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ABSTRACT

’ A theoretical model is presented to account for the physical
mechanism of energy transfer from antenna molecules‘to,tﬁe reaction
centers in photosynthesis. The energy transfer is described by a o

generalized transport equation or "master equation'. The solution:

of this equation for the proposed model gives a relationship}between_>'

the antennae interaction energy and the transfer rate. The results

are shown to be in agreement with inter-antenna transfer rates
: P ‘ . ,

calculated from experimental fluorescence lifetimes. Previous theories

Y

,werenbased either on the Fdrster mechanism, which is valid for very
small interaction energies, or an exciton model valid for.vefy 1éfge'
intéfactioﬁs, but experimental results seemed to indicate thaf tﬂe
astual situation was interﬁediate between these two% The Forster
theory and the exéiton model aré shown to be limiting cases of'the

master equation. We show that the solution of the master equation

provides a useful formulation for the calculation of energy transfer

.

rates over a wide range of interaction strengths.

~iii-
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K | S
-I. INTRODUCTION TO PHOFOSYNTHESIS . ‘ L

3

In photosyhthesis light is coilected“by an array.of "antenna
molecules",’usually some form ofdchlorophyll; and then trahsferred to
one of two heaction centers. There are ‘about 300 anten;; chlorophyll
for each reaction center in plants . This energy transfer process takes,
place in the order of a nanosecond. At the moipcular level a nanosecond'

is a significant period of time when one considers that about

10,000 molecular vibrations take place in this interval. @ = -

The‘set of antennae co;ocicteé with eaeh active réaction
 center is calledra photosynthetic unit (PSU).
After the energy is trapped by one kind of reaction center : !N\
(center II), the resulting excited state/of the trap is used to
oxidize water and the electron is transported to another reaction
center (center I) where it is used to reduce NADP* (oxydated
nicotin- amide-adenine dinucleotide phosphate) to NADPH,
after absorption of a further photon. NADPH in _
conjunction with ATP io then utilized in the reduction of carbon P
dioxide to carbohydrate ThlS last step, called the Calvin cycle,

takes place in the absence of llght on a much longer time scale

»
Bacteria have only one reaction center with about 50 antenna

bacteriochlorophyll per center.

&



About 97% of the light quénta are transferred,to‘a reactiénh
center. Most of the remaining . 3% which is not utilized ¢

photochemically is given off as fluorescenée v o g {
a S .

Fig. 1 illustrates the major timé divisione in phOtOanthesie-

Two major d1v151ons are 1ndicated the so-called "light and dark ' ot

reactions n The former includes the trapping of.energy by the reaction
r and the production of oxidizing- redn01ng agents. |
The latter is involved with the production of carbohpdratej(balvin cycle)l
and free oxygen, the end results of photosynthesis. | )
-Fig. 3 outlines the main steps in the'iight reaotion of : gg

q

photosynthesis.

In eucaryotic cells the photosynthetic apparatus is localized in
cellular bodies called chloroplasts.~ These are ellipsoidal in shepe,
3 to 10 microne,in length and 1 1/2 micréée thick. Chioroplasts are
surrounded by a continuous outer membrane. 1Inside is a system of |
flattened vesicles called thyiakoidhdisks,*which are usually errangea
in stacks called érana. This is illustrated in Fig. 2. 'The light
reaction takes placehin the thylakoid membranes, while the dark

reaction takes place in the surrounding cytoplasm inside the

chloroplast.

Evidence that there are two kinds of reaction centers or photo-
systems comes from studies of the quantum efficiency of photosynthesis
in plant cells as a function of the wavelength of incident light,

measured by O2 evolution. Although the efficiency is uniform over
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Fige 2 The anatomy of a cyfhloropla’st
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Fig. 3 Simplified flow chart of the "light reaction irr photdsynthesis.

stron 3 o
reductant

< NADPT
Ao
[ . e )
A ¥ reac,tLOVL
\
N
.\\Q("
&
.\do
&,
N X
\%,

hy L

(( éS’Onm) -~ Og
Stron

* oxiclq,n.t :

. HO .




—6-
) most gf the.spectfum, it drops significantly in the red at wavelengths
of 680 nm and above. ., It was_shown by Emerson ahound 1957 that if the
far-red light is supplemented wiﬁh light of a shorter wavelength; i.e.
'650 nm light, the quanzum efficiency of oxygén production is sub-
stantially higher than the average of the sum of ‘the production from
the separate beiEs. The enhancemént of the efficiency of ;he far-re?
light by simuitgneous illumination with shorter wavelength light isﬂ
known as the Emerson effect. These findings suggested that two
different light reactions are'lnvolved, Four photons gbsorbed by
photosystem II result in the spllttlng of two water moleeules into
four hydrogen ions and one oxygen molecule. .Photosystem I also tragf
four photons in the production of the two NADPH molecules from the
elégt?qhs'produced by the water splitting. Thus eight photons are
-involved in photosynthesis leadihg to the evolution of one oxygen‘

molecule. .

In 1932, Emerson and Arnold, using short pulses of incident lighﬁ
found a poin; was reached where the amouﬁt of oxygen evolved did
not increase with further increases ih flash intensity. They’determined
that at the satdratiop point one oxygen molecule was given off per
2400 chlorophyll molecules. In;erpreting this in terms of the
two'photpsystems means 600 chlorophylls are divided amongst the two
photosystems. The pulse width of the’flashes must be-short enough for
each reactibn center to be only utilized once (< 1072 éeéond). The
pulse repitition rate mu;t also be small enough to allow the dark_‘
enzymatic reaction to_be completed and the photosynthetic appabatus to

/

recover which is about one pulse per second.
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The béactioﬁ centers’are not yif‘fully undérstood. They are
designated in green plants as P700 éo; the reaction center of photo¥
*system I, énd P680 for reacg}on center II, because of light induced

changes in the "in vivo" absorption spectrum observed at these wave-

YTengths. They are thohght to be chlorophyll-protein complexes.

£
i

Detailed discussions of the two reaction centers, photosynthetic
units, and the chemistry of photosynthesis can be found in'the books
by: Rabinowitch and Govindjeé (1969), Clayton (1965, 1972, 1971) and

the articles: (Levine, 1969), (Govindjee, 1974).

Excellent electron micrographs and more details of the anatomical
structure of,chloroplasts (the cellular bodies which house the‘PSU7s)

~can be found in the book by 0.V.S. Heath (1969).

This thesis will concern itself with the transfer of energy from

the antenna chlorophyll to the trap.

g
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II. A MODEL_OF THE PHOTOSYNTHETIC UNIT -

i

i) membrane structure and pigments

,‘ 1 “ “\

“

The model of the PSU that we wifi be using is illustrated in Fig.
S -

Py

4. It consists of an array of chld}ophyll molecules embedded in a .
fluid lipid bilayer membrane. We will alsgﬂgssume that the lipids and
the globular proteins in Epe membrane have little influence onfenergy

transfer between chlorophiil molecules other than by acting as a

medium of uniform index of refraction, and providing a thermal bath

(Katz, 1973).

We will consider the anténna chlorophyll as being of one type,
chlorophyll-a (chl-a). thér pigmehts such as chlorophyll-b, caroten-
_oids, and"phycobilns are also present in green plénts<and algae.
Iheséipigments absorb light at shorter wavelengths
'aﬁd“péss the energy almost irﬁeversibly to the chl-a antennae.

_In this wéy‘they serve to extend the absorption spectrum of the plant

‘over most of the visible region. The antenna chl-a can then be
excited either by direct absorption or byvenergy transfer from thgse
'Vother pigments. It has also been shown that fluoreécence from photo=
system II i8 independent of the exciting wavelength in the emission
séectrum suggesting that thé fluorescence’"isrdue'to a single speciés
of chl-a molecules...." (Miller et al. 1969; Goedheer, 1972). We
Will discuss PSU fluorescence in secpibn vi. In bacteria,

bacteriochlorophll does the qpalogous work of chl-a.



Fig. 4

- . \porphyrin head
lipid molecule ' ~ -

chlorophyll . phytol chain

Lipid bilayer model. The lipid molecules form bilayer 408

thJ.ck The coiled up spherical proteins (608 diameter) are

immersed about 208 into the lipid. The chlorophyll molecules
with their porphyrin head make an angle of 48°to the membrane
surface and their ohytol chains are perpendicular to the

surface. T T

P
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5
. . o *

w

The lipid-protein membrane is essentially transparent at optical

wavelengths and will be assigned ;n average real index of refraction

v

of n = 1.45 (Bay and4Peérlstein, 1963; Pearlstein, 1964), the

refractive index of lipid-=like materials.

" ii) the chl-a molecule

The chl-a molecule is shown in Fig. 5. The porphyrin;héad is a
,chromophore resbonsible for light absorption in the visible. The iong
hydrocarbon,phytol chain is transparent at optical wavelengths. The >\
porﬁhyrin head is free to move at the pqint designated by the dotted (:>
iine just below the C = 0 bond. Chl-a has two main'absofption‘bands,
in the red and blue regions. The transitiod dipole moments for these

bénds are oriented perpendicular to each other in the porphyrin plane

‘along the‘ggfted lines in Fig. 5. We will return to a more de

discussion of the absorption spectrum in Sectioﬁrv. We are

-~

primarily interested in structural details at this point.
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.

porphyrin
head

Fig. 5 Structure of chl-a. The molecule is believed to be anchored by

the group 'V (cyclopentanone ring)*to the water-lipid interface;

the red transition moment points fram ring I to III, along the

y-axis, and makes an angle of 359 with the membrane surface.

I
A}
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iii) orientation of chl-a ‘in the membrane ) .

The spectrum of chl-a "in vivo" is more' complex than that of’
chl-a in dilute solution. Instead of one main band at about 660 nm

o

in solution, a band with components at 673, 683, and 695nm is

observed in vivo (Clayton, 1965; Kreutz, 1970). We will return
~

to the discussion of the "in vivo" spectrum in chapter VI.

N

What is important for Ehr consideration of chl-a orientation is that
the dichroism of the-"in vivo" spectrum is very weak except for the

693 component, i.e. the dichroic ratio is approximately one.

Dichroic ratio D, is defined as the ratio of the absorbance for,’
vertically\bolariéed light to that for hdrizontally polarized light.

‘

The .measurement of dichroism is one of the main ‘techniques for deter-
mining‘molecular orientation,
v
‘) . * -
A dichroic ratio of one "in vivo" would imply random orientation
of the porphyrin rings in the membrane. However, Kreutz(1970) hgs

argued that théfonly way to obtain this value and still have the chl-a

ancgg}ed by the phytol chain }n the membrane is to have the red aqd

blue transitiQE;ESTi:ts at an angle of 35.3° with the membrane
plane, but free to rotate azimuthally. - Then with the red and blue
transitions at right angles to each other, the plane of the porphyrin,

head is inclined a? an angle of 54 ,7° to the membrane plane (Kreutz,

1970). Direct measurements of'chl-a orientation in artificial

e .
— Nl

Y
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membranes have also been made. Using lipid bilayers, Steinemann et
al. (1972) measured the red transitioﬁZmoment as being oriented at
35° + 2° to the membrane plane and the blue transition moment at

26% + 3° to the membrarfe plane (these are averaged values for

three differentvlipids). They determined the inclination of the
porphyrin plane as being 46 + 5% to the membrane surface. About the
same time, Chérry et al. (1971) did similar measurements with lipid
bilayersrand determined that the red and blue ﬁransition méments of
chl-a make angles of 36.5° and 26°‘respectively, to the membrape
surface. Using the assumption that trénsitionﬁmoments are
perpendicular, they deduced that the plane of the ring is inclinéd at
_380 to the membraﬁe surface. Hoff (1974) using lecithin multilayers
measuréd the orientdtion of the red traﬁsition moment as 34.3 ¢>1.1°
\\to the membrane apd(the inclination of the porphyrin Qlane as 55.4.3 10
" with the membrane plane We Qi{; use an average\value'of 35'1 20

for the angle of the red tranSZtion moment with thelmehbrane plane.

The ineclination of the porphyrin plane will not enter into our

calculations.

Steinemann in his paper élso argues that the'porphyrin head ié in
the hydrocarbon‘region'of the membrane rather than in 4+he polar

region. 1i.e. Fig. A rather than Fig. B.
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vThis'information qannot be deduced from dichroism measurements.
‘The argument is‘baséd on the fact-ﬁhat‘the lariger part

of ﬁhe porphyrin ring is hydrophobic except for the -COOCH3 and

é = 0 groups of the cyclopentanone ring (Fig. 5) thch should'make

contact with the water-lipid interface.

iv) mgan-spacingfof the chl-a antennae

Wolken and Schwertz (1953) USigg electron microscopy méasured}an
‘available area of 222 and 246 g% per chlorophyll molecule in the
chloroplasts of "Euglené Gracilis" and‘"Ppteﬁiochronmonas stipitata."”
K;eutz (1970) using X-ray diffraction measured an area of
’2.8x104ﬂ2'for 128 chlorophyll molecules giving an average of
é15 . & per chlorophyll. Thomas et al. (Thomas, Minnaert and Elbers,
1965) using electron microchpy measured a range of 90 to 360 g2
-per chlorophyli for. grana-bearing chloroplasts. The}r average is 240 g2
per chlorophyll.‘ For our model we choose a range of 200 to 250ﬂ2
cofresponding to a méanjspacing of 15 + 1 & petween

A

chlorophyll molecules (Colbow, 1973).
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v) Number of Antenna Molecules ' ) N -

The next thing we need §o know in our model is‘the number of
‘antenna chlorophyll assocfgizz with a trap. In Section I we discussed
the Emerson and Arnold experiment which showéd that 2400 chlotopHyll
molecgles were involved in the evolﬁtionlof one oxygen molecule.

Eight pho£ons were needed in this process, aécording to the t&g
photosyséem>concept. This gives us a value of about 300 chl-a per -
reaction center, assuming an even division between photosystem I ana
II1. However, in the literature one sometimes finds lower values being
used Qithout justificatisn, Such as 100 (Borisov and I°'lna,1973).
Schmid and Gaffron have recently-repeated the Eﬁérsoh and Arnold
experiment measuring.the amount of 01402 fixéd per satuﬁating W\F
flasn chmid and Gaf;ron, 1968: 1969, 1971). They vindicated the
value of 2400 for normal, healthy plants,fbuivshowed that the size of
the PSU couid Qgry in diéérete steps of 300 chlorophyll arpund the
value of 2400. This may Be due té inactive reaction centers.

In chlorophyll defieient mutants,_units as small as 1/8 of

this value were found. 1In chldrophyll—rich adult plants and algae
most of ihe unit. sizes were between 2000 and 2700. Tﬁerefore
considering the variability of unit size and the uncertainty in
partitioning of the anténna chlorophylls betweeﬁ the tquphoto-

systems, we have chosen to consider a range of 250 to -350 antenna

ichl-a per reaction center in our model calculations.
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'vi) the trap or reaction center

- NS

B

Excitation in’ the PSU can either be trapped by a reaction center
or lost as fluorescence. Interconve}gion‘processes such as singlet to
triplet transitions ieading to npn—fadiative de-exc}tation inlthe antenna
chloropﬁ&ll are considered to be negligible . The quantum efficienix,aﬂd'
 lifetime of fluorescence following a pulse of absorbed light aré £he
main experimental measurements in the investigation of energy transfer
in the PSU

>

Changes in fluorescence, induced by affecting the operation 6f

the réaction ceﬁters and the electron carrier chaiﬁ, using:bressu y
chemicals, changes in oxygen concentration, light pulses, etc., are

" used to study the light reaction of»photosynphesis. They are often ma
under a steady-state light-bias,iwhich determines a base fluorescence
level, before any of fhe,induced changes. The fluorescence lifetime
meaéurements that we refer to are made by‘observing the decay of
fluoréscence after an initial short pulse of light. Fluorescence
induétion measuremeéts are made over periods in thé order df seconds,
while fluorescence lifetime measurements are of the ordern. of
nanoseconds.‘ |

The trap is essentially a potential well, and in this model is

‘considered as irreversible, i.e. energy once trapped does not return
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to the antenna chlorophyll. This is bo}ne out "in vivo" by. the féct that
the trap absorbs ligh£ directly at a ionger wavelengtg (lower energy)
than the antenna chl-a, 680 nm for PSII (Katz, 1973). Hoch and

Knox (1968) estimate a value of 10=% for the ratio of out to in Jump

probabilities. e

The trap Etself is believed to'be a speci;lizgd form of Chl-a,
designated here as "P" (following Clayton, 19725, aggregated wi}h a
protein. In reaction center II, "P" is associated with an C
unidentified substance Z acting as an elegtrbn donor and an electron
acceptor Q, possibly a quinone. The "P" of reaction center I isn
~probably associated with plastocyanin and an electron acceptor‘which
is possibly a pteridine-protein complek (Ckaytdn, 1971; quiﬁdjee,
1974). 1In the following? we will outline a possible trapping
mechanism. The electfon acceptor associated with the chlorophyll, P,
will be desigrated as "A",

~

P could receive an excitation quantum from the antenna pigments

»

and then donate an electron to A:

e

PA— PIA— P A

where P* denotes P in the singlet excited state. The restoration of

the state "P,A" must be completed before the reaction center can
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.perform its functiQn“égaiQ. rWe say’that the trap is "open" in the
) . - ] ?
state P,A but closed in any of the states P* A; P,A”; or
S PYoAT. ‘ '

When all the traps are open the fluoéescencé from the antenna
pigments is at a minimum as the traps compete with fluoréécence fbr
the excitation and thus quench thé fluorescence. With the trap closed
the fluorescence would be maximum. This hypothesis has been borne out -
by experiment. | |

With the traps "open" the‘decay time of fluorescence (as measured
‘:by pulse fluorimetr&) would bg the-same'as the tiie needed for the
excitation to reach the tr;b. This condition is obtained
experimentally by using low light levels {(no saturation). Thus wé

make the identification between the unsaturated—fluorescence lifetime

measured experimentallyZ’F and the trapping timefT. i.e. tF = TT

Miller ét al} (1969) have shown that the fluorescence lifetime
reaches llmltlng values for both high and low light intensities. ﬁh
reproduce here one of their curves demonsgratlng this for "Chlorella"
Fig. 6. The saturation value is 1.92 nsec. while the lifetime
approaches a value of about 0.35 nsec. for low'light intensity.

"These findings aré consistent with thevassumed mechanism in which

energy absorbed by chl-a is transferred to the trapping centers by a
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singlet state resonance mechénism; After recoiving a quantum the
traps are. unable to accept energy until they have‘completed the
A

photochemical process. 1In the limit of very low llght intensity the
traps are unoccupied on the average, S0 the excitation gquanta are
trapped very rapidly resultlng in a short fluorescence lifetime. At
high light intensity, or under condition of chemically poisoned traps,.ﬂ
the traps are occupied or not functional, so that excitation resides |
in the bulk chlorophyll for longer periods of time, resulting in
increased fluorescence lifetime. Thus the open-trap situation

corresponds to the fluorescence lifetime measurements at very low

light intensities. ,

Thebfive-fold increase of fluorescence with,}ight intensity is
strong evidence that 4 considerable part of ﬁhelenergy is delivered to
the traps via singlet excitod states, If the energy transfer was by
triplet states, little fiuorescence incréase,woufa be expected; as

fluorescence is the result of radiative decay of singlet energy levels

(Borisov and Godik, 1973; Borisov and I'lna, 1973).

-Measurements of fluorescenog lifetime prior to Muller et al.
were done At unspecified excitation intensities ahd the resul%s range
in value from 0.6 to 1.7 nsec. (Mdller et al., 1969). Miller argues
that the limiting values were not obseﬁved because no consideration.

was given to the level of the exciting intensity.

f
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They also conclude that, the saturating value abpears to be

univeréal in planps.’ The "open-trap" value is also the same for blue
. and red algae,(Goedheér, 1972). We will adbpt the value of 0.4 + 0.1

. nsec.

as the "open-trap" fluorescence lifetime and interpret it as

-

the trapping time of excitation.
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Fig. 6 Excitation iﬁtensity dependence of the fluorescence

lifetime of "Chlorella". From Maller et. al. (1969)

What we have describedAapplies only to PSII. The fluorescence
\

from PSI decays about ten times faster than PSII and only recently

have accurape‘measuremehﬁs been made (Alfano and Seibert, 1974; Borisov

and I°lna, 1973).

There also seems to be an absence of fluorescence

that varies with the state of the traps in PSI, and it has been

suggested that energy transfer takes place via triplet states

(Borisov and ‘I’lna, -1973; Clayton, 1972). In short, the behaviour of

PSI is not as well understood as that of PSII.
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vii) summary of model assumptions

¢

We have described a modél for photosystem II of plant photo-
synthetic units.ﬁ It incorporates the following assumptions based on

the experimental work described in this section.

i) the chl-a molecules are randomly distributed and make

an angle of 350,1 2° with the membrane plane. They have a

" mean spacing of 15 + 1 &

ii) there are 250 to 350 antenna chlorophyll
iii) the trapped excitation enefgy does not escape

iv) the lipids and proteins have no effect on energy
transfer except to provide an environment of constant temperature
~and refractive index.
v) all the antenna molecules are chl-a

vi) the fluorescence lifetime is 0.4+0.1 nsec.
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ITII. EXCITATION TRANSFER ~

i) classification of molecular interaction st'r'enthh

We will begin by reviewing the theory of intermolecular intef’-

ac‘tion .

Fig. 8 illustrates an éner-gy level diagram (Franck-
Colndon diagram) for a molecule. Only the ground state and the

first-excited state with its vibrational levels ér'e shown.

Two parameters a;e important for a discussién of in.ter- molecular
interaction strength. The first is the width .of the electronic band,
"“~lsometimes called the Fr?ﬁ“cfiE‘-Condoq bandwidth, symbolized byAE. It
'detérmine; tyhré width of the entire band system of the spectra of an
isolated molecule as well as the Stokes ,s-h‘i‘f‘t ‘between the absorption
and emission bands, AE. has an energy Qaiué of about 3000 em~! (~0.3
ev), and is of the éame order of maénitude as the energy of the
vibrational quanta, about 1000 cm"1 (Forster, 1967). The second
parameter is the vibrational band-width ﬁ;', and is of the order of 10

3

to 30 cm-1,
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Eht.!;u

s

Nuelear coordinate

Fig. 7 "“Franck-Condon" diagram for a diatamic mlécule, illustrating !
, ‘ ’ /
the electronic band-width 7; ,and vibrational band-width, Df
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With these two parameters we can define three céses of coupling

strength:
1) | >> A% >>A$' ............ strong
ii)  Ag>> ful » Ag’ ...... e weak. or intermediate
iii) ﬁ§->> Ag' >> uf..o... .....very weak '/Q""

{ul is the absolute value of}the interaction energy.

For a semi-quantitative dérivation of these coupling strength

criteria, see Simpson and Peterson (1957). - : 3

ii) Strong coupling:

\s .
In this case the intermolecular interaction energy is greater
then vibrational energy\levels within the individual molecules. The

transfer of excitation occurs very quickly before any essential

nuclear motioﬁ can take place (Born-Oppenheimer approximation). In

strong coupling the situation may be described as follows:

If we have an»arréy of N identical molecules and one of them is

eibited, our system is N—fold'degenerate because we have N possible
* ! ,
wavefunctions of the form: ¢n= an -ﬂ- ZP‘. all with the same eigenvalue.
t

IP:'is the wavefunction of the excited molecule, and q%; are the
ground state wavefunctions. ' However, the interaction energy [u| acts
as a perturbation and "splits" the degeneracy. A set of stationary
state eigenfunctions for the perturbed Hamiltonian can be written in

the form: -
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Q§x = ’42 + o, + ”..”..;J.+ ¢,
CPl = P ¢, + ......'..+¢“

Each stationary state involves excitation of all molecules. Thus the -
excitation is considered as being delocalized. Time dependent
states can be constructed from the stationary ones which behave as

coherent waves of excitation which sweep across the lattice.

The above description is termed the moiecularﬁexciton cdncept;
and arises out of the reéonance with neighbouring identical ﬁolecules.
The exciton migrates with constant group velociﬁy (Franck and. Teller,
1938). - Also what'has been said applies only for ideal crystals.
Impurities, lattice imperfections, and‘thermal degeneriiign leéz to
scattering or absorption of excitons into many kfétates By exciton-
phonon interaction. Thus the coherence of the exciton is decreased so
that the propagation becomes more diffusive than wave—like. The |
rooi-mean-square displacement is then proportioﬁal to the sdﬁare'root
of time rather than directly to time as with the wave-like excitoh.

Strongly coupled systems Have absorption speétra which differ

markedly from the single ‘component spectra. Absobption bands are

split by the exciton interaction. .
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"We will now consider a dimer (two molecules strongly coupled) and
calculate the transfer rate of excitation from one to the other. .

°

N .
L

Our derivation follows Fdrster’s (1965). The Hamiltonian for the
dimer is

E,d g

H=H, + Hy+ V, . | (1)
where Vab is the interaction potential.

The eigenfunctions of the unperturbed Hamiltonian, Vab = 0, are

/
CP; ¢‘_or‘ ¢aq% , where the prime indicates the excited states.
The interaction potential couples the two possible states of the

»

system so that we can then write the eigenf‘unct;ions as linear ’

combinations:

@*’ = (cos) 4>°/¢b + (3ined ¢a¢bl ) | oo B | e(z) .

©-= (sint’()_cp; CP{D - (cosos (Pa%/ o , (3.)

/The coefficients, cos and sin , are chosen so that; @4_ and @_ are
orthonormal. The parameter;o(, however: remains arbitrary and depends
on “the.str'ength of vab' if vab = 0 thenod will be .0, or R/2,
giving @, = ¢/, and P_-= $,. 9. We shall presently show that

. P - ] N
when V_, is greater thanthe bandwidthA'E, o becomes TV/Y4§. This gives:
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b - 'VJ'E“"(cpa’¢b RN

|

A similar result is obtained with two iht;heracting f‘er‘rﬁions. Eqns 2 -
and 3 are sta't‘,j.onary state sol,utions. Nc;w we will consider the time
;iependent problem; the time evolutiioﬁ of tpe system from ¢; ?b to ~,
¢a¢b/ , which is the rate of ener'gy; transfer _f‘r;am’moleclules ';a"
excited and "b" unexcitevd, to "a" ]unexeited and:jéf'b" excited.

Y

“ra

We wish to solve the following eigénvalue equation:
<@J( H,‘ @( > = W¢ g.’é - (4)
In or'der" to speeif‘yo(; it is sufficient to solve the equation: .
(helnl @) =0 | )

Direct substitution of Eqns 1, 2, and 3 into 5 ’gives:
(sm‘a« —cos*x) U A { Wak~-Wab'{ cosx sina =0 | 6)

/

' ' !
Here U is the resonance integral <a b \ Vabl ab > and wazb

is the integral <a'b l H ( a/b> which is the total energy of the

/
configuration CPa 43b:
= W/ .
Ha/b = WS o+ W o+ Va'b

. 7
Similarly for W, /z W, 4wy + VaV



-28-

.

and finally

tans = 2U , OExXSE Va
(Wb = Wald)

T

Having specified o we can solve for the eigen?alueé:
P N
. L &s | H )“i{;_j? = Wy

Direct substitution results in:
/

-

Wi = cosau:wa'b + Sinaaiwab’ + 3in2«U

&“djff&'

(8

(9

(10)
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There are two limiting cases: i) . alu.( <L (WA/L - \/\)a_[;\ ) = = o X N

witheX = 0, we have:

@4, = q>¢.' 4>L ' ’ @- = 4>a. ,ékl ‘
o ' (11)
Wi = Wa b ‘W. = Wab

Witho(':: T/2 the situation is reversed. The excitation is essentially
localized on one molecule or the 3thér', and corresponds to the very
weak cou‘pling case.
case ii): 2 |ul > [Warh - \'\/AUI . (= ‘W/Lf_
. ) 7
- ' ( 4 ¢ p ) .
¢, = == ( + /
NN'EY 4’f st b du)

(12)

Wi (Wab + wat) £ W

pl-

This is the resonance, st}-ong ,coupliﬁg\ case, where the wave f‘unctions
are the symmetric and anti-symmet.r'ic coxﬁbinations of the locally

excited (unpertuf'bed) configur‘at",ions. The ‘excitation is distributed
equﬂally Qve.r' both molecules. The energies of the two excitonrstates

A

differ by 20, whic‘ﬁ is called the exciton "splitting energy.
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We can now write the time dependent wave funetion as:

| o iwit/%
Yy (t) = P, € cwet/® o - a®

and in general write the following linear combination:

| iy - iw.t/k
Y(t)= c, ¢, e W e/h +e.b. e ()

For w+ = W_ this represents a back and forth oscillation of the
excitation between both molecules. If att = 0 we assume molecule "a" 1

only to be excited, then from Eqs. 2 and 3 we must have that

¢, = cosel and C_ = sin X (15)

f

\
) ;
‘By direct substitutioq of eqns 2, 3 and 10, 15 into eqn 14 we get:

-i/a./CW+*“’-5t K ’
’4/(-(/—) . / cos (hstf?’) - { cos et * siq@;%) U

’ ) * ut |
— (Scn QX SNf— /
’_ tScn LX St Tsimas ci)a 4>k _ (16)

Next we want to calculate the expectation value of the state ¢a¢b,

From Eqn 16 we get
ut
f sin s (17)

g’a\;’('t) = {a W |ab ) = sinfax sin?
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/ . 5

The maximum value Offab’ (t) is

m‘:l. S'ha;l - td/v\"lei 4-“.1
! = { = = — = g
] |4 tem*a (Wi way ) + U2

(18)

becomes large only when <& T/, 3

[N

‘where we have substituted Eqn 7. fmhiax

that is, near resonance condition. To find the time, t‘max' at which

fmax occurs, we set the first time derivative of Eqn 17 to zero and solve

pe

for ¢,

—

me X )
t = _f—fﬁ Sin A (19)

We define the transfer rate, %—-’b as the maximum expectation value,

max ; >
and obtain

g;j?x, divided by t
wany l .
ab' A

il

s

For strong coupling « = /4, therefore 'the transfer rate is:

- LH'u( |
Qa,-blg —— - ——R——" (21)

Which agrées with what one might expect from the uncertainty prin-

bE
T < w 22

ciple:

-3
If our interaction |u| is dipole-dipole in nature, then lu| & R

.
-3
and from Eqn 21 we see that N y* R .
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iii) weak coupling:

When the intermolecular interaction is
intermediate between that of the electronic and vibrational energies,

@

the coupling is called weak. Heré only pairs of vibronic levels &re

a

—

at resonance with each other. One can proceed as before and describe
the system by its stationary vibronic exciton states. Crudely
speaking the transfer rate,R ,__ ., will then be described by Eqn 21

multiplied by the Franck-Condon integral of the intramolecular

transition between vibrational levels: v and w.

New = M,S:w' ‘, (23)

. ’j b ‘ :

va is the overlap intergral of the wave functions of the vib-
%rational levels v, w and is related to the intensity of transition.
The product Uva may be regarded as the interaction energy between

the vibronic transitions of molecules a and b.

Although in;an ideal crystal the vibronic exciton migrates with a
constant groupﬁgQiocity, it moves Qore slowly according to Eqn 16.
However, because of the sharper resonance condition, this therent
propagation is more sensitive to lattice irregularities and phonons.
This leads to exciton-phonon scattering which rapidly

diffuses the motion of the exciton after a few lattice distancés;

3
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This consideration will be important for our model later on. A"
detailed analysis of the weak coupling case is difficult
because the usual Born-Oppenheimer separation of nuclear and

electronic motion is not valid (Merrifield, 1963).

The changes in the absorption spectra of the monomer @oleéule are
less drastic. The vibrational envelope is essentially reﬁained and

the individual vibrational bands are split in what is called Davydov

splitting.

[P
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iv) Very-weak coupling:

In weak coupling we ignored the width of the vibrapional bands
assuming them to be reasonably sharp. If thé interaction eperéy is of
v t;,he order of the ‘{ribrationa'l bv‘ar_ldvllith’, ﬁg’, 5e Have the thiAr'd casbe of
very-weak coupling. Thus, two coinciding levels are not completely at

resonance but only portions of them are.

If the coupling is so weak that transfer has‘not been
accomplished dﬁring the lifetime of the vibronic level, the transfer
will necessarily pe affected by collision and vibrational energy
exchange with the surﬁgg;dings such as'with phonons. This leads to
the establishment of thermal equilibrium between the vibrational
-leyels,of an excited molecule and its surroundings. Such times are of

0“12 1

the order 1 sec corresponding to a bandwidth of 30 cm™' as

mentioned earlier.

From Ehn 17 we have:

exk'

for the probability of energy exchange between vibrational level v of

- D U o e
‘t) = Slhz@\aL} SchiQk:::14> 3 M\rv—usvw (24)

molecule a and w of molecule b. For small tihe this is :

U t* (25)

.h—ﬁ.

_S%L‘ (t) =
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If a collision occurs at t = Z then ré b/ will have increased by an
?

amount of':
: a
Uew T°

. P
Afak —T
Such a collision will destroy all phase reactions betwWween the wave-

functions of "a"wand "b", so that the increase in the next time

interval between collisions will be:
t U T
V(H) =2 = Aey = vw T+
fkk (fj T fqb T2

*

where T is the mean time between collisions. The transfer rate as
defined before is then:
a 7 :

Nawt = _(-A_!‘E:’_’-—- | (7 s & constant)
The transfer rate is thus proportional ﬁo the square of the‘inper-
action energy as opposed to the first'power Egﬁﬁn the strong and weak
case. If we express T by the corresponding' banqwidth bE =;h/.c we
get:

a
—~ g2 U vwr

Towr = h Ag C(26)

4

Very weak coupling leads to no recognizable changes in the absorption

spectrum.
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In the very-weak case the'excitation is essentially localized on
one moleculé. Individual transfers are uncorrelated and the result-

ing energy propagation is completely diffusive.

f

Diffusive motion of the excitati&nvisnMarkoffian in nature. This
mean3 each step is independent of thé bast. Diffusion problems and
random walk problems ane.isomorphic (Knapp, 1965) anquf will make use
v / of this fa;t later in developing our model of the motion of excitation:

in the PSU.

N For mblecules'wiph continuous spectra orrthose which éhow little
or no vibronic sthuature, the weak coupling region ¥s non- existant,
and the mechanism of energy transfer goes essentially from very_weak
to strong. This can be shown as follows:

_“
M//"’Q\““\\\_ Consider the criteria for weak coupling,
oo AE> 1wl > BE
| where [§; is at its smallesﬂ the energy bétween two vibrational levels,

and LSE/is the width of the levels:

—-= - — 00, | Ag

1 \

> | *-L-—W///////é 1 g’
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, :
If the density of the levels becomes large or Ag becomes large so

that the energy level picture looks like: m

~
7Z 7
4
‘then Ag.can be of the same energy as AE Therefore, the weak
/
coupling criteria, is in effect, "squeezed-out". That is, A;% AE,
/

so that lu\ is either greater than Agor less than Ag so that if ,ul
becomes larger than thatrrequired for very weak coupling, it is

already large enough to produce the strong -interaction.

Thus for polyatémic mo;ecuies, solutions, and many °
crystalline states, the weak interaction region is very small. We will
see a quantitative example of this later in regard to our PSU model.
The master equation approach to energy transfer, which we will develop
in the next section, will allow us to prescribe a width to the
intermediate region of weak coupling. It is thus possible for the
very-weak coupling to give rise to a rate of energy transfer that is

faster than the ther':hal relaxation rate, VZ’r"elax'

From Eqn 26 we see that if |u| is dipole-dipole, uk 1/R3,
then the transfer rate for very-weak coupling is proportional to

1/r%

@
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The very-weak coupling meéhanism~is-sometimes-referred to as
"inductive resonance transfer" meaning that a transition charge

distribution is induced in a neighbouring molecule by the near-zone

electric field of the oscillating charge distribution of the excited’

'molecule.

v) the Fdrster equation

<

In the éase where the excited State of the donor molecule has
come to thermal equilib;ium béfone transferring,energy, the very-weak
mechanism is called the Férster mechanism and is described by the
Fdrster equation. The Férster eqﬁation is basically Eqn 26 written
ip terms of measurable spectfal parameters such as thé intensity and

shape of the absorption and fluorescence bands.

One assumes a dipole-dipole interaétion, a Boltzmann distribution
"of vibrational states (thermal equilibrium approximation), and with
the Einstein relations for absorption and spontaneous emission, one
obtains:

"0

| (Lm0 |
Nasl = ‘2; P\:L %::n;(p:q. )N7X ??(V> ﬁ(“)

: o

dv

V

(27)
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where: v= wave numbers (cm'1

)

(v)= molar decadic extinction coefficient

(v)= fluorescence spectrum, normalized quanta/cm"1

N= number of molecules per millimole |

n= index of refracéion |

7.= natural fluorescence lifetime of an isolated
molecule

k= factor representing the orientation

of the dipoles

R= distgnce between the dipoles

Eqn 27 can be written as:

6
\ » .
Lot = 7 (""‘RR > (28)

2] —_

where R6 is defined from Eqn 27.

The details of the derivation of. Eqn 27 are given in Appendix A.

Egqn 27 applies only to pairwise interactions withrla_,b the
pairwise transfer rate. 1In a lattice the presehce of more than one

nearest neighbour will affectha_,b in such a way as to increase the

transition probability. Thus the aqtuél transfer rate will bePZB =
'ladbb X B where B is the number of nearest neighbours (Bay and

Pearlstein, 1963).
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v,

Fig. 8 Summary of the characteristics of the intermolecular transfer ,
of excitatioh‘ene¥gy.'T5 is the neérest neighbour transfer
time, jul is the)interaction energy, R is the iptefmolecular
spacing, A is the exciting waveiength. (adapted from Qlayton,

1965)
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IV. THE MASTER EQUATION APPROACH

i) introduction to master equations. -

We have seen that there are three classes of strengths for
intermolecular interaction-and each has its own observable effects on
the "absorption spectra of'the free molecule.'The calculation

T

of transfer rate in terms of interaction energy, U, using only well '

defined spectral parameters has been fully formulated only for the

Forster case. Ihe weak case has traditiogally proved

very difficult primarily because the Born- Oppenheimer spearability of

" nuclear and electronic motion is not in general vélid (Merriffeld,

- 1963). In the strong case, direct measurement of the transfer rate

in terms of coupling energy is not as yet experimentally possible .
Strong coupling effects are usually studied by observing the splitting
of spectral lines (Hochstrasser and Kasha, 1964).

Knox and Kenkre have developed a unified approach based on a
"generalized mastér equation™ that allows one to calculate the transfer

rate in terms of interaction energy ové?,a wide rangé of coupling

. i :
strengths. This relationship is given in terms of well-defined
spectral properties of the isolaieq molecule,

sich as half-width of the absorption band and the Stokes shift. The

strong and very-weak coupling cases are readily obtained in the

» appropriaté limits of the master-equation solution, while a continuous

N

relationship between transfer rate and interaction energy“is provided
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throughout the intermediate weak region. We will first discuss the
principles involved and derive the'appropriatevrelationships. Then it
~ will be applied to the model of the PSU previously discussed. Our
gqai is to come up with a figure givihg the range of possible

U based on

a

interaction energies between chl-a molcules in the
experimentally measured quantities such as the>'5uorescence lifetime,

number of chlorophyll in the PSU, orientation and mean spacing.

In statistical mechanics the approach of a quantum system to
statistical equilibrium under the influence of a pertﬁrbation is
described by a particular kind of transport equation called a master
equation._ It is a relationship about the time e@Blution of
quantum states in terms sf_transiﬁion probabilities between_thesé
states. It is called a master eéuation to distiﬂguish it from trans-

port equations of the Boltzmann type used in kinetic theory of gases.

First we will discuss the Pauli master equatioﬁ which holds only
for lowest order in the perturbation between states. We shall see
that it is a good description of the very-weak coupling case, but is
not applicable when the coupling is much strongen,*\i\fiéeralized
master equdtion w;ll then be discussed which is good to all orders of
the perturbatiori. We will finally go on to show how this generalized

master equation can be used to describe the transport of excitation in

]

the PSU.



ii) the Pa’li master equation

" The Pauli Master Bquation (PME) is:
7 N . s

dP, (t)/dt = g_ [Fij Py(t) = Fyy Py (£)]

It describés the evolution of the probability of excitation at a
molecule Pi as a function of the probabilities of eié;tation at the
other molecules (Pj) and the transition probability rates Fij‘

The equation is Markoffian in nature, meaning that the

probability, of excitation jumping from i to j is independent

Fij'
of its previous locatién; ih other words, memory of previous locations '
is lost. This is applicablelto our quel»only!in the. case of

very-weak ;neygy couéling where the Forster mechaﬂism is applicable~_
In this case the excitation can be considered és localized on a
particular site and hops from one site to the next. The jump times
would then be givep by the F8rster formulation and the trapbing time
could then be workéd out by solving the set of coupled PME Eqns for

the array of molecules (Knox, 1968).

The Markoffian PME is however, equivalent to a random walk.
Montroll has worked out analytic equations for random walks in one,
two, three dimensions and the results are essentially the same as -

those obtained from the PME.
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Colbow (1973) has applied this Markoffian model to the PSU using
the Forster formulation and Montroil's random walk equetions, This
was based on a mean-spacing of 1SA and on new measurements for
R =65A. The results were just larger than the therméi'relaxatioe'
time. This would justify the use of the Forster' formulation, However

. - . !
the results were sufficiently close to the intermediate region to
warrant a closer look. The energy transfer may take place

sufficiently fast so that there is dou about the applicebility

. of the Fdrster equation (Borisov and I°lna, 1973; Seibert and'Alfano,TQYM).

iii) generalized master equations

We will now proceed to develop a single expression based on a
single definition of transfer rate which will contain the strong and
very weak regions as limits and ascribe a width to the intermediate

region. The first step is to geheralize the PME as follows (Knox

+

and Kenkre, 1974):

t

B (45 3 for 9RO w9 RO3
A 3

Here the transition probabilities are time dependent. The probability

of transition depends on time less than t, i.e.) on where the excita-

tion was before t. connects the probability at a side j at time

s in the past to the rate change of probability at site i at the
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i

© 7 --present time t. This equation is non-Markoffian and is called the

Generalized Master Equation (GME).

By substituting: , o

Wiy (t=s) = Fi'(j § (t-s)

into the GME one immediately obtains the PME The delta function

%, .
- means that the transitionhgrobability depends ‘on what happens at time

t, not on any previous history. The PME thus eliminates the .

possibility of exciton or reversible resonance cqupling between

molecules. .

Here we present a physical rationale for generalizing the
) H

PME; a more rigorous derivation of the GME is found in Appendix

E

B, based on Liouville’s equation for the density matrix of the system.

A useful approximation in our case is to assume that the time

dependence of wij is independent the sités i and j:

Wy () = By Qe (1)

.
wheretb(t) is a time-dependent coefficient. The GME then reduces to:

t Y v{
dP, (t)/dt = S ds ¢p(t-s) [ ?(Fiij(s)i- FyyP;(8)] (2)

[

)
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We will call @) the memory function. The nature of the energy
transfer is thus determined by ¢(t) as well as-by the rates Fij'
. 1 L

It is illustrative at ';his poi‘%to show that both wave-like'
(coherent excitons) and diffusion (Markoffian, random walk) behaviour
arise quite naturally’from limiting forms of the GME.

B . \ .\
If we make a nearest neighbour approximation and assume a con-

tinuum of sites, Egqn 2 can be written-as: (Kenkre and ]nox, 1974)
AP(":’:E o ’ 33 P(x,s
D= : - J
: = ds Q(t S), 1.2 -
‘t ° X ) )
(see Appendix E for details of derivation) If we set: Q(t) = cze(t)

where ©(t) is the step function, we obtain the wave equation:

éa P(K,t) _ Ca_ XLP(X)'d
It at”

and if we set Q(t) = D§(t) we get the diffusion equatipn:

IPY) | g P(t)
st 4t?

The content of the wave and diffusion equations can be combined as the

"telegrapher 's" equation:

SP(xt) , <& 3P(xt) . & STP(xt)
jt2 T Bt Ix*

which is obtained from the GME by letfing

Q(t‘) = ca'e-(cz/D)t [

a form intermediate between that of&(t) and sy,

¥

e :

P
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—

iv) the memory function for molecular” transistions:

¢>(t)'defines the extent in time in which the process can be

considered non-Markoffian. 'What we now need is a prescription
B

- \
for caleculating ¢Kt). For molecular transitions, Kenkre a@d,xnox
. ) .

\
(1974) derive the following expression for §(t) in terms of“%6rster's

equation: (Appendix -C) ~ PN ’ R

- ]

dt) = [1/x£(0)] f(Av) cos(avt) d(av) (3)

+

where f(o) is the Fdrster rate equation for two molecules given in

terms of the overlap of their fluoréscencq and absorption curves:

o0
f(o)ec 1/RO [E(v)§(2vo=v)/v(2v -v)] dv
o o] o}
5 >
where F{N) is the extinction coefficient and Yo is the average of 4?

the absorption and fluorescence maximum.

A 14—Vg —>
]
I. ‘.

) FU) i Yy Stohes slxi'et
'g(uov. QL:.

>V

f(Av) is given by the same equation as f(o) but the peaks are
shifted on the frequency scale by + Av/2 for the emission and -Av/2

for the absorption



-48-

A

Physically‘this would represent a molecule thét has not come to fuil
thermal equilibrium before transferring energy (thermal equilibrium

would imply the full Stokes shift vg).

Gueron et al. (1967) consideredfghe case of total overlap in

§

formulating their "before—relaxatioq;;very-weak coupling" case.
st

If the peaks are symmetrical or nearly so, the

denominator is equal to V_ and can be removed from the integral.

0O

We may write -

o
fo)= K S § (V) E(2v -v)dv = KJg

-©

f(av)= K & Y@(v- v/2) E(2vo-v+' v/2)dv 'KJ (Av)

Swhere J, is the overlap of the absorption and fluorescence, J(Av) is
the éhifted overlap of the absorption and "effective"vemisé;on peak,

and K contains the remaining terms from Eqns III-27.

The memory function then becomes:

Cp(t) = (ﬂJo)'1 JAv) cos(Avt) dAv €Y

ol
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which is like the Fourier transform of the curve representing the

overlap integral as a function of the peak shift.

We will now derive specific forms for<$(t) using Gaussian and

Lorentzian line profiles, and assuming mirror image symmetry between

absorption and fluorescence.

GAUSSIAN: A Gaussian profile is given by:

-

= faeRRTY e

The over-lap is then:

- lva :
TR AL e

wave number of the absorption maximum

where: v, E
v, = stokes shift = 2(va - vo)
v,l/2 2 half-width-at-half-maximum

B = V 21[‘12/V1/2

J(Av) is then easily defined as:

T(bv) = 5.: —Vf;f" o= N Av)/y o

The memory functi::;is then given by:
b o0 z- 2

o - BV (BV - 2vty)

qD(t) R e CbS(QVt) d v
- .

(8)

N



s €

If we set cos(Avt) = Re(el®Vty
then Eqn 8 becomes
oo - a .
83 02 (B, +iT) DY) :
=L - [/‘f = (g% 7 ' .
Ptt) = — Re 516 | o dby @
-l - )

sing Eqn 7.4.32 from Abrahamowitch and Stegun (1965) and the ’

; limit (7.1.29): 0 (c(-?(x+iné)) = | _ .

K-> 00

we can integrate Eqn 9 and obtain:

a a
2 B, v = T :
e C~3< ¢ . ) CoS(\Vst’)

cos(vst) -

"
[ ©.3% y\/v3 = 0.7l v‘/a.t
R
(10)

-
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LORENTZIAN: A Lorentzian profile is given by:

-

| _ v"z ‘ . -
g(\'/) - EM T (Y— v‘)a + v‘/,_l | . ' (‘12)“(’7

The memory function is given by:

- -]
q}(t} En ; L Vn ddy coS(Av'C) 1 - - (13
LS 3-0 _ o o (V'Va> + v}’z
|
X : dv
[v- (Va~vs + Av)‘] + \/‘/:.
Using Eqn ) 3.724.2 from Abrahamowitch and Stegun (1965) we get:
‘ s
: EW\ - 1\/\/’:{7 ' ‘
dtl= —/~ e cos(vt) (1)

v, T,
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Normalizing ¢ (#) such that (o) =1. , we finally obtain:

= o.7a.|\1y:t°' B J
qb%(t) = & CoS(Ys t) :Gaussian .
o (15)
- Zvy;t

c{:’&(f) =€

tos CVs -t—) :Lorentzian

‘An important parameter in 4>(tjis the time constant in the exponential:

’ < g 0.85 vq,5 o : Gaussian

. , O (16)

X = 2.0 v1'/2' g _: Lorentzian

Cb(t) is plotted in Fig. 9 for chl-a in ether using a value of Vi0

= 188 cm™! 161 cm™! and the Gaussian and Lorentzian

’VS

approximation for the main peak at 660 nm.

)
—

We see that ¢>(t) has dropped about 80% when t = 1/¢ and-is.essen-

tially zero by t ® 3 x 1013 sec. For a Stokes shift of vg = 184

e the cosine variation is not significant.
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dashed line for a Lorengtian profile. The dotted line shows the
slow variation of the/cos (¢t) factor, neglected in Egn. 10,

c/;arpa_red to the exponential part '
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o is a measure of how fast the localization of 9XEi&3£i:2;£f5es
place., For excitation lifetimes greater thgn 1/e¢ the™énergy transfer
procesé can be considered Mark&ffian. For times much greater than 14('
or for very largeet, d(t) X S(t) and the "GME reduces to the PME
deseribing a random hopping of excitation as diéﬁussed before.

Thermal relaxation times have a lower limit estimated to be in the
range of about 3x10‘13 sec. (bexter aﬁd Knox, 1965). We see that
¢>(t) has dropped to zero before this, (Fig. 9), indicating

that thermal relaxationudestroys all phase ‘

relationship between the excitation on neighbouring molecules, thus

effectively randomizing the transfer process.

+ If ¢(t) is not zero for times greater than the thermal
relaxation time we have a small = and therefoée'a

narrow line width (small V1/2) (because of the Fourier transform

property). te.

Y

IOF £O)

i")!:licsv
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This is possible for:systems tﬁat have discrete sharp vibrational
bands such as atomic or simple molecules, which means that the vibra-
tioﬁal qﬁanta are much greater than the phonon energies, (KT),
or ;he collisional’ene}gy. Thus they do not
couple very well to the "thermal bath" and thermal relaxation oceurs
only very slowly. Thgrefpre it is po;siblé tq‘maintain coherence bf
the e*citéns over a longer period of time. "Shérper peaks in the

.3pectra would mean smaller interactions with phonons and the

environment and a correspondingly longer memory" (Knox and Kenkre,

1974). Q N

/ .
Chlorophyll has a continuous spectrum. 7Therefore_it couples very

readily to the environment. This is reflected in its wider band width

and sharper memory function.

v) solution of the GME

We have now derived and discussed the memory function(b(t) for
the GME, (Eqn 2), and will now proceed .to solve the GME,‘by
calculating the mean square displacement of excitation and finally
obtain an expression relating the trénsfef rate. and interaction

energies for Gaussiah and Lorentzian line profiles.

In our model we assume the molecules have an average spacing,

The mean square displacement of the excitation is:.

L. LR, .
<x2) = Z; 5 = m*H a4 (17)
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: 1}
where Pm is the probability that the excitation is on molecule m.

A

We define the rate of excitation Yransfer, w,

N <

as the inverse of the time required for<sx2>.to

build up from zero to the value, a2, This définition will apply to

the full range of intermoleculdr coupling strengths and is not

restricted to pairwise'interactions.

Differentiate Eqn 17 and settingfé szl’ we find
Kx2y/dt? = L (@%a®) apy/dt

Substituting the GME:

t . .
dP /dt = g ds ¢(t-s) * 5; [an P (s) - anPm(s)]

we obtain

t T
-A—g%‘z = a“g ds6t-9Y T m*[ s Pal®) = Fom P (5)]

°

s

Interchanging dummy subscripts in the second term:

é Z': m? E‘@Pm(s) —_—> Zzh. nzpmnpn(s)
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we obtain
t

2 _ 20 . R ‘
\d(xzbldt =z a g ds ¢(t-5)§;§}?mn(m2_n2) Pn(s)
° - -

Next we assume that the transfer isvhomogeneoua or isotropic:

Fn+x,n = Fn-x,n' Shifting the "origiﬁ" of the M"count" such

that: Fn+x,n‘= Fn-x,n = El where 1 = m=-n = x sg tg?t
, , )
szn (m2_n2) = Z Fl (12 + 2nl)
™~ o L

Our double,sum begéhes:
S OLIRORE: Z(FRO T AL R

3

We further'introduce the assumption that the forward rate equals the

backward rate: Fl = F-l' Therefore the second term becomes

identically zero, leaving:

: z;Fllzpn(s) = g % F(m-n)2 p_(s)
n .
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x

We are finally left with:

— t " -
d<x®>/dt? = So ds &(s) <a> ’ (18)

where CAY) = ‘E: 'PA(s)o Ei an(m—n)% a®
N n ™

The result has validity in more than one-dimension as can be seen by

working through the above derivation making the following changes:
= M o—n Mt e T ™
v o .

and similarly for n.

Now according to our definitiom of trarisfer rate w = 1/4, Wwe can

solve for w by integrating Eqn 18

\
“or Yr ¢
gd<X2>/dt dt = a=. S dt g ds $(s)<A> ’ (19).
[ ° o . B '

From Appendix C, the time dependent transition rates of'theVGME;

wmn(t—s) have the following form:

e
4
N

Won(6=8) = 2ful?42 . & (t-s)

where the memory term d; is a time decaying oscillatory factor

"\ such as Ean 15 and U is the interaction energy between sites m and n.
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We have already chosen to'separate out the time dependence in
Wi (E=8) and write it as:
Won(t=8) = Fp o @(t)
F

Therefore we make the foll? T3
a £

Ry

ol
For ©(%) = 2 e

identification:

)

o At.a ’
-5 T : Gavns«'t\ﬂ
e %t ~ ,
) Loventyian
where we have dropped the cosine terms because of their hégligible

contribution in our case. xig and &l are defined as in -Eqn 16.

-
”~

We will now proceed to solve th 19 for Gaussian and
-

Lorentzian profiles for nearest \neighbour interaction on a

sduare lattice. In this case let Pn = 1/4,

A) GAUSSIAN PROFILE

A
y

By summing over the four nearest neighbours:

‘

CP(S) <H> - 21ul

and substituting in Eqn 19 we get:
' Yo t
a 2.2
| wl a -y S a
2 e dt | e ds = «a

which is: 2 Vr '
(ul* 7 g ed () dt = |

(20)

1



-60-

Using the result for the indefinite integral (Abrahamowitch and

'

Stegun 1965):

ar
N

S&'F(*)Clx = XQP-PCX) + ‘.v:—-.:'t"' e X 4+ const.

we obtain:
. . _daa/\,d' ‘ 2 a
ﬁ-(%i-) er?(%l +e - = -i’fmt‘; e
”r

We now have an eduation for, w, the nearest'neighbour transfer
rate inﬁtefms of \ul, the interaction energy. °<% enters as a’
parameter and its value is a property of the molecules involved We
will aéply Egn 21 to our PSU model with Nﬁdefined for chl-a in ethe;
in the nekﬁ section. But first let us see whether Eqn 21 gives the

correct results in the limits of strong and weak coupling.
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- . _‘ | . :. . lu_‘
a)” very weak coupling limit: ¢,<3 >> /Aﬁ
A , -“a/w‘
er? (-\.,-\) —> | y o — O

Eqn 21 becomes:

w = q—r\S/a!u'la |
=4k’ | —~ /
o~

Previously we saw that (Eqn III-26)

_o b ul’

li\;l,_

Comparing this with Eqn 22 we can make the following identification

between o and the Franck-Condon band-width, 5?:

,<=i:’i-A§

imit: lul
b) strong limit: «3 << oy

_"(:'XA;k o *
2 . ~ - =
A (%) ~ 7 % ) c ST

Egn 21 becomes
, fuwl fwl
W= AR T. = Y —

Which is what we obtained in Egqn III-21. Eqn 21 gives the

correct results in the "fast" and "slow" limits of energy transfer and

provides a connecting formula for the intermediate region.

}
/
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II) LORENTZIAN PROFILE

We have as before:

P (sY<A> = a— & -—L-HL‘» :
> tla\' . H_ a )
)
substituting into“Eqn 19 gives
o 2 (e v S
QluLS;Atge'LcAs:I
'L'x o °
| Integration gives:
' <
) o({ N e- L/ ar \ _ %1194 2
W - - 2 l‘*, a (23)

14

In the very-weak limit we get: (o( > ful/ﬁ)
AN

\

€2 ul?

W:—T——-
h*x

_with

Ag = %‘x

In the strong limit we get: (.((( Jul /Jﬁ)

2w luwl

h

W =
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The limits are calculated in the same manner as for Eqn 21.

gqns 21 and 23 are plotted in Fig. 10 as interaction

energy against'f(r. We can see the continuous change from
very-weak to strong‘coupling. The asymptotic‘limits of strong and
very-weak coupling are represented by dotted lines, and the
intermediate region of weak coupling is illustrated. Note that it is
not enough to specify w in order to‘say which of the three mechanisms
is in ;ffect. The ratio 32;—determines this. Energy transfer is

fast or slow relative to o(.

We have not specified what form the interaction energy will
take, whether dipolar, qqadrupole, etc. We have seen that if the

interaction is point dipole-dipole then the transfer rate varies as

b

R™3 for the strong coupling case, and as R~ for the very weak case.

We will now snow that these results are also obtained from the GME

solutions (Eqns 21 and 23) in the two limits.

Futhermore we will be able to determine the exponent, N, in the

relation wet r~N for intermediate cases.

‘ /

’ 3

.
¥
o
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i

The solution qf/the generalized master equation for

Gaussian, G, and Lorentzian, L, absorption profiles,

. . ‘Mfgf
corresponding to Eqns IV-21 and IV-23.. The dotted B

&/ .

lines are the asymptotes for the limits of strong

and very-weak coupling.
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L . ey
First we assume that the interaction energy is dipole-dipole.

lu| P\'BK

and express the transfer rate as:
-N . ;
w &£ R : (24)

The exponent can be expressed as:

N - Sinw

,<\ d 2R ’ -
By taking the logarithm of Eqn 21 and differentiating with respect to

1In R we obtain for Gaussian profile

a

-
e — | |
HEORE e

N="¢-| | +

and similarly from Eqn 23 for Lorentzian profile

\ oW

(\ _ 8--(4/"’) —‘/:; (26)
- -
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The 1imiting behaviour fbr Eqns 2S and 6 is as follows:

:very-weak coupling
°4/—boo
(Vig

. 7
:strong coupling

o

>0

F

The results agree with earlier derivations presented in Section
. . « , X ]
III. The exponent N as a function of /ﬂf is plotted in Fig. 11.
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Fig. 11 . The R--N variation of the transfer rate as a function of
, - -

~

., given by the GME theory, Eqns IV-25 and IV-26
assuming a dipole-dipole interaction for Gaussian, G,

and Lorentzian, L; absdrption profiles.
¢
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vi) summary

We have presented a méthod for calculating transfer rate in terms

of intermolecular interaction energy by solving a-generalized master:
equation for energ§ transport based on the work of Knox and Kenkre
T

(1974). We ]
energy trgnfer problem in molecular systems such as the -Forster
theory. 1I¥s value lies in the fact that it connects strong and

very-weak coupling limits allowing one to estimate the extent of the

weak coupling region and the transfer rate in this'region.

-

-~ One begins by calculating the memory function from Eqn 4 using

the monomer spectrum of the molecule in question. From this one

extracts the parameter o4 . Eqn 18 can then be solved for

Ny

the desired relation between transfer_rate'and interaction energy.

fave seen that it agrees with‘previous formulations ‘of the -

S

N

This has been done for Gaussian and Lorentzian profiles and the

results are given by Eqns 21 and 23.

The definition of transfer rate should be kept in mind. It is
the reciprocal of the time required for the RMS diéplacement of the ’
excitation to reach a value, a, which we have chosen to be the

mean spacing betweén neighbouring molecules. whether energy transport

proceeds by diffusion or excitons depends on the.value‘$@, not'juét on w

itself. If the transfer rate falls in the region of very weak coupling,
the energy transfer can be described by the F8rster theory. In the
] -

strong coupling region, w descripes the velocity of an exciton

‘which isakQ-.Thus our definition of transfer rate is general and is a

smooth continuous function of the interaction energy, (Egqns 21 and 23).
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V. ~APPLICATION TO THE PSU

Ny
Y

i} "in vitro" absorpt}onkspectrum of chl-a and its memory function

2
~

We will now apply our results to the model of the PSUvdescribed

.in Section II.

First we must détermihefthe parametere<, from the monomer

mspectrum of chl-a.

‘Fig. 12 shows t@elabéégbtion spectrum of a dilute solution of
chl-a in ether. The inperprétatiOn of the spectrum is sum;arized as
follows: (Clayton, 65; Sauer, 1970). The main absorption bands»are
the Soret pand around 400 nm and the long-wave band around 600 nm.
These bands are the result of singlet electronic transitions of the
delocalized electrons around the porphy;in ring. Studies of
, dichroism have shown that the dipole moments of these transitions lie
in the plane of the porphyrin ring of the chl-a molecule. The
hydrocarbon phytol chain doeg not appreciably affect either the band
shape or the position of. the absorption bands (Goedheer, 1966). In
the y®* transition the orbital angular momentum of the singlgt excited
state can be parallel or antiparallel to the ground staté} The former

results in the long-wave band, the-=latter in the Soret band.
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‘The lpng-wave band is the one responsible for energy
transfer among chl;a antennae to the ;eacﬁion center. The Soret band
is not direcgly invo;ved in thié process. Energy absorbed in the
Soret band is rapidly dégraded b? intermolecular vibrations and

.transferred to the red band. No fluorescence can be observed

cOrregpondinghto the Soret band. We will only consider the long-wave

N

band from now.on.

k3

. The maiﬁ ﬁrahsition is at 660 nm with a vibrational satellite at
: 613 nm. The transition moments fo; these are oriented in the
direction indicated.by the y-axis in Fig. 5. They are réferred to in
the literature as’Qy(O+——O) and Qy(1*——0). - The verytﬁeak:peakq at 575
nm and 530 nm afe also the result of singlet i * transitions with spin
parallel to the ground state, bﬁl having the transition m§ments
oriented perpendicular-to the Qy bapds along the shorter axis
indicated as x in Fig. 5. We will neglect these two as their
contribution is not significant for our considerations.
P r's
/ In Fig. HB\we have enlérged the Qy(O*—-O) and Qy(ﬂ}—-O) bands and

fitted them with Gaussian and Lorentzian profiles. It is readily

/ P
apparent that;éhe 660 nm band, Qy(0+-—0) is very nearly Gaussian in
-
shape. The 613 nm band, Qy(1«——0) is difficult to fit because of its
small size, 80 we have assumed it to be Gaussian also. The

fluorescence spectra is very nearly a mirror image of the 660 and 613

nm bands. (Goedhee;,1966). The emission maximum is located at



(096[) youe1g 'g'D moij peidepy °13yla uy e-1yY2 jO unijoads uojidioeqy 7T ‘314

H1I9NITIAYM
WNO99 029 086 OF¥S 00§ 09% 0Oc¥

I | | !
/ (0-1n% (©-0%

ove 00¢ 092 022

¥ 1 T 1T 1T 1

-71-

017

O
00

<
__01x°4300

'Say 4YI0W



-72a~

' 4
Fig. 13 Gaussian (c.ceevenns ) and Lorentzian (~--———-——-- )
line profiles fitted to the red absorption band of

chl-a in ether. (Data is from Fig. 12)
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668nm,and the Stokes shift is 167cm-1, .Thié adds further weight tovthe,
interpretatign of the 6f3 nm band as a vibrétional satellite to the
660 nm absorption band. Our assumption of mirror-image fluorescence
“in deriving our relationships for the memory f\mctiond’(t) and X is

W

therefore satisfied.

’For a single component (single Gaussian or Lorentzian) Eqn IV-16
gives K immediately. The half-width of the 660 nm band is 188 cm™',

Therfore:

o~ g‘= (0.85) x (188) x (3 x 1010) . 4,794 x 10256
....... . .Gaussian
o) = (2.0) x (188) x (3 x 1010) = 1.128 x 10'3 sec™!
......... Lorentzian

(:

If we include the 613 nm satellite then we must rework Eqn IV-4 forﬂ
two components. This we have done numericalzy and the results are
shown in Fig. 14 for the spectrum shown in Fig. 13 fitted with two
Gaussians. ¢ (t) for a single Gaussian, solid line, is shown for
comparison. ’CP (t) for the
‘double Gaussian, dotted line, falls quickly into line with the single
component. The satellite does very little to change @(t) other than
for a small oscillation at the beginning. This would not change the
value ofeX obtained from the slope of Fig. 14, significantly from the

single Gaussian value. Therefore we will use the above values for

computed from £qn IV-16.



Fig. 14.
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Camparison of the memory function @ for single
camponent (660 wwm ) and double camponent Gaussian
absorption band (660 wmand 613ww) . Data is fram

Fig. 12. Mumerically calculated from Equation 1V-2.

e
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Knowing o we can now determine transfer rate (w) as a function of
interaction energy (u) from Eqn IV-21 for Gaussian profiles. This
function is plotted in Fig. 15. The result for a Lorentzian with the
same half-width is also plotted from Eqn IV-23 for comparison.

The curve clearly illustrates the extent to which the transfer

rate is the result of very-we;k coupling given by éqn-III-26 apd the
stgong coubling, Eqn III-21 and connection between the two in the
intermediate or weak coupling region.

The asymptotes for the limits of strong and very-weak coupling

given by Eqns III-21 and III-26, which have been shown to be the

appropriate limits -of Eqns IV-21 and IV-23, are also plotted.

A characteristic of the Lorentzian profile is the larger
- extent of the weak-coupling for larger interaction energies. Weak
coupling for Gaussian quickly falls in line with the fast transfer

rate asymptote. For dipole-dipole interaction the limits. are wol R™3

and R™° as giveh by Eqns. IV-25 and IV-26.

Thus knowing the spectral‘properties of chl-a, Egn IV-21

describes the excitation transport of an array of chl-a molecules in a

thermal bath.




Fig. 15
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Transfer rate vs. interaction energy as predicted by

the GME solution, Eqn IV-21, for the 660nm band of chl-a
fitted with a Gaussian profile, G. (°l-g = 4.8 x 1012 sec.'l)
Curve L 1is a Lorentzian fit, Eqn IV-23 for comparison.

(X7 =1.13 x 1013gec.”l) shaded region indicates the

range of transfer rates deduced‘froﬁ the exﬁefimental
fluorescence lifetimes. Mean-spacing values are from Fig.

16 angacorrespond to the chl-~-a seéaration needed to

produce the interaction enérgies on the 1gft—hand axis
éssuming a dipole-dipole approximation and the dipole

2

orientation of 35° with the plane used in this model.
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ii) application of the GME to the PSU model \\

4

Experimentally we are given the fluorescence lifetime which as we —
have shown is also the mean trapping time‘tf (Section II). 1If our energy
transfer process is Markoffian, indicated by the fact that ®(t) would
be very small for t approximately equal to 1/w, then the excitation

hops from site to site and T, is given by:

T =<n>1/w/; <>l . : 1)
\Y \(\) |
where {n is the average number of steps taken to reach the trép and
fj is the nearest neigﬁbour transfer time equal to 1/w the
reciprocal of the transfer rate.

Montroll (1969) has worked out an asymptotic expression for the
random walk on a lattice with one trap giQing the average number of

steps. The result for two dimensions is:

<nd = N1nN/g + 0.195056N - 0.1170 + O(N-1) '(2)

&

where N is the number of lattice points, in this case antenna

chlorophyll.
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The relationship given by Eqns 1 and 2 is only valid
iff9$;> 10 as shown in Fig. 15. ﬁowever we expect that three
factoys would destroy tbe coherent nature of exciton transport.
ana lead to a diffusion of enebgy rather_than wave-like

propagation as discussed in Section III. These factors are:

1) chlorophyll molecules are not regularly spaced but randomly
spaced with a mean spacing of 15 + 1 % N
- . =
2) their orientation is likely to vary somewhat from that gi%en

in Section II. ' | . -

3) chlorophyll molecules are poiyatomic and therefore having a
high density of vibrational states, lend themselves to a high degree
of exciton-phonon scattering when immersed in the "lipid-thermai .
bath".

The éffectvof randomness in spacing and orientation on the
scgtter;ng of excitons was ihvestigated'by K. Katasura (1964). For a
one dimensional lattice of dipoles with stro?g coupling; hevcalculated
ihé time dependence of the RMS diSplaéement of excitation for varying
degrees of varianee in the lattice spacing and orientatién of the
dipéles, He found that thg RMS displacémentﬂof,excitation soon

becomes dependent on the square root of time as required for diffusion L

(Section III)..

-3
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In the weak coupling region the coherent pﬂbpagapion is even mgre

, sensitive to disruption (Forster, 1967; Section III). We therefore

a

assume the validity of the random walk equation for -pur model

Fluorescence lifetimes (trapping times) for P.S. II of plants

~and algae are typically (See Section II)

0.4 + 0.1 nsec.

for low light levels implying that the traps are open for excitation

(Muller, Lumry, walker, 1969).

The number of antenna chlohophyll in P.S.  II range from about

(Section II)

250 to 350

With these values, the average number of transfers needed to reach the

trap is by Eqn 2

488 to 721
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This then gives by Eqn 1 the range of transfer rates (inverse

transfer time): : ' \

w=(l.2 to 1.8) x 1012 , 0.1 sec™!

This range of w corresponds to a range‘éf interaétion energy predicted
by the GME theory from'Eqn Iv-21 or Fig. 15 as:
T Ja .

x' : . .

U =10 to 13 em~1

\

The lower value corresponds to the. assumption of 250 antenna

chloropﬁyll, the upper value to 350

Now we will calculate {u| independently from the model
assumptions of mean spacing,-orientatiqn, and the chl-a absorption

spectrum.

Let us suppose that the interaction is entirely dipole-dipole in

//,‘\ (Jackson, 1962;

nature. Then the interaction energy is“given by:

Forster, 1965)

o T § B 2 () ) |
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where: n is the refractive index

rFﬁa,Eb are the transition dipole moments of.
molecules a and b (esu)

Rup is the vector joing the dipoles in (cm)

- -
ﬁ-{: R/IR! is the unit vector along Rab

U is the interaction -energy in (cm'1)

s

If we fake ma\ = \_ﬁb\ and expand the dot products we get:

. a )
n* \R\?
=
where k = cos® - 3cos¢pcos Y

#

’eis the angle between the dipoles and¢,‘2}/are the angles the dipoles .
St B teh

make with the line joining them as-follows:

e
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A A (

If the transition moments are allowed to rotate a;gmuthally

maintaining an angle p with the plane of the membrané; then the RMS-

average of K és (Appendix'D):
\ .

<k2) = sinp + 5/4 cos* p

The transition dipole moment is readily obtained from the ébéOPption
. N

@

spectrum (Murrell, 1963):

x

(8n2mey/3he?) | M|2 = 4.319 x 1077 S £ (v) dv )

where: v: wavenumber (em=T)

E (v): extinction coefficient (dm'1moles'1litre) s .

m: electron mass A

e: electron charge
¢: speed of light

IM}2: dipole moment (esu)

h: Planck’s constant

~
~

N
From- this we obtain:

IM{2 = 9.184 x 10-39 ( S ; (v) &v/va)

where Qa: absorption maximuq{



g

" For a Gaussian line shape this becomes (Egqn IV-§5)

G
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1412 = (1,955 x 10738 5 (vq,07vy)

»

where: v;,,: half-width (em=1) at half maximum

-

;’m : extinction coefficient at maximum (cm-Tmoles™'litre)

v, : absorption maximum (cm=l)

For chl-a in ether we know the following (Colbow, 1973)

?ﬂm = 85100v(cm'1moles‘1litre)
Vi/2 = 188 (cm.'-;1 )‘

-

Vg = 15149 (cm-1)
Therefore: ]M\2 = 2.07 x 10732 esu o -
The index of refraction n as discussed in Sectlon II is 1 45. The
orientation of the transition moment[B will be taken to be 35a
20 as discussed in Section II. The RMS value of K averaged over all

possible égimﬁthal directions is then from Eqn 5:

sin%(3542) + 5/4 cost(35¢2)

<KD

0.82 ¢ .02

L]



| :»;“r .
We shall now calculate |[u} from.Eqn 4 for a range .of .
R from 14 to 16 R,~the assumed mean spacing of chl-a iﬁ PSII
from Section II. This value willvthen be compared with that
calculated previously from ‘Eqn Iv-21.

We can méké“some estimate_of the error iqvolved in using the
dipolé-dipgie apprdximatiop, /Chang'(1972) ha§ worked out a correction
to the dipole-dipole approxi@ation baséd on anwexgct calculation fo,
the t?ansition monopoles. This involves attempiing to calculate the

3

orbital wavefunctions. In the range of 15 + 1 & the ratio of
exact interaction to dipole-dipole‘paléulation fo? c?lra rangés from
0.7 to 1.4 dependjng onvphe orientation. Tﬁis means that \ﬁ\
calculated from Eqn 4 may differ by + 20%. Egn 4 is plotted in

Fig. 16<f5r a range of R from 10 to 20 R and a K vaiue of‘0.82.

The 3+ 20% possible variation is indicated. The range of \u\ -
coiresponding to 15 £ 1 ﬂ“bredic?eq by Eqn 4 and Chang's results
s avout L . A, .

i
3 ~ /

u= 10 to 1S'cm'1



Fig.
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n
3
i,
AN

, : ¥
Energy. .vs. chl-a separation for dipole-dipole interaction
given by Eqn. V-4. %hé\gsssible +20% correction for the |

e N2l s a-
exact monopole calculatiomis indicated.
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Using this calculated interacéién energy of 10 to 15 em™!, we can
substitute into the GME solution, Ehn IV-21 to obtain the nearest neighbour
transfer rate (w). The answer;is obtained diréctly from Eqn IV-21
or Fig. 15 as: ., 7
(1.1 to 2.1) X 1012 gec-!
We can then compare this to the pair-wise transfer rate predicted by

the Férster Theory, Eqn III-28, for the same range of interaction

’

energy. Colbow (1973a) deEermined the transfer rate between chi~a
antenna from the Fdrster Equation ;sing the same mean-spacing and
orientation assumptions as in our model and a new value for RO of
65TT_A based on spectroscopic measurements of chl-a in iipid vesicles,
(Colbow, 1973b). Thg rates obtained were: '

| (0.24 to 0.64) X 1012 gec™!
This range is close, but as expected somewhat lower then the predictions
ofvthe GME éheory as ﬁhe rates from the Fdrster Theory fall in the very-
weak coupling region’but:near the interm&diate region where the-
R=6 rate dependence app}ies as indicated in Fig. 15.

The GME theory gifés better agreement*ﬁm{h experimental dgtg.
It also provides an expression useful for calculat{pg transfer rates
over a wide range\of interaction strengths. | |

The results are summarized in the accompanying table.
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iii) the "in vivo" absorption spectrum

The value of the interaction énergy, 1243 9m‘1, predicted by
our model, diééllows strong exciton splitting of the absorption band
"in vivo". The red absorption band of chl-a "in vivo" may be ‘
separated into at least three bands with maxima at 673, 683 and 695 nm
(Rabinovitech and Govindjee, 1969; Clayton, 1965; . .Kreutz, 1970). ‘There
is strong evidence that this multiplicity of peaks is due to
chlorophyll aggregation, rather than interactions with lipids or
proteins (Rabinowitch and Govindjee, 1969; Kreutz, 1970; Katz, 1973).
There is general agreement that the 683 nm band is due to a diﬁer
(Kreutz, 1970; Clayton7é1965) and the 695 nm band to a stacked
chlofophyll polymer (Kreutz, 1970; Katz, 1973; McRae and Kasha, 1964).
Whether the 673 nm band is due to a different chlorophyll~dimer or
represents a monomer is an important unresolved question (Colbo;,
1973a). If we consider the 673 nm band as a monomer, then in order to
pﬁodube the shifts to 683 and 695 nm, interabtion energies of 218 and
470 e~ are required respectively. This would certainly be in the
range oq strong coupling and would correspond to transfer rates n
estimated by Eqn. III-15 of 2.6 x 10'3 to 5.6 x 10'3sec™!. To
account for the observed fluorescence lifetimes, the trapping rate or
trapping efficiency would have to be much émaller than the .
inter-antenna transfer rate in érdér that thé excitation could reside
among the antenna long enough to fluoresce with the measurgd

efficiency of 3%. This assumes hék single chlorophyll moiecules

salem s T . R I e S L At ¥ AL -l oy
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are arranged uniformly in the PSU all having a sufficiently
small spacing required for the interaction energy to bé greéter
than 100 cm-T,

Robinson‘(1966) discusseé éuch a model where single antenna
chlorophyll are arranged uniformly with a mean_spaging of“11ﬁ.

»

The interaction energy is ofvthe order of 100 cm", and tpapping(;sf‘\‘
the rate determing stép: 1
In this case the excitation soon reaches an equilibrium
distribution, where the probabilit?<5f locating’the(excitatioq on any
one of the N sites of the PSU is‘1/N (se; Section III). This is
directly‘bpposed to the trapping mechanism we have employed inAour
model described in Section II. Here the rate of trapping is as fast
o;«faster‘than the inter-antenna iransfer rate and proceeds with
almost .100% effiéiency.‘ Therefore the intef-anténna'transfer'is the
rate determing step. Robinson’s model is unacceptable as it is
unlikely that!éll the antennae are close packed wéth a spacing
of 11%8. This figure is based the VOluﬁé of the quantasome.

. . S, .
Quantasomes are morpholoéicai'dnité\observed in chloroplasp
preparations under the electron micréscope and were thought to be .

photosynthetic units. However they are‘now considered to be

artifacts. (Branton, 1968)

-
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A suggeséion (Colbow, 1973) that incorporates both exciton

- i

Sblitting and a low interaction energy (slow t}ansfer’rate) between
antenna molecules is to locate a chl-a'dimer at each antenna site,
(two molecules per unit beli).- For a PSU of 300 chlorophyll, this ‘
would imply a spacing of 23.5 R. ‘Thé interaction energy between site;
could then be low enough, (% 10 cm™'), to give a slow transfer rate
bénh the strong cdupling ;ithin the dimer would produce the exciton
splitting. 1In order tortfeat this vaﬁiation of the model-préperly,

the intensity, width, and Stokes shift of the red absorﬁtiqn band of

the dimer would have to’begghown. Colbow (1973a) using the Forster

-

theory obtained a value of 9 ns for fhe mean trapping time in an array
of 150 dimers,.ﬁﬁich is £ob large by a factor of 10. One og the
reasons may be that thé néﬁural lifetime TB of chl-atébnomers, (15.2
ns),.was used in the Forster equation, Egn. III—T9.' The natural
lifetime of the dimer is probablj smaller and could be obtained from
the absorption spéqprum parametens, if they were known. Also dimers
would not probabfy be as free to rotate azimuthally as single chl-a

antenna, so the orientation factor k would be different.




iv) éonclusion

2

For the PSU’'s of green plants and algae, for which our model is
intended, it ap;ears that.energy is transferréd among the antenna N,
chlorophyll by "vibronic excitonsﬁ resultipé from the "weak’coupling" ’
interactign between the vibrational levels of neiggbouring chloropﬁyll
molecules. The wave-like chaﬁacter of the excitons is rapidl}
destroyed by the variation of spacing and orientation of the molecules
in the lipid:environment. This means that the exciﬁion motion is not
described by a single wave-vector (directionality or coher®gnce).
Rather it moves by diffusion, with a speed faster than the diffusion
of excitation in the very weak coupling case. &\K

7 We have also dérived an expression, Eqn IV-21, from GME theory
relating interaction energy and transfer rate between antenna molecules

that gives results in good ageement with experiment. It is-'also useful

over a wide range of interaction strengths.

»
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S

" APPENDIX A: Derivation of the Forster Equation

Consider two molecules, "a" excited and "b" unexcited,
initially. Both molecules may be of %he qgmé kind or different
Their total'vibronic-energies shall be called E: and EL respedt-

" ively. Exéited states will be denoted by'prime marks. We shall
follow the{development with time of situations resulting in molecule
"p" excited instead of"a" and where the vibronic energies are then

E“ and E£>respectively. Such a process can be described as :
<EJCE | — <EIKEY]
ol <:-E*:J t‘b i\ﬂ-—_;b <:[E“J E\:'

- We normalize the states according to the following prescriptions:

(Dexter, 1953)
ol ReD= 1= <alES

for the initial states, and:

e B = 4%
NN ‘4—\5—\5;

for the final states.
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The integratibﬁs are over electronic and nuclear coordinates
and Va , V¢’ aréwthe quantum members of intramolecular-vibration.
With these definitions the orthonormalization relations for

different %nergy stated are:

<E.\"l‘EJ> - S(e.-E)= dw S(v.,-‘va‘)

dE
§ (am8) =

~ N EV >

(vs v)

~D_

where we have used the property of the delta function

-

g% %(x)i:- Z %(7( g(X ><>

The expectation value of any operator is , from the normalization
‘relations:

<AY - <nlAlp> i_é

Y

The quantity, <}\|Aln>represents the density of this expect-
ation- value on the energy scale ie) ' ,
. T AnlAlny = <V3>-=‘—
The expectation value itself for any final state energy inter-

val is obtained by integration over this interval.
-
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The corresponding time dependent wave function can be written

-

as a linear combination of the initial and f‘ina}: states:

—

()= o) Hue (BB @
+ |\l eCen, B ) Fav (EES) €

- "/”(E.’ + Eb>t

i

where, ’415' = <r\ E._)FEL'> ' . ) y
We have integrated over all possible final states.

This ‘is‘ a solution of the time-dependant Schroedinger wave

%

équation:
. (R é—f— = .<H°+ R),QP | (2

where: Ho is the unperfurbed hamiltonian
({ 1is the interaction potential
' / {
The coulomb interaction between a and L, andl\b and a is
included in Ho . Therefore '#f‘/l; and ’hg’ are eikgenfunctions of Ho

H, is only the resonance interaction between thé initial and final

States. ie) <E¢’_, E, l u.e\‘ l E*E\/>



Substituting Eqn 1 into Eqn 2 and using the initial conditions
\ - ' Vol - | -—

gives:

\e. —\,L‘ L e_-%(zzf&\.)'t gg dc (EaEV)
3¢ 0

‘/g(Ed Ey)T
+ ¢ AN

Eq J E‘/

| A (ESHEDT -~
= - UHun € "

Wwe assume all along that no popul;tion depletion of the original
’ \
state occurs.

L

Multiplying through by 1}*and integrating using the ortho-
normality conditions gives

éccj;‘h*} S <E.L,c\, (wl e, B o ZRICSENE @*"E‘jg

e (3)
The exponent,

(6! +e)- (e.+E() = (BI-EJ- (EC-EW) = AE

is the energy difference between‘the initial and final states

P g

Y
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5oy

U(E,E) = B R0 EA,EVT> y,
. 7

The matrix element H(E,.‘E\') is:

., where the dependence on the initial e,ne'rg}ies E: and E:is dropped

because these are considered to be constant. ( see Eqn 1 ).

LLLE&;EE:) is the density of the resonance interaction matrix in the

) CE-.,E;) plane according to our normalization prescription.

. 3 x@é’» )
To solve for CCE._)E\l,t) integrate Eqn 3 using the

initial condition: C(Ea,E\/,0)20. This leads to

- |

&

-

The expectation value for the state ’Zh y (E.,E\','t) then becomes: .

U o7 & (P ] ;‘.hi <AE1:
B G ak

¢ (e, Bl t)

Since this is a density in energy space, we can integrate
, .
over the final state energies E. and Eb to obtain the probabi-
lity,’fﬁk' , that molecule "b" is excited, independent of the final

vibronic energies of both:

fa¥ (t) = “ | < (Ea, BV E)] JE. dEy

. t
w* (B, E() sin® ?ﬁh

Gk

~ JE.dE,

=

B N BT S T e T R

. (4)

~7
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For ver‘y-weak’ coupling limit we can consider Eqn 1

for large timés, t~®o®. In this case we use the fact:

Sin*tx

g(") = ;L—:; wtx?

So that the limiting value of the integral, Eqn 4, becomes:

3

Make the following change of variables:

AE= EJ-Ea-EY+E,

“and £ = Ja'_ (-Ef',— Ea t+ E(" E\J |



T

Eqn 5 becomes:

R

J.Tt't ua(E"vo) JE ) - (6)°

fa v (t) =

The transfer rate is then:

Nasp = '2%1 HA(E)E)AE ‘ | .' (7N

We now turn to the problein’ of specifying LL(E,O). If we return to

the original energy parameters, Ea'and E\ then (A.(,E[;f)‘b’ecoqles:

W(E o) = W(ELE, ; Ea,EV)= (B E ) EL-E EHE)
| . (8)

E is the amount of energy transferred between the two molecules,
therefore the final state energies are expressed here in terms
of the original state energies and the transfer energy E.

For simplicit¥ we make the Born-Oppenheimer appboxima}ti‘on

’7'['6»’1('54"391;;5) = ¢,/ bp A (ES) 15(55) . 9)

B (£, = $a b X (Ed-E) X((EurE)

-w.“ ,‘ . .
where )(4 anXm are the vibrational wave functions of the excited
and unexcited molecule ,Q . dJl and &Q/are the electronic wave functions

The scjua’re of the matrix element M(E, 0) in Eqn 8 then becomes Eqn 10
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for electronically allowed interactions, neglecting vibrational terms
S interaction Hamiltonion is a function of a electronic coor-

dinates only and thus factors out of the integral).

UH(E,0) = <d'di| V] dudy) S, (EdE-E) Sy (EnEwe)

- U*  Si(edES-E) Sp(EEtE)
o L. (1)

where \ is the electronic interaction energy and W is the electronic
interaction matrix element.'s*andskare the vibrational overlap
integrals:

S (B E) = X/ E)] X (£ D

>

The next step is to specify the interaction U. We will restrict

it to dipole-dipole interaction:

.

| ™ :' M, - = ‘ﬁ’.ﬁ:\ <h-ﬁ. 'ﬁ‘“b>
U= n* Ri, Ma. e R* (m ) . |
l:\.fl |P\V§\.] X . ‘ | (11)
a b

where the terms are defined in Sect. V by Eqn‘ V-3 and V-4. .

Inserting Egqn 11 and 1Q into Eqn 7 gives:

y : w* e A,
Da-’L (E_q«..) Ek) = 'n"& ‘hz R:\ lw\sl S‘ (Eg) Ee.'“\Y) N
. (RL"‘S:(EMEV" ""’) dv
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where we have replaced the transfer energy, E by the transfer "o
frequency VY= 5;?{ , and -the integration over energy to integration
- over frequency. F

t

This is the transfer rate for molecules with the initial

states E,’and E,. We now introduce the condition of thermal
equilibrium‘in the initial state before energy transfer by the

) @

introduction of suitable Boltzmann factors. The total transfer

N t
is then just the integration over all energies weighted by these

factors, which are continuous functions g’(E) for the excited

molecule and g (E) fop\the unexcited one. THus we get:

3

et = TR | im0t [ E9S0 G- EL |
X ?lMLP 53“0 -S:(Ess EBTH’V)JE" 3 dv

(12)

The terms in the cur1y brackets are closely related to Spectroscopic
transition probabilities between the ground state apd excited

states of molecules a and_b. The first bracket is proportional

to the spectral deﬂsiiy of the emission spectrum of mqlecule a at
thermal equilibrium in its excited state, ie) the fluore;cence
spectrum. The second bracket is proportional to the spectral density
of moleculg b. The integral‘in Eqﬁ 12 is then proportional to

the overlép integpal of the fluorescence spectrum of a with the

\
absorption spectrum of b.
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If‘ﬁﬁﬁand 9(\0are the emission and .absorption intensities

respectively, then the follow(ng relations can be derived from

— ~
the Einstein coefficients forabsoreé%gn and spontaneous emmisssion.

o 2ZANIRI Y | gl QY e e+ dE
E(V.} T 3(amio)nthic d )S( ) V) (13)

PP

s - 2ernniere [ e S e

3% ?

See Dexter (1953) for a derivation.

N’ is the molecular,ooﬁ:entration; 'c is the velocity of light;
T‘is the intrinsic fluoresce\ce lifetime in the absence of quenching

processes. Insertion of Egn 13 into Eqn 12 gives:

T 9k («@v\lo g'g)(\)) ?(\)) v*

Nawb= 7, RG \ 130 h‘\&

This is the Forster equation.élt can also be derive

a classiecal -
basis by considering molecule b as a dipole in the "near zone" of

the oscillating electric field of dipole a. (Hoch and Knox, 1968)
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3 N | J
.

APPENDIX B: DERIVATION OF THE GENERALIZED MASTER EQUATION

1

‘The déivétion.presented here is based on Zwanzig (1964).
The master equation that we ame=concerned with is a kinetic equation

@

forRghe diagonal elements of a density matrix. (Schiff, 1968)

Let the density operator be 'f' and its matrix elements in

) !
some representationCPe flam.
The time dependence of the density @atrix is given by von Neumann’s

equation: » . .
af iy
B Tt T T W Y.Hgf] // ‘ (1

')

H is the Hamiltonian. As a matrix equation this is:

ROk ) o

We wish to extract an equation giving the time dependence of the

A .
diagonl elements of f , which does not contain non-diagonal elements.

~
3
[

Introduce the operator C defined as the commutator:
A N ' , :
C = [H) A] (3

Define the "Liouville operator" as the operation of going from

A to C:

= LR - RO



% -107-

G o

.

In the chosen representation it turns-a matrix with two subscripts into
o

\‘)‘ another matrix’and is represented as & "tetradic", (what a dyad is

o to second rank tensor). .
!“ : .
Z Z LMO\M V\ Alm’n" , : (5)
! M “\ .

With g(f‘def‘ined as in Egqn 3, the explicit form of the Tetradic is

Lw\km'i' = ,."Ihm' .gﬁn; ’T»gmm‘Hn'n L 7(6)'

H

-

I4 : .
In Liouville operator notation, von Neumann’s equation fs: .

dp _ _ L pp : B
_B_'%‘_—, tff | , | (7

It has the solution:

°)

- AR ?c

The tetradic openaﬂok‘ exp(-itL) can also be written in terms
of the more familiar time evolution operator, exp(=- itH) giving
S
the folllowing useful identity, verified by dif‘f‘erentiation ’

with time and application of Eqn 6

itk = [t ﬁ) " %ﬂfﬁ (8)
e‘ )Mnm’n' e » MM’, ALY ‘

T
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By applying this to Eqn 8 we get the ﬁeisenberg solution:

A _ -}tg Lgtﬁ
peo= e gt

-

1

Theflaplaceltransform of }3 is denotéa by g(p):
\ -

\ - ® i
S gm= [ e pmd
o e

. On transforming Eqn 7 we get:

PR - flo)= ~ £ L30p)
which has the formgivoperatbr solution:

n |

7

. A
The advantage of introducing ﬁ rather then working with H

is that the analysis in terms of the Laplace transform is so

simple.(Zwanzig, 1964)

To select the diagonal part of 50\ , define the projection

operator D which in tetradic form is:

e
[D van m' 6’ =;‘ g'hﬂh S;hnh; S; nn 1l ) 2

(9

(10)

(11

(12)
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’ -

It obeys the fundamental requirement of projection operaio?s
i

‘ Dﬂ-_ D/Z
The non-diagonal part is selected by (1-D).

. 3 A

Thus the density operator .separates into a diagonal part f| and
B A

a non-diagonal part: fa

S
&+ | |

g S

> 0> 0>
Iy
>

P D€ |
| f:. - (\'-A[>>’§

In just the same way, the Laplace transform 3 separates into
diagonal and non-diagonal ﬁgfts:

ACEIJORE NG
g, = D3 A
CZA. = (|2_ t{>/‘l

Next we use D and (1-D) to éparate Eqn 10 into two parts:

Dp4(p)— D) =-1 PLi(P)
(-5)p3(p) = (=5} $C2) =

._ .-v*‘{(f-b)ng(P)
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" P36 P = - £ DAYG)- 0L 31 (7)
RO R S LR RS 1
..(13)

Solve the second equation for %L(P)“
l A l

g“= P+ ((-0)&K fa(o)_ p+i(-D&

Z(I-D)léi,(P)

.. (14)

and substitute into the first one

P%I(P) - §|(°)= - ki D\oﬁ %,(P)- _‘;;" Doe

6, (0) -

|
p+ % (-0)K i
rf+c‘ét=i2)£ <|_D)‘f%'®

Invert the trénsform using the theorem that the inverse of a product -

-
o~y

is a convolution. The result is:

_C\_jait_)_:_‘(’D}e'ﬁ(ﬂ_LDze-i(t—b)ftf;(o) (15)
i ’ ¢ it (-b) R |
gdt Dfe'“ (I—D)fal(t"t.)

°
In most applica%@ns of the master; equation, the density matrix
is initially diagonal, or fz(o)zo.This initial condition is

referred to as the assumption of random phases. When it applies ,

=
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; . . ! o 2 A
Eqn 15 makes no reference to the non-diagonal elements of f .

Thus the master equation has the desired property of containing

only the diagonal elements of ?’. ‘ ~ -

When a more general initial condition applies, all of Eqn 15
must be used. Even so,-the non-diagonal elements enter only in the
initial condition( We will only consider the diagonal elements.

Eqn 15 is expressed in abstract operétor notation. We will
rewrite it in a mbre exp;icit subscript notation. For this we use
Eqnst B6 and B12. Chose a representation that diagonalizes the

unperturbed Hamiltonian.

<H°)~n = En Sen

Then the unperturbed Liouville operator is:
(Lgmnwh'= (EMﬁE“)gM“'E“M

then

D£Q‘=£°D =0 . ~

™,

Also the product DLD vanishes for any Hamiltonian. This is seen

" from the definitions, which lead to:

QD£D> p’“.\w\ln" = ghn L W | gm'hl
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But because of Eqn 6, ann‘ vanishes and we have:

DLD=o0 - (16)
Eqn 16 serves to eliminate the firat term on the right of |-

Eqn  15. The reason is that: D ﬁé\, = D LD?

1S ’ ’ A . A
The rest of Eqn 15 without the initial value fa(i’) has the

explicit form

AQL— ydtuﬁjﬂtmjh ooan

where: w (t)= DK - (FOTDIR (-B) R - as

A
Because f| is diagonal, Eqr} 17 is:

d c‘i"‘;(t = - g CH)'\Y_ Wiimwn >f"‘“éf t> (19)

£0
Because D 1™ the kernal Wiuw.a can be simplified to: - _

Wi b wn () = Z‘L. -‘tu D)ﬁ( DK, EMMM 0

Next we use the result:

z Wiawm hn L‘t’)aD i"‘tﬁl é W"’\Mb\\(-t—) =0
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This is easily proved by the following demonsta.tion:

Zoenes TTE (@) X[£ 00
T (B)emi x §33 [ ]

..Lh'\ .

But from Eqn 6: gﬁ);“"h = Z (H‘|>..\; gmk - % gmu@‘l)th A_
, S (H|)¢L'- (H|>¢L |
o .

"

i
7

-
-

which proves our assertion.

We’aiso note that t'etradigkbbehave ver‘y much like o"r'dinary
mat;'ices; In fact their alg@ can be reduced to that of mat;rices
by <he f‘ollowiné trick. In representing an operator by a matrix,_
we pick some arbitrary ordering of pairs of subscripts so that

the pair, (m,n) is denoted bye¢ . In this way Eqn 20 becomes:

i , (1)L _ - (202)
\N:lF (*:) = ;i Jf?l e <:‘ E>) /6?[ jg«d.?

and the sum rule becomes: Z w:(P =0 |
' ol

Eqn 19 becomes:

. i
d CR dt's 7w, ﬂ,(t-t') (19a)
- | |

dt o

st o s Sy oy
I * i
m&ﬁ, e Rl
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Using the sum rule we can write the integrand in Eqn 19a as:

Z wan(7) Gulet) = Ty () (64 fa 5 v
o Zfon ) i (h#) e fult ]

b

Thus Eqn 19a becomes: .

%@VA = - g:#‘ % ;_'W'io_(-i""t‘) fr (t-f')—%4(t—i‘)f¢(f-t’)j -

... (21)

where Wy e is defined by Eqn 20a.
L 4
// In the representation of the unperturbed Hamiltonian where <] ad

<B| are eigenstates of H then: 7
P« = '<’<|S’ |"‘>

is the diagonal element of f in the representation of H,eigen-
states. It represents the probability of -occupancy of the state oL,

Thus Eqn 21 becomes:

t | R
d Lau—) = | dt D fw (-t Palt-t')- kﬁu(f-t')ﬁ(t't’)i
t ) B ' ’ '
§§§ | ...§22)

This is the generalized master equation for the tr'anépor't of \
excitation in the familiar gain-loss form. The physical meaning

of Eqn 22 is discussed in Sect., IV. °
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APPENDIX C: Derivation of the memory Function for

Molecular transistions

In appendixgﬁiwe derived the operator form of the memory

function, Eqn B20a:

ar(t) = DL EUDR(p) £

\;;\ﬁﬁll now derive an explicit form for this equation for molecular

systéms“a is the Liod;ille operator defined by:

A A A A A
LA= [AAl=s HA- AH
~ ’ .
3 is an operator and H is the Hamiltonian . D is a projection-

operator that selects the diagonal part of whatever it operates on:

- pA= A

?

 where ﬁd is the diagonal part of A}\NQQ\\
and ﬁ is the basic quantity in the GME approach.

It connects the probability at a éite-(at time in the past to

the rate change of the probability at site 3 in the present time t.

(1)
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_We will start from Eqn B17:

X gt( BRI '
p =) wit)falt)] & @

where f;~}s the diagonal part of the density matrix.

EqQn B20a can easily be written, by definition of D as:

. D(fe_it(hb)f(,-b) f\’@): Zre-it(\_b)}e("b)ffdig.c

and by the definition of L as:

B TS e~ [»H,:e' SRR

. . ~ A ﬁ‘ N .
Becauseﬁ; W, W with H, diagonal ,the commutator with becomes zero

and we are left with:

S - (t0-d | :
I

&

Next we note that:

e_it(l—b) e("_b> - { é.itLo + Q_J_gl\g,._orélerﬁ}( \—D)

Neglecting higher order terms we get using Eqn B8

.efl't-x?(!_b)f _ e.au,t/t [(,"D) f‘f} eiu.,flk

—
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-~

Putting this b‘ack into Eqn 3

[ \n -t“f/h ‘_;H.,'t/'k
"_E‘ //H) AC'- )ff : ]’“

Next we use the result:

| ¢
(1-0) Pp, = .-i-<|-b>[u ol="ETw, 9]

beca.l.ise _[H” Y]: o

This gi've’éﬁ S
[ -iHt/h Hot /R
e T ple

‘The result can be completely written in Matrix form as:

P

.ha Z lH—Lp\ "COS -@“—‘g—&)‘t 3 facat Lt'5>'fan<f's)j |

ot p

ﬁSing the definitions of the elements as:

<"£|H‘o(‘¢7=
oL [H[R> = ©

_<“<,H'\F>= H"p \

- from which we can define\s):&in Eqn Ba& as:

wyp () = K,. ‘ H," ‘ cos (_:E_-_L_:\._\‘_'_E_P. tl\) @

e

. .
. . £y - i

. . y B ARPAR i

e K R b T T Ty Sprp S 3 b A R

I N . L A
R - S T  NE E B s
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rInspection 6f Eqn 2 shows that the basic microscopic form .
of\w'is oscillatory and non-decaying. A irreversible description of
exciﬁation transport and the possible trénsitiog to the Pauli
equation necessitates a decaying memory, in order to aqcount for
the loss of coherence or phase correlation between excitation
at one site and an éarlier'site. We should obtain a delta function R
in the appropriate limit. To obtain a decaying memory one requires
a coarse graining operation représenting the passage from micro-
scopic to macroscopic level of description. Coarse graining means
taking an average over small regions of the state Space. If the
microscopic states aree(,p then the macroscopic céar‘se-gr‘ained
states are an average ofdjp in some small region of the state
space. This coarse -graining‘in terms of molecular transistions
would mean averaging over the vibrational states of a particular

electronic transition.
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We can write the coarse-grained wr as f;ollows :’
d ’“ Ee~ E (5
w;"'p’ (f)= T a Z\H.ﬂ;\ ¢os U t

Compare this with Egqn 4 above.
Using this w, the GME would describe transport in the coarse-

grained space of the -{'p" states.

If we let: &> = [.,(/>fq>
which is appropriate when the description is in terms of a thermal

bath whose states are \a),then Eqn S becomes (Knox and Kenkre, 1974),

-
Wy (t) = 2__ ‘ H,.L cos(co.\g t) cos (£ ’/p‘t)* (6)

L

/Hd{ ‘Q(<a(v1s>!rs>(

Wk (E«‘th)/t
Nab= (EL-ER)/K

Jl.,[, is the-energy difference of the coarse grained system

and (A).k is the energy dfif‘f'er‘ences of the bath states. The transition
probability with memory \N:o“l is thus seen to emerge (except for the
cos(JLt) factor) as the Fourier transform of the interaction:
K3
| <ata| vl BB |
Thus the decaying memory arises out of the basic oscillatory

memory at the microscopic level.
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The Férster equation involves the interaction ene;gy in
coarse grained space because it averages over a Boltzmann weighted
distribution of stéées. (Eqn A12) Knox and Kenkre (19fu) slighﬁly modify
the derivétion presented in Appeﬁdix A so as to include a cos(uft)
factor and integration over all possible &0 as required by
Egn é> (Summaiions become’integrals for the continuum of states
assumed in the derivation of the FY¥Yrster equation.) ¢ represents
all possible differences in energy between statés of the "bath".

‘'Their result is:

)= A | Pl coson) s

where an(uo is the F8rster equation for the transition
rate between molecules m and n as a function
of the variable w which represents the energy
differences of the states of the "bath"..
A physical interpretation of g» in terms of the stokes shift has
been given in Sect. IV. F_ (0) represents thé normal F&rster
equation. Factoring out the time dependence ,Eqn Iv-41 gives:
. | | . A |
b(t)= QE F"“"B Fen (w) cos(c.o't)clw
n -0

s

The use of this equation for the mémory function is discussed

in Section IV.




-12%-

- APPENDIX D: The orientation. factor

S , ‘
- We have the following relation between two vectors:

4
A

AeB-3(R-A(@BA)=x

&

where n is the unit vector %g the line joining them:

«

Settipg {#|= |B|=|the above relationship becomes :

K_':'- co,s4>'— 3<;os¢,' &05453_

where the angles are shown in the above diagram.The situation

can bé Eepresented in spherical polar coordinates as fo

- 1 ) ) \

v

llows:

Y

B ag— gy
)



™
We wisn to find the RMS average of over all orientations of.
azimutnal angles w,,w, , for fixed polar angies 6,,6, as follows:
AT a . v
. | T Py
<x*H= —— dw,czlw,_ (cosd - 3cosd, - °°5¢")
o o -
- (1)
We must write ¢, qﬁ,) ¢1 in terms of ©,; &3, L« the polar angles.
Immediately f:r'om the 'diagr'am we have:
- cos ¢, = cosSw, sing, .

COS'¢3_ = CoSwW, Sin B4

.0
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To f‘ind a r-elatioriship for cos d) Wwe use the ‘Addition Theorem for

Spherical Harmon.ics (Jackson sect 3. 5):

Fi(casd?)_-: .UZ-H i YIM(Q o >{Q ei)”“) | p ‘

which for®i=1 we obtain: , ) : ' )

-

~ ' - +cose,cosea
We let &= 9 p and substitute into- Eqn D1:

>~

an

2 cos* ! - sint p’(s(nw,sinwa—- lc.osw,cosw,_) R
o,

4+ A ces”"p’ sivs‘p' (Si’h WS nw,y ~ 1cosw,cosw,,)§éw|c{wa
Q9 : . :

LN ‘ -

The odd sine and qo‘éine terms will integrate to zero.

We are left with:

, _ F
k2> = COS‘*F’ + _E'S‘l:::. ‘ ‘
: : m
| ax
XSKSsinaw' $n7eo, + 4“’“"‘""":5_‘”1) dwydes,
o
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which is::

3

<k2p = cos* @’ + _5; sin*p’

' .
where @ais the angle perpendicular to the X,y plané?(membrane plane),
Ih terms of the %ngle with the plane we can write:

L]

B - 900_ Pl

We have finally the required result: s ;

N
\

Lk = séh“[s +‘—%_— VCOSQF\ |

y,

———
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APPENDIX E: Derivation of 'the Wave Equation from the

Generalized Master Equation

We wish to show that

dpe_ e
I+ -$ Fy P(s)-F P
At SJSé(t )ZZ}_[ )PJ(S) )‘P S)}

[]
has the form:

é:(j:)ﬂ B tcw:-sg—'lxaﬁl ds

The suﬁmation in Eqn 1 for nearest neighbours becomes:
, Fi,iﬂ P(Jn - FL'H,"Pi + FL,C-I Bi- Fé-\,z P‘.(s)

Af we assume reversibility and isotropy, i.e.

[

F;.)"__H = Ft’fl,i = Ft',i-l = FC-‘)i T

" we get |
F K_Piu - 2P + Pi-.] - e

This is the difference form of the second differential, so in the

continuum limit we have:

e 32 P(x,s)

3; .
- 3x *
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Substituting in Eqn 1 we obtain

3 Pixst) | sP&s)
8t go“ 3 7
_ where R = ¢F ~ '
If we let: Q Ct-S) = h GCt)
where: o "
o) =40 0

then Eqn 3 becomes

CAb(xt) (T : 3p@s) | (T, dePs)
e goés kR @) _—_—3?‘1 = kgosls VE

which is : _
3* P(x,t) _ k 3 *P(x,t)
st dx*

This is the wave equation with k = (velocity)2

It is easily seen that substituting

Qt-s)= R S (¢)

gives the diffusion equation.





