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ABSTRACT , - ,

In this paper the use of "invariant" methods in General

H
.

Relativity is emphasized. The theory of connections on principal

.

fiber bundles serves as a vehicle for the introduction of the
Cartan apé#oééh to affine connections, which is naturally adaptéd
to the‘invériant calculus. The theory also provides a unified
framework from which to view many of. the "formalisms" whicﬁ can be

introduced in General Relativity. Chief among these is the Spinor

Calculus; an account is given of how it arises from the bundle

viewpoint. In stationary spaces a natural "spinor structure" can

be defined in an obvious manner on the associated V3 of the space.

.Corresponding to the conditions for a symmetric connection

T

P

to be semi-Riemannian, new necessary conditions for a métric
connection to bé symmetric (and hence semi-Riemannian) are'obtainéd7
Some of these Eonditions are purely algebraic. An .account is given
of,tﬁg "geometrical optics; of congruences in a positive definite

v similar to the well-known version for null congiuence in a

3!
V4.

The field equations in invariant form are derived by the

method of differential fqrms {the Cartan method). The elegance of

this method «compared to the once exclusive tensor calculus is
pointed out. Proceeding either from spinorial considerations, or

from the geometrical optics, a complex version of the field equa-

tions is formulated, which is well adapted to finding.solutions.

«

As an example, the class of stationary vacua with '

eigenvalues of the Ricci subtensor equal is dealt with. This class

(iii)



includes the Stationary;gubéase of plane-fronted gravitationél
waves (with pérallel rays); the remainder of the problem is reduced
téba pair of sécqﬁg-oiderlpgrtiaL‘differential eguationé; one of
which_is‘indgpenaegt, This iéfte} subéiass.belongs to the fétrov
;ype III andrhas.ra;s;with nonvanishiﬁé diyefgéﬁpe'and twist

.~ (complex dilagggggn) in’the’general case.

kS
- hid
* : b
3 Bl
S N Z"": - B
. .
B s
. . . i
. o
- ¢ = v
5
.
«
.
,{c{&‘
(iv)



G
. <
" ACKNOWLEDGEMENT - - N e )
The author would like to expréss his particular gratitude i
to his wife Louise, for her great patience and ericouragement, and to -
- br. A. bas, for ‘su'ggesti'ng' a ,problem in stationary space-times whichs
. was"amén;able to analysis. _
He would also like to thank the Mathematics Department of
Simon Fraser University and Simon Fraser University for their support.
§ “(v)



S

Errata. Underlined portions to be added.

The Thesis starts on page 3 due to an error in-.pagination.

Ch. 1, p. 12, line 6: The tensor field must aiso be nonsingular.

Ch., 1, p. 23, 7th line from bottom: are not in general géodesics.
Ch. 2, p. 43,. 1. 8: null bivectors ) .

Ch. 4, p. 61, 1. 11: (Bade & Jehle [33] ) in invariant form.

Ch. 5, p. 73, egn. (5.5): The terms shear-free and complex-

dilatation-free for g = 0, 7 = 0 should really Qniy be used in

.
case the congruences of ka are geodesics.

P
1

Ch. 6, p. 84, 1. 3: closed form solutions with an arbitra;x"

functional dependence.

™
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Introduction ’ ) . . .
. ‘ .

In writing this thesis an‘ipplicit commitment has been
made for bringing the concepts of modern differential geometry to

- bear in a more intimate way upon -the the6ry of gravitation. We

include among the rudiments of these ?céncepts" the Cartan approach

[1] to affiné'connections and the natural global setting for that

.o

approach, connections in principal fiber bundles. The latter was

first defined by Ehresman [2].
The Cartan approach, also called the "moving frames

method" or the "ﬁethod of differential forms," while not recent,

N )

N
has at least not been traditionally used by relativists and other

speciafiits in tensor analysis. Among its users we may mention .

Lichnerowicz [3], Israel [4], and Jordan, Ehlers, and Kundt [5].

We will demonstrate the utility of this method when used in con-

R ST

junction with orthonormal frames. It is also the key to.our

obtaining some interesting conditions for a metric connection to be

symmetric.

e R R S 1 e

- 3
N <z

The theory of fiber bundles haS'recently received

attention in connection with the theory of relativity in some

expository articles by Trautman [6] and Lichﬁfrowicz [71. It h;s
~ " been used to clarify the relationship of the spinor calculus to ‘
the ordinary tensor analysis or Ricci-calculus (Geroch (81, [91;

Ehlers [10]; Lichnerowicz [7]). We will touch upon this aspect of

v

T v
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its applications in Chapter 4 when discussing the spinor structure.’
The principal fiber bundles are th& natural arena for the discussion
‘'of connections. We develop most of the'neqessary tools of

Riemannian geometry from these foundations.

On the physical side (or perhaps just another mathematical

~

“side), we will be concerned with stationary vacuum space-times.
- ~ > -C% .

For definiteness we set ourselves the problem of eigenvalues of the
‘Ricci subtensor equal. The résult proves to be interesting in
relation to algebraically special space-times. In the solution it

is expedient to use a set of equations deriyed either from spinorial

considerations, or, equivalently, from a geometrical standpoint of

©

"optical" properties of a congruence of curves in V3i
The use of spinor calculus in general relativity was

initiated by Witten {11} and Penrose [lZ],,and.culﬁinatedAin the

=

Newman-Penrose [13] formalism, which is particularly suited to the

study of algebraically special space-times. A contracted version

. ~ - )
of -.the spinor calculus, adapted to stationary spaces, was used by
- Perjes [14] and by Kota and Perjés [15]. A similar formulation in
the static case was attained by Das [16] from geometric considera-
tions. The equations inlﬁhis papef are the same as those in Perjes,

except for being restricted to the vacuum case; but we have brought

out the strugture of those equations in a clearer way. Our concrete

examplé”turns out to be a subcase of one considered (but not solved)

by Perjes [14].




a

1. Fiber bundles and the Cartan approach to- connections.

We begin with the definition of a differentiable manifold
- e . -

-

(Hi¢ks [17]), in order to get into the spirit of things, and help

establish some notation. Let M be a set. An n—coordinate pair

($,U) on M is a subset U of M together with a one-to-one

map ¢:ﬂ -+ Rn such that ¢ (U) is‘open. A C® n-subatlas on M
is a collection of n-coordinate pairs {(¢h,Uh)} which are

. =1 w .
differentiably related in the sense that ¢h ° ¢k is C wherever

it is defined, for all h and k, and where the *Un cover M.

A maximal C® n-subatlas is called a C™ n-atlas. A differentiable

manifold M is a set together with a Cf n-atlas; M 1is said to

be provided with a differentiable structure. Since all the mani-
foldslwe deal with will be C%, we often drop that ;aj;ctive.
"Differentiable” will mean the C~ version. We work with Hausdorff
and - paracompact manifolds,eiclusively. )

We assume the standard concepts in differential geometry
pertaining to the différentiable structure of a manifold. For the
relevant definitions and much of Fhe notation we refer to gicks
[17). We recall a few of these for convenience:

If ¥ isa C° maﬁifold and m € M, then the tangent
space at m is denoted by M,. If X 1is a vectorfield on N, ‘
we use either X, or "X(m? to denote the value ofvéhe vectorfield

at m € M, whichever is more convenient. If N is another - C

manifold and f:M -~ K is Cg, the Jacobian or differential f*
oty i gacoblan
‘\/

..)gi

bl
1
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&,

of £ is a linear map f*:gn1+ Nf(m) for each m € M, If the
cotangent space is derioted by M; , we denote by ,f* the mapping

which takes formsin the opposite direction, f*:Nf( ? -+ M* _  For
- m m

this chaptgx; a curve in"M is a C®-mapping from a connected
subset of R into M; but later we will alsoc mean simply the

range of such a mapping. If X and Y' are two C* vector fields,
S

&

their bracket (X,Y] is the vector field defined ﬁy [X,Y]f =
X(Yf) - Y(Xf), where f 1is any C® real-valued function. .We have
the Jacobi ideﬁéitfz (x,{y,z]1]1 + [i:[z,x]] + [z2,(X,Y]] = 0.

A Lie group G is'a gréup which is a differentiable

manifold sﬁch that the group operations are differentiable (C*);

-

it is said to be a Lie transformation group gg_g_differeﬁfiable

.

manifold M provided:

(a) To each a € G there corresponds a differentiable
transformation of M, denoc®ed by m +— ma,m € M.

(b) If a,b € G, then (ma)b = m(ab) for every m € M.

(c)' The mapping (m,a) € M x GH ma € M is differentiable.

L ’ » %
The group is said to act freely on M  if ma = m for some m € M =

m =e, where e 1is the identity. The mapping in (a) may be

Jcharacterized as a right translation by a, and we often use the

symbol R, :R,(m) = ma. A vector field- X on G is right-invariant

if (Ra) *Xb = xba , fc,’i,all a,b € g;:

Some final remarks on-notg{ion. A comma will mean the

gl .



partial or invariant derivative with respect to a variable or

indexed vector: B':* ; = (3/3Xi)(B"‘). B~ = XA(B"'), where

r

/A

B--- are the components of any tensor.:. The summation convention

is assumed to hold for repeated indices, uﬁless inéicated.otherwise.

Square braékets surrounding .a set of indices means, as.usual, full

i i seei
e P

antisymmetrization: = (1/nh)ie

. lkllkz...lkn i o
where ¢ is the Levi-Civita. permutation symbol.

The basis of o#r work will be the Cartan approach to affine

connections. (Cartan [1]}; also Israel [4], Flanders [18].) But

the original "moving f;ames" method of Cartan, though admirably

suited to computations of a certain kind (as we shall seel), relies

on the existence of a differentiable base field .for the region in

which its structural equations are to be fopﬁulated. A more abstract

setting is needed for the global formulation, which can be properly

related to the usual approach to affine connections (such as that

in Hicks). This setting is furnished by the theory of fiber bundles;

so we begin our study with a sketch‘of the relevant parts of that
theory. The mainrfeferénces'for the material on this subject will
be Bishop and Crittenden [19], Nomizu [20], and Hicﬁs [17). For a
concrete (down-to-earth) treatment of some of theseﬁtopics we refer
the reader to Flanders [18], esvecially Chapter 8..

Let M be a differentiable manifold and G a Lie group.

A differentiable manifold P is a principal fiber bundle over the

base space M with structure group G, denoted P(M,G), if:

B[ii..o.i] ll s
172 n ki 7k, k.

X2



(1.1) (a) G aété on P on the right differentiably and freely.
(b) M is the quotient space of P by thé equivalence
relation induced by G, and the projection n:p > M
is ¢
(c}) P is locally trivial: that is, every m € M has a
neighbourhood U ;uch that w~l(u) - is diffeomorphic

to U xG, bya mapping p € 17L(U) > (1 (p) @ () €

U x G with &(pa) = ¢(pla for every a € G.

according to condition (a), no element other than e € G has a
.fixed point in P. Condition (b) means that M = P/{pG{p ¢ P} with

the quotient topology, which is the strongest topology making o

s

continuous. Palais [21] shows that the quotient topology is
unicquely characterized by the conditions that‘with respect to it }n
is both continuous and ogen. The quotigntidifferentiabie structu;e
is fixed by 7 being c”. condition (c) may be paraphrased by
saying that P is 1§cally a product bundle} with the right action
of G naturally defined. For each m € M, ﬁ'l(m) is a closed
submanifold of P, called the fiber over m, and diffeomorphic to
G.

To put principal fiber bundles into scmething of a
"categoricai" setting we should define the morphisms between them.

V(MV,GV) be two principal bundles. A bundle

Let P(M,G) and P

map f£:R(M,G) - Pv(Mv,Gv) is a set of C* maps (fé'fm'fG) between



£ R s A s L,

the obvious pairs, such that fG is a homomorphism, and we have -

(1.2) ‘ (i) £ onm =mn" o f

= R o f for eve a € G.
p° fa T ftg@) ° p i

e -

For a more complete picture we may mention some more
general coﬁcepts. A bundle over a manifold "M is just a C~
manifold P and a C* onto map TW:P > M. A g}ggz_bundle is one
{thch is iocélly a product bundle in the sense 8f (c) above, but
withqut the group aspect. As an examéle, one may define‘a fiber
bundle associated to a priﬁcipal bundle P(M,G). This is essentially

a fiber bundle over M whose fiber is a differentiable manifold

L

on which G acts to therleff. However, the principal bu;ales form
the proper setting for thé introduction of a connecﬁioh.l |

We now give an imporfant example, which will help us to
fix notation {17)]. Let M be a ¢” n-manifold and let B(M).=

{(m; ) A ):m €M and A\, . an okrdered

(n’ (n) (L' """ ()
basis of Mm}. The natural projection © acts by

n(m;X( ’X(n)) =m. We give B(M) a differentiable

S

structure as follows. If (¢,U) is a coordinate pair on M with

-
P

X; = u; e ¢ (u; 1is the ith slot function), let (5;6-) be a

- _ - 2 D
coordinate pair on B(M) with U =n l(U) and ¢:U - ROMD

i $ (m; ) P oe ee s A = 1 2 ... n
defined by ¢(m (1) (n)) (xl, SR ,xn,X(l),X(l), 'X(n))'
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. . B
= = 3 . ' i
where x, = u; © $(m) and X(k) X(k) /B.Xi The U's obviously

cover B(M), and on any overlap the coordinates are c*Zrelated.

Thus the set of all ;(¢,U) generates a Cf(n + nz)—atlas. The
group Gl(n,R) acts on B(M) on the right: if Akﬂ € G1(n,R), .
Y . :
then (m;k(l); S 'X(n)) > (m; (k)Akl' e . ’X(k)Akn) It is
easy to show that B(M) with this structure is a principal bundle;

we call it the bundle 9£ bases over M.

In a similar way one may define the bundle of orthonormal

frames in any Riemannian space. The group in this case is 0(n,R)

where n = dimension of the space. Other examples of principal

fiber bundles figure heavilyvin the theory of relativity; we
believe that the theory of fiber bundles allows the treatment of
many different formalisms from a unified point of view. The most

important among these is the bundle of oriented orthonormal tetrads

. . + .
with the proper, isochronous Lorentz group L , , which we denote

by OT(M), where M = spaqe;time. The bundle of oriented null

tetrads is isdﬁbrphic to  OT(M). This bundle is closely associated

with the spinor structure, a prinéiéal bundle dealt with in Chaéter
4. If our space-time is spatially and tempofally oriénted’and
pérallelizable, and (X,L) 1is a fixed pair of future oriented null
diréction fields, then the collection of nuifxtetrads Z(M) =
{(m;%x,€,t):m € M, k €K, £ €L, t |is compiex, k **f = - £ et o=

-1,k *"t=2¢% <t =0} becomes a prinéipal fiber bundle with the

structure group C (multiplicative group of cémplex numbers), if
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we define a right action of C by (m;k,%,t)z =
2 -2 '

(m; [z] "k, | 2|

by Ehlers [1oj. One can regard a stationary spaée-time itself as a

principal bundle M(W3,Rl) with the world-lines of the stationary

-

observers as the equivalence classes ;le, m € M. The condition

that the killing motion hé&e n;'fixed points accords with the
requirement in the definition that the group act freely. The fiber
bundle concept can also be applied to more general space-times; see
Lichnerowicz [7]. ' ) N

Many of the examples above can be obtdined from the bundle
of bases via a general process éf reduction of the structural group,
which is a special case of a bundle map. Let P(M,G) be a princi-
pal bundle and H a subgroup of G. Then G °'is reducible to H

iff there exists a principal bundle PV(M,H) and a C®, one-to-

one mapping f:Pv -+ P such that:

(1.3) (1) " =mo £

(ii) £ o R = Rj(h) o f where h € H and j is the

o inclusion map, j(h) € G.

It should be remarked that this concept has no a priori relationship
to any given connection on M. The reductions considered in the
above examples were very special.

In regard to the existence of such reductions, we may cite

&,z/EE), where z € C. This example was pointed out “-

A

8

Ly
R
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the following theorem, due to steenrod'(Bishop and Crittenden [19],
p. 50): If H is a maximal compact subgroup of Gi then G can
be reduced to H. New O0(n,R) is a maximal compact subgroup of

Gl(n,R). 1In the case of B(M), any particular reduction of

- Gl(n,R) to d?n,R) is equivalent to a Riemannian structure on

M (that is, a C° symmetric. 2Zcovariant tensor field on M). \\“

For an explicit construction of such a structure, see Hawking and

_Ellis {221, p. 38. In the case of most interest to us,\zﬁwever,

the proper isochronous Lorentz group L++ is not compact. Thus

T

it turns out that the ability to Eeduce' B(M) to OT(M) where M
ig a space-time leads to a certain restriction on the manifold M.
b This restriction is that M admit a global line-element field (22]1. - -
This is not much of a restriction, howeVer, since any non—compac; |
é | manifold satisfies it.- These considerations are of more consequence
: ‘ in the case of a spinor structure (Chapter 4). |
- We are now prepared to define a conngction in a princi-

E

pal fiber bundle, and démbnstrate how this definition gives us the

K

usual parallel .translation. Let P(M,G) be a principal bundle

over the n-dimensional base manifold M with structure group G.

Nt

At each point p of P, let Vp be the subspace of Pp_ tangent

>

to the fiber through p. Then w_(V ) = 0.
o p .

m,
Ty

i
i)

A connection H on P is an n-dimensional distribution

L on P; i.e., an assignment of a subspace Hp of Pp (called

PETRUIERN ULE

horizontal) to each .p € P, satisfying

-

| RS st s e s e




TG e

I e g

e

o

.4 = [+2] i .
(} ) (a) Pp Vp Hp (direct sum)

‘ b I € G d ‘€ P then H = (R.) H_ .
.. (b) f a and p pa (R, * P

(c) HP depends differentiably on p.

t
°

Note that the distribution is not necessarily involutive; if it is,
the connection tuéns out to be flat--i.e., have vanishing curvature
tensor (to be defined). According to properties (a)vand (c), if X
is a C” vector field on P, . ét each p € P ;E;have é unique

iti = + 2 v
decomposition of the form xp Yp p where YP € o’

oo

Zy € Hp , and the vector fields Y and 2 are C . The vector

field Y is called the vertical component, and 2 the horizontal

component of X. For an intuitive picture of this definitiqn, we
specialize to the frame bundle B(M) (or B for short). Each
vector in Bp corresponds in M, rouéhly speaking, to (1) a
framed point {(information provided by p), (2) a directiQn, and
(3) associated "rates of turn" of the frame. If the vector lies in
Hp » these "rates of turn" are those associated with a parallel
translation in the direction (2). Property (b) then says that this
infinitesimal parallel translation commutgs‘with the action of the
group on the frame.

For a more exact, but still simple, elucidation qf thé

meaning’ of this definition we indicate how it _is equivalent’to the
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specification of a parallel translation/ih M; as is well known,
this is equivalent in the frame bundle to the determination of a
classical or infinitésimal aff%ne connection.oﬁ M ([23] or [191,
p. 77). Let ¥ be a broken c® curve in M; y:[0,1] - M. A

horizontal lift of y is a broken C% curve ¥ in P such that

(1) ? is horizontal, that is ?; is horizontal, and (ii) m e ¥ =
¥. It can be shown that, given p E‘ﬂ_l(Y(O)), there exists a
unique lift Y of vy such that  ?(0) =p ([19], p. 77). Then

T Ly (0)) + 1Y (y(1)) is a diffeomorphism satisfying

T for any other broken C”

eRa=Ra"TY, and TYO'=TO"°TY
curve ¢ in P with o0:[0,1] - P .and o(0) = y(1l).

The proper setting for the definition of an affine
connection (in which torsion has meaning) is the bundle of bases.
So we specialize once more to B(M), and draw on Hicks. Let
p € B(M). There is a mapping fp;Gl(n,R) -+ B(M) defined by
fé(a) = pa. "~ Let {X(i)} be thé basis at M“(p) corresponding to
p. Any other basis at Mn(p), corresponding to pV in B(M)
(n(pv) = n(p)), say, may be given by its components Aki € G1(n,R)

. . v B
DN = A -
with respect to X(i)‘ (i) (k)Aki If we make the Aki
double as coordinate functions then we may define unique right-
invariant vector fields X1q which take the values in(e) =
B/BAki(e) at the identity. Then - (fp).Xgi(e) = eki(p) define

vector fields in B®M) (the vector fields of "rate of twist" of

the frame). These vector fields are vertiéal: T Eki = 0 (Appendix A).
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They are globally defined, Cm,. and ‘intrinsic to the bundle of
bases--i.e., a part of the differentiable and group structure. We
do not yet havé a basis for Bp

well-determined fashion without adding’more structure. We musﬁ

; and we cannot find one in any

settle for n naturally defined one-forms: if X € Bp , b=

(m; X ), define'the_'n one-forms 5; by

RTTIRIRIR T

ﬂ*X = mi(x)x

1

(1) (these are also intrinsic to the bundle of bases).
We can now add the necessary assumption: Let ;ij be any one-forms

dual to Eij , subject to a forthcoming restriction, then we assert

<

that the dual base to {Ei,aij}, namely {ei,eij} provides us

"with the breakdown into vertical and horizontal vectors. Hence, if

X € Bp , define the vert%cal part of X by XV = agj(x)eij ’

from which we get XH =X - XV for the horizontal component. This

specification of is equivalent to giving the H of the above
*u , € M

definition. For an explicit construction of these basic vectors

and forms see Appendix A. Formally, the connection one-forms ng

satisfy the following'defining properties: ' ' E

(1.5) . (@)’ 5:.] form a dual base to ¢.. at all p € B.
1j Vp e ij
®)7 @ ((R).X) = A, (X)AM» all X € B
ij a’ % ir'rs**'sj ! P ’
v h—’ : -3 . 7 ‘ .A
(c) mify are c. ) o 7 B
By taking exterior derivatives of the oﬁe—forms ‘{ai,alj}

- %
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-we obtain the Cartan structural equations

- - — - i
(1-6) , dﬂ)i‘- ‘_(Dij A (A)j + Ti ’
A, .= @, o .+ R -7
dmij"" Dk A mkj 913 ’
- .

which may be considered as a definition of the torsion forms <,

and curvature forms gij" More elegant definitions are,

Qij(X,Y)'= (d@ij)(XH,YH) and Ti(X,Y) = (dmi)(XH,YH); butrthey

are less suited to our purposes. If ?i = 0 the connection is

°

said to be smetric.

Under the process of reduction of the structural grdup,

e
a connection mij on B(M) gives rise to a natural connection on

the reduced bundle BY(M,H). If £:B' » B is the mapping which’

gives the reduction, then the induced connection is just f*aij.

If a connection is given on BY instead, we can define on€ on B
e el

v . . . L

by a dual process. If H' 1is the connection (first definitich)

on Bv{ let f*Hv = Hf(p) and extend H to a distribution on

P
all of B by right translation. If the structural group of the

reduced bundle is 0(n,R), then the induced connection f*aij is

called a metric connection. We use the same term even if the

reduced group is L++ ; thus any connection on OT(M), where M

is a space-time, is a metric connection. In such a connection,
parallel. translation always preserves inner products.

We are now ready to derive the more conventional, local
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) o TS ) o
version of the structural equations by "descending" to M. Let us

not think, however, that we are abandoning fiber“bundles: What

¥ :

fd%%ows can equally well be thought of as a reduction of Gl (n,R)

X

-

. ,}"4 ) - - . :
to the trivial {e};, which is possible on any - sufficiently small &

open subset U of M _ by the local triviality,i% B(M); the

reduction is aefinéd by some f:BV(U,{e})‘afEQUY.

Now let X(l), I ,X(n) be a base field on the open

set U. of M. Define a C- map £:U - B(M) by £f(m) =

(m; A, . (m), . . .4\ (m)), where m € U. Since w ¢ £ is the
(1) ) (n) ‘ -
identity on U we call" £¢¢;Jsection'0ver U. Define the“connéc—
0 o —_ i - -
. - — % . . -
tion one—-forms mij oh. U by mij f wij' By al}ow1ng £ to

operate on the structural equations (1.6), .they are brought down

to a correspohding set of equations on M. Defining w; = f*ai

B
L

- and taking account of £fXdg = df*¢ for any form o, we have

7}1-7) do= -0 5 A O3 + Ty

where the one-forms w; ‘are the dual base to  A(i): By descending
to U, of course, we have introduced the additional complicatioh
of the consistency of these equations for different sections over

U (that is, their covariance under changes of frame). But the way

':~we have proceeded guarantees this covariance. In a sense, we have

taken "moving frames" and the (still more dizzying) transformations

L]
5
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1
b ,‘\*‘

bétweenxthem,"wfth theit somewhat kinematical flavour, and frozen

S

them.all in the bundle of bases; much as the theory of relativity

rturnézkinematicgl relations of physics into "static" geometrical .

KN

réIations of space-time. . e
' - , >
" Let us investigate how a change of section affects}the*s
i
basic and connection one-forms. Let Piv > B(U)  and f:U > B(U) N
be two sections over U as before. We wish to pull down the
forms :5& and aij to M via the two mappings f* and £x, If
i ir ' = (m; X e e e A
‘%E? points of £f(U) are of the form p (m; (0’ , (n))
_ then wérmay write_'f(U) = {(m:XkAkl,-. .« . ,XkAkn):m € U, etc.},
where. A ., 1is pointwise a member of Gl(n,R), but over U will
be a function of m. Thus ‘£ = RA e £, where,we have abused our
notation by using RA for a nonconstant Ak Then we calculate
i . :
L) = A*-— ~ = A*-—' . . - *— . =
Wy £ Wy and mij £ mlj in teyms of w; £ oy and mij
f;;&j. The results are (Appendix C) . 4
~ . .
P _ -1
(1.8) @ = A 1395
- -1 M -1
.. = A .+ . -
D5 ik%kePey * R 1By
. '
« -2 .
_ -
In the calculation we have used the intermediary of a coordinate
section; with more advanced notation this would not have been . d;ﬂ
. . 2 L5
. o
necessary.
From now on we restrict our attention to such a
: ) o
. §
~»ﬁ;}4;‘.;i%
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parallelizable submanifold U of M, and we change our notation
somewhat. We use XN or Xi instead of mi , and reserve the
use of lower case indices (Latin or Greek) for coordinaté frames,
with but a minor exception in-the case of bivector indiées"in the
Petrov classification. Thus lét XN, N=1, . . . ,n beva'genéfal ) a
base for the one-forms on U. In local coordinates we write

W XNidxi. The dual vector fields are written as :XN = XiNB/Bxi,

e

i , N .
where (XlN) is the matrix inverse to (A i)' In general, from this

Y

point on we will be careful about the ups'and downs in the place-

1

ment of indices. The structural equations (1.7) now take the form .
o) el =T Ay ™
N N N P
= - A e, AW .
Q.M dw ¥ Qp w " o~

-

The generalized Ricci rotation coefficients are defined as the

. . . N
coefficients in an expansion of SR
- /

For a coordinate frame these are the (negative of the) christo ffel

<

symbols. In that case, X = dx’ and the first equations of N

k i

i . }
dxJ Adx =T . ﬁence the name, —

structure (1.9) yield T°
(kjl
symmetric, for a connection in which =0, - .

1 Although it may not be natural from fundamental point of

view, we have heres changed the definition of W.M by a sign. This
accords with widespread usage in tensor calculus.



With this notation the cdmponents YNMP transform as
follows under a change of frame (change of- section) iz.= ANZXN 2
AN ~Z _ N AM AP AN M
2 e TV we” @ x QM X i

In particular if {Xz} = {B/BXl} is a coordinate frame we obtain
N .k

N
AT VE R S F

YN = XN At A, where we have written XN

MP il3" M P
We have thus recovered the ordinary definitions of the covariant
3
'différentiation {(in essence) and.Ricci rotation coefficients. One
. N N N i N 43
= - = A ANA . F
has in general ¥ MD YM p ! where, YM b Mlj iMp or

an arbitrary change of frame we may write, by analogy,’

N AT -FANAZ.
Polx TP ex TR Y ex .

From whence we get YNMP = ANZ”XAZMAXP ; kThe frame—covariant
differentiation éo defined is nothing but covariant diffé;gﬁéiéfidn"
with respect to "anholonomic coordinates" in the classical vé;gion
(Schouten [24], p. 169). In our work we wili ordiﬁarily.use two
types of frames: a coordinate frame and an orthonormal frame. We
prefer to distingﬁish the symbols for' covariant differentiation

with respect to each, reserving “Lf for coordinates and “f|*  for
the orthonofmal frame. |

8

In t?ﬂ-classical lanquage we would say (Eisenhart [25])



21

that an ennuéle of vectors {XiN} and any get of ;YNMP determine -
a connection. It makes sense ﬁg ask what kin?s of geometry may be
specified by various choices for the Ricci rotation coefficients
aﬁd’assbciated frames. A:trivial example is that a coordinate

0, determine a sym-

frame{and'any set of rljk + where rt
’ Y

[kl

_ metric connection. More to the point fof us are the Riemannian

(metric and symmetric) connections., But the conditiohs on the

frame and rotation coefficients which will guarantee that the

connection so determined is Riemannian are not nearly so handy.
If the connection is symmetric, we have to consider conditions of
integrability for the existence of a metric gij which are of the

form [25]:

. h .
R + R =
» Iin 5kt~ J5n ike

[N

h h
R +g R =0
Iin 5k¢lm ~ F5n ikf|m

[
h h

R + R .. =0 .
Iin" jkelmy...m. © 95" ike|my...m ,

P S
s

More recently the fiber bundle outlook and algebraic topology has

been used for insight into glebal aspects [26], but the local tools
£

have remained the same (even though couched in different language).

' ol ) .
The conditions for a metric connection to be. symmetric do not seem

F

-
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to have attracted much attentien.

Necessary conditions for a connection to be metric are
readily found, if the frame is assumed to be orthonormal. If
XN'XM = ey where N = pNSNM(pN =+ 1, N not summed), then
the Ricci rotation coefficients satisfy nNPYPMR + nMPYPNR = 0.
But these conditions‘are not in a very useful‘form,-since tﬁé frame
was pre—selecteé.

To make a start towards the analysis of“this problem we
pose two questions: First, what kind of geometry is specified by

' R '

N .
any XN's and vy ,.'s with the restriction that w' wo *

R

nMRY NP 0 anM = pNGNM , N not summed); and second, what are the
conditions we can put on the YNMP in order to guarantee that
there exist XN for which the connection is symmetric--i.e., for

" M P
which dXN‘= —YN ATAN 2

MP
First, let {XlN} be an ennuple,of vectors and let VYNMP

. . . . s R R
be given functions obeying the restriction g Mp + thY NP © 0.

Then Thim is covariantly constant:

R R
Mo’ e " T, Y R e T T wp

If we define an inner product by 'XN'XM = Mgy ¢ from this it is

easy to conclude that the connection is metric (i.e., it is pulled
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’

down from a connéction on the bundle of orthonormal frames). We
digress to consider the classical formulation. If the coordinate

form of the metric is denoted by 9i5 - where haM = g..XlNXJM ,

ij
then it follows that gij]k = 0 as well. Then we may write ({([24],
p. 132) .
i i i i i
= + Q2 .. -8R+
r hj {hj} hj j'h hj
i T

where {ij} are the christo ffe]l symbols formed with respect to

g.. » l L, =8 _T is the classical torsion tensor, and the indices
i3 " "[hil Thj :

on Qh.f are raised and lowered by gij and glj. For the sym-

metric part of the connection we may write

i DS S i
I3y = {hyt * % (ny)

It follows that the curves of extremal arc-length, as measured by
2 i..3 . o . .

ds = gijdx dx”, are not geodesics. This is the form in which

metric connections have been recently considered by Hehl [27] as a

candidate for a "Unified" field theory.

‘Our second question reduces to determining the conditions
X . . N N M P
of integrability for the equations d\ = - v MPX A X where the
. .

N . . . -
¥ - are given functions. A complete set of first-order conditions

of integrability can easily be obtained by exterior differentiation.
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N NMP NM P )
PM _ N M D LM 0P we have

with the abbreviations A

for the first set of conditions

1.100 0 =aty'yy) 4 N - YNAQYAMP)‘MPQ + YNMAYAPQXMPQ

7

. . . N . Ce s s
which may be conveniently rewritten R = 0; i.e., it is just

MPQ]

the cyclic identities for the curvature tensor (see Chapter 2).

"'Now this is 16 independent equations'in the 16 unknown quantities

N N

N i (N = XNidxl); generally épeaking, a solution will exist.: - Thus

~

given YN we can generally find a frame for which the first

,{P r
conditions of‘integrability (1.10) are satisfied. The second set
of conditions, obtained from (1.10) by exterior differentiation,

-have the remarkable property that they are of an algebraic form and

. N
involve «+ MP alone:

’ A B
{1.11) 0= YN[AB]Y [Mpy,QR] .

They may be rewritten in the form

0= Dagl¥ ¥ .

. [NM 'PQ]

The geometric significance of these conditions is at present

obscure, but should be inﬁeresting. These conditions are as far as
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we can go in 4 dimensions, since there, further exterior

differentiation will make all terms vanish identicaliy. Therefore

we shall not pursue further conditions here. It is not clear at
the present time how much these conditions of integrability, éomf

plete as they are, guarantee the existence of a solutibn to 'dXN =

N
- XMP- nevertheless they may prove useful.

m 1]
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2. ‘Riemannian geometry. - :

As we have intiinated in Chapter 1, a Riemannian connection

>

is one which is both metric and symmetric. That is, the torsion is
- e 2
Zero ﬁnd there exists a nonsingular, symmetric, and covariantly -

constant 2~covariant tensor g, called the metric of courSe.»,ﬁIf

g = gNM)\N @ XM on UC M,‘ where gNM is symmetric, the latter

"condition means 0. We use to raise and lower

Inmip INM

indices, that is provide a connection between forms and vectors

which commutes with covariant differentiation: We h‘ave' then

P

dg._. = w_ + ® , where w_ = oy A basis in which gNM o

% YR YR V1Y - Inp
) % = = = +
tak‘es the simple form I Ty = eNGNy, (eN = % 1, N not summed)

is, of course, orthonormal. In that case the Ricci rotation

. P P
coefficients obey the rule ey e ¥ e NR 0. We assume from

now on that the frame is orthonormal.

The structural equations- (1.29) for Riemannian geometry

may now be written as ' ' -
(2.1) @ a = A"
) & =-a + N A F

oy . M . -M P M

Ay

TN e e T ke bR < - PR R [
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The Riemann tensor is defined by

N P, 0 _ oN
R~MPQX AN SB.M

[N

(2.2)

r -

and the Ricci tensor is R = R . These definitions trans-
; B e MPN .

late into coordinate form as:

~

: £
-~ = R
®il5x ®11x3 ¢ ik
« »~
ﬁk‘
Ri5 ijk
; N N i3
= A
T wp X,i[j M P
to accord with the sign convention of most authors. -
If T pQ- - - is any "invariant," its frame-covariant
derivative T ) PQ“-“]R> is easily defined by using the product

rule on a decomposition of T _into a sum of products of vectors

- and forms, and the rules
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i
We note that if S = Si A , then

and similarly for SN. So the frame covariance is manifest, as
well as the coordinate invariance. This relation makes it easy to
go between tensorial and invariant fofmulae. Siﬁce the operation
of raising and lowering invariant indices .is pretty nearly trivial»
{because of the special formvfor the metric tensor), we essentially
simplify formulae wiéhout losing anything in return.

Allowing the first equations of structure to act on the

N

orthonormal frame, (d)\N -y A XM)(XP,XQ) = 0, results in

i i P
2.3 e N -V N o - Yo

N,M

These will be called the metric equations; a misnomer, since they
really determine the symmetric nature of the connection.
The second equations of structure amount to the definition

of the Riemann tensor in terms of the Riceci rotation coefficients:

N N N R . N R

R = §
TV e teo1 T Verie" Mol

2.4
(2.4) *MPQ y,f~M[P,Q1

N

v
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Imposing the vacuum conditions on these equations in 4 dimensions,
RMP = 0, results in the system of first-order equations which we
denote by (F):

N - N R N R

VY'M[P,N] *Your'e pN) +: Y'R[PY'IMlN] =0

(F)
)
It is clear from the derivation_ that the system of

equations (M) and (F) in a V, of signature + 2 are a necessary

4

&

and sufficient set.of first-order equations for the deﬁerminatign

- of a gravitétional universe. But certain additional cqnditions of
integrability can be useful in the solufioh of the problem. These
are most easily obtained by exterior differentiation of‘the

structural equations (2.1). From (2.la) we obtain the cyclic

identities
N M
1Y) AX =0
M
. . N .
which are equivalent to R [MPQ] = 0. From (2.1b) exterior

differentiation gives us the Bianchi identities.

N N N P
= A - A
ARy =@ p ARy RNy
-
hich b a B = 0. Furth ppli i
which may be expressed as mipglr] = O urther application of

P



the exterior derivative cannot result in any relations independent
of these. Contracting the Bianchi identities over N and R,

then over M and P, we have the useful identities

(2.5) R

‘which we shall call the "potential eéuations“ in the context of the
associated V, of stationary spaces.
The Jacobi identities for the frame {XN} arise from -the
. . - o. . i
cyclic identity RN[MPQ] 0 To see this we take parvlal
coordinate components of the, Riemann tensor:

‘ W R = - X Ak
. £ NMPQ ME|{jk] P Q

Cyclically permuting <M, P, .0 and adding, we eventually arrive at

the Jacobi identities ) s

Dygr Dy AglT + Dy DO AGTT + Dy, I N 1T = 0
.

If one now replaces each bracket in this expression by its value

from (M), he will atrive‘backAat the cyclic identity. The Jacobi
e

identities find an application as differential criteria for certain
.tr" *

.
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sbecial chgices of the frame, but the details will not be pursued”

‘ here. We only cite an example. 1In the V3 . the cyclic identity
. @9 ' ) ) .
1s equivalent to the %dentlty RNMPQ =5RPQNM . If X(l) , say, is

normal- to surfaces, then the differential criteria for that
specialization are supplied by substituting (2.4) into th?lB -

R 315 = 0. 0ddly enough, the same differential criteria arise if

X(l), is to be along a killing motion.

-

The Riemann tensor is easily seen to satisfy the follow-

ing identities in a Riemannian space:

-’
(2.6) GF R = -R
' NMPQ MNPQ
¥ ] )
(11) ggmmg = = Ramgr ;
(iii) R =0
N [MPQ] -
(iv) R =
NMPQ PONM
©
ry
.-.J
of these, (i), (ii) and (iii) may be considered to be independent, -

while (iv) is a consequence of the others. Any.other tensor

W which satisfies these symmetries and, in addition, the

[

"vacuum” condition -

(v) WN - 0

MPN : _ CF
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may be termed a Weyl tensor. An important example. is the conformal
curvature tensor )
(2.7) N A N R &Y

: MPO Mpo "o - 20 pR0im T mig™ep)

+ 2R (5N n o) :y
‘in - ){n - 2) [Q PIM =~

-

~which forms thé basis of the Petrov classification in V4. In any

Vailwe have CNMPQ =.0, the proof being particularly

simple in ‘invariants.
ted

Finally the commutation relations for invariant differ-
entiation, which merely express d2f =.0, and in a symmetric

- £ = 0, are

fImn

connection are equivalent to f”NM

£ P
8 T Fay T E e T Y

We now develop the criteria for -various geometric

specialiiations of the frame in terms of the Ricci rotation

coefficients. If the congruences of ‘XN are normal to non-null

hypersurfaces f(Xl, c Xy = const., then XA,' A fwﬁf are
tangenf to £ = coastant. Choose coq;dinates in which £ = Xn;
then XnA =0 (A # N) and the metric equa¥ions yield O = }nN,.
(YNAB - YNBA) (N not sqmmed), from whence Ynap = Ynpa' A/B # N.

) - ",gﬁi"
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The congruences of XN are geodesics provided that XlNleJN =

uxl In invariants we have simply 6A B

_ A ,
N”Ba'N = u.é N ', which

N
' ) A
yields ¥ NN = 0, A # N, N not summed. XN is along the

trajectories of a killing motion in case g g,.=0 or
AN~ 13

(uXNi)lj + (uXNj)Ii = 0 for some function . In invariants,

0 which gives

“ha) Iz * 4w ja

—
. ' o+ =0,
(2.9) YNAB YNBA
= - y 8 .
YyeN nNN( nu),B (A,B # N)

The criteria for the congruences of XN ina V, to be
N i

shear-free or divergenceless will be needed for null congruences

in a V4 and for congruences of a V3. The results in V4 are’

well-known, and will be cited at the appropriate time. We outline

“~

here a derivation for V3. .

Let A be tangent to the congruences in question, and

(L)

forming along with X(Z) and X(3)

trajectory ‘T of X(l)' ‘We could chardcterizegthe behaviour of

neighbouring trajectories of X(l) by a pair of vectors {él,§2}

an orthonormal frame. Fix a

.undergoing Lie-transport along the trajectories: £(l)éA =
[X(l)'éA] =0, A=1,2 . However, we find it more convenient to

' ~
use a pair of vectors {£.} normal to the trajectories, since we
‘ A J
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can then describe the behaviour of the trajectories in terms of

familiar transformations of the plane spanned by {gA}. The
resulting description will be independent of the initial choice of

{QA}. Thus, we allow the normals EA to "slide" along the
v
A

trajectories, that is £L¢V g = 0_for some function ¢ '

A(1) A
A

1,2 . We can rewrite this as £(1)£A = [x(l)'gA] = ¢AX(1)'

Then we say that the congruences of X(l) are shear-free,

if all it takes is an expansion and rotation of X(z) and X(3)

v

to bring them into coincidence with gz and 53 along T:

o £ (O +ix o)) =,

(1) (2) (3) (1)

where ,0 and ¢ are complex. As a consequence of this we get

(Appendix D)

4 # = - + . . = .
(2.100 2B =155 = Yy33 * Elrpy t Mygp) <0

P

=

Thu§'we may call $ the complex shear, and IBI the shearing.

It’may be noted that [B| is an invariant property of the

trajectories of X\ and does not depend on the choice of X

: (1) (2)

> 2
hN .
and §3) ’ A .

For the next case we fix the frame by rGQUiriﬁg Yo31 ~

0, i.e., the vectors X(z) and X(3) do not "rotate" along

‘
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X(l) ([28], p- 49). The congruences of l(l) will be said to
bPe dilatation-free, if X\ and X\ are sﬁch that, infinitesi--

(2) (3)

mally, a shearing motion is all that is needed to achieve a EA :

T

As a consJ;GenCe of this we find (Appendix D)

. = + + i - =.0.
(2.11) 2y =y P Vay F A 55 T Ty g))

Notice that this implies X(l) was hormal to surfaces, since
2 = Y132- We call Y123 - Y132/ the twist, and vy the complex

123
‘dilatation. The twist and complex dilatation are separately

independent of the choice of frame. . «

+ = 0, butspossi - 0, th
If v Y , -butspossibly Y123 Y132 # e

122 133

congruences of X

EI;’Vare~saidftowbehdiygrgenceless. This term can

be justified by an area argument. At a given point t € T, picki

52 and 53 so that Ez(t) = X(z)(t), and £3(t) = X(B)(t)“ (on

nearby points, of course, this equality does not hold). The rate
N . : .
of change along . T of 522532, evaluated at t, equals the rate

of -change of the faréa)2 of the parallelogram spanned by 52 and

53 (by an order of magnitudes argument). Now



o

2 : 2y L
£(l)(€ E ) £(l) )+£ 3v, since EA t—l

+ & g3

"y | |
TR 3 &3 ‘%l)gij -
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£ +2§3g£

* 2€2 9i5%0) & (1)53

U U P Wit 2Y
(2)(2) (1) (i ]9) "Wl -

[ ]

]
<

Thus = 0 implies - £(1) (gz £y 2) = 0, so that.the area

+
Y122 7 Y133
of the parallelogram spanned by 52 and g3 is fixed.

5 Finally, for complethness we will write down the invariant

form of the Gauss and Codacci equations (['22] , p. 46), thougn we

————=-- ——_ . will not need them. Tﬁe formulation in invariants isdparticularly

app'ealing. If is normal to the hypersurfaces in estion,
qu .
pot)

then the invariant form of the second fundamental form is just (and

we may take this as a definition) i =

5 = Taas ¢ ABAN. o .

k.

FEs o

-

\ it
A
M

B T
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Gauss' equation, which relates the curvature tensor of the V,
v ..
that of thg hypersurface V' _. , is just
272 - A _ A
BCD BCD - N c'wBD T YN D'NBC
and Codacci's equation is
A A
" Bja” Twale /we

-
»

where A,B,C,D ¥ N, | refers to frame-covariant differentiation

in the Vn-l , and the sign depends on the indicator of XN:

The treatment of duality in invariants is especially

simple. We restrict ourselves in this discussion to four dimensions.

to

The invariant components of the permutation tensor turn out to be

5ust the Levi-Civita permutation symbol:
ET
Xi xj Xk Xe =
Tiske™ 8 o™ P o0 ~ nmpg

where Mijke = Vlg[ Eij

defined as

The dual of any bivector F

AB

is
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With any such bivector we can form the complex self-dual combina-

tion [29]

It is self-dual in the sense that
* = - - * )
¥ AB lghB :

Any Weyl tensor W behaves as a bivector with

respect to the index pairs NM and PQ, so we may foiijfwo duals:

W* = l»s WAB
§NMPQ 2 “NMAB PO
1

W*=Es:wAB. ¥
NMPQ POAB NM

v A\_\u,:'

1 : TS et o o

An alternative definition is [4}: {?AB = FAB lFAB .

With this one has, perhaps more naturally, ngB =‘i5%B . o
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" It may be shown that (by a calculation in Israel [4], or by

Wi |

inspection)

From this it folléws that the two duals are equal:

P

Wt Wo*
NMPQ NMPQ

It should be noted that this is a consequence of the "vacuum" con-

ditions satisfied by W. 7 S o,

Petro¥ [30] hag introduced bivector indices as follows:

w14 | 24 | 34 I.zs l 31 4 12
a ‘ 1 % 2 l 3 . 4 " 5 ! 6
H
Thus FNM > Fa , where (NM) <= a, and for a Weyl tensor we have
W o > wab , Ylth wab = wba" For reasons which will become

apparent, we restrict the range of afﬁzc,’. .. to 1,2,3, from

now on, ——

Duality iﬁ;this formulation behaves as follows:
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Sy

The self-dual combinations

and we have W* = - iwab ~ Working with these self-dual

<,

combinations enables us to dispense entirely with the indices 4,

5, and 6.

i

It may be noticed that the bivectors form a six-dimensional

vector space b6 over thefggals, and the self-dual bivectors a

three-dimensional complex vector space, which we denote by b3. If
{Xl,XZ,X3,X4} is an orthonormal tetrad with X4 timelike (the

signature + Zf;‘a baéispfor the space b6 is defined by the choice

L ¥

o

e @ _ 3 ,P -

1 (1441’ €2 ° A

=X X
Matarr e3 = Mzt

er4 = )\[2)\311 35 = )\[3)\1], 86 = )\[1)\2} .

We have: el* =e4 e2* =.§5 , and e3* é €, SO the following

J P
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L7, = 50(3,C) (Israel (4], for example) .
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P

combinations are self-dual!

(2.14) € =e, + ie,* =e, + ie, e

154 1 1 :
32 = e, + ie5
33 =e, + ie6 ‘
and they form a basis for the space 'b,. ‘An inner product on

3

bivectors is defined by UV = UGBVaB . Using this one finds the
orthonormality relations Eaéb = - 5ab . It follows that any

proper orthochronous Lorentz transformation in M corresponds to

- an 80(3,C) transformation in b3 Indeed, we have the isomorphism

.
ok

+ a
X
Petrov has based a classification of Einstein spaces in

V4 on the algebraic properties of the ‘Riemann tensor. In vacuum

space-times .RABCD = Capep whi%h'is a Weyl ﬁénsof,(so we may use
all the machiﬂery above. 'Petrov's classification may then be
carried out on the self—dual Riemann tensor ?ab . ~According to

his result (translaéed into our terms)  transformations from SOk3,C),
suffice to put the matrix iab into one of the following three

forms (Petrov [30], p. 110):

b
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(2.15) ‘I. ‘2Rab = [al 0 0 ] where Val + a2 + a3 =0

II. 2Rab = -2a 0 0
0 a+l i
0 i a-1
III 2Réb = 0 1 0
1 0 -1

Further classification is based upon the various possiﬁle
specializations of the complex quantities a, a . etc. (for details

see [5]). In particular we single out the types

(2.16) D or Ig: 2Ry = | - a/2 0 0 =
| | c
! 0 -a/2 Q)
- £
_ 0 0 a
N or IIg: 2R, = ,0 O o ~
o 1 il i
b !
. Lo i -1
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and reserve the symbols I, II for the nondegenerate cases.
We could expand R, in our basis of self-dual bivectors
{gi,€5,gg}. However it is more convenient {o use a modified basis

3

(2.17) € = l/VE(e2 + iey)
ey = l/VE(EE - 1e3)
el=el q" 13
~ ~. ~2 ~2 .
9 and ey are null: ey = eé ~= 0, They thus correspond in the

real bivector space to null vectors ([4), p. 39). 1Indeed, we find
~ aB _ » . . . -
(X(l)a + X(4)&be =0 so thét X(l) + X(4) 'is tangent to thg

null direction defined byr EO . For breﬁiﬁy we may sometimes

write U =%, ,V=>¢: ,M=738

0 8 Making slight variations in the

1

expansidn given by R. Sachs (31}, we have -

(2.18) Ry = R(l)vavb + (VM + M_Vy)

: 3
(3) 1 N
(QaMb + Man)

+ R MMy - S UV - %_; vV Up) # r(4)

l

where v, =9 aBVaB , etc., and Rﬁl) are scalars, i

I}
[
~
.
.
-
(%)

a
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(i)

The scalars R are readily computed:
) o
(2.19) = R X =X R+ 2iF.
y 00 22 33 7 “F23
(2) o~ e e e
R = 2R, —fg/vi(alz + iR, 5)
. (3) _ .
R = 2R .
= = 4Ryp = “2Ry, - 2R3z
* (4) _ ~ ~_ ~ _
R = 2Rp= 2V2(Ry, = iRyj)
R R, % - % - 2R
700 22 33 23 °
A basis {}l, . .l. ,X4} in which the matrix R_; takes

=

one of the forms (2.15)-(2.16) is called a principal tetrad. If a

~ a b
basis is chosen in which R(l) = 0, that is in which RabU U = 0,

the null direction defined by U 1is called a principal null

direction. There is at least one and at most four such fields of
directions [31}.

’ An alternative characterization of the Petrov classifica-

Y

tion may be-giwen by the various possible coincidences of these

principal null directions [32]:

g

R e - e A s s B i e e i e et o LA s bt i
. B - - : - . -
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type description of principal symbol
null directions

I four distinct (191]

D two rebeated ' [22]

11

N

III

_ indeterminate

one repeated, two single

one repeated <

one repeated, one singleg

°

Finally, we(;;; remark that the bivector space also

admits of a convenient formulation in fiber bundles., 1In

rs

this’

formulation certain connecting quantities BbaB defined by Petrov

([30], p. 90), play a role analogous to that of the o,

g’

spinor calculus (see Chapter 4). -

ab

in the
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.

3. Stationary spaces and derivation of the field eguations.

We now»turn to staﬁionéfy space-times which satisfy the
vacuum field equafions. _To‘b;npfecisg, a space-time is a pair
(M,$)  where M is the manifold and ¢ ‘isvé Lérentz metric on .
M. The associated Riemangiéh connecfion is assumed to §atisfy’thé
field equations R, = O. Finéily, thef;;;ce—téme\is staéionigz
. means there exists a one-parameter group of motions on M which oy
- - ‘ leaves & invariant, whosg'trajectories ?fé“timelike curves, an
which has no fixed points. We could be mﬁch‘more abétract and‘
reformuiate everything in fiber bundleﬁlanguage, but guéh genefality
at this stage would be beside“the point. It might be appropriate
in the study of global topological questi;ns, but we, are ;oncernéd
only with the local geometry, where the ; pology is quite trivial.
In any system’of coordinates adapted to the mgtion, that

is in which the killing vector field £ has components Ei =5 i

. 4 '
say, we may write the metric form as
(3.1) 8 = v, dxiax) = e ©(g qax’dxP) - e“(ajax® + at)>
. = Yij dx” = e ga@ x dx") - e (adx + dt
o .
where i, =1, . . . ,4; a,B =1,2,3; Iagr Bq and ® are func-

. 1.2 .3 :
tions of X ,X ]X ; and we have written t = X4. We have chosen

-e® as'the coefficient of dtz because of the timelikeness of

;

the trajectories and because the killing vector field 1s everywhere

¥
e -
<

N8

o~

i Y Ut e ¥ et = o - - —— P . o — -

P
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o
nonzero. - A decomposition of ¢ into squares shows that in 9;@g§

for a signature of + 2 to obtain we must have the metric form

2 _ a UB
(3.2) ds -\gade dx

positive definite ([3}, p. 111). It defines a Riemannian v,

which we call the associated V53 . It is also known as the space-

<

quotient} and if we were being abstract we Qould identify it as
‘the base~-space of the principal fiber bundle M(V3,RY.

We still have the following freedom in the choice of
> . :

—

coordinates:

A

(3.3) x¢ = £ xP)

f =t +20PBy, ap=1,2,3.

¢

e . ~3i i i .
"Under such’a transformation, £ =& = 64 , 8o the coordinates

remain adapted to the motion.

i In the following, indicesjri,j,k, . and N,M,P,

will take the range 1,2,3,4; while a,B,y, ~ . . and. A,B,C, . .

will take 1,2,3.

Let A(4) = em/Z(aade + dx4f; so that A(q} = éb/z

a ed
and A(4)4 = ew/z. If XA is an orthonormal frame with respect

to the metric of the associated V3 , i.e.,
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wrear E L

- - ~the components of the vector frame dual to \,{,{\Nw}j 7it takes the form

.
B (
_ 48
. a, B a, A a
Y )\ = 5 )\ )\ = 6
)\A B:gaB aB " A B B’
then define forms AA in M by their components
A ~w/2 | A A
A, = e Ag + A, = 0.
v
We may then write
2 o ‘ ;o
Lo 1
i
i
Ny _ oo oo . 4
~ o 1
w/2 | w/2
e ai ( :
- . ! I}

[

. N N N . .
The matrix inverse to (Ai ), which we denote by (ANl) expresses

¢ S
_i j 1o i '
. i OJ2 '\ H ‘
N e -
|
- i o o
(Ay) = |
! F
w/2 L ~w/2
e §
[ > L ' —j.
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- « “,

The frame {AN} forms an orthonormal frame, since we have the

decomposition

¥

@ @ @ @ (3 (3 (4 (4
A A + A A + A A A A

i.e., we have @(AN,AM) =Mym = diag{l,;,l,rl}.,

Explicitly,

A . e

A i ew/zk 1. ew/za s+ (where X 4 _ 0)

o

(4)
might have been expected.

Note that A is thus eedirectional with the killing motion, as

In the following, except for the places where‘lAN, Ay

explicitly occur, we will hold to the convention that all tensors
or connection coefficients whose components are taken on;the frame

A;iuﬁe proceeded by a-superscript (4); all other quantities shall

have components taken on the frame X\, . Thus (4)m?B\ refer to the — -

connection one-forms in space-time for the frame {AA,A4} which

(4) A _ (4).A N , A
LR = Y'BNA ; while ©

) LT : A A C .
are the corresponding quantities in V3,, with w,p = Y-BCK ¢ -

may be expanded in that basis as

) . 1.2 .3 . \ . - .
Moreover if f = £{X7,X ,X") 1is any function (independent of time)

"
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v then ‘ef = f,a dxa = ew/ £ AAA where by the above convention

: ’

f A" f aan' Similar remarks hold for higher-order tensors. We
7 ) .

; define £ , = a - a

: apB a,B B,a :

i ; 3 a4 . {(4) N A

£ .?o find the relationship between Oy and Wy v WE

: coﬁpute the exterior derivatives of the basic one-forms:

¥

3w/2 A B 1 w/ZQBAB A A4

4
fBAA AA +5'-e

1
(3.4) . dA” = 5 e

A

A A B
di = (= e wBA f w.B) AA

«

The first equations of structure (2.1a) for the V4 may

be written

A
5
1
3
1

AFFAT Y Ao

- 4 _ (4) 4

B
an® = Wt A
an® = WP anB e @ Al

. . s B . - . -
Equating coefficients of A, A4 in the only way possible we.have

S
: (@) 4 _ 1 30/2 ’

: : ! - = _1 w2 .4

;E ‘ . : (3.5) . w.B D) f A ; (L)BA

gEf - (4 A _ 1 co/2 B, , 1 3(.0/2 ' A
§ _ @5 (wBA - wyd ) + e £ A + W@y -
-

F e

1
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#These equations give the relationéhip between the Ricci rotation

coefficients of the V and V4 . We record here, for future

3
reference, the éxplicit:formulae. Let A, B, C
(4 _ /2 1 a2
(3.6) ) (a) Yape = € Yamm > e a)’A (
: (4) o w2
(b) apc - € Yamc ¢ .
4
©) (4) (4) 4 1 em/2
¢ Yapa Yomg ©2°¢ “p-
(4) _1 3w/2, 1 -~w/2
(d)ﬂ Yapa = 2 ¢ ftp=2° ®c
(4) _ (4) 4 _ 1 3w/2
(e) Y4BC = Y. Be E-e £

# . Then

B not summed),

51

For the sake of ‘convenience we have included, in the last equalities

of (3.6d) and (3.6e), equivalent expressions which are a consequence

of the field equations. Note how the equations (3.6¢) and (3.6e)

realize the criteria foi A

(4)
motion (2.9).

(4)RN

Toward ti ,
ards the computation of MPQ

equations of structure, we have the following:

from the

second

to be in the direction of a killing



N

e N AT v, el
N

5
4

(3.

(a)

(b)

(4) 4

(4) A
Q'B

.B—

(4)604

(4) A
B Dop N @

A °B

+ W f.

1 me £
2° Hea,c” Tanveca - fncYema t “fma

—wf +iaf GB]AA/\AC

B AC 2 N'NCA

-

@ 3 T N_ B
e {“’B,C + (‘)NY!;JBC + T OpPcT T 3 Wy 6C

.\ _;_ eszrfcfma}z\.c A-A4.
=\_ 4R @A @ C (@A (4) 4
w.B «C *B -4 *B
szz_‘B + % e“’{s it 2 w2 o [BsAé ® mNéc'AasDB
+ e29(s fop * ngfBD)}AC A AP
L ezm[fAB”C + 20 fap - 20085
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From these we read off, ' ' -

1l 2w

(3.8) (4)??Bc4 = %ew[mlch - ';' A1“’5Bc * %“%“’.c tme #ﬁCfNB] .

(3.9) (4)R?BAC = ezw[fB[A”C] + fB[AwC]y - apfac +'—21— “’NEN[CSBA]j .

(3.10) (4)f?sc4 --3 ezw[fABHé + 208y = 20,51 - o'ty [36CA]]

(3.11) (4)Rﬁaco = t"mR]}BCD ¥ 2ém/z[(ew/z)!lzx[c‘SBD] (ew/z)llslc‘SAD]]
- %ewAl“’é?cﬁBD]+ %’ ew[ffuafcu - fA[CfD]B] .

Equations‘(3.9) and (3.10) come, respectively, from (3.6) andl(3.7),
but are consistent. At this point it is worthwhile to note the
saving in writing of the right-hand sides which we have achieved by

~going toifhe invariant formulation. Compared with the forhulae
(2.3-2.6) @ Kloster, Som, and Das [35], we see that our (3.8)
performs the functioﬁ of both (2.3) and (2.4);'and in the rest of
the formulae. the number of terms are more than halQed.

: . 4
The field equations, (_)RNM = 0 are now a simple matter

D 4
to write down. From (3.8), ( )R44 = 0 yields



54

\\\‘
»‘f
\
. 1 20 .
(3.12 + e f £ =0
) (a) mHAA > aplan:
s for which the coordinate version is
. 1 2w_af N
- {3.12) ~(b) Azm +’2 e £ faB =0 .
e (4) _ .
From (3.9), R,. = 0 vyields
4B
(3.13) (@) (e*®f )y, =0 -
. BA’ [|A , -
: 20 =
() (e77f7) lu = o .
. _ 1 2meC imol 3 me
Suppose we write ¢, = T gp.e , oOr Smeiy by = fo.. where
€apc = 7 1; then this becomes =0 for C,D=1,2,3;

®cip ~ ®pjlc

these are the conditions of intedrability for the equations ¢ c =
. . - ’

¢o - Thus the twist potential ¢ is defined by
1
(3.14) (a) ¢ = 5-& e

A

which, in coordinatés, pecomes

vnaﬁy . | -

g s
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(4)R4

At this point we note that the cyclic identities R (BAC] =

applied to (3.9) yield £ = 0. This may be rewritten in

[AB||C]
- terms .of the potential ¢ "as

(3.15) B,p = 28, (6,0 =0 .

Finally, combining the vacuum conditions from (3.8) and (3.11) and

. _ 1 .
denoting GBC = RBC 2,R6BC , we have the two equivalent sets of

equations .

1 B 1 2w 1 .AD_ B
(3.16) 0 =G+ Z(meC -3 Alwé C) + 5e (-fABfAC + Z—f fADS
: B} 1 1 -2
(3.17) 0 = Rpe + > wgWs + 3 e ¢B¢C .

. . B 1 :
It may be shown that the identities (R C)HB = E'R c when applied
. 14

N

"to (3.17), yield the previously obtained field equatiéns, that is
to say (3.12), (3.13), (3.15). Hence equations (3.17) are

7 sufficient field eguations for;the stationary vacuum; the problem
has been reduced to findipg égsitive definite V3's satisfying
(3.17) for some w’'s and ¢'s.

From the structure equations for V we write down the

3 14
complete set of first-order equations: letting A,B,C #, A,B not

summed,

2



‘ A 1 2
(3.18) (a) RABAB ‘Z(wA f o

.o 1 1 -2
(B)  Rypac = S(@p@) + 5 e " (dpdc)

a

a _ya .. C c _
(3.19) X‘A,B - A B,A - A c(Y gy = Y ag)r @ =1,2,3.

%

-

] -
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- - £
For convenience we also use the "potential equations” (3.12) and -

(3.15):

- =2 4 C =
(3.20) (a) © ot m;c_v opp T & (¢ =0, "

C

(b) ¢ +¢ ¥ oD

C, _
cc ,C 20 ¢C:_ c .

« .
S )

Finally, we will find it convenient to use the Riemann

tensor of the V4 expressed in terms of the twist potential ¢.

A separate consideration of subcases is needed: ~ let (ABC) # in

the following, A, B, C not summed. ' : @
‘ (4)_4 1 o 3 1 2w
2 = = ot - -

(3.21) R 4 5 e (w” + 3 a%ab 5 e ¢B¢C) .
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L. 2
BB4 2 |[BB. 2A

(B - not summed),

@A 1. o
Roacs =~ 3l0)cc = “a%a =~ “p?sls

(EABC = + l) ., , . 4 AN «

4y a _ _1 1 1 R
Rpag = +[1[)’tncz\ ta%%c oAl s T

.

(Eape =t 1) \ '

2‘

V:.s = . 4 l ' ) 1 . l _ )
“rupan = 7l ot Fp” + @) - @ - 50,7 o,
(eppc = + L4 SN BRI
,'/; - :‘F.
(4) 1o 3 - 1 -
Rapac =3 € [@pc * T ogee ~ 3 & épécl .

The éymmetriesAof the Vacuum Riemanh tensor demand that the following
(4) (4)

identities be satisfied: RABAB = - RC4C4
(4) _ (4) .
Ramac = Fpaes
. (4) - _ (4)
: Ramag ~© Repea
o (4)RN4N4 =0 (N summed)

a glance tells us that these are, indeed, satisfied by (3.21).
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4. Spinors and complexification of the field equations .

The spinorsfarise’inrfhe theory of rélat}g;ty because the
- o

'Qroup s1(2,C) 1is a doublé-galued representatio£ of the proper;
isochronous Lorentz group L++.‘ To be precise, é;nsi&ering s1(2,C)
(or more exaétly somathing isomorphic to it) as a subgroup‘of
Gl(4,R), it is the universal covéring space of vL++ . To take. N
advantage of this fact one can introduce, locally at least, a spinor
structure on the space-time M (éergch [8] and [9]; LichneroinZ'
[71). . This can be introduced in two ways. In both we assume M

is time-~ and space-oriented, and the bases concerned are likewise

-

oriented. f&
/

For the fiést approach, recall that, given a principal
fiber bundle P(M,G), 1if H is aﬁgaximal compact subgroﬁp of G
then G may be reduced to H. WHere, 51(2,C) is not compéct; it
turns out that the reduction of Gl(4,R), the structural group of
the bundle.bases, to S1(2,C) is only possible under ce;tain con-
ditions on M. These condit'gﬂf are mgntioned in connection with
the second approach. If such a reduction is possible, we may
identify the reduced principal fibér bundle S(M) as the'spinor
structure. This approach, in its abstractness, may be said to
slight the representational advantages of spinors.

The second approach was that actually used by Geroch; he

started from OT(M) and went "up" to S(M§: The situation is -
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(\ L++A is the covering mapping of the restrict% ‘

59

A
slightly different in‘that OT (M) ‘ canﬁot be obtained from S(M)
EN . .

by a redu;fién of the group, strictly speaking. Now the .

~definitions A spinor structure on M. is a principal fiber bundle

sS(M ,S81(2,C)) or 8(M) ‘with group S1(2,C) ovefmyM; along with
a 2-1 mapping o0:S(M) - OT(M), such that

({70 ‘'maps each fiber of S(M) onto a single fiber
of OT(M) ’7
- (ii) o commutes with the group operations: for

=

L © U €81(2,C), o.e U= A(U) ¢ 0 where A:S1(2,C) ~

Lorentz group.

IS

A spinor at m € M 1is' a mapping from ﬁ_l(m) {where ﬁ:S(M)** M
is the natural projection) into arrays of cémplex numbers,

EATTR1TT such thaty if vw € nlm) are related by Uy € s1(2,0),

Ao eB... -16 -1 SeEees
&c...p...(w) = U E LLE; U e 'FU S T L I
)&" E »‘g‘_

" One can now define a spinor field to be a c” piecing together of

these spinors; alternatively it is a section of some associated
tensor, bundle torngﬁ). If OT(M) has a semi-Riemannian connection
then S(M) may be defined so the induced connection c*aij is

semi-Riemannian. Geroch [9] has shown that M admits a spinor

X
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structure iff M is parallelizable. We will nevef have to worry

= K}

about this because, in solving the field equations, we always work

on a parallelizable submanifold of M.

Notice that o is a bundle map, but not quite a reduction ™

=i

of the structural gféﬁp, since it fails to be one~to-one., In’the

notation of Chapter 1, our bundle map
£:5(M,51(2,¢)) ~ oT (4,L%,)

is given by

fM = identity

I

fG = A, thg coygring map of 8§1(2,C) - L++ -
g

l

the following conditions being satisfied:

) fH o M = nv ° o (Vhere

7V:0P (M) -+ M)

&

c e R c for U € 51(2,C).

v B™awy ®

We can obtain a more concrete representation of o. Fix
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components of fZav and o(éav) =

i
¢
5

-

6l

e Y : 'g;

section {(m;zl,éz)} € s(U) for some open set U c M, and let

i

a
the image under ¢ of this section be {(m;x(i), - . . ,X(4)} c
df(U).’ We denote these sections by (£,) and (XH),

respectively. Then the action of 0 on any other segtion over o
b

us (gav) € s(u), where zav = Ua}fzb “Bnd Uy. € 81(2,0) -is given

by
Y
0(;a ) = RA(U) ° O'(Ca) .

Upon converting this into numerical relations between the.

= (XHV) relative to the bases
3 : .
(ga) and (XH), respectively, we obtain the well-known

connectingrguantities of Van der Waerden (Bade and Jehle [33]).

In lieu of a proof, we only cite the well~known correspondence

+ : . i
between L , and S1(2,C) using these connecting quantities [33]:

t

(4.1) o) AKf = oy Ua'Lé

Here, AKH £ L++ represents the components of o(zav) relative to
C

(XK) “ard U, € S1(2,C) gives the components cf (Kay) relative

tc (ga). This provides us ipso facto with a mapping o with all

the right properties. The cHab are four constant hermitian

matrices for H = 1,2,3,4. We may note that these are the analogues

. . : ab ] N
in 'invariants" of the I3 of Newman and Penrose {131, not o%‘
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)a s

their oiAB

We do not need the full spinor Structufe in our analysis
of stationarﬁ space-times. The statioyarity condition picks out a
timélike killingvvector field, wkichﬂif we iegard as fixed induces
a contraction of the usual Lerentz g%gup to the :otation group of
R3; In the spin spacerthis corresponds to—g cdntrac?ion‘ s1(2,c) -
su(2), the,group of unimodular)vunitgry 2.¥.2 comélex matrices
[33]. 1In order to parailel the wofk of Chapter\IV in spinorial
terms we would have to invent a bundle map % from S(M,S1(2,C))
to a new bundle SV(V3,SU(2)) with structure group~SU(2) and
base space the associated Vi, paying due attention to the
respective ;onnectioﬁs. This is esseﬁtially what Perjes [14] has
done,halthough a more elegant formu}ation tﬁan his could perhaps be
provided by the spinor forms of Bichtéler [34].

. 3 ) 3" .
However, we have already done the work in reai terms; all

that is necessary is to define a new spinor structure on the V

3

in a way analogous to that for the Vg oo That is, we work "up"
from OT(V4) (the bundle of oriented orthonormal triads) to
SV(V3,SU(2)). Now the group SUT%) is the€ simply connected covering

group of SO{(3,R); we have

Su(2)/Z, ~ 50(3,R)

a
b

so the mapping c:SV(V3) —+ OP(V,) which defines the spinor structure
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will again be a 2-1 mapping. Proceeding in a way analogoﬁs,to

=

the abayg, we arrive at connecting quantities
(4.2) O, VQ =0 Vi Vp

5.ab
H

satisfying

ks
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H .
where QK € so(3,R) and Vac € su(2). cHab are the Pauli
matrices, Since V € SU(2) must be unitary, Gga = Vé.b_and by

defining a new set of o's we can rewrite the above equation in

the form

where o ab arercertain symmetric connecting quantities first

H

defined in their coordinate form by Perjes [14]. However, we will

stick with the previous formulation in terms of Pauli matrices.

Now the whole complex vectorial formalism follows

L ML

naturally. First of all o may also be considered as a mapping
from hermitian spinors into vectors (linear, in this case). We may
identify the preimage of o 1in this interpretation with complex

combinations of vectors by the recipe



(4.3) | o TP

‘ H ab ab | (1) ',%(2)

(3)

ﬁaving placed the complex methods which we will use in
the larger context of the spinor calculus, and haviﬁg shown their
essential simplicity, we now procged with the "complexificatioﬁ“
of the field equations.

We choose the frame

Yo

y T INVZOGGy ik a0, Ay =TIV, - iR )

Complex Ricci rotation coefficients may be defined in the obvious

way. We denote them as follows:

(4.4 a=T T16

101 B =Tigor ¥ =

o]
|

= Th01r € = Togo



Here, a, B, and y have the same meaning as in Chapter 2 when

written in terms of s,
erm v

We may employ the frame-covariance of RABCD to
complexify the right-hand sides of equations (3.18); for example,

)

= - R + i +
Ri010 = Fr212 T Fuaiz t 1Rz Rygpy

For the left-hand sides we use the complex version of the defini-

tion of the Riemann tensor, -

(4.5) g =T B +n0T T
. 2 ABCD _ " AB[C,D] aBM N[cD] ~ ! “amic |nB|D]
where
3
: fo 1 ol
M. 1 o o
! |
1 t
Lo 0 1|

which may also bé obtained from abstract spinorial considerations.

The commutation relations (2.8) for invariant differentia-

tion,. in the complex version, are

(4.6) £ - f =0, A,B=0,0,1
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where #
fHAB - f:AB * nNMf,NrMAB )

Defining F = %—(ew +. i¢) (differing by a factor of 1/ 2

from Kloster, Som and Das 7[35].) the result is 9 2

@ L o B -l e) = Bly +y - 26) = 23—2.%,(0)5,(0)
(2)7‘;;(1) -a gyt |q|2 + IBIZ + ;2 - g = - e_zéF(l)Fkl)
w)3“&—?A&+a§—Y)+ﬁ€=€m¢uﬁm)+i”mm)
(4) e . +& +6(-v +2]e]?- f?’z + Iy|?

+ €
. (0) ¢ (0)

Wi " T T Fofd

(5) + a5 +vy) +ely~5) -B(a+¢e)

-5
. % Ao

= —e_zm(F + F

¥ ) ¥ o)’

—

N

+ 2vF + (2¢ - Q)F - aF s

(6) (1) (0) ()

+

Faw Y2, 00

- 2 .
= 2e N(F(q) + 2F5)F ()
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The first three equations (intentionally grouped) it may
be nbticed, involve derivatives of a, B, and Y only, on the

left. This is related to the fact that these ‘quantities are of

geometric significance for the congruences of X(l). We recall
]

that Ial = first curvature,’ IB! = shearing, and vy = dilatation

of the congruehces of A The question arises as to whether the

(1°

equations (4) and (5) are of similar import for the "congruences"

of A , in an appropriately generalized sense.

(0)
We may mention that we need not stop at the level of the

orthonormal frame in our complexification. We can introduce com-

plex variables, in which thé“;nvariant derivatives take the form

v Peuls T s C e s
(1) 1 z z
a - a . T4 oo5.0 .
- A(O) ¢6l p6z 06z
»

In order to investigate general guestions in the
classification of statiohary space~time, we construct the complex

self-dual combinations of the Riemann Tensor. They are, very simply,

x G
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ab

~ —_— 1 l— =
(4.8) Ky =y + 5(ReD) lF,AF,B

1 -1, =
7 T(ReF) A1F6A3

where A;B take 1,2,3. The potential equations are (N summed

over 1,2,3)

- 1
(4.9) F

— (ReF)-lfkfg = 0.

We can easily write down another version using the complex frame

{X(l)'Ao'Aéi' ,>

1

—_ 1 —]— =
(4.10) 2R.4 = FH(l)(l) 5(ReF) “F Fp ~
1 -1 —
3:4 F + =(ReF) F.F
2 10 110 2( ) 1Fo
-
X =F, +i(rer) 'FF
00 HOQ 00
Roo = 7 %Ry

~ ~

For R16'R66 just replace 0 by 0 in RlO'ROO .respectively.

1 With the alternative definition of the self-dual
combinations, mentioned in Chapter 2, F 1is replaced by F in
equations (5.8) and (5.9).



5. Consequences of the field equations.

In this chapter we list some simple observations and
techniques dealing with the bare eqiations derived in the Previoué/
sections, which will allow ué to glassify the example of the ﬁext
chapter with a minimum of complications.

In general we are particularly interested in spaces of
nondegenerate alqebréfé types I, II and III; type I for physical
reasons, because it is the mostAgeneral type of wvacuum sPape-time,
and all three types becapse they determine their principal tetrads
uniquely. We may use this latter property to develop an invariant
approacﬁ to asymptotic flatness and the presence of other moti;ﬁs.
We can go about this‘in two ways.

Thev;Qst obvious route is to transform to the principal
tetrad. The corresponding Ricci rotation coefficients then supply
us with an abﬁndance'of-invariant functions. These must all go to
zero at infinity in order for>the space to be asymptotically flat.
A more convenient; necessary condition for space-times outside the
P.E. class is to use coordinates w = Xl, ¢ = X2; i.e., the
gravitational potential and twist poteﬁtial, and an appropriate
invariant for X3; then all invariants and‘their derivatives must
vanish ét the origin for asymptotic flatness to obtain. (The con-

dition is only necessary because the space may instead become flat

at some finite point.) For Petrov types II and III it may be more
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appropriaéghfor the invariants to approach the values for the
correSponding spaces of maxipum mobility (Petrov [30}). Any group
of motions mﬁst ﬁanifest itself as the invariance groué for this
set of functidéns, making its determination easier than would be

the case with the classical theorem [30].

The second route, which has a chahce of giving a complete

answer only for spaces of type I, is to investigate the orthbgbnal

invariants of the matrix of the self-dual Riemann tensor i;b‘
These are defined aé{follows: denoting (®) =;(§;b),
4

(5.1 Iy =tr R , S

IIo = 2(tr ®) - (tr 02 :
R 2
IIIﬁ = det R,

they will be invariant under changes of basis defined by transforma-

tions in S0(3,C), which of course suffice té bring us- to the

IS

principal tetrad. In vacuum space-time Iﬁ = 0 always, so only

ILﬁ and 1Ty remain; four real functions in the most generai

cases. 1In spaces of type O, N, and III, all the invariants

vanish; in spaces of type II and D, there dre two real functions,

and in type I, four. These easily obtained invariants can yield

€

important necessary conditions for asymptotic flatness and the
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existence of motions. It may be notgd that ﬁhey are algebraically
- related to the well-known second-order invariants formed from the
;hetric tensor and curVatﬁre tensor [11];’6f which are at most four
in empty space-time.

It will be noticed that these orthogonal invariants
enable us to dis{?i:uish between spaces of type D and III,
which have the same number of principal null directions. The
algebraic classification can then be completed by fihding the total
number of principal null directions defined by thg qEESi;J’This is
most easily done as followsf Beginning from a tetrad

} adapted to the timelike killing vector field,

{A(l)' ’A(4)

with X(4) tangent to the trajectories, we define 4£he null tetrad

=~

k = 1/\60\(1) +hogy)s &= 1/\/56-./&(1) * Ay
t = 1/\/5(1&(2) + lA(3)) .

- The "null rotation" of Sachs [31], defined by

at + aal

=~
]
A
1
a
I

(5.2)

te )
]
o
ot
[]
o+
|
Q
el

for a complex, maps null tetrads into nu;i/tetrads. By applying
—

Ll
3%

,;3"»‘

£
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such null rotations we can map k .into a principal'null direction
N )

~

k. The condition for k to be a principal null direction is that
). ~ ~a*b _ . o .
=0; 1.e., RabeO eqg. = 0, which translates into a quartic

equation for the complex parametef a:

[

(5.3) o =rM ¢+ 2v3r® + 3@ - 2fa3 @ v,

The number of roots of this equation is equal to the number4of E

" principal null directions. This equation also offers a method for

the construction of the principal null directions, by the specifica-

‘tion (5.2). \

1

Another way of classifying stationary spaces is‘by the
geometry of the associated %5 There is an inherent difficulty
in this type of classlflcatlon,»in that if there is more than one

killing vector field there are in fact an infinite number, with

>

different associated V3's. This difficulty aside, we find it

useful to distinguish t}’e special congruences of curves in the

associated V3: The lines of force are the normals to ‘the

5

constant; the lines of twist are the

normals to surfaces of constant twist potential, ¢ = constant;

and the eigenrazs, first studied by Perjes [14]), are defined as the

- trajectories of X(l) in an orthonormal triad N }

(l)'X(Z)'X(3)

’ {X(l) IA.(o) } satlsfylnq

\s
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F'(O) - . . v(} .

or, equivalently,

-w:
J2,@ = %@ -

To every curve in V3 may be associated a null curve of

V, by the mapping of unit tangentgxrx(l) -+ X(l) + A(4) ; Wwhere

A is along the timelike killing vector field. It thus becomes

(4)
of significance for the algebraic classification to expﬁsgg the

geometric propefties of null trajectories (in W,) in terms of the

properties of corresponding curves of V To this end we may use

3"

the formulae (3.6) for the Ricci rotation coefficients of V3 a;}
V,- Let {k,¢,t} be a null triad as above, and {X(l)'x(Z)’X(3)}

an orthonormal triad ;n V3 codlregtlonal with A(l)’A(Z)’A(3)'
. 4 « -
Then, referring to Israel (4], the null cuxves with tangent k%

are:
(5.5) geodesics iff d = kd‘Btcka =0
_— a B
shear-free iff B = kalBt tF =0

[

com?lex—dilapation-free iff ? = kaIBEutB =0.

o -
B RN B € ) R ) .

-
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’If the null curves are géédeéics, the real and imaginary parts”of

';, have the s

case for v
Y

ignificahce of divergencé and twist, just as is the

in V,. Thus if ¥ is real for geodesic null curves,

3

the curves are normal to (héhce tangent to) null hypersu:faces.[37].

We find:

e

(5.6) (a)

(b)
, '(c)

We take note

(a)

(b)

{c)

d)

~ 1 /2, -w/2=
a=xe a\+ e FO Y
E = 1//2 e?/ZB ‘ -
v = 1/V2 ew/ZY‘_ N2 e—m/ F'(l)
R
of a number of relatjonships:’
A(l) + A(4)*lls~shear-free iff X(l) is in the V.
If X(l) is choseh along the eigenrays, A(l) + A(4)
is geodesic iff X(l) is,

If the eigenrays are geqdeéicvand shear-free, the
space is §lgebraically special.

By a fortunate choice of tefﬁlnology, the amount of
twisting in l(l)’ﬁ direction, in the sense of

$ aka<1) » supplies the disparity between the "twist"

L. ,
. in V and A + in V

of My 3 W T 4"

Similarly the gravitational potential « is related

TR "Q}

oy
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to the respective divergences.

Property (d4) may admit of a convenient physical interpretation in

terms of stationary observers and signals travelling with the

fundamental velocity. ' /

~

The eigenrays haye an even closer relationship to the

principal null directions. - We have indicated that the congruences
- N .
of A + A are along-% principal null direction iff R__ = 0
w7 g7e praneip _v oo ~
that is iff. ~
- 1 -]le— —
F. + ~(ReF FF =0.
00 2( ) 00
X(l) is chosen along the eigenrays, and the'eigenrays are

[ 3

shear-free, this equation is identically satisified. Thus shear-

free eigenrays correspond to principal null directions.

class (w

It may be noted that in the static and Papapetrou-Ehlers

and 3 functionally,%glated)‘spaces, the éigenrays

coincide with the lines of force. &also, one could define a similar

. : . . .o . .
set of "eigenrays" for static electrovac, and generalizations in

Ty

the stationary Einstein-Maxwell fields. It would be interesting to

see the correspending geometrical relationships in these cases.

<
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# i .

&. Case of the eigenvalues of the Ricci subtensor equal.

r

The class of stationary gravitatienal universes which we

deal with in this chapter can be solved up to a;pair of simple
; , . .

partial differential equations, which hold out the promise of

furtherfanalysis. -The problem is a "natural" one, in view of the

significanc? of other specializations of the Ricci subtensor: The
. . '

case of only one nonzero eigenvalue corresponds either to the static

space-time, with vanishing twist potential; or Papapetrou-Ehlers

.,

class, in which the lines of twist coincide with the lines of force.

N

The field equations ip invariaht form are

El

)

! 2. = .=
Ryp = Z*ReF)* (FpFg + FpFp) |

The determinental equation is (Ericksen [36])

-3 _ 22 _ _
0 = det(A&,p - RAB) = A 4+ ?( 3AB)X + II- Ry )M + ITI( R.p)

where I, II) III denote the:orthogonal invariants defined in

-~

Chapter 6. As roots we find

4 - &,

)L}‘ B O A b
2 N, = - 2(ReF) T2 (4, (F,F) + A F)) ‘:
2 4 17 71
. 1 -2 = R
hy = - £(ReF) (4 (F,F) - |8,F ) ,

-
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~ Thus A, = A, iff AJF = O iff A,F = 0, the latter a result of the

potential equation (4.9). This results in
(6.1) 4, (w,9) =0
ezmAlm‘= Ao .

Hence the lines of twist are normal to the lines of force.

El

Choose X(z) along the lines of force and X\

(3) along
the lines of twist. Then it follows from (6.1) that
*
20 2., 2
®, (2) , (3)
Choose the orientation so that &% (2) = -9 (3) Since
e®y = ¢ . automatically, it follows that
. (3) (2 -
/
;‘,h\' — . - \ N + 1 N
F,(Ol 0 where 4, 1//§(x(2) , igy)
SO A is along the ei&en:éys} We have, as well, F = C.

, (1)

(1)
) Putting F and E into the metric egquations M1 and

*
3

on 2, and usinggqyé, we get:
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from M2: F _» = <€F. . Putting this in
,00 Q
‘Zf,: -~2eF + (2 - a)F; = 0 ® aF, =0

Jgpl: g 5 =0 .

4

Since FO # 0, a = B = 0, hence the eigenrays are geodesic and

shear-free, and the space” is algebraically special.
From the fact that XA and A are normal to
— (2) (3)

I
3
- '

surfaces, we have . e e

v

1 -
=5k -7, =

- = = 1 = - + - ‘. =
From <¥3, Yy =0 so 50 5> Yo~ S}nce 0 (F F)O (F ‘F)O
FO 1'56 "QFO is real and we may put FO = Q.:LSince w and ¢
are functionally independent we can choose complex coordinates

{xl,z,g} with F =z, leaving x free. These results imply

that the frame takes the form

?i a ) a a
SN P5 E = nGl + Qéz ; P and Q real.

And the reduced field ecuations become

/

X
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qV) (a) T (1 + v 0
@) v ~ a
-2 = ey + v)
ey =2 .Sy
-~ - . 2
. 5 .
(@ e 5+ +-2[a]2+2l] --l—(y2+§2)+_9.__2=0
’ ! ' 2 (z + Z)
@) (e P -7 . =Z(r+ 7 :
IO '(l) 2
(£) Q .. +=r+ 70 =0
(1) 2
() T‘.lé-;'o=(v—?)1>-n_a—+ﬁa R
(h) Q'é=—5Q
With our choice of frame the metric is
[ °
2 lindz ndz 1 2 -
ds = ;}1 0 + o dx j‘ + gi-dzdz -

*

We may note that the case of vy 1imaginary is ruled out
by :}?(a), but ~ real is not. This is an example of the more-
general theorem in any space-time M to the effect that, if Xt

is tangent to a geodesic and shear-free null congruence with



80

(4)RinlK] = 0, then ‘Re; =0 = Iﬁ? =0 [37]. If ¥y 1is complex,

then the eigenrays have twist; in view of F (1) = 0, ., so do the
. _

i

correspondigg repeated principal null directions. At this point

we divide into two subcases, according to whether or not. Y is
t z
zero.

Case I. ? = 0.

We note that this has as an immediate consequence that

X(l) iévalong'the trajectories of a killing motion in the V3.

"

By a transformation xl - xl, z =2, we may put P =1, ~

Then thé field equations egy), (Wy) become

?

(V) ¢ =0

@9 =

e¥) 7 =0

£ g, =0
v . =N =Te - e ‘
(g¥) n,O 0 e - Me
I V - —
(h") © 6*@@? £Q .

Equation (hv) yields ¢ = - Q¢ substituting this into (dv)

gives an equation in Q@ alone, which is transformable to



“d

s 1

with the solution Q =

-

1/2

2z (z + 5)2

(énQ) 22 =

(z + 5) /2

is transformable into

x4 rZ
which implies g'= £ 2 for real £, We still have some freedom
s 1 1" n 1 _ 1 e
in x°, namely the change of "gauge X~ =% + A(z,z). Put
ﬁl = xl - £, z = z, then
,/‘S - -
P - arl ~ B _
X\Qb n = AO X a ie] Qf,z 0.
%

Thus, dropping hats,

ds

The metric

1 2 2(z + 2)dzdZ
T2 2=
he(z)h“ (2)

2 - -
= (dxl) + (z + z)HHdzdz where

of the v4 is transformable to

H(z)

n =20, P=1,, and the metric is

s
hz(z)

h(2)f(Z ]
(z)h(z) ;o arbitz~ Equation (gV)
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2 2 -
(6.2) ® = ax° + dy” + 2d6dt - w(x,y)dt? where

This -is a special case of the well-known plane-fronted gravitational
waves (with parallel rays), first found by Brinkman [38] and
described in detail by Ehlers and. Kundt Lii}. The general case

can be recovered by an applicatiqn of a result of Pechlaner and

=Das [39] (their theorem 3): the resulting metric form is

dx? + dy? + 2d6dt - w(x,y, tyde?

-
"

0. Of course, this metric no longer falls into

where o + 0w
XX vy

the subclass of stationary spaces with which we are concerned.

Case II. v # 0.

We again choose xl to make P = 1 : then, integrating

L.

‘gv(a), y‘l =>xl + W(z,23 where 1 1is arbitrary. We are still

-~

allowed a change of gauge xl = xl + X(les; we choose

1 - '
A =‘3(W + ¥%). Recalling that vy 1is an invariant, we then have
-1 1

¥ = X+ T(z;;) where T 1is imaginary.

We have the following consequences:
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From“fr'v(b) .

1
0
A
N

it

From MY (£), 0 ~h{Y! where h = h(z,z) is a real fﬁq;tion.

7From the preceding relations

n=nht |y

14

which satisfies 7ﬂv(e) identically.

From MV (h), € =7y - h |v| < nly|(ty - (enn) ).

F

From 4”?(@), after tedious calculations, we obtain the

differential equation

Equation f}v(c) is identically satisfied by the above relations.

Finally, after éuite lengthy calculations, we get from f}v(d),

e
S B

with the help of (6.3), the "potential Engfion"

(6.4) 2z _ "z z .1 1
h 2h  2(z + 3)°

Making the substitution V

- 2énh, we can rewrite the system

(6.3), (6.4) in the form -

v 1
(6.5) @ v s=-¢ - ——
122 (z + 2)2
b) = o= - e 5



which represents the reduced set of field equations.
o -
Although at first glance our equations appear innocent

enough, they may not admit of any closed—form\sdlutionsxf‘waever,

from general considerations, there should be a functional

dependence upon two arbitrary harmonic functions. A similar, .

soluble equation to (6.5) has appeared in static fields (Das [16]),

14 i

but the 1/{(z +'E32 term was missing. {We mighﬁ séy that the

additional term in our equation represents “"stationarity.") - A

generalizatioh“of (6.5a) has appeared in null Einstein-Maxwell
fields (Trollbée [40}); the substitution W = V - ¢n(z + z) brings
us to a special case of equation (4.1) of that paper. These two
points of contact with other tyﬁes éf space-time naturally suggest

ways'of generélizing the present work, but we cannot pusue that
here, . P
. h}

However, we can make some progress in a special case.
. ‘ .
If V 1is assumed to be a function of =z + z alone, then (6.5a)
kel

turns into ahkbf&inary differential equation. If we assume

T =T{z + z) qs‘well; then we can explicitly solve for a metric
depending on two arbitrary parameters (though the solutions may
still not admit of a closed expression). A slightly more difficult
{or tedious) prqblem results if we leave T gen;ral. _

In any case we may write down the metric form for the

V4 as it presently stands:
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. - .2 2 ‘ =
4 - P = (d§l + ?Edz - Tzdz) + 2((xl) - Tz)evdzdz .

«

, Petrov Classification.

; We‘now carry out the algebraic classification for both
- s
ses. We have a = =0, F =0Q, Fe = F
ca 7 e have g s Q 3 (1)

these into the formulae for the self-dual combinations of the‘

= 0. Substituting

Riemann Tensor (4.10), we have

2R.s = = Qv
10 ¢ Qv
_ 2
2Rre = = 2Q8 + —g—f:
zZ + Z

R22 - R33 + 21R23 =0
~ ~ ~ 2
Rpa = Ry = 2Ryy = - 08 +
R, +R,, =0 7



Rl2 +.1Rl3 = 0 - &
4 i 2
v 3 &f
R - iR . =-%o0y - .
12 13 2 Y

~

From whence the matrix Rab takes the form

fo T 11"‘]}_
®ap) =| T A m!
! 1
| . |
Llr lA - AJ

£

Since all the principal invariants of such a matrix vanish, the

space-time in both cases must be of types N or III.

\

K:A glance at the gquartic equation (5.3) will tell us which

type. We have R(l) = R(Z) = R(3) =0 when ¥ ¥ 0 /'nd

{
R(l) =...= R(4) = 0 when v = 0. Henée ;n case;I (v = 0),
the spadé is type N, and in case II {v #70), the spaée is tfée
IIr. - : o
l If ~ 1s complex, in addition, that iS' T #¥ 0, tﬁé‘rays

have twist. According to Kinnersley [41l] such a solution has not

been found previocusly.



\ ;

We have developed a portion of the theory of connections,

Discussion. ’

on principal fiber bundles and pointed out some of its applications
to the theory of gravitation. It seems to offer the best way of
understanding and generalizing such formalisms as the spinor

calculué; in fact, any irreducible representation of the Lorentz
: . N
group will give rise to an associated .vector bundle with a natural

: K
concept of covariant differentiation. Also, it may be noted that
the bundle of bases itself is essentially a phase space; this is
shown in a concrete way by the calculations of Appendix A.,” It is

natural to ask if we could profitably raise Einstein’'s equations to

e
ES

globalronék on B({M) or to some associated tens&?jmnﬁﬂwﬁ

The method of differential forms offers the best algorithm

for computing the connection coefficients and curvature tensor in

any frame. We have used the method iﬁ’conjunction'with orthonormal

Py

frames, but the same advantages éreéapparent in a context of spinor
forms [34].

As to thg physical significance of the subcase of

stationary spaces which we have considered, we will have to wait’

for further (numerical or qualitative) analysis of our reduced

# .
equations. In the meantime there is the suggestion that it could
Sy _

be a physically meaningful géneralizatién of the plane-wave solutions.
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: : ) appendix A. Some calcplations; v .,

1. The vector fields ski are vertical.

1 Using the definition,

3 | mTe =1
‘ i . ° (fP)*xki(e)

(o £5) % (e)

R

Since 1 e fp is the constant function on G1l(n,R).

2. Explicit constructions of si,s] "mi'mki .
— —_ — k
= = o =
Let Xy u, ° ¢ -and Xy e Uy ¢ )‘(8) be the

E ‘ coordinate functions on U C B(M), and p € U. Then
sij,kl (p) = [813 (p)] (xke)

= [(EY) (3/3R;5) ()] (xy )

= [3/3Aij'(e)](xk8 ® fp)

s

3 K
A Mm)

)
' .

—¥ -
=

Am&

l‘« !




!
-y

=

R LS T

L G B aaiaital o 1o T R B RN

|

TR

Thus ;, -
A.1) (p) =1, k2 " -
(A. (3P = M) UK

: (3

For the components of 5; ¢ let X = blfa/ax1 +

bik 3/8Xz£}k. Then X = pi 3/9xt = bklk(l)X(i) . Henéerisi(x) =

\bklk(i),' and

(a.2) w; = Xk(i)dxk = X(i) considered as a form.

The connection-one-forms wij must be dual to sij ; SO

we may write

@. . (Dg Xk
i3

= S
33k F G5y

; o i k
So far aijk can be any functions of x  and X(i) , which in
B(M) are indeﬁendent variables. But property (1.5) ()Y

restricts us: From RA*aij = A_lirAsja;s it follows that 344k

are "invariant" components in the first two indices--that is
|

Pt where % =1 (xh) are

a m

(i)
=% )

- e .~ -arbitrary furctions.

s

ijk

So we have



- (1) ¢ .k (1) ..k
(a.3) ' wlj = )\5 1 X(j)me kdx + Xk an (j) .

Finally, to caléulate

v

S N n n
iﬁ , let & _bk /9% + Pik B/BX(e) .
. =

Then {ak,a

ki} is the dual frame to {wi’wij} implies

, : . /
- _ = _ (i) & _ . n- _. ny (i) ‘
# 7 0= wij(sk) =X, x(j)mrm nPx * Pyx M .

: 7/
_ & mp € n’ :
) ® 0 = Dby + Ay Ty pby :

|

and

7 m- £ n o_
. Therefore bjk + X(j) Fm.nk(k) =0 and

- n’ no_ g n Z
(A.4) e = Ny /3 x(j)mrm nx(k) a/ax(j)_

-»

A coordinate basis of Hp, is, since X(k)n'éis nonsingular

. (A.5) GRS 3/3x" - 5 )

[




Hportrof vectors.) Let X:U —+ W be a section over U C M, and let

Appendix B. Brief account of covariant differentiation in an ‘ N

associated vector bundle.

The associated bundles were mentioned in passing in
Chapter 1. But the important topic of covariant differentiation in
associated vector bﬁndles was not touched upon. We will avoid‘thé;
explicit definition of these fiber buhdles, butAremarkAthat they 7
-

are characterized by havihg a vector space as typical fiber, and

" cite as examples the well-known tangent bundle and the various tensor Ki

bundles. ‘ _ 7 ] :
If B(M) has a connection H, then any associated vector
bundle W ~has a naturally defined induced connection HY. (In the

case of the tangent bundle this makes possible the parallel trans-

t € Mp , m € U. Then we define the covariant derivative of X with

respect to t to be

DX = X, (t) - HY(x, (). | w(v) o '~ - |
| DX -

0

3
o
C
N
X

A
-

o,




o~

95

tangent to the fiber over m and this fiber is a vector space, it

may be identified with a point in W. Hence D X

of the same "type" as X.

2
Cal
S,
s T
AL
¥ S ‘ 3
o
v
-
B
.
.
.
.

is a quantity
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Appendix C. How a change of section affects the basic and connection

one~-forms on-: M.

-B(U)
A ~@ik(i)),
A . » - ~ -
RAI \ et Ay = MayPix !
. %&z\(m;)\(i)) ’
£ g : ’ Aik(m) € G1(n,R) for each m € U,
_—— )
UcHM -
I. Let xp € Bp , where p = (m;X(i)) € f(U?._
Then "ixp = mi(xplk(i) (definition)
a7l SN, A
ke“e (1) ik
-1 - <A
1) = A X )A
(c.1) B kgwg{ p) (X)
But also, n*XP = n*(RA*XP),
— where RA*XP € BPA Qith pPA = (m;)\(i)Aik). .
Then (c.l) together'wfth the definition of 5& gives
-— -1 -
cnk(RA*.xp) Ar k% (xp).
Hence - - N
(c.2) n = fra =fre R*o o =fr e &L 0 =2l e S
: S kT A " ke K£9g o
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- (1)
II. Ry*o;s = Ryt (a dx +Xk dX(J) ), from (A.3)

-1 (m) -1 ok
=A ", A.. dx + N (n) Anj)

-1 - " (m) x C(m) -1 - X
A n @ik A Ay )+ A TR A (n) 9Py

-1 - -1
=A imAnjmmn + A inAéj'
Hence
o = x = * *
mij w £ RA w
= £*(A im njmmn + A 18dA83) .

[7])
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Appendix D. Geometrical optics in Ve Proofs.
I. Conditions for congruences of v -
A
X(l) to be shear-free. : ;(3) o ‘.
& S * ) T
PO gy *iiry))
IYEY
£ (o +ix _)) = o\ &2y
(1) (2) (3) (1)
‘ | | ‘ M2
=Py Py F Py eyl F el Ayl = eh -

Using the metric eéﬁations (2.3) and choosing ¢ to take care

X(l)-part, we get

énp), _ (\ X A A -
@nedr 1y Py Py a2 Y e Tarz T Ya!
b+ iy (13- Y231) + ih(3)Y313 = 0
‘ 1 o .
= [ne), gy + 50rgp * Yy * AT,y 30 Ty + iRyy)

. B | , o o
*5lra12 T Yau3 Foilygyp v oY1) Ovgy - id(gy)

+1)\)=O

* i35 Py (3)

ey o
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+ i =
212 = Yarz F 1050 * Yoy4) = 0.

213

»

II. Conditions for congruences of ’X(l) to be dilatation~frege..

A
h
(3)4 &3
Sy i3
i6 ~ib
e gy Tie T N
| 5 Sy
9
(2)
: i6 . -i6 _
£ (1)(e X(z) + ie X(3)) = (1)
_ ib -i6 i6
= jie ’6,(1)X(2X + e 9,(1)X(3) + e [X(l),X(z)l

o -i6 .
e Dhygy gyl erg,

Evaluating this at 6 = 0, "and using ¢ to take care of the

X(l)—atpendence, we have

e

g
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e P e Tz e Y2 T Ve

v

} o+ ik 3733 =0

i) O3 T Yo

(18, (1) + 5000 + Y313 + 1(vpy5 + Y3001 5y = iX(5y)

!

©

1 Co ) ” , : ' -
* 5y Y3p3 F B(¥yy3 7 Y315 * 27357 gy + ih(5y) =0

.

As a consequence of our choosing Y321 = - Y23l = 0, . we have

‘s
-

Yo12 * Y313 * ilvy3 - ¥30) =0 S
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Appendix E. Some Observations, Made Too' Late For Inclusion in the

-~

Main Body.of the Thesis.

a 5 . . . -

Ch. 1, p. 25. 1In fact, no f_\‘ther conditions of integrability can

be obtained'from tﬁeé% in any case. This is evident from the form of
(1.11) as finite relations.
‘} ‘

14

Ch. 5, eqn. (5.5{. It should be noted éh&t the actual magpi&udes of the
quantities B and'§ have the indicated iﬂéerpréfatiog énly when the

gauge is such that ka_is of the form k%= dxa/dv,.where v is an affine_
paramete?. ﬁowever, the»vénishing of E; Ré?,:andllﬁq, does not

depend on the gauge.

T

Ch. 6, p. 86, bottom. A. Held (Lett. Nuovo Cim. 11: 545, 1974) .
BN 2 . . ‘
using the .Newman~Penrose formalism has found solutions falling

within our case (II): they correspond to the%case of equation (6.5)

where the unknown V is aﬂpertain function of z + z alone, and T

~is chosen to be exponential in z - z. However it is necessary to

extend e’ to negative values. I. Hauser (Phxgzmhev. Lett. 33: 1112,

1974) has found solutions of type N with twisting rays. But they

will not coincide with any of our solutions; These recent articles

¢
were called to my attention by Steve Kloster.

-





