l* " National Library B-bibthéme nationale

of Canada : du Canada _
Caﬂad'an Theses Service . Services des théses canadiennes ‘ R e e
Ottawa, Canada ') , ‘ . |
K'lA ONg S ¢ T e e e
- - . ‘ .
CANADIAN THESES ' THESES CANADIENNES
NOTICE o o Avs

. “The quality of this microfiche is heavily dependent upon the - La qualité de cette microfiche dépend grandement de la qualité

‘quality of the original thesis submitted for microfilming. Every de la thése soumise au microfilmage. Nous avons tout fait pour

effort has been made to ensure the h»ghest quahty of reproduc- assurer une qualité sUpérieure de reproduction.

tion, possible. ’ : :

If pages are mtssing contact the umversxty wmch gfanted the S'il manque des pages, veuulez commumquer avec lumver-

degree. , sité qui a conféré le grade. ,

Some pages may have indistinct print especially if the original La quamé dmpressnon de cénames pages peut laisser 3

pages were typed with a poor typewriter ribbon or if the univer- désirer, surtout si les pages originales ont été dactyiograph'ées

sity sent us an inferior. photocopy :) _ a l'aide d’'un ruban usé ou'si l'université nous a fact parvemr
S “une photocopae de qualité inférieure. S

\\ B ¢

Prewously copynghted materials (journal artlcies pubhshed * Les documents qui font déja I ob;etd'un droit d"auteur (articles
« tests, etc.) are not fitmed. de revue, qxamens"pubhés etc) ne sont pas mocroﬁlmés

Reproduction in full or in part of this film is governed by the La rep(oduct:on memepanéoue de ce microfilm est soumise
Canadian Copyright Act, R.S.C. 1970, c: C-30. Please read ~~ 1 la Loi canadienne sur le droit d’auteur, SRC 1970, ¢. C-30.

the authorization forms whic;h accompany this thesis. © Vaeuiliez prendre connaissance destormulesdautonsahon qui
o - : accompagnent cette thése/ “!
;
THIS DISSERTATON . LA THESE A ETE ’
HAS BEEN MICROFILMED | MICROFILMEE TELLE QUE
EXACYTLY AS RECEIVED . NOUS L'AVONS REQUE

©NL 339 (1. 86/01) .) ‘ &nada
¥

-

Bibliothdgue

%&
nll du

‘A l* National me\(”f

§

3

NAME,OF AUTHOR. NOW D€ L-AuTEuR —Shane Don Capli in_

f .

. #-315-28280-40
- I 7& SR

CAMADIAN THESES TNESES CANADIERNES

TITLE OF THESIS? T/TRE DE LA rmswwﬂ BY A

&

_SELF- DIRECTED COUR§E Q_E__LQDY

)
P
k)

UNIVERSITY/UNI VfRSm‘

Simop fraser University

DEGREE FOR WHICH THESIS WAS PRESENTED/
GRADE POUR LEQUEL CETTE THESE FUT mfsm

7 YEAR THIS DEGREE CCNFEWED/AMfE D'GYENHCW DE CE GRADE

. NAME OF suvswssoﬁ wou DU DIREC TEUR DE msse_._Q..a..L_L_(.SADﬂ.Y.LDAn

Permission is hereby granted to the NATIONAL LIBRARY OF

CANADA to microfilm this thesis and to lend or sell copies
of the film,
The author mservps"othér publication rights, and r_vqithor the

thesis nor extensive extracts from it may be printed or other-

u

wise reproduced without the uthor’s written permission, ~ |

rsf.__mL_n.f_Am_LEdnmtion)

138,

L'awtorisation ost. par la hrluﬁu, accordée § /s BIBLIOTHE-
QUE NATIONALE DU CANADA de microfilmer cette thise ot
de préter ou de vendre des exemplaires du film,

L;auuur se rlsbrye' I‘cs' autres droits de publication; ni la
thése ni de Img.f extraits de celle-ci ne doivent étre lmprlm;s

_ou autrement reproduits sans I"autorisation dcrite de 'auteur.

DATED/DA rf'..M_jJ,_LlLL snsueo/smm'

PERMANENT ADDRESS/RESIDENCE FiI

TEACHING OF A COMPUTER upnmmmc'é@cm&z. BY A SELF-DIRECTED 'L
COURSE OF STUDY
~
| by

Shane D. Caplin

B.Sc. Simon Fraser University 1979

/
THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DECREE OF N]
MASTER OF ARTS (EDUCATION) R
in the Faculty %
of '
Education
(©) Shane D: Caplin 1983
" SIMON PRASER UNIVFRSITY -
T March [983

- All rights reserved. This w;ork ’my not be
reproduced in whole or in part, by photocopy
or other means, without permiseion of the author.

-

i@

o i ek e b et Y

&

e

« i
'
) T S S
— - ————— A—'V—MPRB\FA&%
Name: - 6 '_ A ASh‘ane.,‘Don Caplin
R |
Degree: o .. Master of Arts (Education) °
) L) - J - » . ® e | 5 w
Title of Thesis: Teaching of a Computer Programming :
‘ , ' Language by a Self-Directed Course
' ‘O.f StUdy]
Examin?_ng Committee .)
Chairperson: L. Prock .
: oo e it
b § A " %
A. ZZ ‘Dawson S S
Senior Supervisor CL e -
7 _
R. J. D. Jones o o _
“Assistant Professor ‘ ;
o H- MU‘T @ 2
Associate Professer) :
Faculty of Education
University of Victoria
External Examiner
. \ *
L —/ '
Date approved V‘ld«i.z?/i /1983 . |
- e ‘} B N

ii

] T B A -t T B

. : ;
‘ ‘| hereby granf,i;o_SImn':Fnur !miin%ﬁ the right o tond

- my thasis, project or ox?i%do# o338y (the titie of wnick is :ﬁaiu-iitawﬁ*

?o users of the S imon Frlsor Unlvorsify Library, and to 1gi.,;.r?¥if

single cop:es only for such users or in r.sponso fo—a request trus the

%ibrary of -any other univtrsify, or o?hor oducafioncl lnsfifuflohlgaa I

its own behalf or for ona of 1ts users. | further agres that permission B

for mu'?:plo copying of this work for schoiar)y purposes may be grnnfod -
by me or the Desn of Graduate Studies. It is understood that copylng '
or publica?ton of this work for financial gnin shall not be e ailowsd 7W;‘ e

R T

ES

. _without mﬁ Q}tffon pormisslon . g .

Ca

Titie of Thesis/Project/Extended Essay

TEACHING OF A COMPUTER PROGRAMMING LANGUAGE BY A SELF-DIRECTED .

: A

COURSE OF STUDY

Auythor: .
Kv(signa?uro)

o

s i et R AR

| . -
N H :
e . &
: '

Sy
1

i ﬁ.wﬁmd 1a ﬁmp;uid for teaching ca'lputtr p’ra;rmin’g 'l.:y
 saans of a icif—dtnetid study course. The course is developed
ming a combination of ctxthook a:udy guidc um , i
: imzrmum m t&uu ps!"umil a :htcnttcal hck.mud for

C‘
ﬁutb@ak imtmti% !um audla uyn imemru pmide Audio

lmliymuﬂ, k%v%mm&mmﬁm T

contact between the student and the hutructor. ; /‘Q\,.

progr-—ing. ?fokents are al-o udc :bout sihilar cour'

1.
students who are 1nter¢stcd in co-puur lcimcc as a tool rathn'

chan a8 a di;cxpum. and !{dr :hmc u;ﬁdnmt: wixo ui;h to :uch

' ,camputing i{n the junior "and senior secondary schools.

3

+

- - - - E
Wl T P &

~
Lmtr‘cb I..“A‘.OOVODOOQD..‘..“.t"....‘.-’\..."......‘....’.‘1’11

m.t °f :ibl.. l..“‘...‘.O."..v.‘...“O..O.Il.‘....'J‘...‘.....‘.“Q.vi

A.

- Be

D. .

. f"“' .
htrOduction o..oo-;;ooobooo-onoooo'o-ovoo.o‘oooooooqo-;naool

Sli".y of the Limrltut_e’ .‘l.tlto.‘.’i...OOOIUUOI;OOOODZ.O.‘...5‘
, I. mmlimmmtim l‘“n'rl'oooto.ooo.’oo'coooo’ooobotosm T

I1I. Self-Pacing/Self-Ditected _Study ooo.....ooovo.oooooo...7'

III. Audio—Tutotial htw ..t.....q............'...O‘....‘.b

' Iv. mmpt Melownt‘..12

v. chifie‘d %_‘l‘cti"sL.............................16
,)) s %

%

The Design of the Self-Directed Prograsming Céufqe-a......lB'p

I.a m‘oice lof Mthod ooooo'oooooooo-oo.0000'000000020000000021‘

. II‘ mvelomnt Of‘ thé Cb;uru Criteril o'o-ooovclo,'oooo;‘ooo.ooZ?

' ,S,tm‘}t,‘-!rgd ‘gr,o&r,agig& ,ljl{jfj_LiLLle*z‘;;ﬁf" ,ii,,,g,f,i,mf,,,-_i

III. sofmre De!igh oooo.oo.oooo.ooooo’....vb.'oo.o'o....oozs

I Choice of a Conpnter Language and a Cbnputer System .27
v_. Choice of the Textbook28
'vI. Melomnt of t‘t‘e A‘ldio Tapes .‘....‘.................29

VIIQ mvelomnt Of the Study &lide ooooooooooo.oooooooooal

Applying the Dick and Carey Criteria,.........32

Introduction to the Self-Directed Study Goutse37" :

IQ 's:my G"ide ..'-.'-.-"...'.'.‘.....r..‘...............37

Mﬂi's-nunt! and PrOject “".,ov’oor‘g?;bo‘ooooooo.ovo..oooroo”

I1. ucturel;........;...............;..38

s

in. ‘Téaﬁ‘fng BTstm“‘.7;........................,387

VA) . o

“Av ,l

2

Iv- Equimnt lnd Hltcrm.ﬂ f..l.d'..ll“‘.t....'.--.'-."l3_9

E. Asdessment of the "New" Courte»..3..........;.........;...éo

I. Assessment by Computer Science Undergraduate

Students ..‘...'..':..I.‘..I..’I...‘-....‘.II.I:.I......IIao

Results of Assessment by Computing Scieuce
Ihd‘rsradu‘te Stud!uts IIII‘.....I'..III...."....le

I1. Assessment by Graduate Students in the Faculty of -

. Edmtigﬂ-........e-..'.....--....-bﬁ

— “

Results of Assessment by Craduate Students fn = . 7?7 , . : -

Educﬂtioh .‘Q......I“".......Q.....I,'I‘.......‘.QSO =

.

vF. R S‘mry ».......’...........’........:.....‘.....q...'..‘......«.66

- 1. .Analysis and Comparison of the Two Studentl
mestiomiresI...‘.‘...’............’66 i . VI
II. %nclusioﬂs L J ,. L 2 .." o000 POS .V. LN N J eeoe o0 PG00 . L] . V.". L] .'. .71

}Gc RECo-mendafions for Fur:her Study too---o..-o-i.;c,-l-.-ooja : : E'

References ;o.---.n.-.oo-c-o/-q.---o.-o--.--ooloo.o-oéooooo;oooz7

ii,‘f&’" Bibliography;....................-...............80 .
 Appendix A - AUDIOTAPE LECTURES!,,u.......,.,u.,ﬂa L
Appendix,B - THE STHDY GUIDE tao-{.-oooop-o-o.?-.-o-o-.oo----oab i

» v%

R é;,«;wnz«hi‘-\ el

LIST OF TABLES ~
i ' : : 4

Table Oné - Undergraduate Student Questionnaire..e.eeses,e43

Table Two - Graduate Student Questionnaire..

..----....;.'..52

A

-

b d
®
v
¢ - - - —
R 2

g

A
-
.

vi

'ﬁﬁ_ Introduction

The current interest in tﬁe use of/computers in secondary -
ahd in some instances elemén&ary'- séﬁools suggest; thaélwe are
in the miéét of a fast growing technological movement.

Incre351ng numbers of people in all disciplines are finding it
necessary to learn computer programming. The growth has been so

»

rapid ghat Fhere has been little time to?consider how best to
iﬁplementvand how best to teach this new technology.

| :With the rapid emergence of thg use of computers in our
soclety and the inclusion of compﬁter instruction in the
educatiénal curticulum,‘there'has come.about a need to e§tabLish'
some relationship between the theoretical and phe appliédz
aspects of computer programming énd fo develop an effective
method for ‘the teaching of this discipline.

Many of the current eduCational metﬁqu tend to lack a firm
philosqphical or pedagogical basis. The field of teaching of
coﬁputer pfograhming i;.éo new that the published research is

.relatively sparse. J
/A\\S\ One of the specific ‘problems is that until quite recengly
there wére almost asrmany programming styles as there were

programming languages. However, the:teseafcﬁ ca;?ied out by E.

4. Dijkstra (1965, BIT 1968, ACM 1968, 1970) has shown that the

development times for large systems can be significa tly reduced

by the use of "structured programing“.

. .
<1 . ES
. =

Early programmers, hy necessity, wére recruited from the
scientific-disciplines. These professionals learaed how totﬁse -

a computer either by reading;p;ogremmingmmanualsfiromﬁthe—rr~ e B

-
-

. . o . oo e - * ’ . R
~computer manufacturers or by learning how to use a computer =~ ~ s

-

directly from a manufacturer’s,representative. As highi}f

;rained professionais, these peopleblooied upon programming as

something that—couldtbe learned in one’s spare time using the &

traditional methods that were successful in the learning and

.teaching "of science. This attitude stiil;eiists today and for

st

this reason the mEthod of teaching progrémming in many 1earniﬁg;

1nstitut10ns is to give the students little more than a ' o -

description of the features of a particular programming language

—

and tell the - students to get on with it". Up to now, they were

¥
N
W

not taught structured,programming.

The fact that computers are being used 1n ever increasing

@

numbers has created a need far more teachers of computerr

[~ %

progremﬁing. However, in a surveycconducted‘fn 1977,
Gopaulsingh (197%) poinﬁed»out;thatithe schools in British
ColumbBia have not been able to meet this growing need. The

*

shortage of computing science teachers is even more acute today.

0ne~effective alternative to class teachingrwhich can

N £
"I

utilize structured pregramming is self—directeékstudy (Allen,

1980). Materials are developed ‘to assist the student in

~

practical.exercises, thus diminishiug,the_need for direct

instructipn and supervisionl

33

T4

S

. EC
bl) . o

- »

" One of the greatest problems in introducingvcomputer

-programming into the classroom is that at present, most teachers

=,

do not‘havefthg’éxpeftise_éo deal with the gubject (Qgp§u1singb4i,

1§77). Moreover some teachers feel threatened by a new -

discipline they do not understand.

Even when a.single area in computer science such as

2.

-prograﬁﬁiﬁg'iérﬁingled'but as tﬁe'basis_for a computer course,}v

the design and imp}epehtation‘of the course can be very complex,
because. certain fundamental questions must be answered, such as:

should’the'compdter»be in control of the student or should the

sfﬁdeﬁﬁ be in full®control of the compufef? This touches on the :A
pféblém of thefway inlyhicﬁ rigidity would be built into‘the
instructionalkprdgram»if the computer were in control*compared

. : ‘, § i) .o :
with the‘decision-making by the dent in. the more flexible
student-control situation. The latter' approach is -the one which

o -

is emphasized in this thesis. -

-

| 4

v

It seems that a gqod'self—difectéd,packagé in computer

programming should include the following features: -

a. the theory of 1earnigg‘

b.v”fhe'tbeOry of‘Cpmputeriprogramming

C. practice and experiencg, i.e., the immediatekapplication'

<

of the principles learned.

d. distributed practice

The aim of this thesis is to develop anrapprnach to

teaching individuals tbibeche,compgtént computer progréﬁmers,

using methods by which students can learn relatively -
) .o - L4 v

indeﬂéqdently of a classroom instructor. To be aééeptable to

the university and to the students, such a self-directed study'

course must have a sound theoretical basis in both the théory of

learning and the theory of computer programming-.

.This thesis will outline a beginning programming course

+

that is the result of the research of educators working in‘the-
area of learning fhebry and coﬁputer-scienbe, as well as of the

current research of the author.

P
PR 0%

P
o
I

) .
e /\ B - . U
.

B. Survey of the Literature

A survey of the resear;h in computer science education and
teaching methods shows .that ther§ is a scarcity of pertinent
material in this'field. There is considerable subsidiary
information such as correspondence courses and audiovisual
méterial for people working in areas other than the 1earning of
computer science. Most of such material is in the form of
computer a;sisted instructionn(CAI) and computer managed
instruction (CMI), Haterialadealing with the computer as the
subject of instruction rather than‘aé Fhe mechanism of

instruction is sparse.

1;_ Individualized Instruction

It should be pointed out here that the ultimate goal of
this thesis is to devise a method by which studenﬁs may study
and learn computer programming independently of anwinstructor.

‘ While there is a substantial amount of literature on
individualized instruction, it is the area of independent study
and its subset, self-directed study, that relates most directly

= to this thesis.

B I

"Individual%g:é instruction is not the same as
independent udy. To be sure, independent study is °
often a part of individualized instruction. But
individualized instruction is the larger idea. It
includes independent study." (Esbensen, 1968).

n.:!

Independent study can itself be described as consisting of two
majog/elements: individual study - study by oneself, and
self-directed study - study independent from a regularly
structured curricula (Gibbons, 1971).

In a review conducted on individualized instfﬁction by
Bafbara and Marcel Goldschmid (Goldschmid and 'Goldschmid, 1972), . .

‘ L 2

the concepts of the audioétutorial approach and modular
instruction were shown to be successful teaching ﬁekhods.

In the auhio—tutorial approach audio-tgpes are designea to
direct the student in varioué types of learning activities. It
was poiﬁtéd out that this method works well when'sup;lemented‘
with/laboratory work, readings; slides and films (Goldschmid,
and Goldschmid, 1972).

Moduiaf instruction, another form of individuglized
instrucfion, combines many of the .advantages of other
instructional innovations such as performance ojectives,
self-pacing, and frequent feedback. Modules consist of
self-contained units of planned learning activities. These
activities may be in the fofm of reading teﬁtbooks and articles,
of listening to audio-tapes, examining diagrams, etc. ‘The
advantages of modulgr instruction are self-pacing, being able to
frequently identify stgdent strengths and wéaknesses, and the
ability to easily provide extra help for weak students through
ﬁhe design of remedial modgles (Goldschmid and Goldschmid,

P

1972).

e

Self-instructional matérials are an important part of a
sélf-dirécted study course. The types of work material chosen
depénd iargely on how far this material is seen to be replacing
the function of the teacher. The.ﬁost structured pattern of
material ié ﬁhat of programmed learning where the student can
progress in small stepé and each step is tested immediately. Iu
this way‘the student can, wi;h little or no outside assistqnce,

keep track of how well he is Yearning (Davies, 1980).

v

11, Self—Paciné}Self-Directed Study

The problem that our . learning iné%itutiéns are faced with
% not one of providing‘more individuals to teach courseg, but
rather of providing those teachers with a better background and
teaching aids so that the frustratiohs mentioned by Gopaulsingh
(1977) in the following quotation can be minimized.

"As Lawler (1970) pginted out, in many situations -
innovations have been introduced into the schools
without careful analysis of the appropriateness a;%
sophistication of the content and materials for the
student group. Often not enough attention has been
given to relationships with other courses and to the
level of development of the individual students.
Frequently, in-service teacher preparation has been
neither appropriate nor adequate., The result has been
that subsequent to the innovations, frustration,
resentment and feelings of inadequacy have surfaced."

A self-directed studyicourse in computer programming prepared by
professionals could be very helpful in overcoming the shortage
of trained instructors of computer programming. In addition to

making sure that the students are taught the essentials of the

discipline, each student has the advantage of individualized

instruction. Students ptoceed at their own speed and at their
‘individual competency level. A student w%aﬁis-already familiar
with a certain aspect of chputer progammipézmayfskip over those
particular instructional tépics.‘ No time is wasted on needless
review of material already learned (Allen, 1980).

_ A course in introductory Fortran brogramming‘ﬁsing a set of.
TV lectures was set up on an experimental basiéhat Texas A & M
University*(Simmons, Ward and Thompson, 1974). A{though this’
course was not designed as a self-directed study course, the
main conclusion of the expe}iment was thét’both students and
instructors were motivated toward deéigning the length and
frequency of class ﬁeetings to meet with their particular needs .
It was verified that when computer prog{ammihg was taught in
this mannerra wide Qariety of teaching programs could be
implemented withbgt adversely affecting student learning or
student interest. o

The Keller method of instruction (Keller, 196é5wis ‘
characterized by self—direcied study with a high degree of
student help and discussion.

L&

"Self-pacing allows students to spend a variable amount
of time on basic skill-building. As a result,
well-prepared students can move ahead of the class and
poorly prepared students can take the time to ‘gear up’
before attempting difficult problems:[Emphasis on
student self-help seems to be a good way to build
self-confidence." (Young, 1974)

The Keller system of teaching (Keller, 1968) emphasizes:.
1. the go—at-yourFown-pace feature which allows the student to

plan a personal schedule;

2. the use of lectures and demonstrations as vehicles of
motivation rather than sources of information; R
3. the use of tutorial assistants to,mekeefreeeent/asseesments

and lend a personal aspect to the educational process.

IIT. Audio-Tutorial Method

N

{}n artreafise on the audio-tutorial system of instruction;
James Russell describes- the advantagee\of the use of this
system:

"Individual students respond differently to various
learning activitie’s, media, and rates-of learning. The

'audio—thtorial system provides a multi-faceted,
multi-media approach to learning which is under the
control of the student. . It utilizes an audio tape to
tutor the student through the instructional activities
and media until he,had mastered the object of the
lesson...

,During a typical session, the. student is actively
involved in learning at his- gwn pace. He listens,
reads, writes, manipulates learning materials, makes
observations, and performs experiments." (Russell,

‘1978) ' ,
In looking-at the question of achievement, Russell quotes the
studies conducted by Fisher and MacWhinney (1976) which found

the audioftutorial~system to be far superior to»conventional‘_‘

methods of teaching.

The audio- tutorial method developed by Stephen fower at

Simon Fraser University has been very sucessful in the teaching

of undergraduate chemistry courses (Lower, 1981). This method:

combines audio tapes with printed material to achieve a more

B 1

efficient presentation than either medium couid acc¢omplish when

-

' the same syllabus and examinations were used by both groups.

‘used separately. Accérging to Lewer the ahdio~;utorihl_offers:

T v

1. self-pacing: students can stop and'replaytthe tabé’whgrQVer

and whenever they wishg

2. 1nterﬁ§:ion of visual and aural inputs which méy have

signif-‘ant effects on learning and retention; -
3. the spoken 1angu;ge with ité'elements of.pace,mi;tonétion
and pauses. |
An interesting study was done on how graduate.stu&eﬁt
performanéé{and attitudes were affected by the use:of:éudip

tépes as a medium for learning (Barringer and.Bekiroglu, 1978).

This new approach was introduced in order toc help overcome the

' difficulties in mastering the material of a very intensive)

operations.research course that was being offered to MBA =

students. In this study two groups in two different<geogr&phic\

‘locations ‘were selected. In order not to prejudice the results

°

& =

GMAT (Graduate Mangement Adhission TéSt) sqo}es were used
to ensure that the two student groups wére draﬁh from the same
population. The mid-term and final examinatidn~score§‘of the
course proyided'the measure§ o%lperformance,for gfbup o

comparisons.,

The format of this new. approach to teaching the course

-

involved supplementing a set of audio tapes nitthorfespoading~—w*~~~*€

8

condensed printed dischs51ons, or lggiura,ndtaa,JdnuﬁLsmuden23—7~—w—¥—f—~—f

could follow on a step~by-step basis to cover the‘eséentialsiof

the course. In this way the students ﬁere‘ab;e to imprbve their

EiAl
<

2

preparation prior to class meetings.

_The experiment in audio taped lectures involved using “two

groups of students. Qne\group used the.audie~tapesffor~the :~ﬂ5f~*”” R
first half'of thegcouree while the seeond group used'theftapes
for the second haif of the course. The same examinations were

administered to both groups in-order tokeliminatelvariationsldue“

- ; - -

‘toldifferent examinatiOns and different subjeCt ﬁaterialdwhen‘ :‘;
._{Pnalyzihg student performaneeleith‘and without;tapes,,
"Conclueions of this study were as folioWs:

- 1. The. audio tapes seemed to'be:more‘ueefdi,to those etudents
who were struggling with the material than,those whofwere~ o hi‘:'ch”v‘
able to master the materiai easily. However, both types |
were.shown to be helped'by the tapes.

é$ The tapes_see&ed to.improve exam scores for those stddehts
who used them and the improyement‘seemed directly

proportional to»the amoontkof dSe.

"3. The students shoWed a very favourable attitude toward the, ‘ ’ .

availability .of the tapes and recommended them to other

3
7 B

. students. o T

F

4, ,Barringer and Behirogiu feel that these.results can be

obtained in any course by using learning modules with audio

tapes. The faetors that seem to be at work here are:

a. Audio tapes seem to encourage students to spgndimgxg, 4,Wti;;ﬂ,7eeftttﬂg
@me in preparing for topics ~and o,f@”analytwg_ejpéi;, _

the student who is,'"bogged down" in e’te%t book.

11

A

b.. The "alternative approach" wasqnsually related to the

way the instructor viewed the- subject -and thus helped

Lo
©

the student to emphasize,thefpoints_whieh—the—instructnfk~~rfr—‘¥rﬁ

e

. ﬁelt were important.
"c. Students appreciate an instructor who makes a speciai 4*,“ .

B

effort to inproVe the quaiity of the course. o x

s
L

- IV. Concept Development

%

As computer‘science has developed, a certain numbervof

» ideas have come to “be recognized in the field of programming

(Papert, 1979) Among these {deas is the concept of the : L
modularity of pure proceduresfand the concept of “top-down/
‘structured programming". ¢

"We have found it incorrect :to assume that beginning
programming students are unable to handle ’‘higher level’
concepts. We hive found it, both“reasonable and
worthwhile to present the topics of algorithm
development, stepwise refinement, recursion, and topdown
modular programming along with details of a particular
language." (Schneider, Weingart and Perlman, 1978) "

Current education practiges involve using ‘manipulatives’, o

such as coins, sticks or blocks to make procedﬁres more
concrete. In the field of computer programming langqages,

. ’ . L3]
DuBoulay #nd his colleagues (DuBouldy & 0’ Shea,’1976; DuBoulay,

 0’Shea & Monk, 1980) used ’manipuiatives' to provide a concrete

§ e -«
£

model for teaching LOGO to c%ildren.~ ‘The resulfs of tests and

experime nts coﬁaucted at the University of California on this

model, and other methods of teaching, show thnt there is clear

3

and consistent evidence that a concrete model can have a strong

-

12

effect on the encoding-and use of new technical informationAbYA;;fw

-

novices (Mayer, 1981) » ,', R . ;’””"f'"' .f*'“*“'i T
In an earliertpaper Mayeér asksiwhatfknowledgefis—aeqairedﬂfféfrrt#*’*
-by a novice learning BASIC programming, and how can this '
knowledgeAbe_more efficiently acquircd. “In answering these
questions, Mayer suggests that students will be,abie to learn
mode easily and morc efficiently if they de#glop three baaic
skills that are not obvions either in instruction or in
“traditional performance, nomely;) - , g
1. the ability to analyze encn'programming statement into a.
type of pré%otatemcntgx A,prcrs;atcment ié—afget of
"transactions"‘corresponding to a line of code;
2; “he abiiity to cnumerate thc trannactions involved for each’

-

pre-statment (A transaction is an event that occurs in the

L 4

Vcomputer and involves some operation at some. storage
" location.); 7 o 7 y .
3. the ability to "chunk" prestatements into general clusters
. or‘coﬁfigurations.‘

The paper\shows through the results of extended psychological
testing_oﬁ;stndents how tne use of this metnod of teaching

- enhances student'perfornance (Mayer 1979).°

It would seém from Mayer’s results that by simply teaching

[

éyntax, ultimatelyrprodgcgg_ggrzgggor programmers.
words, it seems that the level of student perfornance=is

directly related to how much a student understands sbout the

13

'programming finguage, and_how.much the student understands about

- : . ’ ’ <

the comﬁutarAitself.
| Structured programming is a term that occurs innumerable ——

times in the software literature. . Although the exact meaning of .-

what structured programming is zzfies from aukhor to author, a R
typiéal definition 4is: “Strﬁctured,proér;;ning413 a manner of '7Jff
orgénizing and coding~prdgrams‘thatlmakes'the pfograms éasily

understood and modified” (Donaldson,”1973).- It is genefally

" agreed that unstructured programmingris inefficient and prone to

errors simply because unstructured design is unpredictable. ’Oqe

goal then is to remove the unpredictable component from

rd

programming. In other words,. if software is to become more
reliable, we should reduce the complexity of the programs that

are being ﬁritten.< One way of achieving this 1s to reduce large

- e

problems to smaller, more easily m&nageable‘ﬁub—problems. Some

of the bengfits of this reduction in complexity are fewer
: ’ ' 1
testing problems, iﬁcreased&programmer productivity, and

improved pfogfam clarity, maintainability, andljggifiability

(Jensen, 1981).

N

[

Most educators agree that to be most'effective, training
should include theory, demonstration, practice, feedback, and

classroom application. Learning outcomes can be classified as:

awareness, the acquisition of concepts or organized knowledge,
the learning of principles and skills, and the ability to apply

those principles and skills in problem solving activities.

These élassifications apply equally uﬁ}l to the teaching of - °

14 | ' ' .

[

computer prograumihg.
1e spmeonevattempiing3cqmput¢r ﬁrogznmningwfor theffi?sg -

time has already acquired a syg;ggg;;g,_géllgdisciplinde I
approaéh to problém hpélysis, leatning to program a computer
juét means learning the s§ptaiAof the prdgranmingrlanguage'to be
used. Howe;er, few students have this prerequisite training in
ﬁiob;@m solﬁing and 1t‘is.th1§ training and knowlgdgé that 1is ‘
more {mportant than léaéﬁing the &itute and syﬁtax of a
progrruming language. Whether a student in a programming éodrse
is learning programming as part of another coufse, or is

identified as "what not to do". . Some teachers; usually science

teachers, tend to take a '"gr tical" approach, the logical
step-ﬁy-step exposition qﬁléi:m:rammar of the computer language.
This way of teaching differs from a pedagogical approach'by
which stnﬁgnts first learn to use the language quickl? (Bork
1981). .

"In the logical approach, students take a long time to

get to the point wheve they can write programs, and they

do not gain much feel for the art of programming,

because they spend so much of their time,.on the rules of
grammar'" (Bork, 1981)

Bork poinfs out that at one time this strategy was widely used

Y

in the teaching of foreign languages but has since been

discredited. o e

Bork also poin{s out it is a fallacy to believe that a .

student must learn all about a programming language and must

learn the full language. It important only for a student to

15

absorb the principles of programming and it is not necessary to

be completely familiar with ali/the facilities that a
)

programming language has to offer.' Asfa~matter efoiaetrit has
been demcnstrated that a small subset of a particular
programming language is usually more’ than sufficient for the

C

' beginning student’s needs.

V. Sggcified Objectives

An ekperiment at. the Univerity of Delaware using videotaped ‘

instruction showed results similar to the experimental course at-

w

Texas A & M (Simmons, Ward and Thompson, 1975). ~Here the

‘emphasis was on opening and closing each session with the
behavioral objectives of the lesson. Every statement or concept

definition was supported'with pertinent examples and reinforced

L]

with built-in quizzes (Hartman and Caroly, 1971).
Although there are many methods documented in the

literature for the design and development. of instructional

k]

materials (Langdon, '1978; Davies, 1980; Goldschmid and
Goldschmid 1972; Russell, 1978; and Drumheller, 1971), the
"Systeme Approach Model™ (Dick.and Carey, 1978) seemed to relate

best to the author’s view on how to approach t#le design of =-

self-directed study course in compurer proiﬁyﬁming.

‘The‘"Systems Approach Model" uses a complete structured. -

v
S

algorithmic type of approach to the design of a curriculum.--The’

model involves attacking the problem of design and

16

a’ [
o~ [
P e B

j

implementation by foll wing a set\bf sequential steps:

1.

“. that 4 student must master in order to achieve the above

Identifyingr2%E“Tﬁs’iuctional goal.

In this step thel imstructor must determine éxactly what the

PRy

‘student should be able to do at the ce;%Ietion of the

instruction period.. B : 7 -
\ . B . ‘1};

anducting an 1nstructiona1 analysis. " “

l

VHere the instﬁpctor must identify the subordinate skills

a

goal. In other words the concebt of a goal must be

‘ structurally brokeg down into easier managable parte of

modules.

Identifying eutry behaviors and characteristics.. -

In this step the prerequisite skills of the student must be

identified. This process of identification should include

~
R

_the consideration of the general maturation background and

? . .
educational background of the students,

A.z\Writiug Eerformance‘objectives.

/—

Based op’the instructional analysis and the{assessmenf\of

— .
entry behaviors and characteristics, the pertormance

.

expectations, that 1s, what it is the students will be a

to do at the completion of each separate module shou}d bel

-

determined.

—

‘Developing criterion~-referenced tests.

Here, assessment instruments must be developed to measure .. .

how well/the students have achieved what was deéscribed. in

the objectives. : . N

. ~ /

6.

7

8.

9.

5

Developing an ipstructional strategy.

Based on the five preceding steps,'a,stfétegyrmust be -

deveioped in whi%% ‘the instructional model will be used to -

reach the ultimate objecﬁivé., This stragquqshould include
preinstructional activities, presentation of inforﬁation,
practice and feedback, testing, and follow-through

activities.

Developing and selecting instruction.

- In this step the instructional strategy is used to p;oduce

the instructional module which will include all the
necessary instructional materials.

Designing and constricting the formative evaluation.

‘A series of evaluations should be conduéted on the completed

module to determine how effectively the module works and to

==
«

identify areas where improvement is néeded.

Revising .instruction.

In this final step, data are summarized from various

P ‘

evaluations, the weak areas\afe re—-examined, and the

instruction strategy is revised in qrder to make it a more

- effective tool (Dick and Carey, 1978);

18

g

C. The Design of the Self-Directed Pfqgrammigg_Course

The introductory programming course atJSimon Fraser
University (CMPT 103) is a "semi-self-directed" study coufse.
Although a certain flexibility in work scheduling is‘possible,
it is not a self~paced course. There are specific due dates for
assignments, examinations and the term project.

-~

The teaching format of the CMPT 103 course is that of one
. - ¢
lecture, and one tutorial session per week. There are also

twenty-seven hours of "open lab" per week where tutorial

assistants are available to answer student questions on a

personal basis. *

The thirteen week course i;cludés 10 assignments, a final
éroject, two midterm examinations and one final examination.

The sélf-directed’study aspect of the CMPT 103 course has
shown itself to be successful as a teaching stfategy for th;s

- . - ki

type of course but the time frame in which the course must be
completed, does not allow for selfépacing.' As a result, it is
' necessary to have professional assistanée available throughout
the course in order to helpvgil students meet asgignment
deadlines. It is the author’s opinion that a similar course
with audio-taped lectures and a'self-pacing format would
alleviate the need for much of the staffing currently allocated
to this course. -

The survey of the literature showed that self-directed

study and methods of study that included the use of audio-taped

\

19

instruction can be implemented and used suceséfully. In the
area of computer programming, the combination of audio and
- printed material seemed the best choice. Although at first -
video—tapenlectures seemed attractive, itﬂéoon became appafent
that this method might require students to try to concentrate on
two visual displayé simultaneously - the video-tape monitor and
the computer terminal. For this reason it seemed best to omit
the use of a video component for instructional‘purposes and to
concentrate on the audio material.
-Thebshortage of technically trained personnel to:teach
computer programming in SCh?OlS, colleges and universities: B
ﬁﬁ; . (Gopaulsingh, 1977) points to the necessity for a self-directed
study course. A self-directed study courée with lectures
prepared and taped by a professional instructor‘of computer
science can lend the;expertise necessary to teach computer
programming without the teacher in charge.of the course being
requiréz to have a high level of technical training.

A self-directed study course might aiso make it possible
for individuals who had been "playing around with" home
computers to channel their interests into a more directed and
disciplined use of the machines.

Familiarity with compﬁtérs in the homé situation couid then
be augmented BYy a conscious pursuit of an understanding of what
was previously only an intuitive or a trial-and-error procedure.

A self—direcfed study course allo&s students to proceed at

their own pace and at their own competency level. Students and

a

%
instructors alike were f5und to be more métivated‘py this type
of,Iéa;ning as it allowé greater flexibility in their schedules:
(Simmons, Ward and Thompson, i974); also the teachiﬁg of the

cougggiis more natural as the instructor is not in the contrived

T -

position of Eaving‘to “fil1l in’ a full teaching period. The
particular computing language to be taught does not éffect.the
way in which the coursé”is designed. - Adaptation ofﬂthevcourse
to the various other computer languages may be sémewhat tiﬁe

consuming but is essentially a straight-forward exercise.

I. Choice 2£ Method

An experiment at the University of Delaware (Hartman and
Caroly, 1971) showed the importance of stating‘behavioral
objectives and providing plenty of pertinent examples and

exercises to reinforce the learning process. All three concepts

i

were incorporated into the combination of audio tapeé and study

Ay
guide .

. The use of tutorial sessiéns fg recommended as this lends a
persqnal aspect to the course (Keller, 1968). In keeping with
Relley’s philosophy, the audio tapes were degigned as vehicles
%br motivation rather than merely as sources of information.

Audio methods were chosen over audio—visuél techniques; in
many of the presentatiéns the studeng would be idteracting with
a computer terminal and the introduction of a second visual aid
would onl& distract the student frém the cloée observation of

-

the computer terminal.

21

K

Modern methods of “top-down structured" programming are

used throughout the course. Although PASCAL is used as the

' programming dedium,'problem solving énd algnrithm desigé a:e:the

main emphases of the course.

II, ﬁevelopmgnt of the Course Criteria

As computing courses attract more and more students, the
divérsity of backgrounds of those studeﬁts increases. With this
diversity and with the range of infofmationfin'computing science
in mind, every possible help should bé made available to the
students and their instructors.

rAithough the basic principles of programming can be taught,
the only way to learn programming is by doing,'and dOingAiﬁplies

a considerabie aﬁount of self-directed study. |

The ""Systems A%proach Model" (Dick and Cérey, 1978) was
used asithe mddel for the design of the course iﬁstruction.

This instruction is implementéa on the basis>of the followi

criteria: ”

1. At the end of the course the student should be able to
define a programming problem and produce a suitable computer
programmed solution. This program should use the structured
programming techniques taught in the course. The student
should also havé}an‘understanding of structured data types,
control statements and précedures.

2. There is no specific prerequisite for this course except

that the student should\have a geﬁefélrunderstanding of

22

ki

7T 7
simple logic. However this'skill_can be also acquired’

within the contextxof the course. -
The maturation backgrOund and educational,background
expected of the students is senior secondary school standing

or better. I S

A module of the course }nvolves'reading’a chapter of the

I

study guide”rreading the‘corresponding/chapter(s) of the

textbook,,listening to the corresponding audio tape, and

K] . ‘_éh
completing the required asSignment(s). Performance

.-

objectives are directly related to the masterg of the‘topics‘

presented in the textbook.‘ . -

- For example, after reading Chapter II of the study
guide and ChapteriZ of the textbook, listening to audio tape
2, and completing Assignment 2, the student is expected to

understand (at a simplified level) the overall organization

of a PASCAL program.

The main measure of the student’s performance is the manner

in which the assignment in each model is completed.

However, an instructor may supplement this with quizzes and
' A ’ -
formal examinations if necessary. : -

The design of the course is based on recent trends in the

theory of programming. The course presents a disciplined

@

approach to programming by concentrating on structured

- programming and software design. The students are introduced to

these programmming methodologies right from the start and thus

are not likely to develop bad programming habits.

23

iy -

Structured»Prqgfammigg,’

The CMPT 103ﬁintrgduétory programmingfcnurse at Simon B
Fraser University uses a techniqae of programming caliedA“ S
structurgd programming. Most of the former techniqugs‘of
progrémming are considereditd bek"unstructﬁredv. In
"unstructured" programming modular design is almost non-existent
and the sequence of program instructions a%pears to be in random
order. .Strucfufed programming involves the ase7of modular
design and ; fixed sequence qf program ipétructioﬁé usually
referred to as a "top—down" appro;ch. Because of these
teehniques, structured programming is considered to be easier to
wfite, easiér to understand, easier to fix, and easier to ch#nge
than an unstructured program. An unstructured program is a
program whefe the instruction sequence is devoid af.plaﬁn&d
organization. A structured program can be éomsared toithe
organization of a book or a thesis. The overall organization 1is
broken into several component toplcs and each of these is
subdivided further as needed.

The basic process of structured programming is the breaking
down of a given problem into a series of simpler problems. Each
siméler problem is in turn broken down until it becomes a simple

¢
mangageable unit, i.e. no further reduction is possible or no
further redcuction is necessary. These small units are then
implemented as programmed procedures which have simple, easily

manageable structures, rather than having to manipulate the

24

larger complex units ffom‘which“they‘are derived. The rzsui=

k3

such structuring 1s'q3ual1y a _clear, concise and workable

-

program.

"This process represents the most important concept in
strdctured programming, i.e., that 8 problem can be
solved by repeatedly breaking it down into subprobleas,
until every subproblem can be solved. If you plan this
decomposition before 'you try to write it out in the
narrow, precise, and time-consuming syntax of the target
language (i.e., the programming language you use to

solve the .problem), you will have a better chance of
getting your program right the first time." (Williams,
1981) ‘

'

III1. Software Design

~Softéa{i/§es;gn deals with the design of individual
computer prﬁgrams and their implementation and interaction in a

’

large svstem, The design of good programs and ultimately good
syetems hasg been foremost in the minds of systems designers
since the first major software failures of the 1960s.

This first scoftware crisis accentéé the fact that the
craftmanship approach to programming was not good enough
for the development of large-scale systems. It also
became appsrent that an engineering discipline had to be
applied o propramming to solve problems such as missed
scheduies, sverruns, unveliability, and low usability.
Az a4 result, a seavch was launched for good definitions -
of the underlyiag principles of computing as well as for
precise descripricons of the process of software
development ,” {(Wassersan et al,, 1978},

A 4
e

Tﬁe development cycle of software can be briefly ﬁescrig?d as
having fi?éugﬁases: ‘
1. Analysis. Here, a reviev of system specification takes
place and the functional performance requirements are laid

out. 'This phase governs the deéigﬁ and developament of the

25

entire project.

2. Design. Here the performancé requi:engnts are translated

3.

5.

student the opportunity to work with large software systems, the

into functional flowcharts and the project is broken down
into easily manageable modules. ‘A,draftrof the computer
program development sﬁecification is also prepared.

Coding and checkout. Here, allrprogram modules are coded

and tested; this phase includes tests tc make sure that the
interaction between each module s accofdingbto
sgefifiea§iﬁﬂﬁ. ES 3 éncumentatioﬁ must aiso be complete by
the end of this ghase.

Test and integration. The software Is integrated with the -

hardware (the caiguter‘thni the programs will be implemented
on} and is formally tested against the requirements set out
in the performance specifications. The gystem 1s now ready

for use by the customer,

Operation and support. Even when the above four phases are
meticulously carried out, there will still be some errors

present in the finished system. During the life cycle of

~the system these errcrs must be corrected as they are found

and modifications to the original design may need to be
carried out (Wasgerman et, al., 1978). .

Even though this introductory course does not afford the

9

the most ﬁart to the more simplistic programs students are

required to produce.

26

i

Analysis of the problem, the design of a solution

algorithm, coding, and testing are an integral part of all -
) . A , ’

computer programs. In terms of :hgrcggggg ggggxihedminwthijhj”,h,fif,wg,h
theslis, for every proéram the student is rezhire& to:
a. analfzé the problem and choose the variables that will
be uséd in the solution algoritim
b. design the algorithm - in_th se, draw a flowchart as
described in the study guide.
c. write the PASCAL code to rgpresent the flowcﬁart
solution. The code must be documented as it is written.
d. type ﬁhe code into the computer and "run” it to make
sure the program works. Test the program with differeﬁt
sets of data to make sute'tha; it will work for many
8

cases. » S N
e. operation and support can only be discussed throughout
the course as student programs are not used in an

operations environment,

é

IV.- Choice of a Computer Language and a Computer System

PASCAL was chosen as the ideal language for this course

because it is a coherent, powerful and well-defined language

-

that haé gained wide acceptance (Tiberghien, 1981).

"The programming language PASCAL was originally
developed for teaching programming with emphasis on the
~ techniques known as structured programming. More
recently, as programmers in business and industry have
begun to discover the limitations of traditional
programming languages such as COBOL and FORTRAN, '
interest in putting PASCAL to work in the world outside

27 :)

\
A

o

the clagsroom has increased. gAn important boost for o
PASCAL has come from its widespread implementation on
microcomputers., PASCAL is now established as one of the
ma jor programming languages that every'prqgranngr should
know" (Graham, 1983).

PASCAL is also a wall designed language that éncdurages the 7

programmer to write clegrly so as to make the program

"self-documenting” with only a modest need for additional

written documentation.

r

The PASCAL language is one of the few languages which hélps_

the programmer,dﬁ.program design. It aids the programmer in

-

specifying the process and the data clearly and naturally.

- The APPLE II microcomputer system was chosen as the
computer fﬁr fhe course because its proven ability to support
the PASCAL language, the abundance of supplémentary materials
avajilable for students, the cost of this system compared to
othef systems on the market and.its'widespread use throughout

) ~
North America,

§

Xi Choice of the Textbook -

]

Several textbooks on PASCAL were examined including the
textbqok used for the CMPT 103 course at‘Simon Fraser

University. This book was not chosen as it was directed

primarily toward the scientifically oriented student and assumed

some previous programming experience. Other textpgoksrwgtgf
rejected for similar reasons, i.e. they were aimed at a very

specialized segment of the student population.

28

Introduction to PASCAL Inclﬁding UCSD PASCAL by Rodnay Zaks
was chosen as it was the specific in;ention éf the author that
:he book be designed to be fead and undgrstodd by everyone,
whether novice or experienced prpgrammer; who wants to learn héw
to program in PASCAL. |

" The arrangem;nts of the chapters take the student from
simple conéepts to . complex ones in a steady progression. The
early chapters present the studgnt with those featufes of thg
languﬁge necessary to underst;nd the concepts of cépputer ,
programﬁing.‘ The later chapters build upon that which—has»‘i”'r
already been lé;rned thus allowing the student toyde;ign and

write more complex programs.

VI. Development of the Audie Tapes

The audipo tapes were“originally deGeloped on a reel-to-re

recorder to eﬁs&re-afhigh quality'recording and to allow for k
refined‘edfting facilifies. The final versions of‘éagﬁ tapé_
were later transferred té caﬁéettértapeg wﬁ?ﬁh argrmucﬁ easiér
for students to use on small pdrtablelrecorders; “
The course itself involves three maip tasks:
l. mastering the computer system - in this case’ﬁhe‘APPLE'fi, jﬁ;
microcomputér | | ;)
2. imastering the principles involvéd'in the formulation of
solution a;gorithms B f' | \ -
3. wtﬁe transt;mationvbf thgsé;algqritﬁms into the»aét;al Q

PASCAL coded instructions which can be understood and

) 29

e

S R R

executed by the computer. &
‘The above tasks were broken up into sub-tasks or‘EGpics,wiéh
each tape designed as;an introductary‘léet&:e on a specific

topic. —

For example, the first‘audio;tape is a/gtéb55§49tep series

of instructions onvhowhzégi?pe a PASCAL program into the

R NN h _
computer and how to execute it. Instructioms range from how to

switch on the machine and insert the diskettes to the simple‘user

of the operating system are covered.
Other tapes, dealing with algorithms or programming

exampies, refer to specific pages and figures in the textﬁook

Ed

and/or the study guide to reinfofce the cdncepts being e

éiéggfsed, - Where actual examples of computer programs from the

study guide are discussed, the tape addresses t'f% ntricacies of

the code chosen to implement the solution algorithm. These
subtlg but importapt points could easily be missed by students
when they are reviewing writteﬁ examples without‘theiaid of
supplementaryﬂinstructioﬁ. |

The self-paced aspect of the audio-tape lectures allows the

.;‘ LT
.~ 1lnstructor to cover a greater amount of méﬁerial in much more

detail than can normally be covered in a conventional lecturer
Students are more likely to question material on the tape than

face the potentially embarrassing situation of approaching the

instructor with their own incorrectly transcribed lecture notes.

Such questioning increases the rate at which the teaching

materiéls can be improved (Lower, 1981).

P 30

VII, Development of the’Study Guide

Thé study gu{de is deé;gne&1t6 Gé the focéllpoint for;the
, audié tapes and the‘textbook. Tﬁe théme of well-structured and‘
reliable c;mputér prog;améjis.consiétently reihfbrcedrin each
chapter. It is simpIy not’enouéh to teachrthe syntax 6f a
programming language to be%ieningistudents witﬁodt formglized
instruction on the formation of algorithms énd‘ﬁhe proper use of
syntax, Withouf such careful, detai%gd fnétruction too many bad
habité ére for;éd. ; |
The development of the stuéy guide“follo&s phé pfinciple
that learning is best accomplished when new information is based
‘on préviously learned material. The student makes uée'of
reéen;ly acquired knowledge to accomplish éhe task at hand

(Winne and Marx, 1977). With this in mind, each chapter of the

study guide.is structured to include five basic sections:

- 1. a reading assignment pertaining to specific sections of the “f
study guide and the textbook ‘ ‘ | ;:
2., suggested exercises from the textbook’to provide a
self-check mechanism to makes sure the student understands
S the materigl. Sométimesnthe exercises will also point-out:;ﬁ

-
alternate coding methods and important language limitations.

3. a special "Reflect Section" which contains a few questions
to help students test their knowle&gé of the material ffomv'j_
several different perspectives which may'not have been

apparent to them from the readings and the exercises’

31 -

~

4., assignments which require the student to work sﬁecifically

with the new CEﬁCepts presented in the current readings and; -

‘.

taped leéfures
5. a section to discuss special techniques and styles related

+

to the current work being covered.

Applyingfzhe Dick and Carey Criteria

-

TﬁZiDick and Carey criteria mentioned aﬁove wére applied to
the deveiéﬁhent of the self-directed s;udy course reported on |
he:e. The discussion below notes specificallyrhow each of the
Dick and Caréy‘criteria vere implemented. - . -
1. Identifying the instructional goal.

N ‘ i | ‘

The instructienal goal for this course is one that is common

g
3

to all intfoductory computer programming cod}ses: "At the
end of the cdurse, the student will be able to6 define é

programming problem and produce a suitable programmed

solution using structured programming techniques."

- 2. Conducting an instructional analysis. o

:Zn“informal survey was conducted at various learning

,institﬁtions‘from elementary scﬁool level to'university

1evé1 to determine what prerequisife skills were_conditipnal.

to begin téaching computer programmiﬁg'cqncepfs. It“was"

found that teachers were able to introduce this discipline,' y
at all grade leveis where the congept,éf counting had

already been maétered. 'Aslthis course is inténded fo: the

senior secondary- school and first year university levels,

32

o)

further analysys was unneccessary.

Identifying entry behaviors and characteristics.

As this course is designed for senior secondary school and

&

first year university students, these students would be
expected to be highly motivéted, good readers, and good

problem solvers. »

Writing performance objectives.

Performance obiectives were ;tipulatedAfor e;ch—module of

the course. In terms of the course materials, one chapter

of ghe study guide represents a single modplgf The study

guide consists of eight chapters.

a. CHAPTER 1:
Given a simple proéramming problem, the student cah draw
a flowchart solution and describe the five basic
components of the computér‘that are réquired to
implement;he solution.

b. CHAPTER 2:
Given.a computer prqgrém in PASCAL, the student can type
to progrgé into the APPLE-PASCAL iystem and use the
"editor" to alter the text of the program.

c. CHAPTER 3: ’ -
Given a problem definition, the student can draw a
flowchart solution and implement this solution on the
APPLE~-PASCAL system using basic’PASCAL data tybes.

d. CHAPTER 4:

Given a problem definition requiring knowledge of

]

‘advanced PASCAL programming concepts such as looping,

.the "if-then-else" construct, and the '"case" statement,

the student can flowchart and program an efficient
solution on the computer.

CHAPTER 5:

Given a probiem requiring that data be sorted into
either ascending or descending oréer, the studént cgh
flowchart and implement a solution on the computér.

CHAPTER 6:

-

- Given a problem definition requiring the use of modules

as a basis for the solution, the student can flowchart
and implement a modular solution on the computer using

4

"structured programming'" techniques.

.
-~

CHAPTER 7: N

Given a problem definition requiring the use of multiple
stofage iocations, the student can flowchart and
implement a solution on the computer using afrays as the
ma jor data structurgt_~

c’HLAPTER 8:

Given a problem definition r?quiring the keeping of

. ” by .
records, the student can flowchart and implement a

solution on the computer using the "Record" data type.

Developing criterion-referenced tests.

As the nature of this course requires that the student hand

in completed programming assignments on a regular basis, the

correctness and style of the student’s program is a good and

34 N

A

sufficient test of how the student is progressing. It
should be noted that the nature of computer programming is
such that the student is not able tQ hand in an assignment

without first gaining a reasonable understanding of the work

being done.

1

Developing an instructional strategy.

‘The instr;Z;I;;;T\ngftegy is based on research in)&he area

of audio and writtep instruction as describe&{above in
"Survey of the Literature". fhe course developed in this
thesis centres ardund.the study guide through which the use
of tﬁe textbook and the audio tépeg is coordinated. The
study guide was chosen. as tﬁe foéal{point of instruct%on'as

it can be employed to tailo:.existing materials to specific

needs and provide the learning effectiveness and efficiency

‘that may be lacking in existing sources (Langdon, 1978).

- Developing and selecting instruction.

The instructicnal strategy of-the éourse dictates the use of
a textbook, the study guide a;d audio tapes. However,
depending on the ultimate goal that an instructor may have
in mind for the stgdents, this instructional stratéky is.
sﬁfficiently flexible to allow the course to be supplemented
by formal or Informal lectures in order to expand on the
concepts presented in each chapter of the textbook‘and the
study guide.

Designing and constructing the formative evaluation.

-,

The course will be taught teo different groups with varied

35

educational backgrounds and goals in order to identify th
strengths and weaknesses of the course as they pertain to

each group. %

Revising instruction.

The formative evaluation from test groups will be used‘td

h .
update and improve and if necessary, ‘to revise the

instructional strategy. In this way this type of course can

serve as a useful design tool now and in the future.;

9

-~
1]

36

s

D. Introductign to the Self-Directed Study Course

The progr:nning’aﬁgtct of this course has been designed'to
incorporate the new ;éyru;chzs and exercises related to the
concept of software design found in the‘literlture.) The
pedagogy evolved.f;om the self«dirtﬁﬁad study<approaches th;t
were surveyed in the Iiteraturé, as well as {g@ author’ s own |
experience as a teache? of computer programeing. The model
arrived at throﬁgh this studvy is one which makes use of
self-directed study codplemeﬁted by laboratory periods in wﬁich
the students can getiindividual help with their Problems.

This PASCAL sélf-directed study course .in PASCAL {s based
on the study guide (see Appendix C) plus the "Introduction to
. PASCAL Including UCSD PASCAL" textbock by Rodnay Zaks (2d. ed.

Svbex 1981).

1. Study Guide

The study guide itself is divided into eight'chapters and
two appendices and deals with chapters 1 to 11, chaﬁtcr !5, and
the appendices of the textbook. Chapters 22,'13 and 14 of the
textbook are not covered in this course as these chapters deal

with advanced topics. In the opinion of the author (of ihis

thesi{s), these topics are best left for a second course.

37

-

 Assignments and Project

This course is designéd;to be taught in a thirteen week
" semester. As it is a self-directed study course, individual
1nstruqtq§srmay spéed up or shorten this time frame to suit
individual needs. There are ten assignﬁents in the course.
Each assignment covers a spéc1f1C'concept of prégramming in tH;

©

PASCAL language. It is suggested that one assignment be.

icompleted each week with three weeks given for the completion of

a final project.

1I. Lectures

There are nine audjo-tape .lectures covering selected/
chapters of the study guide and the.textbook.' The purpose of
thege tapes is o expaﬁd upon ;hé cohcepfual material prgsgnted,
in the study guide and thg iex:ﬁoo? and ta!broaden the scope of
thé &zuéeut's uﬁéﬂrslaﬂdiﬁg of the course materfal.

‘ .

/

- ?eathina Assistants

it is suggested that askigﬂuﬁnts be marked by teaching
assistants who can alsc be avaiiable Lo answer guestions and
help solve programming problems in an apen laboratory type

environment. This arrangement has the advantage of giving the

student 3 variety of approaches toc solving problems.

-~

38

5 3

IV, Equipment and Materials - N

For each student in the course, the foilowing materials are
required: ,

1. -oneV&SK Apple computer with a PASCAL language card

- ﬁingtalled.

4

2. two disk drives
3;;.3,TV set 6r vi@eb'ﬁqnitor connectgdqﬁo the Apple conputer;
4,- The following diskettes:
V&i one "APPLEL:" diskette (to start-up fhe s}stea)
b. one "A?PLﬁzz" disketrte (to use the PASCAL conpiler) - - ; ‘
‘E. one’ "APPLE3:" diskette (:his'diskctte pdnthins»special 7
prograﬁs, i.e., FORMATTER - to format a brand new disk.)
5. two blank diskettes (moré as needed) |
6.' one cassette tape 3559{&5??

7. five Caésetté—tapes containing a total of nine lectures

8. one textbook, "An Introduction. to PASCAL. Including UCSD

PASCAL" by Rodney Zaks (2d. ed. Sybex 1981)
9. oné Applé PASCAL Language Reference Manual
10. one Apple PASCAL Opefating;System Reference Manual .
The diékette.marked “APPLEi:“ is needeé to stars the systep.h
The "AP?LE2:" ﬁisketfe coﬁtaina the necessary system information

3

tec allow the co-puter“té processes PASCAL programs..

39

P

Assessment gf.fhe "New" Course

=
*

“The course designeg¢ as a pilbt projéctrfofrfﬁiswéﬁésigfwigrr

tested by two separaté groups ogrstpdents; Wﬁiéhréféaé ofgi

i

students came from a different educational background and had
different expectations of a computer course in terms of their
own petsonai needs in the area of computing sclence and computer

programming.

I. Assessment by Computer Science Undergraduate Students
The first group to try the "new" cbursé were ggde;gggdua;g
students in the regulaf computipg science undergraduate program
at Simon Fraser Univ;rsity. An‘éssessmént was made of the new
, study guide, taped lgctures and theAﬁextbookvin comparison with
the existing study guide, formal }ettures an& ;e#tboog of the
CMPT 103‘coﬁrse at Simon Fraser Uﬁi&ersity. Three siudénts from
.hthis,CMPTMIOB‘course volunfgered‘to do approximately three weeks
work usingrthe'"newv cogfsefand at the énd of that[eourse to
completé a qﬁestionnai{p;"ihe‘wo¥k from chapter IV of the sgud}
guide which included assignments 4, 5, and 6. was chosen for the
assessment as these students Hﬁre about to uédertake similar

work in the CMPT 103 course. The students could then compare

both types of instruction without losing any time in their own

course. ~The queéstionnaire was designed to find out whether or

‘not the course presentation was helpful under self-directed

study conditions. , o o

&0

Results of Assessment by Computing Science Undergraduate

Students ©

L]

The _answers to the quéstionnaire indicated that the study
guide, tapes and textbook were judged to be a considerable
iﬁbrovement over their CMPT 103 counterparts.

There were several inconsistencies in the original versions
of the audio gapes and the study guide. On some of the tapes
the speed of instruction was too fast. In the study guide some
of the material was out of sequence and some figures were
incorrectly labelled. All these errors were corrected.

On the positive side the following points were made %y the
students trying the new course: . o

a. The instructions on the tape were clear and to the
point.
b. The concepts were well presented with plenty qf examples
to provide for clarity and understanding. G i
c. The tapes éan be used by studénis cb reinforce&learniﬁg
at home, in class, while waiting f&r.a bus, etc. This

means that the instructor is always at hand.

" d. "Intrdduction to the APPLE-PASCAL System" was the most

important chapter in the study guide. The introduction
" brings into clear focus the APPLE-PASCAL fystem qnd its

_operations. It saves a IUt’Uf’thE'Htﬁmbifng“cvér‘thff'*”*”*"“”*“
PASCAL system that students it the regular course — Tt

encounter at the beginning of the semester.

41

e. The "Reflect Section" in the study guide is an ' C
excellent review aid.

" A summary of the responses to the questionnaire is given in

TABLE ONE on the following page. The following five-point scale
, . € : P

was used in soliciting student responses:

"Not -Some ’ | . ‘ Very
Scale: Helpful Help ~ Adequate Helpful Helpful , -
(1) (2) (3) (4> (5)
42

Z - - 1 - mwnmh. 3 -
- - - Y7 1 _ 8931n1237 p
Z - 1 - - ©,,3PINng Apnig MIN,, . (2
- - - 1 2 ap1fiy ApNIs £01 LdWO (s
1 - . 1 . 1 BUOTjrI]suowagy
.mﬁQCﬂEuwg
3yl asn 03 30: duiuiea] uy Fuimoliol
243 Jo ysea jo ssauynjdiay ay3 3jeaipur ¢/
1" 1 - 1 - ;s3de3 381N0OD MAU, 3yl IIEBI NOA Op MO 9
. & - . T .
- - - 1 4 £89BT €01 IdKD Y3l 21e1 no& Op AOH:- G
sade] puer 8qu|
- € .- - - H00Q3iXa3 3BINCI , M3y, 3yl IJeL NOA Op MOH ‘4
- - - [4 1 ¢ H004q1%x23 €01 LdWD 23Ul wum».:om op MOH ¢
. . . é m nxoomUNOH
, ,dp1Inn Apnig
Z - 1 - -) PSINOD ,,M3u, 24l 3381 NOL Op MOY
- ;3p1inn Apnig
- - = 1 Z 351N09 £0l LdWD 243 331 nod op MmOy 1

4

(83uapnis Jo Iaqunu ucmmmuamv/aoﬁmﬂ siaquny)

Inydi2g njdiem a3embepy dyem [njdiem
© Kxap ; o WOG J0N

apIng avsuw

(L -1 nquMuusdv SINFANLS

HLVNAVEEAAND - INO T14VL

43

s,
¥

+

8.

9.

b

. The following questions require only short answers.

Tf you would like to add any'QE?ther'comnents, please

use. the'last page andfsayfas~much'as'you ltbe . u~”j#7 o

Which part of the "new" course study guide did you find most ”

].0®
=i

useful7
STUDENT 1: THE TAPES'
)
THE FLOWCHART EXAMPLES
STUDENT 2: THE TASKS WERE EXPLAINED WELL
THE SALIENT POINTS OF THE ASSIGNMENT WERE
DISCUSSED .
THE CONTENTS AND EXPECTATIONS FOR THE ASSIGNMENT
WERE GIVEN
STUDENT 3: THE EXAMf\% OF THE ‘SORT’ AND HOW IT WORKED

Which part of the 'new'" course study guide could have Been

made’ more usoful'— and how?

STUDENT 1: CROSS REFE#ENCE TO OTHER CHAPTEkS ON:RELATED
CONCEPTS COULD BE PRINTED OUT

STUDENT 2: EVERY FOURTH ASSIGNMENT SHOULD BE LARGER THAN

THE OTHERS IN ORDER-TO ?NCORPORATE ALL THE

SMALLER CONCEPTS-LEARNED IN THE fREVIOUS PARTS

STUDENT 3: THE STATEMENT OF THE ASSIGNMENTS COULD HAVE BEEN

MORE EXACT

od

o =

10. What comments db you have about:-
. a. the CMPT 103 text book?
smmmnl;‘ﬂmmmm{m&mwmi-
NOT'EASYVTb READ
o VDISCUSSIbN OF FILES WERE POOR
stDENT 2:"INAPPROPRIATEVFOR TEACHING’INTRODUCTORY |
‘) ‘VPASCAL, o -
STUDENT 3: THE TEXTBOOK WAS GOOD EXCEPT FOR v,ﬁ
* PROCEDURES’ AND' “FUNCTIONS” |
b. the "new" courseriext book?

STUDENT 1t EASIER READING - APPEARS TO BE STRAIGHT

FORWARD

FLOWCHARTS AND PASCAL SYNTAX CHARTS ARE‘

INCLUDED AS VISUAL AIDS
STUDENT 2: GOOD IMPROVEMENT OVER THE EXISTING TEXT
AT TIMES I THOUGHT IT MOVED A BIT QUICKLY

STUDENT 3: VERY GOOD, TAKES YOU THROUGH EXAMPLES

P

%
EASIER TO READ

11. What comments do you have about the CMPT 103 labs?
STUDENT 1: LAB T.A.s WERE NOT FAMILIAR WITH PASCAL
STUDENT 2: ACCESS TO T.A.s WKS DIFFICULT

STUDENT 3: NOT ENOUGH REFERENCE MATERIAL FOR THE APPLES

£y

45

N
oy

12. What comments do you have about the "new" course tapes? T
STUDENT 1: PROVibEs REVIEW OF CONCEPTS, REINFORCEyENTS AND
,AUﬁiTORY LEARNING B
STUDENT 2: I HAVE FQUND THE TAPES EXTREMELY USEFUL. THEY
| REALLY WOULD BE INVALGABLE IN THE LAES 4
 STUDENT 3:"£ THOUGHT IN GﬁﬁﬁRAL THE TAPES WERE Gobp BUT A
LITTLE T00 SHORT £ THE ONE WHERE A’ SORT’ WAS

WORKED THROUGH WAS VERY GOOD

" 13. Would you please compare thé relative uséfulness ' ‘ -

(helpfulness) of the CMPT iOBﬁlagé and the "new" course

EY
H
®

tapes{

'STUDENT 1: -AT PRESENT THE T.A. LACK OF FAMILIARITY WITH
PASCAL SYNTAX AND sisTEMé OPERATIONS PROVIDE
VERY LITTLE BENEFIT
THE TAPE OBVIOUSLY PROVIDES A SOUND WAY OF

~ IMPARTING KNOWLEDGE AND DIRECT ACCESS. TO
INFORMATION |

WITH T.A.s YOU HAVE TO LINE UP AND YOUR WAIT MAY

*'BE FRUITLESS; WITH TAPES YOU REPLAY UNTIL YOUR -
UﬁDERSTANDiNG IS CLEAR
STUDENT 2: THE NEW. COURSE TAPES ARE MORE USEFUL’THAN THE
PRE%ENT»LAB SETUP # g
STUDENT 3: THE LABS WERE PRETTY MUCH USELESS ~ I FOUND THE.
COMBINATION OF THE PRJ;NTED MATERTAL AND THE

TAPES VERY -GOOD,

46

B 4

14. Is there a question I should have asked you about these two

15.

16.

._STUDENT 3: THE TEXTBOOK, THE.TAPES, THE APPLE

courses?

STUDENT 1: HOW HELPFUL WAS THE INSTRUCTOR CURRENTLY

TEACHING THE COURSE COMPARED TO THE TAPE?
ANSWER: THE TAPED INS%RUCTIONS COME FROM THE
"VOICE/OF EXPERIENCE AND EXPERTISE IN THE SUBJECT-
MATTER
STUDENT 2: SHOULD THE MARKING EMPﬁASIS REMAIN THE SAME?
STﬁDENT 3: I THINK THAT IN THE COURSE I TOOK TOO MANY NEW
"CONCEPTS WERE INTRODUEED'TOO QUICKLY |
If there were two things ;n the "new" course you would not
want to)change, what woufﬁrthéy be?
STUDENT 1: 1. THE TAPES ~
2. ’THE FORMAT OF THE STUDY GUIDE

STUDENT 2: TAPES

STUDY/TEACHING GUIDE

;

If there were two things in the '"new" course you would want

»

MICROCOMPUTERS .

to changé, what would they be?
STUDENT 1: TE?CH 'PROCEDURES' EARLIER IN THE COURSE
| LESS ASSIGNMENTS
STUDENT 2: LECTURE SHOULD BE TREATED MORE LIKE A TUTORIAL
STUDENT 3: MORE INFORMATION ON HOW TO USE ‘THE APPLES

HAVE A GOOD INTRO TO THE APPLES

47

If .you have any further comments, or want to enlarge on any

of the previous onés, please use the back of this page.

STUDENT 3: AS SELF STUDY,'MORE REFERENCE MATERIAL IS NEEDED

»

II. Assessment by Graduate Students in the Faculty of Education

-

- The second group of students to try the "new" course were

. graduateiétudents in the Faculty of Education at Simon Fraser

Univergity. Thel"new"vcourse was introduced to these students
as part'gfqa,basic,ipt;oductory course to generai computer
science with emphasis dn programming the APPLE II microcomputer
using PA as the programming language. 'Although'the "new"
courgé is dpsigned as a self-directed study course, it was
decided to supplement the first official‘offering of it with
lectures in order to offset the typographical errors and
organizational errpré that are usually discovered in the first.
offering of many courses.

It should be p&inted out that thislwag thekfirst time this
type of coufse had ever Been offered to graduate education -
students at Simon Fraéer University and the exﬁecta:10ns of
these students turned out to be quite different from the
expectations of the computing science underéraduate students.
Although CMPT 601 (the graduate s;udent Cohrse) was supposed to
consist mainly (appgoximateiy 70%) of computer programming with
some discussion on the effects of computers im soctety, the’

students initially perceived the course as offering equal -

amounts on both topics. The course was intended to be offered

48

. §) N .
to novices only but the actual enrolment consisted of seven
) \

novices, four students with some previous programming

@

experience, and three student§ who had glfeady completed the
CMPT 103 course at Simon Fraser University. As a result, this

instructor decided to break the course up into three separate

groups, Group 1, Group 2, and Group 3 respectively, according to

the above separations. For the4progfhmmipgtrequirements of the
course théwfirst two groups worked on thé material of the course
described in this thesis. The novices (Group 1) worked only on
the course material deécribed in this thesis. The mére advanced
group of four students (Group 2) started their work at :hap;er
I1T of the study guide and completed the course with some
advanced work., The "final project"” was not required in order to
leave room for the "computers‘i? society” aspect of the course.
The students who had completed CMPT 103 (Croup 3) were taught
advanced programming techniqﬁes and did not participate in the

materials described in this thesis,

Breaking the class up into three different groups had the

effect of making each group a separate course each with its own

.

instruction periods. ﬁowever,-siﬁce the allocated imgtruction
time was in reality only enough for a singlé'course, each group
"had to make do wiéh only a third-of the instruction that had
been originally planned for them. The result of ;Hfga;trétegy
‘was that thehsoéial implications aspect éf the course was
largely ignored in favogr‘of computer programming which ndw

&

dominated‘up te ninty-five per cent of the instruction time,

49

N

much to the dissatisfaction of the students.

Results of Assessment by Craduate Students in Education

”’\é _The-questionnaite was given to»the Croubs 1 apd“Z described
above. Ten out of a total of eleven students in the both groups

responded. (Group 3 did not use the course materials developed .
2z o : B ’

+

in this thesis.) The answers to this questionnaire 1hdicated

'that t%k study guide, tapes and textbook were adeqdé;e but not

- -

sufficiéntly comprehensive to provide the self-confidence th&f a
student wishes td achieve‘in a programmihg course, Throﬁghout
the questionnaire the message was that more examples are needed
in the study guide, the tapes and tﬁe textbook.

Most students felt the earlier chapters of the study guide
aﬁd the early sessions on the tapeé‘were good, These early_
chapﬁers and first tape sgséi'“ﬁ brought-the'studenté along at a
very slow pace compared to the usual CMPT 103'codfse'fotv
Computing Science ﬁndergraduate students. However, it ééeﬁhd !
that as the course progressed and the pace picked Qp,_these
graduate Education students feli the amount of instruction was

i
insufficient.

A summary of the guestionnaire as compieted by the Gfaauate

J)iucation Students is given on the following pages.’

50

1.

. S

A:é you planning to use what you have learmed in CMPT 601 in

the school system? E YES (8)‘ N2> .

o

If yes (check all apptropriate boxes);

a. for own use only - | 7))

b. for administrative work h (6)

c. as a teacher of computing . ' (3)
4 N J‘g.

-

Questions 2, 3 and 4 are shown in TABLE TWO on the

v

following page. The five-point scale from the undergraduate -

questionnaire (shown below) was used again here.

Not . __ Some : . Very
Scale: Helpful V'Help “Adequate Helpful Helpful
1) L2 (3) . (4. (5)
u .

>
s
- - £ 4 7 ;sade] oipny 2y3i 219m
-) - g - (M00qIxa) ayl sem
(2319 'sodAl se yons sFUTY3I IUBAITILIT
- T 5 v - (2PIND Apnig a3yl sem
(83Uapn3s Jo 1aqunu Juasaidai mo}aq mwaE:zv
Injdiag Injdian a1vnbapy di9n In3dion
Kxap WOS 108

L

(% - 7 8u01I83aNY) SINIANLS ZALVNAVID - OAL FI9VL

[njasn MoOH
[njasn Moy

pieda181(q)
Injasn Moy

52

5. Which chapters of the study guide were most useful? -

STUDENT

STUDENT

STUDENT

" STUDENT
STUDENT
' STUDENT
STUDENT
STUDENT
STUDENT

STUDENT

b3

1: -

2: CHAPTERS 1 TO 3.

CHAPTER 1, CHAPTER 4, AND APPENDIX B.

3: CHAPTER 1 - FLOWCHARTING SYMBOLS, CHAPTER 4, AND

CHAPTER 5.
4: THE BEGINNING CHAPTERS.
5: (NO COMMENTS)
6: THE FLOWCHART EXAMPLES. -
7: THE BEGINNING CHAPTERS.,
8: (NO COMMENTS) ’
9; THE INTRODUCTION AND CHAPTER 1. | .

1(>'TNO

COMMENTS)

ok

Which chapters were least useful?

'STUDENT 1:

STUDENT 2:

STUDENT 3:

STUDENT 2

STUDENT 5:

STUDENT 6:

STUDENT 7:

STUDENT 8:

STUDENT 9:
STUDENT 10 :
Comments on

STUDENT 1+

STUDENT 2: -

ompTER 4.

CHAPTER 2.

~

ALL THE CHAPTERS WERE USEFUL -, SOME MORE ﬁsEkUL'
THAN OTHERS AS MEQTiONED IN QUESTION #5 ABOVE.
THE LAST ONES. | | o

THE RECORD PROGRAM ON PAGE 89, THE INTRO
COMMANDS TO GET INTO THE SYSTEM, E.G.,, PAGE 20
BOTTOM AND PACE 21 BOTTOM NEED EXAMPLE AND -
SPECIFIC INSTRUCTIONS.

(NO COMMENTS)

'LATER CHAPTERS HAD TOO FEW EXAMPLES.

(NO COMMENTS)

-THEALATER CHAPTERS - ESPECIALLY CHAPTER 8.

(NO COMMENTS)

the study guide

GENERALLY HELPFUL BUT MANY OF THE POINTS COVERED

WERE NOT DESCRIBED IN SUFFICIENT DETAIL;
GREATER REFERENCE TO THE APPLE II IN -PARTICULAR

IS NEEDED.

WEAK ON EXPLANATION OF STORAGE LAYOUTS AND THEIR

'RELABIONSHIP TO THE FLOWCHARTS;

INPUT/OUTPUT EXAMPLES CONFUSING;®

SOME MATERIAL OUT OF SEQUENCE, =~ -

©

- - - - S - —_—— -

T

54

'STUDENT

" STUDENT
STUDENT
STUDENT

STUDENT

. STUDENT

STUDENT

3:

42

- FOR A COMPUTER COURSE FOR EDUCATORS, SOME

\/

_THE STUDY GUIDE IS A GOOD OVERVIEW OF THE PASCAL

LANGUAGE. IF USED WITH THE TEXTBOOK AS IT IS

INTENDED, T BELIEVE IT CAN SERVE AS A USEFUL

”T66i:f"KWFEW”ﬁ0RE'EXAMPLES WOULD BE HELPFUL.

THE STUDY GUIDE COULD BE USEFUL IF PERTINENT

>

DETAIL IS SUPPORTED BY EXAMPLE.‘—IT‘QOULD ’

HANDHOLD THE STUDENT THROUGHOUT THE COURSE.

. TR
PROBLEMS ' SHOULD HAVE BEEN BASED ON EDUCATIONAL

APPLICATIONS,

GOOD FOR CMPT 103 BUT NOT A COURSE FOR SR

EﬁUCATGRg.

MORE EXAMPLES WOULD BE'MOST'USﬁfUL:%?SHOﬁT
EXAMPLES THAT WE COULD REFER TO WOULD BE USEFUL.
SOME PROGRAMMING ERRORS. o

THE EARLIER CHAPTERS ARE GOOD BECAUSE THEY

EXPLAIN THE NEW MATERIAL THAT IS-PRESENTED AND- - -

=

PROVIDE THE STUDE&T'WTTH‘SOHE BACKGROUND AND
EXAMPLES TO USE AS A REFERENCE. THE LATER

CHAPTERS DO NOT AND CONSEQUENTLY ALL STUDENTS IN

‘THE COURSE HAVE'SPENT‘A TREMENDOUS AMOUNT QF

TIME SCRAMBLING FROM ONE STEP TO THE

NEEDS AN EXAMPLE OF CREATING AND

55

STUDENT 10: THE REQUIREMENTS FOR INPUT, 1.E., ONE LINE OR

=

© MORE, AND OUTPUT, I.E., ONE LINE OR MORE, SHOULD

BE MORE EXPLICIT, . =

Which chapters of the textbook were mosc'useful?,

P

STUDENT 1: CHAPTER 6 - MOST FREQUENTLY REFERRED TO.

STUDENf.Z:t
: STUDENT
| STUDEN';I
- STUDENT
'STUDENT

- STUDENT

STUDENT
STUDENT

STUDENT

3:

9:

10:

CHAPTERS 2, 3, 4 AND 6.,

ALL CHAPTERS EXCEPT CHAPT#R_ll.
ABOUT THE SAME

(NO COMMENTS)

ALL BUT THE ONE ON PARAMETERS ETC.

QEAEIEE&VLEQt

(NO COMMENTS)

ALL GENERALLY OK.

(NO COMMENTS)

Which chapters of the textbook were least usefuggf

=7

STUDENT
STUDENT
STUDENT
STUDENT

STUDENT

" STUDENT

STUDENT

STUDENT

STUDENT

STUDENT

1:

23

3:

42

16: (NO COMMENTS)

CHAPTER 12 - LEAST FREQUENTLY REFERRED TO.

“

CHAPTER 7.

CHAPTER 11.

ALL ABOUT THE SAME.

(NO COMMENTS)

THE CHAPTER ON PARAMETERS.

LATER CHAPTERS HAD VERY LONG COMPLICATED

PROGRAMS .

(NO COMMENTS)

THE CHAPTER ON FILES.

56

10.

" STUDENT 3: VERY WELL WRITTEN.

11.

Comments on textbook

STUDENT 1: EACH CHAPTER WAS OF VALUE AS THE MATERIAL WAS

BEING STUDIED. ‘ =

STUDENT 2: NO GOOD EXPLANATION OF SYNTAX DIAGRAMS. K\\\

FILES ARE NOT WELL EXPLAINED. - o | '
STUDENT 4: LACKS-SPECIFIC DETAILS.
NEED PROGRAM SO THAT ONE CAN Sgé/;ow TO PUT

OPERATION IN PROGRAM.

STUDENT 5: (NO COMMENTS}. o,

STUDENT 6: USEFUL, BUT NOT ENOUGH EXAMPLES.
STUDENT 7: MORE EXAMPLES WOULD BE HELPFUL.
STUDENT 8: (NO COMMENTS) | ;
STUDENT 9: FOUND PROGRAM EXAMPLES GENERALLY CONFUSING.
WOULD PREFER A MORE DIRECT REFERENCE TO UCSD

PASCAL. P

STUDENT 10: CUT DOWN ON NUMBER OF QUESTIONS AND SHOW ANSWERS

TO ALL PROBLEMS. TO0O MANY TYPOGRAPHICAL ERRORS.
Comments on supervision in the Lab.

STUDENT 1: (NO COMMENTS)

STUDENT 2: THE TUTORIAL ASSISTANT WAS. HELPFUL.
| SOME INSTRUCTION MIGHT BE USEFUL TO WORK THROUGH
. BASIC PROCEDURE FOR EACH ASSIGNMENT AS WE HAVE

RECENTLY DONE IN LECTURES. =~ =~

STUDENT 3: THE TUTORIAL ASSISTANT WAS HELPFUL. — <~ "

STUDENT 4: @D,

57

" STUDENT 5:
~ STUDENT 6:

' STUDENT 7:

STUDENT 8:

STUDENT 9:.

STUDENT 10:

coob. .

OK.

1 RARELY SEEMED TO BE IN THE LAB. WHEN THERE

3
\;

WAS SURERVISION. o

GOOD. .

THE TUTORIAL ASSISTANT DID AN EXCELLENT JOB.

- WOULD BF HELPFUL TO HAVE THE INSTRUCTOR IN THE LAB. ° AS WELL

AS THE TUTORIAL ASSISTANT.

5
R
12. ?bmmen:s on

STUDENT 1:

assignments : —_—

WOULD HAVE PREFERRED TO HAVE MORE POINTED

.

STUDENT 2:

STUDENT 3:
STUDENT 4:

STUDENRT 5:

<

DISCRETE ASSIGNMENTS, PERHAPS MORE

SINGLE-CONCEPTED IN ORDER THAT LANGﬁAGE DETAiLS

MIGHT BE PRACTICED. THEN, PERHAPS, MORE

EXTENSIVE ASBIGNMEQTS MIGHT BE UNDERTAKEN. .

SCOPE OF ASSIGNMENT WAS FINE, BUT SOME CONFUSION

RESULTED FROM TRYING TO USE TECHNIQUES THAT WERE

TOO ADVANCED TOO FARLY. STUDY GUIDE SHOULD GIVE

MORE GUIDANCE ON THIS. | N

NEED A FEW MORE ONE-CONCEPT ASSIGNMENTS BEFORE
ASSIGNMENTS 8, 9 AND 10.)

SOME. HAD CONCEPTS: BEYOND THE KnoyLEﬁGE OF THE

PROCRAMMER.

WOULD PREFER FDUCATIONAL APPLICATIONS FOR AT = -

LEAST SOME PROBLEMS.

58

STUDENT 6: PERHAPS MORE EXAMPLES TAYLORED TO PEOPLE WHO =
R \ /_/

s .

<

- WILL HAVE TO TEACH PROGRAMMING. .-

STUDNET 7: WE NEEDED INSTRUCTION ON THE ASSIGNMENTS BEFORE
'SPENDING HOURS DECIDING WHAT SHOULD BE DONE.

STUDENT 8: DIFFICULT.) , o

PN

STUDENT 9: SHOULD BE EDUCATION ORIENTED EXAMPLES!!!

Y

-DISCUSSION AND EXAMPLES OF HbW TO PROTECT AND

-

N ,/
PROCESS USER INPUT TO PREVENT PASCAL FROR—

.

. "BOMBING".

t
S

~-SOME ASSIGNHENTYINSTRUCTIONS NEED TO BE CLEARER'
AND HAYF HINTS FOR PROGiAMMINd‘DESIG&.'
STUDENT 10: (NO COMMENTS) L
. i3 .. Cémme;;ts .re.. Supplementtary materials
STUDENT 1: (NO COMMENTS) -
MWWTR\MNSQMMMYMTWUWLYﬁ@ﬂsmm
SHOULD BE FOCUSSED HORE SPECIFfékLLY ON THE =,

2NN T

ASSIGNM. TS .

.
STUDENT 3: AUDIO TAPES ARE A BIT Q?O‘GENERAL;J
STUDENT 4: (NO COMMENTS) -
STUDENT 5: TEXTBOOK BY LUEHRMANN & PECKHAM WAS OFTEN
USEFUL..
STUDENT 6: (NO COMMENTS) | ' C
STUDENT 7: 1IT WAS DIFFICULT TO KNOW WHICH TC»QE;FIRSTtTRY 7 -
THE ASSIGNMENT, READ THE TEXT, READ THE STUDY
GUIDE, OR LISTEN T0 THE TAPES. -
STUDENT 8: (NO COMMENTS)

-~

59

- .. STUDENT 9:

p

' STUDENT 10:

14{gComments on

a. generally

STUDENT 1:

STUDENT 2:

STUDENT 3:

STUDENT 4:

' ONE ASPECT. e

STUDENT 5:

e

STUDENT 6:

STUDENT 7:

I FOUND THE COURSE TO BE LABOUR INTENSIVE AND

'TECHNIQUES WOULD HAVE BEENvHELPFUL.

'I>SPENT A GOOD DEAL OF TIME IN A RATHER

THE AUDIO TAPES DID NOT ADDRESS THE PROBLEMS
THAT OCCURED IN THE PROGRAMS.

(NO COMMENTS)

the,cou;se

s . -

I3

WAS'FREQUENTLY FRUSTRATED BY THE AMOUNT OF -TIME
REQUIRED TO FULLY UNDERSTAND ATPROGRAMMING

PROBLEM. PRIOR DISCUSSION OF PROGRAMMING - ' (,LW'

~. .

FRUSTRATED STATE DUE TO MISINTERPRETATIONS BOTH .

ON MY PART AS WELL AS BECAUSE OF. THE

INPUT/OUTPUT EXAMPLES IN THE STUDY GUIDE.

IT COULD HAVE BEEN°AN EXCELLENT COURSE IF IT WAS-

GEARED TOWARDS A SINGLE GROUP RATHER THAN THREE |

GROUPS AT ONCE.

TRIED TO COVER A LARGE AREA. SHOULD FOCUS ON

SHOULD NEVER HAVE BEEN SPLIT TNTO GROUPS. SET
UP COURSE, THEN ATTENDEES EITHER LIKE IT, LUMP

IT, OR LEAVE IT.

oy o

5 - :
A GREAT DEAL OF WORK OF WHICH I FELT I WAS

FLOUNDERING.

THE COURSE WAS TOO ORIENTED TO PROGRAMMING.

STUDENT 8:

STUDENT 9:

STUDENT 10:

‘CLASSES WERE TEEASTRUCTURED ONES. ON
. . '

. ~ T
T DON’T FEEL THAT MY NEEDS AS AN EDUCATOR WERE

Y

MET.’

FOUND THE CLASS TIME OF MARGINAL VALUE. BEST .

-

PROCEDURES, AR%A?S AND RECURSION. MOST OTHER
CLASSES HAD NO APPARENT PLANNING AND CAME ACROSS
AS VERY DISORGANIZED - A DANGEROUS THING .TO DO
WHEN TEACHING TEACHERS! ‘

S

THE MOST ABSORBING COURSE 1 HAVE EVER TAKEN. .

I°M HOOKED ON COMPUTERS.

b. acoﬁpared to other computer programming courses you may

have taken

STUDENT 1:

STUDENT 2:

STUDENT 3%

STUDENT 4:

YPERHAPS A LITTLE HEAVIER THAN MOST.

MUCH. MORE COMPREHENSIVE THAN U.B.C. EDUC 217

(BASIC). WE_TALKED ABOUT MANY THINGS BUT GOT

INTO LITTLE DETAIL.

A) - .
THE INSTRUC?@R EXPLAINS HIS SUBJECT MATTER VERY

WELL. I ENJOYED THE COURSE.

SAME AS OTHERS ~ CONFUSING.

61

15.

STUDENT 5: -

THE MATERIAL AND TO COMPLETE ASSIGNMENTS WITHOUT

STUUDENT 6:

<

STUDENT 7:

STUDENT 8:

STUDENT 9:

STUDENT 10:

UNIMPRESSED - BUT LIKFLY DUE TO THE SPLiTTING UpP

OF GROUPgﬁ’ ALSO I FEEL THAT THIS COURSE FOR

WORKING TEACHERS SHQULD BE SPREAD OVER TWO

- SEMESTERS WITH CLASSES MEETING_ON ALTERNATE

WEEKS. THIS WOULD GIVE STUDENTS TIMF TO DIGEST . -

MAKING COMPUTING SCIENCE THEIR TOTAL LIFE.

I LEARNED MORE ABOUT PROGRAMMING IN CMPT 601
(THIS COURSE) THAN IN CMPT 103 (THE BEGINNING
COUSE FOR COMPUTER SCIENCE STUDENTS). IN CMPT
103 T LEARNED HOW TO PASS THE COURSE BUT NOT
MUCH ABOUT PROGRAMMINC.

(NO COMMENTS)

Lzss THAN SATISFACTORY.

TAKEN NONE.

(NO COMMENTS)

If there were two things in the course you would not want to

change, what would they be?

STUDENT 1:
STUDENT 2:
STUDENT 3:

STUDENT 4:

STUDENT 5:

Vita

THE ASSIGNMENT WERE HELPFUL AND SHOULD REMAIN.
THE SCOPE OF PROGRAMMING EXPERIENCE.

THE ASSIGNMENTS.

LACK OF A FINAL EXAMINATION.

PASCAL AS A LANGUAGE._\

LAB _ASSISTANCE. -

THE NUMBER-OF ASSIGNMENTS.

LAB TIME.

N

62

16.

siqDENT 6: THE INSTRﬁCTOé.‘V
'COMPUTER TIME. - &
STUDENT 7: THE Counsfs OUTLINE.
\ PROGRAMMING FINAL PROJECT.

STUDENT 8: FEEDBACK

ASSIGRMENTS WAS GOOD.
THE‘STUDY DE WAS SOMEWHAT HANDY.
STUDENT 9:.f§6RRY BUT EVERYTHING\kEEDS CHANGING. COURSE
| | PROPOSAL WAS .GOOD BUT THE IMPLEMENTATION SURELY
DESTROYED IT. MUST HAVE A TUTORIAL ASSISTANT.
STUDENT 10: THE PROBLEMS.) |
| THE DOCUMENTATION. */’Tﬂy—d/\\\
If therehwere two things in the course you would want to
change, what would the} be?
STUDENT 1: GREATER EMPHASIS GIVEN TO EDUCATIONAL USES AND
APPLICATIONS. |
'MORE PERTINENT LECTURE TQPICS.V
NO MORE ATTEMPS AT STREAMING FOR ABILITY AND
BACKGROUND. |
STUDENT 2: LIMIT THE COURSE TO ONE TYPE OF STUDENT.
STUDENTﬁi: NO GROUPING.
STUDENT 4: PRESENTATION OF CONCEPT MORE DIDACTIC.

MORE SAMPLE PROGRAMS (SIMPLE).

STUDENT 5: LECTURES ‘SHOULD BE SCHEDULED ON DAYS WHEN

HOLIDAY WILL NOT CAUSE THEM TO BE CANCELLED.

STUDENT 6: LAB OPEN HOLIDAY AND SUNDAYS.
N ~

i NO SPLITTING OF CLASS INTO GROUPS.

63

17.

STUDENT

STUDENT

'STUDENT

STUDENT

7:

COULD BE WORKED WITH AGAIN LATER ON IN THE

I

DEAL WITH SHOT?ER PROGRAMS (ASSIGNMENTS) TEAT/.

COURSE.

B

KEEP A GROUP JORKING TOGETHER SO THERE IS

INTERACTION ONG THFM BY.GIVING'INSTRUCTION
BEFORE AN ASSfGNHENT IS STARTED, AFTER IT IS

STARTED, AND JUST BEFORF IT IS FINISHED.

LECTURES WOULD BE MORE INSTRUCTIVE.

LABS WQULD BE MORF DIRECTED.
STRUCTURED CLASS TIME WOULD HELP A LOT WITH
SPECIFIC DISCUSSION OF NEW TOPICS BEFORE THE

ASSIGNMENT.

: HAVF ONE GROUP ONLY.

DISCUSSION OF EACH ASSIGNMENT BEFORE STARTING

IT.

N

Are there any portions which could have been omitted

altogﬁgbér?

STUDENT

-STUDENT

STUDENT
STUDENT
STUDENT
STUDENT
STUDENT

STUDENT

F

1:

[

NO.
"COMPUTERS IN SOCIETY" SHOULD BE A SEPARATE
COURSE. -
"COMPUTERS IN SOCIETY" TEXTBOOK WAS OUTDATED.
COMPUTERS 1IN SOCIETY. ’
(NO COMMENTS) | -

AS IT WaS.

THE EXAMINATIONS..

(NO COMMENTS)

R

h4

STUDENT 9: NO.°

STUDENT 10: (NO COMMENTS)

Is there a question I should ha;re asked you aboutﬁ vhiéh you
would iike to comment. |) |

STUDENT 1: LIGHTENI&G THE HORKLOAD WOULD BE BENEFICIAL..
STUDENT 2: (NO COMMENTS)

STUDENT 3: CONSIDERING THE VARIETY OF STUDENTS IN THE CLASS

YOU DID WELL.

-
-

. . A T
STUDENT 4: COURSE SHOULD BE DIRECTED TO ONE GROUP >

DISCUSS MORE CONCEPTS.
USE MORE EXAMPLES.
STUDENT 5: (NO COMMENTS)
STUDENT 6: NO. e
STUDENT 7: (NO COMMENTS)
STUDENT &: (NO COMMENTS)
STUDENT 9: SHOULD DISCUSS HOW TO SET UP THE BASIC SHELL OF

AN ASSIGNMENT,

MORE DISSCUSSION ON HOW' TO ORGANIZE AN
ASSTCNMFNT,

STUDENT 10: I THINK THE COURSE WAS TOO LONC GIVEN THE TWO
HGLIDA?S WE MISSED CLASSES AND THE FACT THAT
THERE WAS THREE GROUPS.

MORE [NSTRUCTION NEEDED ON TAPES AND TN CLASS

bt a -

o

g

T
Ry

I. Analysis and Comparison of the Two Student Questionnaires

In summarizing the results of the two sets of

questionnaires, certain background information ﬂeéds to be:taken

into consideration, 1In the first group, the undergraduate

" students who were taking the course and using the material from

the thesis were individuals whose main 1nte£est'was'1n computing
science as a discipline, perhhps as a tool, but chiefly as a
discipline. Thesé students seemed to be.quite haﬂby with the
way the course was set up and witl, the information presented.
They found the combinatioﬁ'of the tapes and the study guide‘tq
be very useful, Although they did not seem to have as much
faith in some of the work done in therlabs, they: were helped by
the tapes to work on their -own and do much‘more of their own
problem solving. _None'bf them had had previous courses in:
computing which is Qf inperest when a comphrison is made with
the second group of students Qho were taking.the course.

The second time that the course was pres{:ted, it wﬂs gliven
to graduate students in the Faculty of Educatigl.' These
students varied in theilr reasons for taking the course: sbne
wanted it for their own use only, some. were using it for
administt&tive éurposes, and the rest were intending to teacﬁ

P
computing cou£§§s at theJjunior or secondary level. Some of

66 '

p

.

these graduate studénts had had previous courses in computing,
but only one of the students who answered the questionnaire
(STUDENT 6) had taken a computing course at Simon Fraser

‘ University. As a groﬁp they found the course difficult; they
[S

iwished to have more instruction; they wishedrghiﬁ;fe more
information about the examples and wanted ﬁﬁre;help in working

out the actual problems of the coursel,
~ - s

- It would seem in comparing these fﬁo groups of students,
that there may be a need for a special type of course for those
whose specificvintentioﬁ is to teach computing techniques in the
regular school system. The orientation of this thesis was
towafd a pilot project to see what could be done by combining
the use of a textbook, a study guide and a series of tapes. For
the computer science students this seems to be a very useful
method, but for the gtaduatg students in‘;ducation, this course
may need some niiéx\chnnges. 3 ’

There may have been some problem teoo with the way in which
the idea of the course was presented to theae'educatiog
students. 1: seems tth they»felt they were enrolling in a ‘
course which was to be a general overview of cohﬁuting in
education, (with very little time n;siggfgmg? a "bnnds—on" type
nf activity) and a considerable amount of discussion of how
cromputing as srscienge re%;t;n 1o gverydny living. f@ii rznlly‘
do¥g 0oL lﬁﬁ‘éﬁtﬁ to the CﬁﬁltﬂlfltiD9:ﬁfliﬁﬂﬂﬂﬁﬂfTﬂF?ﬂﬂfijﬂf’
the thesis wms to fiﬂd‘ﬂu! whether or not & cnut:& could be p

-

7

taught as a mainly self-ditected type of activity. The
conclusion that can be drawn is that for those people uho are

interested in becoming computer pgogra-eta and are perﬁapl '

inten{ing to take further coa}aei, the tapes, the study gﬁide
and the textbook make a reasonable combination and will allow
these students to satisfy most of their course needs.

For those individuals who are Uog?ing within the schoel
system and who are likel}to have expectations of a "methods"
éppro?ch to the subject matter, this course may not be as
effective. it should be pointed out that the teachers who were
taking the course tehded to be critical of the actual pedagogy
¥ the CHPT 601 course in general and the way in which the work
Ty structure&, ragher than with whether or not they were

\

learning how to do the programming exercises which were

assigned.
The make-up of a course for university students is likely
to be somewhat different from a course taught at the junior or

~secondary level. For these levelp‘there is not the same amount

of work to be covered, there is less depth of explanation and

hY
£

there is more opportunity and time in which to present the
course material. There is alro canaiderﬁhly more time avkilable
for discusgion of particular items at the secondary school

level., Perhaps thc people in the second group who are

PrUfESiiUnlift!lChEtl‘IIY’hIVE‘ltll!ﬂ'thl'pﬂiﬁt’bf”ﬁhlt”ﬂii - o

bttpg'&pnes Thty1117’htvt'thbught that they were into o S

“methods” course rather than taking a course for their own

introduction to another discipline.

This‘sunﬁary would indicate that there is room for the

development of a different type of course for education

professionals. It would likely be a course which they C7§§\a// —

themselves would be‘able to present to tﬁeir students at the.
junior and secondary levels ;n the.regulsr séhbol system. From
the point of view of courses in which the student is learning
the basic principles of programming in order to be able to do
prbgrz-ngng, it would seem that the current combination of
textbocdk, tapes and study guide gt; sat%sfactdry. If in the
future‘this course were given to a similar group of broféssioha
educators, this difference in orientation wﬁuld have to be very
carefully spelled out to them in idvance.

The official description of the CMPT 103 course is:

"INTRODUCTION TO A PROGRAMMING LANGUAGE. F&R EOHPUTINb

SCIENCE MAJORS/MINORS/HONORS ~ This course introduces
the Computing Majer/Minor/Honors student to a ’(;

programming language. Programming assignments cover
techniques such as looping, decision making,
construction of subroutines, input/output handling and
documentation. Fmphasis will be given to teaching the
student techniques of structured programming."
The way the CMPT 10; course is taught at present differs chiefly
in terms of the use of tapes. The course makes use of legttures
and labs. togéther with the textbook and study guide. the .
course proposed in this thesis would make use of a text and a
study‘gﬂ%de, but would supplement these with tapess The tapes
would make it possible for a student taking the course to wvork
much more 1ndepenjint1y and rely less on lectures and iab;

Y

instroction.

69

The CMPT 103 course was designed with the expectation ihnt
most of the students who graduate from the course will major in

computing science. The approach therefore is to the the

students start problem solving st a very e&tl&rst‘éé'” Theyw;fé -

to solve as much of the problem as they can on their own in
preparation fof the more advanced ;heori they will be séudying
in the future. For those‘who are not intending to work toward a
-degree in computer sciencé, the idea 1s still to guide them
toy?rd eventually becoming systems analysts - not just

programmers or coders.

T~

This thesis h;s showﬁ, however, that there is a need for
both a service course and a technical course in which the
student can learn the very basic détails 6f programming without
being taught to design a very large go§§§ting system - a geries
of interrelated programs. Such a course would require .
considerably nofe instruction in the classroom and many more
ﬁorked—out exanéles in the tfttbek,'thé study'ghidgraﬁdfthev
audio tapes. Only a small amount of original wotk'wogldpbe

required of the latter student.

4

10

II. Conclusions

This thesis has addressed directly and indirectly several

questions which should be considered when developing a

self-directed computer programming course, particularly:

a.

Is the de#élopuent of a good computer progrnn‘dependent.

’

mainl& upbn the understanding of basic concepts - the

theory?r
Can. the understanding of concepts be replaced adegquately
by training - "how to’ - which does not elphi;i;e

concepts but relies on practice and experience?-

What would be a good mix of theory and application in

_teaching a beginning programmer?

The basic premige for thg development of the courie
{s that the theory of érdble-solving techniques such as
analgsis of the problem, stepwise s?ecification Af a
solution llgorifhu and fin;llgthé structured~language
implementation of the solﬁtiégralgotifhn_cyn be taught.
However, is this knowledge retained by the student ’ .

without the benefit of the immediate applications of the -

-

principles learned?

< ,
If such application of the principles is necessary, how

. '[\ -
~much practice is needed and should that practice be’ .

massed or distributed?

+

The survey results give some answers to reflect upon. It

should however, be recognized here, that each gquestion could be

' -

a thesis topic in its own right. ‘In relation to this thesis,the

&

71 | S

foilouing observations uefe made:

A

" 8

b.

" training.

Those students who were iniérested 1n"b§conihg computer

»

programmers made good use of the material which set Qut
the bdsic concepts - the theory‘of‘progra-uing. Ther -
'graduate educatién students on the other hand were not
iﬁterested 1n,be¢om1ng progrgnnefs.; Froﬁ discussion @
wizﬂ thése student;'dﬁring tge course it séens,that fhe&igi VQ\\\
were interested basically in k#owing how to teach

programming and were som?what impatient with other 3 -
aspecfs of the course. , ' A ' o
There isn’t a clear cut answéé to the question of

training vs education because the students involved are t

working at a university’level and were likely to ask

.yﬂi, not just how. In other words it seems that -

university students are paét the point of being simply

trained; they need to know the reasons behind the

P
i

With this as a background it is possible to go on to
questidh (c) and consider what would be a good mix of ¢

theory/;ad’application in teaching a beginning - o
A

//f/’

programmer,

-

0

The questionnaire results clearly indicate that two

different approaches were involved. The three students
who wanted to learn programming were pleased with the
emphasis on theory and the opportunity to put the theory

into practice but on a limited scale of practice.

-

—-

72

‘taught in a distributed ms.

\
The students who were in ‘the education courses .
seemed to be mdch’more interested in a methods
orientation. Most expressed a desire to knew how to

teach the subject of compdter science in general rather

than being concermned with the discipline itself. _These

‘students wanted to know what the computer does - not the

theory of'conputer programming. Beingbprofeasioenlly
trained educators rather than computer progrtn-ern, they
uanted more information about how to teach the auhject.
This was a reasonable request as they were not
interested in giving up the discipline ;f pedagogy for
the‘giscipline of computer seience.; ‘
As for mass vs distributed practice, havingﬁtaught hany
computing-programming ceurses including the "nev"‘cpnrse
described in this thesie, the author feels thet practice

in the application of the principles is more sucessfully

~er with a gradual bjﬁlding

from the known to the unknown rather than with large
amounts of theory being presented at one time. ;

~ The use of tapes makes 1t possible to 1np1enent\\a
this idea of dietributed practice as the-studentrcap g0
back and review the material and ette-pt.edditional.

problems which will help in the understanding of the

basic prineiples involved*;

3

73

fod

N

¢

® G. Recommendations for Further Stud;ﬂ

As the thesis involves developmenta] work, this new PASCAL

=

course will need to be closely examined to determine its worth
compared with traditional methods of ﬁeaching. _An experiﬁental
course could be designed in which groupa‘cdn’gs matched fo
compare various codbinations of teaching pe:tha to fiﬁd out
which methods achieve the bestand”nost‘1astid§{resu1ts.
Experiments could be coné;ctéd to see how different groups work

using the ordinary classroom in;%ruction, using the textbook

plus tapes and study guide, or using all of.thén as a units—— ="

In the three years thé author has been teaéhing CMPT 103,
the coutse has grown fro@ 250 stﬁdents to 800 stgélhta. Jﬁhe
(\ffﬁﬁih in class size reflects the current 1nfntuﬁtiop‘w1th
computers. This type of growtﬁ ﬁas made it possible to ;;sesﬁ
;ﬁe effectiveness of variocus approaches but only in a subjective

way. Thc:pressure of the sudden increase in enrolment has nﬁt

élloued time for real experincntition and assessment in depth,

Some ‘large acsdemic departments have made it compulsory for .

t§> their students to take at least one computing course. The

result is ve;y large classes composed of two quite distinct
groups of students =~ those uho-want to learn programming aﬁay
those who must take a computer course. The prob{gi of selecting
appropriate textbonks, lecture material, ;xercises and 7

.

examinations becomes difficult under these conditions.

74

Theré is however more flgxibility in the human element
involve;} 1n§tructors and teaching assistants can adjust more,
readily tp'the new demands.' .

 Somé of the administrative %roblems iﬁvolve finding enough
dualified people to serve as'instruqtors‘én& lab. assistants,
providing Suffic;ent terminals and other mechanical
teQﬁireﬁents, and suitable study and ﬁork space for students.

Apother'problem which ié not too evident at the present

time but will become increasingly apparent, is boredom-when

students who have had access to computer instruction either at

t

home or in the reguiar school system are asked to do work which -

4they have already covered. Aloné side these sgﬁewhat

experienced studeﬂts will be those who, while inteliigeht, are
almost completely naive ébout computers and‘cdmpUter science.
* Fortundtely, most of the students who are in computing

courses are also in courses which are relatively structured -

Yoy

. commerce, mathematics, etc. The arts student who come into the

cburse méy have difficulty, but are usually aware of the

J,differeﬁce of approach between the science courses and the’arté

courses.
- . a
This discussion of the problems of the current beginning
programming course at Simon Fraser University pointé out the

need for more than one approach to the teaching of such an

" introductory computing science course.

v

-

A recommendation would be the development of three
s .

-

differe;t courses at the iﬁﬁroductqry level. One course would
be for those students for whém computer écienéé 1s a discipline;
in this course the embhasis would be on the theory and
principles of computer ﬁrogramming with suffiéiént exercise
matefial tq»allow the principles to be applied.iAThe éxpectation
is that for these students there would be furthef'coursesbin
computer science and this preliminaryvcourse>would be the
fogndation material for them.

A second course wouid be designed quite frankly forf
sgggéété who are taking a course because it is compulsory; Fbr
such students the emphasis would be on how computers fit the
kind of work they are likely to Eeydoing. There would be‘
emphasis on general principles but not to the saﬁe depth as in
the previbus course. There wdﬁld also be some préctige aﬁd the
orientation would be toward{Baking it péss ble for these
students to work with p;ogrammers.aﬁd to uﬁ erstaﬁd whét may or
may not be expected of computers in everyday\use.

The third course would be désigned for students who are in
a Faculty of Education and who wish to know enough about .

-~

computing science to be able to Eeééh it at a more,basic level,

such as one would find in junior or Zecondary schools:
Thelcburse éesigned for this thesis is related tgq tﬁe first

éroup of;students mentioned above, but the tapes would be aﬁ

ideal way of éupplementing the regular course material to make

it more compatible with the needs of each of the three groups.

I‘I

10.

PR ™ *
REFERENCES
Allen, Michael. "Computer Managed Instruction." Journal of

Research and Development in Education, vlé4, nl (19807:
33-40, A -

A?%LE PASCAL Language Reference Manual. Cupertino,

California: Apple CoOmputer Inc., 1980.

_APPLE PASCAL Operating System Reference Manual. Cupertino,

California: Apple Computer Inc., 1980. : *

Barringer, Robert, and Haluk Bekiroglu. "The Effects of
Audio Tapes On Graduate Student Performance and
Attitudes." AEDS Journal, vll, n2 (1978), 38-48.

[

Bork, AlMfred. Learning With Computers. Bedford, Mass.:
Digital Fquipment Corporation, 1981.

Davies, W.J.¥. Alternatives to Class Teaching in Schools and
Colleges. London, Englang Council for Fducational
Technologv, 1980'

Dick, Walter, and Lou Carey. The Systematic Degign of
Instruction. Glenview, Illinﬁism,Scott F@resman and
Co., 1978. ¢) '

Dijkstra,gE«"n ""Programmming Considered as a Human

n Proc. IFIP Cosgress 1965, North-Holland
Co., Amsterdam, The%Netherlands, 1965,
%) J
Dggkstra,E.w. "AfConstructive Approach to the Problem of
‘rectneﬁs." BIT, 8, 3 (1968), 174-186.

Publighind
.213-2}.
Program Cof

Di jkstra E.W. "Goto Statement Considered Harmful." Comm. gﬁ
the ACM, II, 3 (March 1968), 147-148, 538, 54l.

11. DiJkstra E.W. "Structured Programming.'" Software Engineering

Technigues, Ed. J.N. Buxton & B. Randell. Brussels,
Belgium: NATO Scientific Affairs Division, 1970, 84-88.

12. Donaldson, J. R. "Structured Programming." Datamation, vl9,

13.

nl2 (1973), 52-54.

Drumheller, Sydney J. Handbook of Curriculum Design for
Individualized Instruction: -A Systems Approach.
—Englewood Cliffs, New Jersey Educational Technology
Publications, 1971.

77

14,

16,

17

25,

26,

27.

?

DuBoulay, B. & 0"Shea, T. How to Work the LOGO machine. ﬁ?
University of Edinburgh: Department of Artificial
Intelligence, Paper No. 4, 1976, \

. DuBoulay, B., 0’Shea, Ts:& Monk, J. The Black Box In\xge the

Black Box: Presenting Cdncepts to Novices. University of
Edinburgh: Departmeht-of Artificial Intelligence, Paper
No. 133, 1980.

Fsbensen, Thorwald. WOrking With Individualized Instructiog\\,
Belmont California: Fearon Publishers, 1968. '

Fisher, Kathleen M. and Brian MacWhinney. Audio-Visual
Communication Review, 24 (1976), 229-261.

Cibbons, Maurice. Individualized Instruction. New York:
Teachers fCollege Press, 1971.

Goldschmid, Barbara, and Goldschmid Marcel. Individualizing
Instruction In Higher Education: A Review. McGill
University, Montreal, Canada: 1972.

o

Gopaulsingh, Karam. A Survey of the Use of Coqputers in the
Secondary Schools of British Columbia and the
Development of a Curriculum Guide for an Introductory
Course in Computing, unpublished M.A.(Ed) Thesis, Simon

Fraser University, 1977.

Craham, Neill. Introduction to PASCAL, 2d ed.,, New York:
West Publishing Company, 1983,

Hartman, Lvle G.; Behr, Caroly. "A Videotaped Course
Designed to Teach Fortran." Audiovisual Instruction, 16,
2 (1971), 33-34.

. Jensen, Pandal R, "Structured Programming." Computer, 14, 3

(1981), 31-50.

Keller, Fred S. "Good-bye Teacher..." Journal of Applied
Behavioral Analysis, vl, nl (1968), 79~ 89,

Langdon, Danny G. "The Adjunct study guide." The
Instructional Design Library. Englewood Cliffs, New
Jersey: Educational Technology Publications, 1978.

Lower, Stephen K. "An Audiotutorial Approach to the Teaching
of Physical Chemistry and Electrochemistry." Journal of
Chemical Education, v58, nl0 (1981), 773-776.

Mayer, Richard E. "Psychology of Computer Prgramming for
Novices." Series in Learning and Cognition. Report No.
81-2, Sania Barbara: Unlversity of California, 1981,

78

28, Maver, Richard F. "Analysis of a Simple Computer Programming
Language: Transactions, Prestatements, and Chunks.”
M/’“/] : Series in Learning and Cognition. Report No. 79-2, Santa
Barbara: I'niversity of California, 1979.

29. Papert, Sevmour, Finqi Report on the Brookline LOGO Project
Part II: Prqject Summary and Data Analysis. Artificial
Intelligence Memo YNo. 545. Cambridge, Artificial
Intellipence Lab: Massachusetts Institute of Technology,

19749,

37, Russell, JYames D, "The Audio-Tutorial Svystem." The
T : ‘Instructional Design Library, Ed. Danny G, Langdon.
' Fnglewood Cliffs, New Jersey: Fducational Technology
Publications, 97K, '

}33%. Schneider, Michael 4., Steven W. Weingart, and Daviﬂ M,
Perlman. An Introduction to Programming and Problem
s Splving with PASCAL. New York: John Wilev & Sons, 1978.

3Z. Simmons, Dick B, Darrell L.ﬁWard, and Jack L. Thompson.
"Introductory Computer Programming bv Extension.™
Journal of Educational Data Processing, li, 6 (1974),
19-26, - 1.

33, Tiberghien Jacaues. The PASCAL Hardbook, Berkelev,
Califorpia: Svbex, 1981,

34, Wasserman, A. I. et, al. "Software Engineering: The Turning
Point." ?omguter, vil, n9 (1978), 30-41.

3

LW

. Williams, Greg "Cfraftured Programming and Structured
Flowcharts" Byte, vﬁ, nd (19817, 20-34,

ih. Winne, Philip H.,'Harx Ronald W. "Reconceptualizing
Research«on Teaching." Journal of Educational

szcholo&x, v69, nb (1977), 668-678,
i

37. Young Kenneth;C. "Using a Computer to Help Implement the
" Keller Method of Instru;tion." Educational Technology,
© 14, 10 (1974), 53=55.

38. Zaks, Rodnay. Introduction to PASCAL Including UCSD PASCAL,
2d ed., Berkeley, California' Sybex, 1981.

N —

]

9. | —.

BIBLIOGRAPHY

Atkiwsnn, Laurence. PASCAL Prog;aumin&. New Yﬁrk John nilev
& Sons, 1980.

Brainerd, Walter S., Charles H. Goldberg, and Jonathan-L,
Gross. PASCAL Programming: a Sprial Approach. San
Franciso: Boyd & Fraser Publishing Co., 1982,

Burnett, James "Self-Paced Fortran." Educational Research
and Methods, vil, n2 (1979), 53-56.

Conway, Richard, David Gries, and David B. Wortman.
Introduction to %trua:ured Programming Using PL/.[3nd
SP/k. Cambridge, Mass.: Winthrop Publishers Iac., 1077.

Cooper, Doug, and Michael Clancv. Oh! PASCAL!. New York w.
W. Norton & Co,, 1982, &

Bﬂﬁ}.’ E.j,, mj:kstf_ﬂ, Eoﬁ., ard %HW, flﬁ«ia Stmcm&
Programming . london, England: Academic Press, 1972%

Tmnn, wWalter L. "Integration of Three New Teaching

Techniques in an Introductory Computer Course.'” ASEE,
Tnited States Naval Academy, Annapolis, Maryland, 1977.

Elyner, Eliiot W. The Educational Imagination, On.the Design
aﬂd Evaluation of School Proxrams. New York: Macmillan
C Publitskhing Co., Inc., 1979,

Fnos, Judith £,; Van Tilburg, R.L. “Softuare Besign.
Computer, 14, 2°(1981), 61-83.

Fingar, Peter "The Cge of Transparencies for Teathing ~
Computer Concepts.,” AEDS Monitor, 15, 4/5/6,
Oct./Nov./Dec. (1976), 4-7.

Heines, Jesse M. "Evaluating Interactive, Computer-Managed
Instruction.” Annual Conference of the Association for
the Development of Computer Based Insttuctional Systems.
San Diago, Califotnia, 1979.

Heines, Jesse M. "The use of Computer-Managed Instruction to.
Control (m=Site Self-Instructional Training in a Small

", Systems Customer Environment.” Annual Meeting of the

Association for the Development of Gemputefrsased
Instructional Systems. Dallas, Texa?, 1978.

3

80

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Hume, J.N.P., and R. C. Holt. USCD PASCAL: A Beginners Guide
to Programming Microcomputers. Reston, Vlrginia. Reston
Publishlng Co., 1982,

Jensen Kathleen and Niklaus Wirth. User Manual and Report,
2d ed., New York: Springer-Verlag, 1974.

Johnson, Mildred Fitzgerald "Computer Literacy: What is it?"
Business Education Forum, v35, n3 (1980), 18-22,

Kaufman, Roger Emanuel. A Fortran Coloring Book. Cambridge,
Massachusetts: The M. I. T. Press, 1978.

Kraft, Phillip. Programmers and Managers: The Routinization
of Programming in the United States. New York:
Sprlnger—Verlag, 1977. 2d ed., New York:
Springer-Verlag, 1974,

Lewis, William E. Problem-Solving Principles for PASCAL
Programmers: Applied Logic, Psychology, and Grit. New
Jersey: Hayden Book Co., Inc., 1981,

Lynch, Robert E., and John R. Rice. Computers: Their Impact
and Use - Structured Programming in PL/1. New York:
Holt, Rinehart, and Winston, 1978.

Montanelli, Richard G., Jr. "Evaluating PLATO in the
Teaching of Computer Science.'" Journal of Computer-Based
Instruction, v5, n3 (1979), 72-76.

Nelson, Harold "Logo For Personal Computers." Byte, v6, né
(1981), 36-44.

Nievergelt, Jurg. "Interactive Systems for Education: The
New Look of CAI." IFIP Second World Conference on
Computer Education., Marseilles, France, 1975.

Pogue, Richard E. "The Authoring System: Interface between
Author and Computer." Journal of Research and
Development in Education, vl14, nl (1980), 57-68.

Pohm, A.V.; Smay, T.A. "A Tutorial Overview: Top Down System
Design." Computer, 14, 6 (1981), 65-68.

Raskin, Jef; Whitney, Tom. "Perspectives on Personal
Computing." Computer, 14, 1 (1981), 62-73.

Richards, James L. Pascal. New York: Academic Press, 1982.
Roid, G. H. "Selecting CAI Author languages to Solve

Instructional Problems." Educational Techmology, 14, 5
(1974), 29-31.

81

28.

29.

30.

31.

32.

33.

34,

Seidel, Robert J. "An Heuristic Meta-Model for
Computer-Managed Instruction." Journal of Research and
Development in Education, vl4, nl (1980), 16-32.

Scherer, Donald R. "Backward Chaining: An Effective Means of
Teaching Computer Programming." AEDS Monitor, 15, 1/2/3,
Jul./Aug./Sep. (1976), 4-5.

Schneider, G. M., and S. C. Bruell. Advanced Programming and
Problem Solving with PASCAL. New York: John Wiley &
Sons, 1981. ‘

Shortt, Joseph, and Thomas C. Wilson. Problem Solving and
the Computer: A Structured Concept with PL/1(PL/C).
Menlo Park, California: Addison-Wesley Publishing
Company, 1976.

University of Iowa: Weeg Computing Center, Proceedings of
1978 Conference on Computers in the Undergraduate
Curricula. 9th, Denver, CO, 1978.

Waksman, Abraham "The Introduction of Programming to
Prospective Authors of CAI Programs.'" Educational
Technology, 14, 5 (1974), 33-34.

Wong, Edmond K. The Development and Refinement of Guidelines
for the Use of computer assisted instruction in
Secondary Schools, unpublished M.A.(Ed) Thesis, Simon
Fraser University, 1974. Burnaby, British Columbia,
1974.

82

APPENDIX A - AUDIOTAPE LECTURES

. Q \
_ — o
e
Five cassette tapes‘ containing nine audiotape 1ectures are
attached to this thesis. -
: «
(nine 1ectures on 5 cassette tapes are attached to this .- o
. docunent)) .
AN
<2, .
. : o , Coeo
_ = o o i
) D :
¥
8
83)

APPENDIX C - THE STUDY GUIDE

KEASCAL Programming Eith VCSD PASCAL

A ohplieTirgcted Siudy Toutse

Shane Caplin

Simon Fraser UﬁiverSity

84

- . Preface

As computing courses attract more and more students, the
‘diversity of backgrounds of those students increases. With this
diversity and with the range of information in computing science,
everv possible help should be made available to the students and
thelr instructors. '

) Although tbé hagic principles of programming can be taught,
the only way to learn prograsming is by doing. And doing implies
a considerable amount of self-directed studwy.

This course has heen designed to incorporate newrapproa¢he$~.
“and exercises to the concepts and problens pres\/ted in most
textsoocks., It emphasises the self-directed studv agproach and is
hest complemented bv laboratorv periods in which the students can
ger individual help with their prohlems. .

F

<

-3

85

Table‘gg Contents

b

"Prefa'ce-.‘.."....C.-..'l'.‘l'...l......“l‘..-‘.I..'.............,.’85
r o

Introdll'ction "‘f"'-'IIIIIII...‘l..'...."....'.I............'88

Assignments, Project and Examinations88

I_tctures .‘..Il....l.."..l..ll‘.‘.".."..'.--'..‘.........88

f}Pen mboratory ‘..‘.l..’......."..l.'..l...".".'..-....89

TE&Chiﬂg ASSiStaﬂtS .I..I..l..‘.l.......'.......&.;.Q.I.:.Rg

Studyrcuide t-.--..-o...ooo..o.oqooo..oo.-o.o-.0.---.'00000.-..90-

Part A,......;.........,....,..........;..90
PATL B tissassiacsssssasaseacsocecsssscsvsochovcosencooneesdD
Part
Part’
Part

to.li..-oo..tt--tv--o-o---omm(ll....o.Qlobo..to.ooogl

a7 B e}

..‘..'....l.l....;.l.....'...O..'..-...l".'....O..ql

\
Introduction of ‘the APPLE—PASCAL SYSTEM L .iveeecocsssscccccseesd?

Hﬂg/dﬂes APPLE‘?ASCAL WCrk? 1:-..----00.".ot.------i---.gz

— Seme Technical ExplanatioBS ceeesceccecssgpossscsccccncinnssdl
‘The APPLE-PASCAL Filest..,;...éﬁg.................QA
SYSTEm FIleS ceuseerereccccncceasconcssnnccncsasnncnsnenesdd
Permanent Files,..:...........}.........u............gﬁ
Workfiles teeveuenenas T P e

A Sample Terminal S€SSION eeussssssaceocccososcsscccaanansensesdb

CHAPTER I .l.ll..l.;’........'....‘.1.....!..!..’;."..l..;l.:log
Reminder s---;--.-to--...---.---....---'-.-.-.---.;-0.3-011&

Part A: Read the Preface and chapter 1 of the text. ...l114°

part B: EXErCiSES o--.-'l.o--.--c--..m-t-n..---.-..t...nlls

Part c: VRggleCt SeétiGﬂ iiii".!.b.I.i;.l...III....I'I“llSﬂ

Part D: ASSigﬂmeﬂt 1 ...-o..--o-.--..o-..-.‘tt.o;...;;..llG

Part E. FlOWChartS--t.l.-...-...'&Q\¥¥nl-.¢-..-..p.117,

HORDINF‘t.-.o.-..--..---...---o--.T-.c.l'to--......u...lllls

Flowcharting Svmbols%......;......J....,.;......,.;119
Some Tips and Reminders ceiesesssresssescecsssesssssnesesl2d
I.‘EVEL OF»DETAIIJ .7.......I-.........‘........".'.'.....Q.-.127
, ‘ SN

CHAPTER II o.o--...o..;;lsoo.-.-....-..-...t'....-....;.;-;l..131

Part A -.l.-.-..-....-.-.-.u-.o-...r"l...-..'.---.--..131,

‘7 “POSSible COding EFFOF§ .-.---.oo'---.-.---.nn-..-......n-133

Part B -t-.-o.'........t"------o---....l..----...-.-.-133

ParI C- REfleCt qECtiOD ".“'.'..'.’....'..'.....‘.""13K

Partﬁn: ASSigﬂmEﬂt 2 u-...o..-...f...tl.;l.0.§...l.D’...laﬁ

C}{APTER I’II,..OOIOI....;.'I..I.I......l.‘..’;.‘.;.......Q.'....Ola_s
Part A: Read chapters 3, 4 and 5 of the Textbook138
Part B?'....0.0.g...'lhl

.Part D:. ABSignment 3l..l.......‘li...l.'..;........l&l

CHAPTER Iv ..l.'l.l........l.l.......l...Q.-.........l.....l..143
PrObIEm SOlVing ...D....D.....l.t.....’......DID.......A.143

a~

86

&5 N
%Ot!..’.O..l....'...l...lll.l..ltﬁ......'.."".It.gl

;K?v

T N ‘<
i .
. - v

§teps in Problem %o%?ing143,‘
Part A l..lt....l..l..I.........Ii.....‘.‘...l..l......1“5
?art B:'..................0..”....‘...‘..145

Patt C: R£f12ct Section0..00........o..o..oo.l.....I&G .
Patt D: Assignﬂent ":‘ -..y....,..o...».otoooq....&....6—“.01[‘8

Part E: Character Variables .ccceccececcccccccncccacesiold8

Assignment 5 S . 10

" ASSIGNMENT B c.eeevecsscecsecccsorsssiccscsssscsassnsascsldl
Flowchart NOLES .geecscccssscccscscsccscsccssccsscsccccscssaldl
Input Cons8iderations ec.sceeceecccsssercccsccccscscsscsessl5?
-THAPTER V¥s-..'......’.-.,e.........,...o..................158
PATE Al “sevesecsscesacacscscnssonanssesssssncssscascesssssesldB
“Clobal VariablesS .eeeecssessesasccscscssscavsccceccnconceselbl
PATE BI coeesisecsecscncaasacseecccasscaccassscsssssccesslbl
Part C: Reflect section .veesvevssevsovosevenecosasvnaealbl
Flowcharts and SUDPTOETaMS <evesevsevesovvovccossensveerslbl
" Part D: ASSIgNMENE 7 ceecveesccccsecccccssnscnscsiosccseslB2
PHAPTFR VI tiiossesesecsoassssainsssansansscssnsosssccasccsseslbl
Arravs and LabIES‘................;......s..;.....;......164

- Tiser-Defineld 7@{a CYPES cevececsescscrccscscscsscacosesesll
PATt Al seeToTeescasessosossssonssosavescscsccnssonsncesll/l

PATE B: cieececcennsescssessncnsscassocccssscnscsccnsseslll

~ - Part C: Reflect SECTION .eeeveosvecscsccsoscsasssoncnssall2
Part D: Assignment 8 ...ceceseeccscosscassonecccccscaccasl?2

C}{APTER \!IIl...l.....llll.l.l.I.llIl.l..lq.....:.'.........'1.75

Part A: ..'.l..lll.‘l'...._l”l.ll'.l.l..llil.Al.I-.'.»l‘l..ll.‘;_‘Ys

Part B: .o.ooooo.oodioné.oooo(oi-o.ooooo.oo..ino.;.onn.ol76

Part C: Reflect Section .secececcsccccccccccccessscncssesrallb
Part D: Assignment 9 ti;vivvvv;t-oo-tt;ttott;ototot'ogtflgl

>CHAPTER \’IIIN...I...l.l.Ill...ll..l..'...ll’.lll.,.l.l.‘.l.ll‘..llqlgs

part A: l..v'lnll..llll...'......ll:.....lltll.ll..l.l...l.lssr

Part B: -ou-l..l..ol.olvooooo.l.lil...o‘o.;’....n;oo00....186

Part D: Assignment 10 cveseccscncscscseciossncnssocssscslBb-

APPENDIX A tiseecccsccccccsesscscsesosioscsosnonssscncsessesscssceslIdl
A Guide to Writing Term ProjectsS ceeeesescscsccsceassseasldl
Project Proposal;........191
Sample Projects;..................................192
Solying the Problem ccc.scecceccccccccscoscececccssasnseeecld3
Program OrgAnization ieeesesssscscssssccccscssscssanscenceeldl
Internal DocuUMENLALiON ceeceesssccscsccoscsscsaccocsssccesesls
What to hand in as the completed Pro ject I L

APPENDIXB ..l'.....'.....l.....;.».;........l._.‘.....}...&...l.."..197
A Guide to Writing*and Submitting Assignments .eecececeecssl97
Introduction .l........x......l.....“.....‘....l......._’.'..0197

;“Example Assignment Writeup. of Assignment 1 . ieeeseccececssecssl99

EXAMPLE ASSIGNMENT TI’T-IJE PAGE“‘...l.“...““..‘..-‘....‘200

) : 87 . o .

-

lectures-

S
7 Introduction

R

This PASCAL self-directed study course 1is ﬁﬁﬁed‘ on this.
study guide plus the “"Introduction to PASCAL Including UCSD -
PASCAL" textbook by Rodnay Zaks., : .

- £ : N : T

- < - Ty

Assignmenfgj Project and Examinations

This 1is a self-paced - course.r It is-'designed to give you
maximum flexibility in determining your work schedule.
_Your instructor -will determine the length of time in which you

are to complete the ‘covrse and when gaterial is due.

: E "“"‘E‘a B
Examinations “based on the material covered in the lectures

,—',L./t

and the exercise®® in the study guide and the ‘textbook.

You are responsibl% for: ‘
- 1) All matetial covered duting lectures. oL ~

- 2) Submission of all assignments and the final
project : ot & ' o

3) Sitting for bath a, final writtep examination and a
final oral examination :

Midterm examinations wil; be given at certain - times ‘(to be

- announced) throughout the semester as preparation for the final
‘examinations. The purpose of the midterms is -to allow - the
“student .to assess his-or: her understanding. of the concepts and
material covered at key intervals throughout the . course. The

coursé instructor will determine the method of evaluation.‘ «

,

g\‘ . . et

.There are nine- audio' tape lectures covering = selected,

chapters of the study, guide,and the textbook. The purpose of
these tapes is to expand. upon the conceptual material presented

in the study guide and the textbook. and will serve ‘to broaden

the scope of the students understanding of the course material. .

o X T T * ‘b

88 - - .

)

Open Laboratory

There will be several open Yaboratory periods each week. -
Laboratory attendance is not mandatory but you should attend two
or three sessions a week, Self—directed study.does not mean
doing everything by yourself. Do as wuch as you can on your own
and then ask for help in the labs.

Teachiq& Assistants

Your assignments will be marked by the teaching assistant to
whom you have been assigned, but during the lab periods you may
get help from whichever teaching assistants are on duty.

This arrangement has the advantage of givigg you a variety of
approaches to solwving your problems. , -

~r

. - o Study Cuide

The study gﬁide is divided 1into eight chapters and two

appendicies and deals with chapters 1 to 11, chapter 15, and the
appendices of the textbook.,

Chapters 12 to 14 will not be covered in this course.

As the sequence of probleas is not always the same in the study -
guide as in the textbook, it is best to check the study guide
carefully.

Each chapter of the study guide i1s divided into parts A,B,C
and D, with sometimes an additional Part E.

Note that the chapters in the study guide are designated by

roman numerals -I,II,I1I, etc., and the chapters in the textbook
by Arabic numerals - 1,2,3, etc.

Part A

Part A is a reading assigmment, in which you will be told to -
carry on reading the study guide or to read certain portions of
the textbook.

Part _§_

Part B suggests exercises from the texthook which should
provide a self-check mechanism fo make sure you have learned the
material. Sometimes the exercises will also point out alternate
‘coding’ methods and important ‘statement’ limitationms.

Some of the exercises are of the short quiz type, others may
require an extensive amount of work. You are not expected to
attempt all the exercises. Do as many as are necessary to gain a
firm grasp of the chapter material.

The exercises may also be used as a source of help 1f you
make a note of any questions or alternative solutions that you
would like to have checked in the lab. periods.

Midterms and final examinations are based on the exercise
problems.

=

-

- 'Appendix L -of -the -—-textbook —contains answers to selected

ODD-NUMBERED exercises. ¢

90

Part C 'consiata of a ‘reflect’ section which contains a few

questions to help you test your knowledge of the chapter, or to

bring specific points to your attention.
2 . ”

Part E

"

>

Part D contains the asaigf;nent. The way in which the
assignment is to be prepared and handed in is set out in detail
in appendix B of the study guide.

Your T.A.’s comments on each assignment are used as a
teaching technique, so it is best to hand in one assigmnent at a
time to avoid losing marks by repeating errors,

Check with your instructor if you do not plan to follow this
pattern, ' : '

ki

Remember the staff are there to help you, 80 make use of

their assistance.

Part E !

Part E includes material which 1is specific to’ a -given
chapter but which doesn’t fit into any of the other parts.
This part may also contain additional assignments.

The next. section 1s “an introduction to the APPLE-PASCAL
system. If you are already familiar with the APPLE-PASCAL system
turn to chapter I of the study guide.

v

91

Introduction of the APPLE-PASCAL SYSTEM

“The parpose of this writeup is to explain briefly how PASCAL

uorks and to provide you vith a lhort ovatvicw of the

: actunl :er.innl session. This uriteup is 1ntanded to get you
started with your first session on the terminal and contains only
a very small portion of the many APPLE-PASCAL system co-anda
available. ; , . .

In order to make use of the full power of APPLE-PASCAL, you
will need to read the APPLE-PASCAL Operating System Reference
Manual as well as the APPLE-PASCAL Language Reference Manual.’

The APPLE-PASCAL system can be thought of as an. electronic '

system which stores information in the form of files, the same
way you would store Iinformation in a file cabinet. That
information may be an essay, a business document, or in this
case, a PASCAL program.

How does APPLE-PASCAL work?

The APPLE is a micro-computer ~ a small computer dééigned to
fit into a very compact space.

] Like any other computer, large or small, its function is to
process very simple instructions. Although the instructions are

simple, the way all computers accomplish their work is through a
complex sequence of these simple instructions.

 be brocessed at various levels, from simple to conplex.

In order to process imstructionms, every ‘computer has several
thousand storage locations which are used to:

a. store the instructions
b. store the data relating to those'inst;uctions.

For example, the computer had stored the instruction "ADD 2 + 2",
it would also have to store both of the 2’s as data.

B

92

The - basic hardware of the computer responds only to
"low-level” machine language instructions. As machine language
is extremely tiresome for human beings to work with, most people
write instructions for computers in "high-level" languages such
as PASCAL. The instructions are then translated into a low-level
language (machine language) which the basic hardware can
understand.

The instructions for doing the translation from the high
level language to machine language are themselves usually written
in machine language. These special machine language instructions
are known collectively as the compiler.

Even though the work is slow and tedious, there is a good
reason for communicating with the compiler in machine 1language.
The resulting code (a term for any high-level or low-level
computer instructions) is far more efficient than a code derived
by first writing the instructions in a high level language.

As the compiler will be used time and time again to

translate your high level language, it is important that it be as
efficient as possible.

Some Technical Explanations

1. APPLE is a computer

2. PASCAL is a high-level language

3. The computer responds to a low-level (machine) language only
4. You will work with PASCAL, a high-level language

5. Sets of instructions in any language (high-level or
low-level) are called programs

6. There is a '"go-between" between your PASCAL instructions and
the necessary machine language. This '"go-between" 1is a
program called the compiler. The "PASCAL compiler translates
your high-level language PASCAL to a 1low-level machine
language

7. The machine language resulting from the compilation of a
high level language is usually called object code. In the
case of PASCAL it is called P-Code

8. A person who writes instructions for a computer is called a
programmer

93

The APPLE-PASCAL Files

A file 1is any collection of statements , commands, data,
etc. which you type on the terminal. In order to make use of
this way of ‘filing”, it is important to understand the
APPLE~-PASCAL disk filing system.

APPLE-PASCAL files are divided essentially into three groups:
system files, permanent files and work files.

System Files

These are files containing all system programs and are used
to:

a. prompt you at the terminal and interpret your response,
i.e. they control the E(DIT mode, F(ILER mode, etc.

b. process your PASCAL program, i.e. C(OMPILE and R(UN
modes. '

Do not worry about "E(DIT, F(ILER, C(OMPILE and R(UN, etc. at
this point. They will be discussed in detail later.

Permanent Files

These are files which you create and store under names of
your own choosing. You may work on them by "G(ETing" a copy into
your workfile, making the necessary changes and re-saving the
file.

94

Workfiles

During any given session you may create or work on more than
one file. Your workfile is a copy of the permanent file on which
you are currently working. The G(ET command in F(ILER mode will
put a copy of any permanent file into the workfile.

When you choose a permanent file to be worked on as your
workfile, the original of that file is left unchanged. If you
want to incorporate the workfile changes into the original file,
you must re-save it.

This is analagous to the process of making a photocopy of a
file in the file cabinet, making some corrections (this step may
involve retyping the file) and replacing the original file with
the updated version. If the updated version for some reason 1is
not put in the file cabinet, then the original file still remains
as the current version. In other words:

- If you start with a permanent file called INFO you use a
copy of it as a workfile, leaving the original in the "file
cabinet".

- If you do not make changes to the file called INFO in your
workfile, there is no need to go through the S(AVE routine.

- If you do make changes 1in the workfile and want to keep
these changes you have two options:

1) Give the change file a new name e.g. NEWINFO and
S(AVE it. This now gives you two permanent files,
INFO and NEWINFO.

2) If you don’t want to keep the original INFO file,
S(AVE the changed version, keeping the name INFO.
This destroys the old version of INFO and puts the
changed one in its place.

File names may not be longer that 15 characters including the
" TEXT" suffix.

Read the "Introduction and Overview" sections of the

APPLE-PASCAL Operating System Reference Manual before going on to
the following Sample Terminal Session.

95

A Sample Terminal Session

Place the diskette marked Applel APPLE-PASCAL into the disk
drive marked with a 1 (This is also known as VOLUME #4).

Place the diskette marked Apple2 APPLE-PASCAL into the
bottom disk drive marked with a 2 (This 1is also known as
VOLUME #5).

(It is possible to use APPLE-PASCAL with only a single disk
drive although this 1is not recommended. Your instructor
will advise you how to proceed with these two steps if only
one disk drive is available.)

Turn on the Video Monitor (As there are several different
types of monitors, see your instructor if this step presents
any difficulty.)

With your 1left hand, reach around the back of the computer
(this is the body on which the monitor wusually sits) and
flip the switch to "ON".

The "POWER" light on the keyboard will 1light up and the
computer will come to life with a loud "beep". At this
point you will also see the red monitor 1light of the top
disk (VOLUME #4) light up and the disk will start to rotate.

96

This process of turning on the computer is called "booting
the system". In approximately seventeen seconds the
following display will appear on the video screen:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN

WELCOME APPLEl, TO APPLE II PASCAL 1.1
BASED ON UCSD PASCAL II.l

CURRENT DATE IS da-mon-yr

(C) APPLE COMPUTER INC. 1979, 1980
(C) U.C. REGENTS 1979

The "APPLE1" in "WELCOME APPLEl" may be changed to your own
name and "da-mon-yr'" may be set to the current day, month
and year.

At this point you should begin to read the APPLE-PASCAL
Operating System Reference Manual and become familiar with
the various modes and levels of the APPLE-PASCAL commands,
i.e., E(DIT, R(UN, F(ILE, etc.

Consider the problem of being invited to exhibit a
painting at the 1local art gallery only to find that your
allotted space was half the width of your painting. One
solution might be to cut the picture in half from top to
bottom and display each half separately. The APPLE-PASCAL
system has a similar problem to which they have applied the
same solution.

APPLE-PASCAL allows 80 characters of PASCAL code to be

typed on a single line but the video monitor can display
only 40 characters per line. To solve this problem APPLE

97

has introduced the concept of the "half screen". When we

- "boot™ the APPLE—PASGAL system we see only the first 40 * s

down the ‘key marked "CTRL" press the key marked "A".
YOU MUST HOLD DOWN THE "CTRL" KEY FIRST BEFORE PRESSING THE
A" REY!

This feature will be referred to hereafter. as "CTRL-A".
During the course of ‘your work with the AFPLE-PASCAL system,
you will become familiar with other control sequences such

as "CTRL-X", "CTRL-C", etc. Remember to always hold dovn‘

To see t’!ie second half (right hand side), while hqldtng" :

o\

the "CTRL" key first before pressing the aecond key. § D
e e e J . - ,’_ : _ . i T e e e e
T . § «
, B _ 1
N
Y s
oo- i .
. L. o he o o . e
-)) e . :
.) . » “ . Y.
. x) |
1//'"?"" —‘\ A\ - e
7 %
]
98 -

5.

Now you should see this:

of the screen.

The first atep in wzittng— a PASCAL program is to create a

file to put it in. Although there are several ways to do
this, the simplest one is to go directly into E(DIT mode by
pressing "E” on the keyboard. 1If a workfile (refer to the
APPLE-PASCAL Opersting System Reference Manual if you are

‘still not familiar with the concept of a. workfile) already

existed, it wouId nowv be "loaded” (-nde available for
editing). ,

100

, / . If you are using a brand new APPLE] disk and do not yet have
: b a workfile, when you enter the E(DIT -ode, the screen will
- - - ditphrthtfoibvﬁginfomﬁmrf S e s
i Ty
)EDI’I'
NO WORKFILE 1S msm FILE? (<RET> FO
fi; . & : S v‘r)
) S -
. -
P S
- , .
-] S S B e
> A Y
(J .

The
message if you press "CTRL-Aﬁ

h

right hand side of the screen will show the rest of the l , y

—

)EDIT‘
OR N0 FILE (ESC*RET) TO EXIT)

K]

Having seen the rest of the-méssage it would be. a good idea

to get back to the left hand side of the screen as this is
usually the side.most worked upon (Press "CTRL-A" again).
The message. on the screen tells us that we have two
choices:
a. J»Présgﬁthe "RETURN" key to stay in E(DIT mode or
~_. b. Press the "ESC" (escape) key followed by the "RETURN"

key to leave E(DIT mode and returm to the "outermost”
_command level we were at before.

101

Since we want to write a PASCAL program, press the " "RETURN"
key (only) to stay in E(DIT mode. Having donme this you will
notice that there are a new set of commands belonging to the

~

E(DIT mode: , ,)

>EDIT: A(DJUST C(PY D(LETE F(IND I(NSRT J
|

PRI

102

w i

The right hand side of the screen will show the rest of the
commands (Press "CTRL-A"): ’

' (MP R(PLACE Q(UIT X(CHNG Z(AP [1.1]

Don‘t forget to come back to the left hand side of the
screen. (Press "CTRL-A"), :

103 e

We next want the command I(NSRT to start inserting lines of

text into our workfile. Press the key "I" to enter I(NSRT——_
(insert) mode.

On the left hand side we get:

>INSERT: TEXT [<BS> A CHAR, A LINE]

104

and on the right hand side:

4

x>

By now you should know how to use the "CTRL-A" feature

to switch back and forth between the left and right hand

sides of the screen 1in order to read the complete set of
~ "I(NSRT" commands. These commands allow for the following
choices: T . :

a. Press the backspace key to delete a character that is
not wanted

b. "DEL" means press "CTRL-X" to delete the entire 1line
you are working on '

‘ce "EXI" means press "CTRL-C" to make the lines you have

just,typed,1ngafpernanentuaddition_togyourgworkfile

K§.P;ess the "ESC" key to ggL411d4gfggxgzy;hingggynugghaxg

typed 1in since your most recent entry into "I(NSRT"
mode

105

—~

The cursor (the white: square which indicates where on the
screen yot you are about to work) will Qs/seen at the top left
corner of the screen. This is where you will start to type

in your PASCAL program under the insert commands.

Now type in the following progrkn.’ Press the "RETURN" key

at the end of each line in order to begin a new line. o

&

Again, remember to start typing under the insert commands.
Do not type in the folowing line:

"SINSERT: TEXT [<BS> A CHAR, A LINE]}".

This 48 an APPLE-PASCAL system prompt, not*parr of the '
PASCAL program. ’ o D

Fr,)INSER.T. TEXT [<BS> A CHAR, A LINE] °
| _ PROGRAM SUH(INPUT OUTPUT),

(* THIS PROGRAMS READS IN TWO NUMBERS *)
(* AND PRINTS OUT THEIR SUM *)

VAR NUM1,NUM2,TOTAL :INTEGER;
BEGIN
WRITELN(’ENTER TWO NUMBERS?’);
(NUM1,NUM2);
+ =NUM1+NUM2 ; :
WRITELN(’THEIR SUM IS * TOTAL)
. END.

|

,;7,

When you have finished typing the last line press "CTRL-C"
" in order to enter these lines permanently into your workfile
and return to the E(DIT“ level of counands.

8. To
T “level, preay Q" to (UIT. T

“The above prompts allow you to’ nake one of five- posstble"””;
dectsions ~concerning your workfile (Your workfile contains

leave the E(DIT mode and return to the outer-oat co-.nd

U(PDATE THE WORKFILE AND LEAVE

E(XIT WITROUT UPDATING .

R(ETURN TO TRE EDITOR WITHOUT UPDAT

, W(RITE TO A FILE NAME AND RETURN

" S(AVE WITH THE SAME FILE NAME AND RETURN

the program you have just typed into the couputer.)

ae.

Co

U(PDATE - keep a pernanent record on disk (your APPLEli v

~.or APPLE2 ‘disk) of the work you have just typed in_ °
““pefore returning to the outermost commamd level -

E(XIT - throw out the work that was ujust typed 1in
before returning to the outermost command level. No
" record of the program that was juat typed in will be
kept

R(ETURN - Go back to E(DIT’node. (You may have. just

remembered something you forgot to type in, the may -

be some corrections to make, or you may have typed "Q"
by accident while still in E(DIT mode.)

W(RITE - save the "workfile™ as a pet-nneni file under
a name of your own chnosing and then return to the
outermost command level

S(AVE - if the "workfile" " vas a copy of a file already

in existence, you may re-save this latest version under
its old name. (To understand how this feature works,
see the G(ET command in the APPLE-PASCAL Opern:ing
Systen Reference Manual.)

9. In response to the above pronpts, press "U"™ for "U(PDATE".

This. will cause your workfile to be .updated on your disk’

under the name "SYSTEM.WRK.TEXT" as a permanent record of

. your program. Since "SYSTEM.WRK.TEXT" will always be the

name of any file or progran ybu are ‘currently working on, .

this point 1t would be a good 1dea to read-nbout the”“S(AVE“
command- in the APPLE-PASCAL Operating Syaten Reference -
Manual. Also, find out how to display all your file names.

107

10. You should now be back at the Outemoﬂ'f ca.lnd lml. ' - o

: ' Press "R"for "R(UN". / ' e
T Tais will set the “stage for the Fxsm»mxn 0 process ,
' ‘ and execute your pmgr-. 'ﬂxis pr],, taket phcc CIntwo e

8@ 8. - ’(’/ \' /\’Lg / o
b} 4
. P ‘a. the "c(oMP" (caapﬂe) stage m ich m pm is
* "~ checked for nynux (speuing etc.a.) rrorc and
I) - / ; l’
“b. the "R(UN" stage 1in which ﬁh ea-pitut un:lon 1s o
executed, 1.e., in the progtam you just typed {n, you - ¢ -

should be prompted to "ENTER TWO KUMBERS?™. Eater two .
rs uparated by at least one space. (s
At this tmuke gure then-of thetw mtt
will not exceed 32767.or =32768. The reason for this]
“testriction will be discusssd Iater omin the cmu'““‘ I S
S Do not worry. APPLE~PASCAL allows y '
. larger 1nteger nmbets when muury.

S lhving entered the two nusibers Jthe program will
D “proceed to print out their sum, after which, its work _ -
- o being done, the progm will stop. - , , -

" 1l. There may however be one Qu.gi!t ptohlu If you did not
' type in the program correctly, processing uill not pass the
' compile stage. Any errors datacted will be mw the - o
screen and you will be pro-pud to either continue, or ’
~ revert directly back to "E(DIT". wode. If this is the case
'you should go directly back to "E(DIT" mode and attempt to
correct . the error. . You -msy not recogrize just whers the
error has occurred. Seek help from your TA or Imstructor

when necessary. Do not mte tian vdth randoa guesses.

~ Once you have detected thc mor, you will need to uu -
use of several -of the “E(ﬁﬂ‘ mem R
- screen editor. This means thst you mske changes to the a
lines of text ditectly on tha video mouitor by first moving
the cursor to the place in the text that you wish to change
and then using the "E(DIT" commands to A(DJUST, G(kﬂ (copy),.
D(LETE (delete)‘ I(NSRT (1:..;':), ete. . e T

Do not put of f leatning hov to m the "acm pditot" You <

can become expert at it in a very short while and this = -
knowledge will serve you n‘ll thrmghom& this course and '

into the future. i , . P

12. Once Your Prosra- hns co- i -na Fun cotroctly, plenu “do

pl

The objective of this self-directed study course is to develop -

the students’ computer programming knowledge to a level such that
the student will be able to utilize this facility as a potential

tool or aid W@g\

Problem solving is not new. Ve m« aﬁm

problems for years. Generally, the same basic approach that one

would use to solve & problem msnually will provide the bast
computer solution as well. Normally it will require more effort
to solve a problem fpr "one casq” using a computer than it wold
_take to do it msnually. Hence the effort of programming is iy

justifisble where considerable repetition in some forn or am

other is involved.

. m human ability to ”rfnn -ny 'i.p]" actions in’ m mp e —
is our biggest hazard when trylng to create computer solutions

for a-.aproblem. The computer must be told every last detail of
‘every step. For example, have you ever considered what 1is
involved in the simple action of coumting 1,2,3,4,5 etc. First,
what is 1,2,37 It is a sum, kept in a particular location of our

memory. A sum of what? A digit ome, from an other locatiom of

our -uory,’ added to the previous sum. But, how did the

proeeu get started? I’or us, starting the process is "common

sense”, we aluuys begin at "one" However a computer has no

"common sense"”., It will hngin counting at eight or nine or.
wherever it is told to start cmmtin'g.' I’urtb'cr, a computer does

not automatically have either a "one" or e "place to hold the

sum". Both of these must be requlted" along with all the other

steps required. .

" To Jmliiy_m,_eg-mgth Mteu nrio’ui

s e

e e o

lnnmm have been developad. The language you will be using
is PASCAL. Once a knowledge of the PASCAL hguge has been
acquired, you can “state’ your computer requirements and problem
solution steps in PASCAL rather than in your own langusge. But
PASCAL is still not the language the ca-puter understands.

The co-puter s language is umlly tcfemd to as -u'him
-language” or in the case of PASCAL it is called P~Code. Although
machine langusge is not the concern of this self-directed stidy
course, since a special "go-between™ called a courn.n .or

TRANSLATOR handles this final communication step, some mrmn'”=

of ugat the computer "looks like" is mrthvhile.

109

e gy e =

For programming purposes it may be wuseful to think of the
computer as having five basic components:

PROCESSING
INPUT _;;
DEVICE STORAGE ggiﬁgg
/
CONTROL

1. Input Device -

This is similar to our eyes. It reads and makes data
(information) available to our system.

2. Output Device -

_ This is similar to our voice or writing. It makes
results or answers available to others.

3. Stérage
This is a warehouse for:

a. input data - each element of information must be put
into a separate "box" in storage.

b. output data _% every answer or result must come from a
"box™ in storage.

c. intermediate results - all "work in proceés" must have
its own box as well.

110

4. Prdceééing -

v This changes data coming from storage by adding data
elements together ,comparing two data elements and noting
which one is larger, moving data from one box to an other
box, etec. All "results” of the processing are returned to
storage again. Usually a new "box"™ is used but sometimes
the new results may be put back into an old "box".

5. Control -

This is the overseer. It keeps track of the program
and directs the computer to do the requested steps one after
an other.

Now, let”s see what happens to our five components when
the computer works out the following problem which involves
two data elements, referred to as X and Y. S
We want the computer to read these two data elements, add
them together and print out a result, referred to as Z.

fCoﬁtrol" always takes the initial responsibility. The
necessary steps to solve the problem might be:

STEP 1:

(Beginning of PROCESSING
a program.)

INPUT OUTPUT
DEVICE STORAGE DEVICE
NEW PROGRAM
FIND BEGIN STEP
CONTROL

111

storage locations) :

DEVICE S D ¢ Y oz

SET UP BOXES I s
FOR X,Y,Z2 _ o T

CONTROL

(STEF 3: .. | PROCESSING B
, (Putting values T A
into storage °

locations.) | L

’ B 110
X =10 fei :
Y =15 9‘ ’

. INPUT DEVICE = ., \L =

B) REED E VEI:UETUKXY”W*' I S S

L \mou INPUT DEVICE

L 7 .. CONTROL

’. STEP A . .10 4+ 15 = 25 .

. (Performing the E , S _ - s A
 actual processing - ’ ; \' 4 ' '
of the program) STORAGE B . ,

T {30 J { 15] |25 | - pEvIce

| pEVIE | A B G

= . - | SEND VALUES X,Y TO
, | ‘PROCESSING, ADD, S
| RETURN Z TO STORAGE|

CONTROL | ~ .
S112 L

: g RN
STEP 5: - PROCESSING o *"
* (Printing out -
- the results.) L -
.) STORAGE
INPUT 10 15 | |25
DEVICE '
- - X. Y z
PRINT THE VALUE FOR 2
ON THE OUTPUT DEVICE
CONTROL
STEP 6: | PROCESSING S
(Ending the
process.)
Y
INPUT ,
DEVICE STORAGE,
STOP THE PROGRAM ’
CONTROL
7 : N
113 -

Reninder ‘

During yOur readings of the text and atudy guide you nny
coggmgcrog certain terms that do not make sense to you. Please

[

come to the Lab. We shall be happy to discuss these terms
further and provide answers to anything that may be puzzling you.
Come and ask questions. That’s what we are here for.

Part A: Read the Preface and chapter 1 of the text.

Pay special attention to the section "Algorithms and Data -
_Structures”. It is almost impossible to sit down and code a good
solution to a programming problem at a terminal. Some people try
it but this approach usually results in wasted time and an
inefficient, sloppy solution. And more often than not the
solution is incorrect. ' :

Note that we will be using UCSD PASCAL on the APPLE~PASCAL

microcomputer system. _The UCSD additions greatly enhance the L
- PASCAL language and you will find it worthwhile to incorporate :

these features into your progra-ing.

RBAD and WRITE (also READLN and WRITELN) statements are
commonly referred as the 1/0 (Input and Output) statements. All
programs must produce output and most programs require some form
of input. Can you think of a computer program which doesn’t
require input? .
Note: P
The main example (the second one) in this -chapter ' of — - — -
the textbook is a numeric one. The prime reason being
that numeric problems are shorter to describe and
shorter to "code": If any of the material presented is
confusing, seek help; do not struggle or avoid the
‘igsue. Your main emphasis should be on the order (when
to do what) and on the use of PASCAL syntax, not on'the
arithmetic.

&

114 ‘ e

~~code relates to each step of the solution algorithme

~

Decumeutation and readability are extremely important in the

use of any\progranning language.
Written comments inform the programmer how, “when and where the

.Indentation clarifies ‘the code and shows the dependence ‘and

Part 21_ exerclses

= -
’

Exercises are included after every chapter of the text.

Their wvurpose is two~fold. One- to provide a chance to -

reflect on your reading "and 'two, to provide, an

opportunity to point out "limits" or "problem areas"™

" . = for certain instructions. - If any of the exercise -

and ask us about them.,

4

.. Now try the exercises for chapter 1. Check your answers with

‘questions or-answers do not make sense, come to-the Lab -

fh&se —at the . end of the Teftﬁook*;::’ B — I

-

Pert.gi "Reflect section ' . : h .

1. Where in the program would you find the following statements

a, PROGRAM
- bo vﬂ : 5 .’.‘ N i
- = .

2. What PASCAL statement 1is required to display (print)
information on an output device?

N
1

3. - What PASCAL statement is required to bring information into
the computer from an input device? ~ &= :

4y Which of the following are NOT members of PASCAL'S pefménent‘
vocabulary (keywords)? _

e - PROGRAM | .
Lo . \ ' . ° ‘ - - l oL "

————

VAR
SU’i'i . ». v - - »
" READ
A

WRITE. . .
If you cannot answé; the above questions: you should re-read this
chapter ard seek help from a T.A. or Instructor. -
i ' ')
Make sure that ‘you understand all the concepts of chapter 1
before proceeding to chapter 2. You will often find that when
sowe,ﬁdtgr%al»on,the page you are reading doesn’t make sense to

y you,'flﬁe _reason is that you hdve missed some of the information

w

4 . : : e
Please hand 1in your assignment ONLY during the scheduled lab.

on an earlier pdge.
y L]

Part D: Assignment 1
" Sign onto the APPLE-PASCAL system and:

2

computer

b. Compile and Run the program (Both steps can be done by
issuing only the R(UN command). .

c. Hand in your C(OMPiled version ONLY. In order to
obtain a compiled listing of your program, type in the
line (*$L*) as the first line of your program. Doing
this will ‘produce a file on your APPLE 1: disk called
SYSTEM,LST.TEXT. You can then T(ransfer this file to
the printer (PRINTER:). Make sure that your apple 1is
connected” to a printer and that the printer is turned
on before attempting to print out your listing.

: No other work, i.e. flowchart, user documentation,

etc., need be handed in with this assignment.

periods.

116

SA. Type the‘ program on page 8 of the textbook into the

* -

Part Ei Flowcharts

‘On page 2 of the textbook » you are introduced to the
concept of an "algorithm" - a set of steps which must be followed
sequentially in order to solve a° problem. The examples of
written solutions which follow in*the'text~are'AStraight*‘forward—*
and wunambjguous. However, ,\problems get more complex, the
written solution tends to become less <clear and more open 'to -
' ambiguities. @ The clarity of the written solution is completely
dependent wupon the 1logical- way in which you present your
algorithm. - -

“

Program development is greatly improved when the solution-
algorithm can be expressed clearly and unambiguously. One method
of achieving this is through an illustrative diagram called a
flowchart.

The flowchart, a series of box-like symbols, charts the flow
of the reasoning you followed in solving the problem. The uses
.0of some of the different shapes are shown on the following pages
of the study guide. Each box contains an instruction or a set of
" instructions in a natural language, in this case English, and
represents a single step of the solution algorithm. The lines
connecting the boxes have directional arrows showing the order in
which instructions are to be carried out next.

= +

Hence there is never any doubt as to what the steps of the
solution algorithm are, or the order in which they are to be
implemented. Control of the algorithm flows from one box to the
next until the solution is complete. - -

Since flowcharts are .unambiguous, they are a valuable tool
in. communicating an algorithm from one person to another, eg.,
from the problem solver to the computer programmer. . (On large
programming projects these jobs are usually performed by
different persons.) -If the flowchart is very detailed your
PASCAL code can be derived almost directly from the boxes.

Finally, the flowchart plays an important part in the
documentation of all computer programs. When programs have to be
changed or modified, it is often easier to understand the 1logic
of a program by referring-to the flowchart rather than to the
actual program. :

Some textbooks present a hierarchical approach to flowchart
design, what is technically called a "hierarchy flowchart", - In a
hierarchy flowchart many steps are condensed into one single box.

— [T - -

~
117

As -the 'eﬁphasis in this course 1is on detail design, we

prefer you to use the detailed flowcharting methods set out in
the study guide. Flowcharting will be discussed more fully in
the course lectures. C R S

There are many*ﬁétho&s*ofﬁdetzii'rowthxrttng*btherLthxn‘the -

one presented hére. If you wish to use one of these alternative
‘methods on your assignments, please consult. your—T.A. or
Instructor before handing in your work. T~

—

WORDING

Trykto use everyday language whenever possible:
€.8e S

-+ ¢

Read A,B,C or GET A,B,C not READ(A,B,C) or READLN(A,B,C)
Reserve storage for X, Y mnot VAR X,Y :INTEGER
A=B not A:=B;

Certain . PASCAL type .statements have been accebféd“ as
"abbreviated English”. These may be used on the flowchart.

A=B or - A< B
SUM=SUM+1 or SUM <- SUM+1

118

Flowcharting Symbols

NOTE: Use flowcharting templates available in the bookstore.

They will save you hours of time. -
_ START ' START and STOP -
)
READ .
HOURS, WAGE ’ .INPUT and OUTPUT
(1/0)
SALARY = - L
HOURS x WAGE ' - PROCESS
} ~
. 7\\
DECISION..
’ [
‘?‘ \‘
’
, INVOKE PROCESSING MODULE INVOCATION
[CALC(ALB) 1) ““{Invocation of a SUBROUTINE

or FUNCTION)

119

Of fpage Connector

(Oripage Connectors exist but should .
never be used in a structured . -

1 flowchart) B
[]
)
— _ .| WHILE L AUTOMATIC REPETITION LOOP I
! A >1Do i.e. WHILE -- DO
l T-
| Broken lines
| 1indicate
details of
I process which ¢ -))) .
| 1is to be
repeated as o *
I long as
;1 A>1 b
| ‘ o
I
.
i

. This symbol is a junction at which
several lines meet - makes the
flowchart neater.

$

| €————— This line indicates that the
: repetitions have been completed

and the process continues to
the next step.

120

DO

|

|

]

| fndicate details ®

| of process which
is to be *

| repeated 5 times @

| with differen ®
I .

|

|

|

I

. Broken-lines - ' -

N

. AUTOMATIC REPETITION LOOP II

i.e. FOR —— DO

This symbol is a junction at
which several lines meet -
makes the flowchart neater.

This line indicates that the
repetitions have been completed

-and {the process. continues to

the next step..

121

' AUT(R{ATIC REPETITION LOOP 111
i.e. REPEA —_— UNtIL///?/ -

1
N
.

|
l

(————- This symbol is-a jum:t:tonﬂt
! " which several lines meet -
I D .. makes the flq‘g:herf neater.
1
| s o , .
| Broken lines A _—
| 1indicate ° ' -
; details e .o
of process ., .
' which is to, .
| be repeated - ® s
| as long as N SO
B2 .
e e o .
| .
1 »;jﬁ,m L
1 | ‘
L | revmar mrm: .
B>2 v
S - s : . P
e < i This line indicates that the
B D repetitions have beefi completed
and the process continues to
. . the next step. ,
L S _ ‘ -
NS 77;7
/ R
122

— } i, CASE.statement

‘Selection stateuient' \

=

€—— One exit per label

o i 7 o T T
|
. 1u=., . i N PP A ;

>! _PROCESS 1

——

2:
——> PROCESS 2
4 -
. \\
:) - 7 i a V \l
PROCESS N : |
%
‘ . W
e (H . - o
I emmm— This line indicates that selection
has been made and subsequent processes
completed. Process goes to next step..

123

S e e J— S

Fldwcharlt of Assignment 1 W)

s !, - - - P - - T T T - - ——— - ——e e s h, e e e e
TOTAL = A+B

PRINT
A,B,TOTAL

124

d. BOOLEAN - the representation of TRUE and FALSE
conditions.
All computers function on the basis of certain
conditions being either TRUE or FALSE. This 1is also
true in most programming situations. Setting an
INTEGER variable to 1 or 0 to handle a TRUE or FALSE
situation would produce the same results as the BOOLEAN
TRUE or FALSE. However the BOOLEAN approach uses only
one eighth of the storage requirement.

~MAXINT and +MAXINT are useful for file manipulation in a
data base environment. Do not worry about their application
at this point.

The remainder left after a division can be obtained with the
MOD function. Since division is usually performed to obtain
a quotient, the usefulness of the remainder is not readily
apparent, but consider the following:

Suppose with a budget of $12000, we wanted to buy computer
terminals at $1073 each. If we used our entire budget to
buy these terminals, how much money would be left?

Solution_l:

Keep subtracting 1073 from the original 12000 until the
amount left is between O and 1072)

Solution_g:

Use the MOD fuction to find out how much remains after
dividing 12000 by 1073

Another useful application of the MOD function is the
generation of random numbers. This technique will be left
to a future exercise.,

The ABS (absolute value) function is used to find an
absolute difference between two values where the positive or
negative aspect of the number is irrelevant.

For example:

Suppose we need a program that will take as input the hockey
scores of two teams and print out the point spread between
the winner and the loser. By using the ABS function there
is no need to worry about the sequence in which the team
scores are input into the program (winner followed by loser
or visa versa). Whether the subtraction produces a positive
or negative result, the ABS fuction will always give a
positive result. ’

139

- ¥ L
- -7 s - i
. P < © .]
’ T)
! ’ Fe L >
. . S
! : b ¢ s T
< ! e

‘ 'e. The wording should.. be. ‘kept4 brief and ia eve:yday e o
T T Iingusgé" avo{alng thh use 6f' “PASCAL lapguage if ‘ ,

R SR

"7 i

f. ;5The ftowchlrt thoalﬂ be etsy to understand. : 5;*

< . g. It should show alI log;lc and input/output steps - ..
separately. v o S

s
\

. ha "Auton‘tic Repetition”) constructions should _have
:‘ R . dotted linea without arrows. . :

ot

. -
' ra Al
v)) -
& - -
r 4
o . - _ - - -
% ’ . - . .
B @ i
[N . . L
ot - . s e - . . . o ¥
- o o ¢ : . . . - L L
o - '
N 7 -
S {
v I
- S - .
-3 . - ¢ .
: - [EN . 3
= Syt sl Tooo—mio o = iy - 7’,(* gt — == S T St o — — oo ——— S— gt ———————————
= LN
»
\
- "
3
< L
e
L
- .
. &
' 1
.
. - < “
Boue
- I - e - LR - e - —
IS
e =
-
4 i
e =
- .
S i ~ T =
v
\ s
\ ’ - @
B .
-
. : E .
o s +
3 g 5
” .
<
N - -
& o
¢ hd .
.8 rx\
\] . - A
- . Y + r : N
s . .
e -
.) e
@ T
. . .
3 - o -
. e R _ 4
N & "
N a . - e
o B - ¢ - o 4
\ -
x B Ki
bl s - - .
’ - <
/'l/‘ 4
. N
. r . - a . ~
. X :
¥ -
. - "
S . L e i R N - e x i _
t -
. . .
. M
] B b
(Z - * s «
© : . i
! S LS)
A - »
’ oo 126 - ' e
“ - Sy o, % . T .
. .
- -
. - - n o ® .
. , -
A - P

N N
I.EVELOF DETAIL e
e Use separate bloch for uch type of activity nuch na'
reading, calculating, printing and logic. = .- S .
" Similar statements may be grouped if the time tequencc in the N
‘'same, 1f "no logic decisions are involved and if a suita‘qu
description is_given. - ot
’ -~ NO -~ The logie required to
. - g . alculate ODD SUM :
¢+ DKAY 3 ¢ g
KA ' ' must be spelled out
-t “READ - y - - READ v f e S—
A,B,C,D A
:
. 1
B} } %, _ B ST S
L y
= ANS = . o S o -
e 2 S , v CALC - - P,
LA x (B + C) : ’ ODD SUM
A,B,C,D and ANS are R A
I variable names used . e o , .
in the program..s : '
e ‘ £
Tt 127 I . '
\ 4 L . ’
o~ " it . _‘,‘ ‘

= T £ et T s

-

,A
ah

-

Pt

o Ll

128 -

N

A

B

®

@

At the beginning of'the;gigngE”

A S
After the READ (A,B) statement

A

B

After the TOTA&:ﬁ A+B Staéement

1

pt

, ..
| - B e . . L,{ -
. TOTAL . .
-,
;
N /F
TOTAL -
-
g
5 -
TOTAL
Figure I.A

X Y . R

L]
Before execution of a program in which storage for
variables named X and Y were reserved. ,

.

P.C Y.

After the statement X: = 2 ‘ . :

2 2
After the statement Y: = X U
Figure I.ﬁ

a

130

CHAPTER II

Having considered how a computer solves a problem, let’s now look
at what actually happens when we solve a problem on a computer.

First everything our computer needs to know must eventually
be in a form appropriate for that computer. .As you already know,
the computer system for this course is the APPLE and the language
is PASCAL.

Four different stagés are involved in the "solving" of a problem:

1. planning the = solution (preparation of the solution
algorithm) .

®

2. preparing the code and typing it into the computer

3. compiling the program. At this stage the program. is checked
for correct syntax. This means that the compiler checks to
.see that you followed all the rules governing format and

- language and that you did not make any spelling mistakes.
If the syntax 1s correct, the program will be translated
into P-Code : '

4. running the program (sometimeés called "executing the
program"). This 1is the stage at which the P-Code
instructions (the compiled . version of the PASCAL
instructions) are carried out by the computer

You should by now be familiar with all four of these stages.. If
you aren’t, ask. ' '

~

Part A: - ' e

Read chapter 2 of "Introduction to PASCAL Including UCSD
PASCAL". . .

Pay special attention to "FORMAL ORGANIZATION OF A PROGRAM".
Even though the definitions and declarations are optional, when
are used, they should be 1in the exact order laid out in the
textbook. : : ’

Most important of all- you must learn to recognize the
"reserved words'". This will be easier to do as you acquire more
experience with the PASCAL language. The illegal use of reserved
words can cause many hours of frustration to the programmer when
trying to find the error(s) in a program that is otherwise
correct. :

The . compiler program does more for us than just translate
"our program" into machine language form. It can also (on

-

131

request) produce a "listing file".

The 1listing file resembles our input program; most of it is
actually anwexact copy of our program lines. However, the most _
important feature of the listing file is the inc¢lusion of error
messagEs for any incorrect code. This feature gives you the.
advantage of allowing the compiler to check through your complete

. program and list all the error messages which can then bé printed
on paper (by T(RANSFERring SYSTEM.LST.TEXT to PRINTER:). You are
thus saved the inconvenience of ending the compile prematurely
and returning to the editor to correct one or two errors at a
time.

Five columns of information have been. added to the left.
"The first colunm identifiés each 1line of PASCAL code with a
statement number. The. next four .columns do not contain
information necessary to the beginning programer. Those
interested should consult the "compiler options" section of the
APPLE-PASCAL Operating System Reference Manual.

A 1listing file may be requested by adding the compiler
option "L" before the "PROGRAM" header. Compiler options are
specified as a special form of a PASCAL comment. Instead of
(* comment *), a $§ followed by the compiler option, is placed
directly after the first asterisk - no blank spaces are allowed
in between. o

] "1

EXAMPLE:

(*SLx)
PROGRAMNSUM(INPUT,OUTPUT);
VAR NUM1,NUM2,TOTAL :INTEGER

1

The listing file that will -be produced willzlbe called
"SYSTEM.LST.TEXT".

-

132

L3

Possible Coding Errors

Sometimes a PASCAL compiler error-message,may,be,cauaed by._.
an error in a earlier statement. Always check for the following -
obvious errors: = ' L : L

1) miss1ng or badly placed semicolons
. 2) missing comment indicators (*..;;*5
3) 1missing parentheses

4) spelling problems

5)' unclosed quotes (Quotes must be closed at the end

of every line.) 5

6)7 incorrect use of blanks or spaces.

Look at the line for which the error message occurs and then

check the preceding and following statements as they could be

causing the error.
Although 1t is not-necessary to memorize format and syntex
rules, careful attention should be given to "detail" when coding.
Any uncertainties should be checked, this means knowing where to
find the rules.) v]

Part B:

Do the exercises for chapter 2 of the text. They are quite

simple wnd will test your understanding of the concepts presented -

so far.

133

é

Part C: Reflect Section v

-prepare and submit your assignments.

Check appendix B of the study guide again for the Wtho;"

Part D: - Assignnent 2 S ' /} a -
| The purpose - of assignments 1 and 2 is to give you practice

in using the APPLE-PASCAL system. Complete the work requested
below and hand 1in your Listing file along with your directory
listings and ‘@nswered questions. ,

1. G(ET your assignment file into your "workfile" 1if it 15 not
there already. :

2. On the first line of the PROGRAM, remove "(INPUT,OUTPUT)".
3. Change the PROGRAM name "SUM" to "SUMUP",

4, After first line of the program add a PASCAL corment giving

the current date, eg. (*Sept.Zl,1995%)

5. Modify the progreﬁ to find the sum of three numbers 1instead
of two. ' : ’

6. Add sufficient comments at appropriate 1ntervals to describe
the program and the work being done. S

7. RUN the program, and print out the "listing file" ‘on the
printer.

8. ° Save your file under the name "ASSIGﬁf". (Remember, the
suffix ".TEXT" is added by the system automatically.)

9. Print out an E(XTENDED directory listing of both your disks.
To accomplish this step you will need to become familiar
with the T(RANSFER and E(XTENDED commands of the F(ILER.
See the APPLE-PASCAL Operating System Referénce Manual. -

5

134 ' o | <

10.

LS

Use zpur_dwn‘words'toiexplain the following in detail.‘

a. How to display a11 those F(Iiﬁk options which do noth

appear on the screen’s two 40~character " pages”.

b. Hnw to make a backup copy of your disk.
c. How to‘eraae a file from you disk.

de How to combine unused blocks on the disk.

e
e. Vhy removing "(INPUT, OUTPUT)“ in step 2 above will -not
cause an error.

Note:

the example assignment in APPENDIX B of the study
guide need not be handed in.

PLEASE HAND IN YOUR ASSICNMENT DURING' SCHEDULED LAB.

- PERIODS ONLY.

Remember to hand in your LISTING FILE.

User documentation and flowchart which are the same as

135

- =

WHILE NUMBER

>0 DG -

!

COUNT =
COUNT + 1

" PRINT
NUMBER

. B o o L
' A : , e
ST T T COUNT: = 03 -
: ' READ (NUMBER); ‘
' WMILE NUMBER >0 D?
E . BEGIN - o
o " COUNT: = COUNT + 1;
\ T ~ = - . WRITELN (NUMBER);
N READ (NUMBER)
WRITELN (COUNT);
\
\
|
:) .
N
s) i .
c
!
, L T WUMB ER ~ COUNT /

FIGURE II.A / ‘ I

© 136

2 Ll
- . . |

%,-
=
_ _ :
0 0 '
Y

AVE NUMBER | %
STORAGE LAYOUT //
|
!
e = o= - -
I
SUM
AVE = COUNT
PRINT /.
AVE |
| FIGURE IL.B
| e 3 4

__ material pres

~

;‘// . » i.i : . , - -'}, i Z<

CHAPTER III

~A1though ‘there are nO*specific'anstgnuents‘reiated“to—chnpters 3
to 5 of the textbook. it is wvital that- you understand the

h |

RE 3 ? 3 i3 3 : BLy
and you must, you will be ahle tq recognize the situations in
which,these features of the PASCAL language should be used. '

Throughout this course you will_find the need to refer to
the information in these chapters in order to find the best
methods of representing your solution algorithm as PASCAL code.
Keep in mind that in computing there are many ways of solving any
given problem and arriving at a correct solution. Being correct
is not enough. Your<so%utiou must also be efficient.

\

Part ﬁ*i - Read chaptere;_iﬁ_lp_ rand _S_Q_f_ ther'rex-tbgnk'

The following 1is . ;\'supplenentery eiﬁlanation of the more

 impottant concepts preeented in chaptere 3, 4 and 5:

. AAiifeﬁapu%G#8:HotkfHi£¥ﬁ1ﬂn#4ﬂﬁ?4ﬂkﬂ¥4hﬂﬂhff4&H3F1HHF;1EHH33F

in the form of numbers, and letters of the alphabet. Both

these forms of data can be broken down further into more
" basic data types. For example numbers can‘be described as

whole numbe (intégers) or fractions. In PASCAL " “letters"
may be e her/ single characters or groups of elphanuneric
: synbols (ngnbers and letters combined). .

Coﬁputers function best when they can deal with each

classification of data separately. In other worde a daga

,_225 is a _group of deta with cherecteristics in common.
PASCAL has four basic deta EZPSQ&

. A
" Be INTEGER = thease are the,nhnle,nuehers only.

Al

. \ .
"bs. REAL - any mixed number or frdction.

Co. CHARacter - a single elphnnu-eric symbol. In fASCAL-
CHARacters are a%waye enclosed in single quotes and may -

- consist of a letter of the llphlbot, a single digit, or
any other “legel”\aynbol“(i.e. $,f &) belonging to the
PASCAL language. -
Note that a digit 1in quotes 1is considered to be a
‘CHARacter and its internsl .representation inside the

computer 1is different from the INTEGER repreeentationd

of the same digiti ’

y | 138 L e

N
|

Be sure to draw a storage layout with your flowchart (details at
the beginning of this chapter). The starting value of any
initialized variable should be shown in the storage layout. (Put
the correct value 1inside the box.) Notice there are three
distinct timings for this program, the "Initialization" (or
beginning), the "main 1loop" and the "ending" where the final
averages are printed out.

NOTE: FOR THIS ASSIGNMENT AND ALY FUTURE ASSIGNMENTS WHERE SAMPLE
INPUT AND SAMPLE OUTPUT DATA IS PROVIDED, YOUR INPUT AND OUTPUT
WILL NOT APPEAR ON YOUR TERMINAL IN THE SAME FORMAT THAT IT IS
PRESENTED IN THE STUDY GUIDE UNLESS YOU:

a. read you input from the KEYBOARD (consult the
APPLE-PASCAL language Reference Manual)

b. read the input from a disk file (Disk files may be
covered in this course at the discretion of the
instructor.).

Otherwise your program input on output will be displayed on
alternate lines. Consult your instructor regarding the format
required for each assignment.

Assignment 6

Character data play an important part in many computer
problems. Notice that even number symbols are part of the
character set. If numbers are not participating in any
arithmetic operations it is often better to describe them in
characters.

Referring to the flowchart and storage layout at the end of
this chapter, code and run the following problem.

Write a program that reads in four words at a time, each
word being no longer than 10 characters; the program is to print
out each set of words on a separate line, in alphabetical order.
After the last set of words has been processed the program is to
print out:

a. the number of sets processed

b. the number of sets that were in alphabetical order to
start with, and needed no rearranging.

Use the value "STOP" for WORD! to signal the end of data. The
line containing this value should not be treated as valid input
data.

151

. . . . B x . R
- R N ‘ . [Voo e “ e | -

Wer functions ORD, CHR, rm and sucb are uaeful '
'{fo; conparing ranges of charactern’al'represented'by'the

internal code of the.computer. For the APPLE vtheﬁ internal)

code is called ASCII code. L

»

9.

This COmparison feature will becone nore 1mportant to.

'You as you learn how to expand 'PASCAL’s four basic datl
_types. In the meantime you might try to make a mental note
- of their existence. '

°

L

Rk kk NOTE THE ERROR ON PAGE 39 Ak

(sixth line from the top).

"SUCC(C) = CHR(ORD(C) - l)" should be "SUCC(C) - CHR(ORD(C)_

+ D", R -3

There 1is no substitute for the truth tables presented on

pages 40-41. Do 'not’ memorize them but make sure you
understand each relationship.: Get help if you don t!

The computer has rules of "o perator precedence ‘which naj
appear ambiguous to the human programmer. To make sure that .

‘your arithmetic expressions are alwazs “correct, use

parentheses.

The compound statement solves the;'prpbleﬁ ‘of using many
statements where only one statement is allowed. The "many
statements"” are diaguised to look like a single statement by
enclosing them between a BEGIN and an END,

EOF and EOLN are 1ndispensah1e when the 1n§ut data for a

program are in a "text file" that resides on a disk. These

functions . do not work in the same manner when 1nput 13 done,;ﬁ;,ﬁﬂﬁ,m,;f:w o

directly at the tetninal. -

When uorking with a text processing problem (analyzing
written material) the data are usually organized into lines,
sentences, etc. EOLN will. detect the end of each line of
input data.,

‘Since the samount of 1nput data is usually no&:knoun, EOF
will detect the end of the 1nput data.

@

140

N

Part }__

N

* The following exercises are not long and are worth trying:
3-1 to 3-11 - .
CG=ZTO A6 T
52 and 5-7 | .

u

" part D: Assi;pment 3 - .

For this assignment. you will first have to become faniliar
with one more PASCAL counstruct, the WHILE — DO loop. Read pages
79 and B0 of chapter 6 of the textbook. The concept 'is very
simpie. Every statement found inside a HRILE -= - DO 'laop - is
repedted over and over again until the condition governing the
loop is no longer true. If the condition was never true the 1loop
is never entered. You will find the flowchart reprepentation of
the WHILE -~ DO 'loop in chapter I of the study guide. - ' o

Uaing ‘the algorithm {in flowchart form) presented~on the
‘next page, flowchart and code a PASCAL program that will
continually read- a single integér‘fron‘thejﬁeyﬁoirﬁ'"Eiiinfitei°""f";"*m"'
its square, cube, and square root, and print the results, on the ‘ ’
video screen. The results ahould be printed in -four neat
columns, one each for the number, its square, cube, and square

root respectively.A . \ - - . o .

The headings NUMBER SQUARE CUBE nnd SOUARE ROOT ahouid be
printed above their respective colunnn.
Use ‘& "dunny value of 0 to end the program - this means. L
7 ‘that the 0 will signal the end of the program bd@ no calculatioﬁer R
will be done and no results—will “‘be printed for. this vaiue.'rm: ‘ g e

‘ NOTE: You must add the state-ent USES TRARSCEND 1n order to use -
the built~in natheuatical functions. This statelent should be
placed directily under your PROGRAM statement. ,

This nssignnent and all future assignnents should be handed 1in
with full documentation as outlined in appendix B of the study ,

guide.

141 S

e L
. v

Flowchart of a program -that codtinualiy" réads in a single humber, : \

.

calculates its square and prints out the resultss

ALLOCATE | LT | G
STORAGE FOR T ‘
NUMBER,SQUARE} . = . -~ o

: WHILE ' . e
= — — = =" " NUMBER # 0 , S
13 i - - . m . " , . - - N

.) - . . .)
. i . o .
- . - - .

¥ square-vneaenf

n -

)

q—- — - gwny ' ey — — G — w——

e CHAPTER IV

%

Error mesaagea generated by -the ~compiler are of . considerablel
assistance when it comes to getting a program working but:

: remember they can also be a great waste of your time. . o

- By far the most difficult problems to locate are logic bugs
because they are not errors of syntax but are errors in timing
(sequence). All the error messages in the world can never make a
poorly planned program work., Thinking out your program and -
planning it are essential. .

By

N
7

Problem Solving

Planning a program 1is essentially an exercise in problem
solving. The first step is the definition of.the problem. The—\,‘
definition can be completely verbal or it can be in the form of a -
flowchart, or any ether method of stating an algorithm. Without
such a-definitioh no compiler orxfist of error messages can_ help -
you. AU -

- Lo . L e e B lwimmrmoempeie— e N

Steps in Problem Solving

1. The first Astep in'problem solving 18 a careful reading of
‘the problem and formulating a concise definition of it.

2. The second step is to Pe-read the . definition, review the
- input, and ask questions about any ambiguities or unknovns. '

3. Next make a "stab'™ at flowcharting a solution; this is best-
done by selecting some sample input (test data) and.
following the steps that would be necessary to solve the
problem without ﬁvmputer. »

4., 'Each step will most 1likely meann one flowchart box.

" Flowcharts are often best started from the middle, 'the key
- part of the problem", and worked 1logically from there in.
- elither direction. . .

~

143

5‘.

. statement‘later, e. g.

Y

All data required may be shown as "boxes" ‘in storage called

a STORAGE LAYOUT which provides a basis for coding the VAR

&

AMOUNT = -~ SUM

RATIO

N

[
.

STORAGE =~ LAYOUT . E «

(NOTE:
The value of all variables such as counters which are

‘initiallized 'at the very beginning of the program may
be shown in the storage laycut instead of in the body
of the flowchart.) ‘

Your flowchart should then be reviewed, making sure it will

handle all types of input. .
Make sure your flowchart is correct before you start coding.

P

If you are not confident that your flowchartivwill work,

don“t go on! - All you will do is waste time. Seek help:

»

144 : -

Part.éi

2

Now let’s take- a- look at how ~ to approach pfogram
development. Read chapter 6 of "Introduction to PASCAL Including
UCSD PASCAL". _ y

- Pay special attention .to the following constructs:

‘a. WHILE — DO and REPEAT — UNTIL loops ° : .
b. FOR —— DO loops

c. IF — THEN —- ELSE statements .
d. CASE — OF — END statements
“Make Sufe you understand how thevaork’, You will need to use
" these contructs in your assignments.
" Today’s trend in computer programming overwhélmingly favours
a top-down structured approach in -program design. Modular
- constructs as opposed to indiscriminate branching are essential.

Those students who have previous programming experience
should note that the use of GOTO statements are frowned upon in a
structured programming environment. Please do not use GOTO
statements in your assignments. .

The main purpose of the REPEAT, WHILE, IF-THEN-ELSE, and CASE
constructs are to do away with the need to use a GOTO statement
anywhere in your program. ‘

NOTE that the textbook uses a slightly different flowchart
convention from that of this study guide. The representation of
the REPEAT ~- UNTIL and’ the WHILE -~ DO statements in the
textbook flowcharts could imply the use of GOTO statements in the
PASCAL implementation. The structured' flowchart convention in-
this study guide eliminates this type of ambiguity. Please use
it, :

You should also read chapter 15 before doing the exercises
and designing the algorithm for your assignment. This chapter
contains some good- tips whic¢ch will help you save time in
implementing your programs. V
If you find you are having difficulty wusing structured
programming techniques, consult your instructor or T.A. -

Part_ﬁi

Exercises 1 to 11 are strongly recommended as practice
items. '
You should have a clear 1idea of the solution algorithms for
exercises 12 to 18 by the time you complete the assignments at
the end of this chapter.

145

Even though you don't do all the exercises, you should study alf
the answers in appendix L of the textbook, f

{ ‘

Part C: Reflect Section

-

Below, are some questions to reflect upon. If you are not
sure of the answers do not heéIta(¥ to come to the Lab or ask
your T .A. or Instructor. '

-
l. What 1s the main difference between a WHILE -~ DO and a
REPFAT — ‘UNTIL loop? . : .

2. Can a FOR — DO loop be substituted for a WHILE — DO loop?
3. Can a WHILE -— DO loop .be substituted for a FOR — DO loop?

4, Why do we need a case statement when the IF -—— THEN -- ELSE
statement is avialable? ‘ 2

5. Referring to the following statements:

IFF A > B THEN

A 1= A * 2
ELSE

B := B * 2; , .
WRITELN(A,B); : .

show what will be printed by the put statement 1if:

a) A =75, B =25
b) A = 15, B = 20
c) A =25, B = 25

146

6. a)'Will thé%folloving routines produce the same output?

1) IF TYPE =] THEN
BEGIN
COST := QTY*(PRICE*,8); .
"DISCOUNT := 20
END
ELSE L
, IF TYPE = 2 THEN
- BEGIN) ' :
COST := OTY®{PRICE*.9);
BISCOUNT := 10
END
ELSE) ' o
, COST := QTY*PRICE; ‘
WRITFLN(COST,DISCOUNT);

«

ii) IF TYPE = | THEN
BEGIN :
COST := OTY*(PRICE*.8);
DISCOUNT := 20
END; -
IF TYPF = 2 THEN
BEGIN -
COST := QTY*(PRICE*.9);
DISCOUNT = 10
END;
IF TYPE = 3 THEN
COST := QTY*PRICE;
WRITELN(COST, DISCOUNT);

b) What is the difference between routine i) and 11)?
c) What will happen in each routine if TYPE = 4?

d) How would vou recommend handling types other

than 1,2 or 31?

147

Part D: Assignment 4 . .

Flowchart and code a program that will input any purqhgse

price and give change from a $1.00 bill. Change should be made
in quarters, dimes, nickels, and cents, o

An appropriate error message should be printed on the video
screen if the amount entered is less than one cent or greater
than one dollar. Verification,of the input data is known as an
error check. -

Error checks on the input data are an integral part of every good
program.

The program should continue processing new 1npﬁt data until a
yalue of -99 is read in as a purchase»price.

Your detailed flowchart should be similar to that discussed
in chapter I of the study guide. A good flowchart should have
only one start box and one stop box. ¢
Try to implement a8 good top-down design.

Remember to hand in your assignment with full Qggrwgnd,Prbgraungr

Documentation. along with your flowchart and PASCAL program.

Part E: Character Variables

‘ Not all computer work 1is acconblishéd by arithmetic
‘computation, In many types of data thers: 1s a need to represent
names. In this chapter we will also -take a brief look at

" €HARACTER variables and their inplelentation.

You already know about the CHAR data type. Variables given
the CHAR data type may contain any one symbol available on the
ingtallation (in. cur case the APPLE-PASCAL system).

‘What 1if we wanted a varigble to hold character ﬁynbols, for
example, names like JOHN or SUSAN? UCSD PASCAL (this is the
version of PASCAL you, are using on the APPLE) allows.us to solve

this problem by creating a structured data type called the STRING

data type. The declaration
VAR NAME :STRING

would ~ give vou a variable called HAME of the data type STRING.

You could now place 4 name of up to 80 characters “lopg - inside

NAME by simplyv coding

NAMF : =" JOHN’

You may alsc read in a value for HNAME with a READ or READLN

statement, i.e., READ(NAME). -

148

- NOTE: string data in PASCAL code must always be enclosed i2 "
single quotes. This does not apply to string data that is read
into' the program. ' : : ' o

Note also that the quotes themselves are not stored inside

_the storage location with the data. The reason for having quotes
in the first place is to differentiate between string data and

. variable names, i.e., N
VAR NAME ~ :STRING;
JOHN,SUSAN :INTEGER;
 JOHN:=5; -
" NAME:~'JOHN’ (*THIS LINE IS QUITE DIFFERENT FROM*) *
| (*THE FOLLOWING ONE®)
"SUSAN: =JOHN; S ‘

Standard PASCAL does not have the STRING data type.
Character strings are simulated within a subrange of data types
known as an array. You will be introduced to arrays later in the
course. : , : ‘ N o

A

149

7

5.

Assigmt__

Flowchart and code the folloving problen‘

The local weather bureau needs a conputer progran,ta ltd Hith its

‘At the end of each month the buresu would

/ ‘monthly statistics.

like to input into the conputer daily its morning, aftg
evening temperature ° reedings /9ﬂd display the averqge dsily —

temperature.

In addition, after all the/days of the month have been_pxocesscd o
the average morning, aﬁfernoon and evening temperatures fﬁt\the/

month will be displayed

Your program ahould prompt appropriately for
The output should be labelled clearly.)

-Since any given month may have 31, 30, or
need not be set up to handle a leap year),
initially read in a numerical value between

_the month of the year in order to determine’
Your program should be able to translate’ =

to follow.

| input data
" ‘the numerical - representation of the month to
representation shown in the sanple output.,_
i /
SAMPLE INPUT:
30 32 34

28 28.5 31.4"

L
-

SAMPLE OUTPUT:

AVERAGE TEMPERATURE FOR
AVERAGE ERA'{'URE FOR

[

e
-

28 days (your prg@r&m'"z . j_

FEBRUARY 1 WAS 2B DEGREﬂS./
FEBRUARY 2 WAS 29.3 DEGREES.

. and

;\,:,,) |
Tl N 1

I

1

I

. /I,‘"‘r o i
.
each set of inpntw

-f\,\") .

the program . shoﬂlﬂ;vr
1 and 12 representiﬁg-
the correct amount of

“ the charactet . =

28 DEGREES - -

AVERAGE MORNING TEMPERATURE: ,
AVERAGE AFTERNOON TEMPERATURE: 30 DEGREES
31.5 DEGREES

AVERACE EVENING TEHPFRATURE

150

Be sure to draw a storage layout with your flowchart (details at
the beginning of this chapter). The starting value of any
initialized variable should be shown in the storage layout. (Put
the correct value inside the box.) Notice there are three
distinct timings for this program, the "Initialization" (or
beginning), the '"main loop" and the "ending" where the final
averages are printed out.

NOTE: FOR THIS ASSIGNMENT AND ALL FUTURE ASSIGNMENTS WHERE SAMPLE
INPUT AND SAMPLE OUTPUT DATA IS PROVIDED, YOUR INPUT AND OUTPUT
WILL NOT APPEAR ON YOUR TERMINAL IN THE SAME FORMAT THAT IT IS
PRESENTED IN THE STUDY GUIDE UNLESS YOU:

a. read you input from the KEYBOARD (consult the
APPLE-PASCAL Language Reference Manual)

b. read the input from a disk file (Disk files may be
covered in this course at the discretion of the
instructor.).

Otherwise your program input on output will be displayed on
alternate lines. Consult your instructor regarding the format
required for each assignment.

Assignment 6

Character data play an important part in many computer
problems. Notice that even number symbols are part of the
character set. If numbers are not participating in any
arithmetic operations it is often better to describe them in
characters.

Referring to the flowchart and storage layout at the end of
this chapter, code and run the following problem.

Write a program that reads in four words at a time, each
word being no longer than 10 characters; the program is to print
out each set of words on a separate line, in alphabetical order.
After the last set of words has been processed the program is to
print out:

a. the number of sets processed

b. the number of sets that were in alphabetical order to
start with, and needed no rearranging.

Use the value "STOP" for WORDI to signal the end of data. The
line containing this value should not be treated as valid input
data.

151

AR SR

Flowchart Notes

The basic approach taken here is to:

1. get the 'largest" word into WORD4 position. (The first
three decision steps do this.)

2. get the "second largest" word into WORD3 position. (The
fourth and fifth decision steps do this.)

3. get the first and second words into their proper positions.
(The sixth decision step does this.)

4, "Swapping" is accomplished by three steps
a. Move '"high value word" to HOLD.
b. Move "low value word" to "low value box".
c. Move "HOLD" word to "high value box".

5. The SWITCH variable is used to record the occurrence of a

"swap". Since any "swap' means rearranging was needed, the
IN-ORDER counter is not increased by 1 when SWITCH is still
= “TRUE’.

Input Considerations

If you use STRING variables, e.g., STRING[10], you will have
to type in one variable per line on the input screen, i.e., your
program will need four READLN statements to read in four words.

This 1is not inconsistent with the flowchart symbol implying
that the four words are to be read in a single statement. The
flowchart shows that at this point of the algorithm four words
must be read into the program. Even though the reading of these
words is a little awkward with APPLE-PASCAL, the algorithm is not
changed.

You should also use READLN and not READ for inputting STRING
variables.

You might also consider using a PACKED ARRAY OF CHAR. This
method would allow you to read in four words at a time from a
single input 1line. You would need to arrange your words in
‘fields’, i.e., for PACKED ARRAY[1..10] OF CHAR variables, 10
columns must be used for each word in the input line (Unused

columns should be filled with blanks.).

152

/‘— ! b [o e \

i G S O

| ,no:e , however, that. m-nmm _difficulty
. PAC m of/m VPMJMY- cannot -

EE
\ 5
E
E
7

Don t forget to hand in your anigmt u:l.th the f\gll
‘docusentation tequtu-entt as speciﬁed An th: study guidt

a

aprpendix B.

. A flouchcrt nud not bc handed in 1if your program follau \ '
the one given m/the study guide exactly. Otherwise hand in & AN
flovchart comtpmding to thn code you are hlnding in. : . R

. . kd e
: . - -
N\ - o x -
\\‘_ .
\\ N :
- . 1
: . .) oo K] o o
=R S S P S U S BRI R . -
. \ N - . . i N . . R . T \
e Sekuatden 2y e

:1;"..; | : ‘\(N, “1\ m(m)\; o 7 o -‘j Tl T » N j V :

e,

R . READLN (NUMBER)

L]

ol

S,te'p'.l:

8t

" ‘Original Position

]

a) WORDI > WORD2?7

2

"B) WORDZ > WORD37~ R

SUE

.BOB

"ART}

- ‘# .
1 ARTY} -

WORD] > WORD27?

FIGURE IV.B

ART

BOB

SUE"

155

o \ <
\]

-~
- S -
Y R

LR
-

N W;WAlgorifm to Exchange- the Contents bf Two Variables -

(S

- C ~© _WORDI. - WORD2 HOLD

- K. - ! : . . . B -

‘ \ S “’-‘ﬂvri—g,&nal R@sitibn A ' SUE - |1 BOB

Step-1: HOLD := WORDI; | Sug| o8]l . Fsue

»

=

= o . - K

Step 3: WORD2 := HOLD; .| BoB- SUE| SUE|

_“Step 2: T WORD! :=womp2; .~ |sos| . |so] - [sd .. .

_ R N

v 156

;,1(7}7),

= — — —| WORD(1)#'STOP’
I 0 o

| WHILE

¥

@ |
™.
KO

R 'H b o

S 7 "STORAGE LAYOUT

VARY 1
FROM-3

‘| NOCARDS=
NOCARDS+1

SWITCH=FALSE

L

. N

WORD

N

S v

READ

-

ol)

| HOLD=WORD (J)-} -

» m)guomﬁ B Tr,

_MORD (J+1)=HOLY . .

SWITCH=
TRUE

.’ CHAPTER V

,

Y

When solvirg a "bigger" problem it is often- desirable - to =
think o he progrdm as a number of procedures (parts). Each
" procedure may be codgdnggdigested4sepsratelyiandiithennggradually

brought together to' form one program. This approach is 6ften
referred to as "moduldr" programming.

You will find as your programs become larger you will have
to make better use of -the storage available.
‘Rather than -coding a similar procedure several times over, each
- time with a different set -of variables, we can use subroutines
and functions to solve the problem in a more éfficient manner.

-
~

Part A: - .>771 S e
Read chapter 7 of "Introduction to PASCAL " Including UCSD.
PASCAL". . ,

vy

‘ e of the most important concepts of ~ subprograms o
(procedures - iJeJt ~subroutines —and functions) ig - the — =
relationship'between 'actual parameters" and "formal pgrameters" '

, By the use of "actual parameters" and "formal parameters"; a

_ subroutine .-function can perform the same sequence of
operations repetitively for the many different sets of data sent
to it.a . _

The technique of using a single piece of code to perform the
same operations.on several sets of data 1is a very “important
" .concept to*masfen. For example' .

Let’s take a 1ook at a sorting problem similar to that of

Assignment 6. . In this problem we will sort four numbers
into ascending order. You will recall . from Assignment 6,
that when sorting four words into astending order, the three~
"swap" steps, < o e

a. Move "high value word" to HOLD,

b. Move "low value word" to "low value position"‘and_
c. ‘ﬁove "HOLD"vword to "high. value position"

may need to. .be performed a maximum number of 8ix times. -
Sorting ten pieces of. data into ascending order could

‘require the. above sequence "to be performed fourty-five
times. . -) : . .

158

13

The generalﬁnethod of overcoming this problem is to code.'ae

- subroutine to do the work of "swapping" ‘*‘ﬁé“ﬁéﬁd“fﬁé”two
2//”'variables at a time as Mactual paraneters to the

snbroutineusfAfornalﬁparane;ezs

‘?Qa“' We now call the subroutine for as nany conparisons as are’

" needed to complete the sorting process. Each time the

subroutine is called, two new variables are supplied as

“"actual parameters" to the "formal parameters" of. the
subroutine. : Coa , B

‘Note that this method requires that "parameters ‘are’

"passed ed (or called) bv reference .

Make sure that you know the differen;e'betueen "call Ez'vaiue

and "call b reference” as -described 1in. the textbook -and
oy ,

summarized on page 110.

The above example is illustrated on the next two pages using
the numbers 9, 7, 5, and 3 as input data. Note how the sorting
process is,accomplished, -You should - be able to follow —the -
charges in the order of the data after each call iz made to the
procedure CQMPARE. :

- If you cannot follow the logic of this program,” come and ask
about it at the lab. ' '

o
PR S

159

3.

¢

I3

4

N ,,,,,:g ,,,, R

160

1. PROGRAM PROCTEST (INPUT,OUTPUT);
2. . C .
(*THIS PROGRAM -USES A SUBROUTINE TO soar A GROUP OF FOUR*)

4. (*NUMBERS INTO ASCENDING ORDER. - %)
5. i C . . . A

6. VAR NUMBER!, NUMBER2;NUMBER3,NUMBER4: INTEGER;

7- . . ’ ’ .) :
8. PROCEDURE COMPARE(VAR COMP1,COMP2: INTEGER);

9.

10. (*THE SUBROUTINE COMPARE ARRANGES TWO NUMBERS (ONLY) AT*)
11. (*A TIME INTO ASCENDING ORDER.) %)
12.

13. . .

14, VAR HOLD: INTEGER; .

15. BEGIN

16. IF COMP1 > COMP2 THEN

17. BECIN _

18. HOLD:=COMP];

19. COMP1 :=COMP2;

20. COMP2 :=HOLD

21. END;

22. o
23. (*PRINT OUT THE INTERMEDIATE RESULTS AFTER EACH COMPARISON¥)
25. WRITELN(" INTERMEDIATE RESULT:’,NUMBERI,NUMBER2 ,NUMBER3
26, NUMBER4) ; -

27. END; (*COMPARE%*)

28.

29, BEGIN

30. READLN(NUMBER1 ,NUMBER2, NUHBERB NUMBER4), ,

31. WRITELN(‘ORIGINAL ORDER' NUHBERI NUMBER2, NUMBER3
32. NUMBER4) ;

33. WRITELN

3~ - R

35. (*PUT THE HIGHEST VALUE IN NUMBERA*)

36.

37. COMPARE(NUMBER1 , NUMBER2) ;

38. COMPARE (NUMBER2 , NUMBER3) ;

39. COMPARE (NUMBER3 , NUMBER4) ;

40. ’) - .

41, - (*PUT THE THIRD HIGHEST VALUE IN NUMBER3*)

42. e M :

43, COMPARE (NUMBER1 ,NUMBER2) ; -

B . COMPARE (NUMBER2 , NUMBER3) ;

45, ’ o

46. (*PUT THE SECOND HIGHEST VALUE IN NUMBER2%*)

47. ,

48, " COMPARE(NUMBER1 ,NUMBER2) ; o :

49, : T T ’

50. WRITELN; .

51, WRITELN{ “ASCENDINGC ORDER: " ,NUMBER1,NUMBER2 , NUMBER3,
52. ' NUMBER4) ; <

53. END. Figure V.A

-~

-

With input values of 9, 7, S and 3, the‘outﬂ?$7is as follows: | o .

ORIGINAL ORDER: .9 7 - s 3

INTERMEDIATE RESULT: 7 9 5 3
INTERMEDIATE RESULT: 7. 5 9 3
INTERMEDIATE RESULT: 70 5 3 9
INTERMEDIATE RESULT: 5° 7 3 9 ~
INTERMEDIATE RESULT: 'S5 3 7 9
INTERMEDIATE RESULT: 3 5 7 9.

w
. W
~
o

ASCENDING ORDER:

Global Variables I , . . T

. Global variables are those used in a subroutine or a
function that belong to (were declared in) the main progrdam, or
an other procedure but were not passed to the receiving
subroutine or function by way of parameters.

kkkk*x NOTE:
Avoid the use of :ﬁlpbal variables" whenever possible. ?
"Global wvariables used in a subroutine or a function
detract from the idea of good modularity and thus make
a program much mor€ difficult to write and maintain.:

'Part_gi

Reviéw the exercises for chapter 7. A :
Try as -many -as--are -necessary for —you to grasp the concepts
presented in this chapter. \ .

«

Phrtlgi’,Refiéct section v : . , AN

1. How does a subroutine differ from a function?
2. - What does the BEGIN statement do? L E ‘ "i \\\
3. Must both the BEGIN and END statements be coded? N
If *~ you cénnot answer the abové questiohs you should re-read the

material .for this chapter and seek help from a T.A. = or
Instructor. ’

161

" study guide,

»

Part D: Assiggggg T rr;—r~¥~—~~—~—:w

The Haster credit card company needs a system to keep track

amount owed.

Flowcharts and Subp rg;;ans L {

Exchgprocesutng*-ndu1E“§hoﬁId“hive 1ts own tlouchnrt and be

invoked as shown in the floucharting section in chapter I of the

~

Note: - ' S . L S

. The subroutine approach to flowcharting may be used
flowchart should have a "Mainline page™ that will fit
on a 8-1/2" x 11" sheet using a top—down structured
approach in program design. :
Modular constructs are essential.

of 1its oupstanding customer loans. Flowchart and code a program
that will for each customer: . : . oo

even 1if the code is actually written in 1line. A good

TEi&?ﬂFﬁﬂE?fﬁﬁfﬁmﬁfﬂﬂnlf“‘th!’ xnnuut*iﬂiﬁr‘irﬂ* the
" interest rate

b. caiculaterrthe new »anouﬁtA owed based on the amount

currently owed i‘interest ,
c. print the results.v

After all the 1nput data have been processed the prograa will
print out the number of outatanding customer loanl and the total

Use a value of -99 for "amount owed" to signal’ the end of
the input data.. These data should not be processed as customer .

data.
" Use a FUNCTION for part b. and SUBROUTINES for parts a. and
Ce - ’ : '

. N R N - , -) ' N
Your main program. must not perform any calculations. Its sole

function must be that of a control -odule for the subptograns.

See the Sanple I/0 (Input and Output) on the next page.

162

. Sinple Input:

. HJHALL i _25000.00 0.05
. J.PRENTICE 32768.00 ' 0.14

 Sample Output:

NEW AMOUNT OWING FOR A.J.SMITH IS $250.26 . = - SR
NEW AMOUNT OWING FOR H.HALL IS §26250.00 , EEEIC S R
¢ NEW AMOUNT OWING FOR J.PRENTICE IS $37421.06 - - T
Don’t - forget to hand -ia your -assigmment with the full-—— "
documentation requirements as specified 1in appendix B of the = 5o
study guide. ’ S , ST 5

\

T -
_ o - e =
N -
-)
&

-163

ST v 7 T
- o s A . .. - = 3 ‘, -
: e e T e - L / ' R
. o . [P L7 = L o '
i £ | : o o el] _
o . //// . -) ' 4/,// iy AT / e) g
i : PRI A el ST 2 -)
. CHAPTER P S : :)
’ | etr——— v T) / : R 4
- R T Tt IS A -
. - s yd S RVl s .
e - S s e s e e = e —
Ll B . T - 5
P e % L A ok
- T e T - e
= T Atrays snd Tables S -
- ey - e - | P
g g e - < .
. e .
, ot S S . v Vo

7 —// . a - B : 7 " ; L / l ’,”/
MV,YI we usnt to tske a look at groups -of dets Lo "
Vﬁhich are ususlly/referted/to as "arrays" 1in the co-puter world. = = ..

g ~~ -Some of you have already uorked,with the “"group” comcept outside
> ,v';/lr‘fthe spherelof Conputing Science either in the forn/of a "tsble)
- S or a "nﬁtrix". - L , BRI // : S '

ﬁsain”consid‘er ‘the” probIen of sorting sets4 of foﬁf””aofasA 7
‘finto alphabetical order and counting the number of sets processed -
~'and the number of sets that already were in alphabetical order to .~

~ .begin with. For. ‘the sake of sinplicity, let us assume thst each° - 7
_set contains four. words.,,v -
/";iff - This method is extremely priuitive (Go back to Figure IV.D in the . L
: ‘ previous chapter of this study guide.),, . P
' ,However, let 8. review the basic spproach' P g
S 8 get the "largest" word into WORD4 position. (The first
. three decision steps do thig). - , R T
. oL . /’ v ///
. T 2. get the "second largest" word into WORD3 posit{on. fTBei,fl
~fourth snd fifth decision steps do this). //4 L A
":35 get the first and second words into their proper positions. ;fﬁ .
- (The sixth decision step does this)./' o S
. o 4, "Swapping" is sccomplisﬁed by ;hree steps ff‘fg,g, E p i
a. Move "high value word" to HOLD. o
b. - Move ®low value word" to "low vsinefbox".
c. . Move W"HOLD" word to "high value box". - L -~ v
1 ‘ What if the number of words to be sorted was 4000 instead of
just 4. Can you figure out how many lines of code would be—
needed? o ' I L

164

‘/ : o ‘,\ . . \) ’ ."?/ e 1

;;:;;-" éﬂé a group, rmh tIl tha words\would b& cons LY
.~ ‘hav y;hbh/ name WORD. Each word - would

E— "‘"-77%"*;/7‘“ ”’*ﬁmﬁr fw W
R ’%/the m-e). /// . ’

/
e

The - mb‘cﬁp(wﬁd aluyl be a nnnber ; (1) or & varuble
7o HORD(J), / . (J)A;ou];d always contain a/ﬁ bet between one | and

the : or of words in the u;. \vatying “value of
the subncr{pr. (J) we would actually bé varying the WORD to be
prt{cejséd. : Ea.ch new value ot (J)/éoulcr se];éct a new &,

v : : i

- '//////, . 9:r thg th two pages m flmic rts and ltorage layouts, s -
// 7" one_-of - which is the ogiginal one used for Assigmnnt 6 and the 1 o
P other 18 a nevw and bettér approach to handling the same problea.

.. - . +The new solution is” based on the "group" data kpproach. ~ Notice, -~ ¢ -
. -n.s 7. the principle is -6till the same, we want- to - mm,,,mmﬂ; L
L7 .27 word. in,_the last position, MORD (4). The next "largest" word fs T
.~ 2 _fo be put in WORD (3), the third largest in WORD (2) and the |
P - smallest in WORD (1). . o ‘ S :

The variable name (I) helps to keep track of the WORD you<

position we are trying to finalize. Th:ls is due .to the nature oF
the” "swap" algorithm 1-p1enented 1nnide the J loop in which the
valueﬁﬂféﬂ‘ﬂrpoa K g : - ; . th=
position. The wvariable (J) allows us to move fro- one word to
_the next, conpar:tng ar;d sw&pping where necessary. This

"comparing and svapping routine 1is executed many times. - (

_ With a set of- four words I is set to 3 and the loop starts.,
" The "comparing and mpping routine will be processed three
' : times for I = 1, J = 2and J = 3. The "cycle” then Trtepeats -
S fimlfff—'onceffﬂrg&n% I = 2, J =1 and J = 2., The final repeat

’ o . "cycle" takes place for I = 1 and J = 1. Once both- inner loops
. ' have been executed for every possible value, processing continues
o along’ ‘the main line, with the "is the current word > the next

' ‘yuord"" deeision step. e , / .

? o As you may have already guessed, this method of sorting is known' L -
R as a "bubble sort" - A - 1
¢ The algotithas 1llustrated on the next pages’ could /ulde -~
-more efficient by adding an extra decision to reguce the “number -
i of steps needed to complete the sort. The impl tation of the
P more efficipnt nethod 1s left for you as an exerc:l.u/;4
g S

s
=g

WORD

‘METHOD 1
 WORD[1]:= 1;
- WORD[2]:= 2;
T wom[3]:= 3
- woR[4l= 4

k]

- WORD[1] WORD[2) WORD[3] WORD[4]

FOR I:= 1 TO 4 DO
o © WORD[I]):= I

~

3

166

INORDER=0

'm'mz

WORD3

* INORDER

T

~ STORAGE LAYOUT .

: _ I I
| .
S e e et e e e

o lvmIiLe)
~ — — —{WORDI#'STOP' > |

\‘ mRDS‘)

| SWITCH=FALSE |

DO)
Y , ‘
o ”J(Sy

' NOCARDS+1

FIGURE VI.C

w | N R

@) ~ HOLD - SWITCH_

| @ |
@ |-, .| NocARDS INORDER |- ‘

- WORD(1)¥'STOP'
| B oo v

169

"71.7 FOR I:=3 DOWNTO I DO
2. FOR J:=1 TO 1 DO 3 .
3.~ IF WORD[J] > WORD[J}+1] THEN
4. BEGIN ' o
s.. ~ HOLD:= WORD[J];
6. , ~ “MORD[J}= WORD[J+1];
7. WORD{J+1]:= HOLD;
8. - , SWITCH:= TRUE
. 9; ’ END; —
e
1 loop J .loop ‘]‘:FTI:IORD[J]V > WORDN[JH+1] decision i
3 1 'WORD[1] > WORD[2]
| 2, WORD[2] > WORD[3]
) 3 __WORD[3] > WORD[4]
2 1 WORD[1] > WORD[2]
: 2 WORD([2] >, WORD(3]
1 1 "WORD[1] > VORD{2] i
al
FICURE VI.F
- . ,’"
. ‘* .
L]
k)

User-Defined Data types -

" When' wérking with a high level language, it is- hportant for

B —reading the code.

the code to be self-documenting, that is, a programmer should be

able to tell what a certa:ln part of a program does just by .

L

' There does not yet exist a high level prograsming I&ngtnge'

that allows this goal to be realized fully. -The PASCAL language-
tries to help in this area by allowing the programmer to -declare

his own user-defined data types to suit the type of problem he is-

vorking on. PYor example, a payroll program which reads” in an
employee’s "hours worked" and "rate per hour™ for each day of the
week might use a FOR loop such as this: o "

FOR I:= 1 ‘1‘05 DO

READ (HGURS{I} RAEE{I}),, A ‘,; S :—117—?>;—~vw~

where I is declared as INTEGER, and HOURS and RATE are REAL
arrays. -

b

On the other hand ‘a declaration at the beginning of the

W@f* T e e = e

. TYPE WORKDAYS = (!‘!ONDAY TUESDAY, WEDﬁESDAY THU!.SDAY FRIDAY), 7
VAR DAY :WORKDAYS ;
HOURS ,RATE :ARRAY[WORKDAYS] OF REAL;

: would allow the following nore descriptive loop to be used:

FOR DAY:= HONDAY TO FRIDAY DO - . 5
READ(BOURS[DAY],RATE[DAY]); ' :

- T The ~abilicty to ﬁi?nﬁﬁ ﬁ_ta by means other than just plain
numbers would be especially 'helpful wheu dealing with data
involving 1/0 (input/output) operations. Unfortunately ‘most
versions of PASCAL including the one we are using do. not allow
. .user—defined data types to be read in or printed out. This
'severe restriction severely 1limits the usefulness ;of this
excellent feature. . ' SR

170 , S

Part A:

‘Now let‘s see what the “Introductigg__tgW_EASAALeAInclndingt"

. UCSD PASCAL"™ has to say about data types and arrays. Read
chapters 8 and 9 of ”Introduction to - PASCAL Including UcsD -

PASCAL" .

Pay special attention to the UCSD features presented at the ‘endwﬂ
of chapter 9. It is in the use of arrays and STRING variables"
that you will find the greatest difference between UCSD PASCAL
and Standard PASCAL. The UCSD language extentions are the more

‘_advantageous. : : e -

> ,
. Note the error on page 144 (middle of the page) the equal -
sign should be a colon, 1i.e., "

1

I s'hguld be
'VAR POSITION : ARRAY [1..26] OF CHAR;

N

(VAR POSITION = ARRAY [1..26] OF CRAR; %
JURIDU) ‘ L / ’.“4“ :r,;.,;,\',l,,.',‘__‘. o me e

. You should by now he quite familiar with the APPLE-PASCAL °
Qperatigﬁ System Reference Manual as well as the APPLE-PASCAL
e Reference Manual. There are many helpful points in
' these books that you can pick up in a lecture or from a study

guide. . ' -

You must ' learn to assimilate the information presented in
the manuals into your programming experlence in order to enhance
your understanding of programning and the computer sygtem you are
working with. v

Part Ei

Don’t forget to try the exercises in the text.

8t -

171

Part C: Reflect section . *

"Part D Assignment 8 - ‘ ,%

” ' , .
 Processing ‘ends when an order number of -1 is read into the

See if you can‘Write PASCAL code to ‘producg“fthgfmfolicﬁtng;ij"*"”*"”"m“*”*
output; o S . 4 - - -

X[1,14=0 X[1,2]=12 X[1,3]=13 X[1,4]=14 X[1,5]=I5
X[2,1]=21 X{[2,2]=0 x[2,3]=23 X[2,4]=24 X[2,5]=25 ,
X[3,1]=31 V_X[3!2]=32 \X[§,3]=O X[3,4]=34 . "X[3,5]*35)
L P B 7 . , ‘ ‘e ‘7‘ . . “'.) . . i
X[25,1}=251 %[25,2]=252 X[25,3]=253 X[25,4)=254 X[25,5]=255 °
Note: © o R o
"There 1s no input data for this problem. Answers not .
underStpod fully shoudd be questioned. , \ T

L

Shortly before . Mothér's‘ Da&, the . Lactose Greéting Card . e

ﬁCompany prepares a supply of 10,000 cards for each one of its 20 °

diﬁferent types. Orders for these cards come in on data cards,:'
each card has three fields: order number, card and- quantity. i

* Write a program that = processes these orders by changing the

supply available for that card type and printing an output line
showing the order number, 'number of cards ordered, number of
cards. sent, card type and supply still available. Do not print a . , :
value for supply, if the supply for that card type is zero. (See , 4
sample output). If an order cannot be filled because the

requested - quantity: ~exceeds " the supply, *ségaf'ﬁhztévef”*1§”"””7*5"flj"”“”f

available. If nothing 1is available "send" zero.

programe. ':<gg
. a

When all the orders have been proceséed the .program should print

‘out in descending order, the amount of stock remaining for each .

type of . card whose supply is less than 9000.‘ (A remaining supply
of zero:-is alsonrinted)) v A '

172

B

¥

Sample. inpuﬁ :
'Ord_er ﬁgnnber, 'Type‘,‘ Qu“antity- _ 7 I
3757 74 3750 S
4%502-'15 2500 . o o v'f; | “ ‘ ""
) 11402 21 1500 | #/
32801 12 4000 "A";“//
11%;2 15 5000 - f ;_,xffx ‘
40900- 17 1000 . ',//”f” B e
R o . o
15113 15 2500 ~ \}// . T
700 7 9025 7 |
40906 17 33237ﬂ ' o f . , ;,g;f;;;;,ﬁw
61521 7 750 o o - ; %,. |
. , -1 | | R
VSample‘ Oquut: 7
- | LACTéSE’GREETING CARD COMPANY
SALES LIST FOR JANUARY .
ORDER NO. QUANTITY ~ SENT TYPE SUPPLY
375 3750 3750 7 6250 ’
41502 2500 2500 15 7500 |
onbtg NUMBER : 11402 INCQRREQT'T&PE
132801 - 4000 4000 12 6660
11512 .Snoo_ 5000 15 2500
40900 © 1000 100" 17 000
g 15113 2500 2500 15 ‘
700 9025 6250 7 -
40906 - 3353 3378 17 S637 :
61521 750 0 - 7

173

R ;"

CARD TYPES WITH A REMAINING SUPPLY~OF LESS THAN' 9000.

TYPE SUPPLY
12 a 6000 .
17] 5622
15 o 0

7 , : 0.

Flowchart and code the above problem. .To make best usev of .

"your time do the following:

v‘l'

2-

Code your program,

Set up a storage layout for the required data.

Develop the flowchart by putting down what you would have to ..

do to process the sample input without the wuse of a
computer. : o ’

s -
\

If you are not sure your logic 'is correct, check your -

flowchart with an instructor or T.A.
Review any PASCAL-stétements necessary for coding.

oy

-

Desk check vour program for clerical errors (spel;}ﬁg, . use

 of comments, parentheses, etc,)

Y
- f

Desk check: your program for Tlogic ‘errors by "playing
— Follow —each— step”'*'"””*””"

computer” using the sample input - data.
through changing the stdérage layout when required.

Check your - output, Make sure it is the same as the sample
output. . , S ’]

I

If you plan your program efficiently, the main body,

excluding the sorting step and error checks, should not
require more than 1 decision. ‘ ' :

Don‘t forget to hand in your assignment with the full
documentation ‘requirements as specified in appendix A of the

study guide.

,

.

v
o

174

CHAP%%R VII;"

In this ehapter we want—ta—%nok at an‘other~wny*of*gruuptng“&ata
called RECORDS. We already know generally, that the best way to

handle,a,gnquni iteas¢isﬁmm4unL4ukamxay1——HowevezAwhat——if——ve

‘have - a group of items involving different types of data, f.e., a

list of club members, we -would still want to keep member
information such as name, address, phone number and dues paid

. grouped together for each member.é,' e

»

Nane, a,dd‘ress and ,phone number can be haridled as STRING

variables (or PACKED ARRAY OF CHAR). However, dues paid must be -

stored as INTEGFR or REAL' since addition and subtraction are
normally performed with this information. Since an _array 'inv

‘PASCAL can be of only a single data type, we must look to an
“other type of structure called a RECORD—EO -a88ist us Hith our - -

grouping.

How should a RECORD be arranged? There is no one single way

to arrange a RECORD. This question can be best answered by the

programmer .and the final user of ‘the program. The main point- to

remember is that RECORDS exist in PASCAL- te~he%g43nr¢magraaaeri~

organize the program in a logical fashion for hunans. o,

A

Part 311

Read .chapter 10 of "Iﬁ:roauction ta PASCAL Including UCSD

"PASCAL". Pay-special atténtion to the "Gase Study 1" and "Case
Study 2" as wgll'the secgion on "Variants' (pages 203-205).

*kkk%t Note the error on page 190.

T e

WITH EHPLOYEERECORD DO

‘should be i

" WITH FULLTIMER DO

EMPLOYEERECORD is a RECORD data type. It is a tepplate for .

records that can now be created with the VAR declaration. As a
data type, EMPLOYEERECORD does not have reserved . storage
locations and so it cannot hold information. 1In other words it
is a model. Using this model, the programmer may create records
with storage locations to hold actual data.

-

175

- S

Part"B: ",*\ ' N

L ~ Even thﬁugh‘ﬂM}ﬂH¥ ﬂet—defall Aehe~fexereﬁmur—h7ﬂu —-ghould - f‘ﬂmfif*¥%4¥%
: J‘ study all the answers at the back of the textbook.
A1l of ;hgAgxgx;ingﬁynrgmaxxgngly,1gnnungndgdiaaip:acticeiiteus

\
\

3

| You shquld have a clear Ydea of the solution algorithns for the
,i” .exercises by the time you conplete the assignment at the end of

thisychapter. _ ‘ : v

‘ : ' Jf.r ' - .) ' L
Y .) ' o . o . " N

Part C!f Reflect Section - : .

| ""Phe WITH statement can be quite tricky. Remember that it is
there to help you, the programmer, to save time. If you use it.
in such a way as to make your. code ‘incomprehensible, the WITH '
st#cemént can be more of a hindrance than help. ‘ S

Note that the WITH statement does away with the need for
repetitive notation, It does not allow you ta make multiple -

assignments to fields ‘with field identifiers;gg, the .same name. -
After reviewing the program discussed on the lecture tape (Fi -
VII.A), consider the example in Figure VII.B. Exaninevthe ogtput'

from ! the four WRITELN statements . (shown after the program

listing). . \\ o
"1 ‘\“‘ . : 7, : ‘ | . . ”T;‘VV . | {

- BN~ SRV T IR X

SRS R —

PROGRAH RECORDS (INPUT OUTPUT),

1(*THIS PROGRAH SORIS RECORDS BY FIELDS*)

CONST NUMBER=S;
TYPE EMPLOYEE = RECORD

HOLD
1,J

VAR -I.J

BEGIN

[}

- WRITELN

BEGIN

. NAME
POSITION
- .SALARY
END;
COMPANY =

VAR EMPLOYEES :COMPANY;

:EMPLOYEE;
,:INTEGERf

BEGIN

b

:PACKED ARRAY([1..20] OF CHAR;
;

:PACKED ARRAY[1..15] OF CHAR
:REAL;) :

ARRAY{IQ.NUHBERl OF FMPLOYEE;

PROCEDURE WRITBREC (VAR EHPLOY COHPANY)

(*THIS PROCEDURE WRITES OUT THE EHPLOYEE RBCORDS*) ‘

FOR I:=, 1°TO NUMBER DO
WITH EMPLOYEES(1] DO

FOR J:= 1 TO 20 DO HRITE(NAHE[J]),
FOR J:= 1 TO 15 DO URITE(POSITION{J]),
WRITELN(SALARY 7:2)

~END;'

BEGIN -

- END; (*waffznse*&f—4Wf~" .

-

FOR I:= 1 TO NUMBER DO
— WITH EHPLOYEES[I] DO

FOR J:= 1 TO 20 DO READGNAHE[J]),

FOR J:= 1 TO 15 DO READ(POSITION[J]),

' READLN(SALARY)
END;
(*ECHO -THE INPUT DATA AS IT IS READ IN%) T
© WRITELN(' ORIGINAL ORDER’); WRITELN;
- WRITEREC(EMPLOYEES) ; ' B

Figure VII.AV(contingéd on next pagé)

f

177- -

#

(*SORT RECORDS INTO ALPHABETICAL ORDER BY NAME*)

~—(*AND-PRINT THEM OUT : : *)

" FOR J:= 1 TO I DO - :
IF EMPLOYEES[J].NAME > EHPLOYEBS[J+i] NAHE THEN
BEGIN -
ROLD°-EHPLOYEES[J], '
EMPLOYEES{J] :=EMPLOYEES[J+1]};
EHPLOYEES[J+1]'-BOLDT

: END; 1
WRITELR(’ ALPHABETICAL ORDER BY NAHE), WRITELN;
WRITEREC(EMPLOYEES) ; ,
- (*SORT RECORDS INTO ASGFNDIﬂG GREER’BY SALARY*? —o—E
(*AND PRINT THEM OUT : S T
FOR I:= NUMBER-1 DOWNTO 1 DO
FOR J:= 1 TO 1 DO 3
IF. BHPLOYEES[J] SALARY > EHPLOYEES{J+I] SALARY THEN o
b OBEEIN = e o Ca =
‘)’ How--mwmzs[.r], S :
. mwmzsw}--momzsuﬂ}g
EMPLOYEES{J+1] :=HOLD .
END;
WRITELN(’ ASCENDIHG ORDER BY SALARY), HRITELN’ S
VRITEREC(F’HPLOYEES) . g
. END, - ?
- c s :§
L Figure ' VII.A {continued on next page) é
4
, i
‘
- ‘ N ;:
C €
h T
[.’g;’
S 3
- i] B ——— ij
|) ‘
- 178 = *
i r '

'Ouiput: ’ . o N "\\
WONG, MICHAEL JR. PROGRAMMER 1700. oo : ’
PETERSON,"PATU " . ANALYST -~ - 2000.00.) o
PIERCE, MARY . = JR. OPERATOR 1000.00 \
MARCUS, STEVE - SR. OPERATOR 1400.00 A

 ALPHABETICAL ORDER BY NAME
JAMES, SUSAN SR. PROGRAMMER 1900.00
MARCUS, STEVE SR. OPERATOR - 1400.00
PETERSON, - PAT ANALYST - 2000.00 :

"PIERCE, MARY ~ ~ JR. OPERATOR ~ 1000,00 T B

WONG, MICRAEL -~ “JR. PROGRAMMER 1700.00" i A
ASCENDING ORDER BY SALARY

PIERCE, MARY ~ JR. OPERATOR 1000.086 . - -
MARCUS, STEVE "~ ‘SR, OPERATOR 1400.00 T o -
WONG, MICHAFL - JR. PROGRAMMER 1700.00 ~ . = "
JAMES, SUSAN . SR. PROGRAMMER 1900.00
PETERSON, PAT ANALYST 2000.00

Figure VII.A
— L :‘ﬁw)

qu :
: 179 - . .

.,H

v

PROGRAM WITHTEST (IHPUT OUTPUT),

" TYPE RECI =

- RECORD

-

. }_
BEGIN T - = - T
TEST.T1.DAY:=1; -
TEST.T1.NIGHT:=2;
TEST.T2.DAY:=3; g
TEST.T2.EVENING: =4 ; _ ‘ :
WRITELN(® T1.DAY TI1.NIGHT T2.DAY T2.EVENING'); ,
WRITELN(TEST.T1.DAY,TEST.T1.NIGHT, ' o
TEST.T2 .DAY, TEST.T2 .EVENING); .
WITH TEST,T1,T2 DO
DAY'-S -
WRITELN(TE§T .T1.DAY,TEST.T1.NIGHT, . *
TEST 'rz DAY ,TEST. '1'2 EVENING)
WITH TEST DO
BEGIN .
WITH Tl DO -~
. DAY:=6;
o __ _WITHT2DO -
DAY:=7 N T - -
END; : s
WRITELN(TEST t1.DAY,TEST.T1.NIGHT, .
o “TEST.TZ.DAY, nzs:r.'rz -EVENING) ; -
- Qutputs - ¢ | = ;
. __._.__T1.DAY T1.NIGHT T2.DAY T2.EVENING
1 -~ 2 3 4 . .
1 2 5 4
6 T2 7 4

RECORD

DAY,
NIGHT INTBGER

END; , e

REC2? =
RECORD
DAY,
EVENING: INTEGER
END; '
REC3 =
“~T1:y RECI;

T2: REC2
END; :

% - VAR TEST: REC3;

1

180

Figure VII.B

.- _programming techniques learned so far. ‘You will find the

Patt D' Asaiggggnt 9 -

~ This aasignnent prcvidesfanfexceilent Aopportunity——to—*make1“~
use of modular programming plus implementing the structured

assignment easily lends itself to many "processing-.modules"”.

You aterexpected to effect a good top-down design aa.wgli«as v
‘to employ a minimum of one subroutine and ome function. "Actual -
parameters” and "formal parauaters MUST be used with al}
subroutines and functiona.))

Flowchart, code and run the following problem

. Every month, bbdern Computing, a monthly mguine, sends out

,aubscriptien ices to all customers whose subscriptions are- up -

‘two months hence or have already expired. (Expired subscriptiens -
are kept on record for a period of one year before being deleted
from the active files). The notice consists of a detailed:
billing for the next subscription period, the length of which 1s
determined by “the subsciption currently active’ or recently

expireds o R
.Iﬁput data for each custéner consists of: z R 4‘
a. subscriber'%’hame |
b. subscriber’s account tumber

c. length of subscriptibn (ranging from 1 to 5 years)

d. expiry date of latest Subscription

e. date the account with Modern Computing was first .

e opened. : . "

. 7) . ‘\ -
Use a RECORD to store\tte above information.

W

181

.

. e
B

Rates are $8.00, $15.00, $21.00, $26.00 and $30:00 .for a 1 f0 5 =~ ° ~
year subscription respectively. - A 2 percent discount off - the '
subscription rate is given for each year in excess of five years

the account has been.open. No customer, however, may receive
more than a’ 20 percent discount. I L S

For each notice sent out the program is to print a line of output
containing the account number, name, length of subscription, rate
per year, and total amount due. . N

. . : \ . -
_After allrcustomers accounts have-beén processed (the number of
customers varies from month to month, use a value of -1 .foz;,the
subscriber’s account number), the - program 1is to print out a
summary containing the number of subscription notices processed . =
and ~ the total amount owing .in each separate subscription -
category. - e S A -

.;Einglly, the program will print out the total numbéf'of'J'
. customers’ accounts processed and the total amount of money owing i
for the month.) : S

. Note that all dates appear in the fogm (yymm), the: first 2
- digits for the year and the last 2 for -the month. '

Review the sample 1nput ‘and sample output. Think about what o
you would - have. to do without a computer as you develop your -~ . . T«
flowchart. Desk check your flowchart. You may even want to have
it checked by an imstructor or a T.A. Remember, coding poor
logic is a waste of'zour' time! Code 'carefully, watching for -)
correct. spelling and punctuation.) . ‘ : oo

~ N P

. Hint: : :
A full year s Subscription is considered to. run.from a
. designated month of one year to the corresponding.month v
of the next year. i.e. February 1980 to January 1981 \
: 1is only.1l months, but February 1980 to February 1981
is a f0l1 year. Therefore, it is not necessary in this _
assignment to break up dates 1into separate year and.
- month categories- in order to determine the amount of
_+discount years, if any.

182

| Sample

7602!

7 L.M.
J.J.
' B.C.
AKe

M.N.

DUMMY -

Input:

'ATKINS - 318112 5 7910 6910

(this daté is alreadvy two months hence)

KOGAN 621422 3 7512 6801

CRANE 623891 1 7608 7508
MCKAY 733311, 1 7601 5904
SMITHERS 821462 5 7512 6512 °

NELSON - - 231224 5 7804 7004

BOLDER 621427 3 7602 7302

NEEDHAM 621448 1 7605 7405 -

BALMER 243786 3 7601. 7001

A}

k4

s . »
Lo , . .614422 3 7601 7301

. STMMS 715598 3 7702 - 7402 N

&

-060001 1 0000 0000

- 183

~ :
| Sa#ple -Output g .
ACCT. 71_'40.XT - NAHEA , ' YEARS - RivA'rE‘ » " AMT. DUE
621422 o | 'J.'A.‘fgocm 3 6.72. .. 20.16
733311 Lo, %ﬁm?f‘: 17 ek 6.0
821462 . J.3. SMITHERS | 5 c . 5400 27400
621427 | A.K:.B(_)LDER' ©3 | ,7“.-;00, - , 121'7.00 |
25._373_6 | RM. BAMER 3. - 6.86 20458
614422 PPl 3 I.bo; “ _ 2100 -
}
YFARS OF SUBSCRIPTION EEGGE?@’PSB‘U*E - AMOUNT DUE e
1 1 6.40
2 0 0.00
3 4 82.74
4 0 . 0.00
5 R T L2 I o
« ° ;
TOTAL NO. OF RENEWALS: 6
TOTAL BILLINGS: 11‘6".14 - '
NOTE: B '
The output should be in columnatr form but it does noc have
Vto be exactly the same as- the above, :

184

tinputc;hduQutput4da;aeLhrough_thecusecnfifiles

- final project..ri -

A o . o

o . R
CHAPTER v111 SRR 'f o

In chapter, 11 of “Introduction toWPASGAL—Ineluding~UGSDeP n '~f}ff4;~e¥;f~
we will take a closer look at.more sophisticated ways of tre ing JRR '

. While this course does not focuq;on PASCAL, file handling, .
you should at least know how to read a.text file from the disk -~
‘and how to write a text file to the disk This aspect of file
manipulation should ' be used in your last assignment and in your

S —%f'f o
The practiceﬁ of reading in dummx;data to detect the end of
input into a program,is a primitive practice. , o
The EOF statement allows a PASCAL program to detect the LT e

end-of-file condition, that is, when the end of the input data -~ -

-has been reached. This feature was discussed in chapter 5 of M,la,;_cdh; ;

"Introduction to 'PASCAL. Including UCSD PASCAL" . This means -that.. -
the end-of-file is automatically marked® for you at the end of the 5
input data andxthat .your program can detect this mark by using "ﬁ‘i] o~
the EOF statement. = Similarly, the end of a line- has - a ‘ '

- end-of-line marker (EOLN). -~ — - — e

Although up until now you have been working only with- = .= e
interactive programs, you should realize that the input data that o
entered into -the program from the terminal is also part of a
file. ' This means that as far as APPLE-PASCAL is concerned the
terminal (input and output) and the printer (output only) are
files. . .

Part A: R . :fv'_ T o

-

Read chapter 11 of "Introduction to. PASCAL Including ucsD

* " PASCAL".

Also, (re)read the sections on files in both the APPLE-PASCAL

. Language Reference Manual and the APPLE-PASCAL Operating System

Reference Manual. . « » » - e

At this stage o}ﬁthe course you must be able to decipher. the.

" information of the: text, the language’ manual, and the - operation m.;»:'

manual on your own. -In Assigmment 10 you will be asked'. to type =

the .input data into a disk file, have your program read this data N ‘
from the file, and have the program print - the results directly D e .
onto the printer as well as into-a disk file. L

6

Make sure you read the material selectively, taking out the , .“"<L

information you need for your assignment. t S e
* : ’ . N 4) M o .
: L

185 - T

Part Ei

Take a thorough look at the exercises for chapter 11.
Attempt only those which interest you and which you have time to
do.

Part D: Assignment 10

The Edemdale grocery store keeps records on its produce in
the following form:

Code -~ character (24)

Price - 4 digits, 2 of which are decimals
Month - 2 digits

Day - 2 digits

The code has several component parts. All perishable items
have ‘PER’ appearing somewhere in the code followed by a
two—character alphanumeric which indicates the acceptable shelf
life for that product. For example, ’

DAIRY ALLPERI]5

indicates the item is perishable and that an "in stock period"
of 15 days is normal. If the "in stock period" extends beyond
this time, new discount price 1labels are to be created, to
encourage quick sale of the article. The new labels should have
the form:

| CODE $ PRICE |

Note that in the printed code, we keep only that part
before the identification ‘PER’ (if there is any).

186

R e . ittt

o T TR

In order to determine the "in stock period", the date must be
converted to a Julian date (total days per year count). For
example,
JANUARY 28
APRIL 15

JULIAN DATE 28
JULIAN DATE (31+28+31+15)
105

]

This date is then compared with today’s date (which is the
first entry in our data 1list) converted to Julian. If the
difference is greater than the "in stock period", the new price
is to be calculated by applying the discount rate for that "in
stock period" to the original price according to the following
scheme:

IN STOCK PERIOD (DAYS) 7 14 21 28 35 49 84
DISCOUNT (PERCENT) 20 18 15 12 10 8 5

Method:

a. Use a Function to determine if an "in stock period”
exists. If so, then return the "in stock period", else
return a zero.

b. If an "in stock period" does exist, invoke a second

Function from within the first Fuction to determine
what the period is.
If you 'use a STRING variable for the code, you can
check for the occurance of a “PER’. If a ‘PER’ does
exist then you know that the third and fourth elements
following represent the "in stock period". You now
have to convert this STRING representation of the "in
stock period" to a numerical form. One method to do
this is as follows:

1) set up a lO-character STRING with the symbols “0°
to "9’ in positions 1 to 10 respectively.

2) Use a FOR loop to compare the third position after
the ‘PER’ to each position of the 10-character
STRING. When a match is found, the index of the
FOR loop at that point will be the numerical value
of the third element after the “PER’.

187

3) Repeat the above step with the fourth element
after the ‘PER’ to find its numerical value.

4) How to combine the numerical values derived in the
above two steps to form the numerical
representation of "the instock period" is left for
you to complete.

Another method to accomplish this job after
finding the ‘PER’ in the code STRING would be to use a
CASE statement to represent the characters ‘0’ to ‘9’.

Still another method using standard PASCAL is as
follows:

PROGRAM PERFIND (INPUT,OUTPUT);
VAR I,J,NUMBER: INTEGER;
CODE: PACKED ARRAY[1..24] OF CHAR;

BEGIN

I:=0;
NUMBER:=03

FOR J:= 1 TO 24 DO READ (CODE[J]);
REPEAT

I:=1+1;

IF CODE[I]="P’ THEN

IF CODE[I+1]="E’ THEN
IF CODE [I+2]=’'R’ THEN
NUMBER :=10% (ORD(CODE [I+3])~O0RD(’0’))+
(ORD(CODE[I+4])-ORD(’0"))
UNTIL (NUMBER > Q) OR (I=20);
WRITELN(CODE,NUMBER)
END.

Each of the methods discussed above should be in the
form of either a Procedure or a Function. If you
choose to implement your subprogram from the programmed
example above, you must supply very detailed
documentation.

Code the Calculation of Julian date as a function or a
procedure.

188

SAMPLE INPUT:

12 01

DAIRY A201PERI14
DAIRY A24

DAIRY A275PERO7
VEGETABLE B371PER14
VEGETABLE B43PER14
FRUIT K473KPER21
FRUIT K245

FRUIT K458PER28
FROZEN 275

FROZEN 2621

FROZEN Z2BPER49
FROZEN Z89PER8B4
DAIRY A72PEROQ7
FLOWER W437PERO7
FLOWER W24

FLOWER W6BPER14
FROZEN Z54PER35
FROZEN Z24PER49
VEGETABLE B20PER35
DAIRY Al14PER14

00.35
01.29
00.42
01.09
01.02
00.48
00.92
03.26
04.63
05.42
02.48
04.22
00.62
03.22
04.62
03.06
14.32
23.02
04.28
00.78

11
03
11
11
11
11
11
11
07
03
10
09
11
11
11
11
10
10
10
11

30
20
22
16
23
08
09
03
24
30
14
07
29
23
26
15
26
12
23
15

189

SAMPLE OUTPUT:

DAIRY A275 $ 0.34

VEGETABLE B371 $ 0.89

FRUIT K473 __-S 0.41

FROZEN Z89 $ 4.01

FLOWER W437 -—; 2.58

1 FLOWER W68 $ 2,51
FROZEN Z54] $12.89

FROZEN Z24 $21.18

VEGETABLE B20 $ 3.85

— DAIRY All4 $ 0.64

NOTE: Output MUST include the borders.

190

APPENDIX A

A Guide to Writing Term Projects

Introduction

The term project should demonstrate your ability to use the
computer language you have learned, as a problem solving tool.

The program should be user oriented and attempt to solve
some problem in your area of interest. In most of the course
assignments, you were given the input for a program, and told
what the output should look like. Here, you will be responsible
for defining your own program I/0 requirements.

The program should contain at least 75 non-1/0 statements,
that is, statements not involving the PASCAL READ, PRINT or WRITE
keywords. Do not "pad" -your program with additional and
unnecessary statments just to meet the length requirement. If
you have a suitable problem, the length requirement will not be a
burden.

What to do? Select a topic you are familiar with, keeping
in mind the types of problems a computer can solve. It would be

helpful to:

a. investigate your major field of study--talk to various
faculty members.

b. consider your hobbies.

Project Proposal

A very important aspect of the project is its formal
definition. This is the "Project Proposal" which MUST be handed
in and APPROVED by an instructor or a T.A. before the project is
begun. Some modifications may be suggested at that time.

191

Define the boundaries of the problem clearly so that flowchart
work can be started. Your definition should resemble "User
Documentation” and consist of the following:

a. User Purpose
b. Sample Input
c. Sample Output

d. A brief (10-15 1ine) description of how the problem
will be solved.

Sample Projects

been

The following 1is a list of some of the projects which have
successfully attempted in the past:

Simulation of a Company. Read 1in cards corresponding to

employees in a company, and people looking for work. Use a
random number generator to hire and fire people for jobs.

Company Inventory. Keep track of incoming and outgoing

transactions, back-orders, current stocks, etc., with
monthly and yearly summaries.

Graphing. Draw an X-Y graph, or a bar graph for some data.

Advanced graphing. Draw an X-Y-Z graph, or a block graph

for some data.

Titration Curve (chemistry). Read in pH and volume data

for a titration, plot the curve, and do some calculationse.

192

Solving the Problem

Once

your project proposal has been approved, you will be

ready to begin. The following steps will guide you.

ae

Determine the criteria necessary to make your program

work.

1) The program may have to read in data--will you be
making error checks on the user input?

2) Will you require arrays to store data?

3) Will you need to do operations on your data such
as sorting them into a specific order?

4) What kinds of calculations or manipulations will
have to be made on the data?

Draw a "top—level" flowchart (Hierarchy flowchart) for

your problem. Place the guidelines from (a) into

logical order. At this point it would be sufficient to
have a process box with "Sort the data for . . "
written in it, rather than a detailed flowchart of the
actual DO-loops. necessary to perform the sort.

Refine the steps in (b). A good approach at this stage

would be to draw a small flowchart for each step.

Discuss your progress with an instructor or T.A. This

step may save you time and E;ief later on.

Write the code for your problem. Your flowcharts from

(c) should be detailed enough so that you can code
directly from them. MAKE USE OF SUBROUTINES AND
FUNCTIONS. A very good approach would be to make each
of the "top-level”" operations from (b) into a
subprogram.

Desk-check your code. Work through it step by step,

keeping track of the values of all variables. Weed out
syntactic errors, such as missing commas, unmatched
parentheses, etc.

Type your program into the APPLE-PASCAL system. If you

were careful in all the preceding steps (and are a good
typist), your program will work the first time.

193

Program Organization

You should make effective use of subroutines and functions
in your program. Ideally, your main procedure should consist
solely of a sequence of subprogram invocations (perhaps within a
loop). Subprograms should be used when:

a. a set of operations is to be done several times. This
would be particularly true if the operation is done on
several different sets of data.

b. a set of operations logically belongs together.

Examples might be the input section of the program, the
calculation section, or the print section.

Internal Documentation

Your program should have comments in it, similar to the
assignments. Every group of statements corresponding to a
"top-level" operation should be preceded by a comment, but other
than that, comments should be few.

194

What to hand in as the completed Project

The completed project will contain the following items:

a. Your project proposal showing that it has been approved
by a T.A. or instructor.

b. Program, consisting of:

1) A listing of a run of your program, operating on
some input data.

2) A COMPLETE copy of the input data used.

Ce A "Top~level" flowchart (Hierarchy flowchart) ONLY!!!
DO NOT hand in your detailed flowcharts.

d. User Documentation.

Parts (a) and (b) are self-explanatory.

Part (c) should be a short write-up of a maximum of three pages
and oriented toward the potential wuser of your program. It
should be neat and thorough - something that you would be proud
to have duplicated and circulated.

Consider the user: - what does he need to know? What does
he want from the program? Most certainly, he will not want to
read large amounts of information about the coding, but will want
a concise description of what goes into the program, and what
comes out,

User Documentation should contain:

a. TITLE. Give your program a name representative of what
it does.

b. ORIGIN. Say who wrote it, when and where.

Ce PURPOSE. ‘

d. SAMPLE INPUT.

e, SAMPLE OUTPUT.

f. SPECIAL RESTRICTIONS. Describe them briefly, for
example, does your program read all 80 columns, or only

60 or 72? Will your program handle more than one set
of data on a given run?

195

ge METHOD. Briefly mention any special algorithms wused.
Give formulae which are not common knowledge.

h. REFERENCES. Give the source of your algorithm or
formulae. (This information 1s usually only necessary
for science oriented programs).

1 REMEMBER, THERE IS NO EXTENTION TO THE FINAL. PROJECT DUE
DATE!

DO NOT HESITATE TO VISIT YOUR INSTRUCTOR OR T.A. IF YOU ARE
HAVING TROUBLE

196

A Guide to Writing and Submitting Amsignments R ST
: ’ Introduction ‘ .7 o,
Aas:lgmenl:s must be aubnitted in the lab per:lod@ on the due o
dates listed in the semester handout for the course. _ “- - -

-

Put your assignment in an 8.5 X ll Duo—'rang folder,

A containing
the following five &ect:lons' .

1. FRONT COVER LABEL -

your full name with the sumane umierlin,ed

the language yon -are taking

€. the gronp you dre :ln (see preregistrat:lon book];et)
2 TITI.E PAGE

. Assignment 8

b. your name e-g--J.A'.' Saith, 's'tuden’ nt No. '9'5000-0000‘ 00 R
’ C. cLus »- e.g.e‘ PASCAL Day Section, Group l S ﬁ &
3. Usnmnm o o
a. user purpose what the program does, | statedin
7 every-day, non-codtng 1‘“‘“‘3,‘, o o e
‘b a layout shov:lng a sa-ple input and a mple ou
4 FLOWCHART = A) N o
© o i T .) Am ,,A_;Qf;, i ,,{A,V.; Qe -
o - _
»
[
b R

w7 .

5. PROGRAMHER DOCUHENI‘ATION AND COM?UTER OUTPUT

VVVJ a. the programnet documentation wilI explain everythif
o 'programner needs tqunaw about thelprogran

b.r‘ the computpr output ahuuld be attached by'the laSt
oo, oaly oo T T e

c. DO NOT separate the pages of the printout.
Make sure - you " have cbecked the study guide for test data and’
modifications before Beginning any asaignment. :
If you have any difficulty understanding any'of these directions,Trj(: .
ask the T.A. or the imstructor to explain them in- ‘more - detail s~ v e
It*wiii*save*ynu‘time*and“wurry-f ' :

el s

-
. .-
_—
o E . e B o - -
P »
>
+
’ ' }
. .- . *7
,,,,,, — - SN SUES - - —
-
- e
s . - k4
198 -«
»
-
&
S = - - S ; S — S P
B - ¥ _

Exanple Assig;ment Writ.eup of Assi&mnnt

‘ Appendix B contains the writeup of a conpleted ass:t}nnent using

assignment 1 as an example.

S -

“documentation. T ¢ e

'User Dhcﬂnénfation

The user. _documentation section 1nc1udes the "Uger

Pdrpose » "Sample Input", and "Sample Output". User

documentation 18 designed for the benefit of the user..

It 1is quite conceivable that this person may not have

“Before-going on to the exnnple, 1t 13 tnporttnt thlt you'
‘understand the difference between "user™ and progrtnaer "

any_knowledge of computing and computing programs.

S **"*’7*'7”'mtefae’ a {etailed explanation Of mt the pregr“

T T does, what the Input should be, and “what the output

will look like 1is necessary here. Documentation should
be brief and NON-TECHNICAL, yet should contain a good
explanation of the program and how to use it.

Prqg;znﬁﬁr‘nbcﬁﬁéntatlgn i

describe the methods used in coding the program.
In addition to providing a gshort TECHNICAL explanation

of what the progran- ~does, this ~type of docunentatioﬁ'5
includes step by step explanations of each section of

' code, by means of program comments. If changes need be

made at some time in the future, these comments are of

. invaluable assistance, ... s

The programmer documentation is intended to

All programmer documentation should be short and to tﬁefi

point.,

EXAMPLE ASSIGNMENT TITLE PAGl;
N R -
,r‘
QPT 103 - -
Assigonment 1 v
J. A. Saith, 95000-0000
. September 10, 1985

_PASCAL, Day Section, Growp 1 — - .o .

- USER DOCUMERTATION .
* T e f e JE— —— ,,}"f\ - °
vm-' .

This program reads in two mtexgn lrtnd B, “sums tliiimr
prints out the total., ‘ .

Sample Inpnt s

The two numbers must be mtegers. They are typed in at thet
terminal under the prompt "ENTER TWO NUMBERS TO BE ADDED" and
must be separated by at least one blank space. v
T :"_*’*';'M’*',Iir”* T
| 23
Sample Output:
The output\\ printed on one line of the terminal.
- Sample: 7 o |
THE SUMOF 2 AND 3 IS 5

- - Progrmer ‘documentation consists of - fbttomtt phce& I e—

between the lines of code.»r

5 - They should contain any 1n§omtioﬁ? fbﬁ vthe progra-er‘ rwhrirch
may be needed to supplement what is shown in - the user

. documentation, and in the flowchart.. . .~ e

