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In a distributed database system, a transaction submitted at a site may require execution of

1ts subtrapsactions at a number of sites. In order to guarantee thay no partial result of a transac-

“tion is reflected 1n a database, rendering the-database inconsistent, all sites involved-must-unant-- - - -

7 .
“ mously commit or abort the transaction. Thus a commit protocol is required.

<

A distributed database svsiem must guarantee consistency even if there is failure. When
failure occurs, it is desirable 1o have afrzarimimzigé protocol (T P) teeminate all the affected tran-

sactions consistently. However, in the case of network partitioning, 11 has been shown that there

exists no commit protocol that is non.blocking, e, some participating sites may have to wait for
the repair of this type of failure before thev can decide 1o commit or abort a transaction. Hence
the goal here is to design a size optimal terminatior: protocol, which has the minimum expected

number of waiting sites. Such’a protocol will maximize the availability of a database i the pres”

'enfeoffﬁetwﬁrk -partitioning: _

We consider the geﬁ:eégl case in which realizable com ponent states of a partition may have
different probabilities of occurrence, We study two classes of TP’s, namely, size-based TP's and
couruz-based TP's and show that there exists a quorum-based TP tp%} is sne optimal in these
classes. Results in this thesis indicate that the set of quorum—basea TP’s plavs an essential role in

the design of site optimal TP’s, both in the decentralized and the centralized cases.

— iii —
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INTRODUCTION

-

1.1. Transaction Atomicity in a Distributed Database System
In a distributed environment, a transaction submitted at a site may require database entities
stored at other sites, and thus cooperative execution at a number of sites. These sites are referred

to as the participating sites of that transaction. A transaction is a logically azomic operation

which. transforms a.consistent-database state into-another consistent siate. - In-order-to-maintain

the consistency of a database, the effect of a transaction should be either fully reflected in the

database or not at all.

4 If a transaction is executed to completipn and its effects are permanently incorporated into

the database, we say that the transaction is commirted. If one of the participating sites cannot

cc?gl;te the transaction, then all the other sites have no choice but 10 abort the transnction;'

-

There are many reasons why a transaction cannot be compléted: for instance, request for abgrti(_)n'

by a subtransaction itself, deadlock and hardware failure.

In our discussion we will use the term subtransactions to refer to different parts of a tran-

saction which are executed at the participating sites. In order to guarantee atomicity, all sites

involved in a transaction must unanimously commit or abort the transaction. Hence commit pro-

tocols (see Section 1.2) are retjuired in disrtributed?dambase systems. In the following section, a

well known protocol, called the two-phase commir protocal [LAMP-76, GRAY-78] which guaran-

tees atomicity of transaction, will be introduced.
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In a distributed database system, any protocol coordinating the. subtransactions of a transac-

&

pating site [SKEE-811 A finite state automaton in a certain staté reads a set of messages from
other sites, takes an appropriate action, sends out a set of messages 10 other sites (FSA) and thgh

changes its state.- Initially, the site which issues a transaction sends its subtransactions to the

' 7ap7;;r(;pﬁ£t7;§irtésj apﬁﬂe;r’:ih o}' thtse sites determines_individually whethef(n would commit or

- 3
tion can be modeled as a collection of finite state automata (FSA), one associated with each partici- .

abort the transaction. This step can be conceived as a voting step in which every site involved -

expresses its intention to commit or abort.. After all votes are received, a g]oba] decision will be

-~ “made awd all the sites will follow this decision to either unanimously abort or unanimously com-

mit the transaction.
Different protocols use different approaches 1o éollecting votes and maﬁng global decision.

However, they must all follow the same commit rule , ie., a transaction must be aborted if one or

more sites have decided to abort it; otherwise, it must be committed. Protocols which fo]low the 4'

~

commit rule are called comrut prot&:ols. In the fol]o{:.'ing we fntroduce two comxmt protocols,

namely, the certralized two-phase commit protocol and decentralized two-phase commit protocol

[GRAY-78]
These protocols both have two phases and four states.

State q is the initial state before a site has made its voting decision.

State w is the waiting state in which a site waits for the message containing the global deci-

-

sion after it has sent out its voting message.

State c is the commiz state in which a site has committed its subtransaction.

P . e e

'State ais ghé ;zbort state m‘i;hmh ﬂ;esitateimwhlch a site has abon;ed 115 subtransaction.

'The states ¢ and a are final states in which a transaction is terminated, whereas state w is only a

transient state.




-

Centralized two-phase commit protocol
Orte-efthe sites is designated as the coordinator.

PHASE ONE

' ) ' S, Y '
After executing the subtransaction allocated to 1t, a participaling site sends a voting

1 - - - . - L . - .

message to the coordinator. If a site voles no”, this reflects its intention to abort the
H ’ ¥ "

T T “transaction. 1 aboris s subiransaction after sending out i!S"S”’Eting"nim”f’gé*nb'.’"” S

If a site votes "ves', the site is ready to comrhit the transaction if all other sites agree.

However, it cannot commit the transaction at this point, it has to wait for the global

77decisi6n f fbni Lhe tobrdinaior.
. PHASE TWO .
If all sit&ﬁ have voted "ves”, then the coordinator broadcasts a "commit™ message. Oth-

erwise, it broadcasts an “abort” message.

All the participating sites then act {i.e, either commit or abort) unanimously accord-

ing to the message from the coordinator.

This protocol‘can be represented by a coliection of finite state automata (FSA), one associated

with each participating site. In what follows we use the term "site to refer to the FSA at that

site.

Initially, all sites“are in state q. If a site votes "no,, it goes into state a after it has sent its

¥

°

vote to the coordinator. If it votes "ves, it goes into the waiting state w. As for the coordinator, -

it is also in state w bhefore making a global decision. In the second phase, all sites that are in state

w change their states to either ¢ or a unanimously according to the global decision received from

the coordinator. .




graphs {see Figure 1.1). Note that in these graphs, if a sije is in state g, all other sites must be in a

state which is adjacent to state g, Le,, either state g, state w or state a, and no site could be in state

c. Similar/b‘, if a site is in state ¢, no site could be in state q or state a.

With this protocol, different sites could be in different states at any given time, but no site

could lead another site by more than one state transition during the execution of the pro;‘xo].

e

Therefore these FSA are called synchronous within one state [SKEE-81a]
The three-phase commit protocol has a decentralized version. In the deceritralized case, no

- coordinator is appointed, but each site will collect all the votes and use them: to make the global

+

decision.

Decentralized two—pﬁase commit protocol

PHASE ONE

4f a site decides to abort, it broadcasts a 'no” message to all other participating sites

and aborts the transaction.

If it decides to commit, then it broadcasts a "ves' message and waits for the votes
L

from all other participating sites.

PHASETWO

After it has received all the voling messages, each site makes a global decision accord-
ing to the commit rule: Le, commit if all sites voie to commit, abort otherwise. Since

all sites receive the same set of voting messages, they will all take ithe same final

action, either commit or abort.

The FSA associated with this protocol can also be represented by a graph (see Figure 1.2).

Since there is no coordinator, all participating sites have the same FSA and these FSA are all syn-

chronous within one state.
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1.3. Blocking Property of Two-Phase Commit Protocols - e

Two-phase commit protocols guarantee atomicity of distributed transactions, but this is only
true in case there i1s no failure. Consider the centralized two-phase commit protocol. Suppose
three sites s;, s- and 3, where s; is the coordinator. In phase one, site s, sends a "yes" 10 5,.
After 2 while, it detects that it is separated from both sites 5; and s;. This could happen because
of site failure or network partitioning. In this situation, site s, has no information about what
has taken place in sites s; and 55 : the transaction could have been aborted or committed in these
sites. The only thing that site s- could do is to vwait until the failure is repaired and then com-

municate again with s; and s; in order to reach a global decision.

While site 5, is blocked, waiting for recovery from the failure, no new transaction can
access Lhag part of the database which will be updated by the suspended transaction at 5,. To see
this, su-ppose the concurrency control scheme used is the "locking scheme”. Then a part of the data
base which will be updated bv the suspended transaction has been locked by the transaction, and
hence no new transaction can access it. If another concurrency control scheme, e.g. "time stamp-

ing", is used, the problem will stilt occur. It is this blocking property that degrades the perfor-

mance of the two-phase commit protocel 1n the presence of failure.

A similar problem occurs for the decentralized two-phase commit protocol. Hence two-
phase commit protocols are called blocking protocols [SKEE-81b) If failure occurs, a’distrit;uted
transaction, executing under a blocking protocol, could have some of its participating sna wait for
a long time for recovery from the failure. This is very undesirable and hence the prob]em of

designing nonblocking protocols arises. A nonblocking protocol terminates all participating sites to

either abort or commit. >
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1.4. Three-Phase Commit Protocols ..

As'seen above, blocking propertyv degrades the performance of two-phase comnﬁt frb&?cols.
Is there anyv protocol that is free from blocking property? Is it possible to design protocols v;}(hic'h
are nonblocking for certain types of failure? The first nonblocking commit protocol fc?ér site
failures was proposed by Skeen [SKFE-8§1bl He proposed the three-phase commit prozacgf;)l and
showed that it is a nonblocking commit protocol for site failures. This type of protocol 1sfe§sen—7 -

tially a modification of the two-phase commit protocol. The following is a description of his pro-

tocol for the centralized model.

Centralized three-phase commit protocol

PHASE ONE

This phase is the same as PHASE ONE of the two-phase commit protocol.

PHASE TWO

If au least one site votes "no", then the coordinator broadcasts an "abort” message and

all sites abort the transaction.

If all sites vote "ves", the coordinator broadcasts a “prepare-to-commit” message to
every participating site. After each site has received this message, it rewurns a

“confirmation” message to the coordinator.

PHASFE THREEFE

After the coordinator has received "confirmation” messages from all other sites, it
g

broadcasts a "commit” message. A site commits only after it has received this message:

The FSA associated with the coordinater and other participating sites of this protocol can be
represented by the two graphs in Figure 1.3, where p is a new state which indicates the state of a
site after it has sent out a confirmation” message but before it has committed, (ie., entered state

—6 — ' /
p;
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c). Note that the three-ph commit protocol is also svnchronous within one state. The
3 :

significance of the new state p is that the existence of a site in state p indicates that the global

“decision is a "commit” decision. Since this protocol is svnchronous within one state, if a site has

committed, no other site could be in state q or a.- \ote also that if a site has aborted, (i.e., entered

state a), no site could be in state p orc.

_-

have and use the following protocel 10 terminate a transacfion.

2

If there exists a site in states p or ¢, all operational sites commit. Otherwise, all sites abort.

Thus no operational site needs to wait, that is to say, the three-phase commit protocol is non-
blocking for site failure. However, this protocol is not nonblocking for a particular type of failure
called "network partitioning™. In the mext chapter, the relation between the three-phase commit

protocol and network partitioning will be discussed in detail.

The three-phase commit prowocol also has a decentralized version without coordinator.

Decentralized three-phase commit protocol J

PHASE ONE

This phase is the same as PHASE ONE of the decentralized two-phase commit proto-

col.

PHASETWO

If the set of votes received by a ¥ite contains a "no” message, then the site aborts the

transaction. .

J

If all the votes received are "ves’, then the site broadcasts a "confirmation” message to

everv other site.

PHASE THREE
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After a site has received "eenfirmation” messages from il other sites; ther it commits

the transaction.

The FSA of this protocol is represented by the graph in Figure 1.4. The decentralized

*

thfee—phase commit protocol is also nonblocking for site failures. The same protocol that was used
n the centralized case to terminate transactions in the presence of site failure can also be applied

to this case. In the rest of this thesis, a "commit protocol” will denote the three phase commit pro-

tocol.



CHAPTER 2

TERMINATION PROTOCOLS FOR NETWORK PARTITIONING

2.1. Componehts and Component States of a Partitioned Network

In a distributed system, sites communicate Via a communication network. A meSagg issued

‘at a site may go through some other sites before it reaches its destination. If some sites or com-
munication links fail, it is possible that the sites are divided into subsets such that the sites in a

subset can still commumicate with each other, whereas sites in different subsets can no longer

communicate. Failure of this type is kndéwn as network partitioning [SKEE-82al The sites

within a subset can exchange information and try to decide on a concerted action (commit, abort,

or wait) to be taken by all the sites within that subset.

v’

In order to investigate actions to be taken by each site in the event of network partitioning,

we define the terms, component and the state of a component. (component state, for short)! in

the context of network partitioning [RAMA-84)

>

When network partitioning occurs, the participating sites of a transaction are divided into

disjoint sets of sites called components. Communication between sites in different components is
disrupted, whereas communication among the sites within a component is still possible. We thlisr
assume that a pair of sites can communicate with each other or not at all. That is, no failure
causes disruption of communication in one direction only. Throughout our discussions, we con-

sider an n-site network and the set of all sites is denoted by /. We use I' to denote the set of all

components and C to denote a typical component in T.

Since our main interest is in the design of rermination protocols (see section 2.3) for network

partitioning, we will not concern ourselves with the detection of network partitioning. We

! 1n [RAMA-84] componen: was called group andcomponent state was called componens. In order to be compatible
with the general usage of the term “component”, we have adopied new terminology.

-9
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assume that site failures as well as network partitioning can be somehow detected, either by
operational sites or by the underiving network.

When a transaction is executed under the three-phase commit protocol, the state (g, w, a,
etc.) of a site depends on the time when the partitiening occurs. The sites belonging to a com-
ponent could be in different states, and thus we need a notation to represent the information

about the states of the sites in a component.

* ~Let Q be the set of all possible states of the FSA associated with the three-phase commit pro-
tocol, ie, O = {q, w, p, a, c}. To represent the fact that site i is in state s, we use an ordered pair

(i, s) in 7xQ. Let S be a set of ordered pairs from Ix(. S is a realizable state of component C;
7 . &

(realizable component state. for short) [CHIN-83) iff
(1 c={ilGs) €S}
(2)  there do not exist two different ordered pairs in S that have the same first element, and

(3) the second elements of all the pairs in S are either the same or adjacent states in the FSA

associated with the commit protocol. .

¥

f -
The first point in the above definition signifies that set S represents the state of component C.

-

The second point ensures that a site can be in exactly one state. The third point follows from
one-synchrony of the three-phase commit protocol, i.e, any pair of sites of a component must be .
in the same or adjacent states. Any set S satisfying these three conditions represents a realizable
state of a component in a partition under the three phase commit protocol. See Example 2.1 below

for examples of realizable and unrealizable component states.

Throughout our discussion, when we refer to a component state, it is assumed to be realiz-
able unless otherwise stated. For any component. state S, we use the notation
comp{S) ={ii(i,s) € S} and gtate(S) ={s1(i,s) € S}. With this notation, S is a state of the com-
ponent comp{S). Two component states S; and S, are said to be concurrent if comp(S,) and

comp{S,) are disjoint and state{S,) U state(S,) contains one state or only adjacent states. Intui-

- 10 -
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-~

tively, this means that the two components comp(S,) and comp(S,) which are in state S; and S,

respectively, can occur together in a partition. .

Example 2.1.

Suppose there are only three pariicipating sites, i.e., 1 =1{1, 2, 3} rThen C, = {1,2}7and
C,={ 3} are two disjoint components in a partition. §, = {(1, p), (2, w)} and S, = { (3, w) | are

two concurrent states of C; and C,, respectively. . :

Let S3={(3, 0} Alihough S5, is a realizable component state, it is not concurrent with S,
 because states c-(the state of site 3 in S,) and w (the state of site 2 in S,) are not adjacent.

4
Let S, =1{(1, q), (2, p)}. Then S, is an unrealizable component state because state q and state

)

p are not adjcent. O

2.2. Three-Phase Commit Protocol under Network Partitioning

When network partitioning occurs, can we consistently terminate all the sites without mak-

ing some of them wait until communication is reestablished? It'is reasonable to terminate all the

sites in a component by the same action; namely "commit” or "abort", since they can still commun-

~ icate with each other and can share the information collected within the component.

In the following, when we refer to< the termination of a componen% i‘ermin state, we
mean the termination of '\hﬁ subtransactions by a particular action at all sites in the wﬁmnent
Also, when we say that a component state S is terminated, we mean that the component con}p(S) ¥
in state S is terminated to either "commit” or "abort". In the presence of network partitioning, we
hope to terminate all concurrent component states consistently. That is, we wish to avoid the
situation when one component state is terminated to "commjt" and another concurrent component

state is terminated to "abort”.

Can the three-phase commit protocol terminate all components in all realizable states, ie.,

can it terminate all realizable component states? Unfortunately, the answer is negative. It has
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been observed that if a i)rotocol can terminate a component C in all realizable states, then the
components dispint from C must wa;t when they are in certain states, ie, .sites in these com-,
ponents can neither abort nor commit [CHIN-83}

The following example illustrates this observation.

Exampie 2.2. ¢ E S

Let 7={1,2, ’3}. “Then S, ={(1, p), (2, p)} and S, ={(1, w), (2, w)} are states of component 7 ’
C =1{1, 2}. Similarly S;=1{(3,c) } and S, ={ (3,2) } are states of the component { 3 }.

Here we assume fhat a transaction is executed under the decentralized commit protocol.
Observe that if f is a protocol that terminates both S, and S,, it must terminate them to "commit”
and 'abort",r respeétively. The reason is that §; is concurrent with S; and site 3 of S; has commit-
ted, therefore f must terminate S, 10 "commit” in order to preserve the consistency of the data-
base. Similarly S> must be terminated to "abort”, since it is concurrent with S

Let us now consider two component states Ss = { (3, p) } and S = { (3, w) }. They are both

concurrent with S; and S». If f terminates one of them to "abort”, then it will contradict the

decision taken on S;. On the other hand, if f terminates one of them to "commit”, then it will
contradict the decision taken on S, This simple example illustrates the fact that no protocol can
consistently terminate all component states. It is now clear that the three-phase commit protocol

is blocking for network partitioning. This is true in both the centralized and decentralized

cases. [J

M

2.3. Termination Protocols

It was shown in the last section that no protocol can terminate all realizable component

states. We thus wish to have a protocol that minimizes the e;peéiéa number of waiting sites and
hence maximizes the gfailability of a database when partitioning occurs. Before a detailed discus-

sion of this problem, we first formally define a termination protngL

—-12 -
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~

A termination protocol {TP) can be viewed as a function mapping component states onto.

3

decisions 1o be followed by the sites within the corresponding components. It has to ensure that
noA two component states that éould potentially occur concurrently in a partition are given
conflicting decisions..

We use “com”, "ab" and "wa" to represent the three decisions “commit”, "abort” and "ﬁvait",’
respectively. .

Observe that a component wlhich contains a site in state q or state a can always be ter-
mirlated w ab. If § component has a site m state a, then there is no choice but to abort the tran-
saction because at least one site has already éborted the transaction. If a component has a site in
state q, then no global decision has been made and no site could have committed the transaction.
However, it is possible that sites of some other components in the same Partition have aborted the

transaction. Therefore, such a component must be terminated to ab.

A similar argument applies to the case where a component has a site in state c. Such a com-
" ponent should be terminated to com. It follows from the above observation that only those com-

ponent states with sites in state p and/or w are crucial in defining a termination protocol: a termi-

nation protocol is completely defined by mapping these component states to “ab’, "com” or wait.

Definition 2.1. [CHIN-83] A rermination protocol (TP, for short} f is a function from the
set of all realizable component states to the set of decisions {com, ab, wa} with the following two
conditiions.

(1) 1 satisfies the nonreversal condition,” ie., for any component state S, ¢ € state(S) implies

that f(S) = com, and {q, a} n state(S) = @& implies that f(S) = ab.

(2) [ satisfies the consistency condition, ie. for any two concurrent component states S, and S,

{AS), FS) = {com, ab). O ‘ oo

.

2 This condition was called preservarion property in [CHIN-83].

13— -
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The nonreversal condition of a TP is required because of the observation made before
Definition 2.1. The consistency condition simply ensures that, even though two component cannot

exchange information, they must be terminated by "non-conflicting” actions. -

For convenience we will use 8 to denote the set of all component states with the sites in

state p and/or w, ie, 8 = {Ststate{S) € {p, w} |. 8, C O denotes the subset of 8 which con-

wains all the componeﬁt states that have at least one site’in state p. Sinmlarly; © . & © denotes the

subset which contains all the component states that have at least one site in state W. Throughout
the rest of our discussion, when we define a TP f, we will only specify the values of f for the
component states in 6, ie., {f{S)'S € 8}. The values of f for the component states not belong- .

ing to © are uniquely determined by the nonreversal condition, and therefore we do not specify

them explicitly.

When a TP is used together with the centralized three-phase commit protocol, the TP is -

called a centralized termination protocol {CT P). Similarly, a TP in the decentralized case is called

a decentralized terminarion protocol (DT P).

‘As stated above, we wish to design a TP which minimizes the expected number of waiting
sites. Such a TP is called a site optimal termination protocol [CHIN-83]
Components which result from network partitioning have differenf probabilities of

occurrence. For a component state S, Pr{S) denotes the probability of its occurrence.

Let E(f) denote the expected number of waiting sites under a TP f. Note that if f(S) = wa,

all sites in comp{S) wait. Therefore, we have -

E(f) = ¥ SIPAS),

J3 3 S

where W is the set of component states that wait under f, ie. W= {S1 A(S) =*wal}, and ISI'

denotes the number of sites in comp(S). S

E( /) gives a measure of performance of a TP f in the presence of network partitioning. If

E(f) is small then the availability of the database is high when partitioning occurs. For example,

— 14 —
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in the case where locking is used, the locks at a site cannot be released when the site waits. We

want to find a site optimal termination protocol, ie, a TP with the minimum E(/) value.

Definition 2.2 [CHIN-53]. A TP is seid to be a site optimal termination protocol if it has the

minimum expected number of waiting sites. =
Thus if TP 1s the set of 21l TP's, then / € TP is site opuimal iff £(/) = min{E(g)ig € TP |
In the rest of this thesis, we will be mamnly concerped with site optimal termination proto-

cols within certain subclasses of TP, 1.e, minifigi 7 € K |, where A € TP.

-

2.4. Some Characteristics of DTP’s
The following properties distinguish DTP’s from CTP's.

Theorem 2.1 [CHIN-83L A necessarv and 'mjﬁcim.t condition for a function f, from the

set of realizable componen: states to the set ¢f decisions {com, ab. wai. 1o be @ DT P is

(1) f satis fies the nonreversal condition. and.

(2) For anv{Prwe componen: states 5,5, € O such thai complS,} N complS,) = B,

VAS L ASH = lecom, abl holds. =

Comparing this theorem with Definition 2.1, 1t is seen that the consistency condition in

Definition 2.1 is replaced by ‘the second conditior in Theorem 2-1.

This reflects the fact that in the distributed case any two disjpint components give rise to
pairs of concurrent component states and therefore a DTP must terminate themX, consistently.

‘\&ecall that all the component states in © have sites in either state p or state W and these two

states are ad jacent in the FSA. .

For a given cbmpdxiém C. the state of C which has all its sites in state p is denoted by pC.

Similarly w© will denote the component state which has all its sites in state w.

—15 —



" chapter two, - -
 Lemma 2.1[CHIN-83) For a given component C and a DTP f
(1) either fip‘}=com or fip'1 = wa. and
(2) either fiw’)=abor fiw'}=wa 2 : N s .

- p* can occur ~concurre:nﬂ}’; with a component state that contains a site in state ¢, hence p¢
cannot be terminated to ab. Similar reasoning ﬁpi)lies to (2) above, The conditions on f in this
~Jemma are essential characteristics of a DTP. -In Chapter 4 we wiil see that the first condition
does not hold for CFP’;. |

Lemma 2.2 [CHIN-83L For any two disjoint components C, agd C; and any DTP f, a
' L

least one of the two values, fﬁt;’l} arid - fFWC")‘, mustbewa. & 7

If neither value is wa, it follows from Lemma 2.1 that f{ ch = com and ﬂwcz) = ab. How-

ever, this violates the consistency condition on TP.

‘Lemma 2.3 [CHIN-83L. For any component Cy, let S,.S, € © be two states of Cy. If

f(S:} = com and f(S‘,.}v= ab then f1S;) = wa for every state S; of C, that is di_{joinz fromC, O

Note that state S, in 8 is concurrent with both S, and §;. Since S. and S are terminated to

conflicting actions, S, has no other choice but to wait. -

In particular, if both pC* and w'! are terminated by f, they will be terminated to conflicting

actions. Thus all states of C, in B8 must wait

2.5. Site Optimal DTP’s for a special case
In this section, we investigate site optimal DTP’s in a special case. Although the case is far

from general, it gives us-some insight into-general site optimal termination protocols. —

L N
it occurrence. in this sec-

In-general
tion, we assume that the probabilities for different component states are all equal, and therefore

the problem of, finding a site optimal protocol is reduced 10 finding a2 TP which has the minimum .
{ :

1 o
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sum of waiting sites over all component states. In this case .

E(f)= Y

sew

where W is the set of waiting component states. e

-

For this case, site optimal DTP’s ha;'e been found [CHIN-83). In order to present site optimal

DTPs, we first introduce a particular class of DTP’s, namely, quorum-based DTPs [CHI\ 83].

s R

" As before let n be the number of parucxpatmg sites. For a given integer k (O 7 k < n/2),
define a DTP dp; as follows, where S € .
(1) IfLS;tS K, let dp(S) = wa.
(2) Ifk< VLSV'iJr(:nV—ik al;(;pﬁ sta'u;(S), let dpttS) = com.
(3) If kK < I8! < n-k and state(S) = {w}, l?t dp/(S) = wa.
(4) I IS! 2 n-k and p € state(S), let dp{S) = com.

(5) If 1S > n-k and state(S) = twl, let dp,(S) = ab.

A DTP defined as above is said 10 be quorum-based. d Pi acts on a component state according

~ponent state { (1, p) J.

to its size as well as whether its sites are all in state w or not. The set of all dp,'s is denoted by
QDp. In Table 2.1, an example of a quorum-based DTP is given. In that example, there are four
sites involved (ie, n = 4), and k is equal 10 1. The table shows the decision by the quorum-based
DTP d p,:’on every realizable component state in 6. Note that the entries in the first, third and
ﬁf11:x columns represent component states. For example, an entry ( p- - - ) represents the com-
A%

There is another set of quorum-based DTP’s denoted by dw; (0 £ k < n/2). dw; is defined
in the same way as d . except that P and w are interchanged and SO are com and ab. ,The set of

all dw,'s is denoted by QDw. The union of QDp and QDw is denoted by QD. Thus, QD is the

set?ofrailrl q;n;;n based DTP's. l .

For a quorum-based DTP dp; and an integer r {1 € r < k), if S is a component state of size

r, then dp,{S)=wa Since we only consider the case where a component state has all its sites

—17 =
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component ; deci- ; component ! deci- | component | deci-
state ¢ sion state sion state sion
site ‘site site
1234 { 1234 1234
p---—- ¢ wai w--p com! wp-w | com
-p-- | wai{ -pp- com| ww-p | com
b--p- | waj -pw- com pP-PP com
= ---p { waji -wp- com; p-pw com
w---" 1 waiT=pEp com | p-wp com |
-w-- owa [ CP-w com| wW-pp com
--W- i waj -W-p com| p-ww | com-
---w  wa, --pp com| w-pw ! com
WWw-- | wa| --pw com| W-wp | com
| W-w- ! wa! --wp |.com| -ppp com
¥ I . wa! ppp- com!| -ppw com
-WWwW- ;| wWa| ppw- com| -pwp com
-W-Ww | wa| pwp- com| -wpp com
. --ww | wa! wpp- |com]| -pww | com
[i~PP-- jCom! pww- |[com!| -wpw | com
PW-- lcom| WpPW- | com| -wWwp | com
wp-- fcom! wwp- | com| ww w- ab
- p-p- écom PP-DP com | WwW-w ab
p-w- | com PpP-W com| w-ww ab
wW-p- fcom! pw-p com | -WwWWwW ab
p--p icom| wp-p com
_-w com; pw-w | com i

P
’LTable 2.1. The decisions of dp, for n = 4 sites.

either in state p or w, the number of component states $ such that ISi=r is given by 2~ @.
Therefore the total number of waiting sites over all the component states of size r is given by
r27{;). .

For an integer r (k < r < n-k) dnd for every component C of size r, among all the states of

C. w" is the only waiting component state under dp,. Therefore the total number of waiting sites

over all the component states of size r is given by (7).

For an integer r{n-k < r < nJ; none of the component state of size T waits under dp~ —

{
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we have

EN=Sr204 3 7 | -

r=l =i +]

We can similarly show that E{dw;) = E(dp,).

/

It was shown in [CHIN-83] that a site optimal DTP exists in QD. They first showed that for
every DTP f, there exists a k such that the number of waiting sites under f is at least as large as - B
under dp;. They then showed that by comparing all the membefs in QD, a éite optimal DTP can
% found in QD. For n = 9, Table 2.2 lists the values £(d p;) = E(dw,) for all k. ABy comparing
all values in Table 2.2,, we find that dp, has the minimum expected number of waiting sites. _
Hence dp; is site optimal for n = 9. Since E(dwzj = E(d p,), dw is also site optimal if n = 9.

Theorem 2.2 [CHIN-83] Let n be the number of sites involved and let k be the largest

inzeger such that

| . k2 <n
Then both dp, and dw, are site optimal DT P's. O

In the following, we will Tr¥ to abstract some of the characteristics of a q&bfﬁx-xl—based DTP.
Recall that I denotes the set of components and let T'; denote the set of all the components that =
are of size k. Recall also that © is the set of all the component states with sites in state p and/or

w. Let 6(C) denote the set of component states S in © such that comp(S) = C and let 6,(C)

2295
2232
2196
3456
10368 a

Table 2.2. Values of E(dp,) and E(dw,) for n = 9 sites.

W= O
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denote the set of component states in 8(C) which have at least one site in state p. Similarly we

define 8,(C) by replacing p with w.

Let ALL(f) denote the set of all components C such that ;'111 the component states in 6(C)
are terminated by f, ie, for each S € 8(C), f(S) = com or ab. Similarly ALL,,(f) denotes the
set of all components C such that all component states in ©(C) are mapped to wa by f. Let
WONLY  (f) denote the set of all components C with the property that all the compbne'rlt states
| in 8,(C) are terminiated and S is the only waiting component state in 8(C). PONLY .. (f) is
defined similarly by replacing 6,(C) for 8 ,(C) and p© for w.

With the above notation, we can describe some important properties of a quorum-based DTP
dp,. '

(1) Forallr € kT, © ALL,(dpy).
(2) Forallr(k <r <nk), T, €CWONLY (dp,).
(3) Forr 2 nk, I, € ALL(dp,).

The quorum-based DTP dw; has similar properties. When dp; is replaced by dw, and

WONLY . (dp;) by PONLY . (dw,), the above three properties hold for dw,.

With this background, in the next two chapters, we will generalize the notion of the

" quorum-based DTP.

-
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CHAPTER 3

SITE OPTIMAL SIZE-BASED DECENTRALIZED TERMINATION PROTOCOLS

3.1{. Introduction in Chapter 2, site optimal DTP’s were discusSed undgg the assumption that
all component states were equally probable. In the general case, different components and com-
ponent states will have different probabilities of occurrénce. Therefore, the expected number ' of
waiting sites involves these probabilities.

In this chapter, site optimal DTP’s are investigated in this general context. We introduce a
class of DTP’s called size-based DT P's and discuss site optimality within this class. We will also
see that quorum-éased DTP’s p’Ié}’ an important role in the search for optimal size-based 'DTP’s. :

Recall that I'; denotes the set of all components of size k and 6(C) C ‘9 denotes the set of

all states of a component C.

Definition 3.1. A DTP f is a size-based DT P if it satisfies the follbwiﬂg condition: for any

positive integer k < n, if a component C in I; has a state S such that f(S) % wa, then every
other component C, in I'; has a state S, such that f(S,) # wa. OI

Intuitively, if a size-based DTP / terminates a component of size k in a certain state S, (i.e.,

map S to com or ab), then [ terminates everv component of the size k in at least one state:

~

Recall the notation ALL..(f) and ALL/(f) introduced in Section 2.5. A component C
mloﬁééfto ALL.(f) (or ALL(f), respectively) if the TP f maps all component states in 8(C) to

wa (or not wa, respectively). The following lemma gives a property of size-based DTP’s.

4

lemma 3.1. Let [ be any size-based DTP. For each positive integer k < n, either

I SALL(fHor T, NALL . (f)=@.
Proof. LetC € T, N ALL,,(f) and let C; = C be a component of size k. If C, were not a

member of ALL_f), then it follows from Definition 3.1 that neither would C be a member of
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ALL,(f). Hence C; must be a member of ALL.,(f) and this provés that T, is a subset of
ALL_(f).O | o .
3.2. Size-Based DTP’s

In this section, we introduce a partial order among the DTP’s, avnd then we show that some
DTP’s are good candidates for site optimal size-based DTP’s. In addition, we prove important

characteristics of a size-based DTP.

-

For. any two TP’s, /| and f if f((S) = wa implies /(S) = wa for any component state S,
then We denote this relation by f; << f,. This relation is a partial order on the set of DTP’,
since it is transitive and reflexive. Note that we can introduce a similar partial order on the set of
CTPs. We will make use of such a partial order later. If f; << f, it follows from the

definition of the expected value ES(f) that ES(/}) < ES(/>).

In the following, when we say that a DTP [ is modi fied to a DTP f,, we mean that some
values of f; are changed, giving-rise to a new DTP f,. We specify only those changes explicitly;

the other values remain the same. Also a change is always from f,(S) = wa to f5(S) # wa for

some component states S. Therefore /> << fl easily follows. -

Lemma 3.2. For a given size-based DTP [ and an integer k (n/2 < k < n), if a,*cﬁm—

ponent C in T'; has two states S; and S, such that f(S;) = com and /_’\(52) = ab, then there exists a

s
size-based DT P g such that g << fand T, C ALL(g). L

Proof. Let r be any integer such that 1 < r € n - k. Then clearly r < n/2. This variable

represents the size of a component state concurrent with any state of C. We first show that, for

. any such r, all componént of size r must wait under / regardless of their states, ie.,

I.C ALL. (/).

Recall that / denotes the set of all sites. Let C, € / be a nonempty component of size r dis-
joint from the component C, ie, C, & I - C. Since f(S,) = com, f(S;) = ab and both S, and S, are

states of C, it follows from Lemma 2.3 that C, € ALL,(f). It then follows from Lemma 3.1
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that T, € ALL_,(f). Since the above argument is valid for all integers r such that 1 £ r < n -

-k, 1t follows furthermore that / makes a component wait if it is disjoint from any component of

size k. Hence, if anyv component of size k has a state S such that f(S) = wa, we can modify ftog
in the following way:
Suppose the condition of the lemma holds and let a component of size k has a state S such

that f(S) = wa.

(1) If p € state(S), let g(S) = com.

(2) If state(S) = { w }, let g(S) = ab.

It follows from the definition of g that g << f,T; € ALL(g) and g is a size-based DTP. O

In the proof of the above.]emma, mapping for a component state § having at least one Site in
state p>was changed from f(S) = wa 1o g(S) = com. Only if S had all its sites in‘ state w, it was
terminated to ab by g. This scheme of modifying a TP is called the comvnit- favouring scheme. A
TP / could also be modified to g in such a way that g(S) = ab'if S contains at least one site in

state w, and g(S) = com otherwise. This scheme is called the abort-favouring scheme.

Lemma 3.2, then there exists a size-based DTP g such that for each component state S, g(S) = wa
implies f(S) = wa, and no component in I', waits under g regardless of the state it is in. If there
is no k such that F, satisfies the condition of Lemma 3.2, does such a g still exist? The lemma

below answers this question.

Before we state the lemma, recall that PONLY .,(f) is the set of all components C that are
terminated by the TP f, except when C is in state p‘. Similarly WONLY (/) is the set of all
components C that terminated by f, eXxcept when C is in state wC. Throughout the rest of the

thesis, if A is a collection of component states, we use f(A) to denote the set {/{S) IS € A}

Lemma 3.3. For a given size-based DTP [ and a positive inzegef k < n,if thereis no

component C € T, such thar fi®(C)) contains {ab, com} and if there is a component C, € T,
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s

such that fl6(C,)) = {wa} then there exists a size-based DTP g such that g << f and

I, € PONLY, (g) UWONLY, (g)

Proof. If a component C, satisfying the condition of the lemma exists, it follows from
Definition 3.1 that for all C € T,, either com € SLO(C) or ab € f(B(C)). Let S; be the state of
some C € I'; such that ﬂSj) = com. Let S, be any vstate of a component disjoing’\from C. Thus §;
1)is"gqncurrent with §;. Since f(S,) = com, f(S;) must be either wa or com. Ther;af ore, in general,
for every component state S that can occur concurrently with a cornponen{ state in ©(C),
f(S) = wa or f(S) = coﬁn. Thus we can modify / t0 g on all component states in ©,(C) that wqii
under f by the commit-favouring scheme. Note that since {ab, com} is not a subset of f{O(C)),

-
we must have f{w®) = wa. Therefore C € WONLY . .(g).

If ab € f{O(C)) on the other hand, it follows from a similar argument that f/ can be

modified to g on all component states in ©,(C) that wait under / by the abort-favouring scheme

to make C a member of PONLY ., (g). Hence the DTP g thus obtained from / has the property

that T is a subset of PONLY , (g) U WONLY _(g).

Note that the modification done on f does not affect the propefty of f being a size-based

DTP, and therefore g is also a size-based DTP. Since only component states S with f(S) = wa

. have been involved in modification, we have g << f. [0
The following theorem integrates the results of Lemmas 3.1, 3.2 and 3.3.
Theorem 3.1. For any given size-based DT P f, there exists a size-based DT P g such that
g << fand forany T, (1 € k € n-1), one of the following three holds:
(1) T, € ALL, (g
(2) T, € PONLY . (g} U WONLY (g
(3) T, © ALL(g).

Proof. For any integer k (1 € k < n-1), if T, is not a subset of ALL, (/) then it satisfies

either the condition of Lemma 3.2 or that of Lemma 3.3. In any case, as was shown in Lemma 3.2
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and Lemm:'i 3.3, reépectively; f can be modified to a size-based DTP g such that g << f fénd
I, € PONLY (g U W’ONL)'“AG(@ orT, C ALL(g).0O

Observe that if g is a size-based DTP as defined in Theorem 3.1 and if C is a component
belonging to ALL(g), then any compo’r/lént that is disjoint from C ‘must belong to ALL/M,(g)
Therefore, for any integer b £n/2 <b < n), i‘f I'; is a subset of ALL,(g) for each k.
(bSk<n)thenT,isa subset of ALL (g) for each j( 0 < j € n-b). Observe also that if 'a
component C belongs to PONLY,(g), then any component that is disjoint from C is either a
member of PONLY .. (g) or a member of ALL, (g). Similarly, if C belongs to WONLYW,(g‘),
then any component that is disjoint from C is either a member of WONLY . (g) of a member of
ALL, (g). Therefore, in the above theorem, if T is a positive integer less than n - k, then I'; satis-
fying condition (3) implies that T, satisfies condition (1). Also if T, satisfies condition (2) then T,

satisfies either condition (1) or (2).

From the above observatlons, we obtain the following result which thhhghts some impor- |

tant properties of a size-based DTP.

Theorem 3.2. For any size-based DTP f, there exists a size-based DTP h such that h << f

and there exist two nonnegative integers s and b such that

(1) s+b2nandb > n/2,

(2) forallk (1 £k €5), T, C ALLh.a(h),

(3) for each k (s < k < b), either I, € ALL (W or T € PONLY,(h) U WONLY . (h), and -
{4) forallk b < k <n), T, € ALL/(R). |

Proof. It follows from Theorem 3.1 that there exists a size-based DTP g which has one of
the properties mentioned there. We now modify g to & in such a way that A will have the pro-

perties (1) through (4).

Let s = max{k | for all integer r (1 < r <k), T, € ALL, (g}
g

Letb=min{k IT, & ALL(g}. If b < n/2, let C, and C, be two disjoint components of size b.

¥



chapter three ) section 3.2

The existence of C 1 and C, is guaranteed by the inequality b < n/2. Then both C; and C, belong

to ALLSg), which contradicts Lemma 2.3. Hence b > n/2. If r < n - b, then I', must be a subset
of ALL,(g), since each component in I, is disjoint from some corﬁ'ponent in T',. Hence s 2 n - b,

ie.s.+b 2 n.

It follows from the minimality of b that for any integer k (s < k <b), T, satisfies condition

(3). Hence all the conditions mentioned above, except possibly "c;i)ndition (4), are satisfied by g.

For any k > b, if T, is not a subset of ALL(g), we can modify g to h on all component -’
states of size k that wait under f by the commit—favouring scheme. This modification is feasible .
because if 1 £ r < n-k( < n-b) all the I','s are subsets of ALL,(g). It follows from the
way A is defined that A is also a size-based DTP and it satisfies condition (4). é'mce h is modified

r

from g, it also satisfies all the other conditions. O

Definition 3.2. A size-based DTP h is a standardized size-based DT P if there exist two

nonnegative integers s and b such that .
(1) s+bZ2nandb > n/2,

(2) forallk (1 €k <5), T, € ALL_(h),

———— e ——

(3) foreachk (s < k < b),either I € ALL, (R)or T, € PONLY . (h) U WONLY ,(h),

(1) forallk (b €k < n), T,-C ALL(R). O

.

Definition 3.2 is based on Theorem 3.2. With this definition, Theorem 3.2 can be rwtafed as 7
follows given any size-based DTP f, there exists a standardized size-based DTP h << f. An
example of a standardized size-based DTP is given below in Table 3.1. In this example, the
number of sites is four and the values of s and b are 1 and 3, r&specii\}ely. Note that all com-
ponént states of size 1 are made to wait and all component states of size 3 are terminated. For the
component states of size 2, the decisions depend on the sites they contain and on the states of *thesé

13

sites.
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component | deci- | component | deci- | component | deci-
state sion |  state sion state sion
site site site
1234 1234 1234
p--- wa| wW--p |com|[ wWp-w | com
-p-- wa -PP- com| ww-p com
--p- wa -pwW- com p-ppP com
---p wa -wp- com{ p-pw com :
TwWo- - wa -p-p com| p-wp com
-w-- | wal| -p-w com|{ wW-pp com
- - W - wa -w-p com| p-ww com
---w wa ~-pp wa| w-pw com
wow - - ab --pw | ab | w-wp com
W W - wa --wp ab -pPP com
Wo- - W wa PPP- com| -ppw. | com
-W W - wa| pPpw- com| -pwp com
-W-w wa| pwp- com| -wpp com
S ww ab wWpp- com| -pww com
PP-- wa | pww- com| -wWpw | com
pw-- ab [ wpw- com| -WWwWp com
wp-- ab |- wwp- com| Www- ab
P-pP- com PP-P com| wWw-w ab
TPp- W - com pp-w com| wW-ww ab
wW-p- com| pw-p com| -www ‘ab
P--P com| wWp-p com
r--w comi| pw-w com

Table 3.1. An example of a size-based DTP forn = 4 sites. -~

3.3. Site Optimal Size-Based DTP’s
In Theorem 3.2, we have shown that for every size-based DTP f there exists a standardized
size-based DTP 2 << f. Recall the class of qu’orumfbased DTP’s defined in Section 2.5. In this
section, we show that we can always find a quorum-based DTP dp; or dw; which satisfies
E(dp) € E(h) or E(dw) < E(h).
Assume that partitioﬁjng has occurred and consider a component C of size k. Let Pr{C)
denote the probability of ‘occu;;ence of the component C and let Pr,s, k), (0O<k<n),bethe =
sum of the probabilities of all states of C with exactly r sites in state p and s sites in state w. For

example, the component state p© has all its sites in state p, hence r equals k, s equals O and the
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 probability of its occurrence is the product of Pr(C) and P(k 0, k) ie, -

Prp9) = PHC) P(k, 0, k). . ' .
Similarly '
Priw) = Pr(C) PO, k, k).
Recall that under a quorum-based DTP dp; (k < n/2), all components of size less than or

equal to k are wait regard]&ss of thelr states; each component C of size between k and n -k,

exclusive, waits in the state w® and no other component waits. For convenience, let PC; denote. =

the sum of the probabilities of all components of size i, i.e,
= ¥ Pr(0),
CET,

and let

P.= 3 Plr, s, k).

r+s=k

Theorem 3.3. For an integer k 0<k< n/2), the expected number of waiting sites

under the quorum-based DT P dp, is given by the following formulae:

Eldpy) = ZLPC 20, ; b z) and

n—k—1
. E(dp‘)—ZLPCP+ Y iPC; PO, i, 1) for k > O.
=1 i=k+1

Proof. Suppose k = 0. For any 'Lnteger 1(1 €i < n-1) and for every component C of size i,

13 R
- the state wC is the only waiting state of C under dp,. The sum of the probabilities of these com-

ponent states is given by the product of PC; and KO0, i, i). Hence »

- ' E(dpo)—ZLPCP(OLL)

i=1

Suppose k 2 1. For any 'mteger i1 (1 € i < k) and for any component C of size i, all states

of C wait under dp;. The sum of the probabilities of occurrence of al(thwe component states is

given by PC. ¢
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-

e

For any integer i (k+1 € i < n-k) and for every component C of size i, the state w® is the
only waiting state of C under dp;. The sum of the probabilitiés of these component states is
given by the product of PC; and 0, i, i). Also for any integer i (n-k < i < n), no component of

size i waits under dp,. Hence

>

T A n—h—1
Edp;)= YiPC;P;+ Y iPC P0,ii) fork > 0.

a=F C ikt : e

. The argument used in the above proof also applies to the quorum-based DTP’s dw,, proving

-

the following theorem.

Theorem 3.4. For an integer k (0 £ k < n/2), the expected number of waiting sites

under the quorum-based DT P dw; is given by the following formulae.

n—1
E(dw,) = Y iPC, P, 0, 1), and

=]

k n—k—1 "
Eldw,) = YiPC,P;+ Y iPC;PG0,i)fork >0. O

=1 i=k+1

Under some conditions, for every size-based DT? f, there exists a quorum-based DTP dp, or

dw, such that E(dp,) € E(f) or E(dw,) € E(f), as s\q;;%n the following theorem.

Theorem 3.5. /f P(0. k k) < Pk, 0,k for all integers k (1 < k < n-1), then for every

size-based DTP f, there exists a quorum-based DTP dp; (1 £ i < n/2) such that E(dp;) < E(f).

Proof. It follows from Theorem 3.2 that there exists a size-based DTP h such that h << f

and there exist two nonnegative integers s and b such that
(1) s+bZnandb > n2, .

(2) forallk 1 €k < 5), T, & ALL (R),

(3) forallk (s < k < b),either I; € ALL, (h) or T, € PONLY . (h) U WONLY . (h), and

(4) foralk 3Lk <n), T, € ALL(R).
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" We want to compare the expected number of waiting sites under s and that under the
quorum-based DTP dp: where b = n-b. Sinces+ b 2> n, we have & € s < n/2.

For any integer k (1 < k < ), it follows from (2) and the definition of quorum-based DTP

that all components of size k wait under both h and dp; regardless of their states. Hence these

two size-based DTP’s have the same expected number of waiting sites for coﬁnponenr.s of size k in

x

the range 1 € k < b _ -

For any integer k (b < k < b), it follows from (2) and (3) that, under J, a component C of
size k either always waits or at least when C is in one of w¢ and p¢. Under 4 Pi» the component
C waits only when it is in state w’. Since X0, k. k) $_P(k, 0, k), we have PriwQ) £ P{(pt). -
Hence the expected number of waiting sites from C under dp; is at most as large as that under h.

For any integer Xk (b £ k¥ < n), and for any component C of size k, it follows from (4) that

C never waits under A. This is also true for dp;. Hence the expected number of waiting sites

~under h and dp; are both equal to zero.

In each case, the expected number of waiting sites under dp; is not larger than that under h.

Hence E(dpy) € E(h). Since h << f, this proves that E(dpy) < E(f). T

By replacing the quorum-based DTP dp. by the quorum;based DTP dw., we get a similar

result b

Theorem 3.6. 7 Pik. 0.k} < Pi0, k. k) for all integers k (1 < k < n-1). then for every
size-based DTP f. there exsts a quorum-based DTP dw, (1.£i < n/2l such that
Eidw) < Eff).C ' _ e

From these theorems, we see that the set QD of quorum-based DTP’s plays an important role

in the search for site optimal size-based DTP’s For every size-based DTP /, there exists a size- ..

can find the site optimal size-based DTP's.
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Theorem 3.7. [/ Pi0.k k! € Pik. 0, k! for all integers k i1 < k € n-1). ler m be an

index such rhar

Etdp. ' =mniEldp,) 1 € k < n?2} -

then d P b3 Site optimal in-the se: of size-based DI FP's.

—

FProof. The optimality of dp.. follows from Theorem 3.5. T

“Theorem-3.8. [f Pk 0 ki < Pi0 k. kt for all integers k i1 < k Sn-ll-lembean -

index such thar

; Eidw.) = miniFldw,) 1 € k < n/2}

then dw, is site optimai in the ser of sice-based DT F's. 7 o

Proof. The theorem follows from Theorem 3.6. 5

-

This concludes our search for site optimal DTP’s among all size-based DTP’s. In the next sec-
tion, we will introduce an interesting subclass of size-based DTP's, called count-based DT F's,

which is a generalization of quorum-based DTPs

3.4. Count-Based DTP’s

It is patural to assume that when a DTP decides to terminate a component, it bases its deci-
ston onlv on the states of the sites iz the component, and not on what sites are ih the component .
in other wprds, two component states wWhich have equal number of sites in each siate, will be
mapped to the same decision.

Given a component state S, let n,{(S} denote the number of sites 1n state p and let n.(S)
denote the number of sites ip steie W. Two component states S, and S, are state equivalent if

Sy =854 n,{5, 7= n,{5.7( or equivalentiy, n.{5;7=r_(5)) ).

Definition 3.3. & DTP f s a couni-based DT P if for anv two state equivalent component

states S, and S», 1S} = f{S,L
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An example of a count-based dependent DTP with four sites is illustrated in Table 3.2.
Theorem 3.9. Arny count-based DTP is a size-based DTP.

Proof. Let f be a count-based DTP and let k be an integer such that 1 € k < n-1. Suppose
C € T, and has a state S such that f(S) = wa. Then for everv component C, in I, has a state §;
: Ve
such that § and S, are state equivalent, and it follows from Definition 3.2 that f(S) = {f(5). In

particular f(S;} # wa. Hence { is also a size-based DTP. O .

Consider the size-based DTP represented in Table 3.1. Let S;={(1, w), (4, p)} and

S.={{3, p) (4, w)l. These two component states have the same x;umbers of p’s and w’s but are

/" | component : deci- | component | deci- | component | deci- g
’ ! . sion state, sion state sion |
: site . site
1234 1234
owa wW--p ab} wp-w ab
. wal -pp- wa| ww-p ab
i wa -pW - ab P-PP com
l waj -wp- ab| p-pw wa
. wai -p-p o wa| p-wp wa
.- - —wa p—w——|—ab W -pp—i—wa
fowai -w-p ¢ ab| p-ww ab
bowa { --pPp ' wal w-pw ab |
i abi --pw | ab | w-wp ab |
| abi --wp i ab| -ppp | com |
I ab | ppp- fcom -pPPW wa
‘ ab ! ppw- | wa| -pwp wa |
- ab | pwp- | wa| -wpp wa |
i ab i wpp- | wa| -pww ab |
i wai pww- : ab| -wpw ab i
f abi wWpw- {-ab| -wwp ab |
. ab ! wwp- [ ab | www- ab |
[ wai pp-p icom| ww-w | ab |
. . ab; pp-w | wa| w-ww | ab |
. ab; pw-p | wa|-www | ab |
wai wp-p i wa| ; g
. ab i pw-w | ab | ; j

Table 3.2. An example of a count-based dependent DTP for n = 4 sites.

5
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terminated to com and ab, respectively. Therefore this size-based DTP is not a count-based DTP.

Hence the set of count-based DTP’s is a proper subset of the set of size-based DTP’s.

7

Recall the definition of a standardized size-based DTP. Here we define a similar DTP,

N

namely, standardized count-based DT P.

-

Definition 3.4. A count-based DTP 4 is said to be standardized if there exist two nonnega-

tive integers s and b such that

(1) s+b2nandb > n/2,

(2) forallk (1 € k <s5), T, € ALL,_(h),

(3) for each k (s < k < b), either T, CALL,(h) or I, € PONLY,  (}h) ,or
I, C WONLY (h), ' ' '

(4) forallk (b < k <n),T, € ALL(R). O

It was proved in Theorem 3.2 that any size-based DTP /f can be modified 1o a standardized
size-based DTP h << f. It turns out that if f is a count-based DTP, then / can be modified to a

standardized count-based DTP A << f as shown in the next theorem.

T “section 3.4

Theorem 3.10. For any count-based DT P f. there exists a standardized count-based DT P

h such that h << f. .

Proof. The existence of h follows from Theorem 3.2. and A inherits the properties of a
count-based DTP from f. |

In the condition (3) of Theorem 3.2, for all k(s < k < b), either T, € ALL,(h) or

I, ©S PONLY _(h) U WONLY (h). Since h is a count-based DTP, I, N PONLY . (h) = @

imph"&s that T; € PONLY _(h). Therefore, for each k (s < k < b), either I, € ALL,,(h) or

T, C PONLY (R)or T, C WONLY _(h).O

Theorem 3.1). For anv couwrw-based DT P f, there-exists a quorum-based DT P-gsuch-that - -

g << f.
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Proof. For any given count-based DTP /, it follows from Theorem 3.10 that there exists a

-

standardized count-based DTP # such that A << /-

le P = | ki s < k < b and T;EPONLY, (R} and

W={kis<k <bandI, S WONLY (h)). If P=@, then let m‘,=min{k!k €P}. If

W # @, then let m, = min{ k [k € W }.
We now consider four cases. v

Case A: suppose both P and W are empty sets, then for all k (s < k < b), T, € ALL,,(h).
Let b=n-b. Since s+ b > n, therefore & < 5. By comparing the waiting component states under

dp;and h, it is clear that dp; << h.

Case B: suppose W = @ and P # @, then for all k (s < k < b), either I, € ALL,,(h) or
T, € PONLY (k). Let b=n-b. Since s+b > n, therefore b < 5. By comparing the waiting ..

' component states under dpgand h, it is clear that dp; << h.

Case C: suppose P =@ and W # @, then for all k (s < k < b), either I; & ALL,(h) or

I; € WONLY . (h). Let b=n-b. Since s+b 2 n, therefore b6 < 5. By comparing the waiting

component states under dw; and h, it is clear that dw; << h. N
Case D: suppose both P and (Q are nonempty sets, then either m1 < m2 or m2 < ml.

If m1 < m2. Let m2 € r < band C be a component of size r. Consider a subcomponent C,

of C with size equal to m1, since I, & PONLY ,(h), therefore R(w") = ab. It is clear that, if

1

h{w") = wa, then the value of w¢ can be modified to ab because it contains the set w( . Similarly,

, “

if H(p©) = wa, then p¢ can be modified to com. It then follows from Lemma 3.2 that h can be
modified so that for all m2 £ r < b, I, € ALL, (k) and it is also true that s+ m2 2 n. Let
m=n-m2. By comparing the waiting component states under dp; and h, it is clear that

dp- << h. S ; o B}

If m2 < m1l, let m = n-m1. The same proof applies and dp. << h.
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Since h << [ and there always exists a quorum-based DTP g such that g << h, it followss:

thatg << /. 0O

Because of Theorem 3.11, we can compare all the quorum-based DTP’s to find the site-

optimal count-based DTP. Recall that QD denotes the set of all quorum-based DTP’s.

Corollary 3.1. I/ g is a quorum-based DTP such that

Elg) = min{ES(f)1 f € QD },

then g is the site optimal count-based DTP.
Proof. The proof follows directly from Theorems 3.11. 0

Because the set of count-based DTP’s is a proper subset of the set of size-based DTP’s, in the
search for a site-optimal count-based DTP, we have a stronger result in Corollary 3.1, i.e, the con-
dition P(0, k, k) < P(k, 0, k) in Theorem 3.7 { or P(k, 0, k) § P(0, k, k) in Theorem 3.8) has been

¢

removed.
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CHAPTER 4

SITE OPTIMAL SIZE-BASED CENTRALIZED TERMINATION PROTOCOLS

4.1. Introduction

In this chapter we continue our discussion on site optimal termination protocols, this time, in
the centralized case. In the previous chapter, we discussed extensively the problem of finding a
DTP site optimal within the class of size-based DTP’s and it was found that each site optimal

size-based DTP is a guorum-based DTP. We prove an analogous result in what follows.

We first investigate the properties of a CTP that distinguish it from a DTP. These properties
help us in the search for site optimal CTP’s. We then define the size-based CT P and try to find a
CTP site optimal within the class of size-based CTP’s. We also introduce the quorum-based CTP,

analogous to the quorum-based DTP.

Recall the centralized three-phase commit protocol described in Section 1.4, in which coordi-

rnaior sites collect the votes and broadcast decisions. In order to simplify our discussion, we
assume that there is only one coordinator and, without loss of generality, we consider site 1 as the
coordinator. Whenever a decision is made, the coordinator is the first site to act on\}ne decision.
For example, in the second phase, after the coordinator has broadcast "prepare-to-commit” mes-
sages, it is the first site to go into state p. Also, in the third phase, after it has broadcast "commit”
messages, it is the first site to commit the transaction.

Recall that I denotes the set of all components. Because the. coordinator has some special
properties, we separate I into two setss I' denotes the set of all components that contain the coor-
dinator and I'"" denotes the set of all components that do not contain.the coordinator. Note that if

a component is a member of I, then any component that is disjoint from it is in I'".

C
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Recall the fundamental propertv of DTP stated in Lemma 2.3: if / isa DTP and C,, C, are
two disjoint components, then the fact that one of them belongs to ALL(f )'implies that the other

belongs to ALL,.(f). A CTP does not posses this property, unless both C, and C, belong to I'”

(see Lemma 4.4).

Lemma 4.1. Let f be any CTP and consider any two disjoint components C, € I and

C, € T". Among the component states in ©(C,), only w'? can be concurrent with wl.

Proof. Since the coordinator is the first site to go into state p, if C, has all its sites, includ-
ing ihe coordinator, in state w, then all the sites in C, must also be in state w.

This lemma has two important implications:

éroperty One: For any component C, in T, if its current state is w1 then no other site

can be in state p.

Property Two: For any component C, is I'", if its current state contains a site in state p,

then the coordinator must be in state p.

Due to ;che above two properties of a CTP, 7L¢r}1ma 2.3 does not apply to CTP. The .

corresponding lemmas for CTP’s are proved below as Lemmas 4.2 and 4.3.

Lemma 4.2. For any CTP f and two disjoint components C; € T and C, € T, if C; has
two component states S). S» that f(S,) = com, f1S,) = ab, then f(wCQ) = wa. -

Proof. No matter how many sites of S; and S, are in states p or w, they are concurrent
with the component state w2 Therefore the 'consistency condition requires w2 to wait under
g
Note that, if f was a DTP then it follows from Lemma 2.3 that C, would have to wait

under f not only in w ? but also in all other states as well. The f ollowing example shows that in

general this is not the case for a CTP.
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Example 4.1.
Let 7 = {1, 2, 3} be the set of sites and define a CTP f as follows.

(1) For every component C that contains the coordinator site 1 and any component state S of C,
if p € state(S), let fUS) = com; otherwise let f(S) = ab.
(2) For every component C that does not contain the coordinator and any component state S of

C, if p € state(S), let f(S) = com; otherwise let f(S) = wa.

(2) above does not cause inconsistency because of Propertv Two. Consider two components -
i 2 pert;

Ci=1{1}andC;=1{2, 3. It is clear that w*? is the only state of C, that waits under f. O

Lemma 4.3. For any CTP f and two disjoint components Cy € T and C, € T”,if Cz has
two component states S|, S, such that f(8,)=com, f?Sz)= ab, then4f(S)= wa for every state
'S € 8,(C). |

Proof. Suppose S € 8,(C)) = 6(C,y) — w1}, 'Since it contains the coordinator and the
coordinator must be in state p, therefore S can occur concurrently with any component state in
68(C,), in particular, S; and S,. Since these two compohent states are mapped to conflicting deci-
sions by f, § must wait under /. O N 7

If the component‘ C, in Lemma 4.3 belongs to ALL(f), then f(S) = wa for every component

state S € 6,(C,). The following example shows that there exists a CTP f such that f'(wc’) = wa.

Example 4.2. Let 7 = {1, 2} be the set of sites, where site 1 i;_the coordinator. Define a

CTP f as follows:
(1) A, p)}=waand fI{ (1, w)}=ab
(2) U@, p)l=comand fU{ (2, w)}=ab.

Consider two components C; ={ 1} and C,={2}. Accordiﬁg to (1), f maps w*C‘V to ab and
the other states of C; to wa. Note that the component states { (1, w) } and { (2, p) } are not con-

g
current and this makes it possible to map them t0 ab and com, respectively. O
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"l"he above’ two lemmas show a crucial difference between a CTP and a DTP. The following
lemma shows that there is also some similarity between them.

vLemma 4.4. For-any CTP [ and rwo disjoint components Cy, C- € T, if Cy has two
states S|, S» such that fiS,]=com. fIS-) = ab, then f(S)= wa for every state of C,.

Proof. Since the two compoenents C; and C- do not contain the coordinator, the proof of
Lemma 2.3 carries over. —

Lemma 4.5. For any TP [ and anv component C, if fiw')=ab and f(p‘)= com, then
there exists a TP g such that g << fand C € ALLSg). ' -

Proof. Forﬁ;éve‘r‘}; component state S, that is concurrent with w® and p‘, the consistency
condition requires f(S,) ¥{;s'a Therefore [ can be modified to g in the following way. If
S € 8(C) waits under f, let g{S) = com. This is consistent with the value of f(S,). Therefore
g << fand C € ALL{g).C

Theorem 4.1. Any site .opzimal CTP f has the property that flw“)=ab foralC €T

Proof. ¥ f does not have the property, ie, if f{w')=wa for some C, then it can be

modified t0 g << f by defining g(w’) = gb. This modification will not introduce any incon-
sistencv, because w< contains the coordinator and is concurrent with only those component states
that contain all sites in state w and which therefore cannot be terminated to com. A contradic-
tion, since E(g) < E(/). T el e

Theorem 4.1 implies that, in the search for site optimal CTP’s, without loss of generality, we
mav assume that CTP’s have the property mentioned in the theorem, ie, f(w‘)=ab for all

CerT.

—~ 39—



chapter four , __section 4.2

4.2. Size-Based Centralized Termination Protocols ' -

In this section, we introduce the size-based CT P and investigate site optimal CTP’s in this

class (see Section 4.3).

In the decentralized case, no component can be aborted by anv TP if all its sites are in state
p (see Lemma 2.1). In the centralized case, however, if such a component state contains the coor-

dinator, it can be aborted by a TP as shown in the next lémma.

Lemma 4.6. Eack CTP f must satisfy the Vfollowing two properties.

-

(1) For every C €T fiw'is com holds. bur fip') can take any of the three values

com, wa, and ab. and
(2) joreveryC €T, fiw") = comand fip") = ab.

Proof. The coordinator is always the first site to g0 into a new state. When it is in state p,
no other site could be in state ¢, and therefore a component containing site 1 could be aborted if it
is in state p, ie., it is possible for a CTP f to have j(pc) = gb-for some component C in T". The

rest of the lemma follows from Lemma 2.1. = PO

Recall that T, is the set of components of size k. lLet I'; denote the set of components of size
k containing {he coordinator, l.e, the intersection of I';, and I''. Similarly, let T dgnote the inier-
section of T'; and I'". Recall also that 8 ,(C) is the set of component states in 8(C) which have at
least one siu; in state p and ©_(C) is the set of component states in 8(C) which have at least one

site in state w.

Definition 4.1. A CTP / is said to be a size-based CTP if it satisfies the following two con-

dittons. Let k be any positive integer less than n.

(1) If a component C € T'; has a state S € 8.(C) such that f{S) = wa, then for any C, € T; has

astate S, € ©.(C.Jsuch that f/1S) # wa. X

(2) If a component C € I'; has a state S € 8{C) such that f(S) # wa, then for any C, € I'|’ has

-

a state S. € &C,) such that AS,) &= wa. T
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The definition of size—ba;sed CTP is similar to that of size-based DTP fsee Section 3.2) except
that we consider I and ' separatelv. In (1) of Definition 4.1, we onlv consider component states
in 8,(C,) instead of ©(C.). Since we assume that the component C; in state wis always aborted.
(See Theorem 4.1).

In the following WA(/) denotes the set of all component states in © that a CTP f maps to
wa, e, WA(S) =1{S i AAS) = wal.

Lemma 4.7. For any size-based CTP [ and any- positive integer k < n, if some com-
ponent C € T, has a state S € ©.{C) such that f(S)# wa, then there exists a size-based CTP
g << f suchthat T; © ALLlg)

Proof. Becau;e' of Lemma 4.5, without loss of generality, we may assume that if C does not
belong 10 ALL,(f), then either f{s<)=wa or f(p°) = wa. Also, because of Théorem 4.1, without
loss of generality, we may assume that f{w‘)=abforall C € T

If some component C € I'| has a state S € 8 ,(C) such that f(S) # wa, then it follows from-

/\the definition of size-based CTP that for any C, in T}, either com € £18,(C)) or ab € f18,(C)) or

both. Since all the component states of 8 4@ have the same set of concurrent component states,
i.e, for anv two component siates §;, S» € 9;,(Ci), S, is concurrent with a component state §3 iff

S- is concurrent with S;, we can modifv f to g as follows.

For all component states S € ©.(C) N WA(/), if com € f18,(C)), then let g(§) = com; oth-
erwise, ie., if ab € f18,(C)), let g(S) = ab. Then g terminates C; if it is in any states in é,,(C,—),
and since f(wr") = ab, we have I, € ALL(g). Since’ f(S) # wa implies g(§) # wa for any com-

ponent state S, it follows that g << . &
) Recall the set PONLY (1)} defined in Section 2.5, which consists of components C such that
the TP f terminates C unless it is in state pC. Similarly, let PONLY (f) be the set of components
C such that the TP f makes C wait unless it is in suate p°, ie,
PONLY (f)=1C € T i fip") = wa and for all S € 8,(C), f(S)=wa}. WONLY (f) is defined

\ ) | ,
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analogously by replacing ©,(C) and p¢ bV ©,(C) and w*, respectively.

Lemma 4.8. Given a size-based CTP [, there exists a size-based CTP g << f such that

for every positive integer k < n either Ty & ALL(g) or T; © WONLY (g).

: —
Proof. Because of Lemma 4.5, without loss of generality, we may assume that if C does not

belong to ALL(f), then either flw’)=wa or f{p*)= wa. Also, by Theorem 4.1, witﬁopt loss of
generality, we may assumé t‘hat fwS) =abforallC € T, B | ‘ ‘

- For eve’r_v positive integer k < n, if T is not a subset .of WVOA:ZVL}:",( f\),kth'erjz thefe exists-a
component C € I; that has a state S € ©,(C) with f(S) » wa. It £pllows from lemmz; 4.7 tl;at
/ can be modified to a size-based CTP g such that T, S ALL(g). Hence the size-based CTP.g has

the required property. &3

»

Recall the definition of a component state as a set of (site; state) pairs. If S is a subset of a
4

I3
L S

component state.S;, we sav that S is a component substate of S 5
Theorem 4.2. For any given size-based CTP [, there exists a size-based CTP g << [
which has the following property.

There exists a nonnegative integer s (0 £ s < n) such that

(1) For each integer k (1 £ k € s).T; € WONLY (g) and
(2) For each integer ks < k S n-1), T} C ALL,(g).l

Proof. It follows from lL.emma 4.8 that there exists a size-based CTP 2 such that & << [

and for each positive integer k < n-1, either I';, ©@ WONLY (k) or T; © ALL/(R).

If‘ {r it T; € ALL{(R)} is nonempty, let s=minir 2 1 | I, € ALL(R)} - 1; otherwise, let
s=n-1. It is clear that T;e1 € ALL(R) and if s 2 1 then by Lemma 4.8, for each integer k
(1 £k <5), T; CWONLY (h). Suppose k is an integer, if any, such that s+1 <k <€ n-1 and
I; S WONLY (h). If there s o [(Sych k then the proof is complete. If there is such a k then by
Lemma 4.8 A(S) = wa for every § E\EF(C) such that C € T;. Let S be any state of a component

which contains s+1 sites including the coordinator and let S, be a substate of S. By the definition
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of the constant s we have h(S;) # wa. Note that any component state S- that is concurrent with
§ is also concurren with S§;, hence we can modifv A to g by defining g(S) = h(S)).- If g(S) is

defined this way for all component states § € 0.(C) such that C € T, then I, € ALL(g). O

Having investigated the components which contain the coordinator, we now turn our atten-

tion to those which do not contain the coordinator.

Lemma 4.9. For any sice-based CTP f, and each positive integer k < n, if there exists

C € T} such that lcom. abl C fIO(C)), then there exists a size-based CTP g << f such that

Iy C ALL(g). o

»

Proof. Because of Lemma 4.5, without loss of generality, we may assume that if C does not
belong to ALLSS), then either Sw)=waor f(p°)=wa Also because of Theorem 4.1, without

loss of generality, we may assume that fiw<)=abforaliC € T.

let C € T} be a component sucéthat’ {com, ab} © A(8(C)). Let C, € 7 — C contain the

(oordinator and let C, C4 — C — {1}. Since {com, ab} € AAB(C)), it follows from lLemma 4.3
o

iand the assumption in the previous paragraph that C, € WONLY ,(f). Since 1 £ IC)| € n—k,

I WONLY (ffor all r (I S 7€ 7=k e
Similarly it follows from lLemma 4.4 that ' C- € ALL_(f). Since 1 £ IC5i € n—k—1, by
Definition 4.1, we have I'.” € ALL _(f) forallr (1 £ r £ n—k—1).
We now modify S tog << f as folléws. For anv component state S € 8(C) N WA(/), if
p € state(S), let g(S) = com; otherwise, ie, if state(S) = { w }, let g(S) = ab.
‘ If the above modification is repeated for all components C in I';, then we have g << f and
I7 C ALL(g).C

If the condition of Lemma 4.9 does not hold, namely, if there is no C € T, such that

{com, ab} is a subset of fIS{(C)), can f be modified to a "better” size-based CTP? The following

lemma shows that it is still possible, although the result is not as good as that of Lemma 4.9 1

can be contained in PONLY (g} U WONLY, .(g) but not in ALLSg).
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Lemma 4.10. For any size-based CTP f-and each iryegér k1€ k< n)ifthere 510
component C € Ty such that {com, ab} is a subset of fIO(C)). but if there is a component-
C € T, has a state S such that f(S) # wa, then there exists a size-based CTP g such that
‘¢ << fand T; € PONLY ..(g) U WONLY . (g). e

Proof. let S be as given in the lemma. It follows from Definition 4.1 that for any C; € T,
either ab or com belongs to ﬂ@(C,)). Suppose com € f{6(C,)) and let S; € 8,(C;) be such .that
ﬂSJ = com: For :;my S, € G(Cj N wA( f *),”;comrprdineinrtﬁ state 75‘ is concurrent with SJ iff itis
concurrent with S. Since f{S,) = com implies that f(S,) € {com, wal, it is possible to modify f to
gon S; by defining g(S;) = com. Therefore we obtain g(8,(C) =1{ com }. Since {com, ab} is not a
subset 5&. ﬂ ©(C,)), we have ffwcz) = wq‘% nherits this value and so C; E WONLY . (g)

‘Similarly, if ab € fU&(C)); f can be modified to g so that C, € PONLY _[(g). _Hence

o

I C PONLY, (g) U WONLY (g).O .

Lemma 4.11. For any sizebased CTP f and each integer k (1 Sk <n).*if

T7 NALL_(f) # @. then T © ALL. (/).

Proof. Assume there exists C € Ty — ALL_J(f)and let S € 81C) be such that f(S) = wa.

If follows from Definition 4.1 that I] N ALL (f) =@, a contradiction. Hence

T, CALL (f).T

eorem 4.3. For any given size-based CI' P f, there exisis a size-based CTP g << [
such that for each integer k (1 £% < rn}. one of the following three relations holds.
(1) T C ALL.(g).
(2) T C PONLY . (g} UWONLY (/)

»

(3} T7 CALL(/). | .

Proof. It follpws from Lemmas 4.9, 4.10 and 4.11. O

v
theorem comes from Theorem 4.2
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‘Theorem 4.4. , For any size-based CTP [, there exists a size-based CI'P g << [ which
has the following property.
(1} There exists an integer 510 € s < nj such tha:
Case 1a. for each integer k i1 < k € 5).T. C€ WONLY (g). and

Case 1b. for each integer is < k < niT; C ALL(g).

’ ’

= = {2y Thereexists an i}zre*ger bt maxin-s=1. in-1+ 2} < b < n} such thar- -

Case 2a. for each integer k {1 € k < n-bl [T € ALL (g)

+

Case 2b.  for each integer k (n-b < k < b - T © ALL (g) or
- oo ’ T, © PONLY g} U WONLY .lgiand
Case 2c.  for each integer k {6 € k < nl T; C ALL(g).
Proof. Part (1) follows {ron;x Theorem 4.2 and the constant s is as defined in Theorem 4.2
It remains to show the existence of b. Let b=min{k :T; & ALL(g)i. Note that b 2 n-s. For,

otherwise {(s+1)+ b € n and there exist two concurrent component states S; and S, such that

Sy = s+1,1S = band S, contains the coordinator. Then I} € ALL(g), and I',.; & ALL(g), con-

tradicting Lemma 4.3. |

To prove that b > {n-1)-2, assume otherwise, 1., b € (n-1)’2. . Then there are two dispint
components, C; and C,, in T.. Since [ . € ALL(g), we have C;, C, € ALL(g), contradicting
Lemma 4.4. -

To prove 2c, suppose that k 2 band T} is not a subset of ALL{g). Let S € 8(C) N WA(g)
for some component C € T;. and §; be a proper substate of S with iS,i= b. Then g(S;) # wa by

the definition of b. Note that any component state S, that is concurrent with § is also concurrent .

with §;, and therefore g(S) can be changed 1o g{SiI ~This applies to.every component state B

. _E) N WAlg) forall C € T7. Hence, after ¢ is modified, Ty C ALL(g).

To prove 2a, suppose 1 £ k < n-band C € T;. LetC;=7-C-{1}. Since ICyi=

- m-k-1> b, we bave Cy € ALL{g) from 2c. 'We thus bave g(8{(C)) = wa from Lemma 4.4. It
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then follows from Theorem 4.3 that I} € ALL_ (o).

Finally to prove 2b, suppose n-b < k < band C € I';. Because of the minimality of b, I';

is not a subset of ALLf{g) It then follows from Theorem 4.3 that I'; € ALL,(g) or

I € PONLY (g) U WONLY (g) D

The structure of the size-based CTP g described in Theorem 4.4 is illustrated in Table 4.1.

Definition 4.2 A CTP f is a standardized CT P if 1t has the following property.

(17 There exists an integer s {0 < s < n) such that

Case 1a. for each integer k (1 €k

<

-~

Case 1b. for each integer (s < k < n)TI'; € ALL(g)

s), I'; € WONLY (g), and

(2)  There exists an integer b ( max{n-s-1, (n-1)/2} < b < n) such that

Case 2a. for each integer k (1 £ k < n-b), [, € ALL,(g),

. Tk T I k
- T :
- ALL.(g)
. WONLY () n-b
s+1 : ALL,(g)
: or
i ALL{g) _
; PONLY . (g) UWONLY _(g) -
Lo b-1
Lo , b
Pl ) ALL(g)
in-1 n-1

Table 4.1. Structure of the size-based CTP g in Theorem 4.3.
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Case 2b. for each integer k (n-b € k < b), I; € ALL, (g) or

I C PONLY (g) U WONLY (g),and
Case 2c. for each integer k (b S k < n), T, € ALL(g). .

Definition 4.2 is based on Theorem 4.4. With this definition, Theorem 4.4 can be restated as

follows: for any size-based CTP f, there exists a standardized size-based CTP g << f.

4.3. Site Optimal Size-Based Centralized Termination Protocols

In Theorem 4.4, it was shown that a size-based CTP can be modified to a "better” size-based
CTP which has the properties mentioned in the theorem, unless it already possesses those propér-'
ties. As shown in Chapter 3, in the decentralized case, a site optimal size-based DTP can be found
in the set of quorum-based DTP’s. In this sectiqn, we define énd investigate gquorum-based CT P’s

and show that a site optimal size-based CTP exists among them. :

For a given integer k (0 € k < n/2), define a CTP cp, as follows. (Recall the definition of

guorum-based DTP’s, denoted by dp, and dw;.) Again, a component is treated differently depend-
ing on whether it contains the coordinator or not. -

(1) Let S be the state of a component which contains the coordinator.

Case 1a. 1 <8 < ki If p € state(S), let cp(S) = wa; otherwise, ie., if state(S) = { w ), let
cp(S) = ab. ’

Case 1b. k <S8 < n: If p € state(S), let cp(S) = com; otherwise, ie, if state(S) ={w |, let
cp,;(Sj = ab.

{2) 1et S be the state of a component which does not contain the coordinator.

Case 2a. 1 < .5 k-1: Let cpi(S) = wa.

Case 2b. k <8 < n-k: If p € state(S), let cp,(S) = com; otherwise, ie., if state(S) = { w ), let

cp:i(S) = wa
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Case 2c. n-k < 8! € n-1: If p € state(S), let cp{S) = com; otherwise, ie., if state(S) =1{ w }, let
cpS) = ab. O

2

The set of all c:p‘.'s is denoted by QCp. The following facts follow directly from the
definition of cp;{,. ’Thf‘f ﬁrst two are concerned with the components in I and the last three with
the components in I, |
(1) Forallr(1 €£r £k), T, S WONLY (cp). ‘ -

(2) For all r.(k <r<np1), I C ALL,(cpk).

(3) i:or allt(1 €1 < k), T C ALL, fcp).

(4) Forallr(k €£r < nk), T CWONLY _fcp)
(5) Forallr(n-k £r <n-1), T, € ALL cp).

The structure of cp, (k' 2 1) is illustrated in Table 4.2, and the structure of cp, is illus-

trated in Table 4.3.
As an examﬂple, in Table 4.4, we list the values of cp, for n ='4. (Site 1 is the coordinator.)

There is another set of quorum-based CTP’s denoted by cw, (0 € k < n/2) defined as fol-

lows.

2

(1) Let S be the state of a component which contains the coordinator.

Case 1la. I S8 <k If p € state(S), let ewS) = wa; otherwise, ie, if state(.‘S) ={wl let
cw(S) = ab.

Case 1b. k < IY < n: Let cw,(S) = ab.

(2) Let S be the state.of a component which does not contain the coordinator.

Case 22. 1 < 8IS k-1: Let ewy(S) = wa. -

Case 2b. k < 8 < nk: If w € state(S), let ew,(S) = ab; otherwise, ie., if state(S)={p}, let

CWL(S) = wa. -

oy
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T I, I’ T
1 1
WONLY (cp) | ALL,(cp,)

k-1 k-1
Kk K
k+1 k+1

WONLY _ (cp)
n-k ALL(cp,) n-k
ALLS(cp.)
n-1 n-1

Table 4.2. Structure of a quorum-based CTP cp;.

n-1

WONLY . (cpo)

n-1

Table 4.3. Structure of the quorum-based CTP cpg.

section 43—~ ——
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component statetf deci- | component state | deci- | component state | deci- ]
i sion | sion sion;
site i site - site
1234 : 1234 1234
p--- ©owa P--P com pw-w com
-p--. . com p--Ww com P-PP com
--p- ¢ com -pp- com P-pw com
} --p : com -pWwW- com p-wp com
w--- i ab -wp- com p-ww com
-w- - i wa -p-p com -PPP com
- - oW - Powa -p-Ww com| - -ppw com
- w © wa -w-p com -pwp com
wOwW - - i ab --ppP com -wpp com
wWo-Ww - ; ab --pw com -pww com
wo- - W ‘ ~ab ¢ --wp com -wpw | com
- W oW - wa ! PPP- com -wWwWPp com
-wew wa pPpW- com wW W - ab
--Ww P wa z PWp- com | Ww-w ab
pp-- Ecom; pww- com W ww ab
pw-- ! com ; ppP-p com W W W ab
P-P- ! com i pp-w com
p-w- ' com | pwW-p com

Table 4.4. The decisions of ¢p; when n = 4 sites.

state(S) = { p }, let oW (5) = com. T

The set of all cw,’s is denoted by QCw. Note that after the coordinator has broadcast "com-

Case 2c. Suppose n-k £ & <nl. I w € saelS), let ‘ew(S) = ab; otherwise, ie, if

mit” messages, it is the first site 1o go into state c. If the coordinator is still in state p, no site could ~

be in state ¢, and therefore a component which contains the coordinator can be aborted even if it
has all its sites in state p. This makes 1b. of the above definition possible. In Table 4.5, we illus-

trate the structure of cw,.

The union of QCp and QCw is denoted by QC. Thus QC is the set of all quorum-based

CTPs.

Recall that PC. is the sum of the probabilities of all components of size i. (See Section 3.3).

PC’ denote the sum of the probabilities of all components of size i that contain the
\ I

/
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T r. : r r
1 1
!
| WONLY {ew) | ALL,(cw)

k-1 k-1
K k
k-1 k4t
e PONLY . (cw,)

n-k | ALL(ew,) n-k

- ALL,(CWL)
n-1 | n-1

Table 4.5. Structure of a quorum-based CTP cw,.

coordinator, i.e.,

Similarly, let PC. denote the sum of the probabilities of all components of size i that do not con-

tain the coordinator, e,

PC, = ¥ PAC).

CET - -

PC = ¥ PrC).
cere

In the following, a formula for the expected number of waiting sites under a quorum-based

CTP is derived. We also propose a way 1o find site optimal size-based CTP’s.

Theorem 4.5. For any integer k (0 € k < n’2), the expected number of waiting sites of

the quorum-based CT P cp; is given by the following formudae:

and fork > 0,

Elepy)y = 31 PCT PO, 1,9,

i=]
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X .. L—lv » ’ n—k—1 .
Elcpy) = JiPC(P,~ P0,i,i)) + YiPC] P+ Y iPC PO,i,0).
- =1 o ~

=1 =k

Proof. Suppose k = 0. -
For any integer i (1 € i < n-1), and for anv component C € I';, C waits under cp, only
when it is in w°. (See Table 4.3). The sum of the probabilities of these component states {w®} is

given by the product of PC; and P(0, i, i). Hence

n—1
Elcpy) = 3 PC; PO, i, i).

=1

Suppose k > 0. First we consider components in I'. For any integer i (1 < i < k) and for
any component C € I';, C waits under cp; unless it is in state w(. The sum of the probabilities of

the states in’ which components wait is given by the product of PC; and P; - P(0, i, i).

We now consider the components in I'". For any integer i (1 € i € k-1) and for any com-
ponent C € T}, C always waits under cp;. The sum of the probabilities of the states in which
* components wait is given by the product of P; and PC;’. For any integer i (k € i < n-k-1) and
for any component C € T, C waits under cp; only when it is in state wC. The sum of the proba-

bilities of the states in which components wait is given by the product of PC; and P(0, i, i).

Hence

k A—1 n—k—1
Elcp) = FiPC(P,—~ P0,i,i))+ YiPC P+ Y iPC PO,ii.

i=1 i=1 =L :
. The following similar result applies to a quorum-based CTP cw,.

Theorém 4.6. For any inzeger k (0 < k < n/2), the expecied number of waiting sites

under the quorum-based CT'P cw; is given by the following formudae:

s T
E(ewy) = T iPC; PG, 0, 1),
DA i
and fork > 0, ) N
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£ . i—l . n—k—1 -
Elew,) = YiPC(P,— P(0,i,0)) + YiPC P, + Y iPC P, 0,i.0

=1 1=} =4
Theorem 4.7. 1/ PI0, k, k) < Plk, 0, k) for all integers k (1 € k € n-1), then for any
size-based CTP [. there always exists a quorum-based CTP cp, (1 i < n/2) such that

Elcp) < E(f). -

Proof. It follows from Theorem 4.4 that there exists a size-based CTP A such that h << f

having the following properties.

(1) Thefe exists an integer s (0 < s < n) such that

Case 1a. for any integer k (1 < k < 5), I; € WONLY (h), ana—
Case 1b. for any integer (s < k < n)I; € ALL(h).

(2) There exists an integer b (max{n-s-1, (n-1)/2} < b < n) such that
Case 2a. for any integer k 1<k< n—t?), Iy € ALL, (h),

Case 2b. for any integer 7 k . (n-b £k <b), I, € ALL,.(h) or
I, € PONLY, (h) U WONLY . (h), and
Case 2c. for any integer k (b £ k <m), T, C ALL/(A).
We want to compare the expecied numbers of waiting sites between h and the quorum-
based CTP cpg where b=n-b. Since s+ b > n, we have b < s.
We first consider the components in .

-

Case A. 1 < k € & Since b < s, it follows from la. that if S € GP(C) for some C € T;
then S € WA(k) and -h(wc)'¢ wa. It follows from the way cp; is defined that S € WA(cpz) and
cpfiw) = wa. Therefore, h and cp; have the same number of expected Waiting sites.

Case B. 5 < k < n—1: For any C € I, we have 8(C) N WA(cpp = &, ie, C never waits
under cp; Therefore, the expecied number of waiting sites under cp; is not larger -than that

under h.
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Now we consider the components in T

Case C.1 € k < & It follows from 2a. that T} € ALL.. (k). Sigce T} C ALL, (cpp), h and

cp; have the samé number of waiting sites.

.4
Case D. b < k < b: It follows from 2b. that for any C € T, either w* or p* € WA(R). For \
cpp w' is the only waiting component state in O(C). Since PO, k, k) € P(k, 0, k),
Pr{w®) € Pr(p“). Hence the expected number of waiting sites under cp; is not larger than that

under A in this case.
Case E.b € k € n—1: It follows from 2c that I, € ALL(h). Also T; € ALL/(cp;) holds
(see definition of cp;). Hence, in this case, 4 and cp; have the same number of waiting sites.
/f\ ‘
In each of the above five cases, the expected number of waiting sites under c¢p; is not larger

than that under h, and therefore E(cpy) < E(h). Since h << /. this implies that

Elcpp) < E(f).O
By replacing cp; by cw, we have a parallel result

Theorem 4.8. I/ Pk, 0, &k} < Pl0. k. k) for all integers k (1 < k € n-1), then for any

size-based CTP f, there exists a quorum-based CI'P cw. (1 £k < n/2l such that
Efew)}) € E(f).O
With the results of Theorems 4.7 and 4.8, we can compare all the quorum-based CIP’s o0

find a site optimal size-based CTP.
Theorem 4.9. I/ P{0. k. k} < Pik. 0, k} for all integers k{1 < k < n), let m be an index
such that

Ecp.,) =gmin{Elcp) 11 < k < n/2).
Then cp,, is a size optimal CT P in the set of size-based CTP's.

’

Proof. The theorem follows from Theorems 4.7 and 4.5. & -
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Theorem 4.10. /f Pik. 0. k) < P(0. k. k) for all integers k (1 < k < n), let m be an index

such that

Elew. ) = min{Elew,) 11 €k < n/2}.
Then cw,, is a site optimal CT P in the set of size-based CTP's.

’

Proof. The theorem follows from Theorem 4.8 and 4.6. O

This concludes aur search for site optimal CTP’s in the class of size-based CTP's.

4.4. Count-Based CTP’s

Recall the definition of a count-based DTP given in Section 3.4. A count-based DTP maps

any two state equiviznt component states to the same decision. In this section we introduce an

o 3

analogous concept in the centralize# case.

Definition 4.3. A CTP f is a count-based CT P, if for any twg state equivalent component

states S; and S, the following two conditions are satisfied. -~

e

section 4.3

(1) If both 5, and 5S> contain the’tcord/matorrdterrffsj’)'i Jisr . s o
(2) 7 If neither S; nor 5- contains the C(x')rd‘mator, then 715,) = f(S,)

An example of a count-based CTP 1s illustrated below in the Table 4.6.

Theorem 4.11. Each couni-based CTP is a size-based CTP.

Proof. Let f be a count-based CTP and let k be an integer such that 1 € k < n-1. Suppose
that a component C € I'; has a state S in 8.(C) such that f(S) # wa. For an arbitrary com-
ponent C, in T, let S, € 8{C,) be state equivalent to S,. It follows from Definition 4.3 that

fL8.) = fIS) = wa. Therefore, any C. € I'; has a state S, € 8,(C.) such that fIS;) # wa. Simi-

larly, Definition 4.3 (2) implies Definition 4.1 (2). Hence f is also size-based. O
ariy, : aidad

R

Bx. definition, a quorum-based CTP is also a count-based CTP. Hence we have the followlhg

two results

/
/
/

— 55

b ey R mberet g -

et Xl 4bh



/A

chapter four ) ' S .. sectin44

component -deci- | component | deci- | component | deci-
state sion state sion state sion
: site site site
: 1234 1234 1234
p--- ab P--7 wa | pw-w ab
) -p-- wa pP--w ab P-pPP com
--p- wa -PpP- wa| p-pw wa
---p wa| -pw- ab| p-wp wa -
wo--- ab -wp- ab | p-ww ab
-w - - wa -P-P wa -PPP ab
; --W - wa -p-w ab -ppwWw wa
---w wa -w-p ab ~-pPwWP wa
W W - - ab |\ --pp wa -wWpPpP wa
Wo- W - ab --pWwW ab | -pww ab
w-o-w ab --wp ab! -wpw ab
-wW oW - ab PPP- com| -wmawp ab
-W - W ab PpPW- wa | WWwWW- ab
--W W ab pPwp- wa | Ww-w ab
PP-- wa | pww- ab | w-ww ab
pw-- ab PP-P com| -www wa
 pP-p- waj pp-w wa '
I p-w- ab | pw-p wa

Table 4.6. An example of a count-based CTP for n = 4 sites.

Theorem 4.12. Given any couni-based CTP [, there exists a count-based CTP g <<’ f
with the following property.
(1) There exists an integer s {0 € s < n) such that
Case 1a. for each integer k(1 < k < 5),T; C WONLY (g). and
Case 1b. for each integer (s < k < nJT; € ALL(g).
(2) There exists an inzeger b { max{n-s-1,1n-1)/2) < b < n) such that—" - ~

Case 2a. for each integer k (1 € k < n-b), T, © ALL.(g). L

Case 2b. for each integer k {n-b < k < &), either T;) € ALL (g) or T € PONLY (g or .

I C WONLY ., {g). and
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Case 2c.  for each integer h/(b\% k<nlT; CALL(g).
Proof. The proof follows from Theorem 4.4 and the proof of Theofem 3.10. 0
Theorem 4.13. For an(_;' count-based CT P f.there exists a quqrum—bafed, CTPg << f.
FProof. The prootf follows from Theorem 4.12 and the proof of Theofem 311.0

Hence, a site optimal count-based CTP can be found by comparing all the quorum-based

CTP’s. Recall that QC denotes the set of all quorum-based CTP’s.

Theorem 4.14. Lez g be a quorum based CT P such that

) E(g) = min{F{g)ig € OC }.
Then g is a site optimal count-based CTP. ‘.

Proof. The proof follows from Theorem 4.13. 0

In the following, we show an example of a site optimal count-based CTIP in a special case,
where all component states have the same probability. In this particular case, as was explained in

Section 2.5, during the calculation of the expected number of waiting sites under a CTP, we hﬁ‘\#

only to calculate the numbe;tﬁ waiting sites-and thep multiply-it with the probability of a com-—
ponent state.

We list the values of cp, in Table 4.7. The vai.ugs)of cpy were listed in Table 4.4. From
these 1wo tables, it is seen that the number of waiting sites under ¢p,, is 12, whereas the number
of wait.ing sites under cp, is 10. In this particular case, E(cp,) = E(cw,) Therefore, cp, is a site
optimal count-based CTP.

Ramarao has proposed a "highly optimal” CTP h which he claimed was a site optimal CTP in '
the general case [RANA-84] It turns out that the CTP k is actually cp, As was pointed out

above, cp; is not site optimal. Thus the above cp, provides a counter example to his claim.
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gr component | deci- | component | deci- | component | deci-
i state  ; sion state sion state sion
' site : site . site
| 1234 ¢ 1234 1234
L op--- comi w--p com: Wp-w | com
| -p-- ‘tcomi! -pp- com| ww-p | com
. --p- icom; -pw- jcom| p-pp jcom | i
[ "o p Tcom! -wp- lcomi p-pw | com
E w--- | ab -p-p com! p-wp com
fo-w-- ¢+ wal -p-w com| wW-pp com
--w- . wa -W-p com | p-wWwW ; com
---w ! wa| --pp com| w-pw | com
LW - - ‘ ab| --pw com| W-wp | com
L wew-. L abl! --wp leom: -ppp-teom i - oo
w--w. ! ab PPP- com| -ppw | com
-W W - wa! ppw- hcom -pwp com ’
-W-W  waj pwp- [tom| -WpPp i com |
--ww : wal! wpp- com| -pww com |
PP-- icom| pww- jcom| -wWpw | com
pw-- fcom| wpw- {com! -wwp | com
wWp-- . com| w Ww-p - com | WWwW W - ab
p-p- fcomi pp-p com i W W -w ab
P-W- .com; pPpP-Ww !com| w-ww ab
W-p- lcom| pw-p lcom] -www wa
p--p icom| wp-p i com : g
- S W . COIn PR =W O 3 i

Table 4.7. The decisions of cp,, for n = 4 sites.

45. Restricted Decentralized Termination Protocols

If S is a realizable component state in the centralized case, then it is also realizable in the
decentralized case. The converse is not true in general. Consider a component state which con-

tains the coordinator. If the coordipator is in state w and some other sites are in state p, then this

component state is realizable in the decentralized case, but not in the centralized case. Hence, the

set of realizable compon;ant states in the centralized case is a proper subset of the set of realizable

component states in the decentralized case.
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To see another difference between the two cases, consider two dispint components C; and
C- In the decentralized case, any component state S, € ©(C,) is concurrent with any component

state S, &6(C,). This is no longer true in the centralized case. For example, if C, contains the -

x

. . N ;. ) e ‘
coordinator, by Property One (see Section 4.1), S; = w ' is not concurrent with S; = p 2. How-
ever, if S, and S» are twé\concurrem component states in the centralized case, then they are also

concurrent in the decentralized case. - . ... . N el

The above observations make it possible to apply a DTP 10 the centralized case by restficting
-1ts domain. Let.f be a DTP and let R be the set of all realizable component states in the central-

. ized case. Then R is a proper mmangthe domain of /. If we restrict / 10 R, it satisfies both the _____
nonreversal and consistency conditions. (See Definition 2.1). Therefore, we can consider f to be a
_ CTP. CTP’s obtaine ’in this way are called restricted deceniralized terminated protocols (RDT P).
Some members of is class have been regarded as possible candidates for a site optimal CTP
[RAMA'-M]. However, we show here that this is not true and, in fact, there always exists a CTP

~

which is strictly better than anv RDTP.

Lemma 4.12. Given any CIP f. 1] there exist two disjoint components L, and C; such
that C, € ALL(f) and C, ¢ ALL_(f).then fisnot a RDTP.
, &
Proof. Suppose f is a RDTP. It follows from Lemmah’ that C, € ALL,.(f), a contradic-
.

tion. Hence f cannot be a RDTP. 5

The following lemma shows that for every RDTP, there exists a "better” CTP.

-

Theorem 4.15. If P{0. k. k) < Plk.0. k) for all k (1 < k < n—~1), then for any RDTP f, .
there exists a CTP g which is not a RDT P such that E(g) < E(f).
Proof . Because of Lemma 4.5, without loss of generality, we may assume that if C. doesnmot .. ..

beloneto ALLLS), then either fIw%) = wa or Ap°) = wa.

The proof is divided into three cases.
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Case A: suppose ALL{/) N T™ = &, Let c,r'e A[J;;(’f)/ﬁ’rr“ “and et C, be the comple-
mentary component of Cy, ie, C; = I — C,. Since C, € ALL(f) and f is a RDTP, it follows from
Lemma 2.3 that /(w(’) = wa. Because C, contains the coordinator, only the component state w
?;om among those in 6{(C,) is concurrent with WC?. Since f(w'?) = ab, f can be modified to g by

defining g(wCZ) = ab. Therefore E(g) < E(f), regardless of the relative values of P(0, k, k) and
> ,

Pk, 0, k).

4

Case B: ALL{f} T =@ but ALL(f) # @. Récall that 8,(C) denotes the set of states

of C which contain at least one site in state p. Define a CTP h as follows.
(1) For any C € T let A(S) = com forall § € 8,(C).

(2) Forall C € T, let A(wC) = ab. |

‘(3) For all C € I‘;', let Hw ) = wa.

CTP h idéfined above in such a way that it-maps to wa only those states of components

which do not contain the coordinator and have all their sites in state w. - (>

>

- e ! . :
No C; € T belongs to ALL(f) and this implies that either ﬂwC‘) =wa or f{ pc‘)f wa. C;

waits under k2 only when i} is in state w'". Since PO, k, k) € Pk, 0, k) for every k € n-1,

Priw’?) < P p(‘). Therefore the ex@ed number of waiting sites in C; under h is not larggr

than that under f. Hence F(h) < E(f). P

Because ALL{f) @ T" = @, there exists a component C in T such that C € ALL,,(f).

Since C waits under % only when it is w<, more sites in C wait under /. Hence E(h) < E(/).
Case C: ALL(f) = @. Since no C € T, belongs to ALL(f), therefore either f(w<) = wa or

fp‘)=wa Again we® compare / with the CTP h defined in Case B above. Since

Pr{w) < Pr{p") and a component in I’ never waits under h, we have E(h) < E(f). 0

—Md&wﬁgﬁw&mﬂﬁﬁm\tﬂml/
Y i
i
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Theorem 4.16. [f Plk, 0. k) € P(0,k, k) forallk (1 S k € nj-l), then for any RDTP f,

there exists a CTP g which is not a RDTP such that Elg) < E(f).O

Theorems 4.15 and 4.16 confirm the fact that no site optimal CTP can be found among the

RDTP’s. N\
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The handling of network partitioning is in general a difficult problem. Most of the known
systems treat it as a catastrophic failure and handle it manually. In this thesis, our main concern

is to-design protocols which maximizes the availability of a database in the presence of network

partitioning. Transactions erlrerllroil'iméirls; ‘executed under the th;ee—phase comxmt protocol and a
termination protocol (TP) is invoked only whenV a failure occurs.

We have extensively investigated two classes of TP’s: count-based TP’s and size-based TP’s.
It was shown that, in these classes, "best” TP’s with the minimum expected number of waiting

e
sites can be found among the quorum-bdsed TP’s.

' The methodology used in the search for these "best” TP’s was to introduce a partial order
among all size-based TP’s and to identify a subset which contained all candidates for the "best"
TP’s. The subset thus identified is the set of quorum-based TP’s. We have also succeeded in

demonstrating that this approach applies equally well to the decentralized and the cgltrali;ed

ases.
Along with the development of ‘this methodology, characteristics of TP’s were examined-
extensively. In particular, some of the essential characteristics of CTP’s have been found which

give us a better insight into the properties of CTP’s.

M

- e —

— 62—




st

REFERENCES

“\

[CHIN-S3} Chin, F. and Ramarao, K.VV.S. Optimal Termination Protocols for Network Partition-
ing. Proc. énd ACM SIGACT-SIGMOD Svmp. on Principles of Database Systems, Mér,
1983.

[GRAY-78] Gray, J. Notes Van Database Operating Systems. Operating Systems: An Adva.nced
Course, Lecture Notes in Computer Science 60, Springer-Verlag, \.Y. 1978, pp.393-481.
{LAMP-76) Lampson, B. and Sturgis, H. Crash Recovery in a Distributed Storage System. Tech.

) Report. CS La}b, Xerox Parc, Palo Alto, California, 1976.
[RAMA-84] Ramarao, K.V'.S. Resilient Distributed Database System. Ph.D. Thesis, CS Dept,
L'niversitg of Alberta, 1984, |
[SKEE-81a] Skeen, D. and M. Stonebraker A Formal Model of ‘Crash Recovery in a Distributed
System. Proc. 5th Berkelex Workshop on Distribuzed Data Management and Computer

Networks, 1981, pp.129-142.

[SKEE-81b) Skeen, D. Nonblocking Commit Protocol. Proc. ACM SIGMOD Con/f. on Manage-

ment of Data, 1981, pp. 133-142.

© . +[SKEE-81c] Skeen, D. A Decentrzlized Termination Protocol. Memo. No. UCB/ERL M A 81/50,

EECS Dept., Univ. of Calif, Berkeley, 1951.
[SKEE-82a] Skeen, D. Crash Recovery in Distributed Database Management Sy#tem. Ph.D.
| T hesis. EECS Dept, Univ. of Calif., Berkeley, 1982.
[SKEE-82b] Skeen, D. A Quorum-based Commit Protocol. Compwzer Science T.R. §2-483, Cornell

Univ, 1982.

7

.

— 63 —



" FIGURES B

vyequest
x‘ffl LA XaCtn

yequest

Xac‘f, - Yactn

L{C‘o o if“n
Commit, - Commity

Xact; 7 {acti
j“c Mo,
w aQ
o o " _
Commi t¢ aboyt;

qton- coordinators (sifei =3, )

- Figure 1.1. FSA of the Centralized Two-Pbase Commi Protoacol.




Xaet;:
e oo JBim

Site ¢ Ci=l,---, ")

Figure 1.2. FSA centralized Two-Phas
. ' o o
the Decentralized Two-Phase Commit Proto‘;oi -




- yequest
Xaet, -+ - - Xactn

Yeg, - - Yegy
?y‘faje' ot ?{lfﬁreh

-
cmﬂfir’n, .- mflmﬂ

commit, -~ commity,

yequest -
Xact) ---- Xaety

coovdinatoy (site 1)

Non- coordinatosGite i izzm)




Site t (r'=l,","‘)






