
~ T ~ m  - 

Microfidre Service 

onawa, ca;MQ 
K? A ON4 

rr 
NOTICE 

La qu6IitB de cette rrticrofkhe depend gfandement de la qualit6 
de b t k e  sounrise au  ofa am age. NOUS a v m  tout fait pour 
assurer m e  qualid wp&i8ure de reproduction. 

Slil manque des pqps, veuiflez communiquer avec I'univer- 
sit& mi a confb6 b grade. 

La quslit6 d'impression de certaines pages peut laisser 
d e s i m . s u t o u t s i l e s p e e e s ~ o n t B t e ~ a p h ~  
A f'side d'un ruban us4 ou si I 'mersit6 nous a fait parvenir 
me photocopie de qtdit6 mf&imre. 

Les documents qui font dd@ I'objet d'un droit d'auteur (articles 
de revue, exsmens p&Ms, etc.) ne sont pas microfilm8s. 

/ LA THESE A M 
MICROF~LM~E T E E  QUE 

NOtlS L'AVONS F E Q E  

THIS DISSE,RTATH)N 
HAS BEEN 
E w n v  



i - 

Nattonal Library BibfiothBque nationat e 
du Canada 

- 

.- 
9 

CANADIAN THESE$ TH~SES CAN~DIENNES 
OIY MlCROFlCHE SUR YlCROFlCHE 

I 

NAME OF AUTH(X/NOM DE L'AUTEUR David ~ a i i ~ o k -  Cheung 

~ite-~~tirnai Termination Protocols for 
T ~ T L E  OF THESISITITRE DE LA THESE 

Network Partitioning in a Distributed 
- -  - - .  - - - -  -- 

* Database ' 

U N  IVERSITY/UNIVERSIT~ 
Simon Fraser University 

DEGREE F W  WHICH THESIS W A S  WESENTEDl Master of Scienke 
GRADE POUR LEOUEL CEnE  THESE FUT PR&NT~E 

NAME OF WiWWtSOR~'ff0bf DU DIREC TEM DE THESE 
Tiko Kameda , 

- - - - -  - .-- 

Perrnrssion ts herby granted to the NATImAL LIBRARY OF L'aurwisation esr, par la prgsente. accordge B la BIBL/OTH& 

CANADA to microfifm this thesis and to f e d  or sell copies QJYE NATIONALE DU CANADA de microfilmer cette these et 

of the film. de prBter w de vendre des exemplaires du film. 

The author, reserves other publication rights, and neither the L'auteur se rgserve fes autres droits de publication; n i  la 

thesis. n u  extensive extracts from i t  may be printed or @her- thdseni de longs extraits de celle-ci ne doivent i t re  imprim& 

wise reproduced without the author's mitten permissim. w autrement reproduits sans l'aut&satim &rite de I'autew. ,, 

F I ~



-4 THESIS SUBMITTED IN PARTIAL FL-LFILLlIElT OF 

THE REQUIRElll3TS FOR THE DEGREE OF 

Computing Science 

David \X-ai-Lok Cheung 1953 

U F U S E R  bTIvERSIn 
-I L, 

\ August 1984 

-411 rights resenred. This thesis may not be 
reprduced in %-hole or in part, by photocopy 

or other rneang without permission of the author. 



Name: David Wai-Lok Cheung - 
Degree: Master of Science 

Title of Thesis: Site-Uptimal Terminatian Protocols for 
Network Partitioning in a Distributed 
Datahase 

Examining Committee: 

Chairperson: Lou Hafer 

- 

&hur Lee Liestman 

WwShun Luk 

- - -- 

External Examiner: Francis Chin 
- - Department of Computin~ Science 

University of Alberta 



PARTIALCOPYRIGHT LICENSE - 

I hereby grant t o  S fmk Fraser IJd vers l t y  the r i g h t  t o  fend 

my $es i s, proJect o r  extended essay ( the tit1 e of which i s  shorn below) 

to users of the Simon Fraser Universi ty Library, and t o  make p a r t i a l  o r  

s ingle copies only fo r  such users o r  i n  response t o  a request-from the 

l i brary of any other- unlversi ty, o r  other educet ional  l n j t  i t u t  ion, on - 

i t s  own behalf or f o r  one of i t s  users. I fur ther  agree that permission 

f o r  mul t ip le  copying of t h i s  work fo r  scholarly purposes may be granted 

by me or the Dean of Graduate Studies. I t  i s  understood t h a t  copying 

or  publication - - o f  - - - -  t h i s  work fo r  - f inancial  - gain shall not be allowed 
- - - - -  

without my wr i t ten  permission. 

T i t l e  of Thesis/Project/Extended Essay 

. SITE-OPTIMAL TERMINATION PROTOCOLS FOR NETWORK 

- - - - - - -- pp 

PARTITIONING IN A DISTRIBUTED DATABASE 

Author: 

(signature) 

David Wai-Lok Cheung 

17 August 1904 



-. 
:- 

In a d~nrlbuted database system, a transaction submitted a t  a site may require execution of 

~ t s  subtransactions at a n u m k r  of sites fn order to guarantee thal no partial result of a transac- 

tion 1s reflected tn a database. renderlng the datltbaw inconastent, all s~ tes  ~ n w l v e d  mustuhani- 
,' 

mouslv commlt or abort the transaction. Thus a commit *proiwd is required. 
* .-* 

-4 dlstrlbuted database system must guarantee conslstencv even ~f there 1s fallure. When 
G 

fa lu re  OCAALS ~t 1s desrraht to have a ~ 4 m i r n _ 4  p-aaol (TPI t ennmae  all thp affected %ran- 

sactions consistently. However, In the case of network partitioning, ~t has been shown that there 

exists no commit protocol that is nonblocking, i.e, some participating sites may have to wait for 

the repair of this type of failure before they can decide t o  commit or atxn-t a transaction. Hence 

the goal here is to design a site optimal termination- pr-~tocol, which has the minimum-expected 

- -  number of waiting sites Such a protocol will maximize the availability of a database 

We consider the case in which realizable componenr slates of a pr t i tmn may have 

diffeient probabilities of wcu;rence, We study two classes of TP's, namely, size-based TP's and 

count-based TP's and show that there exists a quorum-based TP that is site optimal in these 
-+ 

classes Results in this thesis indicate that the set of quorum-based TP's p l a y  an essential role in 

the design of site optimal TF's, both in the decentralized and the centralized cases. 
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INTRODUCTION ' 

1.1. Transaction Atomicity in a Distributed Database System 

In a distributed environment, a transaction submitted at a-site may require &&baseentities 
- 

nored at other a t e  and thus cooperative execution at a number of sites These sites are referred 

to as the participating sues of that transaction. A transaction is a logically af&k opeption 

the consistency of a database, the effect of a transaction should be either fully reflected in the . 

database or not at all. 

d 5 If a transaction is executed to comple n and its effects are permanently incorporated into 

the database, we say that the transaction is wrmnitted. If one of the participating sites cannot 
\ 

te the transaction, then all the other sites have no choice but to abot-r the transaction:. 
*; 

l h e r e ~ e ~ y ~ ~ a s ~ ~ h ~  a t ransac t ion~EGiGtbeFle ted :  for instance, request for abortion 

by a subtransaction itself, deadlock and hardware failure. 

In our discussion u-e will use the term subtransactions to refer to different parts of a tran- . 

saction which are executed at the participating sites Ln order to guarantee atomicity, all sites 

involved in a transaction must unanimously commit or abort the transaction. Hence wmndt pro- 

t m d s  (see Section 1.2) are required in distributed' database systems. In the following section, a 

well known protqcol called the two-phase commir protixd [L-9.3.P-76, G I L ~ Y - ~ ~ I ,  which guqran- 

tees atomicity of transaction, will be introduced. 



In a distributed database .system, any protocol coordrnating the,subtraosactions of a transac- 
it 

tion can be modeled as cc5lection of finite state automata (FSA), one associated with each partici- 
*- 

paring site [SKEE-811 A f ink state automaton in a certain stat; reads a s t  of niesages from 

other sites, takes an appropriate action, sends out a set of messages io other sites (FSA) and then 

% 
changes rts state. hitially, the site which isuw a transaction sends its subtransactions to the 

- - - -  - -- - - - - - - - - - - - - - 
- 

-- 
- 

ap&qxiate $tes and each of these sites detefrmnes individually whether'h would commit or 

abort the transaction. This step can be conceived as a voting step in which every site involved 
- .  

expresses its intention to comm~t or abon. -4fter all votes are received, a global decision will be 

-- 
ma& ~ a F F ~ ~ t ~ ~ ~ ~ 0 n  tr~Arh~iunan-i~mm&-r~aboab0~Orab0~~~ly corn- 

mit the transaction, 

Different protocols use different approaches to collecting votes and making global decision. 

However, thev must all follow the same commit rule , i& a transaction must be aborted if one or 

more sites have decided to abort it; otherwise, it must be committed Protocols which follow the 
* 

commit rule are called comnrlt pr&&x. In tbe follou-ing we introduce two c o a t  protocols, 

namely, the centralized two-phase commit prozcrcd and decerur- r w ~ p h a s e  cDmmit protocd 

These protocols >both have two phases and four states 9 

State q is the initial state before a site has made its voting decision. 

Sfate R- is the wcdting state in %hich a site waits for the message containing the global deci- 

sion after it has sent out ~ t s  voting mesage 

State c is the camnrir state in which a site has cornmined its subtransaction. 



with each participating sire. Lm what follows we 11se the term 'site' io refer to the FS.4 at  that 

site, 

Initially. all sit&m m hate q. K a ,site 1-0te5 'no', i t  g e  mto state a after it has sent its 
i s  

v a e  to the coordinaror. If it votes 'y&, it .goes into the waiting state u-- As for the coordinator, . 

it is afso in state u* hefore making a global decisiaa. In the second phase, all sites that are in state 
- - -  - - - -  

w change their nates to tither c or a unanimw according to the global decision received from 

message to the cwrdmator+ If a n i e  v o k  'no", this refieas its intention to abort the 
+ *  

tnrkction. It a m  its s u b ~ r a ~ c r ~ u r !  arvr sending out irr voting mesiiage-nd. 
- - 

if a s ~ t c  votes "yesn. rhe n t e  is ready ro c o d t  tbe tran&ction if a13 other s i t s  agree. 

However, t t  msnrs: canmi: the tr;rnsac:mn at this pint ,  it has to wait for the global 

If all sites hawe voted "yes: then the coordinator broad- a 'commit' rnessge. Oth- 
1 

-411' the participating sites then act ( i . ~  either commit or abort) unanimously accord- 

ing to the message from the coordinator. 

This protocol fan be represented by a collection of finite state automata CFSAI, one associated 



graphs (see Figure I.li. Sore that 1:: these graphs if a site ism state q. all other sites must be in a 

mte which rs adpcent to s a t e  q, iz, either statp q, state w or state a. and no site could be in state 

c. Sirnilarls, if a site is in sa t e  s no site could tx in state q or state a 
2- 

U-ith- this protocol, diEerent sires cwld be in different states at anr given time, but no site 

could lead another site b v m m  rhaD one state.transition during the execution of the pro&ol. 

- - - 

Therefore these FSA are cafled s ~ ~ ~ s  ~ i t h j n  om-safe [SKEE-8laJ 

Tbe three-phase conmi: protocol has a decentralized version. In the decentralized case, no 

coordinator is appointed b u r  each site will collect all the votes and usle them to make the global 

PHASE ONE 

4f a site decides ao abon, it broadcasts a 'no" mesage to all other participating sites 

and aborts the transaction. 

If it decides to commit, then it broadcasts a "yes" mesage and waits for the votes 
+t 

from all  other partitipasing sires. 

After it has received all the wring messages, each site makes a global decision accord- 

ing to the commit rule: i-e, commit if all sites vote to commit, abort otherwise. Since 

a11 sites receive the same set of voting mesages they will all take the same final 

action, either fanunit or abort. 

The FS-4 aswciated a-lrh this p t o c o l  mn a b  be represented by a graph (see Figure 1.2). I 
- - - 

k 

Srnce there is no coordinator, all pareifipting sites have the same FSA and these FSA are all q n -  

chronous within one state. 



f ~ - r t - p h m  cornmi! pror~ofs  SuarantPt atomicity of distributed transactions, but this is only 

a 
t rue In case there IS no faliure. Consider the centralized tu-*phase comrmt protocol. Suppose 

three ntes s,, 3 ,  and r, where sr is the coordinator. In phase one, site s2 sends a "yes" to s,. 

After a while. IL detects that i t  is s~parared from both sites 5 ,  and s3. This could happen because 

of site failure or network p a ~ i t i o ~ i n y .  In this situation, slte s2 has no information about what 

ha5 'ahen place tn utes 3 ,  and ,7 : the transaction could have been aborted or committed these - 

sites. The only rhmz that slte 5: could do is ro v:ait until the failure is repaired and then com- 

mumcare agam u-irh 5 ,  and s3 i:: order to reach a global decision. 

- - - -  

KhiIe site s2 is bloclied, waiting for recovery from the failure, no new transaction can 

access that par1 of the database which will be updated by the suspended transaction at rl To see 

th15. &pee the concurrency control scheme used is the 'locking schemem. Then a part of the data 

b a e  which %-ill be updared by the suspnded transaction has been locked b3- the transaction, and 

I - 
hence no nea- transaction can accesr it Lf another concurrency control scheme, cg. t m e  s tamp 

ing*, is used the problem will s i l l  occur. It is this bkding property that degrades the perfor- 
- - - - - - - - --- 

mance of the two-phase commit protocol m the presence of failure. 

.A similar problem occurs for the decentralized ru-o-phase commit ~rotocol. Hence two- - 
phase commit protocob are called blclcking protoco% ISLEE-8lb) if failure occurs, a distributed 

transaction, executing under a blocking protocol, could have some of its participating sites wait for 

a long tune for recovery from the failure. This is very yndesirable and hence the problem of 

deslgrung rwnblwking p r o r d s  arises. -4 n o n b l c ~ h g  protocol terminates all participating sites to 

elther abort or COWL + 



- - - -- - --- - -- - - -- - - - - 

chapter one sectiontl.4 - - - 

I 

I 
- - - -  - ---k -- -- 

1 A. Three-Phase Commit ~rotocob i 
AS &a above, blofking property degrades the performance of two-phase commt protgcols. 

, 
i 

1s there any protocol that is free from blocking property? Is it possjble to design protocols uthich 
1 .  

are nonblock~ng for certain types of failure? The first nonblocking commit protocol foi site 
I 

failures was propsed by Skeen [ ~ I i ~ E - t i l b I  He propsed the three-phaxe commit protock and 
I 

showed that ~t is a nonblockmg commit protocol for site failures. This type of protocol is:essen- 
- - 

tiallp a modification of the twephase commit protocol. The following is a description of his pro- 

tocol for the centralized model. 

ONE 

This phase is the same as PtL4SE OX€ of the two-phase commit protocol. 

If at least one sm r o t s  "no: then the coordmator broadcasts an "abort" message and 
--- - 

all sites abort the transaction. 

If all sites vote "yes", the coordinator broadcasts a =prepare-to-commit" message to 

every participating site. After each site has received this message, it returns a 

"confirmation' message to the coordinator. 

T H R E E  

After the coordinator has received "confirmation" messages from all other sites, it 

braadwts a *commit" mesage. A site commits only after it has received this message: 

The E X  associated a-irh the coordinator and other participating sites of this p ~ t o c o l  c& be 

represented b -  the t r o  graphs in Figure 1.3, =here p is a new state which indicates the state of a 

site afwr ft Bas seat wt a mrm&rrnatm" m m g e  but More i t  has commit&, fie, entered state 
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- - - -- -- 

c). Sole that the th ree -phdcommlt  protocol s also synchronous w i t h n  one state. The 
Z 

significance of the new stare p is that the ex~stence of a slte in state p rndicates that the global 

decision is a "commit" dgision. Since t h s  protncol is synchronous within one state, if a site has 

committed, no other site could be in state q or a.- Sote also that if a site has aborted, (i-e., entered 

state a), no s ~ t e  could be in state p o;r. 
m 

Once a site failure ~s detected, al l  the oprational sltes canschange  the information they. 
- 

have and use the following protocol to terminate a transacfh.  

If there exists a site' In. states F or c, all oprational sites commit. Otherwise, all sites abort. 
, . 

TBw no operational site needs re  wait, that is m sag, the three-phase commit protocol is non- - 

blocking for site failure. Hoxever, this p r o t ~ o l  is not nonblocking for a particular type of failure 

called "network partitioning'. Ln the next chapter, the relation between the three-phase commit 

~rot0C0l and network partitioning will be discussed in detail. 

The three-phase commit protocol also has a decentralized version without coordinator. 

Decentralized three-phase cormnit protocol 
- - 

-- - 

PHASE ONE 

This phase is the same as PRASE OSE of the decentralized two-phase commit proto- 

col. 

PHASE T W O  

If the xt of votes received b3- Ate contains a "no" message, then the site aborts the 

transaction. . 
2 

If all the votes received are *yesm, then the site broadcasts a 'confirmation" message to 

every other site. 

PHASE THREE 



the transaction. 

The FSX of this protocol is represented by the graph in Figure 1.4. The decentralized 

three-phase commit protocol is also nonblocking for site failures. The same protocol that was used 

in the centralized case to terminate transactions in the presence of site failure can also be applied 

to this case. In the rest of this thesis, a "commit protocol" will denote the three phase commit pro- 



CHAPTER 2 

7-ERhlINLrlTION PROTOCOLS FOR NETWORK PARTITIONING 

2.1. Components and Component States of a Partitioned Network 

In a dmributed system ntes communicate vla a communlca'tlon network. A mesage issued 
- 

at  a site may go through some other sites before it reaches its destination. If gome sites or com- 

munication links fail, it is pssible that the sites are divided into subsets such that the sites in a 

f t i k t  can still cornmmieate with each other, whereas sites in different subsets can no longer 

communicate. Failure of this type is kndwn as network partltioniing [SKEE-82al The sites 

within a subset can exchange information and try to decide on a concerted action (commit, abort, 

or wait) to be taken by all the sites within that subset. 

In order to investigate actions to be taken by each site in the event of network partitioning, 

we define the terms, component and the state of  Q component (component state, for short),' in 
- --- - - - -- - - - -- 

the contest of network partitioning [RXALA-M~ 

r 
U7hen network partitioning occur& the participating sites of a transaction are divided into 

d ~ s p i n t  sets of sltes called components. C~mmunxation between sites In different components IS 

disrupted, whereas commumcatlon among the sites withm a component is still possible. We thus 

assume that a pair of sites can communicate with each other or not at all.   hat is, no failure 

causes disruption of cpmmunication in one direction only. Throughout our discussions, we con- 

sider an ns i te  network and the set of all sites is denoted by I. We use r to denote the set of all 

components and C to denote a tgpicd component in T. 
- < 

Since our main in te rm is in the design of termination protocols (see section 2.3) for network 

partitioning, we will not concern ourselves with the detection of network partitioning. We 

In [RAMA-MI component was called group anbcomponent nate  was called compaenf. In order to be compatible 
a-trit rhe general wage of the WEE & ~ p m ~ t " ,  we p v e  adopted new te~nunobgy. 



assume that s ~ t e  failures as well as network partitiomng can be somehow detected, either by 
- - - - - - - 

operational sites or by the underlying network. 

U-hen a transaction is executed under the three-phase commlt protocol, the state (q, w, a, 

etc.) of a site depends on the time when the partitioning occurs The sites belonging to a com- . 

p n e n t  could be in different states, and thus we need a notation to represent the information 

about the states of the sites in a component 

Let Q be the set of all possible stat's of the FSA associated with the three-phase commit pro- 

tocol i.e., Q = {q, w, p, a, c]. To represent the fact that site i is in state s, we use an ordered pair 

(i, S) in ixQ. Let S be a set of ordered pairs from IxQ. S is a realizabk state of componenl C 
af' 

7 !3 
(realizable componenr stcue, for- s b t )  [CHL\-83] ifi 

( 2 )  there do not exist two different ordered pairs in S that have the same first element, and 

(3)  the second elements of all the pairs in S are either the same or adjacent states in ;he FSA 

m i a t e d  with the commit protocoL 
t 

r - 
The first p a n t  in the above definition signifies that set S represents the state of component C. 

- - -- - - - -- - - - - - -- - - - 

The second point ensures that a site can be in exactly one state. The third point follows from 

one-synchrony of the three-phase commit protocol i.e, any pair of sites of a component must be 

in the same or adjacent states set S satisfying these three conditions represents a>ealizable 

state of a component in a partition under the three phase commit protocol. See Example 2.1 below 

for examples of realizable and unrealizable component states 

Throughout our discussion, when we refer to a component state, it is assumed to be reahz- 

able unles  otherwise stated For any component, state S, we use the notation 

comp(S1 = ( i  1 (i, s) E S )  and s t a d s )  = {s I (i, s> E S ) ,  With this notation, S is a state of the com- e 

ponent comp(S). Two component states - - SI and S2 are said to be m e n r - i f  cjm$SL) and i: 

comp(Sz) are dispint and state(S1) U statdS2) contains one date or only adjacent states Intui- 
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tively, this m a n s  that the two components comp(S,) m d  comD(Sd w - m  '51 

respectively, can occur together in a partition. 

Example 2.1'. 

Suppose there are only three participating sites, i.e, 1 = (1, 2, 3) .  Then C1 = 11, 21 and 

Cz = { 3 } are two disjoint components In a partition. SI = {(I, (2, w)) and S2 = { (3, w) 1 are 

two concurrent states of CI and Cb respectively. 
- 2 

Let S3 = ( (3, C) 1. Although S3 is a realizable component state, it is not concurrent with S,, 

because states c (the state of site 3 in S 3 )  and uT (the state of site 2 in S , )  are not adjacent. 
?- 

kt Sg = ((1, 4 1  (2, p)). Then S, is an unrealizable component state because state q and state 

p are not adjacent. 0 

2.2. Three-Phase Commit .fiotocol under Network Partitioning 

When network partitioning occurs, can we consistently terminate all the sites without mak- 

ing some of them wait until communication is reestablished? 1t*is r k n a b l e  to terminate all the 
- --- - - -  

sitw in a component by the same action; namely "commit" or "abort", since they can still commun- 

icate with each other and mn share the information collected within the component. 
9 

i* 
In the following, hen we refer to the termination of a component 

- i rtain state, we 

mean the termination of he subtransactions by a prticular action at all sites in the componeni L 
-4h, when we say that a component state S is terminated, we mean that the component coxnp(S) Q 

in state S is terminated to either "commit" or "abort". In the presence of network partitioning, we 

hope to terminate all concurrent component states ~onsistently. That is, we wish to avoid the 

situation when one component state is terminated to "commit" and another concurrent component 

state is terminated to "abort". 

I 
Can the three-phase commit protocol terminate all components in all realizable states, ix., : 

can it terminate all realizable component states? Ihfortunately, the answer is negative. It has I 



- 
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been observed that if a protocol can terminate a component C in all realizable states, then the 

components dispint from C must wait when they are in certain states, ie, sites in these com- - 
pnents  can neither abort nor commit [CHIS-83) 

The following example illustrates this observation. 

Example 2.2. 

Let I = (1, 2, 31. Then Si =icl, p), (2, p)} and S2 ={(I, w), (2, w)] are stas of component 

k 

C = (1, 21. Similarly Sf = { (3, C) ) and S, = { (3, a) } are states of the component { 3 1. 

Here we assume that a transaction is executed under the decentralized commit protocol. 

Ot3serve that if f is a proTE03ihat terminates both fl and S2, it must terminate them to "commit" 

and "abort", respectively. The reason is that S1 is concurrent with Sg and site 3 of Sg has commit- 

ted, therefore f must terminate S1 to "commit" in order to preserve the consistency of the data- 

base. Similarly S2 must be terminated to "abort", since it is concurrent with Sq. 

Let us now consider two compnent states S5 = 1 (3, p) ] and S6 = { (3, w) 1. They are both 

concurrent with S1 and S2  if f terminates one of them to "abort", then it will contradict the 
- - - - -- - -- 

decision taken on S,.  On the other hand, if f terminates one of them to "commitn, then it will 

contradict the decision taken on S,. This simple example illustrates the fact that no protocol can 

consistently terminate all component states It is now clear that the three-phase commit protocol 

is blocking for network partitioning. T ~ I S  is true in both the central& and decentralized 

23. Te-tion Protocols 

It was shown in the last section that no protocol can terminate all realizable component 
- - - - -  - --- 

states We thus wish to have a protocol that minimizes the expected number of waiting sites and 

hence maximizes the ailabilitp of a database when partitioning occurs Before a detailed discus- 7- 
dm of thic pmblem, we f b s  fmmatfp defme a termination prod$@. 



- - 

4 termirratwn protcxd fTPI can tx viewed as a function mapping component states onto 

declllsions to be followed by the sites w ~ t h n  the correspnd~ng components. It has to ensure that 

no two component states that could potentially occur concurrently in a partit~on are given 

confilcting decisions. 

We use "conz", "ab" and "wa" to represent the three decisions "commit", "abort" and "wait"; 

Observe that a component a-hich contains a site in state q or state a can always be ter- 

minated to ab. If a component has a slte in state a, then there is no choice but to abort the tran- 

saction because at least one site has already aborted the transaction. If a component has a site in 

state q, then no global decision has been made and no site could have committed the transaction. 

Howerer, it is possible that sites of some other components in the same partition have aborted the 

transaction. Therefore, such a component must be terminated to ab. 

-4 similar argument applies to the case where a component has a site in state c. Such a com- 

p n e n t  should be terminated to corn It follows from the above observation that only those com- 

ponent stat13 with sites in -2 p andior w a r e  crucial in defining a grmination protocol: a termi- 

nation protocol is completely defined by mapping these component states to "ab", "com" or w a i t  

Definition 2.1.  CHIS-^^^ A termination protocd U P ,  for short) f is a function from the 

set of all realizable component states to the set of decisions {corn, ab, wa} with the following two 

conditiions 

( 1 )  f satisfies the mnreversd condirwn,* i.e, for any component state S, c E statdS) implies 

that fCS) = com, and {q, a ]  fi statdS) # 0 implies that f i S )  = ab. * , 

(2) f sat@es the consistent?; condition, ice, for any two concurrent component states S1 and Sb 

IftS,), f(S2)l f (corn, abl. b .  

This condition was called pressvarron proper[). in [CHIN-831. 
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The nonreversal condition of a TP is required because of the observation made before 

Definition 2.1. The consistency condition simply ensures that, even though two compnent cannot 

exchange information, they must be terminated by "non-conflicting" actions. 

For convenience we will use 8 to denote the set of all compnent states with the sites in 

state p and/or u7, i.e, 8 = (S LstatdS) G {p, w f  f. 8, C 8 denotes the subset of 8 which con- 

tains all the component states that have at least one site in state p. Smilarly, 0, f 8 denotes the 

subset which contam all the component states that have at least one site in state 2- Throughout 
a 

the rest of our discussion, when u-e define a TP f, we will only spcify the values of f for the 

component states in 8, i ~ ,  IflSI i S E 8). The values of f for the companent states not belong 

ing to 8 are uniquely determined b~ the nonreversal condition. and therefore we do not specify 

them explicitly. 

Whm a TP is used together with the centralized threephase commit protocol, the TP is 

called a centralized termination protwo1 ICTPI. Similarly. a TP in the decentralized case is called 

-- - 

As stated above, we wish to design a TP which minimizes the expected number of waiting 

sites Such a TP is called a size oprinal tenmkaion protocd  CHIS-^^^ 

Cornpnents which result from network partitioning have different probabilities of 

occurrence. For a compnent state S, PAS)  denotes the probability of its occurrence. 

Let E( f )  denote the espcted number of waiting sites under a TP f. Note that if f i S )  = wa, . 

all sites in comp(S) wa i t  Therefore, we have . 

where W is the set of component states that wait under f ,  k, W = {S 1 f(S) ='waf, and tSt 

E( f )  gives a measure of performance of a TP f in the presence of network partitioning. If 
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P - - - - -- - - 

i 

in the case where I c l c k i q  IS used, zhe locks at a site cannot be re]& when the are watts We 

want to find a site optiaai rerrnin2:m protccol, 12, a TP ~vi th  the mrnimum E ( f )  value. 

Definition 2.2 [CTF1IN-532 -4 TP is said to br a sue opt imal  rurmiwion prtxocd if it has the 

minimum expcted number of waiting ntes 7 

Thus if TP n the set of 21: Ws, then r E TP IS slw opt~rnal 16 Ll f 1 = mm{E(gl ' g E TP 1. 
- - - 

In the rest of rhu we v+*iIl be mitmft concernid wtth nte o y ~ m a t  termmatIon proto- 

" 

cols within certam subcbses nf TP, ta, rntn.E-pj g E h i ,  where h G TP. 

2A. Some Characteristics of DTP's 

The following properti- dlningush D V s  irom ( T s  

Theorem 2.1 ICHIS-831 A necessar.; and mjkxem condizim for a f uncrion f, from the 

set of realizable utrnpomnt Rcdes to the set G f dedsions {corn. ab. wa /. to be a DTP ir 
Z 

{fiSII. flSdl * i€&rn. abi w s .  .z- 3%. 

Compamg thls theorem u - ~ t h  Dcfinitton 21. it 1s seen that the conslstenc.; condition in 

Definition 21 is replaced py'the mend condition in Theorem 1 1 .  

This reffects the fact chat in the dmnbutrd case any two disjoint components give rise to 

- - -  - - 

For a gwen component C, t& stareof C which has all its sites in state p is denoted by pC. 

Similarly wC &-ill denote the compnent mtt tr-hrch has al l  its sjtes in state w. 



-- 

Lemma 2 1  [cnrr\.--&31 For o g i r m  component C and a M P  / 

can occur concuz~eotly with a compnent state that contains a site in state c, hence 

cannot be terminated to ab. Similar reasoning applies to ( 2 )  above. Tbe conditions on f in this 

?emma ztre essentrar characterrmcs of a-DTP; ;fn €?hapter 4 ~ - e  u-ill see that-the @st condition 
+ 

does not hold for CTP''r 

If neither value is wa, it follows fmm Leinma 21 that /(dl) = corn and /($'I = ab. How- 

ever, this violates the consistency condition on TP. 

f iSJ = cornund f lS ; f=  a6 then f l S ; I  = w-a for esery state SI  of C2 t h l  is disjoint from Cj. 0 

Sote that state S; in 8 ~s concurrent =ith both S, and S : .  Since S. and S2 are terminated to - 
- -- 

- A  / conflictmg actions, S, has no other choice but to wait  
, -> # 

C, ln particular, if both and w are tmminated by f, they will be terminated to conflicting 

actions Thus all states of C-, in €3 must wait. 

25. Site Optimal IYkTs for a special caae 

In this section. we mveseigate site o p W  DTlYs in a special case. Although the case is far 

h e e d -  
. - .  - \ . ,  rrence, In tm sec- 

tion, we assume that the probabilities for different component states are all equal and therefore 

&e problem 4 finding a site a p b l  p u m f  u reduced to dn;fing a TP w b c h  bas zhe- -- 

i 
I 



- 
- -  - * -- - 

sum of a-ajt~ng sites over all  component stares. h t h ~ s  case, 

where X is the set of u-aitinq compnent  stares. 

For this case, site optimal DTPS have lxen found [CHIN-831. In order to present site optimal 

DVs,  we first introduce a particular class of DTP$ namely, quorumbased DTP's [CHIN-831. - 
, 

- - 
- - -- 

- 

A s  before let n bc the number of participating ates. For a given integer k (0 < k < 11/21, 

define a DTP dp ,  as  foIfou-s, where S E 8. 

13) I f  k < 1S1 < n-k and statdS) = {ar),  let d p , ( ~ )  = wa. 

(41 If lSl b n-k and p E state(S1, let dp,(Sj = corn 

A DTP defined as above w said to be guorum-based. dpi  acts on a component state according 
-- 

A 

to its size as well as whether ~ t s  ntes are all in sraw a- or not. The set of all dpL1s is denoted by 

QDp. In Table 21, an example of a quorum-based DTP is given. fn that example, there are four 

sitw involved fh, n = 4), and k is equal to 1. The table shows the decision by the quorum-based 

OTP dpIf'on every reahable component state in 0. Xote that the entries in the first, third and r 
-, 

fifth columns represent compnent states. For example, an entrv ( p - - - 1 represents the com- 

m e n t  state f (1 ,  p) j .  
'% 

There is another set of q u o r u m - k d  D T s  denoted by dw: (0 < li < d21. dw, is defined 

in the same way as dp: except that p and a- are interchanged and &are corn and &. The-set of 
- 

- 

aE dwkrs is denoted by Q h .  The union of QDp and QDw is denoted by QD. Thus, QD is the 
- - pp - - 

set of all  quarum-based DTFYs 



j compneat deci- component 

corn 
i corn 
1 corn 
i corn 
f corn 

P P P -  
P F W -  
P Q 7 P -  
W P F -  
PU'W-  
w p w -  
w w p -  
P F - P  
P P - U -  
P " - P  

deci- 
sion 

corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn - 

component 
state 
site 

1 2 3 4  
x- p - 'AT 
u - w - p  
P - P P  
P - P % *  
P - W F  
W - P F  
p -  w u -  
w - p w  
W - W F  
- P P P  
--pp 
- P W P  
- W P F  
- p w w  
- w p w  
- A T W P  
w W w-- 
W W - A '  

W - % - A :  

- w w u -  
p - - p  i c o m j  w p - F  
FA-%- COm ; F W -  W 

--- -- 

& ~ a b ~ = .  The decisions of dp, for n = 4 S I ~ R  

deci- 
sion 

corn 
com 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
com 
corn 
corn 
corn 
corn 

ab 
ab 
ab 
ab 

either in state p or w, the number of compnent states S such that W = r is given by 2'(;). 

Therefore the total number of waiting sites over all the component states of size r is given by 

r 2' t:t. 
9 

For an integer r (k < r < n-kj 2nd for everp component C of size r, among all the states df 

C, wc is the only waiting component state under dpL. Therefore the total number of waiting sites 



HeFKie fm any mteger k (0 6 f; < nf2), if a n  component states have the same probabiliti, 

u-e have 

We can similarly show that E f d w i )  = E(dpn  ). 

It was shown in [CHIS-831 that a site optimal DTP exists in QD. They first showed that for 

every DTP f, there exlsts a h such that the number of waiting s~tes under f is at least as large as 

under dpk.  They then shoured that by comparing all the members in QD, a site optimal DTP can 

be found in QD. For n = 9, Table 2 2  M s  the values E ( d p L )  = E(dwl) for all k. By comparing 
3 

b 

:; all values in Table 2.2, w e  find that dp2 has the minimum expected number of waiting sites. 
- - 

Hence dp2 is site optimal for n = 9. since E(dw2) = E(dpz),  dw, is also site optimal if n = 9. 

Theorem 2.2 [CHIS-831 Let n be the n u d e r  o f  sites involved and let k be the larges~ 

inzeger such that 

k 2" n. 

Then both dp, and dwl are size optimal DTP's. 0 

L 
-- 

fn the foRowmg, we will to- to amractWofThFCharacterist i& of a quorum-based DTP. 

Recall that denotes the set of components and let r, denote the set of all the components that 

are of size k. Refall also that €3 is the set of all the component states with sites in state p and/or 

w-. Let B(c) denote the set of component states S in 8 such that comp(S) = C and let B,,(c) 

2232 
' 2  21% 
i 3 3456 
f 4 10368 

- 

Table 2 2  Values of E(dp,) and E(dw,) for n = 9 sites - - . - 
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denow the set of m p o n e n t  states in @LC) which have at least one site i ~ t a t e  p. Sirnilaay we 

define B,(C) by replacing p w t h  -u-. 

Let ALL,(f) denote the set of all components C k c h  that all the component states in O(C) 

are terminated by f, ie, for each S E @(C), f ( S )  = com or ab. Similarly ALL,,( f) denotes the 
-E- 

set of all components C such that all component states in 8 ( C )  are mapped to wa by f. Let . "r" 

UrONLI-,,( f )  denote the set of all components C with the property that all the component states 

In 9,IC) are termiiated and wC is the only waiting component state in 8 f ~ ) .  PONLY, , (~ )  is 

defined similarly by replacing 8,.(C) for ep(C)  and pC for wC. 

#' With the above notation, we can describe some important properties of a quorum-based DTP 

( 2 )  For all r ( k < r < n-k), r, C W O N L I - , , ( ~ ~ ~ .  

The quorum-based DTP dwi has similar properties When dp, IS replaced by dwL and 

WONLY ,(dpL l by P O N L Y , ( ~ W ~  ), the above three properties hold for d-. 
- 

m7ith this background, in the next iwo chapters, we will generalize the notion of the 

quorum-based DTP. 



CHAPTER 3 

3.1. Introduction In Chapter 2, site optimal DTP's were discussed under the assumption that 
1 

all compnent states were equally probable. In the general case, different components and com- 

ponent states will have different probabilities of occurrence. Therefore, the expected number'df 

waiting sites involves these probabilities. 

In this chapter, site optimal DTP's are investigated in this general context. We introduce a 

class of DTP's called size-based DTP's and discuss site optimality within this class We will also 

see that quorum-based D F s  play an important role in the search for optimal size-based DTP's 

Recall that T, denotes the set of all components of size k w d  8(C) !Z 0 denotes the set of 

all states of a component C. 

Definition 3.1. A DTP f is a sire-based DTP if it satisfies the following condition: for any 
-- 

positive integer k < n, if a component C - 6  Ti has a state S such that f(S) # wa, then every 

other component C, in rL has a state S, such that f(S,) # wa. 

Lntuitively, if a size-based DTP f terminates a component of size k in a certain state S, ke,  

map S to corn or a&), then f terminates every component of the size k in at least one state; 
. I  

Recall the notation ALL,,( f )  and ALL,(f) introduced in Section 2.5. A component C 
- 

belong&to .- ALL,,(f) (or ALL,( f), respectively) if the TP f maps all component states in 8(C) to 

wp (or not wa, respectively). The following lemma gives a property of size-based DTKs 
D 

Lemma 3.1. Let f be any size-based DTP. For each positive integer k < n, either 
- 

ri G  ALL,,(^) rL n ALL,.,(~I = 0. 

Proof. Let C E rL r7 ALL,.,( f) and let C, f C be a component of size k. If C1 were not a 

member of ALL,.,( f), then it follows from Definition 3.1 that  neither would C be a member of 
- - 
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' ALL,,=( f). Hence C1 must be a m & h r  of A 

ALL,.,,( f). 0 

LL,,( f) and this prov& that rL  is a subset of 

3.2. Size-Based D T s  

In this section, we introduce a partial order among the D?P'~, and then we show that some 

DTP's are good candidates for site optimal size-based DTP's. In addition, we prove important 

characteristics -of a size-based DTP. - 
For any two TP's, f, and f, if f l ( S l  = wa implies f z ( S )  = wa for any component state S, 

then 6.e denote this relation by f l  << fi. This relation is a partial order on the set of DTP's, 

since it is transitive and reffexive Note that we can introduce a similar partial urda on the set of 

C W s  We will make use of such a partial order later. If f l  << f a  it follows from the 

definition of the expected value ES( f )  that ES( f l )  d ES( f2). 

In the following, when we say that a DTP f 1  is modifwd to a DTP f2,  we mean that some 

values of f l  are changed, giving rise to a new DTP f2. We specify only those changes explicitly; 

the other values remam the same. Also a change IS always from f l ( S )  = wa to f2 (S )  f wa for 
-- -- 

some component states S. Therefore f z  << f l  easily follows. -L- 

. . 
Lemma 3.2. For a given site-based DTP f  and an integer k ( n / 2  < K < n), is q?;f%rn- 

p o m ~  C in r1 has rwo states S1 and S-, such that f ( S 1 )  = cm and f (S2)  = ab, then there exists a 
! 
\ 

size-based DTP g such t h a  g << f  and TL G  ALL,(^). \ .; 

Proof. Let r be any integer such that 1 < r < n - k. Then clearly r 4 n/2. This variable 

represents the size of a component state concurrent with any state of C. We first show that, for 
m 

any such r, all component of size r must wait under f  regardless of their states. i.e, *, ; ,.- 
r, G ALL,,(~). 

Recall that I denotes the set of all sites Lit C-, I be a n o n e g t y  comfinent o_f si r dis- 

joint from the component C, i ~ ,  C2 5;; 1 - C. Since f (S1)  = com, f(s2) = ub and both S1 and S2 are 

stam of C, i t  follows from LPmrnh 2.3 that C2 E ALLW,( f). It then follows from Lemma 3.1 
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that  r, G ALL,.,( f 1. Since the above argument is va [lid for ail integers r such that 1 < r < n - 

k, it follows furthermore that f makes a compnent wait if it is dispint from any component of 

size b. Hence, if an? component of size k has a state S such that f l ~ )  = wa, we can modify f to g 
, 

in the following way: 

Suppose the condition of the lemma holds and let a component of size k has a state S such 

that f(S) = wa. 

(1)  If p E state(S1, let g ( ~ )  = corn 

( 2 )  If state(S) = { w 1, let g(S) = ab. 

It follows from the debi t ion of g that g << f, rL C ALL@ and g is a size-based DTP. O 

In the proof of the above lemma, mapping for a compnent state S hav~ng  at least one site in 

state p was changed from f(S) = wa to = corn Only if S h ~ d a f i  ~ t s  sites in state w, it was . 
terminated to ab by g. This scheme of modifying a TP is called the commit- f a ~ w u r k g  scheme. A 

TP f could also be modified to g in such a way that = ab'if S contains a t  least one site in 

state u-, and g ( ~ )  = c m  othenvm. This scheme is called the abort-favouring scheme. 
- - - 

- 

For any me-based DTP f and any integer (n/2 < k < n), if TI satisfies the condition of 

Lemma 3.2, then there exists a size-based DTP g such that for each component state S, = wa 

implies f (S )  = wa, and no component in rL waits under g regardless of the state it is in. If there 

is no k such that F, s a t h e s  the condition of Lemma 3.2, does such a g still exist? The lemma - 

below answers thrs question, 

Before we state the lemma, recall that PONLI-,.,( f )  is the set of all components C that are 

terminated by the TP f ,  except when C is in state Similarly WONLY,.,( f )  is the set of all . 

components C that terminated by f, except when C is in state wC. Throughout the rest of the 

thesis, if A is a collection of component states, we use f(A) to denote the set { f ( S )  I S E A}. 

--- / 
Lemma 33. For a given size-based DTP f  and a positive integer k < n, i f  there is no 

compDnent C E rl such thar fle(C)I contains lab, corn) and i f  there is a cmponent C1 E rL 
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Proof. If a component C, satisfying the condition of the lemma exists, i t  follows from 

Definition 3.1 that for all C E r,, either corn E fl@(C)) or ab E f(B(C)). Let SJ be the slate of 

some C E r, such that f (S,)  = cam Let S, be any state of a component dispinkfrom C. Thus S, 

i s~oncurrent  with S,. Since f(S,) = corn, f (SJ must be either WQ or corn Therefore, in general, 
- i ) -  

for every component state S that can occur concurrently with a component state in @(c), 
t 

f ( S )  = wa or f (S )  = corn Thus we can modify f to g on all component states in 8,(C) that waii . 
under f by the commit-favouring scheme. Note that since {ab, corn) is not a subset of f l @ ( ~ ) ) ,  

\ 

we must have f(wc) = wa. Therefore C E WONLI-',.a(g). 

If ab E f(O(C)) on the other hand, i t  follows from a similar argument that f can be 
, , 

modified to g on all component states in 8,.(C) that wait under f by the abort-favouring scheme 

to make C a member o i  PONLY,,(g). Hence the DTP g thus obtained from f has the property 

that r, is a subset of PONLZ',,(~I U W O N L ~ , , ( ~ ) .  

Note that the modification done on f does not affect the property of f k i n g  a size-based 
-- 

-- 
- - 

DTP, and therefore g is also a size-based DTP. Since only component states S with f ( ~ )  = wa 

, have been involved in modification, we have g << f. 

The following theorem integrates the results of Lemmas 3.1, 3.2 and 3.3. 

Theorem 3.1. For  m y  given size-based DTP f, there exists a size-based DTP g such that 

g << f and for any ri ( I  < k 6 n-I), one of the following three holds: 

Proof. For any integer k (1 6 k < n-l), if rl is not a subset-of  ALL,,^( f) then i t  satisfies 

either the condition of Lemma 3 2  or that of Lemma 3.3. In any case, as  was shown in Lemma 3.2 
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and Lemma 3.3, respectively, f can be modified to a size-based DTP g such that g << f and 

r, _C PONLY&) u WONLY,,(~) or r, G  ALL,(^). 

Observe that if g is a size-based DTP as defined in Theorem 3.1 and if C is a component 
- 

belonging to  ALL,(^), then any compo=ent that is disjoint from C must belong to  ALL,,(^). 
/ Therefore, for any integer b ,t n/2 < b < n), if TL is a subset of ALL,(g) for c x ~ h  k 

( b 6 k < n ), then T,, is a subset of ALL,.,(g) for each j ( 0 < j < n-b). Observe also that if a 

component C belongs to PoNL~-,,(~),  then any component that is dispint from C is either a 

then any component that is dispint from C is either a member of WONLY,.,(g) or a member of 

ALL,&). Therefore, in the above theorem, if r is a positive integer less than n - k, then I-1 satis- 

fying condition (3) iGplies that T, satisfies condition (1). Also if TL satisfies condition (2) then r, 

satisfies either condition (1 )  or (2). 

From the above observations, we obtain the following result which highlights some impor- 
I 

tant properties of a size-based DTP. 

Theorem 3.2. For any sizebased D p  f ,  there exists a sizebased DTP h such that - h << f 

and there exist two nonnegative integers s and b such that 

(3) for each k (s < k < b), either r, C ALL;.,(h) or r, C PONLY,.,(h) U WONLYWa(h), and , 

Prmf .  It follouvs from Theorem 3.1 that there exists a size-based DTP g whlch has one of 

the properties mentioned there. We now modify g to h in such a way that h will have the pro- 

perties (1) through (4). 

Let s = maxik I for all integer r (1 6 r <k), r, 5; 

Let b = min{k I r, G ALL,(g)]. If b < n/2, let C, and Cz be two dispint components of size b. 
> 
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The existence of C1 and C2 is guaranteed by the inequality b < n/2. Then both C1 and C2 belong 
- - 

to ALL&), w h ~ h  contradicts Lemma 2.3. Hence b > n/2. If r < n - b, then T, must be a subset 

of ALL,&), smce each component In T, is displnt from some component in Tb Hence s 2 n - b, 

It follows from the minimality of b that for any integer k (s < k <b), Tk satisfies condition 
- 

(3). Hence all the conditions mentioned above, except possibly condition (41, are satisfied by g. 

For any k > b,-if T, is not a subset of ALL,@ we can modify g to h on all component - 

states of size k that wait under f by the commit-favouring scheme. This modilkation is feasible 

because if 1 6 r d n - k ( < n - b 1, all the T,'s are subsets of ALL,&). It follows from the 

way h is &Gned that h is also a size-based D P  and i t  satisfies condition (4). Since h is modified 

from g, it also satides all the other conditions. 0 

Definition 3.2. A size-based DTP h is a standardized size-based DTP if there exist two 

nonnegative integers s and b such that 

(1 )  s + b  3 n a n d  b > n:2. 

(4) fo ra l l  k ( b  d k < nf, T i - C  ,UL,(h).E 

~efinlt ion 3.2 is based on Theorem 3.2. With this definition, Theorem 3.2 can be restated as 
I 

follows given any sizebased DTP f ,  there exists a standardized size-based DTP h << f. An 

example of a standardized size-based DTP is given below in Table 3.1. In this example, the 

number of sites is four and the values of s and b are 1 and 3, respectively. Note that all com- 

p n e n t  states of size 1 are made to ~ a i t  and all component states of size 3 are terminated For the 

component states of size 2, the decisions depend on the sites they contain and on the states of these 

sires 
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deci- 
sion 

wa 
wa 
uT a 
wa 
wa 
u-a 
wa 
wa 
ab 
uT a 
uv a 
uT a 
wa 
ab 
wa 
ab 
ab 

corn 
corn 
corn 
corn 
corn - 

compnent 
state 
site 

1 2 3 4  
W - - p  
- P P -  
- p w -  
- " P -  
- P - P  
- p - UT 

- W - p  
- - P P  
- - P U T  
- - w p  
P P P -  
P P W -  
P W P -  
W P P -  
p w w -  
w p w -  
ur u- p - 
P P - P  
P P - w  
PUT- P 
U ' P - P  
p w - U '  

deci- 
sion - 

- 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
u. a 
ab 
ab 

corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
com 
corn 
corn - 

component 
state 
site 

1 2 3 4  
w p - w  
W u- - P 
P - P P  
P - P w  
P - w P  
" - P P  
p - w w  
w - p w  
w - w p  
- P P P  
- P P W  
- P W P  
- W P P  
- p w w  
- u 7 p w  
- w u 7 p  
UT UT W - 
w w - U '  
W - W U '  

- W W W  

dec i- 
sion 

corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
,corn 
corn 

ab 
ab 
ab 
ab 

Table 3.1. An esampPle--of-a-size=based DTP for n = 4 sites 

3.3. Site Optimal Size-Based D W s  

In Theorem 3.2, u-e have shown that for every size-based D P  f there exists a standardized 

size-based DTP h << f .  Recall the class of quorum-based D W s  deiined in Section 2.5. In this 

section, we show that we can always find a quorum-based DTP dp, or dw, which satisfies 

E(dp,)  < ECh) or E(dw,) d E(h). 

Assume that partitioning has occurred and consider a component C of size k. Let PAC) 

denote the pW&q of eccwrence of the compllnent C and let P(r, s, k), (0 < k < n), be the 

sum of the probabilities of all states of C with exactly r sites in state p and s sites in state w. For 

example, the component state pC has all its sites in state p, hence r equals k, s equals 0 and the 
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probabihty of its occurrence IS the product of P ~ C )  and ~(k, 0, k), i-e., 
- - -- - - - 

P A ~ ' )  = PdC)  P(k,  0, k). 

Similarly 

Recall that under a quorum-based DTP dpk (k < d 2 ) ,  all components of size less than or 

equal to k are wait regardless of their states; each component C of size between k 

exclusive, waits in the state wC and na other component waits For convenience, let 

the sum of the probabilitiesof all components of size i, i.e, 

and n - k, 

PC, denote 

and let 

i 

Ph = fir, s, k)- 
r+s=h 

ThTheorem 3.3. For an integer k (0 d k < n/21, the expected number o f  waiting sites 

under t b  quorum-based D T P ' ~ ~ ~  is given by the following formulae: 

E(dpo) = n i l i  PC, P(O,j, i), and 

h n-h-1 

E(dpL ) = E i  PC, P, + i PC, P(0, i, i )  for k > 0. 

Proof. Suppose k = 0. For any integer i (1 $ i 6 n-1) and for everv component C of size i 
t 

the state w' is the only waiting state of C under dpo .  The sum of the probabilities of these com- 
' 

ponent states is given by the prduct  of PC, and P(0, i i). Hence 

n-1 
E(dpo) = 1 i PC, P(o, i, 'i). 

1=1 

Suppose k 2 1, For any integer i (1 6 i < k) and for any component C of size i all states 

of C wait under dp,, The sum of the probabilities of owurrence of aythese component states is - 

given by PC, 
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For any integer i (k+l 6 i < n-k) and for every component C of sue i, the state wC is the 

only a-aiting state of C under dp i .  The sum of the probabilities of these component states is 

given by the product of PC, and NO, i, i). Also for any integer i (n-k < i < n), no component of 

size i uraits under dpL.  Hence 

L n- i  -1 
E(dpLf  = Z i P C , P ,  + 1 iPC,P(O, i , i )  f o r k  > 0. 

z=t. i = k + l  - - 

The argument used in the above proof a h  applies to the quorum-based D V s  dw,, proving 

t 
the following theorem. - - 

Theorem 3.4. For an integer k  10 < k < n/2 ) ,  the expected number o f  waiting sites ,, 
> .  

under the quorum-based DTP dwi is gisen by the following formulae. 

n-1 
E(dwc,) = 1 i  PC, P(i, 0, i), and 

r=l 

Cnder some conditions, for every size-based D? f, there exists a quorum-b&ed DTP d p p  or 
i 

d w ,  such that E(dpk> 6 E( f )  or E(dw,) 6 E( f) ,  as the following theorem. 

Theorem 35. I f  RO. k ,  k) < Ptk, 0, k) for d integers k (1 6 k 6 n-I), then for every 

size-based DTP f ,  there exists a quotwn-based DTP dp ,  I 1  6 i < n/2)  such t h a ~  Efdp , )  < E( f). 

Proof. I t  follows from Theorem 3.2 that there exists a size-based DTP h such that h << f 

and there exist two nonnegative integers s and b such that 

( 3 )  for all k (s < k < b), either Tk !G ALL,(h) or TL C PONLYWa(h) U ~ O N L Y , , ~ ~ ) ,  and 
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We want to compare the expected number of waiting sites under h and that under the 

quorum-based DTP dp;  where b = n-b. Since s - b 2 n, we have b < s < n!L 

For any integer k f 1 < k < &I, it follows from ( 2 )  and the definition of quorum-based DTP 

that all compnents of site li wait under both h and dp,- regardless of their states Hence these 

two size-based DlTs  have the same expected number of waiting sites for compnents of size k in 
- 

the range 1 6% d b. - - - 

1 For any integer k fb; < k < 61, ~t follows from ( 2 )  and (31 that, under ,kt, a component C of 
5 

size k either always waits OT at ieast when C is in one of wC and t'nder d p g ,  the component 

C waits only when ~ tx  L s t a t e  W H O ,  k,kJ 6-Pf h, A kls we have P!& ~ - P . C ~ - ~ Z  

Hence the expected number of wajting sites from C under d p ,  is at man  as large as that under h. 

For an?; integer k ( b  6 k < n), and for any component C of size k, 'it follows from (4)  that 

C never u-aits under h This is also true for d p ,  Hence the expected number of waiting sites 

under h and d p ,  are both equal to zero. 

In each case, the expcted n u m k r  of a-aiting sites under dp; is not larger than that under h 
7 - -- -- 

Hence E(dp3  < E(h ). Smse h << f ,  this proves that E(dpa < E( f l E 

B.; replacing the quorum-based DTP dp, by the quorum-bas& DTP dw.,  we get a similar 

result \ 

Theorem 3.6. If Rk. 0. k! < PiO. k, k) for all integers k il d k 6 n-I). then for every 

six-&red DTP f .  r k e  exisrr a puorrrrrL-based DTP dw, I 2 .  < i < d21 nrch that 

b 

From these th-ms we see that the ser QD of quorum-based DTPS plays an important role 

m the search for site o@miiH size-basedDTF% For every size-based DTP f ,  there e h a  size- 

can find the site optimal size-bsed DTPs. 



- 
index such itrat 

P r o f .  f i e  theorem iolinx-s from Thm~zrn 16. S -. 
Th~s concludes our wr.h for nrr optimal DTZYs among all size-tmzd DWs. In the next sec- 

3A. Count-Based DTP's 

I t  s natural to assume that xhen a DTY decfdes to termmate a cumpneni. IL bases its deci- 

smn onIp on the states of the ntes r~ the cornpnehii and not on what rites are In the component . 

fn other n-prds ta-o compnenr states w h ~ h  hart equal number of sires in each state, will be 

mapped to the Bme Pisckmn. 

Given a c o r n p n r  srarc S, let n , fS~  d c ~ r n e  the n u m k r  of ntes In state I-, and let n, . (~)  
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*%n example of a c o m t T - b d  dependent DTP with four sites is iXustratEf in Tame 3.2. 

Theorem 3-9. An1 clmnt-based DTP is n size-bused DTP. 

Prwf .  Let f be a count-based DTP and let k be an integer such that 1 < k < n-1. Suppose 

C E f A  and has a state S such that f(S) f w a  Then for everv component C, in Ti has a state S ,  ' 

r 
such that 5 and S: are state equivalent, and it follows from Definition 3.2 that f ( ~ )  = f ( ~ , ) .  In 

panicular f&,f f wa Hence f is alsa a size-bsed DTP. 0 

Consider the size-&d DTP represente_d in Table 3.1. Let S ,  = {(l ,  w), (4, p)] and 

S-, = { f  3 p). (4, w)t. These two compnent states have the same numbers of p's and w's but are 

deci- component 1 deci- 
sion state 1 sion I 

1 componene deci- ' compnent i 
i . s a t e  ! sion I state. 
' \ sne : site site 

w w - p  

-+--If- 
,-u-u- 

u - a i  w - p w  
ab u-- w p  
ab 1 I - P P F  

corn P F a- 

wa - p u - w  
ab -u-pu- 
ab - w ur p 
ab w w w -  

corn w u- - u- 
==a w - w u 

ab 
ab 

corn 
wa 
wa 

-%%- 

ab 
ab 
ab 

corn 
wa 
wa 
u-a 
ab 
ab 
ab 
ab 
ab 
ab 
ab 

Table 3.1 An example of a count-based dependent DTP for n = 4 sites 
- - - - - - - - 



terminated to com and ab, respectively. Therefore this size-based DTP is not a count-based-Dp. 

Hence the set of count-based DTP's is a proper subset of the set of size-based DTPs  
.2 

Recall the definition of a standardized size-based DTP. Here we define a similar DTP, 

namely, rrandardized coua-based DTP. 
r 

~ e h i t i o n  3.4. .A counr-based DTP h is said to be standardized if there exist two nonnega- 

tive integers s and b such that 

( 1 )  s + b  2 n a n d b  > n", 

(31 for each k (s. < k < b), either C  ALL,.,(^) or T, C PONLY,,(h) , or 

It a-as proved in Theorem 3.2 that any size-based DTP f can be modified to a standardized 

Size-based DTP h << f. I t  turns out that If f is a count-based DTP, then f can be modified to a 

standardized count-based DTP h << f as shown in the next theorem. 
* - - - - - -- -- - -- - - - - - - - - - -- - 

Theorem 3.10. For any cmm-based DTP f ,  there exists a standardized count-based DTP 

Proof. The existence of h follows from Theorem 3.2. and h inherits the properties of a 

Ln the condition ( 3 )  d Theorem 12, for all k (s < k < b), either l-I G  ALL,(^) or 

f G PONLln,.,(hi U WOhTLl~,,(h).  Since h is a count-based DTP, fL fl PONLI',(~) Z 0 
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Proof. For any given count-based DTP f ,  it follows from Theorem 3.10 that there exists a. 

standardized count-based DTP h such that h << f. 

Let P = { k l s < k < b and Ti CI PONLY,.,(h) and 
* 

UT = { k I s < k < b and T: C WONLf',,(h) 1. If P f 0, then let m, = min{ k I k E P 1. If 

W f 0, thenle tm,  = r n i n { k I k  E ~ v ) .  

We now consider four cases 

Case A: suppose both P and U7 are empty sets, then for all k (s < k < b), r, C  ALL,,(^). 

Let b= n-b. Since s + b 3 n, therefore b 6 s. By comparing the waiting component states under 

dp, and h, it is clear that dp,- << h 

Case B: suppose W = 0 and P # 0, then for all k (s < k < b), either r1 G  ALL,,(^) or 

Ti PONLZ',.,(hl Let b= n-b. Since s + b 2 n, therefore b < s. By comparing the waiting 

component states under dp,and h, it is clear that dp, << h. 

Case C: suppose P = 0 and W f 0, then for all k (s < k < b), either TL C  ALL,,,(^) or 

Ti C UTONLY,.,(h). Let b= n-b. Since s + b 3 n, therefore b < s. By comparing the waiting 
~ ~ -- 

component states under dw,-and h, it is clear that dwi; << h 

Case D: suppose both P and Q are nonempty sets, then either ml < m2 or m2 < ml. 

If ml < m2. Let m2 < r < b and C be a component of size r. Consider a subcomponent C1 

of C with size equal to ml, since .G PONL~.,(~), therefore h(wC1) = ab. It is clear that, if 

hfwc) = wa, then the value of wC can tx modified to ab because it contains the set wC1. Similarly, 
' i 

if hCpC) = WQ, then pC can lx modified to corn It then- follows from Lemma 3.2 that h can be 

modified so that for all m2 d r < b, T, C ALL,,(h) and it is also true that s + m2 2 n. Let 

iTi = n-m2. By comparing the waiting component states under dp, and h, it is clear that 

d p ,  << h, --- 

If m2 < ml, let E = n-ml. The suhe proof applies and dp, << h 

- 34 - 
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Since h << f and there always exists a quorum-based DTP q such that q << h, i t  f o l l o w ,  

that q << f .  

Because of Theorem 3.11. we can compare all the quorum-based DTP's to find the site- 

optimal count-based DTP. Recall that QD denotes the set of all quorum-based DTP's. 

Corollary 3.1. I f  q is a quorum-based DTP such that 

then q i s  the xite optimal count-based DTP. 

Proof. The proof follo~vs directly from Theorems 3.1 1. O 

Because the set of count-based DTP's is a proper subset of the set of size-based DTP's, in the 

search for a site-optimal count-based DTP, we have a stronger result in Corollary 3.1, i.e, the con- 

d~ t ion  NO, k, k) < P(k, 0, k) in Theorem 3.7 ( or P(k, 0, k) d NO, k, k) in Theorem 3.8) has been 

removed 
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CHAPTER 4 

SITE OPTIMAL SIZE-BASED CENTRALIZED TERMINATJON PROTOCOLS 

4.1. Introduction 

In this chapter we contlnue our discussion on site optimal termination protocols, this time, in 

the centralized case. In the previous chapter, we discussed extensively the problem of finding a . 

BTP site optimal within the class of size-based DTP's and it was found that each site optimal 

\ size-based DTP is a quorum-based DTP. We prove an analogous result in what follows 

/ 
We fim investigate the properties of a CTP that distinguish it from a DTP. These properties 

help us in the search for site optimal CWs. We then define the size-based CTP and t ry  to find a 

CP site optimal within the class of size-based CI'P's We also introduce the quorum-based CTP, 

analogous to the quorum-based DTP. 

Recall the centralized three-phase commit protocol described in Section 1.4, m which - coordi- - 

- -- - - - - -  -- 

nator sites collect the votes and broadcast decisions. In order to simplify our discussion, we 

assume that there is only one coordinator and, without loss of generality, we consider site 1 as the 
n 

coordinator. Whenever a decision is made, the coordinator is the first site to act on e decision. h 
For example, in the second phase, after the coordinator has broadcast "prepare-to-commit" mes- 

sages, i t  is the fim site to go into state p. -4h, in the third phase, after it has broadcast "commit" 

messages, it is the first site to commit the transaction. 

Recall that r denote. the set of all compnents  Because the- coordinator has some special 

proprties, we separate r into two sets T' denotes the set of all components that contain the coor- 

dinator and I-.' denotes the set of all components that do not contain-the coordiUm Xak_that if 

a component is a member of r', then any c o m p  ent that is disjoint from i t  is in T ~ .  L 
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Recall the fundamental property of DTP stated in Lemma 2.3: if f is a DTP and C1, C2 are 

two disjoint components, then the fact that one of them belongs to ALL,(f)  implies that the other 

belongs to ALL,,( f). X SIT does not psses this property, unless both C1 and C2 belong to T" 

(see Lemma 4.41. 

Lemma 4.1. Let f be any CTP and consider any two disjoin1 components C1 E T' and 

C.1 C2 E I-',. Among t h  component stares in 9(C2), only wC2 can be concurrent with rr. . 

Proof. Since the coordinator is the first site to go into state p, if C1 has all its sites, includ- 

ing the coordinator, in state w, then all the sites in C2 must also be in state w. 17 

This lemma has two important implications 

Property One: For any component C ,  in T', if its current state is wC1 then no other site 

can be in state p. 

Property Two: For any component C-, is r", if its current state contains a site in state p, 

then the cmrdinator must be in state p. 

Due to the above two properties of a CIP, - -- - Lemma 2.3 does not apply to m. The 

corresponding lemmas for C W s  are proved below as Lemmas 4.2 and 4.3. 

Lemma 4.2. For any CTP f and two disjoint components C1 E T' and C2 € r", if Cl has 

two componenr states S1. S2 that flSll = corn f(S2) = ab, then f(wc2) = wa. 

Pruof. No matter how many sites of S1 and S2 are in states p or w, they are concurrent 

with the component state wC'. Therefore the ;onsistericy condition requires wC2 to wait under 

f. 3 

Sote that, if f was a DTP then it follows from Lemma 2.3 that C2 would have to wait 

under / not only in wC2 but also in all other starer as well. The following example shows that in 

general this is not the case for a CTP. 
3 
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Example 4.1. 

) 1 

Let I = { 1, 2, 3 1 be the set of sites and define a -CIP f as follows 

( 1 )  For every component C that contains the coordinator site 1 and any component state S of C, 

if p E state(S), let f l S )  = corn; otherwise let f ( ~ )  = ab. 

(2) For every component C that does not contain the coordinator and any component state S of 

C, if p E stat&), let f l S )  = corn; otherwise let f(S1 = wa. 

(2)  above dws not cause inconsistency because of Property Two. Consider two components . 

C1 = { 1 1 and C2 = (2, 3). It is clear that wC2 is the only state of C2 that waits under f. 0 

Lemma 4.3. For any CTP f and two disjoin[ components CI E T' and C2 f T", if C2 has 

two component stares S,. S2 such thclr f(S1l= com, = ab, then f(SI = wa for every state 

C 
Proof. Suppose S E 8,(C1) = f3(C1) - {w I ) .  Since i t  contains the coordinator and the 

coordinator must be in state p, therefore S can occur concurrently with any component state in 

€3(Cz), in particular, S,  and SF Since these two component states are mapped to conflicting deci- 

- - -  -- 

sions by f, 3,must wait under f. 13 

If the component C2 in Lemma 4.3 belongs to ALL,(f), then f l S )  = wa for every component 

C 
state S E 8,(C,). The following example shows that there exists a CTP f such that f lw I )  # wa. 

Example 4.2. Let I = (1, 21 be the set of sites, where site 1 <the coordinator. Define a 

rn f as follows 

the other sates of C1 to wa. f ow that the component states { (1, w) } and ( (2, p) ) are not con- 

%_ 
current and this makes it @ble to map them to ab and corn, respectively. 0 
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The above two lemmas show a crucial difference between a CTP and a DTP. The following 

lemma shows that there 1s alw some similarity between them. 

Lemma 4.4. F o r - a n  CTP j- and rwo d i~ jo in t  conlponenrs C,, C-, E T". if C1 has zwo 

s taes  S1, S2  such t h a  f ( S l l  = corn. f lSJ = ab, then f(SI  = wa for every s m e  of C. 

Prooj. Since the two components C ,  and C, do not contain the coordinator, the proof of 

Lemma 2.3 carries over. 3 

Lemma 45. Fur an: T P  f and an? component C. if f (w ' l=  ah and flpc-l = corn, then 

rherr e.rixts a T P  g such rhar g << f and C E 1. 

Proof. Forzhvery w m p n e n t  state S: that ~s concurrent with H.' and the consistency 

condition ryuires  f(S,) = w a  Therefore f can be mdified to g in the folloxving Way. If 

S E 8(C) waits under f ,  let dSi = corn This is consistent with the value of f lS,). Therefore 

g << f and C E ALL&). f; 

Theorem 4.1. An? sue optimal CTP f has the property thar ffw') = ab for all C E T'. 

Proof. If f dws not have the property, i-e, if flw') = w o  for some C, then it can be 

m d d i e d  to g << f by defimng g(w' ) = ab. Thls modification w ~ l l  not introduce any incon- 

sistency, because wC contains the coordinaror and is concurrent with only those component states 

that  contam all sltes In state w and a-hch therefore cannot be termmated to corn X contradic- 

tlon, smce Hg) < E( f). 5 h - 

Theorem 4.1 implies that, in the search for site optimal CWs, without loss of generality, we 

may armme that C W s  have the Fropcrty mentioned in the theorem i-e, f lwc j  = ab for all 

C E r'. 
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4.2. Size-Based Centraiixecl Termination P r w b  -- 

in this &tion, x e  int&luce the size-&red UP and investigate site optimal CTP's in this 
' 

class (see Section 1.31. 

In the decentralizpd case, no compnent can be aborted by any TP if all its sites are in state 

p (see Lemma 2.1 1. In the centrahzed case, however, if such a compnent state contains the coor- 

dmator, it can be aborted b_v a TP a s  shown in the next ldmma. 

Lemma 4.6- Each C T P  f must saris f y  the f ollming rwo preperries. 
d 

( 1  i For everj C E f'- fiwC'i f corn ~ U J .  but f lpc can take a n j  o f  rhe three values 

c o n  wa, and ab. and 

P r o f .  The cmrdinator is always the first site to go into a new state. \Vhen i t  is in state p, 

no other site could ke in state c,  m d  therefore a component containing site 1 could be aborted if it 

is in state p, i.e, it is possible for a CW f to have f lpc-)  = ab-for some compnent  C in -T'. The 

rest of the lemma follows from Lemma 11. Z f4 

li containing (he coordinator, i.c. the intersection of r, and r'. Similarly. let denote the inter- 

section of rL  and r-*. Recall also that B&C) is ;he set of component states in 0(C) which have at  

lzast one site in state p and 8,(CI is the set of compnent states in B(C) which have at least one 

slte In state w. 

Definition 4.1. -4 CTP i s s a d  to Ix a size-based CTP if 1 

drt~ons. Let h be any pmt1r.e integer less than n. 

(1) If a component C E r: has a state S E 0,(C) such that f ( S )  

a state S E BiiC.i such that f iS. )  f w a  
*G 

t satisfies the followmg two con- 

# WQ, then for any C, E r; has 

(2) If a component C E I: h i ~ ~  a state S E &C) such that f ( S )  f wa, then for any C, E ry has 

a state S: E MC,! such that f(S:) # w a  E 
* 
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The definltrcm of s r z e - b d  CfP IS s~milar to that of size-based DTP f see Sectron 3.2) except: 

that we consider r '  and T-' wparately. In (1) of Definition 4.1, we only consider compnent states 

c; 
in @_(C:) instead of @(C). Since u-e assume that the component C j  in state w is alu-ays aborted. 

(See Theorem 4.1 1. 

In the folloa-ing A'-A(ft denotes the set of all component states in 8 that a CTP f maps to 

wa, I.e, V.--A( f ) = { S  1 f ( S )  = wal. 

Lemma 4.7. For a n .  size-bused CTP f and any posirive irzfeger k < n, i f  some com- 

ponent C E Ti has a state J E 8,(C1 such that f(SI Z n7a, then there exists a size-based CTP 

Proof. ~ e c a u &  of Lemma 4.5, without loss of generality, ure may assume that if C does not 

belong to =ILL,( f ) .  then either f ( w C I  = wa or f lpC)  = wa. -41~0, because of Theorem 4.1, without 

loss of generality, we may assume that f lwC) = adfor  all C E T'. 

If some compnent C E r. has a state S E 8,(C) such that f(S) # wa, then it follows from 

/- the defin~tion of sue-based c2-P that for any C in Ti, elther corn E f1(8,(C,)) or czb E f(@p(C,>> or 

-- both. Smce all the compnent states of 8?{Ct) haxre the same set of concurrent component states, 

I.& for anv two component sates 5 ,  , S-, E 8,(C,), S1 1s concurrent u-ith a component state S3 lff 

SI is concurrent with S3 %-e can rndify f to g as follows 

For all component states S E e,(C,) n U7,4(.f), if corn E f(e,(C,)), then let g(S) = corn; oth- 

eru-lse, ia, if czb E f(@,(C.)j, let gfS) = ab. Then g terminates C, if i t  is in any states in 8,(Ci), 

C 
and since fin. '1 = ab, we have r; C -~LL:(~). Since' f(S) f wa implies # wa for any com- 

ponent state S ,  ~t fo l lo~-s  that g << f .  .Z. 

Recall the set POAZ'L1*-;(,f 1 defined in Section 2.5, which consists of compnents C such that 

the TP f xerminates C uzlesr rr s :n s a t e  Fc. Similarly, let PONLI- , ( f )  be the set of components 

C such that the TP j- makes C a-ait unless it is in state ie, 
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analogously by replacing 8, [GI and PC by g,(G) and w',  respectively. 

Lemma 4.8. Given a size-based CTP f ,  there exists a size-based CTP g << f such that . - 

for ever3 positive integer k < n either r; C -4LL&) or T-; C UiOh'LZ'i(g3. 

v 
Proof. Because of Lemma 3.5, without loss of generality, ure may assume that If C does not 

belong to ALL,( f), then either f (wC)  = wa or f l p C )  = w a  -41~0, by Theorem 4.1, xyitho~t loss of 
1 

generality, we may armme that f (wr)  = ab for all C E r'. . (L 

For every positive integer k < n, if I'; is not a subset sf WONLY,( f),-then there exists a 
1 

compnent C E r; that has a state S  E 8,(C) with f ( S )  # wa. It llows from b m m a  4.7 that , 

'f 
f can be modified to a size-based CFP g such that C ~ i n c e  the size-based CTPg has * 

t 

Recall the definition of a component state as a set of (site; state) pairs. If-S 1s a subset of a 
I f 

component state.S1, we say that S n a c o ' m ~  substate of S 

Theorem 4.2. For anj given site-based CTP f, there exisrs a size-based CTP g << f 

There exists a nunnegative integer s (0 d s < nl such thur 
- -- - - 

( 2 )  For each imeger k ( s  < k 6 n-It, r; C  ALL,(^). 

Prm-f- It follows from Lzmrna 4.8 that there exists a size-based CTP h such that h << f 
+ 

and for each positive integer k d n-1, either r; 5; WONLI',(~) or C  ALL,(^). 

If { r  t r; C ALL,(h)i is nonempty, let s = min{r > 1 I Ti C- ALL,(h)l - 1; otherwise, let 

s = n-1. It is clear that G ALL,(h) and if s 3 1 then by Lemma 4.8, for each integer k 

(1  d li d s), I-2 r U'OA-LE-t(hf. Sup- b: is an integer, if any, such that s+l <.k < n-1 and 

f, !G WONLZ7r(ht. ff there is n ch k then the proof is complete. If there is such a Ir then by r"ll 
Lemma 4 . 5 h ( ~ )  = va for every 5 E\&,(C) such that C E I-;. Let S be anykite of a component 

which contains s+l sites including the coordinator and let S1 be a sutmate of S. By the &hi t i an  
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- - - - -  - 

of the constant s we have h(SIZ # wa. Sote that any component sa te  S2 that is concurrent with 
- 

$ is also concurre&$ with SI, hence ss-e can modify h to g b y  defining = h ( s l ) .  . If g(~) is 

I 
defined this way for all compnent nates S E B,(C)  such that C E Ti. then Ti c ALL&). 0 

t 

Having investigated the compnents which contain the coordinator, we now turn our atten- 

tion to those n-hich do not con& the coordinator. 

Lemma 4.9. For a n y  size-based CTP f ,  and each positive irueger k < n, if there exists - - - 

C E r;' such that {corn, ab) C fle(C)I, then there exists 4 size-based CTP g << f such that 

r;' c ilLL,(g). 

Proof. Because of Lemma 45, R-ithout loss of generality, we may assume that if C does not 
- - 

f 

belong to ALL,(/), ;hen elther / ( w C )  = wa or / ( f )  = w a  Also because of Theorem 4.1, without 

loss of generality, we may assume that f(wC) = a6 for all C E T'. 

Let C E r;' be a compnent suc that (com, ab) C f ( B ( ~ ) j .  Let C, C 1 - C contain the 5 
, pa rd ina to r  and let C, C- # - C - {l]. Since {com, ab} 5 flB(C)), it follows from Lemma 4.3 

t a n d  the w m p t i o n  in rhe previous paragraph that C ,  E WOA7Ll-,(/). Since 1 6 lCli < n-k, 
! 

& 

Similarly i t  follows from Lemma 4.4 that'C? E ALL,,(/). Since 1 6 C2i < n-k-1, by 

Definition 4.1, we have T:* L ~ z L L , , ~  f )  for all r (1 d r < n-k-1 1. 

We now modify f to  g << f as follows For any compnent state S E 17 W A ( ~ ) ,  if 

p E state(S1, let g ( S )  = corn; other%-% iz, if stat&) = 1 w 1, let g(S) = ab. 

If the above modification is repeated for all components C in T;, then we have g << f and 

If the rmdt t im of Lemrna 4.9 does not hold, namely, if there is no C E such that - 

I 

Lcowabl IS a suhser of fte(C1). can f be rncdified to a better' size-based CIF The following - 

lemma shows that it is still possible, although the result is not as g d  as that of Lemma 4.9: rp 



component C € such t h  fcam clb) is a subser uf f(i3(C)l. h if there is a component 

C E ri' hur a stafe S such thz F(SI # wa, then there existi a size-based CTP g such that 

Proof. Let S be as given in the lemma It follows from Definition 4.1 that for any Ci E rr, 

either ab or corn belongs to ~ ( B ( c , ) ) .  S u p p  corn E f le(~,) )  and let S, E e,(C,) be such .that 
- - - - 

f l ~ , 1 =  corn For any S ,  E 8, (~ , )  Tt wA( fl, a component state Si is concurrent with S, iff i t  is 

concurrent with S,  Since fCSI) = com implies that f(S1) E {com, wa),  it is possible to modify f to 

- g on S,, by defining g(S,Z = corn Therefore we obtam g(O,(~,)) = { com 1- Since {com, abJ is not a 
-r 

s u b t  k f i  e f ~ , , ] ,  we harc ffwC? = wr& inheriu this value and so c,' E WONLY. dg). - - 

- - 

' Similarly, if ab E flB(Ci)); f can be mod&& to g so that C, E PONLY,, (~) .  =Hence 

4. 
Lemma 4.1 1. Far any sizebased CTP f and each imeger k l I < k < n), if 

If follows f r o m  Definition 4.1 that r l ' n  ALL, , ( f j=O,  a contmdiction. Hence 

a 
h e o r e r n  43. For an? @en sire-based CTP f. lhere exirrr a size-based CTP g << f 

L 
such thar for each inreget- k II 6* < nl. one of the fdlowing rhree re1atiun.s M s .  

Tbc f&ng theorem summaries the main results of thrs anion.  The firxt part of t6is 

P J 
theorem comes from Theorem 1.2 



Pnwf.  Part (1) fuIlt3ws from l?xorem 4.2 and the Gonsranr s is as &fined in Theorem 42. 

h rema& to show the erunenrre of B Let b = minil; : ri. G ALL,(g)i. Sote that b 3 n s .  For, 

oth t rww Cs-t l )  + b 6 n and t h n t  expn two concurrent component states S ,  and S2  such that 

lSt = wl, Sd = b and SI contains the coordinator. Then T;' C .~LJ!&), and ri-1 M L , ( ~ ) ,  con- 
ppppPp 

tradictlng Lemma 3.3 + 

To prove that b > in-11-2, assume othesw* ia, b < (n-1):2. Then there are two disjBint 

comppnenu, CI and C1, in Ti'. Stnce r;' G we have C , ,  C2 E A L ~ , ( ~ ) ,  contradicting 

Lemma 4.4 c 

for some component C E r;'. and SZ be a p p z r  subaate of S with Sli = b. Then g(SI) f wa by 

the definition of b Sote that any component sate S2 that is concurrent with S is a h  concurrent . 

To prove 2k suppose 1 d k < n-b and C f rib. Let C, = I - C - f 1 1. Since Ell = 



Finally to  prove 2b, suppose n-br 6 I; < b and C E Ti'. Bemuse of the minimality of b. Ti' 

is not a subset of ALL;(gI. It then follows from Theorem 4.3 that 'G ALL,+&) or 

The structure of the *-based CTP g described in Theorem 4.4 is illustra in Table.4.1. I" 
Definition 4.2 A €23' f is a standardized CTP if it has the following property. 

f t i  There exists an integer s (0 d s < n) such that 

(2) There exists an integer b f maxfn-s-1, (n-11/21 < b < n) such that 

Case 2a for each integer k (1 d k 4 n-b), r;'  ALL,,(^), 

i n-1 , I I 
Table 4.3. S w r r u r e  of the &-based g in Theorem 4.3. 

1 

n-b 

b1 
b 

n- 1 - 
- 



Case 2b. for each integer b (n-b < k < b), c  ALL,.,(^) or 

C PO.\~L~-,,(~) U U;O,YLl-,,(g), and 

Case 2c. for each integer k (b  < 1; < n), ri' c .4LL&). t 

Definition 3.2 is based on Theorem 4.3. \Vith this definition, Theorem 4.4 can be restated as 

follou-2 for any size-based CTP f ,  there exists a standardized size-based CTP g << f. 

4.3. Site Optimal Size-Based Centralized Termination Protocols 

In Theorem 4.4, it was shown that a size-based C7TP can be modified to a "better" size-based 
*- 

a 
- 

C T P  which has the properties mentioned in the theorem, un les  it already p s e s e s  those proper- 

ties As shown in Chapter 3, in the decentralized case, a site optimal size-based DTP can be found 

in the set of quorum-based DTP's. In this section, we define and investigate quarum-based CTP's 

and shou- that a site optimal size-based C T P  exists among them. a 

For a given integer k (0 6 k < n'2), define a CTP cp, as follows (Recall the definition of 

quorum-based DWs, denoted by dp ,  and dw,) - -- Again, a component -- is - treated differently depend- 
- - 

ing on whether it contains the coordinator or nor. 

(1) Let S be the state of a component which contains the coordinator. 

Case la I f iSi < k: If p E nate(S), let c p l ( S )  = wcz; otherwise, i-e, if s t a t d ~ )  = { w }, let 
w 

cp,(S) = ab. 

Case Ib. k < LS < n: If p E stat&), let c p i ( ~ j  = corn; otherwise, i.e, if stat&) = { w 1, let 
* 

cpJs) = ab. 

(2: )  Let S be the state of a compnent which does not contain the coordinator. 

Case 2b. li 6 8 < n-k: If p E state(Sj, ler cpl (S)  = cam; .otherwise, i.e, if s t a t d ~ )  = ( w 1, let 
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.- Case 2c. n-k 6 IS1 6 n-1: If p E state(~), let c p , ( ~ )  = corn; otherwise, i.e, if stat&) = I w ), let 

The set of all cpL's is denoted by QCp. The following facts follow directly from the 

definition of cp,. The first two are concerned with the components in TA and the last three with 

the components in r-'. 

(1) For all r (1 < r 6 k), r; !Z WONLY,(C~L). 

(2) Forall  r ( k  < r 6 n-11, iZ ALL,(c~~) .  

( 3 )  For all r (1 < r < h), r; C ALL,.,(cpk). 

, (4) For all r (k 6 r < n-k), ry r WONLY .,(cp,)- 

(5)  For all r (n-k < r 6 n-I), r:' C ALL,(cpk). 

The structure of cp, (k > 1) is illustrated in Table 4.2, and the structure of cp, is illus- 

trated in Table 4.3. . 

-4s an example, in Table 4.4, we list the values of cpl for n - 4 .  (Site 1 is the coordinator.) 

There is another set of quorum-based C P s  denoted by cw, (0 < k < d2)'defined as fol- 

(1) Let S be the state of a component which contains the coordinat.or, 

Case la 1 < El 6 k: If p E state(S), let cwk(s) = wa; otherwise, i.e, if  state(^) = { w 1, let 
I 

Case lb. k < LSJ < n: Let cw,(S) = ab. 

(2 )  Let S be the staterof a component which does not contain the coordinator. 

Case 2b. k < L4 < n-li- If w E stat&), let cwk(s) = ab; otherwise, i.e., if s t a t d ~ )  = { p 1, let 
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- 
r - 
1 

k-1 
k 
k+l  

n-k 

n-1 - 
Table 4.2. Structure of a quorum-based CTP cpi. 

Table 4.3. Structure of the quorum-based CIT cpo .  
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component state i dec- 
: sion 

site 
1 2 3 4  

' a-a 
! corn 

corn 
corn 

ab  - =-a 
~ wa 

wa 
- ab 

ab - ab 
=a 
%a 
a-a 

corn 
corn 
corn 
corn 

component state 

site 
1 2  3 4  

P - - F  
F - - w  
- P P -  
- P W -  
- W F -  
- F - P  
- p - u '  
- W - F  
- - P P  
- - F W  
- - "' 

P P F -  
P P W -  
P m * P -  
p a - w -  
P P - F  
P P - "  
p w - p  

deci- 
sion - 

- 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
com 
corn 
corn 
corn 
corn 
corn 
corn - 

component state 

site 
1 2 3 4  

p a* - u- 
P - P F  
F -  F" 
P - W F  
p - w w  
- P P F  
- F F W  
- p \\- p 
- W P P  
- p w w  
- 'A- p Rr 

- a - w p  
R7 Tk- 'A- - 
U' w - a- 
v.- - a- UT 
- ' A 7 W W  

Table 4.4. The decisions of cp, when n = 4 sites. 

deci- 
sion, 

corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 

ab 
ab 
ab 
ab 

The set of all mi's is denoted by QCSv. Sote that after the coordinator has broadcast "com- 

mit" messages, it is the first site to go into state c. If the coordinator is still in state p, no-site could 

k in state c, and therefore a component which contains the coordinatrrr can be aborted even if it 

has all its sites in state p This makes lb of the above definition possible. Ln Table 45, we illus- 

trate the structure of mi. 

The union of QCp and QCn is denoted by QC Thus QC is the set of all quorum-based 

Rlecall that PC" is the sum of the probabilities of all compnents of size i (See Section 3.3). 

PC: denote the sum of the of all components of size i that contain the 
~- - 
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- 
r - 
1 

k-1 
k 
k t 1  

n-k 

n-1 - 
Table 45. Structure of a quorum-based (JrP cwl. 

coordinator, i-e, 

Similarlv. let PC;. denote the sum of the probabili.ties of all component; of size i that do not con! 

tain the coordinator, i.e, 

In the folloa.ing, a formula for the e s ~ t e d  number of waiting sites under a quorum-based 

CTP is derived. U 7 e  also proposs a a-ay to frnp site optimal size-based Cr'P's 

Theorrm 45 .  For m y  irueger k 10 6 k < nf31, the expected number of waiting sites of 

cznd for k > a, 
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Proof. Suppose k = 0. 7 
For any integer i ( 1  6 i < n-I), and for any component C E ria, C waits under cp(,  only 1 

when it is in wC. (See Table 4.3). The sum of the probabilities of these component states {wC} is ' 

given bv the product of PC: and P(0, i, i). Hence 

S u p p  k > 0. F m  we consider components in r'. For any integer i (1  6 i < k) and for 

any component C E r;, C waits under cpL unless it is in state w". The sum of the probabilities of 
.- 

the states in which components wait is given by the product of PC; and P, - P(0, i, i). 

We now consider the components in r". For any integer i ( 1  < i 6 k-1) and for any com- 

ponent C E r:', C always waits under cp,. The sum of the probabilities of the states in which 

' components wait is given by the product of Pi and PC,'.. For any integer i (k 6 i < n-k-1) and 

for any component C E ria, C waits under cp,  only when it is in state wC. The sum of the proba- 

bilities of the states is u%ch components wait is given by the -prm~uct  o f 2 ~ ; -  a n d  P(0, i, i).- 

Hence 

I n-k-I 
E k p , )  = zi PC; (P, - P(0, i, i)) + '5'i PC;. P, + Z i PC; P(0. i i). 

,The following sirnilkr result applies to a quorup-based CTP MI. 

T h e d m  4.6. For an?; inreger k (0 < k < n/2),  the expeaed number o f  wrriting sites 

under the quorwn-hsed CTP rwk is given by the fdlowing fotmulae: 
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section 4.3 

Theorem 4.7. 1 f PIO, k, kI 6 P(k, 0, kl for- all 'Integers k ( I  d k 6 n-I),  then for any 

size-based CTP f ,  there always exists a ywnurn-based CTP cp,  11 6 i < n/2)  such that 

Proof. It follows from Theorem 4.4 that there exists a size-based CI'P h such that h << f 

having the following p r o p n i e s  

(1 1 There evlsts an integer s 10 6 s < n) such that 

Case la for anv integer k (1  6 k 6 s), r; G UTONLY,(h), and 

Case Ib. for anv integer (s < k < n) c ALL,(h). 
, 

(2 )  There exists an integer b (max{n-5-1, (n-1)/2) < b < n) such that 

Case 2a. for any integer k (I d k < n-b), r; G A J ~ L , . ~ ( ~ ) ,  

Case 2b. for any integer k (n-b 6 k < b), T: G  ALL,.,(^) or 

Case 2c. for any integer k (b d h < iik Ti' G -itL-L;fffi~. 

\Ye want to compare the expected n u m k r s  of waiting sites between h and the quorum- 
- 

based ClT c p ,  where b= n - b. Since s + b 2 n, we have b d s. 

We first consider the-components in r'. 
d 

Case A. 1 < k < b: Since &- 6 s, i t  follows from la that if S E 8&C) for some C E r; 

then S E WA(h)  and h(wC) # w a  It follows from the way cp,- is defined that S E WA(CP& and 

cp&wCj f w e  Therefore, h and cp,- have the same number of expected waiting sites 

under h 
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Case C. 1 6 k < b: l t  follows from 2a. that T, C ALL,. , (~I .  S- ce T;' -C  ALL,.,(^^,-), h and 

cp ,  have the same" n u r n k r  of waiting sites. 
Y, 

r 
Case D. b d 1; < b: l t  follpws from 2b. that for any C E ry, either wc or E WA(h). For $ 

, w is the only waiting component state in 8(CZ Since NO, k, k) 6 P(k, 0, k),  

Pr(wr) 6 pdpC'). Hence the expected number of waiting sites under cpg is not larger than that 

under h in this case. 

Case E b d k < n-1: I t  follows from 2c that T;̂  c . 4L~ , (h ) .  Also C ALL,(CP,-) holds 

(see definition of cpj  ). Hence, in this case, h and cpg have the same number of waiting sites 
r 

In each of the above five mseg the expected number of waiting sites under cp,- is not larger 
6 

than that under h, and therefore E ( C ~ , - )  < E(h). Since h << f, this implies that 

E ( C ~ , - )  < E( f  ). C1 

By replacing cp, by cw, we have a parallel result. 
9 

) Theorem4.8. I f P l t , O , k ) 6 P ( O . k . k I f o r d l i m e g e r r k i l C k < n - l l , t h e n  forany 
PA - -  - - - - -- - 

size-based CTP f ,  there exisrs a  quorwn-based CTP cw t l  < k < n/21 such that 

With the results of Theorems 4.7 and 4.8, we can compare all the quomm-based (3"P's to 

find a site optimal sizebased CTP. 

Thbrem 4.9. I f  PfO. k. K I  6 Pfk, 0, kI fix- aU integers k f2 d k < nl, Let m be an index 

such tha 
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Theorem 4.10. If Plk. 0, kI 6 PIO. k .  kl for- all integers k ( 1  6 k < n), let m be an index 

such thar 

E ( m ,  ) = min{ E(cw; ) 1 1 6 k < n/2). 

Then cwm is a sue optimal CTP in the set o f  size-based CTP'J. 

- Proof. The theorem folloaTs from Theorem 3.6 and 4.6. 0 

This concludes our search for site optimal (37"s in the class of size-hased C W s  

Y 

4.4. Count-Based m s  

Recall the definition of a count-based DTP ~ i v e n  in Section 3.4. A count-based DTP maps - 
any two state equiv component nates to the same decision. In this section we introduce an 

e 3 

analogous concept in the c e n t r a m c a s e .  

Definition 43. -4 CTP f is a c m - b a s e d  CTP, if for any twqstate equivalent component 
f 

states S1 and Sh the follo~-ing two conditions are satisfied x 

(2) If neither S1 nor S ,  contains the coordinator, then flS1) = f (S2) .  

An example of a count-based CTP is illustrated b l o w  in the Table 4.6. 

Theorem 4.11. Each cam-based CTP is a size-baed CTP. 

Prm-f- Let f be a count-based €37 and let k te an integer such that 1 d k < n-1. S u p p  

that a component C E has a state S in 8,(Cj such that f ( ~ f  f wa. For an arbitrary com- 

ponent Ci in r:. let Ss E NC.1 be m t e  equivalent to S,. It follows from Definition 4.3 that 

fCS,f = f&) # w a  Therefore, a q i  C, E Ti has a state S, E 8,(C,) such that fjlS,) # w a  Simi- 

larly, Definition 4.3 (2) implies Definition 4.1 (2). 
-- 

Hence f is also size-based. D 
=--, 

'd 

&,&finitlan, a quorum-based CTP is also a count-based CI?. Hence we have the followkg 

two results 

i 
P 
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.deci- 
sion 

ab 
wa 
wa 
wa 
ab 
w a 
wa 
u-a 
ab 
ab 
6 
ab 
ab 
ab 
wa 
ab 
wa 
ab 

component 
state 
site 

1 2 3 3  
F - - P  
p - - "  
- P F -  
- p w -  
- w p -  
- F - P  
- p - a  
- W - p  
- - P P  
- - p u -  
- - w p  
P P F -  
P P W -  
P W P -  
p w w -  
P P - P -  
p.p - w 
p w - p  

deci- 
sion 

- 
wa 
ab 
wa 
a b  
ab 
wa 
ab 
ab 
wa 
ab 
ab  

corn 
wa 
wa 
ab 

corn 
wa 
wa 

component 
state 
site 

1 2 3 4  
p a . - w  
F - P F  
P - P "  
P - W F  
p - w w  
- P F F  
- P P w  
- F " P  
- W P P  
- p w m 7  
- w p w  
-wrw p 
W W W -  

W W - W  

W - W W  

- U T W W  

deci- 
sion 

ab 
corn 
wa 
wa 
ab 
ab 
wa 
wa 
wa 
ab 
ab  
ab 
ab 
ab 
ab 
wa 

Table 1.6. An example of a count-based Clp for n = 4 sites 

Theorem 4.12. Given an?; cowzt-bared CTP f ,  there exists a count-based CTP g << f 

with the fdla+ing propwry. 

(1) There exists an integer s 10 < s < n) such that 

(2) There exists mr inreger b i max{n-s-l,ln-11/21 < b < nl such that& PI 



Proof. The7 proof follon-s from Theorem 4.1 and the proof of Theorem 3.10.0 

Theorem 4.13. Fm a& coum-bas~d CTP j. z h - e  exisrr\ a quipurn-based.CTP y << f .  

P n w f .  The proof follow-s from Theorem 4.12 and the proof of Theorem 3.11. 

Hence, a s ~ t e  nftlmal count-based CTP can be found bv comparmg all the quorum-based 

CTPs Recall that QC dena-tw the set of all quorum-based C;TP's 

Theorem 4.14. Lei q be a qrrarum based U P  such that 

E(qj = m~n(E(y)  I q E QC 1. 
Then q is a sue optimal cwm-based CTP. 

Proo2f. The proof folloa-s from Theorem 4.13. 0 

In the follou-ing, we show an example of a site optimal count-based CTP in a special case, 

u-here all component states have the same probability. In this particular case, as was explained in 

Section 2 5 ,  during the cakulat~on of the rrpcted number of waiting sites under a CTP, are h& 

We kt the values of cp,, in Table 4.7. The v of cp, were listed in Table 4.4. From 

these two tables, it is seen that the number of waiting sites under cp, is 12, whereas the number 

of waiting sites under cpl is 10. In this particular case, E(cp,) = E(cw,) Therefore, cpl is a site 

optimal count-based CTP. 

Ramarao has propsed a -highly optimal' CfP h which he claimed was a site optimal CI'P in 

the general case [R_Yt1-4-&41 It turns out that the CP h is actuall?; cpc, As %-as pointed out 
- 

above, cp,, is not site aptlmd. Tirus the abow cfi provides a counter example to his claim. 
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f component i deci- 
i mte i sion 
i siu j 

- -  i corn 
i - - F -  jcom 
* - - - - - -  --- 
i - - - p  ; cony 
? 
r T--- ab 

i j - -  aza 
I 

! - - - - -  wa 
i - - -  ? w wa 

i ' %-a-- i ab 
- j 

I s - - - w  i 
I ab 

- - - i 
i - w - p l r  f wa 
t ! - - w a *  wa 

I F F - -  / COm 
p w - -  F corn 
"p-- ; corn 

1 p - F -  j corn 

I F - w -  corn 
- -  j corn 

! p - - F  j corn 
i- 

component 
state 

site 
& I 2 3 4  

w - - p  
- F F -  
-P"- 
- u Z p -  

- F -  P 
- F - ' A -  
- w - p  
- - P P  
- -pp i -  
-- 3!&p 

P F F -  
P P-- - 
P W P -  
U ' P P -  
pa-a; -  
a- p R- - 
'a- w-p - 
P F - F  
P F - "  
P R * - P  
" F - p  ' 

-F=- - * 

desi- 
sion - 

- 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
EOm 

corn 
t corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
corn 
cmlr 

1 2 3 4  ; 
U' F - q* f C O ~  

w u- - p  corn 
F - F P  !-corn 
p - p u -  j corn 
- 1 corn 
w -  , corn 

1 
p - u - w  cum 
w - p u- corn 
w - a - p  I corn 
- p p p  Irom 
- p p w  j corn 
- p u - p  corn 
- w p f  corn 
- a- a- j corn 
- a . p w  k'mm 
- a- a- p 1 corn 
%-a. a-- I ab 

1 
- a .  ab 
w - W R -  : ab 
- w w w  f .;a 

Table 1.7. The decisions of cpfi  for n = 4 sites 

45. Restricted Decentralized Termiaation Protocols 

If S' is a realizable component.state in the centralized case, then it is also realizable in the 

decentralized case. The converse is not true in general. Consider a component state which con- 

tams the coordmator. If the coordinator is in state a- and some other sites are in state p, then this 

component state is realizable in the decentralized mse, but not in the centralized case Hence, the 
- - - - -  

- 

set of reaIizabfe compodent nates in the an t ra l iml  caa is a pmpr artat of the rt of realizaBle 

compnent states in the decentralized case. 
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- - - - - - - - - - - -- 

To sw another dlfferencc between the two cases, .consider two disjoint components C1 and 

C3 In the decentralized case. any compnent state S1 E g(C1) is concurrent with any compnent 

state S-, 68(C2). Th~s  a no longer true In the entrallzed case. For example, if C1 contams the 

C2 cmrdlnat: by Property One (see Section 4-11, Sj = wc' is no1 concurrent with S2 = p . HOW- 

ever, ~f S1 and S-, are tu- concurrent component states in the centralized - then they are also 4 
concurrent ~n the decentmlrzed case, h-0- - - 

The above o k r v a t ~ o n s  make i t  e b l e  to apply a DTP to the centralized case by restricting 

~ t s  domain. Let f be a DTP and let R be the set of all realuable component states in the central- 

lzed ras% -Then R IS a pro-per mbsetof&k domain of 1. i f  we restrict J to R i t  satisfies boththe 
8 

nonreversal A d  consistency conditions (See Definition 2.1 1. Therefore. we can consider f to be a p d  
4 .  

, ~ T P .  C I F s  this way are called restricted decentralized terrninared protwds IRmP).  

class have been regarded as possible candidates for a site optimal CFP 

[RAh~=&lt However, %-e show here that this is not true and, in f a c ~  there always exists a CFP 

which is strictly better than any IU>TP. 

-- 

Lemma 4.12.m.y CY'Y f-. i f t h e r e  exrst two disjoint componems c1 ~ F s Z &  

, 
that C,  E ALL,( f )  and C2 f! ALLL3( f ) .  rhen ,f is not a RDTP. 

&----3 Proof. Suppose f is a FWP- It folloa-s from Lemma 2 that C2 E ALL,,( f) ,  a contradic- 
a 

tion. Hence f cannot be a RDTP-C 

The following lemma shows that for every RDTP, there exists a "better" 
0' 

Theorem 4.15. If PIO. k .  kI < P(K.  0. k1 for all k ( I  < k < n-11, then for any RDTP f, 

there exins a CTP g which is not a RDTP such thet Etgl < Elf  1. 
8 

Prtw f .  Because of Lemma 43. w i t b a t  ICES of generality, w e  may assume that if C does not  
* 

belonata ALL,( f), then either f j w 3  = wa or flP3 = ~ a .  

The proof is divided into three caws- 
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Lemma 2.3 that f(wc2) = wa. B e c a w  C2 contains the coordinator, only the component state wcl 

L C 
from among rhase in Mc,) is concurrent with sC2. Since flw '1 = ab, f can be modled to g by 

C 
definrng g(w 2, = ab. Therefore E(g) < E ( f j ,  regardless of the relative values of P(0, k, kj and 

l r  

P( k, 0, k). 
- 

P 

Case B:  ALL,^ f j ft f - = 0 but ALL,(fl # 0. Rkal l  that 8&C) denotes the set of states 

of C which contain a t  least one site in state p. Define a CTP h as follows. 

( I  f For any C E f let h(SJ = com for al l  S E e p ( ~ ) .  

(2j For all C E r-, let h(wC) = ab. 

(31 For all C E r*=, let HwC-) = w a  

CTP h $&ffined above in such a w a r  L a t  h maps to wa only those stales of components 

which do not contain the coordinator and have all their sites in state w. 
71 

8 
N o  C E r- belongs to ALL.,( f) and thi;mplia that erther firc') = *a or nu. C, 

-- -- - 

f 
waits under h only when iJ is in state w . Srnce P(0, k, k) < P(k, 0, k) for every k < n-1, 

PdwC) < PdpC'). Therefore the eab;;;ted number of waiting rites in C, under h is not larwr 

than that under f. Hence E(h) d E ( f ) .  4 

5 

Because ALL, ( f }  GI f '  # 0, there exists a component C in r" such that C E ALL,,( f). 

Since C waits under h only when it is I&, more sites in C wait under f .  Hence E(h) < E( f) .  
L 

Case C: AL5,f-f) = 0. Smce no C € r, belongs to ALL,( f), therefore either f(wC) = wa or 

f T p C )  = w a  Again weecompare f with the CTP h defined in Case B above. Since 
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Theorem 4.16. If Plk, 0. k) d PfO, k, kJ for all k (1  6 k < n-l), then for any RDTP 

there exisrs a CTP g which is not a RDTP such that E(g) < E( f). 0 

Theoremi 4.15 and 4.16- confirm the fact that no site optimal C T P  can be found among the 



- 

CONCLUSION 

* 

The handling of network partitioning is in general a difficult problem. Most of the known 

systems treat it as a catastrophic failure and handle it manually. In this thesis, our main concern 

is tu design protocols which maximizes the availability of a database in the presence of network 
L 

- - 

partitioning. Transactions are normally executed under the three-phase commit protocol and a 

termination protocol (TP) is invoked only when a failure occurs 

We have extensively investigated two classes of TP's count-based TP's and sizebased TP's. 
- - - 

It was shown that, in th& cIasses, *b&* ws with the minimum expected number of waiting 
/ 

sites can be found among the quorum-bdd WS 

The methodology used in the search for these "best" TF's was to introduce a partial order . . 
among all size-based TKs and to identify a subset which contained all candidates for the "best" 

TF's The subset thus identified is the set of quorum-based TP's We have a h  succeeded in 

demonstrating that this approach applies equally well to the decentralrzed and the ce tralized 
-- 

?I 

fases- 
w 

Along with the development of this methodology, characteristics of W s  were examined 

extensively. In particular, some of the essential characteristics of C W s  have k e n  found which 

give us a better insight into the properties of CP's 
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Figure 3 . 2  FSA a€ the lkmtntittd Two-Phase Commit Protocol. 
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Figure 1.3. FSA of tbe Centralized The-Phase Commit Prolocol. 



Figure 1.4. FSA of the Dccentralircd Thm-Phur Cornmi1 Protocol. 




