithms after interchanging

- | A* : 1.0000 —— 1.0607 |
[C* : 1.0017 — 1.0999 |
| D* : 1.0000 — 1.0308 |

Table 5.2 Average PR ranges of various
algorithms after interchanging

Figures 5.2(a,b,c), with different scales on the Y axes, graphically
show the changes in the average PR’s for different query structures, The
solid curves correspond to the algorithms without interchange. The dotted
curves correspond to the algorithms with interchanging. It 1is .seen that
all the dotted curves are below the solid curves. The amount of reduction
in the average PR’s is also significant. For example; the average PR of QB -
for £ is reduced from 1.2810 to 1.0999,

In Figure 5.2(a) it is seen that the average PR for A* for each query
structure is smaller than the corre;ponding average PR for A, The amount
of reduction 1is as large as 0.07. The curves Q and Dx in Figure 5.2(¢)
show the amount of reduction in the average PR’'s im not as significant as

for A. However, putting curves A* and D* in the same figure (Figure 5.3),

PR

Average

1.10 1.32
1.08 — 1.26
o]
1.06 - & 1209
o 1.14 —
1047 S 1.084
1.02 = .02 —
1 096t
S8EISSE8SSS
Query Structure Query Structure {
(a) {(b)

1.05
1.04 1
1.03
1.02

Average PR

1.01

Figure 5.2 Average PR’s of solution after
interchanging

- 48 -

curve D* gtill has the smaller average PR’s, although there 1is one
exception (for Q2). (A similar situation occurs in Figure 4.2). For query
structure Q2, the difference in the average PR°s for D* and A* 1s only
about 0.03, which is not significant 1in the overall performance of

algorithm D*,

The standard deviations of the PR’s for the algorithms with
interchanging are shown in Figures 5.&(a,b,c)5 The dotted curves show that
the standard deviations of the average PR’s decrease as the average PR’'s in
Figures 5.2 decrease. There are many query structures--such as Ql, Q2, and
03 for A*, Ql.for Cx, 01, 03, OA, and Q6 D*—having the staﬁdard deviations
reduced to zero or near-zero. This means that the variations of average
PR’s obtained by the algorithms with interchange are very small. In most

cases the average PR’s decrease by a great amount. Figure 5.5 shows the

relationships of the three standard deviation curves for A*, C*, and D*.
Algorithm D* still has the best performance. A* is the runner—up and C*

is the third.

5.2.2. Computation Time

The amounts of time required for rumning A*, C*, and D* are shown in
Figures 5.6(a,b,c) respectivelv. The gap between the two curves in a

figure is the amount of time required to implement interchanging. The

gaps show that, on the average, the application of interchanging to a
sequence requires only 0,005 seconds. However, this extra time has
different relative wmeaning to the time shown by the solid curves. The
Table 3.3 shows the relative relationships of the detted and solid curves

of each algorithm,

- 49 -

Average PR

Query Structure

Figure 5.3 Average PR’s of various algorithms
with interchanging

Q%

1
\
'

'3

Standard Deviat

0.201 -
Q.
-
0.15 1 O
>
8,
0.10 A
0
=
O
0.054 ©
oy
O
- .
0.00 v 0.0 A—tr—————
5 N vyhoHoeo
0000000000
Query Structure
{ay (b)

c 0.101
.0
T 0.084
3
2 0.06
P 0.04-
3
& 0.02-+
O
e
V1 p.00

Figure 5.4 Standard deviations of PR’s of solutions
after interchanging

—SIf

0.4

<,

b
(o
1

Standard Deviation

Query Structure

Figure 5.5 Standard deviations of various algorithms
with interchange :

- 52 -

0l Q2 03 Q4 05 Q6 Q7 08 Q9 Q10 Qll

A* | 92 75 89 68 56 51 52 51 43 48 29
Cc* 74 75 89 70 64 64 64 68 63 65 54
- D* 106 99 110 95 75 83 84 87 84 85 74 |

Table 5.3 Time (in percent) needed for
implementing interchange.

The amount of time (in percentage) needed for implementing the
interchange scheme varies for each query structure. The time needed for
interchanging can be as high as 110 percent and as-low as 29 percent of the

%

running time of the heuristics. However, this does not affect the overall

performance of the interchange algorithm because as the number of relations

referenced 1in a querv structure increases, the percentage of time needed
fér interchanging decreases. On the other hand, when compared to
exhaustive search, the extra time for improving the heuristic solution is
worthwhi‘le. Figure S.7rclear1y shows that, 1if the number of relations
invelved 1in a query structure is greater than 4, the running time of the
heuristic algorithms with interchanging is much\less than the running time.

of the exhaustive search. Therefore, the price of applyving the

interchanging tactic is not significant in comparison with the running time -

of exhaustive search,

ol bi

.

r |
M o
(®] o
o

N

Q

0.01+

i T
< M
o o
o o

SpuUooH

i
o~
<
o
S ul

oL

Query Structure

Query Structure

(b)

(a)

0
2.014
0.00

SPU02aS Ul B |

Query Structurs

(c)

Figure 5.6 Running times of algorithms with and

without interchange

- 54 =

Seconds

ime in

»

T

0.25 -

0.20 ‘ /
;
i
0.15 /
,/
0.10 4 II
1 |
0.05 /

O-OO 1 M QT T T T
~ » ~
SEEISES SIS a

Query Structure

Figure 5.7 Running times of algorithms with
interchange of relations

~ 55 =

e R TP

CHAPTER 6

COMPARISON OF NESTED LOOPS METHOD WITH SORT-MERGE METHOD

6.1. Assumptions

In this chapter a set of experiments was conddcted for comparing the
nested loops method (NLM) with the sort-merge method (SMM) [BLAS~77] which
is described in Chapter 2. We assume that there is no special access path
(such as index) available. In the sort-merge method, the relations (say Ri
and Rj) referenced in a predicate are first sorted, using the 4-wgy merge

sort, and then merged into one relation (say Rk)’ which is called an

intermediate relation. The size of the intermediate relation, Rk’ can be

computed as follows. Let ti(tj) be the length of each tuple of relation

Ri(Rj)' After joining a tuple pair from Ri and Rj the longest possible

length of the tuple of Rk is ti+tj' It is assumed that a page can hold s

bytes. Thus we need Nk(ti+t)/s pages to store Nk tuples. The parameters
»

3

of Rk are obtained as follows :

o= [fp NiNj_l

i

M = (R ((epte,)/8)]

- ’Eqk(((sui/ni)ﬂsuj/nj))/sﬂ

= [N (u/n, + Mj/Nj)_]

- 56 -

The cost (in terms of the number of page fetches) for scanning the

entire relation Ri is Mi, since all the data pages of Ri must be fetched

~once and only once. To perform a merging operation on the two relations,

R and R

i 3 both of them need be scanned once since they are sorted on the

join attribute. Hence, the merging cost in the number of page fetches is

merge cost = M, + M _,

1 h|

We assume that a given query has already been preprocessed, 1i.e.,
there 1is no one-relation predicate involved in the given query. However,
in the sort-merge method,Vafter some merging operations are performed, some
one-relation predicates may be produced (see Figure 6.1), and the sizes of

the intermediate relations resulting from this type of predicates must be

treated differently from the Nk and Mk described above, for the resulting
tuples do not lengthen and the number of tuples per page is not changed.
Suppose, for example, that the one~relation predicate 1is Pl=(R1.A=R1.B)

with the selectivity factor fP « Relation R1 has N1 tuples and Ml pages.
: 1

The sizes of the resultant relation Ri after performing P are given as

1

follows

- 57 -

Given the following query graph

Afrer PL is computed

After Pé is computed

PT!
3

)
()

P; is now an one-relation predicate.

1

Figure 6.1 Ome-relation predicate vielded from <
merging of relations

!
w
o

1

Therefore, there are two types. of predicates to be considered :
{1) Predicate referencing twc relatioms, R, and Rj'
Cost for evaluating this type of predicate

‘= gort cost of K, + sort cost of R

1 + merge Ccost

3

(2) Predicate referencing only one relation, Ri"
Cost for evaluating this tvpe of predicate

= scan cost

In the experiments the same samples asg we Qsed in the previous’
sections were used4 - The costs used in the comparisons are those of the
optimal sclutions for the nested loops method and the sort—mergé me thod.
Therefbfe, exhaustive search was applied to both the nested loops and the

sorf-merge methods. In the sort-merge method, all the possible corders of

evaluating the predicates were attempted in order to find the best order.
The costs for the two methods are compared by the relative cost (re).

s

cost for sort-merge method solution

Irc =

~ cost for nested loops method solution

The relative cost can be any positive value. If it is greatér than 1,
the cost for the sort-merge method solution is greater,thah that for the
nested loops method solution. Similarly, if the rc is smaller than 1 the

former cost is smaller than the latter. The results of the experiments are

~ shown in the next section.

6.2.1, Page Fetches

Figure 6.2 shows the average relative cost for each dquery structure.

The solid curve corresponds to the sort~mergevmethod. The dotted curve

-

- corregsponds to the nested loops method. These curves do not overlap each

other, The dotted curve, which is a straight horizontal line at rc=1, is

"well below the solid curve. This shows that the costs for the “optimal

solutions obtained by the sort-merge method are larger than the
corresponding costs by tﬁe nested loops method for all the over 200 samples
used. The smallest average rc (for Q9)'of the scolid curve is 2. In other
wérds, the smallest average cost obtained by the sort-merge method is about
double the correspondiﬁg cost by the nested loops method. The most

unsatisfactory case is Q6. 1Its average cost by the—sort-merge wmethod 1is

about 6 times that by the nested loops method.

Based on the assumptions of this set of experiments, the cost for

sorting a relation is larger than that for merging twc relstions. Suppose

T 777 that there are m predicates and n relations in a “given query. In the

\

sort-merge method, at most m mergings but at least ﬁ\ sortings are

necessarv. However, in the nested loops method, only n-l égftings are

required and the number of. page fetches needed for each réiation\Qi.e., Hi)
is kept small, Therefore, due to the fact that the cost needed for

evaluating a querv by the sort-merge method is dominated by'the sort tost,

\

it is not surprising to see the results shown inm Figure 6.2. If the sort
R .

rost is reduced, the Toral cost is also reduced significantly. To 1mpt6§é\;’ o

the cost of the sort-merge method, we can use a larger z merge factor, say

Average relative cost

RS) © A © 0 O X
SIEIELEESSS
Query Structure

Figure 6.2 Average relative costs for
SMM and NLM solutions

- 6] -

z=B, in the sorting. Figure 6.3 shows 'sorting cost for the z-way merge
sort for different values of z. It is seen that as z increases the sort

cost decreases. However, as we double z, say from 4 to 8, the sort cost

is not reduced by half. ‘Therefore, the solid curve in Figure 6.2 would
‘not come down to half its height through this change. Thus the solid
curve would stilll stay above the dotted curve., Furthermore, if an 8~way
merge sort is also used in thg nested loops method, thg cOBt reqpired faor
evaluating a query will be reduced as well (the relative costs remain as
f’s}. Therefore, the total cost of the sortFmerge method will be strill

nigheér than that of the nested loops method for all the saa?les tested.
’ R

6.2.2. Computation Time

Figure 6.4 shows the amounts of time required for running the sort-
merge and nested loops algorithms. The dotted curve corresponds to the
nested loops algoritne with exhaustive search for the optimal nesting

order. This curve is the same as exhaustive search curves shown in Figures

4,4 and 5.7 (except that the scale is different). It 1s seen that the

amount of time required by the sort-merge algorithm grows more rapidly than

that needed by the nested loops algorithm,

4000

o
9
o 30004
o
c
7,
2 2000-
O
°
L
D 1000 =2
o ,
O =3
a =
=8
O—w-é"“ r y y . .
0 S0 100 150 200 250
.Sizes of Relations in pages
Figure 6.3 Sorting cost function ch[iilong;}
8 '
8
c &
Q ;
O ;
. i
g
R
© §
£ P
; 2 1 } ii

| o
ye ‘l&—_-_~//// Sert Marge Methed

Q ’ ’ v v v A A B Y Y

> o w N
CIPTISEEFSSS

Query Structure

Figure 6.4 Running times for sort-merge and
nested loops methods

- 63 -

e —

CHAPTER 7

CONCLUSIONS AND OPEN PROBLEMS

Zﬁl° Conclusions

From the results obtained 1in previous Chapters, we come to the

following conclusions :

rin
[
iy

Among the heuristic algoritims A, T, D, and DZ, D gives the best
heuristic solutions - for both general and tree queries. The running

time of D does not grow rapidly as the number of relations involved in

a query increases., Ties in choosing Ri do not happen frequently.

{2) Algorithm A {is the runner-up. It gives acceptable heuristic

solutions to all of the general gquery samples used. But for tree

queries, some unacceptable heuristic solutions are produced. This

makes the algorithm unattractive compared to D. The amount of

running time required for A is larger than that for D. Ties occur

more frequentlv than for D.

(3) Algorithm C is the third best heuristic. It produces both acceptable
and unacceptable heuristic solutions. However, unacceptaﬁle heuristic

solutions occur more freguently than in A. Ties do not occur as

frequentlv as Ehé?' do tn A. The running time is shorter than & but

longer than D. .

- 64 -

W

(4)

(5)

(6)

(7

Algorithm D2 1is considered the least desirable algorithm. The
heuristic solutiénS' given are not stable in the sense that they are
sometimes as good as those given by other algorithms, and sometimes

much larger than the acceptable solutions.

The heuristic solutions are generally improved with the application of

interchanging of adjacent relations, The overall ranking of the
performance of the heuristic algorithms dé not change, 1i.e., D 1is
still the best whereas A is the second best and 86 forth. The amount
of time needed for {mplementing the interchange scheme varies in each.
querv structure., However, as the number of relations referenced in a
query strﬁéture increases, the percentage of time for 1interchanging

decreases.

The evaluation of nested loops and sort-merge methods is based on the

assumptions that thg selectivity factors are very small and the unit

The results show that the optimal solutions for the nested loops
method tend to give the smallest number of page fetches in all the
samples Qsed. The optimal solutions for the sort-merge method are at
least double those for the former. The running time of the former

method is much less than that of the latter.

When the assumptions for the approximation function Hi (3‘44\ are all

valid, two special cases can be solved precisely. Using algorithm LQ,

solutions for Algoritim 3R is applied to a general query referencing

three relations. It gives the optimal nesting order of relations.

?.2. Open Problems

o

There are several open problems that can be 1looked into 1in future

work.

-’

(1) We use algorithm D to solve a gengral query. After proceeding through

some stages, the remaining unordered relations form a tree query. Can

the performance be improved If we use aigorithm B to obtain the

optimal solution of the tree query ?

{2) The cost function used in this work is derived under the assumption
that the parameters, such as the values of dttributes, are uniformly
distributed. If a normal distribution is considered instead, what

cost function do we obtain ?

{3) Much can be done on the comparison of the nested loops and sort-merge
methods. This might " occur when fP is not very small, and more
assumptions can be made for the sizes of the intermediate Telations
obtained after the mergiﬁg'(for example, one of the join fields can be
eliminﬁted from Vthe composite tuple which has lgngth ti+tj)'

Supposing that a sort-merge algorithm wuses a block of k pages,

instead of one page, as the unit of transfer between main storage and‘
secondary storage, the sort cost function becomes 2[2H/k)logz(H/k§1.

How well do the nested loops and sort-merge algorithms perform ?

- 66 -

Il.

13‘

APPENDIX. 1 : NOTATION

}" -
>

Rl’RZ""’Rn : relations referenced in a given query.

Ni : number of tuples of Rj.

M, : number of pages needed to store all tuples of R

i i°

ty length (in bytes) of each tuple of Ri'

s : page size (in bytes).

B .A : attribute A of relation R

i® i°

Ri.AQRi.B : one-felation predicate.

P = Ri.AQRj.B, i#3 : join predicate.

f : selectivity factor (the expected fraction of tuple pairs from Ri

and Rj satisfying P).

pred(i) : {Ptpn’ak.Aenh.B',k,ngi}.

PRED(x,1) : {P|P='R .aBR .b", k<i}.

Ti : PRODUCT [FOR P IN pred(i)] OF fp.

T

(the product of all the selectivity factors associated with the
predicates in pred(i)). *

F{1,2,...,1} « F .

F{1,2,...,1{x} : PRODUCT {FOR P IN PRED{x,i)] OF f?'

J

- 67 -

APPENDIX. 2 : ALGORITHM A

Algorithm A .

Input:

Query Graph G(Q), the set R* of relations referenced in Q, and the

predicates of O together with their selectivity factors.

Cutput:

Nesting order and the directed spanning tree used for the nested loops

method, together with the attribute of each relation on which it is to

be sorted.
'« Construct the selectivity diagram SD(Q)=(V,E).

2. Forieach RER* let R1=R and R=R*-{R}, and repeat Steps 2.1 aund 2.2.

2.1. For i=n,n-1,...,3, repeat Steps a) and b).

.

o33

a) Choose Ri (from R) and Pi which minimize Hi'

b} Let Efgf{Ri} and delete from SD(Q) the node Ri and the edges

incident on it.

2.2. Let R, be the single remaining node in R and compute the cost C

of (3.2).

3. Output the cholces {Rl,R7,...,Rn) and {PZ""’Pn} that led to the

ainimum T in Step 2.2.

- 68 -

R

- APPENDIX. 3 : ALGORITHM B .

“procedure NORMALIZE(S);
commemt : S i1s the input sequence of strings;
while (starting from the beginning of S) there is a pair of adjacent

strings, S| followed by S,, in S such that r(S;)3r(s,) do

begin replace S; and S, by a new string (s,S,) end;

Algorithm B

Input:
Tree query with a specified roo?\ﬁﬁi\:if relations referenced in Q,

their sizes and the predicates of Q together with their selectivity

factors. ’/)

Dutput: —

Nesting order,

l. Let a string be a sequence of relation(s). Consider each node as a

string. X =

2. If the tree is a single chain then stop (the desired nesting order is

given by the chain).

3. Find a wedge (see example in next page) in the tree.

4. Apply NORMALIZE to the sequence correspogﬁing to each chain of the
wedge. The sequence of nodes corresponding to a component string in
the ocutput of NORMALIZE is considered as a unit (a supernode) from now

ot W

- 69 -

5. Merge the two chains into one by ordering supernédesrby ‘the ranks of

the assiciated strings (from the smallest to the largest), and go to

Step 2.

Example: The structure of a wedge is two chains connected by a node.
A wedge is circled in the given tree,

- 70 -

- .
APPENDIX, 4 : ALGORITHM C

Algoritim C ' S

Input:
Query Graph G(Q), the set R* of relations referenced in Q, the

predicates of Q together with their selectivity factors, and the

associated minimum spannings tree of Q;

/
Output:

Nesting order and the directed spanning tree used for the nested loobs

method, together with g&e attribute of each relation on which it is to

—
be sorted.

1. Construct the selectivity diagram SD(Q)=(V,E).
2. For each minimum spanning tree for SD(Q), do step 3 :

3. For each RER* repeat steps 3.1 and 3.2.

3.1. Let root=R, apply algorithm B.

3.2. Using the nesting ordei}obtained in step 3.1 compute cost from -

formula (3.2).

4, Output the choices {RI’RZ""’Rn} and {PZ""’Pn} that 1led to the J//

minimum cost in step”3.2.
bS]

- 71 -

APPENDIX. 5 : ALGORITHM D

Algorithm D

Input:
Query Graph Q, the set R* of relations referenced in Q, the predicates

of Q together with their selectivity factors.

Dutput:
Nesting order and the directed spanning tree used for the nested loops

method, together with the attribute of each relation on which it.-is to

be sorted.

1. Construct the selectivity diagram SD(Q)=(V,E).

2. For each RER* let R1=R,_§=R*-[R], and R’=[R], repeat steps 3 and 4.

3. For i=2 to n-]1 repeat the following steps(3.1, 3.2, 3.3):
3.1. For each qug do the following:

3.1.1. Draw the graph Gp(1i)=(Vp,Ep) from SD(Q)
where Vp={v|v€R’+[Rj]}

Ep={(a,b)|(a,b)€E and a,bGVp}.‘:

3.1.2. Comthe FN = F{l,z,..,;1_1|j}*Nj

where F{1,2,...,i~1]3j} = the product of the selectivity o
factors associated with the
predicates in PRED(j,i-1), ‘

Nj = number of tuples in Rj

-72 -

3.2. Choose fp from pred(i)-pred(i-1) and compute H .
Py)

3.3. Let‘gfg-{Ri} and R'tR’+[Ri].

Let Rn be the single remaining node in R, and fP be the
, n

selectivity factor chosen from pred(n)-pred(n-1).

Compute cost from formula (3.2).

Output the choices {Rj,.-+»R } and {P,,...,P } that led to the

cost in‘étep 4,

- 73 -

minimum

minimum

APPENDIX. & : ALGORITHM D2

Algorithm 9_2

Input:

Querv Graph O, the set R* of relations referenced in O, the predicates

of O together with their selectivity factors.

Gutput:

Kesting order and the spanning tree used for the nested loops method,
together with the attribute of each relation on which it is to be

sorted.

Construct the selectivity diagram SDEQ)-(V,E).

For each RER* let RlxR, R=R*-[R], and R’=[R], repeat stepé 3 and 4.

For i=2 to n-1 repeat the following steps(3.1,3.2):

3.1. For each R.€R do the following:

b .
Compute Ratio(j) = (F{1,2,...,i=1|3}*N —1)/fP M,

i J
where F{1,2,...,1i-1]j} = the selectivity factors associated with
the predicates in PRED(j,i-1),

3

Nj = pnumber of tuples in Rj’

fP = the minimum selectivity factor associated with the
] predicates in PRED(j,i-1).

3.2, Choose the relation with minimum Ratio as Ri'

Choose fP from pred(i)-pred(i-1) and compute Hi'
i

3.3. Let R=R-[R,] and R'=R’+[R,].

- 74 -

Let Rn be the single remaining node in R, and f be the uminimum

selectivity factor chosen from pred{m)-pred{n-1).

*\Zompute cost from formula (3.2).

utput the choices {Rl..,}.,w {P,,,...,Pn} that led to the minimum .

cost in step 4. K

- 75 -

£

A#PPENDIX. 7 : ALGORITHM 3R

Algorithm 25

Input:
Ouery Graph G((), the set R* of relations referenced in

predicates of O together with their selectivity factors,

Output:

Nesting order and the spanning tree used for the nested loops
R 4

G, the

method,

together with the attribute of each relation on which it is to be

sarte&.
l. Construct the selectivity diagram SD(Q)=(V,E).

2. For each R6R* do the following

2.1. Let Ra=R, and the remaining relations be Rb and Rc respectively.

Let the predicate referencing Rarand Rb be Px;
the predicate referencing Ra and Rc be Py;

the predicate referencing Rb and Rc be Pz'

2.2. Compute : u=(foNbMIN(ny,sz)-fP)/Mb;

v==(fP NCMIN(fP ,fP)-fP)/Mc.
X z X

y 4

L)

2.3, If u < v pick {RaRbRc} as the desired order, otherwise pick the

sequence {RaRcRb}' Compute the cost using formula (3.2).

3. Output the choices {R{,Ry,sev 4R} and {P,,ves,P } that led

minimum cost in step 2.3.

- 76 -

to the

APPERDIX. 8 : ALGORITHM LQ

Algorithm LQ

‘Input:
uery Graph G(Q), the set R*¥ of relations referenced in 0, the

predicates of 0) together with their selectivity factors.
Output:

Nesting order and the directed spanning tree used for the nested loops

method, together with the attribute of each relation on which it is to

be sorted.
l. Let the querv graph be G(Q)=(V,E). For each e€E, do the following :
.1, Deletg e from G(Q).
1.2. For éach R6R* do Steps a) and b).
a) Let root=R, apply algorithm B.
b) Gempute cost from (3.2) by using the order output from step a).

2. Output the choices {Rl,Rz,...,Rn} and {PZ""’Pn} that 1led to the

minimum cost in Step 1.2b).

Ly

T

- 77 -

APPENDIX. 9 : INTERCHANGE

Algorithm Interchange

Input:

A sequence of relations Sn (a heuristic solution) together with its

cost CO (in number of page fetches).

Output:

Nesting order and the corresponding cost.

Let séquence Slzso and cost C1=CO.

Starting from the leftmost relation of S;, let the pointers i and j

point to the first and second relations respectively.

Interchange the relations of S1 pointed to by 1 and j and obtain

sequence S5,.

Compute cost C, from formula (3.2)..

2
If cost C1 is smaller than or equal to cost CZ’ discard 82 and C2’

advance the pointers of S. one position to the right{. Go to step 6 if

1

the end of the sequence S, is reached. Otherwise, repeat the process

1

from step 3. If cost C, is larger than cost C,» let §;=5,, C,=C,, j=1,

and 1=i-1. Repeat the process from step 3.

Output sequence S1 and cost Cl'

- 78 -

REFERENCES

[AHO-79]
7 Aho, A.V., C, Beeri, & J,D. Ullman, The Theorv of Joins in Relational

Databases, ACM Trans. on Database Systems,- Sept. 1979, pp.297-314.

[ASTR-80] .
Astrahan, M.M,, et. al., Performance of the ©System R Access Path
Selection Mechanism, Information Processing 80, 1980, pp.487-491.

-

{BLAS-77] : .
Blasgen, M.W. & K.,P. Eswaran, Storage Access in Relational Data Bages,
IBM System Jourmal, Vol. 16, 1977, pp.363-378.,

[CoDD~70]
Codd, E.F., A Relational Model of Data for large Shared Data Banks,
Comm, ACM, Vol.13, June 1970, pp.377-3R7. '

[DFMO-80] .
Demolombe, R., Estimation of the Number of Tuples satisfying ~a Query
Expression in Predicate Calculus language, Proc. 6th Inter. Conf. on
Very lLarge Data Bases, Oct. 1980, pp.55-62. :

{IBAR-82]
Ibaraki, T. & T. Kameda, m The Optimal Nesting Order for Computing N-
Relational Joins, Technical Report TR 82-15, Department of Computing
Science, Simon Fraser University, 1982. To appear in ACM Trans. on
Database Systems, 1984. T T

[KIHM-80]
Kim, W., A New Way To Compute The Product and Join of Relations, Proc.
ACM-SIGMOD Inter. Conf. on Manag. of Data, 1980, pp.179-187.

[MERR-83] . ,
Merrett, T.A., Why Sort-Merge GCives the Best Implementation of the
Natural Join, ACM-SIGMOD Record, Jan. 1983, pp.39-5l.

{PERC-76])
Percherer, R.M., Efficient Exploration of Product Spaces, Proc. ACM-
SIGMOD Inter. Conf. on Manag. of Data, 1976, pp.169-177.

[ROSE-80] ' :
Rosenkrantz, D.J., & H.B. Hunt, Processing Conjunction Predicates and
Queries, Pro¢c. 6th Inter. Conf. on Very large Data Bases, Oct. 1980,
pp.64-72. R

[SELI-79] ‘
Selinger, P.G., et. al., Access Path Selection in a Relational Database
Management Systems, Proc. ACM-SIGMOD Inter. Conf. on Manag. of Data,
May 1979, pp.23-34. : _ —

- 79 -

[STON-T76] , o
Stonebraker, M., et. al., The Design and Implementation of INGRES, ACM

Trans. on Database Systems, Vol.l, Sept. 1976, pp.189-222,

[WONG-T786] :
Wong, E. & K. Youssefi, Decomposition - A Strategy for Query
Processing, ACM Trans, on Database Systems, Vol.l, Sept. 1976, pp.223-
241,

[YOUS-78]

Youssefi, K. & E, Wong, Quefy Processing in a Relational Database
Management System, University of California, Berkeley. College of
. >

Engineering, March 1978. '

[YAO-79] _
Yaoc, S.B., Optimization of Query Evaluation Algorithms, ACM Trans.

Database Systems, Vol.4, June 1979, pp.133-155.

on

- 80 -

