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ABSTRACT

This paper discusses the combined Dirac-Einstein-Maxwell equa-

tions in general relativity. A mixed tensor-spinor formalism is
4

used. Some usual definitions of spinor structure are considered,

and shown to be equivalent. The spinor calculus is :then developed

from an axiomatic viewpoint. The combined equations are derived
. R ] N . 5
from a common variational principle, and shown to satisfy the ex-
: - E
pected differential identitjes. A classsof exact static solutions

is found. These¥solutions are analogous to plane wave solutions in

special relativity propagating along the‘xs axis which are not square

_integrable. Under fairly general éssumptions, it is shown that

there do not exist-exact static solutions of the combined equations
with finite total charge. It seems that the static electro-grav-
itational background is not compatible with localizable matter fields

possessing intrinsic spin.

-iii- L
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I. SPINOR STRUCTURE IN RIEMANNIAN MANIFOLDS

The purpose of this work is to investigate the combined Dirac-

- Einstein-Maxwell equations. Thus we aresgoncerned with half-integer

vestigations in a purely tensorial formalism (Whittaker (36)), such

a procedure seems to be awkward and unnatural. It also obscures the

rather beautiful tetrad-metric relationship which exists fdr a mani-

fold carrying spinor fields. Thus we choose to work with a mixed

. _ﬁ
tensor-spinor formalism. In their -full generality, spinors were dis-

covered by Cartan. His.book (8) is a standard reference for spinors.
The introdudtion of a two-component spinor theory into general
relativity has a long history, beginning with the works of Weyl (34),

a

(35}, Foqk (19), and Infeld and van der Waerden (17). Many authors

~

define a spin metric, and the 'spin matrices' connecting tensors and

spinors, and postulate some relations between these quantities- and

-

the metric tensor. A cléar axiomatic derivation of this 'algebraic"

*

approach to spinor structure appears in Schmutzer (32). Cf. also

Corson (9) . In addition to its clarity, the axiomatic approgch de-

spin mafféT‘fTéTa§T‘AWhTTé‘Tt‘may‘be*p6ssibTe‘tU‘taTTy*0Ut‘5ﬂth*inr———~—*————A*

veléps the complete %et Q£u$pinpr identities which may be consistently
used, permitting the full power of the spinor technique.to be brought

into play.



e

-

R

,/ Another approach to spinors is to relate the gengral relativ-

! _ ‘ J

i%tic spin matrices to the usual Pauli matrices via an-orthonormal
S : : T

tetrad (OT). Algebraic identities can then be deduced from the prop-

erties of the Pauli matrices and the OT. This is basically,fhe ap—"

from 1-3. Invariant tensor or spinor indices are denoted by paren-

proach of physicists using the 'verbein' formalism.

A spin structure may also be inéroduced in a geométric fashion
usingthe elegant constructs of modern differential geometry. This
approach brings c{arity and greater visualization to the subject.
PenrQse (27) and Geroch (15)7have used this geometric definitipn in
general relativity.; o C . |

We wish to show that these three approaches to spindr structure-

3

~algebraic, tetrad, and geOmQtric; can be made consistent with one an-

other. We assume some familiarity with the usual spinor quantities:
see Corson (9), Bade and Jehle (2), Penrose (26), or Pirani (28).
Our notation and conventions: spinor indices will be denoted by cap-

ital Latin letters, with conjugate indices dashed, 'and take on the "y
D ' T o

values 1,2. The space-time signature is taken as -2. Small Latin .

2

letters denote space-timé tensor indices ranging from 1-4, and unless

otherwise noted Greek letters denote spatial tensor indices ranging

. . -y
theses: thus X(AB) is a spinor invariant, while n(mn)

- ant | - . . : mA'B
invariant. Y AR denotes the antisymmetric spinor metric, and ©

is a tensor



.
(/l \
the spin matrices. Spin indices are raised and lowered using vy:

A _ _AB _ B B_ B _ (B :
X =Y Xgs Xp = X Yga Further, Ypr =Y, = GA, the Fronecker

delta. THe (coﬁstant) Pauli matrices are taken as:

PN | (@ |\ /M}A'B { /O -t )
(HAD _= 132 — 1 .
0 7 =Z\1 0/ | =z\i o)
W E () i (59)
R AN 5“14 -7 (o7).
Fihally;An(mn)>dénotes the Minkowski metric (signature -2).

" Let us first consider the tetrad definition of spin structure.

4 ) .
Let M denote our space-time manifold, which we assume to be orient- -/
able and parallelizable. (If the entire manifold is not parallel-

izable, we take M to be a parallelizabie submanifold). Let A(E) be

an'orthonormalitetrad;defined globally over M: " Thus

N

or equivalently

a

) 1(r:'\) 1m(\lé) = ﬂ(n,%) .

Al . . R I .
Let U(H)A'B be the Pauli matrices. The constancy of these matrices

follows from the usual coordination of proper isechronous Lorentz and

unimodular spin transformations:

r ’ NN A B '
(‘4) O,C&)AB - 5 &)4B= /\a:)(f) U-Ac' U‘D O,@)C D)



where U € SL(2,C3, and A € Ly, the proper isochronous Lorentz group. o

Then we take the generai relativistic spin matrices to be given by:

(5) O—— — AQ‘I) G(n)AB

A

The consistency of (4), (5) requires that a spin transfgrmation U

1 . .
on omA B generate the corresponding Lorentz transformation on the

tetrad:

\ " PR D - Caed :
© gmD = pmAB Py hony N Gd)”? :

- \mC'D -
Thus the transformed matrices omC D correspond to the transformed

m ,-1 (n)
tetrad A(E) A(n)A (k) *

in (5) corresponds to the freedom of a spln transformation on

and the freedom of choice for the tetrad

m

(n)
oA

A number of important algebraic identities involving 8m> VAR’

' , . ,
and onA B follow from (5). These will be discussed after we relate
this "tetrad" definition of spinor structure to an ''algebraic" one.

It is also of interest to note that the Pauli matrices can be

expressed in terms of a 'canonical' spin basis of C,. Let T, = (1,0
- pin ® 20 Tt SA |

and T, = (0,1). Then (E,7)_is a spin frame (£,T" = 1), and we can

define the matrices

BB (AP £ B



D sy

OL(z)A’B _ {__i_é‘ (TA’gB_gATB)

o = (885 ),

*

o WAB V'_;'" (%AEB;ACA’/I_—B). B '

L

—One easily checks that for & = T, T = T these are the matrices de-

{n)

fined in (1). For (£4,t) an arbitrary spin frame, one has q =

Uo(n), where U(E,T) = (£,1). FOr an arbitrary choice of spin frame

the matrices (7) are not invariant under the coordinated Lorentz-

spin transformgtions (4). One could replacevthe definition (5) by

This merely amounts to a different association of spin frames and

-

tetrads. (7) gives a 2-1 map of spin frames to the Hermitian matrices.

3

o

There is still- another type of spin matrices to be discussed,

H .
the invariant matrices G(mA B).

We first quickly examine the algebra

of invariant spinor components, which may be less familiar than the~

usual tetrad invariants. TLet (£,T) be a spin frame (£,T € Lz, @ATA -
_ - () (D) (A) <
= 1). Define the spin dyad h NS h NS hnB may be'used

- . : . m)- .
to define invariant spinor components exactly as an OT k(n) is

a



for tensor invariants. Invariant spinor indices are raised and low-

(AB) _ AB _ (_0 1

ered using vy 10

). In analogy to (2), (3), one finds

the identities:

) L‘(A)c }\(A)D= Yep

a0y h®. {®C. 8

1
For the mixed quantities o™ B, consider the definition

(11) O'(MA'B) - 1(;;') h(é") J_‘(Bg o_nC'.D.

If we choose our OT and spin frame independently of one another,

this definition would have the unfortunate property that for a given

, 0(mA'B)

oT would depend upon the choice of spin frame. The reason

for this is that a change of spin frame involves a spin transform-
ation which should be coordinated to a Lorentz transformation. Thus
OTs and spin frames should be mated and transform together. Let us
suppose, then, that an OT X{ﬁ) has been selected, and using (5),
omA'B = Xkﬂ)o(n)A'B. Associate to this tetrad the spin dyad F{g)
corresponding to the canonical spin basis (£,T), where as before £

(A 4 @)A'B _ _(nA'B)| _ _
- ¢ (X.R)

= (1,0), T = (0,1). Then h g = 0p,ando

Given an arbitrary tetrad A(g), there exists a Lorentz transformation

A with A(P)(m)f(ﬂ) - A(ﬁ).

Let U be the spin transformation corre-




By 5O
B (C)

One checks that h(éJ is a spin dyad. Then we associate the dyad h

sponding to A; i.e. such that (4) holds. Define h

to the OT A. Then

(mA'8) nC'D e
" }m’ CX%C}"D

:j@) CDA(CL ;\( )U 2 U( %(F)h(G

(p)CD (m) (B) _ m)A'B
Thus with ‘such a coupling of spin fﬁzfégfand 0Ts, we have ©

SmAB) N

the: invariant spin matrices are the Pauli matrices in, all

(m)A'B _

frames. This invgriant work provides thé motivation for the defini-
tion of spinor sfrgcﬁugg,which fqllows.

We consider the ”geometrié” definition of spinor structure. For
greater detail;’gee Geroch (15) and Penrose (27). Let M be paralgg%-
izable and orientable as before, and let B denoze the principal’ fiber
of oriented orthonormal tetrads over M. Let B denote the principal
fiber bundle of spin frames 9ver'M: ifp E‘Z;rﬁbe fiber over p ié

the set {(p,( T)) Z,T € C2, gATA = l}. The/ group for B is taken

to be the proper 1socnronous Lorentz group Lo, and for B the universal

N

A ¥

covering space of Lo, SL({2,C). V(We do not discuss the enlargement

to the full Lorentz group here}. Then a spinor structure on M is a
" '



2-1 fiber-preserving surjection‘O; B ~ B which commutes with the -
group operations:
e UL G A
ig.
, E? ag B8 :

where U represeg}s A.

Vow suppose we are glven a tetrad spln structure: i.e. we are

f — t
given an OT A and deflne UmA B . A%g)O(n)A B as in (5). Using

)"
N\

the properties of the”Paull matrices, this may be\inv&rted to give

| qom mAB »
5 (12) . A = -
| ). jl(n) a Gin A'B . ‘..-~?
Let (£,7) be the canonical spin frame, and define o(p,(Z,7))=
(p,OmA'BO(h)A,B) = (p,ikg)) € B. If (§,7) is an arbitrary spiny frame
with (£,7) = UET), define (p,(5,1) = (.00, 0™ P00

l
i.e. we use the transformed matrices U(OmA ) to generate the map O.

Note a(p,(-&,-17)) = o(p,(E,T)), and one easily checks thato is a 2-1

map of B onto B. We denote the maps of fig. (1) by U,A. Then

L B _mF Tl
7[/\°cr(p,(€,’f>)]£)= U'AF'U'BG.U f-Gd'mA'B/\ W

CC\

1 B F— ——
‘=UAFUGO’ U

since U represents A. Similarly,



[O’fU( p,(f)/f))]g) = O“OU(IP,U(E ;f))(;:)

¥

= = =YW _ T 7D 1A B _mF6
= O’oUU(p)(&)T&FU.CA'U.BUAF'U.GO"M JQQ)CID'

Thus fig. (1) commutes, and we have”shown that a '"tetrad" spinor
SR - e ﬂ ' ) v

~

structure gives rise to a ''geometric' spinor structure.

The converse result is trivial. Given a ''geometric'" spinor

—_—— —_ 1 — 1
structure, let (p,(&,7)) = (p,x(ﬁ))‘ Then define omA B . A(ﬂ)o(k)A B.
If (£,7) = U(E,T), the commutativity of fig. (1) implies o(&,T) (IT)
7 m o ,-1(k) - mA'B, _ = m
= A(k)A ) where U represents A. Then U(o ) = X(k) X
- ' '
« n 10 AR i eving (6).
(n) :
Next, &e consider an ''algebraic" definition of spinor structure.
oAt ] . ,
Suppose gij’ OmA B, YAB are chosen on M such that
mBC n D | mn,,CD, L omnsr R
13 S - D
(13) @ 0 B.=-2 + 2 77 (7% G;Ey
. )
mA'B , .
where the o are assumed to be Hermitian, and
’ »

mnsr | 5nmsr

7? = 1:—:9:“ 5 7/]mnsr = ‘F—g Smn'sr. T

Here & is the generalized Kronecker delta, and n is usually
, mnsr . : - ‘mnsr

called the Levi-Civita tensor. Then M will be said to possess an

algebraic spinor structure.

In particular, one may check that (13) is satisfied if gmm =n ,

n



mB'A

AB = (0 1 the Pauli matriées (1).

the Minkowski metric, vy - 21 O)’ and ¢
In this case, the symmetric part of (13) relates the Pauli matrices
to the metric, and the antisymmetric part givés the usual commutation

relations. (13) may be found in Corson (9) and Schmutzer (32).

We w1sh to show the equivalence of an algebraic spinor structure

.and a tetrad spinor structure. Suppose first we are given an alge-

. . . . m
braic spinor structure. We wish to show the existence of an OT A(n)

¥
satisfying (5), where OmA B is gixen by the algebraic structure.
[ .
O'mA'BO'
(n ) (n)A'B’

of the Pauli matrices, and further . J

-~

Define A Then (5) follows from the properties

n)& A'B | nc'D

mAB b mk - | : ‘

Here we have used the identities

(McD_ ¢c ¢D
%)AIBG - SA &B )

AB J
a" O'kAB 9m ', v

These identities will be shown to followsgébm (13). Thus K( ) is an

3

OT, and existence of anzggebralc splnor structure 1mp11es existence

of a tetrad spinor structure.

-\



Conversely, suppose we are given a set of spin matrices satis-.

fying (5). The symmetric part of (13) may be written

' | mBC n B'C c I

e

To see this is satisfied, using (5) and the properties of the Pauli

- matrices we have

i

BC nBC

8D
)BC_(R) ]_ m an (A1) c>
+0‘w g B8DJT M)}wn SD
_ mncc
- g™SS
Therefore a tetrad spinor structuré éétisfiesitﬁe sfmmetric part of

(13). Similarly, we have for the antisymmetric part of (13)

n\B(: n 3

nsr
09 " gy 0" gy = 7]'" OEBCGrBD
Theq ’ , § )
BC sc C
a" g0 g, A(k) }(f? [0‘ J8 o‘a’B'D +
_ 0B b tHsr) E
ot = ‘j(ﬁ lf)n (s) Oir)B'D

. AM AN k,?r BC
":{(lz)/’x(i) (s) %ﬂ? i QB'D



L

_ . mnsr _BC
=7 Js  Jrg'p-

-

Therefore a tetrad spinor structure is an algebraic spinor structure.

Altogether, we have shown that the existence of any of the three

types of spinor structure--algebraic, tetrad, or geometric--implies

¥

the existence of the others. Besides its simplicity, this result is

- of practical importance. Given a metric gij’ it is easiest to con-
struct a spinor structure locally by finding an OT and using the tet-

rad definition. But then all the algebraic identities which follow

4

from (13) are available in the resultant system.
<J

This result also gives an easy proof that any set of Hermitian

t
matrices omA B satisfying (13) must be algebraically independent.

’ ’ mA !
Suppose amomA B 0, where o are complex scalar fields. "By the

above,rthere exists an OT A(E) euch that omA'B =‘A(§)O(H)A'B. Then
amR(E)O(H)A'B = 0. By the algebraic independence of the Pauli mat-
rices, this impliei aml(g) = 0, Tnen aml(g)l(n) = 0, or oo = 0 for
all q. ’7

. ' 0 o -
In this chapter we have taken Yag = ( 1 é) and have restricted
our attention to unimodular spin transformations. In later work, we

consider the more general form

(16) XAB =y (_O' (,)))

¥ ,

L g
rz=4%e' )

and correspondingly allow arbitrary non-sdingular spin transformations;



—

'Q O(nA

i.e. the compiete Gl1(2,L) group. This necessitates cer}ain changes

A Y

in our formulae. Given (16), we take for the canonical spin dyad

an &, =r 2(1,0) ¥y=r?(0)1). o
L ,mv,g;;_ﬁﬁy . _ P .
Then H{g) = r?ég,‘and Y(AB) = Lg é) # YAB; In particularf G(n)A B
' H .
# O(nA’B), where O(nA B) are the usual Pauli matrices. Thus the mat-

(nA'B) a(nA'B)

rices appearing in (1), (7) become o respectively.

. . s m nA'B
A spinor structure contains the entities gij’ X(n), o A , and

A
h(B)'

some of these entities as more fundamental tham the others. Bergmann

From an algebraic viewpoint, there is no Fe?son for regarding

T
(5) discusses this with reference to OmA B and gij' For example,

given

(m) , | A . :
A L an one may generate gij' .Further, h(B) gives rise

A

4 Ry
t 'B) (up to a spin transformation) by (7),’and then o ‘B fol-
lows from (8). Obviously other'choicgs for the independent quantities
are possiﬁle. From the variational work of Chapter III, however, we
shall see that a: least for the case of halfQinteger spin fields there
is some reason for regarding the tetrad K(i) as more fundamental than
the metric ﬁensor gij' Penrose (27) has considered the spinor struc-
ture of space-time as more‘baéic than its metric structure.
In this chapter we havé assumed the existence of a spinor struc-
ture. This is a natural assumption since our aim is to investigate

the combined Dirac-Einstein-Maxwell equations, and therefore any sol-



ution manifolds will contain spinor Dirac fields. ' It is well-known
that the global existence of a spinor structure implies orientability
of the manifold (Penrose (27)), and Geroch (15) has shown that a non-

compac¢t space-time admits a spinor structure iff it contains a global

field of orthonormgl tetrads. This result in turn may be used to
show that an oriented space—tim;§>héch has a Cauchy Surface, oT a
spacé—time whose'Weyl tenéor is everywhere of type’[l,l,l,ll, [é,l,i],
(3,1}, or [4] admits a spinor structure (Geroch, (15a)).

Because of the way relativity i§ usually approached, gij;is
ofterv given a prescr}bed form (static, stationary, ...), and one

’

wishes to obtain a cdﬂgﬁstent spinor structure. We have shown that
this reduces to finding an OT for gij' “In Appendix B, an explicit
OT is constructed for a prescribed metric. While not always the

N

most natural in the case of special symmetries, this explicitly
defined tetrad makes the matching of a spinor structure to a metric

an entirely constructive procedure. In general, of course, such a .

procedure is only possible locally.



II. SPINOR CALCULUS _ - -

In this chapter we develop the spinor calculus based upon the

*

braic approach, so that all the usual spinor identities are seen to
-~

follow from the definitions and three axij ms .

ese axioms may be

found in Schmutzer (32). As before denotes the antisymmetric

B

spinor metric. Spin indices are raised and lowered using vy:

(1) yA;\YAByBS XA: XBYEA-

For the mixed components,

: B B
@ %P Y= Sy

One note of caution must be made. Since our aim is to use the spinor

calar%us to investigate the combined Dirac-Einstein-Maxwell equations
we do not assume the covariant derivative of Yap to be zero. Our
choice Y ARk # 0 is. made in order to introduce the electromagnetic

‘potential in as natural a way as possible. ,Ihisﬂghgiggﬂis also

L)

consistent with the philosophy of minimal electromagnetic interaction
(7). Bergmann (5) shows the electromagnetic field can be introduced
_with Yagix = O,'but at the prfice of making y a spinor density. Our

4

choice increases the generality of the formalism over that employed

4,,f4_h”,Wdefiﬁitiﬁﬁgl0f~SpinoT~stTUcture—given~in4Ghapter‘TT‘“We‘UseithE‘HTgéf‘A“‘***A‘*
.t
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JE
by Penrose et. al., sith a corresponding 1nc£ease in the complexity
of formulae. In partj 1ar; our expression for the spinor affinities
"is affected by this g£hoice. See Bade and Jehle (2) and Penrose (26)
for further discussion of thié point. |
‘The antisymmetric spin'metric YAB‘is determined by avsingle'com-'
plex value. Egllowing Bade and Jehle, we write .
: : Loepn - )
(3) 'XAB 3<_Io é)yze‘e' Then
J

)

' 8D
4) )XAB )XCD‘F‘JXBCXAD"’ »XCAJX =0

is an arbitrary73—spinor,

and 1f 7,50

4

5 1 e+ Mgy + ) = O

_ /
If XA’ wA are spinors, then ;
i

| A A N

E (6) /XA ﬁll -~ yJA X .
In particular, épinors of odd rank have zero ''absolute value'. Let

. . . A _ CA _ CA_

QAN be an arbitrary symmetric spinor.- ThenrnAr—-m~¥-nKCm—ﬂ4Y3}3
. .G ' - -
= -ﬂc , Or

@ NA=0

Next, s ose = - Then n A = AC
NeXL, SUPPOS€ Myp = Mppc A - T

(le)'l(nlz +



) Mg = 77c &B

If. XAB is arbltrary, thls 1mp1fes

. _ v C
) /XAB" /XgAf- Xc- XAB-

- —
Let (4) operate on the arbitrary 4-spinor n

apcp’ Yielding

(10 77A.AC.C+ 77AB:B-A + nCBCB = O

Finally, (5) may be written
: A | , -
| (11) §A"'V§anTAI+§A7]CTA:0> or .

(12) 77AG e +72CAA + 77ACA - 0)

where EA’ n are arbitrary.

¢’ Ta’ "aBC
We next develop the properties of the spin matrices O
Our first axiom require; their Hermicity:
. =
- A’ L)
AXIOM I o*'"BA _ G‘mAB
mA'B . mB'A

Note the transposé of 0 is o . Axiom II relates the basic

4
quantities OmA B, g.., and Y

i] AR’ and may be looked upon as the gen-

eralization of the commutation relations for the Pauli matrices to
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~general relativity. Se&e the discussion following I-(13)~ for greater

/,

detail. This form of Axiom I1I appears in Schmutzer (32) and in

~ Corson (9):

I} L]

- V ‘
7 AXIOM II 8 o=t sB _r
(= Om aGng'c = "Z Gmn S + B Npnsr 07740 g1 -
The Levi-Civita tensor nmns; was defined following I-(13). The con-
. P -
stant B remains to be determined. The first and second contractions

of n will be used frequently in the following:

d mns m
(ls)ﬁabcanmns §§é+§

1l

From Axiom II it follows that the spin matrices are an aigebraicallyr

independent'basis for the set of 2x2 complex matrices. The proof |

appears in Ch. I. To determine the constant B in Axiom II,

/

—

B o - |
Om AGn8C = "% 9mn YAC + Bﬂmnsr ('Jf gsr‘XAC +

srdb B ' N e

+B7N” a5 AcL,ec  , o

5’ ) 2 ab gb 8
T "ATRBL = “Z Gmn Yac + 287 (8888 )03 g oy .



Then '
( - : Bi | o -
— & + ‘5 r — 4
_29"1" AxAC 87)mnsr T AC ge = "2 9mn ‘XAQ‘ +
!
ap2/ B | e 1\
T 4D 'Tn ATmEC ~Om AGngc) ot
SB = Z B | -
ﬁmnsrff AT BC"' -2B (Z)Wmnsro’ AO' BC 5 >
and this glves : | -
'N . | | .
_ o+ L | |
s B=2*7 ,
We take B = + %-to’agfee~with the results for special reléfivity .
’ P . . - |
(signature -2). "In the following, we mark the most useful identities Kg
- . - e \ 17.‘ \*7

with an asterisk, (*).

From the symmetric and antlsymmetrlc ﬁérts of Ax;oubII we have f
.
*(r6) Bl ’ | . é' o
Om AGn8C* Tn ATmBC = ~Gmn Yo,  and

N
I

«(17) Gm AO'nsc o, B GFABC— L77mnsr0' AO' BC -
i FTOIU dG}, ” T T T T T e e s 77777”\7‘77;”‘771’
(ISLQ'm G'nBA dm8t "gmny-ﬁ\ ; or

v .

(1) ~ BA _
19 084 Ggh = Gn -
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Using (16) again,

i e . i

m : mB 7’ m )
T AGmgct T AGmgc = ~om dac .

mBA
ZZCr nﬂ?c —_113’

!
*(20) mA A
g = 26

Multiplying Axiom II by

!

t C _mB

2

= 4<§c giving theAidentity '
)

t . :
ST we have
mn

L mn
77mn\9p o 0 AG”B’C =729 ./alAC,nman U'{D’C

< 7 B - -
+ 2 nmn%pn'.ﬂ.sr o n s U'{D'C > -
_ | t ¢ _sB _F

" 195p9grt-gsigrp) 0y T a0 e 5 o

91 t
Wb ﬁmn{PU '

¢

mB n . B t C
0 AT gc= (Gp Adi8cT D

st 8 _
UD’O;AG}BC)

Using Axiom II and (20}, (21) becomes

C_m8
Nontp @5 0™ AT

ac—([?.a* AXDB ('zgf g



A4 mB _n t C 3.
3—77mnfp0' AT BT D =% (0,pa or
*(22) .o L mB _n., t
' Tpa= =3 Nmrkp 0" 40 5T D
Again using Axiom II, (22) gives

‘ a

- o tC
(23) appA = - 3UD (0'4_ AO'P3c+294P3’Ac) or

t

.2 t C_B _ |
GpDA="30p G AGpBC *3 Oppa .  THus

o + C B _
G/PDA— g p O.—t AGPB’C :

7(24)
= g BC
But O“FJDA = G B XB’D' ch .

Then PBC(SS +UfDCUB )

i :
<
1
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Since the spin matrices form a basis for the complex ZxZ2 matrices,

it follows that

o A

abdp

Next, multiplying (22) by n and using (13),

2..dbdp g b,C, dB' ¢
3‘77 P‘TPD_'A= a? AUAB'CG D *O'd AJEB'CUaD'

b8 3, d ¢ b de ' 4. ac =
R N T3 e LN P R LN e Y

)

dB8' 4 L
~ g AU"aB'C-G'bD‘C or

2

B b JdC 28 d b cC B/ b c
a AC geQp = C]'a AT BCO p +O'd A(O’ B’cO'aD'

_ a4, bCy, bB/ a3 c _a.C
dBcT p 2*0’ alo Be 0y ‘G'dB'C\G ")
. abdpl d

~3Lﬁ ‘O},D'A; Usfng (16),

-

aB' ‘b d ¢ |
(26) 2qg Ag’ Bc T D= gde%D'A 'gabGdD'A ,,

CI b - abol : - UL S

_5 b8 4~
. ZU AT B'CO-aD'C. )



d8' b a

On the right side of (26)w consider first o A0 g cC D,C. Repeated

application of (16) gives

d8' b a4 ¢ 4B 3 B’
J pAC gceT p =-0 AGBCGD ""9 }XBDO'd A

4B gb c!
=g? AG Bﬁgﬁ +g-a

/

: +93JG‘5‘D‘C% or
b _d

dB b, 3 C 3B b
(27) g AU B'CCT p = —G AO-‘B O—D 93 T A

- bd_d
9 ngA+9 JDA Similarly,

[

_ LB J. acC_ kB 3 dC ad LB
(Tb AT Bcd p' 0 AC ged D —-93 XB.D;-U“L’

and a final application of (16) gives

(28) - bB, d ' aC B b ab d

g~ Ad gc0p = -g? 7pG BT p 4—9 B
_5 .49 _b
290 -

Substituting (27), (28) into (26) yields

—~

. 28 b d C_ 1/ bd J |
() g AT Bcd D' = 2(9b G’aD’A 'cgaO'bD’A

( bd
EJEBCTJD/Q -2 778 PO'PD’A .



As will be seen later, this is a-particularly useful identity. It
appears in Corson and Schmutzer, but is generally not explicitly

mentioned in other wOrks on spinor algebra. Multiplication of (29)

i
1

with oD , yields

0 gd KGLBBCﬁF ot -%(9!9&93; 9ad9bf

rg¥g* )5 1 o -

)

The identities (16), (17), (19), (20), (22),v(25), (29), and (30)
are thus all seen to be algebraic conseque;ces of Axioms I, II. ~
These identities may be 1§bked upon as an unraveling of the general-
ized commutation relations given Dby Axiom II.

‘Next, we make the usual correspondence Between second order

= ALK' and ordinary tensors Am by setting .

Hermltian spinors AK'L

i ‘ ! /
Teu ApL=a ™ Am,

or using (19) the inverse equation
/

2 AT = CTrnKLAK'L

-

Note that given the correspondence (31), the féqﬁi}éﬁéﬁ?”ihai‘xf,ﬁ"

be Hermitian is equivalent to Axiom I. This correspondence preserves

inner product structures: . ,f



.’ ' - {ﬁ\l
mn _ aAByCDA

(33) 9 AMAH - Y X AB’DAA'C .

We next investigate covariant spinor differentiation. Let wA

denote an arbitrary 1l-spinor. As usual, we introduce the spinor

affinities FA :
Bm

A A A 1,8
YA = + v
with similar rules for higher-order spinors. We have the usual
product rule for derivatives, and if Aghrepresents an arbitrary spin

' . , . A
transformation, the requirement that y ‘m and wA'm transform covar-
3 B

iantly yields the transformation law
!
- A B LA plc A alc
(3 -
‘DJ;\FDm‘rcmABAD*ACA_D,m,,

- [B A p-l A -
- [—1CnﬂlﬂL131GL ES B jALC,n1 lg;.

For mixed quantities, we define

mA m : mB ‘
LT L BT G W L

J

with the obvious extention to higher order objects: Here*{fi}~dénote -

the usual Christoffel symbols. We adopt as our third axiom:



1

AXIOM III gmA B‘n -0
AXIOM 111 ; .

Axiom IIT is equivalent to the requirement

e ﬁjm' ‘QABAA&

hrltlng A11om III exp11c1tly

] ! C'
(37) O,mAB +{r:&}gnAB+F?I£6m B‘*‘FD,Q(TMAD 0

If T" is an arbitrary tensor, and Tmlk the usual tensorial derivative,

e T T 13

\
A

3

\

“d *
To see this,

mA'B A'B ! o
(™8 Tug) g = ™ T 8 = ™ (Tos 4T 50 T
T8 Te) = (o ’"”mu ™ T - ™ Ty

mAB “ . | i
o e F ﬂe' T,

Then TO P Tm v | v
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This is true iff

TA'B(O’mA’? {,,d "A8+FA10'"‘ B+I—'C£ "‘A'c)=0.

|
But this is just TA,BOmA B,k, and the result follows from Axiom III.

Using (38), we let ] represent either tensor or spinor derivatives.

From (37},

Ormc 0™+ 9m8} ™ s+ T ™% i

AD
+[ 4™ g 5= 0, o

mA'B nAB
Omc'g O u@+{,,£}g’ gm+zr JQ*FBIS'”O
Then
- fm nAB A B
(39) r' ,&— 2[ cacr n }O’ Gmc'B+Sc‘rBl]-
We return to this result shortly. From (19),

(40) 9mn= MABGHAB O,mAB nc'D

Axiom III and (40) give

7(cA YDB

wn (You X‘DB)M =0,

From the antisymmetry of Y B’ this gives




“a (YI'Z' Yz )),G Y B2 ( F/l"ﬁ +F“:{£ +,/—1;;@

+"74)=

or if ¥ =

7¥1'2’¥12;””7'”

) ChgsThg=tht) g

The 4 equations (43) and the 24 equations {hﬁg %kﬂ§ do not com-

k4

letely determine the 32 real uantltles of F Let
p y hj q Bk'

(44 r' BA~ FBE*’E@SA,

where ¢k is real. Then (43) and.Axiom III are still safisfied, and

so we introduce the 4 additional equations B

cus [hg-Tpe=4iey .

We take € = Y47 e, ‘and as in Bade and Jehle identify ¢, with the &
electromagnetic potential. In addition to their remarks concerning
.this identification, we wilt make an observation shortly. From

(43) and (45), | , | o

+(46) l—-'Ag_ 2¢5¢£+jn

Substituting in (39), we then have the expression for our spinor

hW»
\.—
1

-

affinities:
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. A 1 A'B m AB
47 l—‘clﬁ = - Z[GmC'B 0-”‘ g +{n£§g" O'mc‘a

+ S (2i g+ b (4%))]

While (35) shows that the spinor affinities are not themselves spin-
ors (analogous to the properties of the usual Christoffel symbols),
it is easy to show that they behave like covariant tensors with
respect to general coordinate transformations.

For the spin metric, we have
12 12 I 12 2 12
Yop =4 p+ ¥+ 2p ¥

- ,XIZNe N ,XIZ F:k .

Using (46),

V= Y0+ ¥ (2ie B+ g bn(45)

By (3), we find

¥ip=i1"(2c¢4-64),
w P i (aedy-0y)

Similarly,




“
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7 (49) ?KABfﬁL:: - 32;3 (ZZE—qZQf’69L£ ). g .

'By Axiom-III and (41), we have

Y A 7
B0 T g, = (0 myc'ﬁ\’:XDB)lm =0

kA'

B|m = 0.

HoWever,vit does not follow that o
As stated previously, (44)-(49) are not used in all formulations
(of‘the spinor calculus. We consider these equations more carefully.

. . . . . ( . .
First, motivation for interpreting ¢k as the electromagnetic field:

it follows from {35) that

o [y = Thy-dphlASL

R R iec

In particular, if AS = 8ge” ), then from (51), (46) we have

. (52) ¢/k=¢‘g/- ap

which agrees with the gauge transformation properties of the electro-

magnetic potential. Furthermore, suppose we make the transformation

AV =
“k k

- ioa : o o
%Ae , for some real constant a. THen

- 0, and simultaneously make a 'phase transformation'’ wA’=

? . L o =

Vg =) 44y 0,
- ! , N\
+ le}ﬁnb%?nb’,q*g: (‘Ziﬁ(ﬁéﬁjfljﬁ) + g (In Yi))] .

i o
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_ .aa
c

, ., ida U .30 CB /.
__} zl[“AlﬁfIl/A‘ae .g:£+’zL1j‘B€a¢cSA(ZIEOTﬁ),

iy

da . ,Za 0’7#

fffff o %ua = ey rie” Yay (ave).

Taking a = -€, this gives

(54) 1}/2% = e‘iw%\m |

Thus aséociating to the gauge transformation ¢ﬁ = ¢k'— o the changé

K
of phase WA = wAe—lea gives wAIk ife-legwATk. Then a gauge trans-

formation would leave a linear spinor equation (e.g. the Dirac

equation) invariant up to a phase factor. Finéllxe if we define

—A | y | |
Teh=T5-Shiedy o | -

and the new spinor derivative

’SLA quA . t//‘A’ '(//A A B

1 = - = + ‘
”&. I& L_E¢4€ )4@ : [—134&1}/ )

‘ ¥ A A . . .
then when ¢k = 0 we have { |lk =y Ik, and the introduction of ¢k
A A A ‘. v .

corresponds to the replacement Y ||k >y lk =Y ||k + 1€¢i. This is
~consistent with the usual philosophy of minimal electromagﬁéiggriht- 7777777777
eraction. Altogether, then, these three observations--gauge trans-

A formation properties, invariance of linear spinor equations, minimal

electromagnetic interaction--provide the -motivation for our inter-
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'pretation of ¢k as the electromagnetic potential;

Note that if we had taken YABIk = 0 instead of (41), then

1 2 ) _
Y12,k B Fllez —FZlez = 0, which would imply

and the quantities ¢, would not arise.

Returning to our spinor‘calculus, by (46) we find

6N Yagif = f;;,lé - Yg (2ic g gt

Note that if ¢k # 6, then Y # 0 even when YAB ks 0. The same

AB|k

conclusion follows* from (48).

We consider more closely,the roles of ngj Let A be a géneral“
spin transformation, A € G1(2,£). Then Axioms I, II are covariant
"2
under the transformation A, and Axiom III will be satisfied when-

) -1
are given by (47). In particular, if AA =T 26AC, T =

, ) A
ever the fB C

K
4
azele, a,B real, thenﬁf;B = TY,g Under this transformation,

‘ I t /1’
\.BC_ % g€ — N _ b o
T = O 5 Tmgl = % "Gl 5 Bp= Do+ 288

‘A A A [ ,
FBJé:FBk*ZLgBdO‘)&*‘z‘%ﬁ,,@ .



Thus we again have a spinor calculus in the primed system, with y)=

a#, @ =8 + R. In other wofdé, by such a "gauge transformation" vy,6 e&
may be taken as arbitrary complex numbers, y #.O. We also have the
physically iﬁteresting result that given a géneral spin transformation

A e G1(2,0), A may be written up to an 1%omorph15m as the product of

a Lorentz transformation and a ''gauge transformation'.

Next, we define a spin-tensor analogous to the Riemann tensor;

. A A
(=8) P‘anf Bnm~ an FCm FBmFCn

This definition appears in Bade and Jehle. Substi ution of (46)

into (58) yields .

- *(59) PAmn Amn'2‘5(¢nm ¢mn tiﬁ,m

>
(59) may be interpreted as 'the electromagnetic field originates in
the curvature of spin space'. To find an ekplicit expression for

PA , by Axiom III we have
Bmn

]

__JAB A8
O=¢ jmn~ T [nm

'8 oA’ JAC tAB A
g FXCEW] F>Cnm" "ﬁgﬁaqﬁﬂﬂf"*“w"'”mewm;ﬁ*f

}

i

Then contracting with Siprpe

{A'B £ ;
/XD /X P Cnm+ y IXB P Cnm G:éD'B E-fnm)



or B . i . e -

— _ {AB[
ZPDner% PBnm -g JDBPI{nm.

Using (59), the above gives
7

f

:\ * : A, L {AB I " | A’ X
(60) PDnm Rt[nmd O’DB (arng/ :

One easily checks that

T 9(Auzm??%/m 15 P" Am,

~
<

vieny AA A B pA
(62) %'IQM’«!ME: IX PBmpz

in analogy to our usual tensor identities. There also exist "Bianchi

identities'" in the spin space:

v ’ C ' C’ E
[63) JmAC PBQ’L@[&} -+ O’mCIB PA’<an£7 = O

wnere < > denotes cyclic permutation. 5.

=,
N

For later use, we consider the representation of infinitesimal

Lorentz transformatjons. Consider such a transformation, gfyen by

( (mn) m) ¥

We wish to associate to this transformation anminfinizgéimal spinor.

) A -
transformation A B such that .



(65) O,G«n)A B (m)AB; <m) A vl\

A LA A
We write A B = § B + N B

implies Mag = Mpa’ Then (

M)A DB B A
(ee) & -m;Om)AB* WAD'OMDB*;"?-C a0,
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Tﬁ)
The requirement that Yap remain invariant

65) gives
Ve

- To solve this, we try the natural relatlon

B _gnn) _ DB )
(67) = )
M- Ce Tm  Imp'c - ]
Substii?éing‘(67)-into (66), we have ' <; } - t
5(mn) AB+ 0 g(rs)[ m)AC r
(s)FC g
AP‘ mDB

Using (29), we have C = L.

.68 Z L (mn)
()77 2 €

-

Then (67) becomes

DB '
qm) Cler)D’C : i



II1. THE COMBINED EQUATIONS:

VARTIATIONAL DERIVATION AND DIFFERENTIAL IDENTITIES

We investigate the combined Dirac-Einsteln;Maxwell equations,
~ | o
using the spinor calculus developed in Chapger II. Units are chosen

such that ¢ = G = h = 1. The electromagnetic potential is denoted

by ) with F We denote the "2-component spinor

k1~ %k|1 " %1k

wave fields by XA, gA. The 'bare' charge and mass of our particle

are denoted by e, m resEectiVely. The following form of the Lagrang-

ian densit;lfor the combined<fie1ds may be found in Bade and Jehle:

0 L=[R-snF ¥y -tonf 2mi (X g 26,

. "B . _4BA
" ﬁﬂ o FBIA(/XA/X?I i XBXAH?) HZ' o’ @B'EAII “EAEB'M)}JV:;
The coupling constants have been chosen so that the combined eqtns. |
will reduce to the usual special relativistic eqtns. for our units.
In another formalism, these equations appear in Das (10). Here
UmB’A denote the, generalized spin matrices of Chapter I,-which theref

fore satisfy Axioms I-III of our algebraic approach to spinors, and

stroke represents covariant differentiation of either tensors or

spinors. The form (1) is clearly invariant under general coordinéféi

transformations, and if one uses I-(5), II-(47) to explicitlymdéﬁ-
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onstrate the dependence of Ifon the choice of tetrad, it can be seen
that £ is also invariant under tetrad rotations (Lorentz transform-
ations).

By virtue of II-(47), the electromagnetic potential appears in

the covariant derlvatlve terms of . One could make thlS depend-

ence explieit by defining - - - - --- e

] ! /
B B - B8
@ K=K g+ ichX”, e=Vire,

as in Chapter II, and expressingi in terms of the 'double slash'’
covariant derivative. As mentioned before, this corresponds to the
usual philosophy of minimal electromagnetic‘inFeraction in special

relativity, where in the presence of an electromagnetic field, ak

C
~is replaced by 8 - 1f¢k (7y, (30).

3 ()

3

For\the independent quantities appearlng in I we take q;k,

A A'
X J QA) J EA')

and their (partial) derivatives. The choice of

the tetrad components A( ) as the fundamental geometric variables

rather than the more usual mgtric components gij is a éharacteristig

feature of hélf-integer spin fields. Using &!) and I-(5), we see

our'Lagrangian involves the tetrad in a manner which cannot be ex-

pressed in‘terms of gij alone. This will be treated.indetai;later.
Let us first consider the Dirac equations. The statipnary

principle



N .

@ §)2d%-0

upon variation of the fields XA, gA gives the Euler-Lagrange eqtns.

« 4 oL PSP RS S\
W XA (5_7{{2))wa5 2%, (95A9>>£ 0

For the matter fields, these equations can be written more elegantly

3

R

in the form

o o
> 97('0‘-(37{%)!9 > agA (QthlQ 19°

See Appendix C for a proof of the equivalence of, (4}, (5). Substi-

’ tuting (1) into (5), one has for the first Dirac equations

6 L, y8
/ UBAXM‘Vé“gA,

-

and the complex conjugates. Similarly, the grequétionsrare

. BA
(7 /ﬁ gsw""\["x ,

Turning to the Maxwell equations, we have

bm fn | .

"4TrF—MEgg —411’9 9

-l

and this gives
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(®) ;%rls (-4 F”F;u) = -lerF "

For the current terms, the relevant part of the Lagrangian is

9) —/ewrz‘fd—,r[icﬁA(XAXDIFf}—X’&CF&)

. _fBA D c
o (gb"SA B ~EBl§C FAA)].
Using 1-(47), we find for (9) the result
- r, (~,B8yA rBzA
a0 - 32mVZ Eq g, (18X +88E1).
Combining (8), (10), we have for the Maxwell equations
rs r ByA, pBrA
an 7 = 20Z€q (214 £%87),
from which we define the current jk as
y 3. k ByA, rB'rA
(12 }’“ = €0 g (X°14455¢").
Derivation of the Einstein equations requires a considerably
greater expenditure of effort. The most straightforward approach

is to consider the tetrad components as the fundamental geometric

variables. One then uses the relations

@) 0
4 gy = KA Mewy s ozen =47 Gyen

to express the geometric part of ;Centirely in terms of the tetrad.
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The Euler-Lagrange equations

3L (3f | '
o Saleo (

then give the field, equations. Because of the complicated dependence

- o N . .
of the spinor affinities upon the tetrad, the computations in this

direct approach are exceedingly long. Instead, we consider an al-
ternative approach developed by Rosenfeld (29). Cf. aiso Belinfante
(4)
Let us consider for the moment an arbitrary system containing
gravitational, electromagnetic, and métter fields. Let QY denote
a maximal collection of independenF gravitational variables (gij’
(f) mA'B

A i o »»..). We write the principle of stationary action in

the form

w9 S Zh* -0

wheregy represents the purely geometrical part of the Lagrangian, :
. -
and Z the terms resulting from other fields. For the gravitational

variables, the Eufe%—Lagrange equations are

e 3@y Qv

For purely tensorial matter fields, one may always choose for the

Y

Qy the components of the metric tensor, gij' Taking.& = RY -g, (16)

~



bécomes
(17) G'J = —%77(}

where we have used the well-known results that up to a boundary term

In the case of spinor fields, where the tetrad cannot be repIaced

( £)

by gij in the Lagrangian, we take the tetrad components A as the
1ndependent varlables An interesting p01nt arises here For pure
tensor fields, both.b andi in (15) depend upon }\( ) only through
gij' For spinor flelds, this is not the case for:f, raising tbe
possibility that it is not true foréy asAwell.' Thus it would be of
interest to consider choices fbr4b depending essentially upon the
X(f), which would reduce to Ryrfg'iﬂ-sbme sense when no spinor fields
were present. Such conjecture would lead us beyond the bounds of -
Riemannian geometry and classical relativity, and will not be con-

sidered here. Cf., however, the work of M¢11§;7(32), (231, and

Kilmister (18). Thus we again'setéy = Ry -g, and therefore

* 9:’7 24 dgk
- 92 99}1%‘7—

P
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anlan
3:‘3\?4»

-

together with the requlrement

5 ST .
- 5%’2) S

which follows from the symmetry of G J Define

299( - | d

-, V'—'Q"Ti‘j _ gj{“ ;l(f)d"

Then (22), (23) may be wrlttenj/

]

7/

259 G'd= --T‘J ) N

(26) T'J—TJ‘ =0

D)

respectively. For pure tensof fields, (26) is identically satisfied.

For.spinor fields, Rosenfeld shows it follow§ from the matter equa-



tions: we shall see this for our combined equations later. Using

(20) , one easily shows the equivalence of .(24), (18) in the case
N , v

~that:I depends upon gij alone. Following Rosenfeld, we work with

(24), (25). We now summarize the results of Rosenfeld we shall use.

Let Qa denote the matter field variables for some system. Let
QT denote those fields contained in {Q&g which are purely tensorial,

and let QO denote the remaining fields. Suppose the variation of

the fields QO under an infinitesimal Lorentz transformation A(ab) =

ﬂ(ab) + E(ab) are given by
\

, - : |
(27) 5ch = dcr(ab) E(ab) ) .

and def%ne

| A
CAd 10)] . c
426) da“J'-z Clcr(ab;\(a)(/1 )J.

Next, consider an infinitesimal general coordinate transformation,

given by

(29) Sxi = - AU = fi(zx))

and let the coefficients c) | be defined by . :

(30) ngi QufX)- Qulx) = Ci,t%%é '

Let - -
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0 d9 = $(cd, g2 ¢!
| dd =2 (Cq)kg Cap g o').
In special relativity, for an infinitesimal Lorentz transformation
. _oLiil L ji . i
Eij’ one would find SQq da Eji’ i.e., the da simply give the

variation of the matter fields. Let

(] G S T
50 syd=dpd | gi=dd-d]",

{
-

and define

(33) Dkd—sé“& 33

Ddﬁ DEJA Eﬁi(})

where ¥ -g L =:£. Here the double slash derivative is the usual

"/’x;;“‘ 2}%

L

covariant derivative for tensors, and is defined by (2) for spinors.
Rosenfeld proves the following important results: let£E¥ep—
resent the contribution to the Lagrangian'due‘to an arbitrary col- i
lection of fensor and spinor matter fields. Suppose:fjs invariant
under both Lorentz'and‘general coordinate transformations, and sup-
pose further thatigcdepends only upon therfieldsfandagheir,firstu R R

AN

-govariant derivatives. - Define ) by (24). “Then.

{ ok
(34) TJ —c)Q (i Q«M ’LSJ RJ



Further, the matter field equations imply ™) is symmetric and div-

ergence free.

The gené?ality and beauty of these results is evident. -The

expression (34) is of practical importance in many cases because of
the savings in calculations compared to using (14) or (24). (34)

also gives a relation between the"candnical"energy4momentum tensor
and»the uéuaerij of general relativity.: There are étillisome inter-

¥

esting questions regarding thi%’églation, as we shall mention after

discussing the Dirac energy-momentum. ¢

N

We use (34) to.calculate T for our Lagrangian (1). First,
> v . M h ) ‘
we write ' '

(550 T4 = 'J+M‘d

where E*’ represents the contribution to (34) from the electromag-
netic field, and M7 the coﬁg;ibution from the Dirac spinor fields.

Explicitly, 4 ) 7

(36) Ela,acpﬂcd)ﬂd ngz{) Rcb ﬁ :

= Ml‘}‘ Qa*nd Re Luk-

For ElJ, by (30) and the tensor nature of ¢k; we have

(38) (Cgs,‘)&‘ ‘52 Cb" . o | é . h’
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Then by (31), (32),

o gl =4(500 wa S

- For CM@;LGHCQ in the. followmg, wé take K = -87. From. {8), (33),

(40) ﬂ(ﬁktd K F_JEQS F-Lg(pd

(a1) R(thQ:ZKF_d&QSt \ 7
J&L . J ﬁi &

(42) E¢ /k= 2K(¢ F )}&
Combining (1),J(8),'(36),(42),lénd using the Dirac eqﬁations,
£l - 2KF gy kg g, szFf‘ |
'ZKW"— i |

or

) Ea 2:<[r L 4;&#“%} e

0

If one had used (18) dlrectly and deflned Y-g ElJ = (

_ 0g. . t 3
: km ij 1] j ki )
(/ P, ) then E*) = B - 2k¢'F |

K
", tions, (43) may be written f\_é i

Using the Maxwell eqlia=



w0 V= 2P 4P 4R

g (X8 83E%)

i ij . . .
Next, we consider M J. In terms of our spinor derivative, we may

write (37) as

j_ b~ 4 ok _al-, PA Yy
For our spinor variables, we have
N : 'L
(46) %723 zv’”Ié BA'xA e —.-.-ZF]{l ?Bf"g
and therconjugate equatlons Further, we have ‘)
| 6 .8 8 L
“4n K =X II*‘5¢17(‘ 553’/& =§3’m“5¢£fs’-

Then

(48)3001 (QO,HJ Qd'l )-— ~4F£¢ O'BA(ﬁls’;(A-rrfB:fA)K,

p)

and therefore the last terms of (44) and (45),Wlll,pﬁqgﬁ}VQE?“?EQEhey

in the expression for T:‘Lj Then we redefine
u g tﬁ ab
o €= 2K(F Pl g g F ],

(O)MJ-QQ[QGI RJL‘%,



s e ] :-i.
and (3:) holds for tng;gﬂngwﬁdef;e{;;ogg, To calculate M”J, for an

. - - '." * . ) -
infinitesimal Lorentz transformation A

~where by [I-(68)

773 _ (mn DB

m) _ () 7 (m)

£ we have

A A

the corresponding infinitesimal spin transformation AAé =6 gt g

Om  9dmpC -

————— WTWW gTvéﬂ bY SXA # Then by (£7)

A
| (513(3¢cm3 4(02.“)

(d £ (m nﬂ O{m,

with similar conjugate equations.

‘ DB C
Ty~ 9m) G o-n)DC)/Xi

Ozn)DA Um) %)’DQEC)

o . c .
Since the 1-spinors x°, £, are

. . . . ij 1
‘invariants under coordinate transformations, we have dy1,= ng = 0,

‘Thén by (28), (32),

152) (Si‘)i)s = _ZL (OaAD

N

ye-a " ade) 4

(Sgd)ASZ;'(O'ADCO’DA G’DC‘) )éc

Combining (33),»(46), (532), we have for the Dirac fields !

. ki _KK
s 7= V’%—[ £BA
+ kB £ O,iC'

-

LBD BD:
/X/XC(O— Jﬁp G'J Ucp)

ﬁJBDﬁ+CC




| V] . 1€ ] £ >
- A 1 e ¢ 2
(54) Ro"é = 2t % '%C£O"B (O’ BDOJ;CF‘D G -DO ‘C’D) '

b gied) +<r"(crjcr£— Aol )|-Ersg Lot

-gd(o
iClD )
< (g by - o O'BD) (o ¢-c'c) +ai(gloh

o 1@ Y B ; -
-q O-JH-P C,C.) )

f N S .

where omitted O indices agree with those of the preceeding term.

Using II-(16), we recombine the above terms: e.g.,

A -

. ’ B'D 8D
0 ¢p (JJB'AG'& ""O"kg'[‘\()'J
Altogether, we find

)= ‘—9#@2;\,

. £L _V. ( » .
(53 R 9" = ]Vi’X?C [gf}O’cA 9J£6Ch *Cf‘é’n"

(U;BDCrﬁA O,LBDL ] £A§ [9LJJ&CA

_ b ich_ _jCD/iBA b 4h
gdig - g (%@ o*BD)] +ee.
Canceling the real terms with the corresponding conjugate terms and

taking the divergence,

w0 R oy (o }\:( ) (1) g+
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K D/ _iBh BA e
{2—10"J ( JEBD 0"£ UBD (€A£ ,k—l—(‘c _ |

In another formalism, an expression similar to this appears in -

Bergmann and Thomson (6). However, considerable simplification

occurs by rearranging terms and using the Dirac equations. Consider

first the y terms of (56). - Written out with one application of the
— : .

Dirac equations (6), we have .

L _K.
(s7) —_!‘S /XC BD ' {E‘UCD(G O’BA’/YA’X

ABD .

._ ‘@Bagm’* 1 - A%y 4y ) + e

We rearrange these terms through repeated application of II-(16).

«

For example,

Ki 5 k8D i “oanc KL 8
iz T 4pd O'BA,X ( k= rdcy’x ,‘Q o aga X

]

K 'E\i 4.8 Kim _BD
J’\FZ”QLQZB'A/X“M*'E g’

‘41& BAx/xlk | . ;

BA%"éD

9

Similar calculations for the other terms give for (57)

(58) —KLM(ULBUA X {B +qd® GB'A'X §D) +
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B g hetig bty sgitrantii e

For the £ terms in (56), ‘the same procedure glves

(59) —LmK(O“JCD (D'Xse +CF‘BA Jspg x°)+

| —.K_i( iﬁgﬁ"*&,téwzg%‘“‘fxéc mﬂfﬁ%ﬁ

)
The conjugate of the first term in (58) is 1mKo 1B AOJB,DX gA, can-

celling the second term:of (59). VThen combining (58)'and (59}, we

have

@ gl . V. ! :
R g K (g by gl ) 100y + -

. b BA kb (BA
+K:f2'1(9‘£o'd —gdﬁa“ )fAfgu rec.
Returning to (50), we next calcdlafé the térm-%&;_ Qolj' Noﬁé that
' i

if we make the usual definition of the canonical energy-momentum

~ QI_ ‘ij
M A—AQ;Q¢| 9 L L= +4‘"’F Fat
we have :
TR T T o
M 30 e - S0 0 T

by the Dirac equatlons. As 1is well-known, this tensor is not always



T — S

symmetric even in special relativity. Using (46),

Y l" ' L / (. 8: :
o0 M= 22K g2 - P8 d )+ ce

Using (61), (60) may be written as

e R, = 4 (F-Fidt)

b

and finaliy (50), (61), (62) give
. ¥ o il
6 M7= Zz(MI+MT).

Thus we have shown

Proposition The contribution of the Dirac fields to the energy-mo-

4
mentum tensor of general relativity is the symmetrized canonical
A . .

*

energy-momentum®tensor.

The result (63) is notvtrue, e.g., for the electromagnetic field.

kY

It 1s interesting to speculate whether Ehere,is some physical prop-
erty of a matter field which is sufficient to imply (63). This in-
teresting and simple proposition also means that the general rela-
tivistic energy -momentum tensor for‘the Dirac field may be obtained
from that 6} special relat;Qity by the usual replacement of ordinary
by covariant derivative. Mathematically, this result is something

of a surprise, as it does not appear at all evident from (24) or

{(50). v
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For completeness, we summarize how the result (63) may also be

obtained directly from (1) by variation of A(T), using (24). We may .

rt4) M“’*[ giynﬁ(&l_&?,p)’f’“w{
where S R B

(65) L ZFKL [r-‘mi gA"" BA/X /X 1 U[BA£A€8][]+CC .

Bl

This expression depends upon A( m) through g 1, O s X 11° and gB,ll

Explicitly, define
66) A = %_9,{1; - AB  BA |
(06) A(mr 2 iZK: 101!) (OIB’A/X X I "02 gAgg’u)*C.C. 5

- 90} '
(67) (m)er’”K? ”(%AXB &BA éAEBM x(m))'w'c')

¢, T : M
(68) C(m)=\2 ZK (U B;A’X:Afxl’g ;% [BAfAEDAM“"g >+C C.
fhen ) '
| dlm : L | ;
(69) 31(,?5 = AUH) + B(M) +- C(Y") '

Further, we define o

.ol
(70) D(m>=(§f°?,f)>f .



_54,ﬂﬁw,w‘Wﬁwgvmf_hww,,ﬁﬁw,_;m;;mw, S

Then

¢ _’ Y | | c)r' ',’—'D;
D(m) = 217 Kl B'AxAIXD gﬂcﬁf "'O’IBA AED w )CC.C. .

One easily checks that

o A d™i = FULF

"By ™= - 114"

For the remaining terms of (69), (70), One has by I-(5), IL-(47)

8 1k 4@ st (B14n 1@ @Bl
DAL= " 2 (j(%))f/l{& GZf)D'C a‘(?)B “‘{nﬁ};{(%)}(z G’@) L x

* Gev'c +‘2i5¢f),

8 ) .
72 FDSF‘%("(})D‘CCV@B 1% //lga)m*z‘f@),

and after lengthy calculations one finds
2_ (1@ é @) N Lang

x( %mnyz 1<m)ﬂ ) ;l)n}(g)j(m)l{f} "‘(f)nn(?”‘){”‘

-2 Xwn)@p& 52 10n),n‘10n>n,-1. "Z'X?)ll(?)k méﬂ);[j(mﬂy),
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5 (1 £ 2f?)11)= 217 N 5{-511° oo’?(;m) o1

;l@t)q,):lwf*;\ )ﬂ(?) SI *1( )PX(?)XW)I S(m) ;1(?) ‘gf}

Using (72), (73), (74), one finds after more calculatlon

(7% < C(m)+D(m))2(M)J =7 (M"l N‘J

Combining (71), (75), one arrives at (63). The éomplete calculation
of this‘rééult praxides ample demons;rétion of'the poher and value
of Rosenfeld's expression (34). |

‘Before concluding our discﬁssion of variational derivations,
we note one final anomaly. For the matter field equations, we have

used the result that the Euler-Lagrange equations

(76 ‘)‘f ‘)i
. cgclx (;k.k\) E

can be replaced by the covariant form
o 3t -
' 56 Saps =0 |

This can be proved in general for Lagrangians whose matter dependence

0

)

(77

can be expressed in ‘terms ofﬂQd, Qa{k alone. - See-appendix-G—for—-- % ——
details. However, for the Einstein equations, the Euler-Lagrange -

equations (14) apparently cannot be replaced by the covariant form



(78)

a(s?{) (Qg;tél)_
(m

-56-

//1('")% >lk 0.

It would seem more satisfactory to be able to derive the Einstein

equations from an explicitly covariant set of equations.

Summarizing the results of our variational work, we have the

QQroposition The combined Dirac-Einstein-Maxwell equations

e e —— —

, derived

from the principle Qﬁid4x = 0, where

L=[R-4nF Mﬁéi -l 2mi (XM 142, )+ (s

may be written

(79)

I= 1 A"!_n—_ . *
DB“UA'B/XII v'z"ga';o)

D*"

"O'BA(’XA’X - 753’7‘ u)“CFIBA(‘ngBUI S gAl!))ﬂ Fq, |

M F_P —ZEJ

Qi |

-
—
—

ab
+75«Mg%79, T



where

| a8y
(80) stéo’%;\(?(%(‘g*‘f‘\g ), c=V#re T

and
F- 4 ) : /
50 Mij = -8 (o1 147 + 0y 144,
| _BA Ap ¢
eh Q{Ag‘ﬁu~ 0; y'ngg',L' )_*c.c. :
and we:also write the Qif = 0 equations as
(82) 'Gl. .

! !
Define mk = okB,AXAXB ) nk =,okB,A£A£B . In the usual corres-

&

- i , ‘
=’ET&=-%(M1+EQ)

pondence of 1-spinors and null vectors, m and n are the vectors asso-
ciated witH the spinors ¥, & respectively. Then (80) expresses the
interesting result that the current is the tensor quantity corres-
ponding to the Dirac wave fields.
The equations (79) gontain 24 unknowns: 10(gij) + 4(XA) + 4(£A)
+ 4(¢k) + 1(e) + 1(m). Because of fhé freedom of imposing a gauge
- condition on the electromagnetic field and 4 coordinate conditions,
there are 27 equationSf 'IO(Qij) + 4(Mk) + 4(Dé) + 4(D§) + 4(coord.)
+1(gauge). "The number of independent equations is reduced by the
five identities: 4(Qijjj - 0) + 1(Mk|k = 0).
Thus we have 22 independent equations for the 22 unkmown func- R ¥
tions and 2 unknown constants. This system may be made determinate
by prescribing values for e,m. In addition to the 22 independent

equations above, which must hold 16cally everywhere, there may be



global restrictions upon the solutions. For example, for sol:;i?ﬂg\\\~
with finite total charge, one might reasonably require;that tHis

charge bige. Such a condition appears in Das and Coffman (11) .,

view of the scarcity of conservation laws in genera1>relatiy ty,

this condition seemsagoodcandifateto fépléééifﬁe usﬁéffsquare
integrability of wave functions.f Such additional global require-
gents‘could affect the arbitrariness in the choice of e,m. Fof
our static solutions, we shall see that e and m cannot be chosen
independently. We do not discuss the Cauchx problem here.

We have not considered the quantities y,0 appearing in the spih
metric as unknowns. The feason for this is that éhe Lagrangian (1)

is invariant under the two parameter ''gauge transformations" AAB =

, Lo ]
rSAB, where r = azels, a, B € R. From Chapter II, the conserved

1 Y ’ [ e
quantity associated with B-invariance is 2€¢k -‘gk . We do not know

the conservation law associated with a-invariance: the phySicaL sig-
nificance of Y is not clear.
In our variational work we also ignored the explicit dependence

of the Lagrangian on Y. For the independent quantities we have sel-

ected, the X terms of the Lagrangian involving Yy may be written - — -

ch(g /X/Z[xA%I -27(/1 DZC @C)yZ(Jm(BC)X )

_#%jggz(jjdsc%xmaﬂ:)J'E;g'(zaéfé% +T%txdaip)3] 4-C.C_')

4



‘ F

where from Chapter I by an appropriate coordination of spin'frgge and

tetrad we have

Cf BA T ?( J(BA

The expression for the E‘terms is similar. Usifgtitese expressioigr

the Euler-Lagrange equation»for Y becomes

/4 8 BA o
oy -y vee= 0

)

and this is identically satisfied from the Dirac equations.
- We have already mentioned that Rosenfeld shows that the invar-
iance of iiunder general coordinate transformations aJﬁ tetrad rot-

ations, together with the matter field equations, gives rise to the

videntities'QlJlj = 0. More precisély, one can show

NIV I r’ ) & }
(83) 8TFQ Y, (o@ -hD )+F— M
whefelak J&k are collectlons of Dirac equatlons The direct proof,y

originally due to Infeld and van der Waerden (17), #s quite long.

For completeness, it is given in Appendix D.

Similarly, the invariance of iunder gauge transformatlons

gives rise to the identity

: 1 J I 7 /
(84) "zl{fg M ¥ : D‘BIKB+DA’XA+P§1§B+ Df{é,’A
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~ .
-

To see this, we first derive the contravariant £ equation. We have

s (1), + T A

. 4;7777,,, . 'Pheﬁ - ' - . S S S S, el

'C |
() B a0

' But

@4 = 10t (2 dh-0)

by II-(48). Then (85) becomes

‘W | |
) g BAg lﬂ’ ‘CTBA(ZEQbf w 7(3 =

thé contravariant Dirac § equation. Similarly, the covariant Dirac
¥ equation is
.. ! / ’
{BA . . {BA ¢
87) T - 4 m
@D g " Kgy - it (2EQ-Gp) K+ 5 0.
Now

ate Mg = g 1B+ 8%y E% ) wee

=(onthy W‘EBWB +lo 3A£ IR 8A (266, - O1)én ran e,

and (84) follows.



IV. A SPECIAL SPINOR GALCULUS

Our primary objective is to search for exact solutions of the

combined Dirac-Einstein-Maxwell equations such that the electric and

gravitational fields are static and the Dirac field is stationary in
gtme wave-mechanical sense. Here we exhibit the explicit spinor cal-
culus to be used. A static gravitational metric may always be writ- '

ten in the normal form

» §= kP -gde)- hde o)’

. . . . kA'B
For this metric we may choose our spin matrices o to be a con-

&

formal factor times the usual choice of special relativity:

L L
AB_ K% /0| 2489 % (O —c)
g - 17 ({ C)) ) FT | "]ﬁ?; (. 0/

2L !
3B hZ/i o) 4A'B_ ¥“’(t o)
g = ( }U'“'ﬁﬂj‘o:-

One easily checks that the choice (Z) satisfies Axiom I of our spinor

calculus. Axiom IIT is satisfied whenever the spinor affinities are

-~

given by II-(47): indeed, II1-(47) was derived to this end: The ——

spin matrices covariant in their spiner indices are obtained from - -

» ' |
(2) by use of YAR" Here, we take —~—



¥ KZ(O—I)' 2 92(0 _t)
;t'_-. . ,:_’_——‘ .
TAB~ (7 \-1 0 3 d A Z ( 0/
(3)
42' —lé
0’31 = _h-——(" O) 4, __.{..-—-—(’ O)
AB V2 \o 1/} TAB 7 o 1/
One checks that (2), (3) satisfy Axiom II of the sp{nor calculus,
——— - ——-andthus we are guaranteed of a consistent spinor catcutus integratly ——
related to our space-time metric. We may therefore avail ourselves
of all the identities established in Chapter II. P
We have made no mention of the quaptities y, 9 $z£;h appear in
LY - '
our expression for Yap> II-(3). vy is easily disposed of: if OnB A
_fa b . N . n _ f{d -c
--(C d)’ then the rule for lowering indices gives ¢ B'A - Cb a)Y

This is consistent with (2), (3) iff

‘ o Y= |

Further, given the matrices (2), if y # 1 Axiom II will not be sat-
isfied. This is easily checked using iI-(lQ). Thus vy is completely

determined. Using (4), II-(46) becomes

o iy - ziedy

ané the expression for our spinor affinities II-(47) becomes
s

L Y. D U R A

ol
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The physical significange of 6 is unclear. One easily shows

that under a gauge-type spin transformation AAB =6 € s

\ | 7‘
- _ L ) ' ,
(7); 69).5 - 6%5 2 0:5.
: Gempaxing{?}wi%hli—{é@},weseef2€¢i;4;6sis:inya;;an%wi£hgﬂ;Ang*A*AA

reSPect to gauge transformatigns. In particular, one may choose
, , , . ]

(8 l 69)5 ='C:C "

. by fixiﬁg the gauge.A With this choice of gauge, © is comstant, and

~

we may take

)R E} =0 .

B the simple form

(10) XAB :(‘OH') ) - '

From 1I-(49), it then follows that

D Yygyp = -2 G the

Tﬁis gives for'YA

Equations (1)-(7) are gauge-independent. (8)-(11) are true only for .

a special choice of gauge; ‘

One form in which Dirac's equations are traditionally written

in special relativity is



2 (i +ic7-gm)Y= o

See e.g. Schiff (31), section 52. Here,

e(0%) 47l ) eole o)y

(13) :oa)_ :(O—L> ,IO)_
" (z 059 i o 503’(0—1 )

N R AT 2T R AP

Writing our Dirac equations in cemponent form for the case of special

relativity and comparing with (13), we find the relations
’L,b ( 2 A | /'
, = - x +L 7 . = .. 7+¢ ’
(14) ! él) p) 1'L;’Z % g/ )
_ ko | .
W.’:' '(% "gz') 5 ¢4:‘ %‘!5,’
fh particular, for a pure wl solution, we have
(15) ’X’:g =0 . %z.— £
21 ) - ‘gz

™ ,
For our static cade, this corresponds to a 'spin-up' pure electron

-~

wave (no positron). See Schiff, (52.17). Finally, we note for a

static solution with normal metric form (1), we may take for the
N

electromagnetic potential f; ;



T
s @), =‘O 5 ¢4 §¢V-

(16) implies we have a puré electrostatic field with no magnetism.

T - \
/ - P
. e
({
¥
M
\\( y o
* —
=
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V. THE DIRAC EQUATIONS : ,

" Qur aim is to calculate the explicit form of the Dirac equations
in the special spinor calculus of Chapter IV, assuming the static

0 § = KR g hd)+ F?)’

‘ where k, g, h, f do not depend upon x4. From IIT-(79) and the def-

inition of spinor derivatives, the Dirac equations are

Sl (Whys AL )ty - 0

ZA'B ' | :
@ g TR x®=0.

Writing out the summations, and using the expfessions Iv-(2), (3),
| 4 .

’ ()U l%u 0’2;7( *O'u ‘*'U’f/i;:i

-

4-(T‘Al f ﬁf {'" 5} = O)

- /. :
O L +<rzzx T S —

-

+GAZF X V—qu )

| 12l 2271 3/ 411
6 :
o G €2'>I+J 52',2"'6 €t§3a+d, 'S:j4"'

/
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an Kz - -5 s
K f —L9251/Z~h2§213+£2§z[)4

.
e f“zé’ -7tz Eoemd=0
7



z

For the eight terms involving the spinor affinities, we use II-(47)
. , ) M

and the special spinor calculus. Then e.g.

) - _1 m!'B m ni'B
(12) F”’ - Z [O“MI’BG >l + {nl G' Jmlla] .

- .- . S . |
For our special spin matrices,

mB8 _ . iz | Q{' /'
Omigd NN >1+0j2;’zd 0’3,, 0,4“04

=%[ di %) +91(9 ) h"?-(h‘l'z))ﬁ{f%@"f),,]

, Sibmirl'arly ,

{2 212 27 3/ 4 ('l
.+{2'§U @12+§3‘§J Tgy 41§O’4 T4

_ L 5 - ! / R i X
T2 K ngk,z_‘}'Z[K’K)l"-s 9>\+‘1 h,ﬁ"f ‘Fn]'
Then.we have for (12)

-

(13) rl ._‘ 19 %Km-

-3
The remaining spinor affinities are calculated similarly; their

{n&d’ O’mxg gugd"lz Ot l'gdllfzoil2+{1,'§62lQ0712



values are given in Appendix A. Using ;hese results,
JA!F’I O“ZIFf/+721/—;zz*G'; l *CTHF
.,_’._L “Z "zlb'i -7 éLli 7(_ [-2|-% :
= K “(K2h*K ) - -9*(g )hc(‘f ‘% £3’4¢€¢)]
-h” -} |
= U%ngc))z —(.--,z £€¢

Altogether, similar calculations give the results

_hz
o i k), -E2 e,

oy - W 2217 0h0), ﬁ:cz.m)
| R
r U’A’lr’k (ﬁ"ﬂ}’f)n 4,"" (AKM’))Z)

as) ghy My= b %Kg i z 22 e |
qéAl[”A,k- ht U,,/( ﬁ)z 7“ (P
ﬁAIF’jﬁ —Kz%ggf” ;V,f%j(hf},
R 4rﬂ(ﬂn9kf)+‘_i-(/nkhf)

kA2 2 }
a FA' T (Aka-p)?’ ..v__z_;—tfgé,



D4 o e0e

Using (8)-(11) and (14), the general Dirac eqLations<for a static

metric and electrostatic field may be writtenk\\“’\y
f y —_.L

-4 L B | hrzl ’ .
19 -k g ,z—h‘x’ +¥Zx,'4— T Unkef) |

. _ ‘LE¢ %+[—'(ﬂn3%f L(AKM‘)] }mé,g
s - -K-zx,,ﬂg’ix;ﬂ Wi, +4rffx;, - [’ﬁ;wﬂgm,;
~__f(/n Kkﬁ),z]x‘+[ﬁ(lnkgf);3+4” 2 ifqb]fxé méy!,
an g, +¢9‘i 2}z+h‘£,3 f"fua*[“’(“ﬁ”
Fhed)s [ %m - Am]ﬁ
. a9 K 5: -(G2E K 61:34” z4+[K (ABWN
—i%/ (n m’),z}é,, -[% Unkat),-f ed)lg, = mt’ :

For a pure wl solution, we have shown in,IY:CISl%that_x}_iwgl‘,mﬂw, o

= 0, and (15)-(18) reduce to .
J— N

K it s ) L lhint), ]2
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| (20)1«] 7()3+f 7( [h Unkgf) +f’t€¢]l mgl
a0 Ky +ig éfz*[ hgh), - k) Je 0

R, +1P"§24 4 /nkg )-f z£¢]§ = -m?

We have not yet used the condition X = 152, of IV-(15). Substi-

tuting thls into (19), we have : ,
iy L, IKE zg‘% s~
@9 (K 2y + g%l Uhght), + - (hkhE), €20

Multiplying by ¥, we see (23) is identical with (21). Similarly,

V- (15) gives for (20)

o K i [ i int

Multiplying (24) by 1 and adding to (22), we find

(25) hzg 4 (zn/(gﬁ)gé =0 *’ v_,,

or

@) (f §1'))3 = 'Zzl'w"/@’f);s

which gives

(27) Ag = ~—%K9ﬁ) hX (12 1f)

J



where X is arbitrary. Substitution of (25) into (24) yields

(28) %521))4 = i(m'$%+£¢))

and we have shown that for a static metric and electrostatic field,

the generél pure wl solution of the Dirac equations .is the general

~ solution of (21), (27), (28). -
As usual for stationary waves in quantum mechanics, we look

for a solution satisfying the separability property

e Y= SIPR), t=4* '

where S is a (possibl;icomplex) function of xl, x2, x3 only. This

is equivalent to

o) A= -+SP . gz = -é—

Then (28) gives
I
~ 1
(31) TF;‘-‘— -iC= —i(mﬁ_z+5¢)
or |

et
(32) Psr -

~



o

From phfsicél considerations for a partiéle at rest and equation
(32), it seems reasonable.to take C = m. Altogether, fbr a separable

pure wl solution we have

L
e £7 - /_% Cb)

_imt

)

(35) 52, = %(Kgf)jB(X',%z)e

where B is yet to be determined, and it remains to satisfy ‘(21).

/
(34) is usually termed the Weyl-Majumdar relation. By (30), (35),
' -4
@ S =(Kgf)# Blajo?)
Note that if we make the further assumption
{ (37) §§L ; %%- red/

then (21) is satisfied iff

IS = 'ﬁ&(ghf}%]f{xzﬂs%
hS =5 hlkkb) T2 |

where Y, Z are arbitrary, or

(38)
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3
.

L 9 S-(KgP Bl ) - (h)F QL)

= (Kf)? Rix'4?)

and the Dirac equations are satisfied by (30), (32), (34), and (39),

'providédro?Iy’Bj'Qj R can be chosen to make (39) an identity. How-
ever, we do not maké %he special assumption (37) at present.

In summary, then, we have shown the following: fbr a static
space-time and purely electrostatié field,.the Dirac' equations are»
given by (15)5(18). If one further looks for a pure wl solution,ra
%hese equations may be simplified to the equations (21), (27), (28).
If the solution isrto be separable, it must be given by (21), (30),
(32), (34), (35). Finaily, if (37) holds, the solution is given by

(30), (32), (34), and (39).
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VI. THE MAXWELL - EINSTEIN EQUATIONS

We investigate the Maxweli—Einstein equations, using a proc-
edure similar to that of Das (10). For a static metric and pure
electrostatic £1eld—Aeheffifs%—thfee—Maxweii eq&&%&ﬁﬂS4aTG‘idﬁﬁ%iﬁﬁ%%Y““**“‘*

zero. We show that when the mass and charge satisfy the balance

condition

(1) esi’m)

we have M4 = 0 iff Q44 = 0. Classically, ie seems reasonable*that
equilibrium of gravitational and electrostatic forces would only
be possible provided (1),holds. - | “

Until .noted otherwise, in,this section we.use fhe normal static

metric form )»l { ‘
(2) QS = -K(dx’)z“ﬂ(dﬂz)z‘h(dﬂlz)z’f%wz),.

as in IV-(1). Barred quantities (e.g. R B) belong to the positive »

/ ﬂ
5

definite 3-space

»

T

o F- Kt + gl )‘+maw

and a double slash N represeQES covariant differentjation in iggs

3-space. The double slash spinor derivative used in Chapters II,
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I11 will not be needed here. We remind the reader that Greek indices

are to take on the values 1-3, and further define

@ AW —9‘dw Wi B WE 9“4.\\/,9' ; dade%(gg).

Thus e.g. Zéh = EthlldB' Finally, we assume a pure wl wave field.
We begin with the remaining Maxwell equation M4 = 0. By III-

(79), this equation is

4dm 4
F ,m’zv?d

or

F =217
) (-d) (V'TF"“) = 2VZ £a (1M1 Py ghg® )

By V-(34), we have the Weyl-Majumdar condition, which we write as

£ ()

where ¢ = ¢4 is the surviving component of the electromagnetic pot-
ential. This assumption was originally due to Weyl, and for our

assumptions is a necessary consequence of the Dirac equations. Now

o = FHT




and by (é), (7), wé have

‘<d I pz..%f (= 26018 E)

dp(bﬂ /{o( 25(% X +§z§2)

“This gives our remaining Maxwell equatlon in the form

Az¢—*F Fa ¢ zer(xM,.f)

We turn now to the calculation of the Q44_= 0 field equatlon
First we find an -expression for the curvatﬁre invariant R. We have

from the dual. field equations _— e .

°

© R=4M

where M = glJMij, and we have used the result glJEij‘= 0.. From
» - ,
'y :

L v “, o

I11-(81), we have

- (10) M= 57Tr'([0' 3A'X /X/'Q o‘lBAfAE ]* C.C. .

Using the Dirac equqt1onswgf7;};j(79), we have

)

a

ay M= ’32“'?’(#&‘7%;;')5 . ,, S

Cozbining (97, (11),



~

a2 R= lé_irino'(XAgA"%AgA').

Foxr our static metric form (2), we may write

09 K= 'fzﬂz(r ) -
from which it fol}ows that B -

€44 = “P(FZ I]o((?

This may be written

EM=~rfgd@(%F’fr'ab,d>,,ﬁ)

or

(14) F_(F_) (p sF'A ¢-*F_ 6]5

The electromagnetic contributlon .to Q44 is

(15) 44 6’”’?4 944F F;b F— Fﬁ)

In terms of the IYtentlal

Eﬁ‘i E ‘(¢4£ ¢£[4 (¢4,/a ¢aj4 7 gﬁ é - E!qﬁj

Z’%F_abfab =zl—"9‘”9“dﬁla Fab

-
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= ‘2‘—, 9°(F ¢)d ¢)p :""’ —%Z,‘(b.

Altogether the electromagnetic energy contribution is

ae) fu = K& (b - (
where as befors’ K = -8m, For the matter contribution to T44, we

an M= ZVE‘]{(S#(J"BIA IXAXBM"O/A;\'B 1@874_

have

. 4BA 4B~
Y AgBll4+ a ‘sA'éBM).

For.gfpure wi solution (Xl = El = 0), we have

MM- ZFKLF (Jzz'x% 4 szz_% x/4

e

422, » T 422
| -q 2 g2/4 a0, 5114)
= 2KiF 1(123774—7(27( F '§z£2'M+‘Sz’gz[4")-
Lowering indipee gives

e Mag = 2KiF (’127(/4 7(275 52‘52/4*5252 )

Using (12), (14), (16), and,(ls),

5

Q44 = 0 can be written
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. -4,2__‘  ‘1/ o | : ."
| T7F () A.(b'%F_Z,(b—% FEQ -KFim(1%,- ¥*£,.)

- %I{Acb LKFZ(% %,417(,4 AA ),

or flnally /

0 R, -[4FF- F(F)—J(F) 13,6 +

—ZKcmF(F (A, A 2 )+ 20 KFZ(F/
(IX%M /Xx/:; 5152/4*5152 )

Comparing the Q44 =0 equatlon,(19) w1th,the,M4 =0 equation (8},
{ ' _ ,

one sees that their consistency requires

(20) (F_”JrKXF’)"Z,Cb = 2€ F?L‘[szz’-ifzgl,) +
-2Kim R (06, 208,) + 2K FHF)

/X’X )X/XM fgz 31‘4""5252 )

By V-(34), F = (1 - 4;2, which gives

; I _2€ ;/’ ) 1" ez
’ k21 = — ~ . = - —
e P -ED) | e K
- N\ .
Using (21) and the, 'balance' condition (1), the left side of
i

(20)
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< “
i;}iaentiCally zero. For thg right side of (20), we calculate the

spinor quantities which appear using our separable form assumed for

the wave field in V-(30):

A= SUIPR) &= ESP

This assumption wii% be justified by the form of our final solut%fﬁ.

First, we have ;*&,

v 5! ) RS

(22) XM:: ﬂ+r2#1>
and using the value of réi# given in Appendix A,

2;
e A, =47, 4 t i 2} l-ffﬁsi’
Therefore
I I / /

(24 77{/4 & 1’,4 41[ f’5h77(21’2't'£¢f22/%

Using V-(30) and V-(32), (24) becomes
/ .
/szzm=t4 / 1[4‘)(‘ ‘W"g 3'(€¢]

where §S§-= fséj%. Sim;larlcalculatlons produce the correspon&iﬁérrrhr;ﬁiimﬁ .

N\._

(26) 52{4=§24 ]"’245 52 ZL %{ ,{5¢4‘2)

s



e b, Sl ) T -ep)

Then (25), (27), and V-(34) give

(28) /XZ’}( 4 - 4% O( /4 §f1,/4+€2,€214 _:"-Wm_é‘
= g_,,:f 391"

o,
In terms of S, tﬁe remaining spinor terms -of (20) become
2
a0 6L = 4ISH
2 va ' 2
o) K&, -X¢,=5(S1°.
From (21) and (28)-(30), we find for the right side of (20)
Z(0[2 comeEY a2 s 2.
e£7(SI-2Kim (FE £2)5(S12 4 2K 2R NS Fm.
Multiplying by gf'%Efz, this gives for the r.h.s. (20)
(31 51'411'”’11 3
f’/ - Lo Ll o g e mmmm e s Lo
and using = = ¥4~ e, we find the right side of (20) to be identically"

zero iff (1) holds. In this case, we have M' = 0 iff Q,, = 0, and
the Max;;\l equations will be satisfied provided the field equations

are. For future use, by {18) and {28) we have for the energy density

o~
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- (32) MMF'ZKMHS’Z.

. We next turn to a consideration of the QaB = 0 field equations.

For the electromagnetic contribution to the energy-momentum, by Iii=

(79), IIr-(sz)

Eup = KRR dgg R
where : ) | /

E& B "944¢ ¢(3 - ’ﬁ’lqsdd)‘e )

49«{3 FbFa=2L9d(g91594464 54— '2'94(310 Cb

Altogether, we have

- rropel i | I
59 g = K BBy 49,5 0).
For our static metric, we would expecf from physical considerations

that M. = 0. By IlI-(61),

{34) Md(gf- 2{? £9ﬁ¥[U’mB'AIX % §A§B 1I+CC

- . . | ~s - f?l.
It can be shown that M = 0. Since » is not symmetric, all nine

° . o . : o AFZ ~32
components must be chascked independently. We show M = 0 and M

= J: the other calculations are similar. Using (34) and the normal

|
!

L



form of our metric,

(35) M = ZFKa [ BA%Aﬁ’iZ —JZBA§A§3:IZ]+C.(3_

~ Using our special spinor calculus,

o M7= 217k 22[@ ,Z,M g8, Jee.

1 1
From Appendix A, F;,é and ?i,z are imaginary. Then

B

RS
52 . 'l
50 MY 2@Kig [ (0%, + 02,

FEE M (e g )] - 0.

For‘%s s
.N

32 . .
38) M7= 0+ (i)

i : . 22 ‘ ’ i
where (i) = 2/§K1g2 [032,2x AP £,551,) + c.c., and
1 71 '
(ii, = 2/§K1g22(532‘?x2 XZ + 33‘ 2573 )T 3,2 + ¢c.c.. Using the

special spinor calculus,

)+Cc - B

} /
= 221772 fa242 E
v ¥m{36}, yzyz, 5 = 57,52 é =‘%S§'2.A Then (i) = 0. Next, R

(t()”4XV—1L 22(622%;(2'}'0'3225&;)1;” 22 N

/f
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A . . A . 3 _ 322
where Im FBC denotes the imaginary part of FBC' Using @ 212 = O

(t'(')= 4K7 [9220‘32'2 Im ;';_ (%zﬁzl— é’zFuI) =0

Then by (38) we have‘ﬁ32 = 0. Other calculations follow along these

lines, giving the result
s M*F=0=M*F¢

We turn now to the calculation of the field equations. For

this purpose, it is convenient to write our metric in the form

w Q= - '§Z{3 ditdsf )+ et

B

dxadx is in normal form. We have the relations

-b.)——

(41) _ge(P= e gd@ 3 Z"tl/= ewzgltl’j

Fiolfg= ™

where Al was defined in (4). For the metric form (40), we find

>
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¢ f

As in Das (10),. we willifind'it convenient’to replace the fié}d

equations Qij = 0 by the dual equations -

MQQi EU+Z(' ZQIT) O,

K]

where
. , 7 . . 7 . (J
L we) T T o
To compute T, we have by (16), (32) ’
Y 2 )

(45) ‘[;4 ‘:,-A.v/-KAl¢ _ZKme“)]S} '

By (1), (41),

_ -m— w — _ - ew_— Z‘J:——'
(46)¢ E )d;Al¢=‘2“K‘Alw=—_€—K-— lw-

Using (46), (45) becomes .
un Ty=4eEw -2kme”ISI*

Similarly, by (33), (39),

or using (46),

(49) '};F-— )F ngFeAw ’ o N
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Then from (47), (49),

50 T= -2KmlS %

T = -2Km. Using (43), (49), (50), we can write the Q, equations as

6D R.a=4(w ‘__i_=='—- Yo f W= Z
Subétituting the expression given in (42) for RaB’ (51) gives for J

* = 1
QaB 0 the equaE}on

L

.= Y
(52) Bdﬁ’%gde(fewAzw-f%ewA'w -—-Km!Slz ):: 0

“For the QG =0 equatioh, by (43}, (47), and (50) we have

(53) Q44= T e*“F w —4p’mew1512.\€

C

Using (42), (53) becomes

w= 7 = 2
8 -e“A,w+ze“F w-EmlSl™= O

s

J;¢Comparing (52), {54), we find

i

/ (55) —?dﬁz O 5

- which implies the 3-space E&deadxﬁ is flat. Then {(40) may be

written K



%

and for this choice the QZ4 = 0 equation (54) becomes

) ol ed M T

D Wy b U= -Kme?ISE

J’Tb determine S, we return to the Dirac equations. By (56),

we have the relations
(58) Kgﬁ ___9}”[' =kht = 6-9 ~

Then by V-(36) we have

.

', (59) S = ew/4 B('X,’Xz) ) B

where B is to be determined. If V-(37) holds, by V-(39) the unique

2

solution up to a constant factor is

)

. _ {
o =™ g M

e(a)/Z: 1_ _r%¢ - /fﬁ?(ﬁ

-

If we do not assume Y-(37),‘then we have the Dirac equation V-(21)
remaining. Using (58}, this equation may be written in the simple

Iorm



S K ,’”’7W7W”m;;;?fhfff”fgmi ""’77'W".”'74ﬁ’4”

-1 l | '
(61) S 5)1"4_“)”*" (S Lg)z__jw)l/): 0.
M,Clearly (60) satisfies (61), but it appears there may exist still
oLher sglutlonsusazisﬁy;ng4£59}4andg£é4}7{and4necessax;iy4£h34Weyilé~——A————~—
Majumdar relation) for which V-(37) does not hold . ‘5}
Altogether,'(56)lsatisfies the Q&B aXO field equations. %or
our assumptions, the Dirac équations are satisfied if (59),‘(61) N
hold. The Maxwell equétioﬁs M* ; 0 arevidentically éatisfied, and "
M4 = 0 1is equivalent to Q54 = 0 by the 'balance!' éondition (1). Thus
we are left to.study (57), (61), and the Q;4 =0 equaFions.
We now consider the Q&4 =0 eQuatibns. For our static metric,

= = * = | ‘
Ra4 Ea4 OV SO Qa4 0 reduces to

(63) P4114 = 0. L

By III-(61),

4
- A -

~ <4 \ _ ’ otBI —
(64) M* =Zﬁ'KL944(O‘dBMCAX§4‘O‘ %:\58'/4)+ ce. . ]

For tne case 2 = 1, we have for our assumptlons

~ |4 i / N VR f -
r3) M =2V?K:944fdfzfj47(z7(2+o’ul 268+ ce

Then W
~ .4 E _L o I
M™= 2K K272 (- 1)y + T ) +ec

~



7 ’ - 9 O - ]
Obtaining expressions for the spincr affinities from Appendix A and

< using V~(30),

%
{

' -4 1
wor M* = 4 151K zf {Z

#
Similarly, we find for the remaining components of (64)

{;;;in using 111-(61), A ve . ‘4

e 2K g (o - ot

AEB’IF)Jrcc. |

For our special assumptions,
P 2k ‘WZ(M gzgzp)
+Kig PSP Fz X

. If » = 1, we find -

2K e = Kik FH(SS5S),

and = .

K(9”1C'12LISIJZFZZ-; +ce' = ATTK.% 9‘%1C'% | S'zk,z , el



Altogether,

(70} M‘?L ',Kzik—,}#-i(sg,;-gs,:)+4#’S/Zk-gg-é7f’ék’l ' “ :

Similarly,

o P R THST,S )-4nlSF g A,

(72) M“—- Kok (S.STB'._S-S,; )

Then the equationS'{63)rmaY'be written

(18Fg Kk -#8,)+ 20K3(55, -55,)-0,
5P sz 993,)4 H65 58,00
/sS,- 55,3 7

] _ .
: S 3

The last equation of (73) is equivalent to the condition,thét-—é—

(73)

be real, and is automatihally satisfied by (59) and the reality of
w.<:Using the special metric (56), the remaining equations of (73)
‘may De written

' »

y

f; &%z'*tr(éﬂsz, J;:; )
1SFFw, +i SS SS,,) =
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-t

S

' : z
****** Note that if we assume V-(37), then (74) implies w = w(x ) only. .

The remaining Dirac equation may be written

79 S

}

S,

[ . ;
g =7 (Wi, ) =S

Substituting (75) into the first of (74), we find

and this "gives

o7 |S]= é?f/P('xj%?)/, Parbnfragf.

-
Similarly, the other equation of (74) gives
5 / _ ;% 2 3‘ L
- (78) S/- € /Q(ﬂf,%)/) Qarbc{'rar)/,
Now (77), (78) are consistent iff’;ﬁﬂ = |P| =”fPf(x3)l ~Since w de-

pends only upon ]Pl, we take P P(xs). Then (59), (77) give

Wz (3)
e Tl

Therefore (59) becomes

| PO®) % 5,
(80) S = i- ‘}B(’x',%z) ) B(%Cﬁ
7 Then = 7y 7 o -
» \ I

7

¢ 875,-2878,

—__ =

BB

W

) pJ]

1
4

5
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w .. Then (75) becomes

and similarly for s71s 20 W,

o -
(81) B B"-f'( B'B, = O,

and therefore B is analytic. The remaining MO‘4 = (0 equations (74)

are identically satisfied by (81). Thus with our assumptions we

have a solution of the combined equations with metric (56) and spatial

part of the wave functions given by (80), provided (81) and the Q*44

= 0 equation (57) can be satisfied. M
The following observation is of interest: if Ma4 had been zero, =

then the Q&4 = 0 equations would have been identically satisfied. !

In this case, (56), (60) would provide a solution of the combined

equations, provided only that w satisfied the QZ4 = 0 equation (57). )

One can show that there would then exist spherically symmetric solu-

tions with finite total charge. The fact that Ma4 # 0 may be inter-

preted as showing that the intrinsic spin of the particle is affecting

the geometry in the same fashion as orbital angular momentum would.

In the light of a full spinor calculus, we see that the true physical

situation does not appear to be static. This may explain the lack

of physically reasonable solutions in the following.

Turning to the QZ4 = 0 equation, by (79)

o —| =
“))3= P P>3+P P>3




(79), and w

_ =94~ -

Then the equation (57) 1is of the form

ey
' L v
(520 M(x\42) + N (3) = BW"‘T'PT : *
2 2 '
where M‘=nw’11 + w,22 - %((w,l) + (m,z) ); N = m,33 - %(m)s)z.
This implies |B| = constant or |P| = constant. If |P| = constant,
we set |P| = 1, and by (79) B
(8% W= - m(BEB) ‘

Using the analytic property (81), we find
(84) V2w = O

Then the QZ4 = 0 equation (57) becomes

L z, 2 PadlJts
#5) 3 [ @)% @,)'] = 8rme”IS)*
Since the right side of (85) is positive definite and w is real, this

equation has no solutions.

o |
as in (60), |P| = ¢ by

Liw

If |B| = constant = 1, then S = e

i

w(xs) only. Then the }emaining QZ4 = 0 equation 1is

W/
: / 2 -2
86) w"- %(w') = Yrme L

- I H
Letting V = e e

, this Dbecomes

&0 Vo= -drm V"
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wnicn may also pe written

2 -2 3
(88) (\/') = FaV +( L a= 4mm .

The general solution of (88) is seen to be

e g
_3 A :
&l V‘-‘/ fmﬁl_g%?j'_ci_@z‘_: )gﬁ C, ) ; . -».;\,/

wnere p represents the Weierstrauss p-function, and Cl’
See MacRobert (19) for details. Cf. also

C7 are arb-

itrary real constants.

1) . Y
solutions given by (89) are not flatf by (42),
j 2“—) /" 3
Ry = ze ')
and by {86)

/ “%Z

- 2
W'=8rme T +z W)

which may vanish only when V = 0.

Any solutions of this nature are physically uninteresting, since

the total charge, given by

(/{r

90) Q= g\/ 347]4\@"&37( .
A |

would diverge. Here N, Tepresents the unit nogmal to the hypersur-

3 For our situation,'a'necessary condition is that w be a



i F3 L . e

i
7
function of al] three spatial coordinates. Thus a solution with

finite total charpe is not possible under the assumptions we have
N
made. These assumpt}bns are: (i) static space-time; (i1) spinor

calculus related to thekgeometry using Axioms I-III of chapter II,

with the electromagnetic field introduced via the minimal electro-

7 mifiif'zinteraction;‘[iii) purely electrostatic e.m. field; (iv)

ure~), solution, space-time separable; (v) e = *m,
P 1 P P X

Further, we can show that (v) is unnecessa%yéz Suppose e = Cm,
P

Cz# 1. From (20), the consistenéy of Q44 = 0 and M4 =0 requi?es

(911).([3"_181;)(}7')-[['(1)= 2eF 7 (j(zle—l—fzng)—iflémm‘

FET Q808 )t U A L.

From (21),

_2€E 4. f 2 .
o B Z(-59), FY8rE- gnct

E-

Using V- (34),

. N ’ 7 i
o5 F = -2067Cf 2 ,

Then for the left side of (91), we nave o e -

2 L
(04) -{4r’ %‘F 50

. .
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Using the expression following (30), the right side of (91) becomes

o5 {70 £2 IS (c% 1)

Then if C2# 1, the consistency of Q44 = 0 and M4 = 0 requires

0oy A D= -mlS'F

Since E& is positive definite, (96) cannot be satisfied. We may
summarize these results in the
Proposition There does not exist a solution of the combined Dirac-
Einstein-Maxwell equations with finite total charge satisfying:

(i) Static space-time;

(ii) Algebraic spinor structure of Ch. II, with minimal electro- ”

magnetic interaction;

(iii) Purely electrostatic Maxwell field;

(iv) Space-time separable, pure wl Dirac field.
As stated previously, there seems some hope that this situation can
be remedied by searching for stationary rather than static solutions.
Assumption (iii) ignores the magnetic moment of the electron and
therefore should be dispensed with for a realistic solution. For
assumption (iv), we found no solutions with wave field W1 = e-imt:

. ‘o 3
our wave fields have a non-trivial x” dependence. From the corres-

ponding situation in special relativity, one would then expect that




5 [ oo

Qs # 0. Thus it seems unlikely that there exist physically realisfic

solutions in general relativity with a pure wl Dirac field.

I

\\,«




The spin matrices for this metric may be written

-

* C ‘c
i -99-
. ¢
- . )/
jf‘
. APPENDIX A .
[
For the staticéyetric form -
, 2 2 2
D = -k@a! )zgjldﬁ) “hide®) + Fdy?)
where k, g, n, f are functions of xl, xz, xs\pnly, the non—Vaﬁisning
A} .
Caristoffel symbols are given by: ~
%“} >| 3 Zz}z —2:9 9:2 {3% JL’ h
{‘}-P—' 4, B,
,22"2_K9H.)33" ,,){;:""3}(
37 _ 4
{33’%— -3 )1_') {H - 2.11 K;?, b {12% 1’19)3 3
S I SR I 1%_‘._}_
{’zg Z-K K)l') {13 - Z {llg_— 29 8){)
‘Z - /! 3?:—[— - 3' —
£l %.99,35 B3k, Gt .,
“'::.-—- =1 3-;_.!." -
PISELE {4‘3 S CE . {4431“{35 S
,Ir 777777777 ) B
E- 17 Gl 10 e )
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1Q =1\
G = "7 \-1 o
o
3 _hi,io
JA'B’ﬁ*‘(o 1) 5

A L -
Using these expressions,

are given by:

the non-vanishing spinor affinities

% ,3=—z(h‘Kh #i”h,J

113=4'L(h K* ‘1*11‘2 A,J an ‘5453 3

-~
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APPEXDIX B
Let gij be a glven space-time metric form. In Chapter I, we

nave shown that the introduction of a spinor sfructure reduces to

-

L fud

tae problem of finding an orthonormal tetrad for pij' In general,-
, :

. —
th;,tetrad snould be chosen tb make fullest use of any space-time '

symnetries. clowever, for the sake of mathematical completcness, we

- .

v

"‘jshow tnat a tetrad may always bDe chosen by an entirely constructive

o procedure. Thais construction gives the usual 0T for metrics in

Y s

normal form, but 2.z. doss not give the simplest tetrad for a sta-
3 ) o

. tionary space. Thae construction is due to S. Kloster (private com-
¥ .
munication). . , . : : I b3
- * -
Consider the forms »

(‘. . B
(D N T~ : ) (2) .
1; (6,0,0,0) 5 A% ~(4,b,,00),
® @)
» “(gsyb%Cs)D)\@ A "’(54)54#4)34);
and define

SR

Then it follows that J

}@p:jg; 1(?:(3%_)

) A .. B |
YN 8 (99904, s o 350,30, O



| (7-)
(344) [341 922944~ 3(945942 93,2944)]

(z
A V- G 944) [94194! G294~ 3(943941 3319445(943941 93:944>] |

?ﬁ <944> 64,94 3@4334, as,w 0"”” *
7 - det[19] - 1(,‘)1?1?1‘:?
~and tne components/;(g) take/;§\EES;form

—

i (0,0,0,gu"); 15=8%(00 0w, 3%%);
Je=(98) (0,  Sia Bz, 9 O B 1--175 9

For tne spin patrlces 1et

3= -1'g%i1¥8) (9449;; Gasdas) 5 b= 179" (ﬂf)ﬁ)'{(ga%—%gs)j

\C {9‘,,; ( ) (343941 931644) d= @ﬂ) (943541 ﬁ3/944)

0) i 7 (') (4
AB_ <479 [0 | A8 © I -‘(3 B
(T’ = ——9" ! o) ) C)’2 ’(":'(ﬂ(')gtz %(Z)g)/

Z

C | |



d 7 5, -Bik
B L (Gua) *(1- 35587)
O T

) 1 (I q(z) )

q
VS
J
N~
N
=
(O]
NV
O
SN——’

For particular coordinate patches,

this.construction may fail,

e.

if B = 0, but a similar construction is alﬁays possible locally.

/|

g.
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APPENDIX C

Here we discuss various choices for the independent variables
of a general relativistic Lagrangian, and show that the Euler-
-3 Lagrange equations for matter fields in general relativity may be
| written in explicitly covariant form. Consider a Lagrangian density
L= L/"g , where L is a scalar dependent upon gij’ the matter fields,
and their first covariant derivatives. The matter fields may be |
tensor fields, spinor fields, or mixed. We consider three wéys of '

obtaining the Euler-Lagrange equations:

S
+ 8

Case I: Let ¢ '  represent a matter field appearing in L. We

treat ¢°°° and the partial derivatives ¢°°° | as independent var-

,d

* iables, and arrive at the usual equations
] (1) (‘_).___.ML )4 - oFgL _
i e ., = .
% AToR R

30

Case II: We take ¢°°° and ¢ ° as independent, where slash

|d
is our covariant derivative of Chapter II, and write for the Euler-

Lagrange equations

oL L
(2) <:9_5:')J)ld - j—a; = Q0.

Case III: We formally treat ¢ " and ¢ '~ as independent,

lid

where the double slash covariant derivative is the usual covariant




(WA“HLd = (#JA ) {dmglqlaA {;?d%q}m,q Ad ’4’3[: + .

Turning to case I, <T\

derivative for tensors, and is deffned by III—(Z) for spinor indices

We then write the Euler-Lagranée equations as

L oL | B
f (3)(S¢IIJ>”J 3(}5 _O ‘ ‘

PR

Let us first consider (1), (2). To save bookkeeping, we sup--*

press all but a representative pair of indices for ¢’ ', writing

)
o
©

Let

J

‘ a¢aA! >’°’ V’“(Fﬂ%‘\ g&&@mﬁ\ /,:dlq’jl—'ﬁ"‘

For case 11, where 524 aa

Sy are independent, we take

L | p
(5) ‘a"’A‘-- = Z :
It w3k S :

Using (4), (5), we have for (2) {

d B
o (F 1%c:?A ‘{?G:W,,A.-.. 'FAZ @g;.ﬁ +oe —Zg;.-, =0
»

5
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F7L -
3¢3A d) =(f—§1'4’g,¢))c}_ -

Since we are now taking iaA, ¢ d fs 1ndependen9

Y | L ¢t -
B

Now

" d)CBm{a = Qb o +§m4§¢ + F’Fdd)

Bv II-(47), F?d is independent of all matter fields except the elec-

P

tromagnetic field, which is a pure tensor field. Thep

' 0B _
0 - AST TSy

and thnis gives

(9) Qf;A -9 [ZQA... +{§4§¢iﬂ,.ﬂ“§ﬂgsf-"]

Combining (7), (9), we. find for (1) the equations

fra@r-@#sa-))d-zzﬂ....—w:iA v+ F5-0

Bv diTect co arlson, 67 = (10). " Turning next to case III we
b p g

suppose ; , O Hd are independent. Then

. aL —\ aL ad)cgld . .
NS e g St |

gut
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G5 = ph e ¢

and this gives

A ¢9A = La ¥ W#’ ah-

Now

A
}' #aA ai = "l’jA---- )
, a | nd \,,/ - G
‘q’aA-]{d = ’q/aAv/cJ +i£¢d,‘7()gA...

Combining thése results with (11), we have for (3)

1]

’V{aA“¢d —ZEQA"‘ CD) _M////f—

which is identical with (2). Thus all three approéches lead to the

\' -
same equat%ons.

Z/ e
Ca§é?-;f, I1I do not imply that one can treat e.g. ¢aA EE

as indé¥endent, where %, £ are different fields. Since the

Cx2

ATy

spinor covariant derivative depends in general upon the electro-

pEN

. 3 aA. ..
magnetic field, one cannot treat 3 A [d nd the electromagﬂetlc

eld 7, as independent in deriving the Maxwell equations. This is

imilar to the treatment of = aA and gij in deriving the Einstein

3d An

2]

ezuations.
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APPENDIX D

In I11-(83), we claimed that the combined equations II1I-(79)

satisty the 1dentities — —

r

v 5 Q¥ = -Ephiphy k!

dere we give a direct proof of (1). A similar proof was first given
by Infeld and Van der waerden (17). Now i
RPN 7 bm—d 1 M -ab A »
@ n Q= Pt d g B e My, \

where

>

s ¥

. . . ~1k
Let us first consider Ml

o

- i (At AR e

i ‘In the first term, we have
i

Y M TV N SR B SN Ay
(1) tg mO"A'B(’X imX Th ‘Qm 6{1'8 (1’?m£715+j(,m%u)

S S W
-9 0 ug (Xt g + XX g + 154 Plem),
wnere we have used II-{62). To express our result in a special form,

.. . ~1k .
we add tne following factors to the four terms of M B resulting

s
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from differentiation of (3):

| U TV
First term: —Er—zzy‘gd ('X]-gA,_,,,XBgBU) ;

Second term: F gz(/x ugA-}-’XBch )
with similar expressions for the conjugate terms. Note these terms
~cancel one another and therefore affect only the form of the final
‘result. Adding the first factor above to (4), we have
.

T 3V R N kB 4 A |

Lg ﬂ(,,,,(crmg%,g, ‘z’fAf>+lg 74 (JAkgﬂ(u +
55),,,1 + (9 j‘% %OO'ABP

Using I1-(60), this becomes

- mk g '
(9" (s ) + g %B(JAB%” hmt

mk, 80 1 /1 D .
y“ﬁ’s(z}?trlmoﬂcf;b*‘i SA)

or . . : - : T

byr Dy + gt Dajm =€ bz mg”ﬁ(aﬁgf‘%g

i )

9)"

x % R‘fr mJ UZIDUIA’B-

cgm



For the Riemann term, by II-(29) ’ (

¢ mﬁ B tAD Ji
© Zg9 14X RtrmO'wO/ d°A'B

Now

nr FE{JM = PRm[r‘é :g(Emfré Ui P

/ % tf
+ Rm%dﬂ ’ rnr'éf?? VF)
= 5N P (Rt + Rty +Roprts) = O.
Then (6) becomes Qﬁ

9 %/XCJC’B(g{pgfrﬂm 16I(}Erélm 9 Etlrm)

which reduces to

(®) -,9"&% W R e —

Then for (5) we have

o gt by g™ vyeegt e +



il

o 3 ¢! . k? -
291 XK Tc'g rm.

- . . . 1k ‘
Up to a multiplicative factor, this is the first term of M K ®

Ry
Altogether we obtain by similar calculations

x

f : |
S e WW ?}' +@%§)F—v

Vo g 0, gl e s

(10) may be written symbolically as

4y phearh,

k . : . . . .
wherelal is composed of Dirac equations and their derivatives.

0
AU~ ez M

)

Before calculating}ﬁkl we develop the second-order Dirac

RN

equations. From III-(79) we obtain

(12) 948)7(/4/4@}:- 2yh EBAO/ Be X P

Using II-(60), this gives

ra A
(13) 95(;% /AJ Yz -3 ’XDRM'@J(T&B/AO’J Cdﬂ—"c f_D-i—
D_AkBA T -
+ (£ F:éj o O"J o
By II-(30), ’ A\ '
L
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(14) Rt!ﬂ o’t A(I 300' G’FD Rtlé‘;[" YD (.9#9‘1

5. —
-gtgiteghigH) - f o, (1 g/t

_91 7,li,»m ‘&Jﬂﬂm)+z7]’élf’bc’ A !FD

A calculation similar to that preceeding (7) shows nthpRtlkj = 0.

The other imaginary terms also vanish, and (14) implies

(13) RH’/@JJ& O'JBcCTr 45AEH£J(9 9” |

Substituting (15) into (13), we have

ki A 2xA | DA [BA
16 .= - g .
()9J')(MJ m“ X 4“+‘€J JDX
This is the second-order Dirac X equation. A similar calculation

gives for the second-order Dirac £ equation

. AB
17) 92"166'”’" = "ngc' ‘iRgc’ - ‘fgm(fg'B(Tm fAl'

We now proceed to calculate‘ﬁkll Using (3), the x terms of

1
~
Mklll up to a constant factor are

1 g %'GBA" ﬂm +ig G%AxAxlml+ ce. .




Now the first term of (18) and its conjugate give

ingojg’A(iyAlj'Xgllm'xAIJ/XBIm'):O | ?

e
_The second term of (18) and f"its conjugate may be written,

- ety

+ (Ehpy o”"gccrfpcﬂ )+ EFﬂAﬂ(Do’%Ao’f,ca

3y (16}, the first term of (19) and its'igonjugate, are-Dlrac equat;ons.

o B

For the second term of (19), by "II-(29)‘ o X T,

&t -

@ by 417 BACTM? OjDC - —EF %*‘xba(g'"lcrﬁfa
bnly_ ‘

]) A) -,

M om m 1.
-—9 O‘D/A+9 G‘D)A"L”
The imaginary term of (2‘0) will cancel with’ the conjugate term of

(19). Simplifying (20), we arrive at

(21) EF,;gg JD A x?

Altogether, we find for (18) the result I ”7

(22) 5}72 1 7(D’XA+(O' gAf(A(g X/m[g




. — 11
- i U B A

~

A similar calculation with the £ terms of‘ﬁkll

1 leads finally to

the result

or symbolically we may write

O T L

whex;’eab}; is composed of Dirac equations. . Flnally,,,, (24),. (11) ;give

the result

P M‘U,f -8wﬁ(ﬂf+ﬁf); 32"

, 4 '
For the electromagnetic contribution, we find =

2 E@',J- - terF

Altogetlydr, we have for the Einstein equations the divergence (1)



-116-

< , - BIBLIOGRAPHY

Abramowitz, M. and Stegun, I.,ed. 1965 Handbook of Mathematical

L%

Wiss., Physik-Math. K1. 380.

&

1.
Functions: National Bureau of Standards Applied Math. Series 55
U.S. Gov't. Printing Office.
2. Bade, W. and Jehle, H./&953 Rev. Mod. Phys. 25, 714.
3. Belinfante, F. 1940 Phyiica VII, 305. .
4. Belinfante, F. 1940 Physica VII, 449.
5. Bergmann, P. 1957 Phys. Rev. 107, 624.
s = ’ . ‘
6. - Bergmann, P. and Thomson, R. 1953 Phys. Rev. 89, 400.
7. Bjorken, J. and Drell, S. 1965 Relativistic Quantum Fields
New York: McGraw-Hill. :
= 8. Cartan, E. 1966 The Theory of Spinors Paris: Hermann.
9. Corson, E. 1953,In;foductidn to‘Iénséfé, é}iﬁéfs,rand Relativ-
istic Wave-Equatiors Londom: Blagkie and Son.
) . }. ,/ —
10. Das, A. 1962 Proc. Roy. Soc. A 267, 1. Y,
11. 52@; A. and Coffman, C. 1967 J. Math. Phys. 8, 1720.
12. Eisenhart, L. 1925 Riemanflan Geometry Princeton: Princéton
University Press. = y -
13. Fock, V. 1929 Zeitschrift Fuer Physik 57, 261.
14. Geroch, R. 1968 Ann. Phy. 48, 526. .
15. Geroch, R. 1968 J. Math. Phys. 9, 1739.
15a. Geroch, R. 1970 J. Math. Phys. 11, 343.
16. Heyl, F. and Hyde, P. 1973 Ann. Inst. Henri Poincare XIX, 179.
17. Infeld, L. and Van der Waerden, B. 1933 Sitzber. Preuss. Acad. g



-117-

18. Kilmister, C.-1967, in B. Hoffmann, ed., Perspectives in Geometry
and Relativity Bloomington, Ind.: Indiana U. Press.

19. MacRobert, T. 1917 Functjons of a Comblex Variable P.183 London:

-~ MacMillan=and Co. _ 1
20. Majumdar, S. 1947 Phys. Rev. 72, 390. 2
) . ) ‘ : &~ ~
21. Misner, C. 1963 J. Math. Phys. 4, 924.
: : , »
22. Moller, C. 1961 Ann. Phys. 12, 118. '
- 23. Moller, C. 1961 Kgl. Danske Videnskab. Selskab., Mat.-Fys Skr. )
-%’ "TlO.' IQ. , ;’\0\ :\_
¥

24 “Mukherjee, M. 1963 Nuovo Cimento 27, 1347.

25. Newman, E. and\Penrose, R. 1962 J. Math. Phys. 3, 566.

26. Penrose, R. 1960 Ann. Phy. 10, 171. )

' .

27. Peprose R. 1968, in C. Dewitt, ed., Battelle Rencontres in
Mathemgtics and Physics: Seattle 1967 New York: W. A. Benjamin.

. 28. Pirani, F. 1964 Brandeis Summer Institute in Theoretical Physics
V.I New York: Prentice-Hall

—— ¢

—

29. Rosenfeld, L. 1940 Acad. Roy. de Beigique Classe des Sciences.
Memoirs. 48, 3. ’

30. Sakurai, J. 1967 Advanced Quantum Mechanics Reading, Mass.:
-Addison-Wesley.

31. Schiff, L. 1968 Quantum Mechanics New York: McGraw-Hill.

32. Schmutzgr, E. 1960 Zeit. Fur. Xaturf*\éA, 355.
334 Tetrod, H. 1928 Z. Physik 50, 336.
e 3%Wevi, H. 1929 Proc. Natl. Acad. Sci 15,323

e . . ol -
35, Weyl, . 1929 . Physik 56, 336

36. Whittaker, E. 1937 Proc. Roy. Soc. A 158, 38.





