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 ABSTRACT SN
msmcr %
A comprechensive %évelopmgnt of Blum's axioms for complexity
_measures is given and'the fdlloWing'cthcpts_and some of their uses in
abstract comblexity‘theory are discucsed: Church's Thesis, almost"

everywhere,'diaéonalizafidh,;the‘Halting Problem, dovetailing, the Reécursion

e

Theorem. Several results fundamental toAabstract;complexity theory arc

investigated in terms of how the above concepts are used in their proofs..

The intent of the authcr is td”help the reader develop a sttohg‘background
in abstract complexity theory without reguiring of the reader any previcus

o ' =~
knowledge in recursive function theory. .

{+313)
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° CHAPTER 0

INTRODUCTION -

§‘0,0_ Outline

. Most of the literature on abstrapt:compleXityitheoty* ié‘wrigpen

undef@the‘assumption that the reader has a strong background in recursive
. T e o : . ‘ , o
function thébry.- This author feels‘that many mathematicians and computer’ |

scientists who might otherwise find abstract complexity theory. an. N

T

interesting ahdire&afdihg tbpic1to study, find that to extract from’

=

recursive function'theOry'thosé‘topiCS'relevant to complexity theory is too
much of an undertaking. This paper constitutes an attempt by the. author to
isolate and demonstrate the use of many of the concepts and tools commonly .

used in complexity theoty oroofs and countcr-examples. This is done within

complexity theory itself, thus making the paper relatively self-contained.
TN , 2 e v .
We do ascume that the reader has some baékgrouna in basic
. S o ~ - R : o
mathematics and in the theory of computability. If the reader can

~understand the topics discussed in . § Q.l,‘has seen a development of Turing

machines and the construction of a Universal Tufing machine, then his’
background should be adequate. CHAPTER 1 consists of a review of these

‘latter two topics. ' !

z

) Abstract’comélexity‘théory iiJ? study of'pfgpertiés'ofcompléxity
measures, that is, objectstthat safisfy'certain axidﬁs_(frqm'ﬁium i2])rthét~
Qill be preseﬁted in CHAPTER 4. VIn this iight,fabéf;édt cbmpleiit§ theory

gives a macfoscopic view of specific Complexity measures. SeQerél of theéé

A

* Sometimes we usc "complexity theory" for "abstract complexity
theory." ‘
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: .

' measures} such as_fimczand.tépc méasQres onlfdring'haéﬁihps,faréNSLudiéd )
in ,»"thgir own ‘r-ig‘hkt. ,rmt_'hvough_not"'ésse_ntia_l, 7itbmigh£"ﬁbe he.:lfafuvl for the
réader to;ihvostiéate some of.£hése¢;pecific¥mca3ures before stud?ing tﬁév
more général theqry.‘ CHAPTER 2 givesf&*veff brief descriétiohiéf SOme"
ﬁiﬁe.and tape meés@res én thexTuring.machincs\developed ih.CHAPTERil; .
" In CHAPTER 3‘w§ éive a f&fmal définitioﬁvof computabiiity; inis '
 c¢rrespondsLto the definition of the partial recuféiﬁe fﬁnction%iih’

recursive function theory. However, sincé this paper appeals to the

-

’réader's;intuitionvin Computability rather thahvé‘kﬁowlédge of tecur;ive
function’theoryktwc ChQOSe to name theéé partial funétionS'as fhe
' ‘computable partial‘fphctiqns rather tﬁan the partial recu:sive functigjé.

| ‘f;~ The ;émainﬁer»of £He‘paper‘dcals Qith‘spécific'notiﬁns wﬁich the
autﬁor feels form the»'baqkbphe' di-abgtraét‘cémpléﬁity theory. In
B CHAﬁTER.S we lock ét'thé notioﬁ of.alméstAéve{ywhcre, why it agpeafs,iﬁ’.,
complexiiy'theory,vand'at itsrimpact on the relevéﬁte of studying
compleﬁity'tﬁgoyy. CHAPfﬁR_G'dcals with diagonalizaﬁion»ahd_thf ﬁalﬁiﬁg
Pfoblem; CHAPTER’7 deals with doQétailinq argumeﬁté“

In CHAPTER‘Bvﬁhé Rccursioﬁ Theorem is discussed. Some ahthérs

seem very reluctant to make use of the Recursion Theorem in proofs (see the .

discussion of the Speed Up Theorem in (41), p:esumably.bebause they. feel

PO

that the intuitive drive behind such proofs becomes obscured. This author - . .

N

disaérees and’hopcs‘that CHAPTERvS will help to 'tiear‘the fqg' around fhe
»Recursion Thcorem and cnable the recader to fully appreciqte the intgition
behind various uses of‘this powe: ful theorem.

CHAPTER 9 is a bricl discussion of further topics th;t the rcadgr'

may wish to study.



=S VA\

; . ) ) X L R
N v . o 1

i} . ’ : . w K - ¥ )
Although most of the fundamental results of abstract complexity

»
S

theory are discussed at least ‘briefly in the paper, the author's intentfon

is neither to preSent-a'comprehensive_Study‘of<}he results of complexity -

1theory, nor to prescnt,all-of the notions from r¢cursive function theory

which are used in,complexitydtﬁeory. He intends only.to‘preSent some of

" these results and notions in such a manner that the reader may acquire a -
“strong backgfbuhd in abstract®complexity. theory, §ithou§‘requiring‘that“

1
the reader have any previous knowledge ih_reéﬂgéive function theory. .

.e
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" for, k;f'{l,2,...}, represents tﬁe se't of-all Kk-tuples bf_hatgral

i for (ij,i_,...,1

BT o B
b - ’
. . . o o ‘, L ) 71 . ‘ 7 ,v »,.:“ . \” } ‘4 B
ST y 3 A N :
. : : _ v XUREENR SR . i
501 Notation . oW 0

‘At -times we wiilfusé5theﬁfoﬁlowing»$ymb9155in'brdgr tQ'abbrevi5te ‘

©

. ;he given phrases. ) v ‘ . : pus
) - . PRI . o . L . -
. Cia S S ST o
V = 'for all' or 'for every.' SR 2. .
. B y . tr N i Ty .
el . . \ t : 7 ] oL

- NS N ST T RN
“there is' or 'there exists.. TS

'such that.' 7

\
v

v
|

Sy 1

DR € - 'is an elementiof' or 'in' as .in set €heory. -

[al

T . R T S Ce
-~ 'is a subset off' as in’setfthegg<.

C ' - : . sy
# - 'is a proper subset of'‘aspin sct theory.

U
t

.timplies.' P = Q is "P».iﬁplies, Q‘ or 'if."P tﬁen o

‘e -~ 'is implied by.' P = 0 is 'P is implied by Q' ‘or ‘'if

@ them Bt
o - 'if and only'ﬁf.' ) ‘ . ) ' S e
We use N to reprcsent the natural numbors, .{0,1,2,,..}.‘ Nk.

numbers.  For k 2 2, a particular k-tupld,is represented by either an
underscored letter dr a parenthesized list? For examplé, we might write

o <l . . ' ' . » .."
prigrees k)' N ygnd N arg esscntlally‘tneb$ameténdvye dg
not distinguish between the two.: e "3

¢ 'qutiai'functions'Afe used extensively in the paper. All partial

0

3

fufictions will map from §#Q to N for some k. .Let Y ' be any partial
funétiogronw ﬁk %éf anyri(ﬁwih' :;. n 5“€'Nk U(n.,n.,... n-)'kmayrbé'
. N . 11:21 ’ K . ___-r ‘ lr 21 I(k o -

defined to be some patural number, or else it may be undefined. - The doQain

‘of VY, ‘denoted Dom(p), is defined by

Dom(y) = {n ¢ EF | ¢n is defined}. .
_%hc image of Y, denoted Im(Y), 1is defined by’ l | ,i \‘

Im() = {yn | n € Dom(y)}.
s Y ;



# ‘v

& ’5
. _ . <
. T ' v
Thus the 1mage 'of . is the set of values taken by Y.
) s .. S o i o )
Suppose we have a oet I, and for each ‘i € I, 'we have one
asso?@ated partlal function _mi} ‘We say that'lI;»indekes the~set of -
~" functions ‘{wi’[ i€ 1}. .wc'will denote such an indexing by (¥, )1€I In

5

- . S , _ : k ) : ' . :
tne paper, the index set will_always be® N for some k. “An 1ndex1ng of
’fiparfial functions, ’(wi)iGN'. (that is;nwhere 'k = 1) will be called a.

sequence of partial functions ir ordéer to remain consistent with the

- literature. -

L - ’ . -
.

nal operators <, =, =, 2, > ‘are straightforward

*

2 The relati
'exceptnwhén used wi h'partial functions. Let 'wlf w2 bé'partial'fﬁnétions
k.  k_- -k k. :

on E_IL_N , respectively. Let él € N 1 and 22.6 5_21'7Let a ‘be.
. . « y— l’ o : ' N .
any one of the above operators. )
f : Yy Y .d\ ine RV a is
‘ If ¢;therv wlal or _VZQQ 1s»ur efled thgn klnl w2n2 ,%S-

is tr%ﬁ’or,fa‘se in the cbvious manncr.

undefined. ‘dtherwiSe wlgi a‘w222

W' also use three other relational operators <, =, 2.

n, = ¢2£2 is true 1f elthnr both ¥._n - and wzng— are undefined or if |

1-1 1 ‘ _ )
iiﬂi = wzﬂg; otherwise it is false. U nl < w 2 ié true if eithétb
A-wlniygiwé22> or w n S'.z n,, otherw1se it is false. wlél 2 W222> if‘nnd
‘nnly if uz n, ulqi . .
1t ¢1,w2°‘both nap,ffomb §F to .gi and ’Vn wl n,. ’

then we write Vl wi' ‘

Let w be a partlal function on g& and’ n G-EF. ;for m ¢ N,

~we have, -
¥Yn =m "is true = Yyn - m ‘is true
and Yn =m is true e Yn < m- is truec.
, . i

Notlce tho ugn that 1f wn is undefined then Yn =m and .yn <m are

undefined, whercas " Yn - m and Yn < m are false.
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-0

- - t
- BB
N - N S . v S ,
L o _— R . X . T e N .
- Partial preédicates will map from N to {TRUE, FALSE}, for.
o R ‘ . L ‘.'—, RS Lo ) k kK » ‘
some k. Thus, if 7 "1s a partial pr&dicate on " N and E.E N, then
‘either
. mm is  TRUE
#or - 'mn - is  FALSE
L or .~ 'Tn is undefined.
D . . - : .
- Often we write f'ﬂg; holds?ior'merely "Tgf»kfonv fﬂﬁ is TRUE.' ~If. 7n -

’ a ) . . - B . LI ) . . . .
is FALSE or undcfined we write '1@1 éggés not hold.' Wélsometimes write

'~tn'  for 'Wn is FALSE.' = f-f ‘ o

- e

» At times, if an expression is being used to rerresent a function .

_or a predicate; we will use Church's lambda notation in-order to make

clear which variables in the expression are arguments (and also to give a
. : . . . R M . . .

fixed order to these variables). For examrle, if (V<)-€n " is a seguence
L : . . i ) : 1 1€N

of partial functions on N then

- Monly; (o)1 o =
o n e S, 2 - : :
- is the partial funhction ¢ on N defined by . BT
, : _ T
:)_ . ._ S ~l'. . .
’u(¥'n) ~ defn wl(n)
. - 3 N ~- -
Given -y as above, and some fixed i € N, .
. S -
An[y(i,n)] ‘
_is the partial function ¢ on N defined by @

cp(n.)‘

- - \
~ defn V(l’n)f

‘Where T is a partial predicate on N, we use the notation
. ' . ' uk [m (k)]

to represent 'the least 'k € N ‘such that (k) hblds.‘_
, _ _ L |
The composit.on of a partial function ¥ on N . with partial

. 7 . -
functions wl,wz,...,wk‘ on N, say

- ,,,5 .
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a similar manner. We use g o £ for Anlg(f(n))].

. N . -
. - * id
- -

: w’=qAniif?f...;ék[w(wi(él,nz,L.f,mi),.7.fwk,(hl,n2(...,nk))]

@lnyomy o) a0, ‘[ undefined . if 31 S k', Y (0 ,n,,...,n) is
.b B A ’gﬁ’«b undefined ~

A R D o

- . ) » - . . L"ll‘)b(p]-lljzl‘wf' :pk)lf Vl = k I‘A wi(nl,l’l‘?,...,nk) pl.

The composi;ion'of'a partial predicate with partial. functions 'is defined in

e v

A procedure is an intuitive notion with which we assume thé

reader is familiar. vweralldw the’result_bprr9cedﬁres to*be,undéfined on -

- some inputs (gossibly:becduse of infinite-cycling). If a'prOCedure givéS‘

a result on all inputs from somé set, then we call it a total procedure -on ..

this set of ihputs. We use the words check, comppte[ construct, decide,

detect, %ind, generate, and tell, all with the understanding that they

should have connotations of the existence of a procedure-which'can do»the_~’

checking, computing, constructing, deciding, detecting, finding,

generating, or telling. «

&
~
-
.
.
s ’_(‘
S - .
Y

e—
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, . CHAPTER 1 .
. .R i " ) . . N "
.~ TURING MACHINES - NS .
£ 130 . Discussion . i o .
In this chapter we look at a specific model forvTuring_machines '
(8§ 1.1), at a' method of numbering these machines (5‘122), and at a :

o . . . . . e . o ) -
machinQEWhich is universal for these machines (5§ 1.3). These notions are s
treated informally‘agjit is'éxpected that the reader has‘previously

.2"’_ " studied them in'afabre'formal setting.
We present the material 'in this chapter only so tha%llater in
- o , 3 . : N .
the paper we have a fixed development of computability from which to draw
ekampi%s. s
[ BN
. s, 7?“ -
< ’w,';wf’
1 j a
!(“ )
. 4 “/‘ -
- ,’lr
ﬁ:n‘“
) |
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§ 1.1 Turina Machines and Their Partial Functions .
- L . K .

In this se§tioﬁ we deséribefa.moéel of_Tﬁfing_macbiné‘which wiil-
~be uséa_t6'é§emp1ify.Qarious-céncepté presented in“tﬁg paper. .This*médéi
ié.élightiyldiffefeﬁt fr6ﬁ mqée1s normaily‘used toVdéépriﬁé-qupﬁt&bilitjer
in_that it héé.twé_tapeé,ione dertea solely’té.iﬁpﬁt:ahd.output-aﬁd fﬁé l

other devoted to doing the actual computations. We do this only so that-

the model can serve better in our examples, not to improVe.the déscription
‘ » : : ahou LS e i . _ .

of computability in any way.
Our mddél is a two tape (semi-infinité to theTrightj-determiniztic

Turing'ﬁachine‘with the extra restriction that one #f theftape¢heads} called

' the 1/0 tape’head, cannot move left, and can only read andfwritebthé'symbOIS' '

- Oil. 'The'dthcr tape head will be called the work tape head. -

-

We give a more detailed description. "By a Turind;maéhing,v7ﬂ.r.
. ' e ’ P o R
instructicn we mean a quintuple of the following form,
. ‘ i t- r ' N I )
(7(17 3) %er Gr (ot ), (D},D))
where ' V ‘
i,p € {0,1}
DD, ¢ D{L,N,R], wij:h' D 7L
j.k,m,n G.E.'i ’
{qili € E} is called the sct of states.
: [ . : .
{ti!i € N} is called the set of tape symbols. T

Thus in the above quintuple, qk,qm arc states, and ;tj,t ’ . _

- are tape»symbols. We consider t0 and O as the sa@e tape symbol,

14

and t, and 1 as the same tape symbol. : . §

yd
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. (i,t.) is called the.input pair. e
B ‘ T Ve

9, is the initial state of the instruction.’ .

: Q. is‘the>finai state cf the instruction. ‘ . PR

AL
\

(p,tn)"iS*the oﬁtput~paér€~*\§\‘-. -7 o R

:f-_(Dl,Dz) is the digectiion pair. -

By:a Thfing;machine we mean any finite list of Turing machihe

instructions such that no two instructions in the list have the same - _ . -

input pair and initial state.

Suppése wéuhqve two tépes;-iqfiﬁife only to th%:rfghﬁ; thcﬁ
aré divided,into cells, each of which céntains:pgecisgly’one tape sypbol.
‘Given a Turing méchiné, pl%cé tﬁe I/Q_tapé hcad bﬁ,opé of‘the cellé—pﬁf//1
one %¥ithé‘tapes, énd the work tape head.on one>6£ tﬁe célls\of the:othér

. tape. Place the machine in scme state. This machine will now operate

in steps as follows. Suppose at the beginhing}of any step;rthat the”,: - ,W‘:,ﬁ?

]

1/0 tape hgad<is'reading tapc symbol i, the wofk( ape head is reading L

‘tape symbol ti, and the machine is in state q - If the machine has

an instruction in its list of the forn,

((i'tj)y qk, %: (Pltn)l (Derz))

fgr,somg lqm,p;th,Dl,Dz,‘ thén~it)ent¢rs state qﬁ,i ;eplacesu»i wiFh

p\nsing its I/0 tape head, replaces tj witbkﬂinf _using its work tapé
head, moves the I/0O tape head no c§lls_o: one cell to the right acgording - I

as D

1 is N or R, and moves its work tape head one cell to the left,

no cells, or one cell to the rightraccording'as D is L,N or R. If

2

N

#® Henceforth we will abbreviate such phrases as ‘replaces tj with tn'

 with ‘prints tﬂ"




'“machine halts. o ‘ e

.

the work tape head moves. 1eft off of the work tape7 or 1f thefegisfna‘ - 'uéfffL

1nstructlon w1th 1nput palr (1,t ) and 1n1t1al state qk then the

Let T‘Abe,a'Turing machine. T‘defines a“partial'functionn,v
X “k o k, = S
T on N for each k, as follows. The value of T (n1 2,...,n )y is

~ -

@

Adetermined,byfstarting,VT‘ in state-.qo, with the I/O«tape head on

the leftmost cedl of a tape of the form,

* 1{1 1o -it'f:' 1lol1 ofl1l1 2lofo]o all’0's
— o ;* N
n, 1's f L 1's R
w p, W,
k groups. of l's |
.

and the work tape head starting on the leftmost cell Of.é tape filledh
completely w1th o' s.' If T on these tapes does not ‘halt then. T (n1 2,...,nk) :

k .
1s undeflned if T halts, then the value of T (n ,nz,,,,,r ) 1s-def1ned

to<be the number of 1 S between the left end of the I/O tape and the final

p051t10n of the I/O tape head. ‘ - : B , ; t'

Henceforth, when“we speak  of the function on N -computed by

a Turing machine, we will mean the funetion defined as above.

F*
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§ 1.2 A Godel Numberinq Aﬂ'”“ SR

2

. N : ~ 5 - - - .
- We would llke to numbcr the set of all of our Turlng mach1ne° dh ‘

s0° that belng i&ven the numb r for a machlnc and belng glven a machlne w1ll
: . _ v ‘ : - ﬁ

- be much the :3 ‘thing. “Our. int’ention 'is that some Turing m'achin‘es will:
a

‘be able t0~' "Other Turing machines as inputs and outputs by merely‘ .

1nputt1ng and outputtlng the numbers of Qhose other Turlng machlnes.' Such

k3

a numberlng w1ll be called a- Godel numberlng, ‘since our- reasons’ for numberlng

the Turlngrmachines are_si?ilar-to Godel's réasgns for'numbering formulas

.

in the proof of the famous 1ncompleteness theorem 1n mathematlcal logic.

'K“""\“

‘ (1.e{vGodcl 1ntcnded that some formulas could make statements,about other’;;‘~“"

formulas by making statements. about the numbers of theSe;formulas).; More  f .
, . . S R : ST P c

precisely, by a Godel numberdinglof the set of Turing machines'we’willgmean7 7
~a method of enumerating all of‘thi Turing machines so that there is a -
procedure which; given a number i€N , constructs (the list ofiinstructionsb'a
| . .th . e o O
for) the i machine, andualso a ‘procedure which, given (the list of in-

L th " . , . .
structions for) the i machine, computes 1. In this section we will

describe a specific Godel numbering. for our set of Turing‘machines.

A list of eight numbers is of instruction “format if
- the firet number_is either Ocor 1

- the second, third; and fourth numhers are natural numhers
-hthe fifth number is either Okor 1 . o g\.‘ ..
- the eikth number is a natural number '. )
= the seventh numbcr is either leor-2 -

- the eighth number is either 0, 1or 2,

Such a list of numbers i,j,k‘,m,p,n,d'l,d2 corresponds tcé the Turing
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‘maChine‘ihstruction
o CLLE Y@ e (oet ) (D D)

where .Dl_xand 02 are '1,, N or R "according as- dl and d2»‘are 0, 1
‘or 2, ‘reSpéctively.( Cgrtainlyfthere‘is a proceduré-which chécks whether

or net a given list Of”natu:al‘humbérs is of instruction format. -

- A list of .8°n natural numbers, for ‘any A€N, is.-of machine
format if, when the list is broken down into consecutive 1ists'of)eight ;
.o - N . Lot e A"‘ -

numbers;.éach.Snb?1;;t iS of instruction format, and furthermore, there -

.«»*"«“

. are no two such sub-lists with the same first three mchbers in the same
~order. Clearly theféris_a one to one‘cortespondence‘betwqu lis£s"of'

~natural nunbers of machine format'éna-TUrihgimaChinés, (thite»fhat‘ﬁe

‘ _muét ¢on$ider'tﬁo‘lists-of Turing machiné instructions which are just o

’éé;ffanéementS»of_each other as distinct machines). Also, there is a-

: I L I :
.- procedure which checks whether or not . a given list of natural numbers.
sris of machine format. A . v;fij S
It .is also ‘easy to see that tbere-is'a procedufé'ﬁhich{ﬂwhén;:xﬁ’
" given a machine (as a list of instructions), outputs the corresponding .. =~

list of natural numbers of machine format, and that there is a procedure
which, when given a list of natural numbers of machine'format,ioutputS'

the list of instructions for the corresponding machiné. :

.SUPPOSe we have a procedure which generates, one at a time, o ‘\

o

¥

"each finite list of natural numbers, without‘repetition.,-Aséociatelwith

. . ' ‘ . ' .. tth o i,
the number i, the machine corresponding to the i+l list of machine

format which is generated. This constitutes our enumeration or numbering -

/- - . T
of the Turinglhachines. (Notice that O corresponds to the ISt list® -
. s N - nd C /
of machine format gencrated, ‘1 to the 2, etc.)
\
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i

Given a machine we can find its rumber by generating tnéflisEs~

of,nétural;numbers’using the'given‘procééure, incrementing a counter
each time a list of machine'férmat is gencrated until we find the list -

of machine format which corresponds to the given machine. The machine's
»number Qill\be.the value of the counter minus 1, that .is, orie less than

" .the number of lists of'machine format gencrated in order to find the

* corract one. Conversely, given i we can construct the associated .

méchine by generdting the liStSfo natural,numbers using the‘giVen

o - C th R e RS § 5
procedure until the i+l list of machine format is generated, then
‘outputting (the list,offinstructions‘for)\tﬁe hachine corresponding'ton
~the 1{1 7 list of maching format. C
e Thus,.giVen'a’procedurethich QQnéfétés;ail‘fihite~listsnof'
_ natural nUmbéré'without1rep¢tifidn,”we'cannGBdel number the Turing -

maéhinés. In & 7.1 we will develop such'a proceduré, Using(that,

-

7procedure, let us call ‘the requlting Godgl numbering the ctandard

ening of the Turing nachiph“ i“"“ﬁzt T be the Turing machine“
associated with the number i{ “in*the standard'numbering, and let
Ti be the partial function on =N computed by Ti'

Notice that if T ' 1is the partial function on N computed

"by a Turing machine, T,:then.theré are infinitely many Turing machines

which compute T. - This is~becéu5e we can keep adding instructions to
’ . . ) - - - ._.
T whose initial state is neither q, nor the final state of any ¢ther

instruction of T. The reéglting new machines clearly work preéiscly’

like T on any-tapes. Furthermore, all of these machines must have

distinct numbers *since they are distinct machines. Thus we have infinitely
. . k .

many numbers i€N . such that Ti = T,

|

e
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§ 1.3 A Universal l'acjfhe. = . ‘-' . - - ' o B
. - “ < ‘ .. . 1. . N . . - -~ v o 7,777:L7

A'Turing machine, U, will be called universal for the standard

numberlng of the Turlng machlnes 1f _for each k ‘the functlon uk"on': o -
k+1 ' R N
N deflned by U has the property that VJ. € N, an,nz,....,*nkj € y_'
‘ k . : '
e have ‘ u (i,n ,n2,...,n ) = T (nl,nz,...,n ) ‘'In thls'sectlon we

~attempt to indicate how such"a machlnetmlght Operate.

Basically, in order to compute My (1 nl,nz,...,nk); U will

) .th . . : S R
construct the i - Turing machine, Ti, then sa;ulate~ Ti on input

(nl,nz,...,n ) The following‘gives a general description of how U S;

mlgnt accomollsh thlS, but lacks detail. We leave it to the reader to

convinee‘himself‘that such a machine, U, can be construeted.

-.

5’ .On input (i,nl,nz,...,nk), U copies i from the I1/0 tape to

the work tape, replacing the i ones‘on'the I/0 tapetwith zeros. Now,

holding the I1/0 tape head stationary, U generates, using the prdbédure
upon which the standard numbering is -based, the finite lists of natural - -

numbers until the :i+lthh‘listbbf~machine format is generated; The
‘machine assobiated with this list,‘ Ti, islthemaehinc:that;must be -
 simulated. | | |

AStill holdihg the I/Q tar..head stationary, U.hsets aside an
area of‘ﬁork”tape:in_whichtthis l&l?h' 1lst of.machine,format is stored,

along with an area in which the“number of the current state of the -

simulated machine will be stored. (ThlS currcnt state spaCL mﬁZ& be - - .- 5z;;

3

large enough to con'aln the number of the largest numbered state oﬂ. T ) B

The remainder of U's work tape will be used as if it~were_TiAs~work tape,

3

using mt+l cells (call each consecutive group of m+l cells a pseudo}cell)



as if it were one ce;l, where m is the nurber of cells required to
" hold the number of the.largesf—numbereq tape symboliofHTil The left

/ ) . o . - X - “l . )
most cell of one of these pseudo-cells is used to mark the current = L ey

-vpositioﬁ Qf the_work tape héaé éf'thefsi;ulétéd machine. The reméinipg
;mk ceils-are USéﬁ to‘stqte thé;numbér of thé>§§pe syﬁbbl whicﬁ the
simuiated.machine.currentiy‘ha$ printéthhere.-\:\ o - ~— o ,,’¥ALQ'
| ‘Now ? can simu1a£e a step:of 'Ti §y reading.an'l/b tape

sy.bol, (iﬁitiélly U's I/O'tapQQhéad must be Positionéd Eéjfead
.(nl'n2';ff'nk))' then.compéring fﬁis éymbq;’£Qg¢therrwith~the,number of
the tg@e symbol in the pseud&—ccll mafked aB Eufrently.beiﬁé_rgad,
£Ogother with the nﬁmbcr'in,the curreﬂt staté space, to thleirst three

numbers of eaéh 'ihstruction' iﬁ ﬁh list:of ﬁachiné format. If if

finds no match then U halts. If it finds a match fhén the ﬁu#béf of

_the new.statcbgiven b? the matchcd instruction i§'printed in thé»currenti

’Staté spaée; the 1/0 symbol fo be.ﬁrinted is pr%gted by the:I/O,tapgv _
"~ head, the_numger df‘thé“wdrk‘tape_syﬁbéi to be printed is g&itten iﬁ ._. | ‘1"’
fhe-pseudo-celi marked as curfentiy’béing read. Now the\I{O tapcbﬂead
:and'thé head marker on the pseudo-work tépe are .ovea_as‘ihdicated by
fhe 'instruction'. If the‘head marker iébto_be movedzléft?§ff of the :
. P§cud§-work tape,'then U'Halfs.* ‘ | |

The readet»cdn~see that the'action_ofvu'svl/o fape %eéd on

the (nlrn2.---,nk) portion of thé otiginaﬁ J/O_tébe‘ﬁill'ﬁé preciSely

the action of Tifs I/0 tape on input (nl'n2""'nk)' Furthermore, U on.
. . N . " . . R .9 .

—

input (1.n1,h2,.~.,nk)bw1ll halt if and only if Ti on input (nl,n2,.,.;nk)

halts. Since the i portion of U's original T/0 tape-has been set to
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0's wé»havé that the number of l'sAbn‘the'I/O‘tape which determine the
result of U on input (i,ni,nﬁ,...,nk).'is preCisélYithe same as those
’ < - | . *
for* Ti: on input ‘(nl,nz,.l.;nk). _Thus, if U can be constructed, then.
U is universal for our standard numbering of Turing machines.“We‘leaVG‘ )

it to the reader to convincé himself that, in faét,yU can be const;uctéd;

-
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CHAPTER 2 R

. TIME AND TAPE MEASURES

Q

§ 2.0 Discussion ' — ‘
: . s : . . - )
_In chapter 4 we will discuss some axioms for complexity measures. -
. PN . . R ' .‘ . . * RN » " . .
In this chapter we present two measures on our Turing machines which
satisfy these axioms. These are time measure and tape measure. - Time )
. . . . . @

L

measure counts the number of:stepsvused by a computation, and tépe~measure
counts the number of work tape cells used %v a computation. In the
‘e ' * : AN

literature both of thcse_iEZSuxes are studied in their own right, as

S

‘well as being examples.of abstract complexity measures. (For varigus

')_ ) .

specific results for time and tape measures, as well as some other

references see Hopcroft and Uliman'[S]). In this paper we make use of.

v

‘these measures only as specific examples of abstract complexity measures.

Another measure that might interest the reade:uiS’révérséls,
. ) » @ . - ) g o .
a count’ of the number of times the weork tape head changes direction.:

’ ﬂ . . a R - . ) ) R .
This author has seen no seriocus treatment of reversal measures in the-

1iteraturé. :

In § 2.£ we'loék ;t time méa;ure,’in §”9.2 we lgok at twd
sligbtly differpnt tape méasurés; ana iq § 2.3 we ioQk*at a reiated‘
topic, the use of table lobkups to do effiéiept qompptatidhsEWéth_

respect to time and tape.



§ 2.1 A Time Measure = o i
| S 1 »
. We can define a time measure on (T.). by
_ R : i"i€N
: 0.(n); ' (the number of steps T, takes . «
i ~ defn : : . ~ -
. 3 ’ l ] . .
_to compute Ti(n). if this.
- . _ : L . . number is finite, otherwise
Oi(n)'3i$,undefined;.?  F
NG - O .

o o e e ‘ = . 1, -
Since Ti takes-a finite number of steps in computlng_ATi(n)

D

if and only if Ti(n) is defined, we have

di(n)z _ numbér of steps kTiv takes R R
RSP R I o |
. in computing Ti(n) o if Ti(n)_ls-def;ned
undefined = - if 'Ti(ﬁ)'is undefined.

a

Notice that for any i,n and m, - we can check whether or not
'.Oi(n) = m as follows. From i construct Ti}u»Run ‘Ti on n,. counting.
- the number of steps taken, -until either Ti -halts or more than'bm steps .

are taken, whichever occurs first. If Ti on n uses more than m
.steps then answer FALSE, elsc answer TRUE or FALSE according as. Ti on L -

wn used exactly ‘m steps or not.

i

The main reason this argument works is because either Ti on

.o v «

n halts taking no more than m steps, or else fTi on input. n uses

.more'fhan m stepsQ We will see that thelsame is not tiue for tape.,i

The two important properties of time measure that will be of
. ) . : 7] ) »
“interest to us in this papergare

- 1 . :
(1) Ti(n) is defined ﬁ‘aoi(n) is defined.
(2) It is possible to check,‘givcn i,n and m, whether

v

P

or not Oi(n) = m. b



-0 § 2.2 Two Tape Measures = . o o

We can define a tape measure on' (1))

; e o e BV
L A (n)= . . { the number of distinct tape cells ot
. -1 " defn - , -

visited by ‘Ti's work tape head

y in computing Ti%n) if”this'
number is finite, otherwise
Xi(n) is undéfined.

- ' -

thice that iﬁ is possible for Ai(n)i to bé aefined but
Ti(n) undéfingd.,_FOr éﬁgmple' Ti' on inputr n‘:mightieiecute.aq
instructioh such as - | N -
((0,0), a., a,, (0,0), (N,1))
. ' J 3 . : .
thus cycling infinitely on a finite”amcunt of work tape. Thus it is
. 'nét-true, a; with time meésuré, égat either' T, on ihpuf n  haifs‘
‘using no more.fhan 'm work tape ceilsi eiSe; Ti' oévinput ‘n‘ ﬁsgs
more than m wofﬁ tape cells. ’Hoﬁever, Qe will Shpw éhat it is still
possible to check, give.;xlwi,n,m,‘ whethex; or _n§t _Ai'(n) ;:l m.‘ The
argumenf ﬁinges on the fact that we éan defect-if Ti on inpﬁt h is
cycling on a.inenzfinité amount of work tépe.
Suppose that the computation done by Ti oﬁ input n reéches
° a point where exactly k di;@incp work tape celis have been visited S
and although this ¢omputation wili not termihate; no pfeviOustfﬁhvisiéed
" work tape cells will be visited. Then, in subsequent steps of com§ufation,>

the I/0 tape head will either

(1) reach an I/0 tape cell from which it will never move,

vor (2) eventually move across ecach cell of the I/0 tape.

» K

n



~'Let g be the number of distinct states and t be the number
of distihctétape symbols appearing in 'Ti's‘ instructions.’ We can'detect‘

case"(lf above, for‘if Ti on input n runs more than 2qktk steps

Y

without Visiting a.pre?ibusly uhvisitéd_work tapg cell‘gnd withodt moving
"-.the I/O”tape head, then' 'i‘i must Bé cyglingh This isvbécéusekif Ti

" does this, Fheﬁ‘it must habelbeen»in‘the,samé staﬁe, with tﬂe‘I/O tapéJb
and Qork tape in-£hé.same_configuratién {a tape cohfiguration:is the‘ |
COﬁtents'of £he tépé fogethgr‘wifh the pbsition of the tape head) at
;eastthicet lThus 'Ti >must Ee.cyc}iﬁgbth;ough tpe same‘séqugncg of

s,

steps over and over.
 We can detect case (2) above, for if Ti's input head moves

across more than qktk d's td-£he right of the input n; wiéhoUt’ Ti
'visiting a new work tape cell, then Ti ‘must be cycling; VThis_is be§ause
if Ti‘ aoes-this then Ti ‘@ustrhayelbgen in_the éa@g %Féte, wiﬁh ;/O
tape head moving righﬁ onto a o: and héving only 0's to the right, apd

with the work tape head.in the same confiquration twice. Thus, since

*

the I/0 tape head can only move either to the right or else not move at

all, the I/0 tape is effrctively in the same configuration, hence again
Ti must be cycling through the~é§me sequence of instructions over and

over.

Thus we can detect if - Ti' on input n cycles on-ewactly -k

work tape cells as follows. Aftef. Ti uses’ k cells, check if it ever

: k . ) . . S .
makes m.re than 2gkt steps without moving its I/O tape head or using

a new work tape cell, or if Ti ever moves its I/O tape head right

W

o o k ‘ - . . ' .
across more than gkt 0's to the right of input n without using a

o



| - g . . - _ | o : o »_ | .
‘ﬁ newbwork tépe cell.  If cither of these happeh then’rT; is cyciihé.“"
- . o - . » . . T
Furthermore, if T, cycles on  k work tape cells then one of the

~.abgve happens.

Now, given 1i,n,m we can check whether or not. Xi(n) =m

F

.Aas.fqilowé, From i cdnstruét Ti'.théh run Ti. dn input n: cgunting

f'distinct-workskape_célis‘ﬁsed, and checking if Ti: cycles Qn: k woik_v

' tape cell$ fb; each k‘$fﬁ. If T, uses.moré fhaﬁ ‘ﬁ;‘wak tape cells
tﬁén answer'FALSE. .;f T; rcyélés~oﬁ k. wo;;\tape-ceils where ’kbgrgJ:s'

then answer TRUE or FALSE according as k is or is not m. If Ti

haits answer TRUE or FALSE according as m distinct:work_tape cells

have been used or not.
. :

We can modify the above tape measure slightly so that if the

measure is defined then the computation is defined. Look -at the tape

measure defined by - . o - o )

A* (n)= - _ - { the numbér of distinct work
i defn S
tape cells used by Ti in

compufing Ti(n) Cif Ti(n)'is defined
. , ]
i

undefined " 4 if 1.(n) is undefined.
‘ ) e ’

% e » . ' ‘
We can check whether or not -A*i(nLWEVm, given 1i,n,n, by a method

-

similar to the above.. The only change is that if we detect that ‘Ti

on inpﬁt, n cycles on k .work tape cells, we’alwayé answer FALSE, .

even if 'k = m. L
The important properties of these tape measures that will

interest us are v

(1) If the computation terminates then the

measure is defined.
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‘(2) éiveﬂr i,n,m ’Qe'can"Chéck Qhether~on
:notm';i ‘on input pigéesbe#actly »
ﬁ distinct work ﬁape‘cells;
Addiﬁipnqlly;'for thé' A*i, mgésure Qe-ﬁaventhat if tﬁe measure -

.is defined then the computation terminates. -



8§ 2.3 Table LookupS“for Efficient Computations -ji‘
' Suppose .a Turing machine ‘T computes a function T on N

such that for some'gi?en» n € g, »;ép) is deﬁihed."SuppoSe'fﬁrthei

;_that the'COmputation,éf T(n).;is Felatively COmpléx-inﬁihat it»usé;
relétivély large'émounts of'tiﬁe or tape. .Surprisingly;ktheré is another' 
. machiné,th@E cohputes T in such a»ﬁénner tha# T(n) is coméuﬁed |

iﬁ an extremely'efficieht manﬁer%in térms,of ﬁimefand tapeiggng The

new macﬁine‘éan do ‘this by makiﬁg uée bf'a methéd caliea a tab;e léékué:i

' ‘i.To construct this ﬁéwbméchine, first modify»ir to é new

machine T 'so that T' operates in basical;y the_séme’mgnﬁef as f.: ;i’
exéept that-oh eve:y input, 'T'.‘cogieé tﬁe ihput"bnfo_its work'tapé
(setting the I/Q.tape cépy Eo‘O'sikbefore starting any.real cémputations,

-then does the compﬁtationg using tﬁebwéik:tape chy‘rgfher_£ﬁan7£hé nqw;
los#vI/O tape copy. There are some technicalities to overcqmg in-éhis'
ﬁodif%caﬁion bécauée of how theb§riginél machigeA T .might maﬁevgée er

. thg I/0 tape copy of the input.' Fof‘instaﬁce, ‘T migﬁt usé'some of.;a

the l'é compqsin§ the'inpﬁt for>ouf§gt_as weil.‘ However, thesé-tecﬁni-‘

califies can be ovegéome. For example, we can make T ao all the

computations on the work tape usiﬁg a section of the Qor ﬁépé aéfé"

pseudb I/O.taée,'then once the result.is c§mp1eté;y cémﬁuted, copy it

onto the I1/0 Eape. (This may increase the ﬁumbe: bfiWOrk tape ceilg‘used.)

Suppose we have T' as above SO'that it also cqmpuﬁesv T.
T! canbﬁdw be modified to make use of a table lookupAfGr'én efficient

- computation when the input i is n. :Chose n+l states

-



qk ,qk ,...,qk which are not in the instructions of T'. Add instruc-
n

0 1
tions to T' so that before copying the input i . to the work tape,

the first k «cells of the I/0 tape, where k = min{i,n}, are read in

such a way that if i = n then
(a) the machine is left in state dy
i

{b) the work tape head does not move,
and {(c) the number of steps used to read input

i is approximately 1i.

Some modification to the instructions of T' will likely be required

but basically the above involves adding instructions of the form

((1,0), gq_ , g , (0,0), (R,N)),
k5T Ky

Now instructions can be added so that if the input, i, is less than
n, (i.e:. the machine is in state qk., i < n, after the input has
been read) then 1 is written on thelwork tape and the computation
continues as with T', if the input is n (i.e. the machine is in
state I after the input is read) then m, where m is the value
T(n), is ?mmediately written on the I/0 tape, without moving the work
tape head and using as few steps as possible, and if‘the input is
greater than n (i.e. the machine is in state qQ and the input
still is not completely read) then it is copied onzo the work tape
and processing continues as with T'.

The new machine, call it T", uses a 'table' of instructions




to looktup#the inpur. If the7ihput”is ‘n, »thenathe tahieﬂindicatesp
that the output m ie‘to be rhmediateiy writteu Without»an;’real
oomputatlons, otherw1se the table 1nd1cates that proce551nq shouﬁ;
'coutinuedas with T'. ~Sinoe ™ computes“T' and'since' m = T(n)
iTWe'have‘thatﬂ"TF_‘couputes"hf, -Furthermorerion inputhn;alf"'s:work
‘tape head‘vieits only one celi; i(i.e;'the leftoostfcell_of:the'workd"v74
tape) and uses‘very few steps (1 e.lonly enough steps to read the A
1nput and prlnt the output, approx1mately n+T(n) steps)
| By a sllghtrmodlflcatlon of the above aréument or by repeated Ed:

' appllcatlon of 1t .we can see that any partlal functlon computed by a .
Turing machine'can be.computed quite eff1c1ent1y,‘ in terms Of tlme and
tape, on any finite numbe* of 1nputs for. whlch the computataon termlnates.
It is 1nterest1ng to not1ce that no matter how efflorentlyA
r the computatiouis done, the time taken always_gives'a bound to the
ralue of the result,;sincevit takes.timevto write therahsuerg Howeuer:
the amount of work tape used does uot neoéssarilyvreflect.the value ot

the result. .Inhfact table lookups require about"n+T(n) éteps, th
only‘one work tape oell. Furthermore; thie one work tape cell is rnot

used for any purpoée,'it is visited only because the work tape,head was
initially placed there. | | |
Notite that we-seem to have used less work tape on input n: at

the expenee of using more on other inputs, since now the inputs uust be -
copied ontq.the work tape. This ia a resuit‘of.our choice of a model for

Turing machines and of our method of doing table lookups rather than an

intrinsic property of table lookups.

26,
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CHAPTER 3

" THE COMPUTABLE. FUNCTIONS AND CHURCH'S THESIS

%

§ 3.0 - Discussion . ‘ .

We would like now to look at a formal definition of the

éompuééblé>functions. As weil,»wg will;ldok‘aﬁ;’Chﬁréh}s THé§ié};”théf*fﬁhﬁ?“”"u~

kS

méléim@that«this,dgfinition;ddéé}ein’facf,“éapturé'the;intuitive‘nOtiqn£f' L

_of computability.

.- We a;éo,disCussfthe“fact that‘mqsﬁ pf'the proofsiin‘this-

‘paper hinge on the intuitivernbtidn'of"comphtabilitylrather‘than 
~qg;ailihgfa more formal proof. In § 3.2 we give some examples of -this

-vinformai,apﬁroééh'to proofs inVolving'computability.



>

~§ 3.1 -Church's Thesis

It has been demonstrated that every accepted mathematical
. . vk ) N ) ) ‘ ‘L T N ) N ‘, a4 .
formulation of the intuitive notion of ‘computability is in some sense

equivalent to the Turing-machine formulation. This, together with .

strohg'arguments:by‘Various‘people who havé developéd some of these -

formuiations have cdnﬁinced most readers of the literature that we

have captured the nbtfonfpf ¢omputabi1ity by use of a Turing machine -

»

formulation. ThUSjwe_defihe~the.qpﬁputable"paftial'fﬁnctiOnsfand HZ
predicates as follows.

S : : S - ks o
3.1.1 DEFINITION. A partial function ¢ on N 'is computable ...

>

. if Y is computed by some Turing machine.’
A partial predicate T on N is computable if there is
a computable partial function Y on N 3 ¥Yn-¢€ g&,
“Yi(n). =211 if ﬂ(gf isrTRﬁE
0o ° - if w(n) is FALSE

undefined - if w(n) is undefined .’

k . ' ' N IR :
(Ti)_i€N is called t*e standard numbering of the computable

‘ . s : k
partial functions on N .

F

Reasons for usihg'partial functions rafhé: thén-just,totalf
functioﬁs in deveibping'compﬁtability-will be investigated in Chapter 6.
B AThe claim thatvwe ha&é capfuréd thé.intﬁitive notion of.r
computabiliéy with tﬁc égové definitiop has come té be kﬁown'ésf‘Cﬁufch's
Thesis'. Church's Tiiesis has evoived'into a'jusﬁificgtion‘fof lack of

fblmality in‘many proofs involﬁing computability. Rather than actually

28 .
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démonétrating'the»éXiStence'of a_Turing'mhchine‘which’computés‘a certain
function, wg often only demonstrate that this function is iﬁtuitiVely‘

computablé.‘ Itiis'left to the reader-to convince-himself as to the
;éxistence of the ‘appropriate Turing machine.

~«!"  The use of Church's Thesis in this manner can be extremely

useful in redﬁcing~the length and detail,df\a proof, thus inCreésing

o

clarity. However it also introduceS'manyrtraps and pitfalls to the

reader §§h§tudéht'with.a weak. intuition in coﬁputability. 'Any,éuthor
making use of Church's Thesis in this manner should exercise extreme ;
NN . ) » ' ' ‘ ) 7 ’

caution :and should be prepared to back up his proof with more rigorous

detail if challenged.
In;thié paper we use‘Church7skTheSis in this manner extensively, - -
as it is the intuitive drive behind the proofs that is of interest to us.

) ’ . f >
Above, we discussed Church's Thesis as a‘*claim that the

intuitively computable functions are computable in' the formal sense.

Another aspcéct of Church's'Thesis, often called the Converse to Church's -

Thesis, is the claim that formally'computablé_functions are intuitively

computéble. Hére we must.lobk more closely at precisely what we mean

by an intuitively computable function. As an example, look at the

function f defined on E.'by

£ =g [ “if I have a dime in my

pocket as I write this
0 otherwise.
f is formally computable, since it is either identically O or

1

identically 1, and each of these funétions‘cdn be computed by a



Y

Turing maéhine.‘ Héwever,‘is.it intﬁitively:computablg?”\Wevwiilxagieek'

V‘yes,‘it is'égmpuﬁable, but»we‘hay never be able to decide,which pchédufe

cqﬁéutes it.: C 't ’ . . ‘?‘g | |
‘Thué; we mﬁst'treat'tﬁe quéstion as -to ﬁhether a fuhction is:

question distinct from whether or not we can decide

computable as a

. how. to compute it.

o



§ 3.2 Some Results o ' ' S S 1‘\;-2///_

We will .now look at a few simple results invoiving coﬁput@ble

fﬁnctions which exemplify the use'ofFChurch's“Thesis“aslﬂescribed‘inufhe
‘ppevioﬁs sectfbnf We égain.rémind the reader that these proofs éhouidi'
be éonsidered inf6rmql. Tﬁe formaiization,&ould in?olVé_é.demonstféﬁion.
. that the approériatélTﬁrihq machiﬁes exists.

- We first show that the composition of computabld functions is
. h N - "”? ) . .

computable.

3.2.1 PROPOSITION. Let Y be a comphtable partié} function on. N |,

. ‘_' . :. k .
and wl'wz""'wk' be computable partial functions on N Then

by . F ooy .l---r' “‘I '.'..‘, ‘ |
Anl,nz,...,nk[w(ul(gl,nz_  nk) yk,(pl n2 nk))]
is computable. s ‘ - o ‘
Proof.: The required function is.computed‘by the following procedure..
On input (nl,nz,...,nk),h" : s

(1) Compute, in turn

wl‘nl,n ’f"’nk)
| w2(nl,n2,...,nk)
IR o L

o wk"“l'“Z""fnk)' .

if anygof these is undefined; then the result of the procedure

A " is undéfined} otherwise denote these values by pl,pz,.;.(pk,
- o 7 ' ‘ : : :

respectively. ' .
. . . &

re- -4.'pk.

“

(2) Compute w(Plfpz ). If this is defined then output
the rcsult andyh@*t,QQISQ"the result is undefined.

!

Clearly, this proceaure cémputcéjthc required function hence it is
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;evidcnt, by Church'sﬁThesis,*that the required function is computable;ag

" and PROPOSITION 3.2.1%0

 Since computable predicates aré defined in terms of computable: =

composition
, o > o

functions we‘haﬁekas a corollary to the above PROPOSITION that
of a'cbmputable.partial predicate with computable{fﬁncfiohs is coﬁputable. :
-

3.2.2 ;COROLLARY._ Let T be a computable partial_predicate;on N

ot : . L .k R
Let ’wl'w2""’wk' be computable partial.functions on N . Thep . -
. . . ’ : 7 . - _ . -»e o | - .
)\ N jeeay, 1T!' ,b Y g e e J ,.,'.-v. .
o Angng,.. nk[ (l,Jl(nl nyee Pnk) 'Vk'(nl ?2 \ A'nk))] .
is_éomputable.i
Proof. Clear frbmeDEFINITIOS 3.1.1 (detinition of cpmputable'prediCAte)jk
: : . s - l

o

A result closely tied té& the result in § 2.3 on table lookups

.. >

~is the result that changing the value of a cdmputable function on a

o~

finite number of arguments ,does not change its computability.  This
o . - | R _ o ’
result follows from a finite number of applications of the following

proposition.
.2.3 PROPOSITION. = Let Y  be a corputable partial function on °N |
. S oo , : -
‘Let i € N and m € N. Then wi and wz defined on N as
follows, are both computable. I Ty e
[' - . \‘ . ' = 3 . s
plg_ﬂdefn undefined 1f»£' i
Yn . otherwise .
o - . -~
! 1~ ‘ - “.f = i t -
VZEQ defn | * Ej ol :
. . ¥ n ~ otherwise. L
, ) k‘/

Proof. . Clearly, thg following procedure computes Y

1

“w
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On inpht',gj
(1) If n=1i then go to.(4). \ | s

[

. If this is undefined then. the result of

(2) Cqmbdté‘_w
:.thé procedure is ﬁndefinéd;
(3) output n, halt.
@) coto (). o
. EVidently Wi »is qomputable.;MClearly b¢2i.isfcomputéd by the Qéﬁe
précedﬁre\with (4) repla;ed by B Lw ‘
£ (4)" Output m; .hait; o

Thus it is ‘evident that ] is;also'computab]e.m ’ o o

2

Statgment'(l)k;f'the proéedure ip the above proof correspbhds

to a table iookup. Statement (4) indicates one method by which we méy»

. ;. “’ ' ° N ‘ . . . N
force a procedure to be undefined. For the sake of clarity of such

.vstatemenfs in future proofs, we will use statements which more clearly =
indicate their function. Thus (4)'might be replaced by

" (4) Let the result be undefined. A f

X _ The proof of the following theorem-is‘esséntially.givén by

the const:uction of a universal machine (see § 1.3), thus we do not -

appeal to Churéh's Thesis in its proof._’It is often called the

Universal Machine Theoremn.

]
-

-

]

3.2.4 THEOREM. For each k there is a computable partial function -
. ) . ' - : A .

k+1 . . . R ' ’

B, on: N 3 Yi €N, an,nz,...,nk €N,

u (i'ﬁ~ n n, ) Tk( n n )
k ’ ll 21---; k = l nlr 21---: k_.



Probf.‘} By construction of "a universal machine as outlined~inf§‘l.3,m

However, we do appeal to Church's Thesis in order, to proveiﬁhe
following resuls, This result‘is;closely.related to the ~s: Théqrem
of réCursive function theory.',(SeefRogers [8])4
3.2.5  THEOREM. For every computable partial function w. on N 7.

there is a computabié total function s on’ gFIBFVil,iZ;...}ik €N,
Vn €N, u

X ; ) = Wi, dn,.nn,in)

s(i;,i i) RS R A S

1712"f"1k o |

Proof, Let T be a Turing machine which computes w; Clearly the
- . ' 3 . ) - :

following procedure compute S. o

@

>

On input -(il,iz,.-.,ik),\ﬁ
- (1) Modify the instructions of T to a new machine T' so

. that on ihput n, T' writes (i ;i',.;.,ik),’on;its,WOrk

12
tape, then mimics“the\computatidn”of T ,on>_(il,i£,...,i£,n)(
(2) Compute and output the Godel number of T'.
Evidently s is computable.n : : ‘ _ ~ T

Many details have been. left out of (1) of the procedure in the
above proof for brevity. Since this result is not central‘to Fhe.papcr,’
let it suffice to SQY that the result can be proven'in a more rigorous

manner.
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CHAPTER 4

BLUM'S AXIOMS L

§ 4.0 Discussion

In this,chapter wé will‘presént thg aXiQms for,abgtracﬁ
complexity theory which>wiil>bé‘uséd‘throughout.the‘reméiﬁder 9f the;
paper,~»ThéseMaxioms tievtogefher‘tWO‘hotions.,:One‘is ;he notion oé
a Godel numﬁered list of coﬁputing Aevicés. ’This\nbtion is captured
by the definifion of én-acééptab1e~ndmbering in § 4}2;3 Iniérder to
infuitively develop'tﬁisrdefinitibh;'§ 4.1 presenfs a gtrong_bacﬁ—
ground to acéeptable-nﬁmbéf;ngs. | |
| The secoﬁd notion isvthat of ﬁeaéuring complexity by counting
resourcé units useé by the COmpﬁtingbdevices. Theitype of resoﬁ;ce‘
measured must be cloéely tied tg tﬁévwdy in which the aevices work
so that fhe nun@er of resource units uséd does, in fact, reflect the
complé#ity of the computation. _Tﬁe dgfinitibh‘of a-measqfed séQancé
in § 4.3 partially captures this notion. (We have/éecn éarticﬁlar
examples 6f such resources in‘CHAPTER 2.)° -

In § 4.4 we pfesent‘the akioms of abstract‘domple#ity theory.b‘
These tie together the above.tw§ h§tions; The réader should be éware,5
however, that the concepts 6f accéptablé.numbcrings.and measured 
sequences are of independgnt interest as well as being usefulliqh

“defining abstract complexity mea$ures.
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§ 4.1 Universal Partial Functions -~ - . _

The notion of a universal machine can-be extended to an.
analogous hotion for any indexing of partial functions. We will define
the notion of an arbitrary universal partial‘function but will concentrate
our attention on only those universal partial functions which are compdtable.

The follbwing definition defines the universal partial f?nctiQn
'for'any indexing of partial functions.on E-"(wi)iGNk' ~The two main

theorems 6§ this section indicate that for our purposes we need.only
?cops§der thé.notion‘fOr-éequencés, (wi)igﬁ' Indeéd, thropghout'mos£v
of.fhe paper we make usévof the notion only for such sequénqes;
The more genexalknotion‘plays a role iﬁ\somé proofs iﬁ CHAPTER 8,

and is used only in the few places that are essential for-those

'\proofsf
In the paper we will -deal only with indexings of partial

functions on N. Analogous results hold for indexings_of partial
v ' l . m + 0 P
\Rfunctlons on N, for each m.

0

4.1.1 DEFINITION. . Let (lpi)i€N "be a sequence of partial‘fuﬁétions

‘on " N. The partial function ¥ on ‘E? defined by

p(i,n) = gefn wi (n)

- is the universal partial function, for (wi)iGN'z

More gencrally, if (wi)iGNk is‘an indexing of partial functions -

. ° —+— :
on N, the function p on EF 1 defined by
TYC TS SRS ) £ v, . .\ (n) ﬂ
172 k defn (11,12,...,1k) )
is the universal partial function for (wi)'GNk" )
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We will sometimes abbreviate 'universal partial function for

(wi)ifﬁ_ to unlversal fur (wi?iGN.'

'We mentioned earlicr'that~our concern is with computable
universal pértial functions. Hence we-give the following definition.

4.1.2 DEFINITION. . Let (wi) be a sequence Ofvpaftial functions

ey

~on N. If the universal partial function for (d}i)iEN is

computable then ;‘wi)iEN is a computably enumerable sequence

of partial functions.

- Hence, since ‘the universal partial function for our standard

bnumbering,_b(Ti)iGN, can be shown to be computable by the construction
of a uniﬁersal macﬁinc (THEOREM 3.2.4), F(Ti)ieN_,is cdmputably

enumerable. -

Where does the phrase computably enumerable-come from? The
. : . iV
: ‘ ]

following theorem helps answer this and also generalizes the'following\
notion.
1f f 1is a computable total function then the sequence>of\

. a0 . ‘ 1 : ' . T - .
partial functions (T_,.,). has a universal function. That is,
: £(1) "i€N :

* there is a computéble'function u such that Vi € N, Yn € N,

f

. .1
‘ff(l'“)“ Tei) ™

Such a function can be computed by a machipe U thich.

Mg £

works as follows. On input (i,n), - Uf reads 1, -computes f(i),

w

then works like " U on input (f(i),n), where U computes the universal

L 1 » , . - S
. function for (Ti)iGN - Basically the above is just the result that

compositions of computalle partial functions are computable.

\



4

g

| :4.1.3 THEOREM. -For any sequence of partial functions on N, (wi)iGN'
the following arec equivalent. '
(1) _V computable total "f on N, -the universal partial function

v oon NN for ) &

ok 1s cox Lle.
i€ is conputégle

(2) V computable total £ on N, the universal partial function

- 2 AT L N
Y on N for (gf(i))iGE: is computable. .
. ! : T . A . }.

(3) (ui)iﬁﬂ lélcomquébly enumerable

(4) -3 computable total t on- N, Vi € N,
U ‘
Teny) ~ Y

Proof. (1)=(2). (2) is a statement of (1) with k = 1.

(2)=(3). From DETINITION.4.1.2, it is seen that (3) is a

' statemant of (2) with £ defined by
4 f‘*' :
(1) Zgegn *

(3)=(4). Since (wi)iEN is computably enumerable we have that

i 2 ’ o . . -
U on N - defined by A : o |
| Lp(l,n)::defn wi(n) is computable. |
Since .W' is computable we have by THEOREM 3.2.5 that there is a computable

total function t on N > Vi € N, Vn €N,

1 ’ ~ .-
| -Tt(i)(n) = q)(l,n) .
Hence,' Vi € N, -
1
=y
Te(i) T Vi
(4)=(1). By THEOREM 3.2.4, choose computable partial on

‘Let t be given by. (4). . Given

. T +
f as in (1), define computable partial V¥ on EF 1 by

’E? which is uniVersél-for (Ti)

iEy_i



def ,.5.51k),n).

'¢(11'12'7"';k'n)= h»ul(t°f(11512

Y - 1s unlversalAfor‘ (wfi)iﬁEF.-51nce 'vll,l

| greseriy € §J\Vn € N,

AL IR lik)rn) )

Pi_,i

1" 2 k

'f"ﬁi"“> = ul(t°f(il,i2

= Tl » ‘ (n)
1t°f(11,12,...,1k)

‘ ‘ =T . . \(n)
. . . . t(f(llllz'o-o’lk)) N

. i_w. L . (n)- .o
: f(ll'?Z’ﬁ‘°'lk)

We can now see vhere the name cemputably enumerable comes from.

Given a computdbly'onuméraéégfsequence (wi) the computable total

i€n’

" function t, given by property (4) of THEOREH_4,1.3, enumérates indices

s 3 . 1 . '
of partial functions from the standard numbering (Ti)iEN' ‘which are

<

equal to.the_partial functions in (¢i)

‘ | i€§f More p;ec;sely, t %s
computable and, given i, t(i) is an irdex such that Tt(i) = wi. . The
following corollary is immediate. '

4.1.4 COROLLARY. A partial function © is computable
o 3 a computably enumerable sequence (wi)iéN ]
o € {¢ |ien},
Proof. (=) For each 1i€N, define wi on N by
; wi(n)-'defn ¢(n).
. - 2 |
Define Y on N by
W(l(n)R defn w(n?.
Now, ¢ is universal for (§.). and~if ¢ 1is computable then ¢ is

- B 1" 1€N
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_computabie, hence (wi)iéN isAcomputablyfenumerable. Clearly,
¢ € {u, |ien].
() Immediate from the equivalence of (3) and‘(4) in THEOREM

e _ 1
4.1.3, since Vi € N, Tt(i)‘.ls computable.n

~In' % 6.2 we Will see that there are seqdehces of computable
partial functions which are not coﬁputably enumerable.‘ Thus if we have

a sequence of computable'partial~functions, W.)

ien' there is no reason

. to suspect‘that, from i and n we caﬁ‘co'puté ¢i(n). Therefore the
the definition of computabiy enumerable sequences of partial functions
is guite significant. The’followihg.LEHMA is quite useful in»many

proofs that rely oh the computable enumerability of certain

seguences.

4.1.5 LEMMA. Let -(wi) be computably enumerable.

i€EN-

Then, VY computable f on N, (wf(i))iéu is computably enumerablé{

Proof.  Immediate from (3)=(2) in THEOREM 4.1.3, and DEFINITION 4.1.2.0

The properties in THEOREM 4.1:3 can be viewed as Qarious
statements for arbitrary sequences of partial functions analagous to -
the statement of THEOREM 3.2.4. Similariy, the properties in the

following theorem corréspond to THEOREM 3.2.5.

4.1.6  THEOREM. For any séquence of partiél functions on N, . (w.);en.
the following are equivalent.
(1) Vv comngable partial i on §F+1, 3 computable total
. .

f on N 3

¥ is universal for B (' i)— k .
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OV LT . . 2 ] o S e ‘
(2) V computable partial on N, 3 computable total f ‘on N >

b.\ e V ’ r ‘ .
¥ is universal for (wf(i))iéﬁ_'g

(3) 3 computable total s on. N > Vi G»N,,l

vo.o= 1l

s(i)- i

Proof. (I)=(2) (2) is‘é restaterment of (l)_withb k ¥'1.

s . 2 L '
(2)=(3) Choose conPutable,~ul,bon. N - universal for
(Ti)iGN' Let s. be the f given by (2). 'Then VYi € N, V¥n € N,
ws(i-).(n‘) = dl(l,n)
= T}(n‘). :
i N
Therefore, Vi € N, o
' o1 o
Yoy = i

(3)=(1) Let ¥ on N 1 be given as in (). Choose s ‘as

in (3). By the THEOREM 3.2.5 chioose cerpputable total s' "on N

Vll,lz,...,lk’f N, ¥Yn €N, |
1 ' ' .
T ) . oo n)y= w(i_,i_,...,1 ,n).
S (11,12,...,;k) , 12 k"
et f =4efn S°S'- Then V11,12,.:.,1k € E, Yn €N, | | |
V(i i in) = T (n) | N
1 2 k S, -(11‘1121-’--1‘]-}() ’
\ .
= Ys(s' (i i ))A(n)

1,12,-.., K

=0, . .. ) oo o ,
£(11,12,...,1k) , | .
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Notice that since any Sequeﬁce of partialzfunctions Has exactlyﬁ 
-one'uhiversai function we have .
(a) V_cbmputable‘total ‘f on N, the universa}'partial function
¥ on ﬁz fbr*i(w' ). .is coméutable.‘ |
r= 0 TTf@E)ien s ,
is equivalent to k

(p) ¥ cdmpﬁtable total £ on N, 3 computable partial ¥ on E?,

)

. . - o .
3 w‘ ls un1versa1 fqrA (vf(i) ieﬁ.f

- Thus, a beautiful.symmétry between THEOREMS 4.1.3 and 4.1.6 'is seen.

THEOREM 4.1.3 gives us

V computable total f on N, 3 computable partiél Y  on E?;
> ¥ 1is universal for :(uf(i))iEQ:“ |
‘ . ] . . . - . 1 —,
»3 computable tqgal t on 5 ‘3 Vi € i’”>rt(i) = wi ’

and THEOREM 4.1.6 gives us

V computable partial ' on N , 3 computable total f on N,
o s L ,
3 ¥ is un1v§rsal for (Vf(i))iég |
e 3 compUtéble‘total s on N Y Vie€eN, ¢ ,. . = T} .
: i . : - oL - s(i) i

" o o . o &
At times we will use statements like (b) above to replace
statements like (a) in order to émphasize this symmetry. . When this is

done, the reader should realize that it is the computability of "y

that is most significant, not the existence df_ Y.
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§ 4.2 Acceptable Numbcfinqs

*

‘In>Chaptef 2‘wé looked at two résourées that seemédlappropriate
‘for use in{mé;;urih§vcohplexity of ¢Qﬁputations. These.réséu;cevmeasurés‘e
weﬁe‘béSedﬁdnia Turing maéhinc_ch;ragferizééidn_df'éomputability, We
mentiohedithat'both.of these'@easﬁreé sa£isfy'the defiﬁition of a
éomplgxity measure. '

Abstract complexity theory is bléssed with yét.anothér
generality. It encompassés_ngt only ‘many measﬁrés on a specific
. - . . 4 )
characterizqtion of computations, but also measures on any reasonable
éhéragtérizaﬁion of éomputability; kIn this secfion we attempt to deséribe:
precisely what we meah by a féaﬁonable charadtérizatibn of computability.

We expect that'in any suchzchéractgrization‘we shédld'be‘ablé
to number’ the compuginq devices so we can'do»the following.
{a) Given a number we can.coﬁstr?ct the associated device.
(b) Given a device we can cdmpute ége associated nﬁmber. -

_ . A o o . -

That is, we should be abJe‘to-quel‘numbcr,the set of ?omputing devices
satisfying the characterization.

The above two propeftiés are device dependeﬁt. The concept
of aﬁ acceptable nﬁmbering is a device independent éoncept.which Séeﬁs
to captiure very wcil thc hotién of a Gédel numbered set of-computihg
devices safisfyihg a ecrfaih characterization. Ve wiii éée that the
eséence of (a) n?ove is captured by one, hence all) of the properties of
THEOREM 4.1.3’aﬂﬁ the esaénce of (b) similariiyvcorreSponds to THEOREM

= -
- ’

4.1.6.
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' 4.2.1 ~ DEFINITION. A sequence of partiai functions .on N, 7(¢i)i€N»'

is an acceptable numbering of_the computable partialbfunctions on

N, ;f 4@i)i€§. satisfies

(l)~ VY computable total f on N, ,3‘cbmpdtablekpaxtia1 R

on N, ’ : - :

h 3 . ' X ., ..
7 'p }s:unl\ersal for (mf(il)ifﬁ

(2) V computable partial ¥ on »g?, 3 computable total f

on N, .

Y 1s‘u§1v¢rsal'for (¢f(i))i€§f'

. i s .
If we think of the sequence of functions, (¢

)

). . a list
| i'ien’ as 4 T
of computing devices, then (1) of the definition capturcd (a) above,

in that we think of Y as a procedure which on. i and

s
f(i), -constructs wf(i) from £(i); then runs ?f(i) on n. gé?

well, (2) of the definition'captures (b)'above jn that we think of . £

as a procedure which, on input i, modifies a given device which
, . T

computes Y- to a device ¢ which computes An{¢(i,n)] then computes

N
-

f(i) @

From THEOREMS 4.1.3 and 4.1.6 it is evident that an acceptable

an index f(i) for ¢, so that ¢

numbering forms the set of all the computable partial functions. -

4.2.2 -PROPOSITION. Let (q;)

2ring P
tien be‘an acceptable numbering and

be the set of all the comput le partial functions on : E} Then

P={o, | ien},



¥

- . l . e - . 1 . ) ; oo R . o
 Proof: We show that ‘{w..l 1€N} = {Ti l 15N}. B S
Since (@i)iEN satisfies (1) vof DEFINITION 4 2 1 we have,

by THEOREM 4.1.3, that there is a total function t J Vl G N,

Yoy T Vi

. . . L
lence, '{wi | 1€§}'E'{Ti_| i€n}.

'By (2) of DEFINITION 4.2.1 and by THEOREM 4.1.6 we have a

4

tota1 function . D Vi'€'§1~
S
- ‘ - . pS(i) ‘ i .

NP S T T
Hence, {Ti | ien} = {qs-i | ien}.o

The computable total functions t and s, given by THEOREHS 4.1. 3 and
‘ i

4.1. 6 give a close tie betweeﬂ an acceftable number1ﬂg and our st:ndard

numbering. This tie allows us to,shift our attention away from the

standard numbering toward any given acceptable numbering. For instance,

'we can characterize computablyrenumcrablc sequences of partial'functions’

[T

on N by the ablllty to computably enumerate indices in any acceptable

numbayring rather than enumexatc indices in our standard numberlng as in

<,

,E@EM4.L3.

o

\_'

4.2.3  PROPOSITION. ' Let v(wi)iéﬁ be any acceptable numbering, and’

(wi}f(N' be any sequence of partial functions on N. Then,

(wi)ifﬂ' is competably enuﬂﬁreble - | - '_\_;f .

<= 3 computable total s on‘igj Vi € N, -~

; ¢ =, | L

Ps(iy. i
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Prp?f: (?¥i L§t  (wi)ifﬁ, ?e comp?Sably_enﬁﬂgfablé; Choosg ¢o¢put§ble e
total t on N 3 Vi €N, Cy
- . 1 T e

L=t =(4) o R 1.3y, .
| Te (i) q»i; | (B}Y.. (3) ,(fl) .of THEOREM 4.1.3) ‘
. _ o= R ‘ | , , ‘
~ Choose -computable total f on N3 Vi € N, Vn € N,
L ®e () (n)= w (i,mn)

‘ where"u' ‘is universal for _(Ti) 0 (By (2) of DEFINITION 4.2.1)%

1 | PeNT
Let s =_ fot. Then' V# €N, Vn € N,
o - defn _ ST = = }
('DS(‘i).(n) :~'(pf‘(t(iv..)')'(n) T - R
. "&é, ='Ul(t(i)7n)
. 1
: . = Tt(i)(n)
» ! T ) . B®
GEhwe
Thus; s is computable since f and t -aré, and Vi € N,
“s(i) T Vit
(). o Suppose 3 computable'total” s 3 Vi €N,
| sy T Vs
Choose computable‘partial P -oh,:gg 3 Vi (AE, Vn. € N,
"7 W(i,n) = ¢ (m). (by (1) of DEFINITION 4.2.1)
. . ) ) . . .
Define computable partiél 1 ‘on E? by: e
l_j(l'n.):defn ‘]J(S(,:L()‘,n),‘ - “i‘ﬁ
Then, Vi € N, Vn € N, p(i,n) = Y(s(i),n) ey
| o E e T
T ) 1 .. . {UP 3 S N :
¢s§s, W 1s universal for (lj)i)i€N Therefore (Vl)iEN 1i‘gomputably )
N — — . . ?1‘
enum~rable.n

e



The following Lemma is immediate from (1) of DEFINITION 4.2.1

‘and ' (2)=(3) of THEOREM 4.1.3.

‘A4.2.4 LEMMA; vaery}acceptable numbering is computably enumerable.

Proof. Immediate as:indicato? ab6ve.D »A'_Jv

°

y The following,prppdsition‘demonstrates.just héwtClosely related .
L ¥ C ‘ o ‘ -

acceptable numberings and our standard numbering are. ’

"is an

4.2.5 PROPOSITICN. A sejucnce of partial'fuhctions, (wi)iGF'

acceptable numbering e
1

(1) 3 computable t’ot:a'l‘ t on N, Vi€N, . Ty ¢

. . . d_.' ' . . - . l
and (2) 3 computable tctal s on N, ¥i € N, ¢, =1, -

: ‘ , - = Ts(i) 1

" Proof. lear from the definition of an acceptable numbering and

T IEOREMS 4.1.3 and'4;1.6. 0

We now turn our attention to measured sequences.,



48

§ 4.3 = Measured Sequecnces - - e L R . .

We haVevseen»that each of the tl ree resourcé measures defined '

the property that we can cpmpute, diven .i,n)m"whether~

in Chapter 2 has
or not the number of resource units used by the i machine on input n

N
. . . .
1S m . SLoTey
. Mot e . . s

;The‘axipﬁs oflCOﬁplexityltheory attempt to encompass hgésures
which are' obtained by éountihg resource units used by computétiohs, éuch
as timé:and tape:measures. Thg type of :esourcélmeaéurea.should pébso
closély tied to the compﬁfation'that'we‘can tell when a cémputétiénﬂhds-.:

reached a point beyond which no more resources will be used. Furthgrmore,

« s

if such.a point“is'reached, we should be able to say something very

definite about whether or not a result for the computation is defined..

This is intimately tied to the ability to compute, given i,n,m}5,whether'.
» .th . : ) 7 : . . ‘ . . B . . .".”

or not the i machine on input n: uses’ m resource units, as exemplified-

ir the discussion of time and tape measures in Chapter 2.-

L)

The above discussion motivates the following definition of

- a v .2 . '
reasured seguences of partial functions on N.

4.3.1 DEFINITION. let (wi)ié be a sequence of partial functions

N
on .E, (\_L'i)iEE

is a measured secuence if
Ai,n,m[y,. (n) & m].
R

-is a éomputable total predicate on -E?.

A partial function, ¥, on N has a computable graph. if

) An,m[¥(n) ~ m)

is a computable total predicate on Nz. ‘ » "-'_'



From the definition]it is clear that measur¢dﬁ§€§ﬁéhces ofv
functions qnd‘fuhctibﬁSIWith éompufabléfgraphS’are clbsély relgted:
This fei@tionship befwéén'measuredRéequeﬁces‘and funétions‘with cdmpﬁtablé
graphs. seems to pa?éllelthe relationchip betwcen coméﬁtébly ehgmerabie >
vsequenceé and computable pa??ial funqtions;. This obéeryatién iéads dsv
;,,tolPROPOSITION 4.3.2 and indiregply to PRQPOSITIbN\4;3;4Q' MNotice the

similarity between PROPOSITION 4.3.2‘and COROLLARY 4.1.4 .

4.3.2 PROPOSITION.': A partiai function ¢ .has'a.computable graph
‘ . 4 ., 7 " o v' 'V .'_i_ 3 N, .. -
= 3 a.measured sequence W) ey 2 w.E {glil ;EJ}

Proof. (=). . Let ¢ have a computable graph._.Forvench i€N define

wi by wi ;defn\w' To compute whether or not VY. (n) = m, cqmpute
- whether or not ¢(n) = m. EVidently"(ﬁi)iGN is a measured séquence,

(). Let o € {wi | ien}  where is a ﬁgasured

N
Vi) ien
sequerice. _Giveh iéﬁﬂé‘@_= wi, a procedure to compute, given n,ﬁ,
whether or not ¢(n) = m 1is as follows.

On input (n,m). .
. . ~ L
(1) If ¥.(n) =m then output TRUE and halt. -~

(2) Output FALSE and halt.

Since such i . exists, the above procedure exists, hence An,m[¢(n) = m]

is computable.n . : ' , L _ :

i

The rcader may bé uncasy about the (&) proof of the abdve
- , s - '
proposition, since given ¢ we may not be able to compute 1. such that
N & .. ' ) ‘. .. N 4

wi = @. However, we only nced to show that a procedure for computing-

—

An,m{p(n) » m] exists, we are not required to construct such a procedure.
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Hence, ‘we do not need to be able to compute i, but need ohly know
that i exists, for if i.exisfs, then the procedure given in the proof
“exists.

" We now demonstrate that functions with computable graphs are

'computable.“

4;3.3.' PROPOSITICN; . Let ¢ be-any Pértial fuﬁction‘oﬁ; N witﬁ_q"
cémputaglé gfaph.F @. is‘computable.,

2599£'4 .Ciéariy,kthe foilowing prqcédurebcomputes »@.b
On input. n. |
(1) set m to ‘0,
(2) >If‘ t(n) = m, 'outpﬁt m iand hglt}
(3) Sset m - to .m+i.‘ |
(4) Go to (2).

" (iotice that if ¥(n) iélundefinéd then the p£ocedure lqops thfough_

(2), (3); (4) forever, thus -is undefincd.)‘Evidently,. ¢ 1is computable.o =

thice that V¥n € N,
- U(n) = um[Y(n) » m]. ' L
It is clear that, by mimicking the above proof,'ﬁe’can show thatvany

) . K o ‘ B . -
function ‘¥ on N is computable if an,nz»,..k €N,

lf--:nk) = Um[P(n N ,--.,nk’m)l]

Yoy 1'%

5!
12
: . ‘ . © k+l '
where P 1s a computable total predicate on N . Thus, such proofs

ss the above will, henceforth, be abbreviated to something. like the

following. N o o L
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Proof. Since V¥Yn € N,
Y(n) = pm[Y(n) = n]
- and since An,m[w(n) ~ m] - is a computable total predicate, it is evident

that is computable.n

Since functions with computable graphs are computable, we have
as an immediate corollary to PROPOSITION 4.3.2 and PROPOSITION 4.3.3

that each function in a measured sequence is computable.

4.3.4 COROLLARY . 1f (V.) is. a measured seguence then each wi

i'ien
is computable.

Proof. Immediate from PROPOSITION 4.3.2 and PECPOSYTION 4.3.3.0

The proof éf the next proposition also makes use §f the -
.ﬁ-operatdr} The reader should attempt to construct a proéedure'which,
actually cbmputes the function @7 in this{pfbof; if aﬁy difficuity
is.encoﬁntefed, he éhould refer‘back to the two proofs. of PROPOSIfION

4.3.3. This proposition is due to Blum [2].

4.3.5 ° PROPOSITION. Every measured sequence is éomputaﬁly'ehumerablc._

Proof. Let (wi)iGN' be a measured sequence. Define a partial'functéonk
2 . - . N N ’ ! )
¥ on N by

pm[. (n) = m].

v e

Since Ai,n,m[wi(n) # m] is a computable total predicate, »V is -
“evidently computable. Clearly, Vi ¢ N, Yn € N,

y(i,n) = wi(n).

*®

Thus V| is universal f “(®). . Sinee Y i putable, by,
u y »1 u ersa or (l,l)l(_Pi ne y s computa . (l,l)leE

is.computably ecnumerable.n



v

N

The following lemma will be useful in various proofs later in

f.the paper.

. [ N : S
4f§.6 LE{MA,- (wi?iég_ 1s‘a measureq.sequence

PO

Proof.  (=).

e Ai,n,m[wign)'ﬁ,m] is a computable total predicate.

3

5
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Let '(wi)iéy be a measured sequence.. The following

procedurc tells us, given 1i,n,m, whether or not: wi(n)yﬁ m. Thus,

' it‘is evident that - Xi,n,m[ ¢i(n);S m ] 'is computable.

On input ‘i,n,m,.

(1),

(2)

(3)

(4)

= (5)

Set m' to 0. - | {.1 S

If m' > m, apsﬁéf FALsgLAﬁd'héit.

If .wi(n) = m;} answer TRUE and ﬂait. ;

Set m' to m'+l.

Go to (2). T S L

(). If Xi,n,m[wi(ns = m] - is computable, then the following"

procedure computes Xifn,m[wi(n) = m].

On input i,n,m,

(1)
(2)
(3)

(4)

Evidently Ai,n,m[wi(h) 2 m] is computable and total hence  (¢.)

If Y. (n) = m isﬁFALéE, thén«gnswe? FALSE éndvhalt.z :
If m =.O, then answer TRUE@;né halt.

If ¢i(n)[$ m-1 " then an;weg ?ALSEvand hélt.

Ahswer TRUE ‘and halt.. . o

i iéﬂ

is measured.o -

«

In future proofs we will appeal more and more to the reader's

p™

intuition about what is computable. For instance, the above proof might

-

be abbreviated to



Proof.

3 

(=). Define é‘predicate P on N Dby

P._ . - " : . v - ' = l:.
| fl,n,m) defn TRU}_ dn' = m B_Vi(n) | m

FALSE otherwise .

Evidently P is computable and

1A

m],

P = Ai,h,m[wi(n)
~. ) : ' 3
(¢). Define a predicate’ P on N~ by
defn : )
4 . ~wi(n) <m-1 is FALSE (or m =

ro ‘ ’ :
P(i,n,m) = TRUE wi(n) =nmn is TRUE and

‘ gFAL?;E otherwise .

Evidently - P is computable and

P = Ai,n,m[wi(n)_pfm]. o

Ry

Also, if" Ki,n,m[?i(n) < m] is computable, then we cah

“>.compute whether wi(n) < m.. This can be done since &i(q)_< ol

if and only if m# 0 and ¥, (n) < n-1

We now turn our attenticn to stating the axioms for abstract

.complexity measures.

)

o

g3
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«

§ 4.4 Axioms for Complexity Measures

. In [2]., Hanuel»Biﬁﬁ,b;esehts the axioms fo# cémplexityvmeasgies
" which we wiil use in this_paper.; TheseFagioms seém.SIféhtiy st;ongef
£hén.what ié really desifable; sincevthey dé.not‘ailow cOmpiexity meéSﬁreS;‘
that let the number of ;eéource units_uéed.by~a computation be definéa‘
whi;e‘thei:esuit of the éomputétion is undefined. In [1], Aﬁgielio.7
preSgnts weaker,kmore‘aqcebtablé axioms;.'We‘pfesentbﬁhem hefe ih-ofdef”

that we may compare the two sets of axioms.

4.4.1 DEFINITION. An ordered péir of s:quencesvbf partial functions

on N, ((¢i5i€N,(¢;) ) is a weak complexity measure if

17 i€N
(1) (¢i)i€v is an acééptable numbering.
(2) (Qi)ieﬁ! is a measured sequence.

(3a) Vi €N, Vn €N, .
wi(hj’défined ~ . (n) defined.’
(3bf There is a Epmputab1é partia1 ptraicate' m onwkN }'
- Vi €N, Vh.é gQ] | | : |
?iin) defined a_nfi,n) definedb'

and _(n) defined = m(i,n) holds.
| .

“Intuitively, the acceptable numbering should be viewed as a

‘Godel numbered,sequéhce of computing devices, and the measured sequence

e
g

‘as functions which count some type of resource units used by the
corresponding devices. That is, ¢i(n) will be the number of resource-

units used by the computation ¢i(n).
. ” 0
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\

Certainly we should have- that if the result of the i device

on input’ n 1is defined, then the number o resource units used'fcr"théﬁ“'“dij‘“”

computation should be- finite. Hence we have axiom (3a). Axiom (3b) was -
discussed, to some extent, at the beginning of § 4.3. The type of- .

resource that interests us must be so closely tied to the computations

that if the number of resource units used in a computation is finite,

Iy

then we can compute whether or not the result for the computation is

The followimg definition gives the axioms as'they‘weré'

orginally presented by Blum. Notice that axiom {3) requires that if
the number of resource units used is defired, then the computation rust

define a result.

4.4.2 DEFINITION. An order pair of seguences of partial functions

-

on N, ((¢.). .., ($)..) 1is a complexity measure if
- i i€N i 1€N - - :

N

(1) (wi)iGE_ is ‘an acceptable numbering.

(2)  (9.)

} is a mcasured seguence.
i’jen : !

(3) Vi €N, Vn €N,

g | wi(n) defined o ¢i(n) defined.

It is interesting .that, histerically, Blum's axioms appeared
first, and they were not weakened to the more 'natﬁral' axioms by Ausiello
. ) B ) 4 » ' . - .
until several year~ later. "Ausicllo's reasons for weakening the Blum's
. : N . @ ) . a

Axioms seem to ‘be these:
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Firstly, the weaker axioms demonstrate more clearly hqw we  show

=

that certain measures are, in fact, complexity measures. For example,

in order to show we can“te11~whethef"

with the tape measure '(Ai)ifﬂf , |
or not A;(n) ~m we éctﬁal]y demonstrate\the e*istgnqeiéf tﬁe;prediéaté“
T of axiom (3b) ir;::DEFIIJITION.4.4.1::; ) |

| éecohdly,‘Ausiellols paper, [1], w#s a‘study'qf c§c1ihg
cém?utations, that is, thosé;computatiéns which never.terminate:but‘_<

use only a finite nuﬁber of.;esource units. Hénce he needed weaker‘

axioms thch allowed?a broader spectfum of cdmplexiﬁf ﬁeésu:és.»
Thi#dly, it is mathematically more tasteful to_use:tﬂg

weaker axioms, as»viftually al]nof'the impox£aht resulté thaﬁ are trqe.

. using‘Blum‘s Axioms, remain true (possibly in a siightlyrmodified form)

N . . - : - 3 3 . o A
using Auslello's axioms. This is because any proof which not use

the fact that 'Qi(n) d=fined = wi(n) def}ned' will 5e‘trqe in b@th

E systems, and proofs fhat do use this”fadt can oftenfbeﬂﬁédifiedjby réplac@pqx

uses of"Oi(n) defiuedﬂélwifﬁf défined;‘by uses.of‘ N
-(@i(nj,definedtand 7(i,n) holds) = @i(n).défined.f

_Eﬁisﬂis.the essence of part (2) of the_follqying theorem. The proqf’of

part (2) paréllels the construction of A* from A in § 2.2.

4.4.3 THROREM. _'(l)- Every.com?lexity méasure is a weak complexity.
- N ‘ - o
measure. o

. . - .’ d)‘ ’ ' - ) ‘
(2) Let ((Qi)i€§_ ('1)i€§) be a weak c9mplex1ty
e £ L The 1. ‘ L .- 2’ ) . (*‘. .
N measure h»re is a complexity Weagure_ ((wi)leN,jv 1)16§) ),
o A

-“‘V;a( N, V¥n € N, .(n) defined = @, (n) = ¢* (n) .
- RN = i i i



Proof.: (1) Clearly, DEFIHITIdN_4.4.l'is‘$étisfipd;;f T is defined

\ : : . L ; .,
. _on y_‘ by bt (L,n.') »zdefn _T3UE . if . CH (n) s def-‘J?ned:" »
undefined if ¢ (n) is vndefined.
Defi *) . by.
(2) Dgflne (¢i)i€E'. Y B
q : * = ‘ ) q) (h ) . f . ’ . £i
@i(?j defn 1(@) 1i ¢l(n) 1s‘de ined

uhdefined' if 'Gi(n) is undefined.

Clearly (¢;)i€N is a sequence of partiaf,functionsxsétisfyimg Vi en,

Yn € N, . o s -
' ¢, (n) defined = O* (n) defined
. 1° -1 -

and Vi € N, Vn € N,

¢.(n) defined = .$*(n) = & (n).
i . it i
It remains to show (%), is a measured sc.awaco.
. % i i€N . : - ~

Clearly} the following procedure, giVen) i,n,m, cormputes whather or not
d*(n) = m.
i
"On input (i,n,m),
(1) Compute sthether or not -@i(n) = m.

-

(2) 1f )@i(n) = m is IALSE, then: answer TALSE and halt.

(4) If m(i,n). holds, then answer»TRtE‘and_halt. -

(5) Answer FALSE and halt. g

Thxoughou; the remainder of the papcf wé use onlvalum‘s
I\xiomséEa It is felt that the statements of the theorems ahd‘proofs‘dré
muéh.ﬁore clear using tﬁe stronder axioﬁs. ‘fhe reader may také_ip'upon
himse’{ to restatc the theoremSAQnd proofs using Ausielib's axioms.

n,

(3) Compute 7(i,n). (This is defincd since IGi(n)_iévdefihcd.)

SRR



The following facts are clear from result$ in this chapter.

ien’ Ti’i€n

4.4.4 FACTS. Let ((cp.i) (0.

the foilowing.are_true.

(1)

(2)

*(3)

(wi)iéﬁ_ is computably enumerable. . | N
(Qi)iéﬁ_ is computably enumerable.

- J computable total s, Vi € Nooeggy T $..

Vi € w, o.
b Al

is computable."

-

) be a Compiexity measure. Then

»

1

‘A
4

<
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' CHAPTER 5

| THE NOTION OF 'ALMOST EVERYWHERE' :
Q . ..V" ‘ ‘ . ‘?

§ 5.0 Definitions and Discussion

Let 7 be any partial predicate on N. We.say that 7 holds
éﬁgeverywhere‘if m(n) is TRUE for every n € N. ‘We.say 'ﬂ ‘holds almost
everywhere if w(n) is TRUE for all but finitely many n EQE: We sayf

that 7 holds infinitely often if w(n) 1is TRUE for infinitely many

- S - R : -

5.0.1 . DEFINITION. Let 7 be a partial predicate on. N:-

7 holds almost everywhere, written Vn € N, 7m(n), if.
Jx € K, Vn > k, 7(n).

. U;\ ' .
T holds infinitelv often, written Sn € N, 7(n), if

VK €N, 3n Kk, T(n).
In a sense, almost eQerwa e dnd infinifely Qften ﬁré negatiéﬁs :
of oﬁe anbther.. That is, it is false that‘ T holds»almost
;everywhére‘if and.oﬁly if 7 does not hold‘ihfinitely.éfpén..

. 2
5.0.2 PROPOSITION. Let T be a partial prédicate on N.

(=) .
(Yfn € N, 7(n)) doesn't hold » _ ¥
« 3n €N, (7(n) doesn't hold). - S o
Proof. Intuitively, there 1is not a Xk € 5‘3 for every n = K H(ﬁ)

holds,. if and only if for every  k € N theve is some. n >k for which

W(n) doesn't hold.u
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In this chapter we will encounter»two.fundaméntal\reasons

'fOr the occurrence of thewnotibn<of almdst'evgfywhere in abstract

compléngyethGQ{Yf

S e L,

1

irst. reason, which we wi.l 'investigate in -§ 5.1, is a’

. «

".mattet,of!choice; Complexdty tlieorists have chosen to make a definition.

"which involves the notion of aimbst’éVerywhere;‘

" The seconi reason, which Will?be ihvestigated‘in § 5.2, is -
. M o : i .

more preésing.i We will see several reéults, both in §5-2,and in the

remainder of the paper, which can bé_proven,té‘hold only almost every-

where.- Many of theéé‘results,give»shch,deep insights into computational .
" complexities that they_are consideré@”tq‘be fundamental results»of u

. complexity theory. S | )
= ;e - : S o ' A N ‘ o .
It is not surprising that both of these reasons can be tied

back to the use of .table logkups for ‘doing efficient computations'on a -

finite numbers of arguments. = . ‘ ﬁ 2

. Ih»§ 5;3'werattémpt tg diséuss,briefly two*bhilosophiéal
iquestions fhat can be raiseé-in»regard tb thé prevaien;evof the,ﬁoii6h
" of almbst'everywﬁére in comélexityvtheory. One of these¢ asks about

. ) ‘- ) . : i - :
»the relevance Qf‘complexity theory to real=compuﬁing_environhents,_
the other agput the relevéhce'of cdmﬁlexityftheqry tolthe,computer
s¢iehtist; o N |



e

™

'§ 5.1 _-Complexity,Classes» R 'fe

“units. This is done by having the hew machine, on read

Recall that.in %2.3 we discussed the fact that very complex.

computations on Turing machines can be done very efficiently for a

finife'number of inputs by using table lookups. .That is, given a
machine that uses méhy resources on every input, we can construct a

£ .

- nEW'machinc which works like thé given machine on almost all inputs,

but for the finite number of exceptions it uses relatively few resource.

ing one of the

finite number of inputs for which we desire an efficient computation;

‘enter some state whigh‘causes the dutput to,be printed immediately with

no’computation‘ofher than régdingvthe input and é;inting‘the 5utput.

The qﬁestion arises as to whethcr we shoula‘éonsider the
computatjoﬁ‘dgne by tﬁe néw machince lecs ccmpiex than the ébmputafion
done by:thevoriginal,machine. If seems- to be universaliy acceg£ed to:
give’é>negative answer to this Qucstiun.: This is refLected in.the
definition éf a complexity class. e

A partial functien ¥ 1is in the wy-complexity class, for

7]

another partial. function #, 1if there is a way to compute ¢ using le

‘than Y. resource units almost everywherc: 'Thus, the definition of

complexity classes help the complexity theorist cope with table'lookups.

N

B 1 N .x . o . , (F. . . v = 1 L2 r i
5.1.‘ DEFIQITI N. Let B ((Li)i€§ ('1)1€§) be ‘a complexity

measure and ¢ be any partial function on N. "The {-ccmrlexity
class in M 1is

M; : N _ l' a v>..‘\. "; ) Vv
% {mi | D?”‘*ﬂ Dom(y)and Vp €N, gi(n) S Uu(nyg.

‘61 :
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fIflﬁhe underlying'measure; M, is understobd.theﬁ we wili
write - Cw for;\Ci.‘ inécdmpie;ity theorvae aéerusualiy intérégfoé;in
.¢-co$91éxity ;lasses_fOr compu%able t§té17 ¢; ‘(eg, Lﬁj, [4]-.[51);
-4HOwé§er,-Some pabers do deal wifh ¢ompﬁtable partial - Y. - (eq, [6]){' _
;fﬁany éf thé;reéu;ts frg;enfed“ih this-papér can be:;estatéd
inba‘hore concigé;form~using ¢ompiéxity'classes.' We will distuss thig_ 
furthér in §‘9.2{ However,.thigiaufhor fegls that mostvbf_these results
‘érg'ihfuitively,moré~bomprehensi£lé Qhen'stated without fhe ﬁse'of
complexity classes. 'Therefofe thé méjor porticn of the péper makes no -
- mention ofﬁcoﬁpléxity classes. fhe‘reader should be aware, however,
that the noticn of cohglexity claése;’i; fundamentél'to.many prescntationé“
’:Qf‘compiéxity theorv, In fact, the stﬁdy of compiexity classes is one

g,

cf the major fields of study within complexity theory.
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§ 5.2 Honesty and Related Topics

We now turn our attention to several results that can only
be proven to hold almost everywhere. The first result indicates that
from the number of resources units used by a computation, we can compute

an upper bound to the value of the result of that computation.

5.2.1 THEOREM. Let ((tpi)iE ) be a complexity measure.

N'(¢i)i€§

There is a computable total h on g? d
[o0]
Vi €N, Vn € N, [p,(n) S h(n,® (n)].
Proof. Define computable p on 5? by

P(ilnlm) (Pi (n) ¢i (n) ~ m

=defn

0] otherwise .
Define computable h on g? by

h(n,m) max{p(j,n,m) | j < n},

=defn
Then Vi € N, Vn 2 i, if wi(n) is defined then

(*) h(n,®, (n)) = max{p(3,n,® (n)) | J =n}
> p(i,n,@i(n)) (since i = n)
= cpi(n)

and if wi(n) is undefined then @i(n) is undefined, hence

h(n,@i(n)) is undefined. Furthermore, h 1is total.o

Henceforth we will not bother to separate arguments as (*)
into the cases where wi(n) is defined and ¢i(n) is undefined. We will
write something more like,

h(n,®, (n)) = max{p(j,n,®, (n)) | 3 <n}

[3%

P(i,n,¢i(n))

]

®i(n).

i
s
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Argumentévwhich’define fﬁncﬁions suéh~as. h'Aihjéerms.of
functions sucﬁ a; bp,- as in fhé abové‘proéf, aié quite.commén in -

. c’ovmglgz.rxity't‘he‘ory7 It is significant in this tyé’e\ of ‘argiment_thatfthe
almost évery' néN fdrlﬁhich the reSult hoids Jdepends directly:on_ i;
Hencé, vaiﬁés n 'for.whiqh the résﬁit ié known‘tokholﬂ are uéuéliy
quite'lérgé. ) o o o o o . . .  f'

| The following diagram may help thg readgr'ﬁiéualize this |

-

type of argument more clearly. Let m be fixed.> 

h(l,m) = maén{p(l)l,m)}“

h(2,m) = max {p(1,2,m), p(2.;2,m)} .
| h(3,m) = max {p(l;3,m),'p(2,3fm), p(3,3,m)}

h(4,m) = max {p‘(l,“l,m)', p(2,4,m), p(3,4,m), p4,4,m}

© e - - . . . - -
- ‘- L e - e .

.-.", . o o ) . . - o

It is clear by looking under the ith;crlumn of Values4f0{v p
in the diégrgm thét for;all but finitely many n (i;é._for all hfz‘i)u
h(n,m) 1is at least aS'laréé as up(i,n,m),‘ and that as i gets larger,
the finite ﬁumber of‘éxceétions gets larger, but is indépendent‘of-.h;‘,We
will-now>look at:én eiampie which indicafgs that we cannot hope to prove a .
result similgf;to THEOREﬂ'S.Z.lthich'hélds everywhere. .

In & 2.3 we observed that the time measure defined in § 2.1
alwéys reflégfs the value of the.fesultiofva‘éomputation even if the
éomputétion uses taéie lookups. This is bccause the time taken\to

write theérﬂsult is ‘a function-of the value writﬁﬁl. However; our

tape measi.ces need not reflect the value of the result since we can

4
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write a result using only one work tape cell by making use of table
lookups. Recall, though that table lookups are only good for a
finite number of inputs. It is for this reason the function h in
THEOREM 5.2.1 can be proven to work almost eyerywhere but not every-

where.

1
. " ,
5.2.2 EXAMPLE, The complexity measure ((Ti)iegf(ki)ieya is such
that there is no h on E? Vi €N, Vn €N,

T (n) 5 h(n,A*(n))
1 1

Proof. We will give a very rough argument which we leave to the
reader to refine.

For each k&N there is a Turing machine which on input O,
outputs k using only 1 work tape cell. It is impossible that there
is a total h such that

Yk € N, k < h(0,1). @

We have seen ithat, in a sense, we can bound the values of
computations by the complexity §f those computations. In § 6.1 we
will see that it is not possible to bound complexities of computation
by their values in a similar manﬁer. This is because there are
arbitrarily complex bounded functions. However, those functions
whose complexity can be bounded by their values are important to the

complexity theorist. Such functions are called honest functions.

5.2.3 DEFINITION. et M= ((wi)iEEf(Qi)iEE? be a complexity

measure. . Let Y be a set of computable partial functions on N,

and h be a computable total function on g?.

[
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N T = T S
¥ is h-hopest in‘lm if FV@JE_ﬁ;'.3i € §;5 ¢i‘5*¢f*aha‘: i‘>
o . ¥n g_,.,q>i'<ri) s;h‘(n,@i(nn,' | o
¥ is ho?est,in' M if' 3"¢bmgPtéble total»-gjlgn »E? 3 Y. i§,9?ﬁone§t
in ,M; A cqmpptéblé partial functionk'w  ié -g;honest‘§f-honést‘

in M, if {¢} is h-honest or honest in M, respéctively}
. - - A

We suppress mention of M if it is understood. Notice that a
set of honest;functions‘is not necessarily an honest set of functions. '

* - Honest functions and funttions with computable graphs are’
surprisingly the same. This_becomes'mOre clear when we notice that when we

‘ @ . . L . ’ - Ty . :
are dealing with only one function, we can use everywhere in place of almost

everywhere in DEFINITION 5.2.3. The proof of this hinges on the fact that.

changing a computable function on a finite number of arguments does not © -
= . _ : does n -

affect its comphtability. . '
2.4 AL e (o , ' ) cas . '
5 ?%v 3 . Let ((gi)ieg‘(¢i)i€§?‘ be a.complexity measure pct ¢
pe'hqnbst. 3 computable h' on §?, j& € E.B @i = ¢~ and : s ”L
,f( Vn € N, ¢.(n) < h! (rj.tpi‘(n)’). , .
bProofﬂ Choose 1 € N, k € N, and computable total h on, §? 3 wi>= ¢ and
{ o Vn 2 k, ® (n) < hin,e, (n). I
Define a finite set I by :
I = defn {n € N n < k ané wi(n) »i?,defined} Ve
Define .r on N by o o o o S '
r(n) = defn 0 if n g1
. . ‘ Ll e, if ner.-



R
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Evidently r is computabie since r .is equal to the computable

75function’whichkis‘identically‘zero,»exceptafor'a:fihite‘numbér of

R

. érguments.':Furthe:L. r jis»total-sinca if n £ I then rin) = 0O, and if
“n €I then wi(n). is definéd, concsequently r(n) is defined.

2

. Défine hf on N” by
< e - - 3 > ¥
- w . Hh (n,m) defn h(n,m) ‘ ;f n >k
SN S - . r(n) ~  if n <k,

Evidédtly h' is computable and total.

"Also, “if n Z k then v

h'(ﬁ,c.(n)) 5 hin,¢. (n))
i i .

20, () | :
~andkif"‘n { k then
h'(A,mi(ni) ;. r(n) o if @i(n)» is‘aefjned
undefined if  ¢i(n) isﬁundefinéd.

R ¢i(n). s}

We arc now in a position to prove that honest functibns

it

and functions with computable graphs are the samc.

(30 ) be a comp]exity,measufe.

©'5.2.5 PROPOSITION. Let ) ‘
> ~ Le (e )1EE' i"i€N’

i

¢ 1is honest = ¢ has a computable graph.

‘Proof. (=) . Choose h' on N2 and i €N > .
rreol . n = o 5 )
. _ -
@i P

and Vn ¢ N,

s o . (n) Zhin,g, (n).
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FLka atrthe following‘pr0cedure.
On input (n,m), , o ~
. ~ ' s LS
(1) Compute h'(n,m). ' ‘
(2) . Cofapute whether or not Qi(n) < h'(n,m).- If not, then

~aﬁswerrFALSE and»halt;

"(3) ”Compute wi(n).

(4)_}if__¢i(n) =m then answer, TRUE and halt; else answer

FALSE and halt.
We can see that this procedure computes whether or not ‘w(n)vgfm7'7

as follows. T
If ¢(n) =m then @i(n):=ﬂh,” hence @i(n) < h'(n,m) - and " (4) results’

in the answer TRUE.

If o©(n) # m, then either'(z).reéhlts in thé'anSwé; FALSF or else.:
¢i(nY.E h'(n,m). -In the'l?tter case we hayé 'wi(ﬁfb.is‘defined; heéce
(g)vresﬁlts in sqhe‘va;uelLoxlﬁmi(n),- sihce {wi(nj é ¢(n)‘and

@(n) # m, (4) williréSult inithé'answer FALSE,i : / |

«). Choose i 3 ¢i = ¢. Define computabie tofal'_h- oﬁ H

N2 by . o -. ,

- - = ") . .
‘b(n,m) defn hi(n) ?(n) m

‘ A .

0 -  otherWise.

Now Vn € K,

)

h(n.'&i(n)) h(n,¢(n))-

-

-¢J.(n)- '
» 1

Thus, ¢ is h-honest. D : . ' .
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©

PROPOQITION 4.3.2 tells us thdt ¢ has a computable graph-';

1f and only if P »1S»a.member of a_measured sequence. ~Hence_the . : ' w

- following corollary»is immediate.
. , » o

.

:5.2,6' COROLLARY . Let (o, )lerl( ). EN) be a comdlexity measure.-
. ared s b. B ” N
1 a measured equen§e (Vi)iQ\l p € { I ien}
© ¢ ' is honest.
- . . . N
‘Proof. . Immediate from PROPOSITICH 4.3.2 and PROPOSITION 5.2.5:0 =~

Doés,ﬁhis indicate that measured sequenéés and honest sets ;
are eséentiaiiyithé saﬁe?‘ th Qﬁite}. Tﬁe following propositién indicatéé
thathmeasuted'sequeﬁces form hondsf séts.‘ In § 7.2 we will;ége.thét
the set of all h-honest funct%on%,.fér any given ﬁ,‘ fbrms'a measufedb
égqucyée. However, in § 6.2 we will @onstruct an hohest settwhich

‘cannot possibly form a meaSured sequence. This honest set will even.

be seen to be computably enumerable! >

5.2.7  PROPOSITION. Let ((¢.).,.,(3.). ) be a complexity measure,
) iT1€N i71¢eN -

] T A ."\ an 1,‘ o . - ) .
(Vi)iég; a measured qequ_‘ce._ Then {qi | iCN} is hoi§$t5 ,?é o
fact, for any computable total f' on N 3 Vi € §J. Qf(i5 = wi'. k
we have that 3 computable total h- on E? > Vi €N,

Too€n o |
n N ., (n h .
, N, f(1)(1) (n.,f( )(n))
Proof. Since every measurced scquencé is computably enumcrable 3
computable .total f on N3 Vi € N, - Qf}i) = Qi, (by;FROPOSITION 4.2.3).
Thus, it suffices to prove the sccond part of the proposition. .
Let f be any computable total function on N 3 Vi o€ N, Qf(ii = @ig~

Since (¢i)i€N is computably cnumerable (FACT 4.4.4) we have
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& o - S
(éf(i))iGN is computably enumerable (LEMMA 4.1.5) thus it is evident

that p on §?7'i$ gomputable‘where p is defined by -
() ¥ (n) = m N
Yy ; "\

A

p(i,n = X :
PLMm =goen |-YE (1)
0. '.  otﬁerwise .

< p is tota}Js;n;e_lf wi(n) =m we have'\wf‘i)l= m Fhus ’¢f(i)(n)»

is defined. Define computable total "h on N by

- '7= . ‘ K )" f e
h(n{m) defn max{p(j,n,m | j f‘n}
"Then Yi € N, Vn = i, we have

(n)) n-h(n.’*"i(n))

hn e s) »
5 = max{p(3,n, v () | 3= n} )
2 pli,nY, () (since i < n)
~ ¢f(i)(n)’ o

Immediately we have the following corollary.

.5.2.8" ROLLARY. ‘ any cor ity meast . i )
;5 2‘8 - COROLLARY For any gonplexlty neabure ((wl)i€§;(¢i)i€§?
we have that {¢i l iGE} i1s honest. |

Proof.  Irmediate from PROPOSITION 5.2.7 and the fact that (0.). .

.15 a measured sequence. O

ﬁe turn ouf étﬁénfion awvay frémvhonesty fo:}é moment, £0'look at how
different compleiity<méasures‘reléte'to eaéh other. The ;elatioﬁéhip
we will derive is sometimés useful‘in.demonstréting th;t bétt;in

properties are méasure invariant. A measure invariant proﬁért? ié a-
broporty‘which is true in all measures if it can be shown'to‘bezprue

in any one measure. We will then look at honesty as a measurc’ invariant

proporty.
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complexity measures. There is a computable total £ on N 3
Vi € N,

Or (1) * P
Furthermore, YV computable total f on N > Vi € N, Peii) = éi

0
3 computable total h on g? Vi € N, Vn €N,

Qf(i)(n) 5,h(n,®i(n))

and le,m2 €N, Vn €N,
< <
ml < m2 o h(n,ml) < h(n,m2) .
Proof. ($i)iEN is an acceptable numbering, hence is computably t
enumerable by LEMMA 4.2.4. Thus by PROPOSITION 4.2.3 3 computable total

f on N Vie€N,

Peeiy 7 % |

Let f be any such function.

Define § on g? by

p(i,n,m) = defn Qf(i)(n) ai(n) & m
0 otherwise .
Evidently, p 1is computable since (Qf(i))iEN is computably enumerable
(FACT 4.4.4) and since (ai)iEN is a measured sequence (DEFINITION 4.4.1).
p 1is total since ai(n) = m : $i(n) is defined
= ¢f(i)(n) is defined
= ®f(i)(n) is defined.

Define h'(n,m) = max{p(j,n,m) l j < n}.

defn

Define h(n,m) = max{h' (n,m"') l m' < m},

defn




Evidently h'" and h are computable and total; Cleariy,

o ‘>.( > ' ‘ A ‘ -’. N : ‘
m Zm, é.h(é'ml) u.b(nhm2)_:by deflnlﬁlon_of h.
Also - Vi € N, ¥n = i,
IR T ' ~ T e
: %% h(n,@i(n)) z max{h*' (n,m") I m' < @i(n)}‘
| 2 h'(n,3; ()
_ i \ ‘
= max{p(j,n,@i(n)).] j £ n}
> pli;n, &, (n))
‘.' 1 '~ -
ol qu(l) (n). D
N Althouch' the prcvious’LtMMA is more useful, the folibwing:more

symmetric result seems more impressive. The result is from Blum (2 3.

D O (@) g By be tio

5.2.10 PROPOSITION. Let ((¢,)

complexity measures.
3 computable total h. om XN 3 Y’ € X, Yn € N,
~®.(n) < h(n,%, (n))
i i

~

and  ¢.(n) £ hin,® (n)).
: i i

A

Proof. Define -f(i) = i. Cﬁooée H h_ on‘ N ,b k. ,k. €N,
—_— . defn 1 2 . _ .

> Vi € N, we have,
> . : | < o
Yn > kl' Qi(n)\~'hl(n'¢i(n)) |
Yn = x ai(n) f h2(h,¢i(n)) . 'by.the above LEMMA.

.. 2
-Define computable total h on N by

2I

h(n,m) = defn max{hl'(n,m), hz(n,ml)},

Then ¥i € I, Vn 2 max{kl,kz},

h(n,%. (n)) 2 h_(n,&. (n))
i 1 i

-~

2V

5. (n)
1

N

and h(n,%,(n)) > h_(n,?. (n))
_ i 2 i

P.(n). o
1

(22
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r
4

-

' The following propoSigioh pSés LEMMA 5.2,9 to show that honesty

. is measure invariant.

=
1l

5.2.11 PROPOSITION. Lot ((0.). ., (3.). ) "and
_ C— o : i1 1¢N ‘

N iT1€N
M= ((@i)iéﬁf ‘¢i)i€§? bg any two,complex;@y

measures. Let . ¥ be a set of computable pa:tial~funétions~on_~§.
¥ is honest in M e ¥ is honest in M.

Proof. By symmetry we need only prove =. Choose ‘5.3”? 'is g-hones

~

in M.

Choose f and h by LEMMA 5.2.9 3

Vl 6 H,} (pf(i) = "Di' ’
Vi €N, Yn €N, &, .. (n) < h(n,d. (n),
- - f(1) ~ N :

’ 4 1 R g ;3 ' . > .
and le,m2 € N, Yn € N3, .ml = m2 .h(n,ml) = h(nfmz?.

Define h' on N~ by

h'(n,m) = hin,g(n,n)).

defn

Evidently 'h' is computable and total.. We will show that Y is

h'-honest in M. Let ¢ € ¥, Choose i € N>
oy e qnd Ve N, @ (n) < gln,e ).

Then we have

'¢f(i) =@ (since wf(i)

Vi € N, Vn €y,

(*) h‘(n,@f(i)(n))

H

h(n,q(n,wf(iB(n)))

- = hin,g(n,¢ (1))

~ ~

> h(n,® (n)) (since” ¥n € N, g(n,e.(n)) > & (n))
1 - 1 1

1A%

®e iy M

Thus Y 1is h'-honcest in M.
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= " Notice that we éhoula;choose k€ g;a_ (*) holds for a¥l 'n 2:k,

o

”ﬁo_bé the maximum:of k, .and. ké'ywhere,

) Vn =z k., d_,..(n) <h ’@- n
‘ Vx kllavf(l)( ) < ‘}n, i( ))
Yn = kzh ®i(n) < 9(n,@i(§)).\
g ' F In future proofs. we will not«botherJto indicate wheﬁ we are using
such 'tricks' with 'almost everywhere.' .
; j
;.
E) o
, .
Y
% - iy -
: * ; 3 E:v
] v »
Y
3 o ‘
% . :
' o
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§ 5.3 Relevance of Abstract Complexity Theory

,

In this section we wish to take a brief philosophical look at
abstract complexity theory. We will look at how complexity theory relafes
to real computing environments, and at how worthwhile the study of
complexity theory might be to a computer scientist. This author maintains
that if any doubt at all arises as to whether or not abstract complexity
theory relates closely to real computing environment, or as to whether or
not the study of complexity theory is worthwhile to the computer,scientist,
it arises because of the prevalence of the notion of almost everywhere in
complexity theory. Hence the seeming misplacement of this section in a
chapter about the notion of almost everywhere.

Let us look first at the question about computing environments.
We will see that a computer system does, in a sense, fit the axioms of a
complexity measure.

We will make a few assumptions of the machine language of a
computer system. We assume that the instructions have an upper bound to
their length, that for each computable function we can write a programme
to compute it (i.e., we should be able to simulate Turing machines using
the language), and that we can Godel number the programmes which can be
written in the language. These seem to be true of every machine language.
The set of Godel numbered programmes will form an acceptable numbering.

We will encounter a minor difficulty in trying to run these
programmes in our systems since almost all programmes are too large for
the system. However, since the system cannot execute more than a fixed
number of instructions at a time (usually one) let us store the programme

on tape and give the system only those instructions it requiresz at any one

i i
iy
:M‘i ‘]“
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time.

The reader can see we have already moved away from an ideal
computing system in order to create an environment suitable to discussing
a complexity measure.

Suppose we feed inputs into the system on tape. Then our system
can work on arbitrarily large inputs. Now, since this is supposedly a
real computing environment, it may have available to it limited quantities
of some resources and all it requires of others. For example, it may have
all the time it needs but only a fixed émount of memory. It is possible
that some programmes require more units of some resource than are available
to it.

Let us make another aésumption. Suppose any time the system
attempts to use more units of resources than are available to it, that we
can give it more of any type of resource it requires.

We have moved another step away from any real system. However,
we are not being too unrealistic in that we have the technology, if not
the resources, to build such a system.

Suppose that we define a complexity measure on the programmes for
this system by counting certain resources used by the programmes.

Now any result from complexity theory can be applied to
programmes on this system. However, are these results at all useful
within this computing environment?

Suppose we have a programme to which we would like to apply some
result from complexity theory, and that this result holds only almost
everywhere. In any real application, we will only be interested in the

computations of the programme on some finite set of inputs, if .or no other

i 4
i
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reason than because the size of inputs is limited by how long we are
willing to spend writing them on the tape. Since we will only use the
programme for a finite number of inputs, of what use to us is a result
which holds for all but a finite number of inputs?

We can see then, that although a computer system may satisfy, in
a sense, the axioms for a complexity measure, many of the results of
complexity theory (i.e., those which hold only almost everywhere) have no
real significance.

Does this mean that complexity theory itself is not significant?
This author feels that, in spite of the above, complexity theory is an
important field for the computer scientist to study. Many reSults,
although they may hold only almost everywhere, do give deep insights into
the complexity of computations. The computer scientist can greatly
increase his intuition in computability, and his understanding of
computations and computational complexities by studying abstract complexity

theory.'

i
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CHAPTER 6

DIAGONALIZATION AND THE HALTING PROBLEM

8§ 6.0 Discussion

Suppose we wish to define a function so that it is not in a given

sequence of functions. If the sequence, say (£f,) contains only

i‘ien '
total functions on N, then we can define total f on N by

.f(n) = f (n) +1
n

defn
It is clear that f £ {fi l i € N} since for each i € N, f(i) # fi(i),
hence f # f..

i

This type of process is called diagonalization since f is made

not equal to the diagonal of the following table.

fO(O) fo(l) f0(2) f0(3) .« ..
fl(O) fl(l) fl(2) fl(3) . e
£,(0) £,(1) £,(2) £,(3) ..

f3(0) f3(1) .« . .« . . . o .

In cases where f must be computable and the functions in the
sequence are partial, various complications arise. This is because
wn(n) - wn(n) +1, |if @n(n) is undefined. Many times it is still
possible to define computable £, wusually at the expense of adding
complications to the argument.

We will use the term 'diagonalizatioh' to describe any process,
no matter how complex, of defining some function such that it is not in a
set of other. functions.

In § 6.1 we look at some uses of diagonalization. One of these

b
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"is the proof of thg:ﬂaltiqg Problem. The Halting Problém indicates that
there'is no procedure which tells us, given i and n, whether or not the

ith computing device halts on input n. In § 6.2 the Haltirng Problem is
hsed to-constfuct,various examples of functions which are badly behaved in

some respects.
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§ 6.1 Some Applications - The Halting Problem

Let us look first at a simple application of diagonalization.

The proof of the following proposition consists of defining a computable

; total function f so that it is not in a given measured sequence,

(wi)iGN . This is done by defining f(n) so that it is not equal to
lbn(n) .
6.1.1 PROPOSITION, Let (Y,) be a measured sequence. There is a

i"ieN
computable total f on N 3
£ £V, | ien}.

Furthermore Im(f) S {0,1} .

Proof. Define f on N by
fn) = defn 1 lpn(n) =0

2
1 _ 0 otherwise .
Evidently f is computable and total. Also, Vi € N,

f(i) & ¥, (1) ,
i

hence f # Wi . a

Thus, since acceptable numberings contain all the computable

functions, they cannot be measured.

6.1.2 COROLLARY . No acceptable numbering is a measured sequence.

Proof. Immediate from PROPOSITION 6.1.1 and PROPOSITION 4.2.2.0

It follows, then, that we cannot compute, given 1i,n, whether or

not wi(n) is defined, for any acceptable numbering (cpi)iEN . This is

clear, for if we could then (wi) would certainly be measured.

ien

The question, 'Given an acceptable numbering (wi) ,  1is there

36N
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a way to compute, for each i,n , whether or not ¢i(n) is defined?'

has been called, for obvious reasons, the Halting Problem.

i

The above argument indicates that the answer to the Halting Problem is

negative.

6.1.3 THEOREM. Let (cpi)iEN be an acceptable numbering. The total
predicate, P, on g? defined by
P = defn Ai,n [@i(n) is Qeflned]
is not computable.

Proof. Suppose it is computable. We will show (¢i) is measured,

i€N
thus contradicting COROLLARY 6.1.2.
Given i,n,m, it is clear that the following procedure computes

whether or not wi(n) = m.

On input (i,n,m).

(1) Compute whet..er or not wi(n) is defined.

(2) 1If not then answer FALSE and halt.

(3) Compute wi(n).

(4) 1f ¢i(n) = m then answer TRUE and halt,

else answer PALSE and halt.

is measured, contradicting COROLLARY 6.1.2. Therefore

Thus ((Pi)iEE

Ai,n [wi(n) is defined] is not computable.n

The reader may wonder why we define computability in terms of
partial functions since in any real situation we are interested only in
total computable functions and since in dealing with partial functions we

get a negative answer to the Halting Problem. We can easily ».owor this




- query using a-simple‘diagonal arqument.

-

' Suppose we have some workable characterizatioﬁ of all the

intuitively computable total functions. We expect that.these functions

“could be Godel numbered so that given. i we can construct a device that:

computes the. ith function. . Thus we could construct a devicef&biéﬁfbn
input n, constructs the hthv dezScc;‘runs on n, then outpUﬁSfdné'plﬁsb

the result of the nth device on input n. Certainlyrfhe function
. h y D :

N

defined by this new device would be intuitively computéble. However, by

its definition it would not be in the original set of computable functions.

(It should be clear that the above argument can be used to prove that the
a computably enumerable

set of all computable total functions cannot foym
- : : . ' 2

L

. sequence.) .

Thus it seems that any characterization of computabiltity which:
allows only total fu:ctions is insufficiént,: If,our'charactcrization

allows partial. functions, then the argument which shdwé’tbtal functions are

insufficiént, can be modified to ct.uw that the answe» to the Halting‘

=

Problem is negative. This can be seen more clearly in the proo: ;hatfthe

folléwing special form of ﬁhe Halting P;obleﬁ has a negative answer.
é’ ' . | : 8 . . -
'‘Given an acceptable numbering (fi)iEV . - 1s there a way to compute

for each .n,  whether or not ‘@n(n) is defined?' Thé'follbwing lemna
gives a negative answer to this Specia1~H51ting Problem.

6.1.4 LEMMA. - Let (wi)iéﬂ be an acceptable numbering. Then the total

predicate P on N defined Ly

BP= defn [Qn(n) is defined)

is not computable.
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Proof. Suppose it is computable. We obtain a contradiction by defining

a computable function ¢ which is not in (¢.)

ilien Define ¢ on N by

o(n) = wn(n) + 1 if wn(n) is defined

defn

0 otherwise.

Evidently ¢ is computable. However, Vi € N, ¢ # wi since

if @i(i) is defined then o (i) Qi(i) + 1

1l

and if wi(i) is undefined then ¢ (i) o .
This contradicts PROPOSITION 4.2.2. Thus An [wn(n) is defined] is not

computable.n

The above LEMMA proves more useful in constructing counterexamples
than THEOREM 6.1.3. In fact, most discussions of the Halting Problem
use LEMMA 6.1.4 to prove PROPOSITION 6.1.3. We leave it to the reader to
see how this might be done. We will look at some uses of LEMMA 6.1.4 in

§ 6.2 of this chapter.

The next result uses a slightly more complicated diagonal
argument. The result indicates that there are arbitrarily complex functions
in the sense that for any computable 1 there is a computable function ¢
with the same domain as 1 such that every device which computes ¢ almost
always uses morc than 1P resource units. ¢ 1is constructed by
diagonalizing over the set of functions that can be computed by using less
than 1 resource units infinité;y often. Thus if wi is computed using
less than 1 resource units infinitely often then ¢ # wi. Taking the
contrapositive we have that if wi = ¢ then wi is computed using more

than Y resources almost everywhere.

6.1.5 PROPOSITION. et  ((,)

Dien (Qi)iGN) be a com: - .y measure.
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Let VY be any computable partial function on N. There is a
computable partial function ¢ on N > Dom(p) = Dom(y) and Vi € N,
o, =0=Pnen o (m 29m .
Furthermore, ¢ can be defined > Vn € N, if ¢(n) 1is defined then
¢(n) = n + 2,
Proof. Let ¢ Dbe defined by the following procedure.
On input n.
(1) Compute P(n). If P(n) is undefined then ¢(n) is undefined.
(2) (In case UY(n) 1is defined.)
Define X = {wi(n) | i<n and ¢i(n) < P(n)}
(Evidently Xn is finite, having at most the n + 1 members
¢o(n), ¢l(n),...,¢n(n), and can be computed from n.)
(3) Define ¢(n) = Uk [k £ X ]. Halt.
(Evidently such k can be computed and k <n + 2 , since
Xn has at most n + 1 elements. Hence ¢(n) =n+ 2 .)
Suppose we have i € N 3 5n ¢ N, @i(n) < P(n). Choose any
n=>1iy3 @i(n) < P(n). Then P(n) is defined and Qi(n) € Xn.
Thus ¢(n) # ¢i(n) hence ¢ # ¢, - We have, then, that Vi € N,
(Gn €N, &.(0) <Y =0, # o .
Clearly Dom(p) = Dom(p) by (1), hence

q,i=q,=,§n €N, &, (n) 2 ¥(). o

Since ¢(n) =n + 2 we have as a corollary that the set of all

computable functions is not honest.

6.1.6 COROLLARY. Y computable total h on _112, 3 computable total f

on N 3 f is not h-honest.
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Proof. let h be given. Define r on N by

r(n) = N max{h (n,m) | m=<n+ 2} + 1.
Evidently r 1is computable and total. Choose computable total
f on N3 f(n) <n+ 2 and Vi €N,
[o0]
¢, =f= Vn € N, ¢ (n) = r(n)

as in the above PROPOSITION. Thus, Vi € N, if ¢, =f then Vn € N,

v

(*) %, (n) 2 r(n)
1

> max{h(n,m) | m=<n+ 2}

v

h(n,f(n))

h(n,wi(n))

Thus, f is not h-honest. O

In fact, (*) of the above proof is stronger than what is

needed since in order to prove f 1is not h-honest we only need prove that
ﬁn € N,
Qi(n) > h(n,¢i(n))-

In [2], Blum has shown that the function ¢ of PROPOSITION 6.1.5
can be defined to take on only values 0 or 1. The following is the
essence of the argument.

Given an input n, if Y(n) is undefined then let ¢ (n)
be undefined. If Y(n) is defined construct a list, called the list of
indices of cancelled functions, as follows. Place in the list each i ¢ N
such that for some k < n ¢(k) has been previously defined to be not
equal to mi(k). Now find the least 1 in {i =n | Qi(n) S yYym} > i is
not “‘n the list of indices of cancelled functions. Define ¢(n) to be
0 or 1 so that ¢(n) is not equal to wi(n). (Notice that for any

larger n, i will now be in the list of indices of cancr - ..a funntions.)
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The proof follows by showing two things. Firstly, that if i is such that
ﬁn € N, @i(n) < P(n), then for some n, ¢(n) # @i(n). Secondly, that ¢
is computable.

The first of these follows from the construction of ¢. The
second follows if we can show that it is possible to construct the list of
indices of cancelled functions. A problem arises here if there is some
k € N 3 (k) is undefined. For if this is true then ¢(k) is undefined,
and it may be impossible, for n > k, to construct the list in a
straightforward fashion. Blum's construction of ¢ ﬁakes use of
"Jovetailing” to overcome this difficulty as we will see in § 7.2. For

the moment let us prove the result for total 7.

6.1.7 PROPOSITION. Let ((¢i)i€§_' (@i)ieg? be a complexity measure.
Let r be a computable total function on N. There is a computable
total £ on N > Im(f)® {0,1} and Vi € N,

o, =f=Wnen, o,m z2xrm .
Proof. Let f be defined by the following procedure. On input n,
(1) Do the first n stages in the construction of the list L, where
L. is constructed in stages k = 0,1,2,... as follows.
Stage k. Find the least i' =k )
(a) @i,(k) < r(k), r(k) can be computed, thus
we can compute whether
@i.(k) < r(k) holds.
and (b) 1i' is not yet in L. (At each stage the list L

will be only finite since

we add at most one

(element to L at each stage.)

",

[l

i
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If such 1i' exists place it in L, then Qo to the
next stage, else go directly to the next stage adding
nothing to L.

(2) I1f i is added to L at stage n then define £f(n) by

£ln) = defn 1 wi(n) =0

0  otherwise
(Since @i(n) < r(n), wi(n) is defined and can be computed.)
If no index is added to L at stage n let £(n) be defined by
£ln) = defn 0 -

Notice that if i' 1is placed in L at stage k then @i'(k) # £(k), by
definition of f£. Evidently £ can be computed. We now show that
Vi ¢ N, if T € N, @i(n) < r(n), then ¢, # £f. Suppose we have
i€N> Jn €N ¢ () <rm. Choose n' 2132 (") <rm) and n' is
greater than every element in the following finite set,

.{ni, | i < i, i' is added to L at stage ni,} .
(This set is finite since an index is added to L in at most one stage of

the construction of L.) Such n' exists since, 3n €N, @i(n) < r(n).

Now let us look at the computation of £(n').

CASE 1. If i is placed in I, before stage n', then 3k <‘n' such
that i is added to L at stage k. Hence f£f(k) # wi(k) and
f # ¢, -

CASE 2. If i is not placed in L before stage n', then look at stage
n' of the cénstruction of L. We are to find the least i' = n'
3 @i,(n') < r(n'), and i' is not yet in L. Certainly i is

a candidate for such i', but is it the least candidate? Any
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other i' < i > @i,(n')' < r(n'), is added to L at stage n.,,
and ni, < n' by choice of n'. Hence any other caﬁdidate is
already in the list. Thus i is the least 1i' satisfying the
conditions. Therefore i is added to L at stage n', and

f(n') # (pi(n'). Hence f # (pi.

Thus we have Vi € N,
(3n ey, &, () < x(n))= o, # £.
Taking the contrapositive we have Vi € N,
= = ¥ >
®; f=Vn €N, Q’i(n) = r(n).

By definition of f it is clear that Im(f) < {0,1} and that f is total.o
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§ 6.2° Using the'Halﬂinq‘Pioblem:

-

# . In the previous_se:tién»ke7éaw‘that-there is a negative answer to

‘ . | o ; . ) o . o | o R
S ‘both the Halting Problem and the Special Halting Problem, that is’, there - -
BT o N - o o - | e
is no way to compute, "for each vi,n,’_whether_or not A@i(n)v}is defined,

,apd there is.ﬁo way£oAcdﬁput§, fdﬁ QACH n, wheﬁhér or not '¢n(q)- is .>->' vy
| defined;i - | D o B o :. : E (

| ‘The ﬁegative‘asswers té the Haltiné Problem %ﬁd¥Efe Sp¢éial; -
eralting beblem héve provénvéxtremélyvﬁsgfdl in éohstructiné Qérious-

~counter-examples. The method in ﬁhich these are used usually follows these
¢ [ . ) ‘ N » g : ' » 7 . - L
" lines. Suppose we would like to find some type of objcct that does not

* have a cértain‘property. We attempt to define‘such an object so that if

it did have this property, then we could compute whether or not ‘wn(n).,isb
defined (or ¢i(n)' is defined) for each n  (or-each 1i,n), tHus.'

.contradicting the kndwn’neqative-result to'the Special Halting Problem (or

°

Halting Problem). -~ Hence theAdbject does not have that property. - o e S
“In this section we will look at three different counter-examples”
and use the negative ahswer to the Special Ilalting. Problem (i.e.,SLEMMA'
.. , : .

~— 6.1.4) to prove that they are,}in fact,‘couf‘xter—ex_ampleéf

Ve first show that there are computable phrﬁialafunctioﬁs w?oSe — §

graphs are not computable. Notice that any such function cahnot be total
B N - " . . . .

since every computable total,fuﬁction has a computable graph.‘ Our approach

is to define a computable function o 3 Vn € N,. B : . R

¢

ot ™

L

o(n) =0 & @n(n) is defined.
Then, if this function.has a cdmputable graph we can . compute whetﬁé;,orlnot

on(n) is defined by computing whether or not ¢(n) = 0. - Thus ¢ cannot

-

have a cemputable qraph.
. \
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- thc qame,

whlgh are

’Sinée'fuhctions with cﬁmputable¥graphs,and'honest fungtipns;arof3

~

bv PPOPOSITIOW 5.2.5, we have that there are. computabje quCthnb~5~

not honest. Thls is stronoer tth CORUULAPY 6.1. 6 #hichkindicates

o

.}nthat fOr cach' h there is a functlo%\gbuch is not h- honest.. HOWevéf,fT

COROLLARY

e

6.1. 6 1s Stlll of 1nterest in that the function whlch is

constructed is total, whe!eas E¢"a$»above is partial.

W

6.2.1: EXAMPLE.  There isfa'computable‘fdnétidn» ¢ whose graph is not

» -

o

__computable. Hence, there iS'a‘co@putablerfuhétion: ¢ -which is not

. honest.

, Proof. The second result follows difcctly fromvthe first and PKOPQSITIC:

5.2.5..

.-

N

In order to proveé the first result, define o on N byb

Evidently,

If ¢ has
computable

"the same a

-graph.@

o(n) = defn (n) - on(n).
¢ is computéble, sin;e» (Qi)léN »is computably énumerabie,‘and
¢(n) < i od if ¢_(n) is Gefined
Lundeflned if . (n) s undefined.
a computable graph then the predicate \n m[“(ni m}' is "
, hence Anl¢(n) = 0] is cOmputable; °Clearly Xn[;(n) = ol is
s the prédicaté An[¢ (n) Js deflneg] Hence Xn[@n(n) is defined)
is computable contradlctlnq 1&1§$\ 6. l?HE Thus ) ¢ cannot have a cow“u*able
R " (/" / .
- - /
e
-

same basic

An argument much mqré:sophisticated than’LheiabOVe, but u31ng ;ha

notion, aids us in CS)ﬁa%ucting an honcst set of functions, .Y,

which ‘cannot be formed into a measured scquence. Y .is deofined te be

{w;’_ | i ¢

REP ’ \ N i R N N
N}  where Wy -1s defin o that o (n) i< cned
*} Yere (“1)iéﬂ, . ~ : é%Q% ! fn( ) ‘t{ <
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w'(n) = 0 CIf (w;)iéﬁ, is a measurcd sequence such that W {w I'i'f'N}

then we can comoute whether or not w (n) 'is definedwb?”éeéfchiﬁg.fOr ,

i ¢1 = W;f then checklng hhether or not w (n) = 0.

-_ 6.2.2 - EXAMPLE. There is an. honest set of functions, " ¥, ) *there.is no"

N l.,‘b . ‘ -;=‘1_'E’ .“~' -
measured’fgqqence.,(wi)iaﬁ_ R;th, Y {V-‘I,l € N} .

Pfoof; For any‘givén comolexity measufe '((w ) ,(¢ ) ), deflne ‘Wiv’on~§ '
by o wi(n) = defh {w (n’ - w (n) v}f n:fxl_ S T T
: ‘ . A ‘ : ». for every i € N.°
] L_l, o otherwise
L 2 '
Cefine Y on N by
P = oy Lopm) - g ) i =i

! A»}:ﬂ, - otherw1se e \\&«;fg:';L

.hence‘by'UhFiNITlow‘~

Evidently, mw' ig corDutable and unlve*sal fof§(¢ ). EN ;

4.1.2, (wl)iGV ~is'¢omputably enumerable.’ Choose, by THEOQEM 4 2. 3,

a camputablé total function £ Qn- N 3 ‘ s _ }‘, , ]"- , .
. ST €. : .
) - -47-"’
| £(i) ~ Vi :
o o,
Cefine h orn N by
N » /47 ' I - ' . L . . ’ N

= ) ¢1 ;- . = ) . ) .
h(n,m) dofn | mgx{vf(i)(n) l i.< n} }f m l'. : } . !; ,,X

o ‘ S otherwise .
Evidently h is»comput%b}e_since‘ (Qf(i))i?ﬁ is cbmputab;y enumerable, by
LEMMA 4.1:5. BAlso h is total, by the fc .lowing. o
If m# l‘ ﬁhen h(n,m) = 0. Fof m = 1,:

hotice that for each 1 <n, $_ .. (n) 1is defined since -

~f£(1) .
mf(i)(n) ; wi(n)
A o1

_hence, h(ﬁiﬁ) - maX{®f(i)(n) I i’<vn} ~is defined.
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. N . - : V _ ", ; a - y o ‘. . . y
owr VI €N, gy ioend Wamde o0
h(n,w ( )(n)) = h(?;Wiﬁn))" )
=hn,1)
R . : . ‘= ma 5, <
y S . x{ £(5 )(n) l j <'n}
- ey
ey
' Hence Y = b E is  h-honest. I ose” is a
| ep;e ¥ = defn{vl»' i N} is h hqnes? ~Now suppose (w )1€F A;s.a
“ measured cequence w1th Y o= {V | i€ Ej\xx' TheAfollowingiprocedufe
S - 1 . T R : =
‘computes, givenb n,' whether or not mn(n)‘\is defincd. >
On._in ut n.. .
() 'Fgfﬁeaéh 1= 0,1,2,;.."§Qmpute whether or not @i(n) z.1

__untii> i\_}i_s.dfbund =Y U (n) # 1. (This will be an i )

(2) Compute whether or n@tﬂ'wi(ny»: 0. If ‘¢i(ni‘:-o _then

answer ‘TRUE and halt,‘else answer FALSE and halt.

It becomcs clearbthagwthe above does ancwer whether or not ¢ﬂln) is
defined, when we nétice that @n(n) is defincd'b' U'(n) =0, ‘and that
y. (n) £>1>= Y. = ¥'. This contradicts LEIN 6.1.4. Thus no $uch (V). .
i o i n ' , - ‘ T TiTifn
exists.n
In the discussion just prior to LEMMA 6.1.4 it was indicated that
._a\simple diagonal arduﬁvnt can be used to prove the set of ali computable -

‘total functions cannot form a computably enumerable-saquénce. The néxt

: o L o .
counter-example demonstrates,;uSing LEMMA 6.1.4, the ex1stence of ano;hur

“ "’&
set of computable total fuﬂCthﬂn hhlch is nbt comnutab1y‘enumerab}3"w
. Vo s
6.2.3 EXAMPLE. There is a sct, Y, of computable total functions on N
\‘ - Y there is no computakly enumerable sequence (wi)’ Sh
N : ' : 4
v ‘

Y,



~

Vo= {gi i€ N} . The following procedure computes, given .n, wheth

‘ndt*.¢n(n) is defined.

¥

On input  n.

(l)’ Por.each 1 = 0,1,2,.... compute wi(n) until we find i 3

’- "} . . . .v.‘ ’ - '..".
Ui(n)vi OT (Thls is an i 3_vi. wn 7)’

C(2) If p.(n) =1 then answer TRUC and halt, else answer F

5o P » N

";k " and halt. : - . - .

- - ) o

' Evidentﬁy ,Xn[ch(n) is defined] is computable. This contradicts LEMMA-

.1.4. Hence n rh b i .
6 Henc o suc (Ul)i€E  ex1sts‘D\
J? i
L]
.
j i
o
.
Lo ;

ALSE

d A
x4 . ' - ; o ‘ 93
Vo= fu, | ieny. L e :
g Paempon 0y
. proof. For each i € N -define wi 6n‘\§;:by ' ' .
K = - s : . o S , B
ui‘n)~'rdefn if n £ 1 e - S
| 1 ° if n=1i and ¢ (i) is defined L
2D S - 'if; n=1i and wi(i)’ is‘undgfined;. | by
Notice that any unction which is O evé:yﬁhere but at one argument is
computable. Hence each w;» is dpmputablé. fLet _Y‘= {¢£ I i€ EJ»,f
Supposebthefe is & computably enumefable sequence. . (&i)ieq such that
or



/qw;' " CHAPTER 7

*' COMPUTABLE BIJECTIONS AND DOVETAILING

§ 7.0 Discussion
The hegafive answer to the Halfing’Problém preSOnﬁé'a'great

barrier in proofs that would otherwise seem quite natural.. However, many
- proofs that, at first glance, secem to require that we have a. positive-

answer to the Halting Problem, do not need such a strong result aftéfiall:

They may only require that we‘find'those ‘n- for which a cdmpﬁtable funktion

J-

¢ is defined. vaetailing is any orderly process for generating such f

values n. ' -~

.The readér'may not see the distinctioﬁ befween computing: giYen
n, . ﬁhetﬁcr or nét ¢{n) is defined; and géneratiné those 'n ‘for'which
‘ w(n3 is aefined. Let'psvldok'é littie'mqré ciosély at this. We wili
éptempt'to show ‘ﬁhat being able to generate,thgse;>n for which.'mfn). i§ '
'_defined doeg hot imply that we can c;mpﬁte, gi?en rn, whétﬁer‘br»not,,&kﬁ)
i; defined. Supbése we‘¢5n genefate thdsé n - for whiéh, ¢ (n) is‘ﬁéfined.
‘ Given”n, iweiéanrcheck if ‘¢(n) is defined g} ggéing if n is generéted,
then énswerin% TRUE‘if i£ ig. However, if n is ngt éénerated we will wai£;~
forever. Thét is;_we may never be able to say'definitely thét w(n} ‘i;.
‘not defined5

In § 7.1 we present aidiscugsion of computable bijections, which
aid.us in‘defining,and making use;of soms doVetailing p?éceduresf - In § 7.2

 we discuss three dovetailing procedures. We also look at a few proofs . -

using what this author feels is the best of the three dovetailing gfpcedures

L i . . - -

preserited.



§ 7.1

-

P . k
A total~functlon on g

. is.an element of N  which the function m

[}

Computable Bijections

is surjective if for every hié‘ﬂv

aps to n.

: s k. S » L :
two elements of N. 'map to the same element of N.

bijective if it is both surjective ahd‘injective.

- . if

(1) ¥n €N, 3y € ¥,

and - (2).

" We will show how to

If k=1 then the

’

Y
4;. 10

the result for k = 2.

4

-fn = .

#
n,

7.1.1 DEFINITION. Let f be a total function on

= fﬂl

L . . . k
construct a computaeble bijection on N

identity functidn‘éuffiées:"The following'lemmé shows

95

there

It is injective
A total function is

P
. )// " oo i . .,
K ¢ A o
N'. f is bijective

if no

# ng . 7 _ o

/for each,yh.° 

o

&,

. N 2
7.1.2 LEMMA.  There is a computable bijection on. N,

Proof. -Let f be the function defined by the.following~procedure.f e

t

2 A on ir ’
. » n input {(nlknz
(1) Set m to

(2) set k to

(3) Set i to
.- . . (4) set 'j to
(5) If ny =i

T o (6) Set m. to
(7) Set i to

-

(8) set i to

(9) If j =k

(10) Sct k to

(11) Go to (3).

),

71.’: (At times i

-

- j, output m - and halt.

may be set to -1.)

»
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. 2.,
Essentially the above procedure enumerates the elements of N ' in the order

indicated by the following diagram,

(0,0)° (0,1)2 (0,2)° ©0,3° ...
10" 1,1y (1,28 a,nt L.
(2,0)° 2,1)’ 2,22 @2,n® ...
(3,0° G, e Gy L.

until (nl,nz) is encountered. It then outputs one less than the number
of ordered pairs enumerated so far. Evidently f 1s a computable

bijection on g? .0

. . . . 2 . . X
From this bijection on N  we can define a bijection on N

for each kX > 2 by a straightforward induction argument.

7.1.3 PROPOSITION. For each k € N there is a computable bijection on

k
N .

Proof. For k =1 the identity function suffices. For k = 2,

defined in the above LEMMA suffices. For k > 2 define fk on N by

Eapreeemy) = gepn FlE g (yreemimyg)imy)

where £ f, with £ as in the above LEMMA. Now f2 = f is

2 ~ defn

computable. Assuming that £ is computable we have fk is computable

k-1
since it is a composition of two computable functions. Hence by induction
fk is computable for all k.

Similar induction arguments show that fk is a bijection. (Hint:

Treat injectivity and surjectivity separately.) ®©&




. e

~7.1.4 DEFINITION. For each k, let

Anlf“z"'f'nk [<nl,n2,...,nk,]

: ' - . k
be: some fixed computable bijection on’ N .-

The notation Iﬁiioduced in the above definition will be used in

severel pfoofs in the remainder of this paper. Given .nl,nz;...,nk ,the-

k-tuple (nl,né,...,nk). is mapped,. by the above defined‘bijection,.to the
‘natural number <nl,n2,j:.,nk> L' Since the particularebijection t? be

‘used is left “arbitrary in the definition, any computable bijection. can be : "i{/!

~used in these proofs. Theldefinit' n is really giben’tobfix a notatién,
" not to fix a bijection.

There are two_important properties of computable bijection which

o

will be used repeated.y in proofs. The first is that given? n, there are

,...,n ) Sueh thatp

only a finite nqmbef of k-tuples, (n1 2 _ :

Dy 2,...nk> < n. This is because there are only aﬂfinite number of

natural numbe*s m with m S n.
The second property'is that given n EIN, we‘can~comp0te“ o /f/ SR
L - : ' y
(nl,nz.-..,n ) euch that‘4<nl.n2,...nk> = n. Thls 1e because we can /gxf
N . . v

enumerate, in some computable fashion, all of the k—tuples (51m11ar tA
. W . . ‘ : ‘7, ,

o

enumeratingvall ordered pairs as in LEMMA 7.1.2). ‘As each"kaggg;e“‘

/

’-{ (n ,...,n ) is enumerated we can compute <n ,...,n > and check if it

1'M2 k

NP ),‘else enumerate the next

equals n. If 1tvdoes, output‘ (nl, St » ‘ ‘ ‘ o |

- k-tuple.
The above argument will be used implicitly in.sevefal proofs. If :

n is given we may write a statement such as, "compute nl,nz,...,nk ] e

k 1 2 k

<O AN, .e. N> n," and leave it to the reader to see that n_,n_,...,n

can in fact be computed.



'possiﬁle-to‘coﬁpu%e fk(nlin

'V°wi11 be possible to compute (n

" natural numbers, then it will be the f(fk(nl,n

A ' R S

In'8 1.2 we mentioned that there is a procedure which generates,
witﬁout‘repetitioh,>a11 of the lists of:nétural numbers. We. can now see

L4

this és follows}“

&  ”Eirst1y; notice that given %k, and nl)né,..;ny GVEJ it'is-‘

_2,...,nk)- wherg, fk "1s deflned gs in Fﬁe

proof of.PROPOSITIOH>7.l§3. All we,do~is compute‘ .
o BEGEE M) ngd ey eny ) e e

where f is défined'as in"the'proof of LEMMA 7.1.2. Hence, given n and k, it

12

We can now sec thlat the following procedure generatcs all of the

lists of natural numbers as.réquired;- k ' S
' In order to oﬁtpug,the' mth li;},vfor mie N,
}i) Corpute (n,k) 'such that m = f(n,k)..
- (2) Compute (nl(nz,,..,nk)' shch thhti n =‘fk(n17n2""'nk)'
(3) Output the list ni;nz,.:./nk and halti ﬂ\,::?

N ,...,n. is a list of

This pfocedure.gives7a11 the lists, for if ny 5 K

2,;..,nk),k)—th list ouﬁputted:

. . . - -
by the procedure. Furthermore, there are no repetitions since f and 'fk
are injective. o »y L ' .:i-‘ ' o , .

-n

We now look at sore methods of dovetaﬁling-ahd at some proofs that

make use of dovetailing. .



§ 7.2 - Davetailing '._: \»,5 - L R

Let us look at a simple ekample of dovetailing, using a given
complex1ty measure-‘((@i?iégﬁ(®i)ieﬁ}.f We»yould I%ke‘to déf}ne a prqcedurgj i': .
whiCﬁ, on input i, “enumerates .those values ‘n for which {wi(h) is~definédf

{ o 8
The foilowing procedure does this..
RN o

'T§Ohﬂinput' i, enumeraté values n in stages m = 0,1,2,... , as.
" follows. At stage m, ’
_ . . R » . Recall that;
* (1) Output each value n = m 3 ¢ (n) < m. “\ oo B
: i ) R R 1 : . 'Ai’n’m[.q,i (n) < mj
(2) Go E9 the next stage. = : & ' . o ﬁ

~ _ . ‘ : \'is computable. -
_Cértainly this procedure works, for if_‘mi(n) is defined then n is

¢
/

enumerated at sta?%;12y= max{n,®.(n)} . Also, if n ' is enumerated then it
must be enumerated at some stage m where @i(n) < m. Hence ¢i(n)_ is

o

-defined, thus @i(n) is éefinéd: Notice though that values  n wiil-be _

enﬁmeratéd infinitely often.,
bTﬁe follo%ing; s;ightly more sopﬁisticatcd‘dovetailing‘procedpre'

enumefatés a vaiue n afvmost_onCé ana §nu@érétes at most one value atfééch,
‘stage. ' o | . | - -
-Oh.input .i; éﬁumerate\values n ané»build‘a list 'L, in stages"
m = 0,1,2,... ,. as followé. At the start, .L his empty. | |
At stage I, | | |

(1) Find the least nlS m D ¢i(n)»s‘m and n 'has not yet been

plgced in. L.
(2) If such n existé then (a) Place ‘n in hL._
(g) Outéut n.

- (3) Go to the next stage.

o,



N

e

‘ . S - A B : : ) ‘ e "
We leave it to-the rcader to sce_thay the above procedure works,
‘mentioning Oniy that L is used—in Orde§;£9 keep track offthé,valuQ§ 

enumérated so far. o

.One remainingidrawback of ‘the above procedu.re is thqp‘there.is

no strong tie between n and 'm, where n is enumerated at stage m;&'.
other -than m is greater than or ‘equal to both ' n_ and ‘¢i(n).;‘This

.be¢omés>more apparent when we look at thé.fdllbwing_procedure;ffoﬁprich

each value enuﬁe:ated’is'morG'closely tied to the stagc at which it is
enumerated. B h ;é
. B : : N

On input i, enumerate values n in stages x = 0,1,2,... ,

ez

as follows. (Recall. that Ah,m[<n,m>] is a cdmputable'bijectiOn.)'LH

-
P

»At_stage x, ) E o o o
(%) Computé.;n,m Y <n,m> = X.

(2)  1f Qi(n) = ﬁ oﬁtput' n.
(3) Go to the next stage.

Notice that n is enumerated at stage x if and only if
. .

X = <nV,(I)iQ) >l\.‘

The procedurg works sincé if @i(n) is.definod then n is

enumerated at stage - x

]

enumerated at stlige x = <n,m> where Qi(n)‘=‘m. ‘Sincé %i(n) is.

defined we have that @iKn) is defincd. L ‘

We will make use of only the latter methed of dovetailing, since

it has all of.the'strénqths of the other two methods plus a strength of its

own. Both PROPOSITION 7.2.1 and PROPOSITION 7.2.8:can be dgne using either

of the first two methods. PROPOSITION 7.2.4, howéqu};réquires the use of
¢ !

the latter method. ’ . ~

Let us first look at a fairly simple proof which uses‘dqvetailiﬁg.

‘F‘
!

.

<n,¢i(n)>;' Also, if n is thméfated then it is R

L4




Y proof. Defiﬁé;gomputable«pértia1  ¢y on §?-bby theffOJIOwingsproeedurer

L

e T : S R
. - . . .

*r“@gt

i A

Let’ W(i,n) be a partlal predlcate wh1ch is- deflned prec1se1y on those ,

values - i,n for whlch w (n) is defined .‘Think of»-ﬂ(i n) as saylng

something about the computation, 'wiln),‘ Suppose we would llke to
: . : ' . L ,

enﬁmefate indices for those fynctions' ¢, 3 ¥n (.Ejbn(i,n) does not hold.

Lo

Notice'that'if»‘wi‘ is undefined almost_everywheQe then we should. enumerate

®

r )._": " . S

~an 1ndex for @ thus‘we can proceed,as,foilows. For.each'vi,kftdefihe’ :

a functlon w k " to. be @ if, bY>uSihg dovetailing)»we never find an

n = k E ﬂ(l n) 1s7TRUE,,an§‘to be undefined»oﬁ each n' enumcrated after .
, ; : 0 n , - SR enTs 2t .

nb.-if we find an n 2k>3 (i, n) is.TﬁUE. Then welhave the foilowing;

If j¢£ is such that Vn = k w(i, n) does not hold, tﬁen :,;4>‘

h o= R | : > T _A“
Vi,k N If ¢, is such that 3n X, (1 n) hol@s, then vl k is

3.

_undefined almqst’evcrywhere. ‘Now by enumerating indices*in.‘(¢i)i€N for

P

'{wi K | i,k € N} we enumerate the required set. Here is the formalized
- . ‘ . A : . . - .

proof. ‘  . . \
n7.2i1_ Péoébéléloninl Let  ((¢. )1tN (¢i)i§§?\-be'a eompléxity meagufe._ '
Let T be a~predicate'6n 5? ) | '”>\‘_ f '.:i‘ R
i ‘{‘3V§ E~§J_V; € §(.ﬂ(i{n) ‘ié defiheé af@i?ﬁj,,is defineq:‘ N
\\ﬁ\Tqé{ 3 coﬁputablv‘cnumerable (V. )J€N 3 '. ) \*é>1b.\
. t\_: \' 5 %:E} = { | i € N, Vn €N, (i, n) dqeé ngtiheiA};

L

- ~.
. . . -
) @

‘On input (ii";n{-, ' R

(1) - Compute i, P 3\<1 k> =35,
¢ (2) Compute @i(nk. if\\g‘(n) is undeflned then let w(J n)
be undefined. - N - ‘

o

(3) (In casc wi(n) is dcfinea,) §%qg‘

For eachh x = <n,¢i(n)>; compute
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n',m:\3bx'=\<nf;m5.
If ¢ (n') =m and n'Zk and T(i,n') is TRUE
. . ‘e 'y . . ‘ T ) .
. Cthen lét y(j,n) -be undefined. (Since & (n') is,
defincd, . wi(n')' is defined, hence U(i,n}f T K\
e defined and can be computed.) -
if- (3) doés not'resplt in Y(j,n) bei?q undefiﬁed; )
;A;hen ou;pgt‘ ¢i(n) an@%halt.
. Evidently {4 i5’cohputable and we have ' ; .
w(j ln)' = \b(<i,,k>:n‘) . o ‘Qm‘
P . S e -
undefined if ¢, (n) is undefined. L e X
- ) ' - l_ ’ L b ) ”
‘ undefined if" 3 «<n',m> =< <n,%.(n)> > &.(n') = m,n' =Kk,
‘ : - IR R .
Ay » S =
N= Y fnd T(i,n') holds. &
-% o Qi(n) Cif Vréh',m> < ?n)Ci(ﬁ)ﬁ‘B ¢i(h') =m,n! =k, is
. we have 1(i,n') does not hold. ;defined =
»Definé '(wj)jgﬁ by,'_wj(n) = défnﬂ$(j'n)' »Thén' (¢j,j€§  isvccmputabl?v .

. -enumerablc'sihce ¥ is universal for (wj)jEN'f~we show that each pj is

. in ‘{@i 1 ikf E; ¥n € N, ﬂ(i,niw>ab§s not hoid};”réhoééev‘i;ﬁ 3 ;i;g>:ﬁ'j.
| If Vn—a.k,bﬂ(i,n) ’épeé not hold, ;héh A o '. - .- T
o wj f‘wi"énd :@ivé‘{wi I’i é §¥{vn,€-§, 7(i,n) does not héldi?
If ‘3n' > k‘a 7(i,n'), holds, £hén'for ali‘bﬁt,tﬁose'finitoiybﬁény' n 3
, <n,¢i(n)> < <nf,¢i(n')> ye'haVe:eithen B
i (ay- wi(§)’ i$ undéfined hénce'wj‘h)v is'uédefined
or _be. wi(n)i‘ié‘ defined and {ni,Qi(n‘)S < <n{¢i(n)§
hence ¢j(n) ‘ié.undefincd by stgp k3) of thcvprocédure<
) - f;r démputiﬁg' w(j,n)..
Thus, wj is Qndefined almost évexywhe{e. Therefore | skﬁ ‘ ‘.: R
xpj € {(pl I i € L\J_, Vo W[vl(i,xxi doés not hol‘vd]}.‘ 4‘




Furthermore;eif-~w. € {o; | i €N, ¥n € N, m(i,n) does not hold} then -
ij.= @ie Qhere ' § = <i,k> and k.  is such that‘an‘z k,‘ﬁ(i,n)"dbeS’ﬁét"
~ hold. - Thus {wj |5 € g};e*{¢i’|.i €N, ¥n € N, m(i,n) . does not hold}.o

Thé'aboveiPROPOSITIQN shows that the set of all h-honest

functions’for-given h .is-Computably enumerable; by choosing’ m(i,n) to -

‘be theipredicate A, n[@ Ln) > h(n,w (n))].

Lo y . . . . .
BT By slightly modlfylng the above proof we. can. get an even

o o ‘ S
__stronger result. We show that the set of all h-honestefpnctlonsrls

measured. . This resu;t-was stated as*a fact, without‘preof in. [7].

7’ . ' 3 < T ‘." - V‘“- 3 . ‘ . . . " - ]
» ? 2 PPOPOSI ION.  Let ((pl)iEE; (¢1)1€§?> beia compleglty meesure

Let h; be a cemputabléAtptal function on E?. _Thete is a measuréq-.
sequenee (w )jEN E | -
| | j‘E u} ={op | ¢ is h- honest}
.EEEEE', ‘Define computableméattial W' oh _§?. by the follow1ng proccdure.'
. On input (j;n); o
(l)v-Cemetev_i,kim 3V<i,k,ﬁ>;= 3.
(2) Co?putef'wi(n). If iéi(n) is‘updefined then let ‘¢‘j,n)
be undefined. | | | |
(3)  (In case 'wi(h) is Qefined;) .Fot eecb"x < <n,¢i(n}> bdov
theAfollowing.r Compute n',m' 3 <nf,ﬁ'> =ex. If
T - j vt‘§i(n') ='m' ‘then ifveithef‘ n' ;-k »aqd‘bﬁ'_> m . or
n' > and m' >.h(nﬂ@i(n')) ‘then let ¥(i,n)  be
ﬁﬁaefined. ‘ | |
(4) (In'case' w(j;ni‘ wes not eeee to be undecfined in (3).)

Outpdt @i(n)_ and halt.‘
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jen by g :»aéfn An[&(j,n)]i ‘Evidentiy.f¢i is computable

efine - (Y)
. 3 : i shaharu b
~hence (wi?jéN is comggtablylénume?able; ‘leshq? tbét‘ (wj)jéN is a

~measurcd sequence.

By referring to the procedure for computing ¢, patticulérlywat '

stepv(3)7withi:x = <h,¢i(n)>, it i's easy to see that the following ’;/)/:

procedure computes, for given 3j,n,p, whether or not ¥ (n) = p. .
DR . A

= .

on. mput | _(j.,'n,pi“.l
7 (1)'fComphte-‘i;k;mi) <iyk;m>>¥,i,
(2)’.If kn.%‘E,.check i§' @i(ﬁ)~5 m  and
' if_iﬁ 3k“chgck_if éi(n} g.h(n,m).y

If not then answer PALSE and halt.

(3) (In case n < k_ and

-?i(n) <m, or m 2k and

¢i(n) < h(a,m).) Computc"gi(n).' (This"riust be defined

4

since @i(n) is defined.) If Qi( ) # p  thensanswer

]

,_FALSE aéd halt; N L  ;: ‘ : ; ‘Vﬁv‘
(4) (iﬁ case ,¢;(n) ; p.) wo£k thLoQghrthc érbcedufe.for
:computiég‘ w(j;n); If~stép_(3) ever’réqﬁirés that &(j,n).
be undefined‘thcﬁ AnSwer fALSE and halt}.oﬁheQWisc answef
.TRUE énd halt.

N 1is @ measured seguence. . Each ™ y. can be seen to be |

Evidently (¥.) .,
. ‘ lrJ j¢€

h-hqneqt as follows. -(Letf <iLk,m> = j.)

. CRSE- 1. "3n' ¢ N, ¢(j,n*) is-ﬁndefined by (3) ogwtho’proceddre‘for

‘calculating . Then for almost a1l n) g(3,m) 1is undefined.

This is becausc for almost all n. either ¢i(n) is undefined .

)

or <n,¢;(n)>'? <n',¢i(h?)>1 If wi(n) is undefined then {(j,n)

~is undefined by (2) of the procedure, and if



'1§na¢i(n)> 2'<n‘;¢i(n')> then Y(j,n) is undéfihed by7(3) of
the pfocedure;i Theréfore;  wj i$ undefined almbst everywhere, -
he_r{ce is hv'.'HI')h:est».; ’ e .. V _‘.i . ) 3 -_ | ‘. i

CASE=2:; ¥n € N, w(j,ﬁ) .is never undefined by4(3) of‘thevproéedufe,.lThen C

© - e

q;; (n) = $(3.,n)

s
A

Furthermore Vn = K, either ¢i(n) is undefined or -

S ,
%, (n) = m
. o 1 @ R . - - -
. = h(n,¢i(n)). . (By (3) of the procedure.) - . -

¢ ! ‘\\ZV s ! o ‘

T?US ‘¢j:=!wi and Vn’E,E,?
$.(n) < h(n,g. (n)).
i i .

Hence w5 is - h=honest. .

It remains to show that if ¢. is h-~honest then 3j € N 3 wj = @. Let

¢ be ~h-honest. Choose i,k € gfafA¢_=-¢i ‘and ¥n = k,

¢, (n) < hin,e; ().

Let m =,max{¢iYn) l n < k, wi(n) is defined}. One .can easily see, by

following throﬁgp\the procedure for computing Y (j,n), thét

B N ’ ) . =‘(pr‘

where Jj = <i,k,m>.p
L Y3

(¢.)...) be a complexity measure and

7.2.3  COROLLARY. Let e) e (9 ien

: . S . 2 o -
h be a computable total function on N . There is a computably

A X - :
enumerable sequence (wj)j€§‘)
»{wj | j €N} = {y I ¢ 1is h-honest}.

proof. Clear from the previous PROPOSITION and PROPOSITION 4.3.5.0.

”’1053
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Thé fbllowing tﬁebrem éxﬁends,PROPOSITIONv6.1.7;fo computable
partial functions.: The proof makes use of dovetailin§~togéther‘withré

’ diagondl'afgumcntgsimilarftq'that appearing in .the. proof of PROPQSITIQN

6}1.7.:7fﬁé_fcsult-ana the basic method of proof are from Blum [2];

~7.2.4 - THEOREM - (9.). ap / mea ‘. J
- hEQREM» ‘Let ((wi)iGN\ ‘Ql)lfﬁ? ‘be a gompl }ty meésure‘ {There
is a-Computéble’total function 'ff§'Vix€ N, V3 € N, _Doﬁ(ﬁéfi;)~¥ Doﬁ(wi)
5 I\J, ’ o= - . . B
~and YjeN, @J Pe i) -

Furthermore Vi‘(hgj Im (o

=Vn €N, ¢, (n) >0, (n).
. — J : 1l

c (g1},
fy) S o1

" Proof. :Let . f be a cémputable’fotai function 3 Vi € N, -

¢f(i’ = kn[W(i,n)j, wherej vy is the”com§utable Qértial'functiOn.Qn  E?

AN
B

'dEfinéd‘by‘the fOlloQing“proqedﬁre’: g -
On»input (i,q)f ;‘ ’
~(15' Compute ¢i(n):.-1f- @i(nf ~is uﬁdéfined then_let‘ w(i;ﬁ)li
‘ be'undefinedf | Lﬂ,
.(5) (In'case ¢i(n) ié-defineé;)‘ Dp £hé ?irst .%ﬁ'Qi(h)?'
stages éf‘the cénstructioﬁ bf»ﬁhe 1i$t ;Li" where _Li .is\‘ 
_cbnstrﬁéted in-stages _g =;0'1’2";' -.as folles. :At,ﬁhe
' start L. is empty. ’Stége"x = ;k,m>
(a) Compﬁte‘whether‘or not ¢i(ki - m. If ﬁog go to thei$ :
‘next stage in the éqnstruction of'7Li,‘ addi;gi? | 0‘3
nothing to vLi»,
(b) (In ;a;ef ¢;(k) = m.i éind!thé 1gus; oi':é kj)
9, (k) < g, () and i' is ot yet in Li . If no
such i' exists then go on to ﬁherhéxt stage of the

construction of -Li" adding nothing to L. .

% . . .. o
® (c) (In case such i' exists.) Add i' to Li and go

J ; ' )
Y :
. -



N

to the next stage of the construction of L..
‘ R DS .
o (3) If i' " is addgdvto~rLi' at stage <n,¢i(n)> then define |

Yl,m by -

1 if wi,(n) =0 .

w‘i'“) " defn ]

“«| 0  otherwise .
(Notice that if i' is added to L. at stage <n,¢ (n)>
- _then éi,(n) < @i(n) and @i(n).’is defined- hence ¢i.(n)'

is defined and can behciggpted.  A1S°i'ét-m°5t1Onﬁ:elémentd,;f7

is added‘to‘_Li~ at any one ‘Stage.) X
“to—'Li'.at stage ‘<h,¢i(n)> then defi

| >. R - . )
, _ _— vm) = getn 0._. o o
. Clearly, Im(y) € {0,1} hence Vl €N, Im‘((pf(i»)) = {O,Ll}/../lt is easy to
see that Dom(@i) = pom( f(i))' “Thus, if we can show that Vi € E,le'E N,
| (3n € n, ¢j(n.) <‘Pi("))=@j'#wf(i) S .
then we have "by contraposition and the fact that Dom(w;)‘= Dom(wf(i)),

Y

¢

that Vi € N, Vj € N,
- . .=‘ ?} : . '\ > .v
Suppose that '¢j(n) < ¢, (n) for infinitely many n.  Choose

n' 23 3 ¢j(n') < @i(n') (this rquires that @i(n') be defined) and
_<n',©i(n')> is greater than the‘maXimum_df the finite set
T ={<n_,,%.(n,)> ] i' <3, ‘i' -is added to L, at stage <n,,,® (n. ,)>.}
_ S T | , . i DS S T {
Let us look at the value iof wf(i)(n').
CASE 1. j is placed in',Li ‘before stage <n{,¢i(n')>‘ in the
construction of Li. .Then by looking at the way in which Li is

constructed we can see that there must be some k>

<k,¢i(k)> < <n',¢i(n')> and j is piaced in Li"at stage
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<k,¢i(k)>. Hence
. ,.~-\»>" _'§ : - ) - - »,
ey () = v i
o £ 9.(k), g '

" by thé definition of Y(i,k).

CASE 2. j is not\plaéed'in L, _before stages {n‘,@i(h')>. Look at
stage ’<n',¢i(nf)> of the construction of Li. We are to find
theileast i’ =n' 3 @i,(n{) < mi(n')b'and'\i":is'not yet in Li'

+

'Certa;hiy‘fj- is a candidate for sdch i' Lby.thé>choice Qf_»n',
“but is it the'smallest candidaté? Yes, it must be;,sinCEuanym
. . - ) o I R ) ‘ .
~candidate, i'%, smaller than j is in the set I, 4hence-must’.,
have been added to Li\ at stage »<ni;,¢i(ni;)> Whefe n'
chosen so that .<ni,,¢i(ni,)? < <h',¢i(n')>. Hence 3 .iS'aaded :
to Li at,stége‘ <n';¢i(h')>,j&By the definition of £ and ¥,
then
. v_-,_i_— ! X -
wf(i)(n) vii,n')
" #0.(n'). ]
N J .
Thus we have the desired result that Vi é N, ¥y € N, ' A

( ﬁn € N, ¢j(n):< @i(n))= ¢j #»wf(i)-D

2

S

was



- ° . CHAPTER 8 .

THE RECURSION THEOREM -

- A} . . - Y o
§ 8.0 Discussion ’ ' '
® S s

A fIh ﬁhié CK;pter wevlookfat.éné of the'fundahental>results'dfi

recursive function theory, the Recursion Theorem. We'ﬁill'qqt inpestigate

the fir-reaching impact of the Recursion Theorem, but Ole'lgok‘at it in -

«

relation to complexitywthebry.
JIn §;811+we'in;:gzuce and prove the Recursion Theo:emﬁf We

: invesfigate:fhe sélf;referential aspect»of'thé'Récursion Théorém, which- - .
' : S SRR a o : ‘ .

“entails invéstigating precisely how\the,prbbﬁ,wqfks,A'This,inVQStigation
of the proof of‘the REEﬁESiOn Theofém leads us tQ}See’ﬁowkone might expgct“

- to apply‘the‘Recursion'Théorem to obtain various results"in’compiekity
B . B N . . N . " & E, . “.

‘theory. In § 8.2.we flook/at two results pro?éble»by a ‘general fo:ﬁ;of"'

the Recursion Theorem.

. ,/“ T -
)’ L ] .
2{' ‘ o . h )
S
. § A
J.
. %
\ // ke
' \ - k3



- hence g(x) "=='.x_. 

“acceptable'numbering.”(é
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§,8.1';'The SelfﬁRéferential Aspect of the Recursion’ Theorem .

Suppose we‘subdivide

.the-néturél.numbers,iﬁtqidisjoint sets
. J . N : N . L

_accotding to a certain property that' the numbers have. We thinl@of a

function gf on ~§_'as having a fixﬁd'point; ‘x € E,b with.respéct to this

N

. - . i e ' o N ’ "‘. - L B . C. . A
“subdivision or this property if x and g(x)  are in the same mecmber cof.

‘  thé”su?divisioh. “That is, x’ andt_g(fo_are essentially the same in,

T ,Ar:i)a\
[N I I .
v v - S

o

: te{ﬁs of tﬁe;given piopertyr_' T o ’!;;

~ For instance, suppose that the property of valué.of a number is

of interest. Each number is placed in its own unique member of “the

-

. . ,:’ ‘ . . o : ‘ S S . o
subdivision. Thus, for x to be a fixed point of &  with respect to °
value we must have, x ‘and g(x) Jin.the‘samg member of thé(Subdivision,

[y

‘Eet_us,loék”at;a less~trivial exémple.‘ Suppcse-the,groperty

L] ,b.- e
- S . R

“that "interests us is the property of being .ah index to a‘fundag-n in scme

Jier ~

will be in the same member of thg.subdivision. Then x is a fixed point

. - f . - f A\.‘ o 3 o '_,A . ‘ ) Ny
for g with respect to indexing if- x and g(x) are in the same °

subdivision, i.e., if wg(x) = ©.. The recursion theorem states that

every. computable total function has such a fixed point.

. be an acceptakle ﬂ

8.1.1  THEOREM (The Recursion Theorem} Let (éi)iGN

~

.numbering.

V computable total g on N, dx € X 3

.:/ . (Px‘ = (Pg.(x) . | . N o
Proof. . Choose (. universal for (wi)iEN by (1) of DEFINITION 4.2.1

(definition of acceptable numbering). Define Y on N by

u(p(i,i’,n).' ) ’ \

(1 -
%(1,n) ~ defn N

' Those nuirbers which index the same furction &



more closely at the c':‘omfmt'atio'n'of;@*(n)u_in;the:theofcm:ffZ f&h*‘

lwv(v),'.then ccmpute and output @w'

S

Choose'compﬁtable s by (2) of‘DEgiﬁlTION 4.2.1 such that =+

Vi €N, Vn €N, ¢ (n) = Y(i,n). - Then Vi €N, ¥n €N, R

o_ M)z @, -

s (i)

Wi, 1),n)

20

-

it

R :' . ) w@i‘i)‘n) if. wi‘i)‘ is defined‘..-

| undefinea if ¢ (i) is undefined.
Cﬁoose v ) @, =g o.sf fﬁfs\is;possible since»;g ahd~_s _are -

v - Tl

~computable, hence g'©o s is,computabléf*\\&et x = s(V). Then ¥n € N,

a : ) e . ‘ .
' Coeoe e ) e -
T o Tl
' Qév) siﬁfadg;(v) = gfo‘s(v) ) T
A ~ @gqs(v)(n) is defined.
V : ~ ‘Pg (x) (m) .
fence 9 = 0g 0

P
An aspect of the recursion theorem which is much moté interesting. - - -

-

than the fixed4pointvaspect is the selfffefetentialfaspectv(see:Rogeré "

% . R

i81).- In order,;oignveétigéte this self;reférentiaiAaspect,:let,ﬁs leok

I

In order to- compute - ©
; . -Oompute ws(v)

(n) (recall x = s{v)), we compute
. v(v)(n), Since ¢, = g 6 S, 'yg can |
compute (n) by computing: g o s(v), then computing and outputting

®s (v)

wgos(v)(n)" Since x = s(y)v we‘have that @x(n) is computcd'by‘ , o

computing a(x), then computing;and'outputtihg» wgkx)(n)' Hence, the

{(n)..

computatioh of Qx(n) ris_h roundabout computation of @g(x)

. In this author's opinion the 'essence!’ of the self-referential o

. o . @
aspect of the recursion theorem is embodied in the following statcement.

N
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\The device A@‘ :computes _@ (n) by computing another index for itself,
n ‘ N ‘*m
g( )( ) ‘ S -‘«‘fx\'?

" The above may constltute the essence, but it certalnly does npt

g(x), then computlng and outputtlng K

~ constitute’ the substaﬁce or usefulness' 0f the selffreferential aspect of

A
oy

the recufsion theorem. We get at_the 'substahce"by looking'at’possible

choices for the function g . . = | :

Suppose.»g“is a computable‘function defined so that for each ,i;”

“the device mg(i) computes O (n) by investigating various -

g (i) _
computations of ¢, - Now, the dev1ce ¢¥ of the theorem, computesl‘wx(h)
; , o

by computing gi(x), then computlng and outputtlng. og(x)(h). Hence the

compﬁtatioh of - @x(n) will look at various computations of mx. Thus,
_'by appropriate choice of g, we.Caﬁpdefine a device wx which

investigateswvarious computations done byjitSelf.'

\—,—\j\ N ' . L . oo ., 7

This author considgrs the above to be the 'substancel
)

. of the self referentlal aspect of the re\ursioﬂ\theoxem.' Looked at ih the

—

llght of the above dlscuss1on, the pnoot of the follow1h5\*resource waste

-
—

theorem becomes almost t:lylal- The theorem indicates that any function T

can be computed in arbitrarily complex ways. Notice the result holds

everywhere. = i L

»Let; ((w )1€N (¢i)i€§)_ be:a complex;ty measure.

a.1ﬁ2‘ PROPOSITICH.
\\Fet- r,f be any two Computable totef fﬁncbiogésag' E},‘Then,
I €N, Yo =f and
'eVn € N, ®x(h) > r(n).-
. . 2. : : - - :
Proof. Define Y on N = by : : -

g
Yi,n) - undefined if @i(n) < r(n)

f (n)
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Evidently jw ‘is computable: Choose computable total g on N 3

= w(i,n). This is'possible.since-(@i)j' is

€ N, € N, -
Vi Vn &) i€N L

g(i) ™
an acceptable numberlng. Choose x 3’¢x = QQE}* byrthe Recursion Theorcm.

Ten, Ve €N, . - e
@x(n) :.Qg(x)(n) R _ - o ~Tz_» s
. :iw(xfn)
& e L . :
z undefined if ¢ (n) < r(n)
. \X .
Cf(n) ~ otherwise.
Now, if - @x(n) < r(n) then wx(n)« Eé'definéd. Thus, .

it is impossible, for any . n € N, that @*(n) "is undefined apd

¢x(n) <. r(n). Therefare, Vn"é.§j

o (n) = £(n) and 6 (n) = r(n).o
x : S o ‘

. The recursion theorem nroves to be 'more useful in the following

P U

more general form:

‘8.1.3  LEMMA. Let (cpi)i be an acceptable numbering. Let h be'any

. C kil : o '
‘computab}e.total function -on Ei/J§> Then, 3 computable total £

i . : . . 3
k o > ' '
N Y- S
on N, Vijsdg.e.od €N
o = ¢ g

| fgi {Tz,...,l ) . h(i ,12,...,1 f(1 »2,..f,1k))
Proof. Deflne‘j$\\6h>a§ﬁfiq‘by

| Wi e 1n) - u(u i e teril i) m)

» 172y S S k+l Ik !
where u 1is unlversal for '(cp»i)ieE and‘vuk*l‘;is universal for - o

3 - y ‘ C + e
(Ty+i)1€N Ev1denLly w is computuble. »Choose g' on .EF l,< by :
(2) = (l) of THECREM 4.1.6 and DEFINITION 4 2.1 (deflnltlon of acceptable
umbw 5 s R I L kel "

n rJng), such that /B uplver al fo; (wg(lll---.lkyl))(ll.---.!kvl)ENk+}'

o X ) Vi, i .;.,“;' N, -
» F_“) Choose¢ y 3 Vll,lz, lk'l €N )
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k+1 . . - N e . .
T 4 [ r = ’ reeer r r ree g ’ . - S—
T (1l 1oeeeeidy i) h(;l i, ; i g(}1512~ __;k.;)). - o
Define f by o
| f(1 ,12,..a,lk%.?rdefh g(ll,lzl__;;lk,V).:
Then _Vll'L2'. '}k N, ¥Yn ’_§{ | N
e, Mmoo . . . (n)
o f(ll,,..,;k) g(ll(%j,w,.,lkfv) . . : 3
- -l . < ...’. ’\)’ )
z »"'(1,1’12’ i even) - )
C o M. (Vi siaseeayii V) ,0)
- u(uk+l( ,11,;24 iy ) /)
- (N . , (n)
~ V,i; R RN
My ¢ Pl ad iy )
o m
: - S - - ¢ L n
", T ~ K+l 7. .
. T, -(11,...,1k,v) |
-9 . O . e oy y )
’Q; h(ll'---'lk' g(ll,---,lk;\)))
R Y
fb(ll"7'lk' f(ll,t..,lk)) o | -
_ Evidently, f is computable. and tctal.o
- ' ‘v ° N ‘ *
In the next section we look at two resuLts‘whose'probe make use .
of this more general result. L
W -~ ’
4 2%
. o .




.. onas T

-.§ 8.2 Some Uses of the Recursion Theorem

It is'nqt sﬁrprising that many resﬁltsvthat'a;é‘very trivial to
prove using a spe¢ific model of computation become‘quite:aifficuit to prove .

when we abstract to acceptable numberings. In some cases this ‘is because

of the’fact'thatrin‘dealing with acceptable.numberings‘We cannot stipdlate

pfecisely how a computation is to be carried out nor can we look at how the

X - S F

. B2 -
. . ke . N . . - o - N ) =
index of a function is arrived at. ’
As an examey jthe first situation, where we cannot stipulate

how a computation is tc be carried out, recall the Resource-Waste Theorem

of the preyious section: In the case of Turing-machines,'ﬁ% know =" .
- precisely;how Turing machines Qperate,and can see’that it is pbssiblevtp"

design one that wastes r(n)  work tape cells in computing f(n). We simply
compute r«(n), run the work tape head aiong‘ r(n) %apevCells, then’

proceed With.thg_computatidn of £(n). However, there is no

straightforWard7way to‘generalizevthis pfoof‘tO'arbitrary'acceptable

 numberings. Instead, we fély on the recursion theorem to tell us that in

- any acéeptable numbering it is‘p6ssiblé to define‘functiohs_which'

2 s

_investigate their own computations. _
‘ ‘ .

Tﬁe following propcsition i$ a generalization of the Resource
Waste Theorem which ‘shows that fhéfrgﬁult works for partial functions as - .
well as total functions. Furthérmdre, it indicates that_an index for a ' .

wasteful function can be computed from the indices of the:given functions,
thus the wasteful function can be ‘constructed' from the given functions. . —

4

be a complexity measure.

’

8.2.1 PROPOS;TION._ Let ((Q’i)ieﬁ, (?i)ieﬂ)

3 'computablé'tdtal w _ on “E? BVVi,j €N, Dom(mi) = Dom(wj)

= ww(i,j) = wi and -Vn € g,-¢w(i'j)(n)v2 ¢j(n). :
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Proof. Define Y on N4 by

Y(i,j,k,n) undefined if ¢j(n) is undefined

~ defn
undefined if Qk(n) < wj(n) if wj(n)
¢, (n) otherwise _ is defined.
Evidently ¢ 1is computable. Choose computable h on g? Bl
Vi,j,k € N, Vn € N,
(ph(l,j,k) (n) = ‘P(llj Ikln)
by (2) = (1) of THEOREM 4.1.6 and by DEFINITION 4.2.1 (the definition of

an acceptable numbering). Choose w by THEOREM 8.1.2 3> Vi,j € N,
Puti, i) T ®hli, w5
Then, Vi,j € N, Vn €N,

(n)

% i, ™ P, g,wi, )
(*) = ¢ undefined if ¢, (n) is undefined
undefined Qw(i,j)(n) < wj(n) if ¢j(n)
¢i(n) otherwise is defined.
Suppose wj(n) is defined and Qw(i,j)(n) < wj(n). Then Qw(i,j)(n) is
defined, hence ¢ ,. .,(n) 1is defined. But in this case ¢_,. ., (n) is
wi(i,j) wi(i,j)

undefined by (*) above. Therefore, this case is impossible. Thus,

Vi,j € N, Vn € N,

¢w(i,j)(n) = undefined if wj(n) is undefined

wi(n) if wj(n) is defined,

and <Pj(n) defined =(q>w(' (n) is undefined),

i,9) (n) = 5 (n) or

o .. .
wi(i,j)
Hence, VYi,j € N, if Dom(¢i) = Dom(wj) then,

@w(i,j) = wi and

Yn € N, & (n) > ¢.(n).o
L A j

(i,3)
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.

© As an exanple of the problcms tﬁat’can-arisé_because~of the féct
that we do not know how-an .index df)alfuhction is arr{ved at in‘ah IR

E

arbitrary aééeptable:numbering,lwe 1ook at the result that each:QOmputable>

‘. fuhéﬁiob“has-infinitelj ﬁany indiégsﬂ ThiS‘is ea#y tofprdVe usxgg Tﬁring»
 machinésf5e§ause‘we gnow,th§£ addiné»more ihstfuctiéns to a*machine‘giVes .
,it‘a;largér inéex; Thugl?e caﬁ get.sucgeséivély largér_indices_for tge

A’Same machiné by succeséiyeiy adding fusgiessf iﬁstrﬁctions; ‘

for arbitrary écceétéble nﬁmberingsvﬁcvéén éfove:thé feéulf byj’
making use of the-recursibd fheorem; Heie‘wé>use the_rédursion'theoremité»
construct funcfionsiéhat investigate_ their éwn;indicés,

§.2.2 PROPOSITION. Let (g,)

i iég_ be,ah_aéceptéble‘humbéring.‘ ‘3 S

computable total s on N, Vi € N,

_ . sii) >71 ;and _wé(i) RS .
Proof.  Define V{i,j,k,n) on .N4 'by'- ' s

w(l':'kfn):;.défn'
" Choose computable h on. E} 3 Vi,j,k G'EJ Yn € N
| ('ph(l,],k)(n) o~ w(lljlkln)'
‘Cﬁoosé~computable w on‘fE? 3 Vi}j'é E,
Then Vi,j € gj.ané'Ef - ‘
q>_w(;l'.j‘5_(n) = wi(n) w(i,j) > i

| 5 w(i,j) < i.
Now, we wish to show that

Vi €N, 35 € N w(i,j) > i.

Suppose not. Choose 1i'3
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’ . Vi €N, wi(i,j) <i.
= . . A - - . : .
Thén there is jl,j2 € N
*) | | | 3y * 33
~and , \' » wii,j)) f'w(1,32)_
~ ' E ) . S 1. *
This ¥n € N, Puti s ™ T
and since w(i,ji) :-w(i,jzl. ve hévei )
R S e
) wxl{jl) . w(l,gz). .
Hence, ) o ~ ",jl:? j2;

This contradicts (*), thus Vi € N, 3j € N, > w(i,j). > i. Define s on.
N by

. [ i,'\ > .’-.'.
def_n‘w‘(l,LJIW( ‘J, | i1).

IR |
Evidently, s is computable and

s(i)y > i.

Furthermore, Vi € N, 34 €N 3

it

s{i) w(i,j) > 1

and  Yn € N,

ey M T e,y )
since 'w(%ai) > i. Thus, Vi €N, ws(i) = wi and . S‘l)‘> i.g

'Rep?ated applications of the above PROPOSI}ION.give us the result’

that'every computable function has infinitely many indiées in any
\\ : ) . .
acceptable numbering.
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CHAPTER 9 Tl e

' LURTHER TOPICS -

§ 9.0  Discussion
-~ - _ .Y ‘
A techniqué of pfoof that may gaiﬂ‘incréasihg‘pbpularity in
comelexity theory is the use of measure invariance (see § 5.2).. If a
., . ) ) ) 3 . -

property can be- shown to ‘be meéSure invariant‘andhit'Can be demonstrated

that at least cne specific méasure'haS»this’propefty, then we can concludef

that allvcohpléxity measures haQe.thigbproperty. ~ In §°9.1 we.160k‘qt the,
Speed Up Theofem as an examéle‘of this tegﬁniqﬁe;

| In §.5.l’it was mentioned thatvthe]sﬁﬁdy éf cqmple*ity»classes.

- has become one of'the main topicﬁ bf‘sﬁddy ip cdmplexity theory. 1Thiévis>:
dﬁe in paft to the facf that moSt.ofithe‘basic complexity theéfy ;eéults
can be %tatea in terms of complexity classes. in § 9.é We.will look at

the Compression-Theorem and the Cavaheorcm in this light.

I3

. Fhe proof of this Gap Theorem resulted in a flurfy of activity = -

in an attempt to find a béttcr,method of naming the complexity classes.

_From this activity came the Naming Theorem. This theorem was proven ﬁéing'
a technique which is called a priority’argﬁment. It is felt that a Study

of priority argumcnfg\fg beyond the scope of this paper. However, in

" § 9.3 we will take a brief look at the proéf of the Naming Theorem.

-

P

e
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§ 9ll.>;Measure Ih?ériaﬁcé
':If-é b;operty'ééﬁ-be'ﬁﬁown to be‘méasure inva£iaht analif itacén 
:'ﬁn demonstratéd,thét sore particuidr complexity-measure has.thét prépef£y,
then'we éan'cohélﬁde'thatvali Eoiplexit?bmeasureévhévé £hat propérty;,

LEMMA,5.2}9 proves'to:be'quite useful in showing that certain properties-.

are measure -invariant.. This «gap be nicely exemplified by a proof of the ¢5
g oo : . ‘ ey

vSpeed'Up Theorem,giveh'by‘ﬂartmanié and Hopcroft in [41;  : N o - i
| | The Speéd Ué Theorem waé briginally stated andip;oveq by Blum
(gee [2)) in a ét?éiéhtfofWara but’difficult_manner.us;ng some‘fe;hpiqués
‘ siﬁilar to thosé used in the proof’of THEOREM 7.2.4. »Ih'[4]}1Hé;£maﬁis
and Hopcroft demonstrated that Spccd ﬁp-is measure invariaht and alsc gave . -
an;example‘of.é particularkmeésure in which Speed Up was éhdwn to hold. -
This.fwo—stage proof’is reiativelY:gaSy'to fbllow. 
Essentially, the'Speéd Ué'Tzeorém iﬁéiéétes that in evef§‘
 complexi;y measure there are functions.so complex thatvfor each“methbd éflgﬂ
"computigg éuch a functiéﬁ, ;here‘is alwayé a‘ﬁo;e»effiCient method. 
However, the cdmputation 1s mcré efficient,only on almost every argument,
and EUr“ermore, the faster we "épeggjyﬁh the computation by succéssiye
applications ot the theorem, the gréatér.thc‘nUmber of eXceptiqgs.
‘In the folioQiAghprooﬁbof theiépéed_Up Thooreﬁrke de@dp;trate
6n1y.that»Speed.Up'is measure ihvatiant;'-fhe rééder éah fefc; to.tﬁe Qork

by Hartmanis and Hopcroft in [4] in order to see how to.construct a

spﬁcifﬁg measure for which the Speed Up Thecorem can be easily shown. to hold.

9.1.1 THEQRE!. Let- ((w,). , (©.). ) be a complexity measure and r
L ———— 1 1€§. 11 1€§- :

. . o2 . ’
be any computable total function on N . There is a computable total

function g on N 3 Im(qg) < {0,1} and Vi € N, : -

wh
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"" N - .‘.
9, =9=3 €N o =g and o TN, r(no () =0 .

@),

Proof. -We oﬁlyrshow that xf»a comp}ex1ty—measure ((w'lléN' '_1 1€N

_satisfies the THEOREM then so does any ‘other complex1ty measure

( (_cpi) sar @) o'

By LEhhA 5.2. 9 choose computable total £, f . on N and h,ﬁ* on

N 3 Vi €N,

®ey TP B AT
PEy Fo.
C(xxy . ' €N Rtam) > htnom. o m S m
“( f) | ;§le,m2 € N, Yn-€ N, hfa,ml? > h(n,mz) m, T»mz_
A* o : ™ . ~, A )
G e 0 ) RS tn)
and gn € N, b4 (n) < ﬁ(n,¢.(h)5.
- = £(1) SRR
Given computable total r on g? define r' -on ,g? by
. - - >_B #F V S
r'(n,m) = h(n,max{r(n,m*') | m* = h(n,m}.

.defn

. ) satisfies the THEOREM, choose
1.1€§_ . o ; ‘ »

Since ((ai)iEN' (6.)
’ compﬁtable totél" g oa. N 3 Im(g) {0,1} and ¥i € N,
(¥**) g?-vﬁ-g = 35 : . =9 ’Pnd Vn € N, r' (n ¢ (n))< ¢ (n).

v

€N be glven 3 @i = g. We w111;attempt.to flnd; j €N

i

wj g and ¥n ¢ §,_r(n,¢j(a))'5 ¢ig?)'\/?

thus proving the desired result.

From the definition of r' and the fact: that

PEy T %

we have, by (***), some j' € N 3 £j' =g ‘and

%€ N, h(n,max{r(n,m) | LR R CIRE b, 5y )+

By‘(*) and the fact that _wi is total, we have that

Yn € N, ¢E(i)(n) Srh(n,¢i(n)).




fhus, » ‘ . ‘ ‘
¥n ¢ E;ﬁ(n,maQ{r(n,m'j | m' = h(nb¢r (n))}) = h(n ¢ (n))
'Hen¢é,_§y (**);‘wé»ha9é3»- 7 o |
o | ané E, max{r(ﬁ,mf)...m' $Ah(n;6j,§%)}) < @i(ﬁf;

Now, by (*), we have

K o “\’-?n €N, 0 (, ,)(n) ‘h(n,?j,\fﬁ).),ﬂ
‘th‘,’;s". o ‘ .
o vne&, rl(n¢> £ (5 ,)(r;)) Enax{r(n ml) |~ m' <h(n<1 (n))}
.Thé;e}ore, lettlng j = f(] ), we have.
| = r(n, ¢ (n)) )

an €N, r(n,‘ (n)) £(3 0 »
= max{r(n,m ) I m' < h(ﬁ/5j.(n))}
o =6 (n).
S |
Also,

i
=

il
Q
]

122
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§ 9.2- éomolexiﬁy Clé§S§s‘
In 575.1.Qé indicated that ohe of the main fiélds Qf,s£§d§ ;ﬁWW>”W
compléxityitgcpry islthe§stgdy of-p:aperties-of eomp{éxity'claéses. (For
'e#amplé,'see [6] ana:[7j;} -One?regsbh”fof this.is#beéaﬁée many«éf.tﬁé
fqndamentai resdltéldf ¢ompleXi£§theOry’c§h’be.sgéﬁed.véry'cpn¢isely in
.téfmshoﬁycompléxity_¢l$s$és.v. ‘ |

For example;'THEOREH 7.2.4 can be reformulated (with é siiéht; RN

o o SR o o . S .
modlflcathn.to the proof) as. (*) _y complex1ty‘measure 7 ((w )leN (¢i)i€Nl:_
. [ [ R
3 computable total f on N, Vi €N, Dom(¢ ) = Dom(gf( )) énd*
if ¢, is total then
Oy £C o
(i) ®. \

Thus no complexity class contaiﬁs all of the computable total functions.. .
This result can be carried slightly further to giveba mnore striking_rQSult_'g '

often called the Compression Theorem (Blum [2}).

- . 7 - - T

9.2.1 . THEORE:M. Let ((¢.),,, (). . ) bea complexityvmeasure.'(éﬁgQ
S E——— CiTi€N SiTi€N SR Rt

_—

- : L 2 . . o
There is computable total funclion "h on N 3 Vi € N, if ¢, is

total then , )
. - c
(; v ¢l ; C)\n[h(n ¢ (n))]
Proof. Choose f as in (*)'above.’ By PROPOSITIONS 4. 2 3 and 4.3.5,
choose computable totél s on N3 Vi G'E,
°s(1) = %

. SN | 3
Define computable total ‘p omn N by

p(i,n,m) =  : max{¢.(n),¢

defn » i f(S(i))(n)}. if @i(n)‘z

0 otherwisc.

Define computabl¢ total h on E? by




gaps in complexities through which no new £
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max{é(j,n,m)‘lfj's-n}.

thn:m)»; defn

- Thcn,”WVi € N,VVn'Z i} k
AR ""'_ - S ‘, o J
R B T |

‘ hénc?, 3 . ‘ - »
o Pe(stiy € an_[-h(n,~:ei(h))1.' L

’ A1$9} Vi €N, Ynzi, - R A
e Ryl 20,
’ s - B B ‘,,v ~ 1 ~ E SRR e

 hence o ) S e e T

0 S s S mme
HoWeGe;, if wi is total, theh a

£C = Cé .

f(s(l)) ‘v?s(i) ol

Thus
’ o C¢, ; Clnfh(ﬁ,Q.(n))];D
» 1 » .

“The Compression Thcorem is oftén'c¢ntrasted with the Gap Theorem

(Borodin [3]). This result indicates that there}are”arbitrarily_iargefif

ions are\computed.

2. THEOREM. | Y )., complexity-measure.
9.2.2 EOQREM ‘Lét ((wi)iGEf (¢i).€§) be a complexity gasure
V .computable total g on E? > Vn,m € N, g(n,m) = m, Y computable

total r on N, 3 complutable total increasing; t on N > Vn €N,

'f(n) > r(n) and , (
T Ct - Cln(g(n,t(nf)]'

Proc.. - Given g and r .define 't. inductively by the fQIIOWihg

st
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“Qn'inbutl n. .
(1) If n=0 then;output- r(O); and hat. . .~ -

"-(214 Compute t(n - 1). .

- e

| (3) set k to. max.{',t(n’efi);r(n)};."

7(45 ,If' forreach;:i,ﬁAn, either ' _ ,{i:f' o
T oL R L s VAN ¢ R
Q (n) < k »
or 0, <n) z g(n u B e

';then output k and halt.A
B (5) Set k_- to, k + 1, ‘, A N
'Ev1dent1), ftuﬂis éomvou_ta’bieyz.~ :t. is totallsiﬁée if ‘¢i(n) ;is gnéefihedb

then 9. (n) £ gln,k) and if "’i,»(.r")“ ‘is defined then o (m) gk for

.eveny, k 2 @i(n)kvrt"is increasing and ‘Yn € N, t(n) > r(n}, by (3); (

‘we now prove t is the reguired. function by proving that Vi €N,

Vn ¢ g @li.(n') < t(n) = 9n €N, ¢; (n) < g(ﬁ»,‘t.(ﬁ)"'):';:.&
Let viﬁé N be givén.  We have = (=) -SincéA Vnwﬁng
s “gi(n, t(;)) 2 t(n).
Sunpose ?n € N ¢ (n) = q(n t(n)). | For any. n_zﬁivB ¢i(n5T$.g(h,£(n))‘
,wé have ¢i(n) < t(n), by (4)‘1n-the,procédure forFQOﬁputing ﬁ;;?hus,.
¥n ¢, .(n) = t(n).o |
" The Compression:Théorem indicateé’fhat if a complexify‘clasé is

- . - =

named by a total resburce‘counting function then we have a-methqd of naming
a strictlyrlarger complexity class. However, the Gap Theorem indicates
that this method will not work for cvery computable total function'uSCd to

name a complexity class.
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i e .

§:9.3 Conclusion S [ o . .

N

I

: " In light ofrthe Gap;Theorem,'much work was §One,in~an atfémpiAtd" o

rename-tﬁg'COmplcxity classes of a coﬁpiekity méésq;e with a Smal1§r set

of funét%oné:than;thé~set’of ali compﬁtabie functions; so that:varioﬁg éay
jphénomenarwohld noﬁ'appear} In [3ji:§orodin>sh§w§ tha£ tﬁié is to éome;

extenﬁ,;imppésible.  Howeﬁer; oﬁe fe$u1t(Qf these attempts’is‘thc Namiﬁg

Theoren. _ s _
. - . = e ) : ] . b

- The Naming Theorem stétes that for gvgfy ¢¢§plexiFy,m§a§ureF
‘there“is a measufed,sequehce_whi;ﬁnnamés all of the éomplgxityAclasse§;7” 
iThe resuitkis ﬁﬁéfﬁolncéreight>and Meyer [7i’éndvis érdVén ﬁ;iﬁg’a |
tgéhqique célled.a priotitf érgﬁment.

Tﬁgvauthor feels'thét a diSCUSSiOthfbpriQrity afguments isr
| be?ond the scopé of this paper. Suffice itlﬁélsay tﬁaf'these:tgpes of‘
1arguments can soﬁqﬁimes;bé?uscd in‘definihg functions which must éatisfy.a
set of near_conf;icting conditions. (See Rdgers [él_for a more detéiled‘_.,fu*
discussioﬁhéf,priority arquments.)

In EcCreight and'Meyer'§ p;bof‘éf.the Naming‘TQeéreﬁ éﬁp:iority
Argument is used to define a comp;tabie total function g “on 5‘9_ |
‘9°m(wi)_= p?m(@g(i)) “and | |
(1) Given  i;j>€ N, we have‘for‘each n € ﬁf) ¢, (n) < éj(h)'i some

‘associated mn € N3

L3

~(a) (pg (i) (mn.) < wj (mn.)- |
¥ a : v,
and )y Amy =, A,
Fur thermorce ic) ¢ ,..m) <¢.m >m=m for some n 3
‘ rg (1) 3 . n ) »

?i(n)‘< ®j(ﬁ).

—— A _ N o
(2).fEaeh__Q_E.] has value large enough (relative to its complexity) so

st




Ll

that ..} i € N} is, honest. . . . l .
These two conditions‘COnflict to the extent that-(l)'asks,that
N 'X . . . . . . Lo .

certaln values of ¢ ( 5 bevsmall.whereas (2) asks‘ that-values of @ :

- . g(i)

“be large. The 1ntentlon of condltlon (l) is to glve us’ that Vl,j ( N,
?n € N, @ (n) < @ (n) © gn 6 N, @ gli )(n) < ¢ (n)

Hence, by contrap051tlon, and the fact-that Dom(w ) = Dom(@ ), 'we

» g()
have Vl,] € N Vn E N ¢ (n) S'wg( )(n) o Vn €N, ¢ (n). < w (n), or'
"vleNc =‘c
i Pg (i)

-
o

The intention of condltlon (2) is to glve us that ' ;‘,\
T . ¥ )

{Qg(i) | i€ ﬂ} -is contained in somé meaeured_sequenee, by p30§QSITION
7.2.2‘;7 . | |
The impact of tne Naming Theorem becomes clear when we notice
that, in the Comp;eselen_lhedrem,”we can'replace the teSohtee'countlngl

functions, (@i).

N by'any other measured sequence:.. Hence, the resource
i : ) ‘ =

counting functions'can be replacediby'tﬁe meesured seqﬁence.given in the
iNaming Theoren. . | |
Cunrently mucn of the work done in conplexity theefy isva'
.inveetigation of the reeutsive properties‘et compexity claeees; Tnere ls
some Qork‘being dene in relatinchomplexlty theory to conceptslsuch as .
" simulation. and parallelismv(see.[4)). |
It is hoped tnat thls paper has provided a etronq baeis of -

knowledge in complexity theorv from which the reader may easily begin to

Fana

( study these more advanced topics:'

S T
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