
National Library B i b l i o t h W e  nationale 1 of cwtada duca&da 
CANADIAN THESES T H ~ S E S  CANADIENNES 
ON WCROFICHE - SUR W€ROFl€fiE 

NAME OF SUPERVISW~/NOM D u  DlREcTEuR DE T H ~ S E  P ,  4. V R S  

- 
Permission is hereby granted to the NATIONAL LIBRARY OF L'autorisation est, par la prttsente, accordt?ed la BIBLIOTH~- 

CANADA to microfilm this thesis and to  lend or sel l  copies . QM NATIONALE DU CANADA de microfilmer cette these et 

of the f i lm. de prgter ou de vendre des exemplaires du film. 

The author reserms 0 t h ~  pub1 icatjon rights, and neither the L'agteur se rgserve les autres droits de publication; ni  la 
\ 

thesis n 5 .  extensive extracts from it may be printed or other- thesen; de longs extraits de celle-ci ne doivent &re irnprimtts 

wise rep/rduced without the author's written perrnissim. ou autrement reproduits sans I'autorisation ttcrite de I'auteur. 
. . 
-\ 

DATED / D A  TC! SIGNED/SIGN[ 



INFORMATIOt4 TO USERS A V  I SIAUX USAGERS 

THIS DISSERTATION HAS BEEN 
MICROFILMED EXACTLY AS RECEIVED 

LA THESE A ETE MICROFILMEE 
TELLE QUE NOUS L'AVO S  RECUE ") 

T h i s  copy was produced f r o m  a m i c r o -  . 

f i c h e  copy o f  t h e  o r i g i n a l  document. 
The q u a l i t y  of t h e  copy i s  h e a v i l y  
dependent upon t h e  q u a l i t y  o f  t h e  
o r i g i n a l  t h e s i s  submi t t e d  f o r  
m i c r o f i l m i n g .  Every e f f o r t  has 
been made t o  ensure t h e  h i g h e s t  
qua l  i ty o f  r e p r o d u c t i  on p o s s i  b l e .  

1) 

C e t t e  c o p i e  . a  6 t 6  f a i t e  a p a r t i r  
d 'une m i c r o f i c h e  du document 
o r i g i n a l .  La q u a l i  t 6  de l i a c o p i e  
d6pend grandemen t de 1 a  qua l  i t 6  
de l a  these  soumise pour  l e  
m i c r o f i l m a g e .  Nous avons t o u t  
f a i  t pour  a s s u r e r  une qua l  i t 6  
s u p 6 r i e u r e  de r e p r o d u c t i o n .  

8 

PLEASE NOTE: Some pages may have NOTA BENE: La qua1 i t 6  d ' i m p r e s s i o n  
i n d i s t i n c t  p r i n t .  F i lmed  as de c e r t a i n e s  pages peu t  l a i s s e r  3 
r e c e i  ved . d 6 s i r e r .  M i c r o f i l m e e  t e l l e  que 

nous 1  'avons resue.  

Canadian Theses D i v i  s i o n  D i v i s i o n  des theses canadiennes 
Ca ta logu ing  Branch Di  r e c t i o n  du c a t a l  ogage 
N a t i o n a l  L i b r a r y  o f  Canada B i  bl i o theque  n a t i o n a l e  du Canada 
Ottawa, Canada KIA ON4 Ottawa, Canada KIA ON4 . 



ERRATUM 

Due t o  a typ ing  e r r o r  t h e  t e x t  begins on page 3. 
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AESTRACT I 

I n  t h i s  paper t h e  use of " inva r i an t "  methods i n  General 

k e i a t i v i t y  i s  emphasized. The theory of connections on p r inc ipa l  

, \ 
f i b e r  bundles serves  a s  a vehicle  f o r  the  intqoduct ion of the  

rl 

- Cartan approach t o  a f f i n e  connections, which i s  n a t u r a l l y  adapted 

LO the  i n v a r i a n t  ca lcu lus .  The theory a l s o  provides a unif ied 

framework from which t o  view many of the  "formalisms" which can be 

introduced i n  General Re la t iv i ty .  Chief .among these  i s  the  Spinor 

Calculus; an account i s  given of how it a r i s e s  from the  bundle 

viewpoint. In  s t a t i o n a r y  spaces a na tu ra l  "spinor  s t ruc tu re"  can 

be defined i n  an obvious manner on t h e  assoc ia ted  V 3 of  t h e  space. 

Corresponding t o  t he  condit ions f o r  a symmetric connection 
, +.P' 
e 

t o  be semi-memannian, new necessary condit ions f o r  a mktr ic  

connection t o  bz symmetric (and hence semi-Riemannian) a r e  obtained. 

Some of these  condi t ions  a r e  purely a lgebra ic .  An account i s  given 

of the  "geometrical op t i c s "  o f  congruences i n  a p o s i t i v e  d e f i n i t e  

V s imi l a r  t o  the  well-known 
3' 

v 
4 '  

The f i e l d  equat ions 

version f o r  n u l l  congruence i n  a 

i n  i nva r i an t  form a r e  derived by t h e  - 
method of d i f f e r e n t i a l  forms ( t h e  Cartan method). The elegance of  

t h i s  method*com;?ared t o  t he  once exclusive tensor  ca lcu lus  i s  

pointed ou t .  Proceeding e i t h e r  from sp'inorial cons idera t ions ,  o r  

from the  geometrical o p t i c s ,  a complex version of t he  f i e l d  equa- 

l ons. t i o n s  i s  formulated, which is well  adapted t o  f i nd ing , so lu t l  

As an example, t h e  c l a s s  of s t a t i ona ry  vacua with 

eigenvalues of  t he  Ricci  subtensor equal i s  d e a l t  with. This c l a s s  

- .  
(iii) 



includes the stationary subcase of plane-fronted gravitational 

waves (with parallel rays); the remainder of the problem is reduced 

to a pair of second-order partial. differential equations, one of 

- which is independent. This la'tte; subclass belongs to the Petrov 

type I11 and has rays with nonvanishing divergence and twist 

'2 J 
I (complex dilat-atiQn) in the general cage. 

- * 
1 
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Errata. Underlined portions to be added. 

The Thesis starts on page 3 due to an error in,pagination. 

Ch. 1, p. 12, line 6: The tensor field must also be nonsingular. 
' 

Ch. 1, p .  23. 7th line from bottom: are not general geodesics. 

Ch. 2, p. 43,. 1. 8 :  null Evectors 
4 

Ch. 4, p. 61, 1. 11: (Bade & Jehle t 3 3 1  ) invariant - form. 

Ch. 5 ,  p. 73, eqn. (5.5): The terms shear-free-and complex- 

N H 

dilatation-free for 6 = 0 ,  y = 0 should really only be ueed in 
k 

a 
case the congruences of k are geodesics. 

Ch. 6,'p. 84, 1. 3: closed form ~olutione with an arbitrary' 
+-. 

functional dependence. 
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Introduct ion 

. In  wr i t ing  t h i s  t h e s i s  an i m p l i c i t  comitment 'has  been 

made-for br inging  the  concepts of modern d i f f e r e n t i a l  geometry t o  

bear i n  a  more in t imate  way upon the  the;ry of g rav i t a t i on .  We 

include among t h e  rudiments of  these  ','conceptsn t h e  ~ & t a n  approach 

[ l l  t o  a f i i n g  connections and the  na tu ra l  g loba l  s e t t i n g  f o r  t h a t  

approach, connections i n  p r inc ipa l  f i b e r  bundles. The l a t t e r  was 

f i rst  defined by Ehresman 121. . , 

The Cartan approach, a l s o  ca l led  t h e  '!moving frames 

method" o r  t he  "method of d i f f e r e n t i a l  forms," while not  r ecen t ,  

\ 
has a t  l q a s t  no t  been t r a d i t i o n a l l y  used by r e l a t i v i s t s  and other  

i n  tensor  ana lys i s .  Among its use r s  we may mention . 

Lichnerowicz [3] ,  I s r a e l  141, and Jordan, Ehlers ,  and Kundt [5] . 
We w i l l  demonstrate t h e  u t i l i t y  of t h i s  method when used i n  con- 

junction with orthonormal frames. It  i s  a l s o  the  key t o  our  

obtaining same i n t e r e s t i n g  condit ions f o r  a  me t r i c  connection t o  be 

symmetric. 
*: -a 

The theory of f i b e r  bundles has r ecen t ly  received 

a t t e n t i o n  i n  c o ~ c t i o n  with the  theory of r e l a t i v i t y  i n  some 
c3 

exposi tory a r t i c l e s  by Trautman [61 and Lichnerowicz [71. It has 
% 

been used t o  c l a r i f y  t he  r e l a t i o n s h i p  of the  sp inor  ca lcu lus  t o  ' 
t he  ordinary tensor  ana lys i s  o r  Ricci-calculus (Geroch [8] , [9] ; 

Eklers  [lo]; Lichnerowicz 171). We w i l l  touch upon t h i s  aspect  of 



i t s .  applicat ions i n  Chapter 4 when discussing the' spinor s t ruc ture .  ' 

The pr inc ipdl  f i b e r  bundles a r e  thb natura l  arena f o r  the  discussion 

'of connections. We deveJop most  of the necessary too l s  of 

Riernanniy geometry f ran these f oundattions . 
On the  physical s i d e  (o r  perhaps j u s t  another mathematical 

r 
/ 

s i d e ) ,  we w i l l  be concerned with s ta t iqnary  vacuum space-times. 
* 1 

For def in i teness  we s e t  ourselves the  problem of eigenvalues of the  

Ricci subtensor equal. The r e s u l t  proves t o  be in te res t ing  i n  

r e l a t i o n  t o  a lgebra ica l ly  specia l  space-t ims.  In the  solu t ion  it 

t is expedient t o  use a s e t  of equations d e r i  ed e i t h e r  from sp inor ia l  
, 

consfderations, o r ,  equivalently, from a geome i c a l  standpoint of 
- 

"optical"  proper t ies  of a congruence of curyes i n  V3. 

The use of spinor calculus i n  general r e l a t i v i t y  was 

i n i t i a t e d  by Witten [ l l ]  and Penrose [12], and culminated i n  the  

~ewmari-penrose [13] formalism, which i s  pa r t i cu la r ly  su i ted  t o  the " 

study of a lg&raica l ly  specia l  space-times. A contracted version - 1 

of ,the spinor calculus,  adapted t o  s ta t ionary  spaces, was used by . 
Perjes 1141 and by ~ 6 t a  and ~ e r j g s  [151. A similar  formulation in  

the  s t a t i c  case was a t ta ined by Das El61 from geometric considera- 

t ions .  The equatigns in  , t h i s  paper are  the same as  those i n  Per jes ,  

1' 

except fo r  being r e s t r i c t e d  t o  the  vacuum case; but  we have brought 

out  the s t ruc tu re  of those equations i n  a c learer  way. O u r  concrete 
P 

- - - 
example'turns out  t o  be a subcase of one cons5dered (but not solved) 

by Perjes [141. 



1. E'iber bundles and the  Cartan approach t o -  connections. 

We begin with the  d e f i n i t i o n  of a  d i f f e r e n t i a b l e  manifold 
k' 

( ~ i g k s  1171 ) , i n  order  t o  g e t  i n t o  t h e  s p i r i t  of t h ings ,  and he lp  
Y * 

e s t a b l i s h  some nota t ion .  Let M be a  s e t .  An n-coordinate  p a i r  

(4,U) on M , i s  a  subset  U of M together  with a  one-to-one 

map 4:U -+ R~ such t h a t  4 (U) is  -open. A COO n-subatlas on M 

i s  a  c o l l e c t i o n  of n-coordinate p a i r s  4  U ) )  which a r e  
h' h 

-1 
d i f f e r e n t i a b l y  r e l a t e d  i n  t h e  sense t h a t  dh 0 mk is cm whe'rever 

it i s  defined,  f o r  a l l  h and k ,  and where the  Un cover M .  

A maximal cQ n-subatlas i s  c a l l e d  a  cm n-at las .  A d i f f e r e n t i a b l e  

manifold M i s  a  s e t  together  wi th-a  C" n-at las;  M i s  sa id  t o  

be provided with a  d i f f e r k n t i a b l e  s t ruc tu re .  Since a l l  t h e  mani- 
i- , 

f o l d s  w e  dea l  wi th  w i l l  be cW, we o f t en  drop that adject ive. .  

"Dif fe ren t iab le"  w i l l  mean the  cm version. We work with Hausdorf f  

and.paracompact manifolds, exclusively.  

We .assume the  s tandard concepts i n  d i f f e r e n t i a l  geometry , 
* 

per ta in ing  t o  t he  d i f f e r e n t i a b l e  s t r u c t u r e  of a  manifold. For t he  

r e l evan t  d e f i n i t i o n s  and much of the  notat ion we r e f e r  t o  Hicks 

[17] .  We r e c a l l  a  few of these f o r  convenience: 

I f  -M i s  a  C" manifold and m € M ,  then the  tangent  
. - 

space a t  m i s  denoted by . If X i s  a  v e c t o r f i e l d  on M I  

w e  use e i t h e r  X, o r  X(mf  t o  denote t he  value of t he  vec to r f i e ld  

a t  m C M I  k-hichever i s  more convenient. I f  N i s  another - C- 

mpnifold and f  :M + N i s  cm, the  Jacobian o r  d i f f e r e n t i a l  f  
-'k4 

* 



of f  i s  a  l i n e a r  map f ,  :M,+ Nf (m) f o r  each rn € M .  I f  the  

cotangent space i s  denoted by Mi , we denote by , f *  the  mapping 

which takes foqnsin the  opposite d i rec t ion ,  f*:N 8 + M* . FoY %' 

f  (m) m 

this chapter,  a  - curve in"-H is  a  ~ " - m a ~ ~ i n g  from a  connected 

subset of R i n t o  M; but  l a t e r  we w i l l  a l sd  mean simply the  

range of such a  mapping. I f  x and Y'  a r e  two C" vector f i e l d s ,  
,' 

p 
t h e i r  bracket [X,Y] is the  vector f i e l d  defined by [X,Y]f = 

X(Yf) - Y (Xf) , where f  i s  any C" real-valued function. .We have 

the  Jacobi iden t i ty :  [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0. 

A Lie group 5 i s  a  grbup which is  a  d i f f e r e n t i a b l e  
. - 

manifold such t h a t  the  group operations are  d i f f e r e n t i a b l e  ( c m ) ;  

it is  said t o  be a  Lie transformation group -- on a  d i f fe ren t i ab le  
X 

&mifold M provided: 

(a) To each a  6 G there corresponds a  differenti*able 

transformation of M,  denoBed by m I+ ma,m € M. 

(b) I f  a ,b  E G ,  then (ma)b = m ( a b )  f o r  every m € M .  

(c) The mapping (m,a) C M x GI+ ma € M i s  d i f fe ren t i ab le .  

The group i s  sa id  t o  a c t  f r ee ly  on M -  i f  m a  = m f o r  some m € M 

m = e ,  where e  i s  the  iden t i ty .  The mapping i n  ( a )  may be 

:characterized a s  a  r igh? t r ans la t ion  by a ,  and we o f t en  use the 

b 
symbol R,:R,(m) = ma. A vector f i e l d -  X on G is  r ight- invariant  

Some f i n a l  

f o r  a l l  
- ~- 

remarks comma w i l l  mean the 



. . 

p a r t i a l  o r  i nva r i an t  de r iva t ive  with respec t  t o  a va r i ab l e  o r  . 

B - - -  are t h e  components of any tensor:, The summation convention 

i s  assumed t o  hold f o r  repeated ind ices ,  uAless ind ica ted  otherwise. 

Square brackets  surrounding a s e t  of ind ices  means, as .usua1 ,  f u l l  

antisymmetrization: B 
[ili2* 'in] 

n~ 
ik 1 2  ik --kn 1 

ik ik . . . ik, 
4 

where E 
1 2  i s  t h e  Levi -Civ i ta  permutation symbol. 

The b a s i s  of o& work w i l l  be the  Cartan approach t o  a f f i n e  

connections. (Cartan [ I ]  ; a l s o  I s r a e l  [4] , Flanders [l8]. But  

t he  o r i g i n a l  "moving frames" method of Cartan,  though admirably 

su i t ed  t o  computations of a c e r t a i n  kind ( a s  we s h a l l  s e e l ) ,  r e l i e s  

on t h e  exis tence of a d i f f e r e n t i a b l e  base f i e l d  . fo r  t h e  reg ion  i n  

which i t s  s t r u c t u r a l  equat ions . . . ., a r e  t o  be formulated. A more a b s t r a c t  

s e t t i n g  i s  needed f o r  t he  g o b a l  formulation, which can be properly &,,, 

r e l a t e d  t o  t h e  usual  approach to a f f i n e  connections (such a s  t h a t  

-7 

i n  Hicks).  This s e t t i n g  i s  furnished by the  theory of f i b e r  bundles; 

so we begin our study with a sketch of t he  r e l evan t  p a r t s  of t h a t  

theory. The main re ferences  f o r  t he  mater ia l  on t h i s  subjec t  w i l l  

be Bishop and Cri t tenden [19], Nomizu [20], and Hicks [17].  For a 

concrete  (down-to-earth) t reatment  of some of t hese  top ic s  we r e • ’ e r  
I; 

t he  reader  t o  Flanders 1181, e s ~ e c i a l l y  Chapter 8.. 

Let  M be a d i f f e r e n t i a b l e  manifold and G a Lie group. 

A d i f f e r e n t i a b l e  manifold P is  a p r inc ipa l  f i be r ' bund le  over the  

base space M with s t r u c t u r e  group G I  denoted P (M,G) , i f :  - 



(1.1) (a)  G a c t s  on P on the  r i g h t  d i f f e r e n t i a b l y  and f r e e l y .  

(b) M i s  t he  quo t i en t  space of P by t h e  equivalence 

r e l a t i o n  induced by G ,  and t h e  p ro j ec t ion  n:P + M 

is  cm. 

(cf P is  l o c a l l y  t r i v i a l :  t h a t  is, every m C M has a  

neighbur- U such t h a t  n- l (u)  is diffeomorphic 

t o  u x G ,  by a  ma ing p C n'l(u) H ( n ( p ) , 4 ( p ) )  € P-= 
U x G with 4 (pa) = 9 (p) a  f o r  every a C G .  

. ~ c c o r d i n g  t o  condi t ion  (a ) ,  no element other  than e  € G has a  

.fixed po in t  i n  P. Condition (b) means t h a t  M = P/{~G:'P 6 P )  with 

the  quot ien t  topology, which i s  the  s t ronges t  topology making 71' 
*s=' 

continuous. P a l a i s  [21] shows t h a t  t h e  quot ien t  topology i s  

uniquely charac te r ized  by t h e  condit ions t h a t  with respec t  t o  it 

i s  both continuous and open. The quot ien t  d i f f e r e n t i a b l e  s t r u c t u r e  

i s  f ixed  by n being cm. Condition ( c )  may be paraphrased by 

saying t h a t  P i s  l o c a l l y  a  product bundle, with t he  r i g h t  ac t ion  

of G na tu ra l ly  defined. For each rn E M ,  n-'(m) i s  a  closed 

submanifold of P, ca l l ed  the  - f i b e r  over m, and diffeomorphic t o  

G .  

To p u t  p r i n c i p a l  f i b e r  bundles i n t o  something of a  

"ca tegor ica l"  s e t t i n g  we should de f ine  the  morphisms between them. 
- 

P V V  Let P(M,G) and P {M ,G 1 be two p r inc ipa l  bundles. A bundle 
+ 

v v v  -2 f  :E?(M,G) -+ P (M ,G ) i s  a  s e t  of C" maps ( fp , fM,fG)  between 



the obvious p a i r s ,  such t h a t  f G  is a homomorphism, and we have 

, , 
(ii) f 0 R = R o f  f o r  every a 6 G. 

P a  f G ( a )  P 

For a  more complete p ic tu re  we may mention some more 

general concepts. A bundle over a  manifold "M i s  j u s t  a  C- 

manifold P and a C- onto map n:P + M. A f i b e r  bundle is one 
r 

which is  loca l ly  a  product bundle i n  the  sense df (c) above, but  

without the  group aspect.  A s  an example, one may def ine  a f i b e r  

bundle associated t o  a  pr inc ipal  bundle P(M,G).  This i s  essen t i a l ly  

a  f i b e r  bundle over whose f i b e r  is a d i f fe ren t i ab le  manifold 

on which G ac t s  t o  the  l e f t .  However, the  pr inc ipal  b&dles form 

the proper s e t t i n g  f o r  the  i n t r d u c t i o n  of a  connection. 

We now give an important example, which w i l l  help us t o  

f i x  notation [I71 . Let M be a C- n-manifold and l e t  B (M) = 

i (m;X 
( 1 1 ,  

, A  ) : m c M  and 
(1)' ' ' ' f X ( n )  an oirdered 

(n) 

bas i s  of The na tu ra l  project ion n a c t s  by 

n (m; X I . . . = xu. We give B(M) a  d i f f e ren t i ab le  

s t ruc tu re  a s  follows. I f  (9,U) is  a coordinate p a i r  on M with 

... - -  
xi = ui o 4 (ui is the  ith s l o t  function) , l e t  " (+,U be a - - - 
coordinate p a i r  on B (MI with = n-1 (u) and +:U +SR"+"~  

defined by z ( m ;  x . = (xl, . . . 2 
(1)' - 



i 
where x = u 0 9 (m) 

- * 
and I ( ~ )  = I  amxi. The S's obviously 

i i (k) 
f 

cover B ( M ) ,  and on any overlap the coordinates a r e  cw2related. 

Thus the s e t  of a l l  generates a 

group G l  (n,R) a c t s  on 3 (MI on the r igh t :  

then (m;X 

easy t o  show t h a t  B (M) with t h i s  s t ruc tu re  

we c a l l  it the bundle of bases over M. -- 

The 

is  a pr inc ipal  bundle; 

In a similar way one may define the bundle of orthonormal 

7 

frames i n  any Riemannian space. The group i n  t h i s  case i s  Ofn,R) 

where n = dimension of the  space. Other examples of p r inc ipa l  

f i b e r  bundles f igure  heavily i n  the  theory of r e l a t i v i t y ;  we 

bel ieve t h a t  the  theory of f i b e r  bundles allows the  treatment of 

many d i f fe ren t  formalisms from a unif ied point  of view. The most 

important among these i s  the  bundle of oriented orthonomal t e t r ads  

with the proper, isochronous Lorentz group L++ , which we denote 

by oT(M), where M = space-time. The bundle of oriented nu l l  

t e t r ads  i s  isomorphic t o  This bundle is  closely associated 

with the spinor s t ruc tu re ,  a pr inc ipal  bundle d e a l t  with i n  Chapter 

4. I f  our space-time i s  s p a t i a l l y  and temporally oriented and 

pa ra l l e l i zab le ,  and (K,L) i s  a f ixed pai r  of fu ture  oriented n u l l  
. w 

direc t ion  f i e l d s ,  then the  col lec t ion  of n u i l  t e t r ads  < (M)  = 

- 
{(m;k,C,t):m € H, k € K,  C € L, t is  complex, k E = - t t = 4 

- 1, k t = C t = 0) becomes a pr inc ipal  f i b e r  bundle with 
, - 

s t ruc tu re  group C (mult ipl icat ive group of complex numbers), 

the  

i f  



11 
- - 

r 

we de f ine  a r i g h t  ac t ion  of C by (m;k,C,t)z = 

(rn; / z 1 2k, / z l - ' ~  ,z /Ft)  , where z F C. This example was pointed o u t  "; 
-: 

by Ehlers  [ l o ] .  One can regard a s t a t i ona ry  space-time i t s e l f  a s  a 

1 p r i n c i p a l  bundle M(W3,R ) with the  world-lines of the  s t a t i ona ry  

observers  a s  t h e  equivalence c l a s s e s  'inR1, rn E M. The condit ion 

t h a t  the  k i l l i n g  motion have no f ixed poin ts  accords with the 

r equ i r emen t~ in  the  d e f i n i t i o n  t h a t  t h e  group a c t  f r e e l y .  The f i b e r  

bundle concept can a l s o  be appl ied t o  more general  space-times; s ee  

Lichnerowicz [71 . i 

Many of the  examples above can be obtained from t h e  bundle 

of bases v i a  a genera l  process  of reduction of t he  s t r u c t u r a l  group, 

which i s  a spec i a l  case of a bundle nap. Let P ( M , G )  be a pr inc i -  

p a l  bundle and H a subgroup of G .  Then G i s  reducib le  t o  H 

v i f f  t he re  e x i s t s  a p r i n c i p a l  bundle P (M,H) and a Cm, one-to- 

one mapping f :pV + P such t h a t :  

(ii) f o Rh = R j ( h )  0 f where h H and j i s  the  

b* inc lus ion  map, j (h) E G .  
3 

- 
5: 

f -  

It should be remarked t h a t  'chis concept has no a p r i o r i  r e l a t i o n s h i p  - 
t o  any given connection on M. The reduct ions considered i n  t he  

above examples were very spec i a l .  

In  regard t o  t he  exis tence of such reduct ions ,  we may c i t e  



" / 

t he  following theorem, due t o  Steenrod  i is hop and ~ r i t t e n d e n  [191, 
, 

p. 50): I f  H i s  a maximal compact subgroup of G: then G can 

be reduced t o  H. NQW O(n,R) i s  a maximal compact subgroup of 

Gl(n,R) . I n  t he  case of B ( M ) ,  any p a r t i c u l a r  reduct ion of 

G l  (n,R) t o   din,^) is  equivalent  t o  a Riemannian s t r u c t u r e  on 

M ( t h a t  i $  , a cm symmetric 2zcovariant tensor  f i e l d  on M )  . L 
For an e x p l i c i t  cons t ruc t ion  of such a s t r u c t u r e ,  s e e  Hawking and 

E l l i s  [ 2 2 ] ,  p. 38. In  t he  case  of most i n t e r e s t  t o  u s ,  L v e r  , 

t h e  proper isochronous Lorentz group - L++ i s  not  compact., Thus d 

it tu rns  out  t h a t  t h e  a b i l i t y  t o  %educe B(M)  t o  OT(M) where M 

is a space-time leads  t o  a c e r t a i n  r e s t r i c t i o n  on t h e  manifold M. 

This  r e s t r i c t i o n  is t h a t  M admit a g loba l  line-element f i e l d  [@I . .  . 
This is not  much of a r e s t r i c t i o n ,  however, s ince  any non-compact 

manifold s a t i s f i e s  it: These considerat ions a r e  of more consequence 

i n  t he  case of a spinor  s t r u c t u r e  (Chapter 4 ) .  

We a r e  now prepared t o  def ine  a connection i n  a p r inc i -  

p a l  f i b e r  bundle,  and demonstrate how t h i s  d e f i n i t i o n  g ives  us  t he  

usual p a r a l l e l . t r a n s l a t i o n .  Let  P(M,G) be a p r i n c i p a l  bundle 

over t he  n-dimensional base manifold M with s t r u c t u r e  group G.  

A t  each po in t  p of P ,  l e t  V be the  subspace of P tangent 
P b P 

t o  the  f i b e r  through p. Then n* (V ) = 0. 
P 

A connection H .. on P is  an n-dimensional d i s t r i b u t i o n  

on P; i .e .  , an assignment of a subspace H of- P ( ca l l ed  
P P 

hor izonta l )  t o  each . p C P I  s a t i s fy ing  



( 1 . 4 )  (a)  Pp = V @ Hp 
P 

( d i r e c t  sum) .  

(b) I f  a  C G and p F P then H = (Ita) *Hp . 
Pa 

(c) Hp depends d i f fe ren t i ab ly  on p. 

Note t h a t  the  d i s t r ibu t ion  is not necessari ly involut ive;  i f  it i s ,  

the  connection turns  out  t o  be f la t - - i .e . ,  have vanishing curvature 
< * 4  

tensor ( t o  be def ined) .  According t o  propert ies  (a) and n ( c ) ,  i f  X \ .  

i s  a  cm vector f i e l d  on P ,  a t  each p E P ;& have a unique 

" C 
decomposition of the  form Xp = Y + Zp , where Y E V 

P P P . '  

Z C H  and the  vector  f i e l d s  Y and Z a re  cW. The vector 
P P '  

f i e l d  Y i s  ca l led  the  v e r t i c a l  component, and Z the  horizontal  

component of X.  For an i n t u i t i v e  p ic ture  of t h i s  d e f i n i t i o n ,  we 

specia l ize  t o  the  frame bundle B(M) (or B fo r  s h o r t ) .  Each 

vector i n  Bp corresponds i n  M I  roughly speaking, t o  (1) a 

framed point  (information provided by p ) ,  ( 2 )  a d i r e c t i o n ,  and 

( 3 )  associated "ra tes  of turn" of the  frame. I f  the  vector  l i e s  i n  

H 
P I  

these " ra tes  of turn" a r e  those associated with a p a r a l l e l  

t r ans la t ion  i n  the  d i rec t ion  ( 2 ) .  Property (b) then says t h a t  t h i s  . I 

inf in i tes imal  p a r a l l e l  t r ans la t ion  commutes with the ac t ion  of the  

group pn the  frame. 

For a  more exact ,  but s t i l l  simple, elucidat ion of the  

meanin$ of this def in i t ion  we indica te  how it -is equivalent' t o  the  



specification of a parallel trwslation in M; as is well known, 

this is equivalent in the frame bundle to the determination of a 

classical or infinitesimal affine connection or5 M ([23] or [19], 

p. 77). Let y be .a broken cm curve in M, y: [0,1] + M. A 

O 

horizontal lift of y is a broken C" c m e  y in P such that - -a 

N 

(i) 7 is horizontal, that is y* is horizontal, arid (ii) n 0 = 

-1 
y. It can be shown that, given p C n (y(O)), there exists a 

unique lift ? of y such that ?(o) = p ([191, p. 77). Then 

- 1 -1 
' Ty:n (~(0) ) -+ n (y (1) is a diffeomorphism satisfying 

Ty 0 Ra = Ra Ty , and T = To 0 T for other broken cm rJ Y 

curve in P with o: [0,1] -t P . and o(0) = ~(1). 

The proper setting for the definition of an affine 

" connection (in which torsion has meaning) is the bundle of bases. 
I 

. > 

So we specialize once m r e  to B M )  , and draw on Hicks. Let 

p B(M) . There is a mapping f :Gl (n,R) -t B (M) defined by 
P" 

i fp (a) = pa. Let {X (i) 1 be the basis at h$ corresponding to 
f (P) 

p. Any other basis at , corresponding to pV in B (MI 

(n (pv) = n (p) ) , say, may be given by its components Rki C Gl (n .R) 

with respect to : ~ ( ~ y  = A(k)Aki If we make the 
Aki , 

double-as coordinate functions then we may define unique right- 

invariant vector fields Xki which take the values Xki(e) = 

a / a q i  (el at the identity. Then f ) x , ( e  = eki p define P kl 

vector f i e l d s i n  BfMl (the vector fields of "rate of twist" of 

the frame), These vector fields are vertical: n,eki = 0 (Appendix A). 



They a r e  g loba l ly  def ined,  C-, and i n t r i n s i c  t o  t he  bundle of 

bases--i.e., a p a r t  of t h e  d i f f e r e n t i a b l e  and group s t r u c t u r e .  W e  

do not  y e t  have a b a s i s  f o r  B and w e  cannot f i n d  one i n  any 
P i  

well-determined fashion without adding more s t r u c t u r e .  We must' 

s e t t l e  f o r  n n a t u r a l l y  def ined one-forms: i f  X C Bp , p = 
- 

(mih(lv . . . .rl(nl J , de f ine  the  n one-forms oi by 
- 

n * ~  = oi(x)X(i) ( t hese  a r e  a l s o  i n t r i n s i c  t o  t he  bundle of bases ) .  
- 

We can now add t h e  necessary assumption: Let  oij be any one-forms 

dual  t o  E~~ , sub jec t  t o  a forthcoming r e s t r i c t i o n ,  then we a s s e r t  
,' , - - 

t h a t  t h e  d u a i  base t o  {oi,o } namely E , } ~ r o v i d e s  u s  
i j 

'w i th  the breakdown i n t o - v e r t i c a l  and hor izonta l  vec to r s .  Hence, i f  

X C Bp , de f ine  the  v e r t i c a l  p a r t  of X by + = 

from which w e  g e t  XH = X - $ f o r  t he  hor izonta l  

spec i f i ca t ion  of XH i s  equivalent  t o  g iv ing  the  

de f in i t i on .  For an e x p l i c i t  construct ion of these  

component. This  

H of t he  above 
P 

b a s i c  vec tors  
- 

and forms s e e  Appendix A .  Formally, t he  connection 'one-forms w i j  

s a t i s f y  t h e  following def in ing  proper t ies :  

- 
(1.5) (a)' o I f o r m a d u a l b a s e t o  e i j  a t a l l  P C B .  

i j  Vp 

By taking e x t e r i o r  de r iva t ives  of t h e  one-forms { z i  ,Ci 1 



we obta in  t h e  Cartan s t r u c t u r a l  equ2tions 

- 
which may be considered a s  a d e f i n i t i o n  of t h e  to r s ion  forms T~ 

- 
and curvature f o m s  Qi j. More e legant  d e f i n i t i o n s  a r e ,  

and b u t  they 

a r e  l e s s  s u i t e d  t o  our purposes. I f  Ti = 0 t he  connection i s  

s a i d  t o  be s y m e t r i c .  
z 

Under m e  process  of reduction of t h e  s t r u c t u r a l  group, 

- ? 
a connection a on B(M) g ives  r i s e  t o  a n a t u r a l  connection on i j 

v t h e  reduced bundle B' (M,H) . I f  f:B + B i s  t h e  mapping which 
- 

gives  t h e  reduct ion,  then t h e  induced connection is j u s t  •’*ai j. 

If a connection i s  given on B~ ins tead ,  we can de f ine  on& on B 
. ,. 

-b L -  

by a dua l  process.  I f  H' i s  the  connection ( f i r s t  def in=m) 

v ' 

on B , l e t  f,H v 
p = and extend H t o  a d i s t r i b u t i o n  on 

a l l  of B by r i g h t  t r a n s l a t i o n .  I f  the s t r u c t u r a l  group of t h e  

- 
reduced bundle i s  O(n,R), then t h e  induced connection •’*aij i s  

ca l l ed  a me t r i c  connection. We use the  same term even i f  t h e  

reduced group i s  L++ ; thus any connection on OT (M)  , where M 
- 

is  a space-time, is  a met r ic  connection. I n  such a connection, 
. - 

p a r a l l e l . t r a n s l a t i o n  always preserves inner  products.  

We a r e  now ready t o  de r ive  the  more conventional,  l o c a l  a 



* f  
4 ,. 

version of the  s t r u c t u r a l  equationsVby "descending" t o  M. Let us  

no t  th ink , .  h w v e r ,  t h a t  we are abandoning fiber-bundles: What 
. P' 

follows can equal ly  well  be thought of a s  a reduction of Gl(n,R) 
9- 81 -- . 

t6'the t r i v i a 5  e , which i s  possible on any s u f f i c i e n t l y  small A 

open subset  d of H by the  l o c a l  t r i v i a l i t y  -3 r l ( ~ ) ;  the  

reduction is d e f i n h  by some ~ : B ~ ( U ,  fell  +%up. 
,.: 5 

NOW l e t  A ( l ) #  . 
A (n) 

be a base f i e l d  on t h e  open itL ?. 

s e t  U of M. Define a cm map f:U -, B(M) by f (m) = 

; 1 ,  . . . A (m) , where m C U. Since n 0 f i s  the  
, (n) 

T. u i d e n t i t y  on U we c a l l  f , a ' s ec t ion  over U.  Define the  connec- 
-, 

'l 
t i o n  one-forms oi oh. U by oij - - f*oij. By allowing f * t o  

operate qn t h e  s t r u c t u r a l  equations (1.6) ,  they a r e  brought down 
? .  . - 

to  a corresponding set of equations on M. Defining o = f*o  
i i 

tr 

and taking account of f t d a  = df*o f o r  any form a, w e  have 
/- 

* " - * 

where t h e  one-for& oi a r e  the  dual  base t o  A ( i ) :  By descending 

t& U, of course, we have introduced the  add i t iona l  canpl ica t ion  

of the  consistency of these  equations f o r  d i f f e r e n t  sec t ions  over 
- - 

U ( t h a t  is ,  t h e i r  covariance under changes of frame). But the  way 

-we have proceeded guarantees t h i s  covariance. In  a sense,  we have 

taken "moving frames" a n d  the  (st i l l  more dizzying) transformations 



I R 

e e e n  them,wi th  - the* somewhat kinematical f l avour ,  an$ frozen 
.-- 2 

them a l l  kn the  bundle of bases;  much a s  t h e  theory of r e l a t i v i t y  
a 

t u rns  kinematical r e l a t i o n s  of physics i n t o  ' k t a t i c "  geometrical 

f - r e l a t i o n s  of space-time. 
'+I -% 

Let  us  inves t iga te  how a change of sec t ion  a f fec t sL  the=% 
k 

b a s i c  and connection one-forms. L e t  -?IU -t B ($1 and d : ~  -t B @I p*-. 
bektwo sec t ions  over U a s  befqre. We wish t o  p u l l  down the  

.- - 
f o m s  , oi d wi tb M v i a  t h e  two mappings f *  and 2.. I f  . 

b e  po in t s  of 
'%- 

a r e  of t h e  form 

I I 

be $ function of m. Thus f  = 0 f , where,we have abused our 

nota t ion  by us ing*  RA f o r  a  nonconstant 

r A A - CI A - 
wi = f*wi and wi = f*wij i n  t e p s  of 
- 

A 

The r e s u l t s  a r e  (Appendix C) ; 

A . Then we ca lcu la te  
k i  - 

w i = •’*ai and oij = 

I n  the  ca lcu la t ion  we have used the  intermediary of a  coordinate 

sect ion;  with more advanced notat ion t h i s  would not  have been 

necessary. 

Pram now on w e  r e s t r i c t  our a t t e n t i o n  t o  such a 
7 %. 



p a r a l l e l i z a b l e  submanifold U of M I  and we change our  noeat ion 

somewhat. We use xN o r  xi i n s t ead  of o , and r e se rve  t h e  i 

use of lower case  ind ices  (Lat in  o r  Greek) f o r  coordinate  frames, 

wi th  b u t  a  minor except ion i n - t h e  case  of bi;ector i n d i c e s  i n  $he 

Pe t rov  c l a s s i f i c a t i o n .  Thus l e t  p, N = 1, . . . ,n  be a genkr'al 

base for  tfie one-forms on U. In l o c a l  coord ina tes  w e  w r i t e  

N N i  i = .dx . The dual  vec to r  f i e l d s  a r e  w r i t t e n  a s  AN = x i N a / a X  , * 

1 

i N where ( A  is  t h e  mat r ix  i nve r se  t o  (1 i) .  I n  gene ra l ,  from t h i s  
N 

p o i n t  on we w i l l  be  c a r e f u l  about t h e  ups and downs i n  t h e  place-  . 

ment of i nd ices .  The s t r u c t u r a l  equat ions (1.7) now t a k e  the form 1 '  

. . 

The genera l ized  R icc i  r o t a t i o n  c o e f f i c i e n t s  a r e  def ined  a s  t h e  

N 
c o e f f i c i e n t s  i n  an expansiol) of a. - 

/ M *  
/' 

For a  coord ina te  frame these  a r e  t h e  (negat ive of  t he )  c h r i s t o f f e l  

i symbols. I n  t h a t  case, ki = cjx and t h e  f i r s t  equat ions  of 

i k  i 
s t r u c t u r e  (1.9) y i e l d  I' dx' A d x  = z. Hence the-name, 

[kj 1 
s p e t r i c ,  f o r  a  connection i n  which zi = 0 .  

I Although it may not  be n a t u r a l  from fi fundamental p o i n t  of 
view, we have h e r s  changed t h e  d e f i n i t i o n  0fW.M by a s ign .  This  
accords with widespread usage i n  t enso r  ca l cu lus .  



With t h i s  nota t ion  t h e  components YMP trans ' fom a s  

A N 
follows under a change of frame (change of- sec t ion)  X Z . =  A X 

Z N '  

N 4 N M P  N M 
A A - A  A .  

A ~ Y ~ ~ = Y ~ ~  ~2 x Q , M  x 

In  p a r t i c u l a r  i f  (iZ} = {a/%& is a coordinate frame we obta in  

N = xi where we have wr i t t en  hN z lNi, - A $  i j .  N k  
i / j  M P '  i 1 j  

We have thus  recovered- the  ordinary d e f i n i t i o n s  L of the  covariant  

d i f f e r e n t i a t i o n  ( i n  essence) and+Ricci  r o t a t i o n  c o e f f i c i e n t s .  One 

N N -  has i n  genera l  y Mp - - N j = x ~ ~ ~ ~ x  iX . For yM , where. YM 

an a r b i t r a r y  change of frame w e  may wr i t e ,  by analogy; 

N N Z X  
From whence w e  g e t  Y MP = A ellXA MA . The frame-covariant 

1 l i  I J  , , r 
d i f f e r e n t i a t i o n  s o  defined i s  nothing but  covar iant  d i f f e r e n t i a t i o n  

with respect  t o  "anholonomic coordinates" i n  the  c l a s s i c a l  version - 

' (Schouten 1241, p. 169) .  I n  our work we w i l l  o r d i n a r i l y  use  two 

types of frames: a coordinate frame and an orthonormal frame. We , 

pre fe r  t o  d i s t ingu i sh  the  symbols fort c o v k i a n t  d i f f e r e n t i a t i o n  

with r e spec t  t o  each, reserving " 1.'' f o r  coordinates and "flu f o r  

t h e  o r thomrna l  f f m .  
f 

In  tW c l a s s i c a l  language we would say (Eisenhart  [251) 
\ \ 



t h a t  an ennuple of vectors  (hiN} and any s e t  of y MP determine 

a connection. It  makes sense 3 ask what kinds of geometry may be  
+ 

spec i f i ed  by var idus  choices f o r  the  Ricci  r o t a t i o n  &oef f i c i en t s  

and associated frames. A t r i v i a l  example i s  t h a t  a coordinate 

frame and any s e t  of  ri  jk ' where ri = 0, determine a sym- 
[ jk l  

metr ic  connection. More t o  the  po in t  f o r  us a r e  t h e  Riemannian 

(metric and symmetric) connections. But the  condit ions on t h e  

frame and r o t a t i o n  c o e f f i c i e n t s  which w i l l  guarantee t h a t  the  

connection s o  determined is Riemannian a r e  not near ly  s o  handy. 

I f  t h e  connection i s  symmetric, we have t o  consider condit ions of 

i n t e g r a b i l i t y  f o r  t h e  exis tence  of a metr ic  
g i j  

which a r e  of the  

form r251: 

More recen t ly  t h e  f i b e r  bundle outlook and a lgebra ic  topology has 

been used f o r  i n s i g h t  i n t o  g lobal  aspects  [26], bu t  t h e  l o c a l  t o o l s  
-P 

have remained t h e  same (even though couched i n  differpent language). 

2? 
The conditfons f o r  a metric  connection t o  be symmetric do not  seem 



to have at t racted much attention. 

Necessary conditions for a connection t o  be metric are 

readily found, i f  the frame i s  assmed to  be orthonormal. I f  

\*AM = qNM , where qNM = P 6 (p = ?: 1, N not summed), then 
N N M  N 

the Ricci, rotation coefficients sa t i s fy  q y 
P P 

NJ? MR + 'my NR = 0. 

But these conditions a re  not i n  a very useful,form, since the frame 

was pre-selected. 

To make a start towards the analysis of t h i s  problem we 
-" 

pose two questions: F i r s t ,  what kind of geometry is specified by 

N r 
any hls and y i(p s with the res t r ic t ion  tha t  q yR + 

NR MP 
R 

qmY NP = 0 hm = P$NM , N not summed); and second, what are  the 

N 
conditions we can put on the y MI? i n  order to  guarantee that  

there ex is t  for  which the connection i s  symmetric--i.e., fo r  

which dkNq= - y AM A AP ? 
MP 

i N F i r s t ,  l e t  {X N} be an ennuple of vectors and l e t  y 

R R 
be given functions obeying the restr ic t ion qNRy MP + r) - y  = 0. 

MR NP 

Then i s  covariantly constant: 

- - R R 

('NH)I/l? 'NM,P + T~R'  MI? + 'FWY NP 

If w e  define an inner product by hw\ = , •’ran t h i s  it i s  

easy to  conclude that  the connection is  metric ( i . e . ,  it i s  pulled 



down from a connection on the bundle of o r t h o n o m l  frames). We 

digress to  consider the classical  formulation. I f  the coordinate 

i j 
form of the metric i s  denoted by gij  , where 'q = g..X Nl , 

11 

then it follows tha t  gijlk = 0 as well. Then we may write ([241, 

i where ihj} are the ch r i s to f fe l  symbols formed with respect t o  

i i 
gij t I' = Q is the classical  torsion tensor, and the indices 

[h j l  h j '  
i i j 

on Q are  raised and lowered by gij and g . For the sym- 
. hj- 

metric part of the connection we may write 
< 

b 
F 

I t  follows that  the curves of extremal arc-length, as measured by 

2 i j 
ds = g . .dx  dx , are not geodesics. This i s  the form in  which 

1 3  

metric connections have been recently considered by Hehl 1271 as a 

candidate for  a "Unified" f i e l d  theory. 

Our second question reduces to  determining the conditions 

N N 
of integrabi l i ty  for  the equations dX = - Y~ lM A where the 

* 
are given functions. A complete se t  of first-order conditions 

MP 

of integrabi l i ty  can easi ly  be obtained by exter ior  differentiation. 



NMP NM P 
With the abbreviations lPNM = lN A hM, h = A l , we have 

for the first set of conditions 

which may be conveniently rewritten R~ 
f 

[MPQ 1 = 0; i.e., it is just 

the cyclic identities for the curvature tensor (see Chapter 2). 

' N o w  this is 16 independent equations in the 16 unknown quantities 

N i lN ( l N  = h .dx ) ; generally speaking, a solution will exist. Thus 
i 1 

r' 

given y 
N 
M P '  

we can generally find a frame for which the first 

conditions of' integrability (1.10) are satisfied. The second set 

of conditions, obtained from (1.10) by exterior differentiation, 

have the remarkable property that they are of an algebraic form and 

involve alone: YMP - 

They may be rewritten in the form 
-- - 

The gemtric signfficance of these conditions is at present 

obscure, but should be interesting. These conditions aSe as far as 



we can go i n  4 dimensions, s ince  the re ,  fu r the r  e x t e r i o r  

d i f f e r e n t i a t i o n  w i l l  make a l l  terms vanish i d e n t i c a l l y .  Therefore 

we s h a l l  not pursue f u r t h e r  condit ions here. I t  i s  not  c l e a r  a t  

.the present  time hw much these  conditions of  i n t e g r a b i l i t y ,  com- 

p l e t e  a s  they are, guarantee t h e  existence o f  a so lu t ion  t o  ' dxN = 

- N 
Y M P  1 ;  nevertheless they may prove useful .  



"-'- '1 

2. Riemannian geometry. 

A s  we have intimated i n  Chapter 1, a Riemannian connection 1 

is  one which is  both metric and symmetric. That i s ,  the torsion is  
&Q 

zero y d  there ex is t s  a nonsingular , symmetric, and covariantly 

constant 2-covariant tensor g,  called the metric of course.,BIf -, 

g = tgmP @ xM on u u M I  where gm is symmetric, the l a t t e r  

'condition means 
gmllp 

= 0. W e  use gNM t o  ra i se  and lower 

indices, that is provide a connection between forms and vectors 

which ccamnutes with covariant different iat ion;  W e  have then 

P 
o w + w , where o = gNpa . 

d g ~ ~  - NM MN NM 
A basis in  which g 

F NM @ 

$ takes the simple form 
dgm = 

G e,6* (eN = 2 1, N not sunnned) 
i 

is ,  of course, orthonormal. In tha t  case the Ricci rotation 

P P * coefficients obey the ru le  b y  MR + qMpy = 0. We assume from 

now on tha t  the frame i s  orthonormal. 

f The s tructural  equations (1.9) for  Riemannian geometry 

may now be written as Z 

P 
a 

(b) Q : ~  = . -  bN + oN A , 
M 'P ' M 



The Riemann tensor  is  defined by 

/ 

and t h e  Ricci  tensor 

l a t e  i n t o  coordinate 

is R = R ~  . These d e f i n i t i o n s  trans- 
ME' MPN 

form as:  
b 

* k  . 
Rij  = R i j k  

t o  accord with t he  sign convention of most authors.  C 

m . .  . 
I f  T i s  any " invar i an t , "  i ts frame-covariant 

P Q a . -  
NM.. . 

der iva t ive  T is e a s i l y  defined by using the product 
PQ - IIR 

r u l e  on a decomposition of T , i n t o  a sum of products of vectors  

and forms, and the r u l e s  



i 
We note  t h a t  i f  SN = SisX , then  

N 
and s i m i l a r l y  f o r  S  . So t h e  frame covariance is  mani fes t ,  as 

we l l  as t h e  coord ina te  invar iance .  This  r e l a t i o n  makes it easy t o  

go between t e n s o r i a l  and i n v a r i a n t  formulae. Since t h e  ope ra t ion  

of r a i s i n g  and lowering i n v a r i a n t  i nd ices  i s  p r e t t y  nea r ly  t r i v i a l  

(because o f  t h e  s p e c i a l  form f o r  t h e  met r ic  t e n s o r ) ,  w e  e s s e n t i a l l y  
. . 

s impl i fy  formulae without  l o s i n g  any th ine  i n  r e t u r n .  

Allowing 

o r  thonormal f r  m e ,  

t h e  first equat ions  of s t r u c t u r e  t o  a c t  on t h e  

(d lN  - 2 A x*) (l ,X 1 = 0, r e s u l t s  i n  
. M P Q 

These w i l l  be  c a l l e d  the met r i c  equat ions;  a  misnomer, s i n c e  they 

r e a l l y  determine t h e  symmetric na tu re  of t h e  connection. 

The second equat ions  of s t r u c t u r e  amount t o  t h e  d e f i n i t i o n  

of t h e  Riemann t enso r  i n  terms of  t h e  Ricc i  r o t a t i o n  c o e f f i c i e n t s :  



6 

Imposing the vacuum conditions on these equations in 4 dimensions, A.0 

% =&O, results in the system of first-order equations which we 

denote by (F) : . , 

It is clear frm the derivation. that the system of 

-_  equations (M) and (F) in a V4 of signature + 2 are a necessary 
s2 

and sufficient set,of first-order equations for the determination 

of a gravitational universe. But certain additional conditions of 

integrability'can be useful in the solution of the problem. These 

are most easily obtained by exterior differentiation of the 

structural equations ( 2  .I) . From (2.la) we obtain the cyclic ' 

identities 

which are equivalent to R 
N 
[MPQ I 

= 0. From ( 2 .  lb) exterior 

differentiation gives us the Bianchi identities. 

+ 
N 

which may be expressed as R 
M [PQIIRI = 0. Further klication of 



t he  ex te r io r  de r iva t ive  cannot r e s u l t  i n  any r e l a t i o n s  independent 

of these.  Contract ing t h e  Bianchi iden t i t , i e s  over N and R,  

then over M and P, w e  have the  useful  i d e n t i t i e s  

'which we s h a l l  c a l l  t h e  "po ten t i a l  equations" i n  the  context  of the  

associated V3 of s t a t ionary  spaces. 1 % - 

The Jacobi  i d e n t i t i e s  f o r  the  frame {b) a r i s e  from the  

cyc l i c  i d e n t i t y  % [MPQI = 0. 
To see  t h i s  w e  t ake  p a r t i a l  

coordinate components of the-Riemann tensor:  

Cycl ica l ly  pemuting::M, P ,  .Q and adding, we eventual ly a r r i v e  a t  

the  Jacobi  i d e n t i t i e s  %,: - 

I f  one now replaces each bracket  i n  t h i s  expression by i t s  value 
9 - 

from (M), he w i l l  a r r i v e  back a t  the  c y c l i c  i d e n t i t y .  The Jacobi  
h- 

i d e n t i t i e s  f ind  an appl ica t ion  5s d i f f e r e n t i a l  c r i t e r i a  f o r  c e r t a i n  



s p e c i a l  Ch%CeS of t he  frame, b u t  t h e  d e t a i l s  w i l l  n o t ,  be  pursued" 

' here .  We only  c i t e  an example. In  t h e  V3 , t h e  c y c l i c  i d e n t i t y  
" 1 )  -- i s  epu iva l en t  t o  t h e  i d e n t i t y  bQ = RpQNM . If X . ;ay, i s  : 

(1) 
h "  . 

no* t o  su r f a ses ,  then  t h e  d i f f e r e n t i a l  c r i t e r i a  f o r  t h a t  

s p e c i a l i z a t i o n  a r e  suppl ied  by s u b s t i t u t i n g  (2.4)  i n t o  ...R - 
1213 

, R1312 = 0. Oddly enough, t h e  same d i f f e r e n t i a l  c r i t e r i a  a r i s e  i f  

X is  t o  be along a k i l l i n g  motion. 
(1) 

The Riemann t e n s o r  i s  e a s i l y  seen t o  s a t i s f y  t h e  follow- 

i n g  i d e n t i t i e s  i n  a Riemannian space: 

of t hese ,  ( i )  , ( i i )  and (iii) may be cocsidered t o  be independent,  ds- 

whi le  ( i v )  is  a consequence of  t h e  o t h e r s .  Any.other t e n s o r  

W which s a t i s f i e s  t h e s e  symnetr ies  and, i n  a d d i t i o n ,  t h e  rn 
"vacuum" condi t ion  

% 



* 

may be termed a Weyl tensor .  An i m p o r t q t  example-is the  conf0,rmal a 

I 

curvkture tensor  

t 

which fo- t h e  b a s i s  of t h e  Petrov c l a s s i f i c a t i o n  i n  V4. In any 

v3*. . we have cN = 0 ,  t he  proof being p a r t i c u l a r l y  
*Q < 

simple i n  , invar iants .  
%.< 

Fina l ly  the  conmutation r e l a t i o n s  f o r  inva r i an t  d i f f e r -  

2 
e n t i a t i o n ,  which merely express d f = 0,  and i n  a symmetric 

connection a r e  equivalent  t o  f - f = 0 ,  a r e  
llm IIMN 

/' 
w 

? 

W e  now develop t h e  c r i t e r i a  f o r - v a ~ i ~ o u s  geometric 

spec ia l i za t ions  of the  frame i n  terms of the  Ricc i  r o t a t i o n  

coe f f i c i en t s .  I f  the  congruences of a r e  normal to non-null 

1 n 
hypersurfaces fCX , . . . ,X ) = const . ,  then X A # N, a r e  

A '  
n 

tangent to f = constant.  Choose coordinates i n  which f = X ; 

n 
then X A = 0 (A # N) and t he  metric  equqhiom y i e l d  0 = x~~ 

- (pm - (N not suumed) , from whence yNAB - ym, A,B # N. 



The congruences of a r e  geode;ics provided t h a t  hi h jN = 
Nl j  

p ~ i N  . In  i n v a r i a n t s  we have simply 6AN/lB6BN = @AN t C  which 

A 
y i e l d s  y NN = 0 ,  A # N,  N no t  summed. \ is along t h e  

t r a j e c t o r i e s  of a k i l l i n g  motion i n  ca se  6 g = 0 o r  
whN i j  

p i  1 ,  + p 1 1 = 0 f o r  some func t ion  p. In  i n v a r i a n t s ,  

The c r i t e r i a  f o r  t h e  congruences of XN i n  a Vn t o  be 
* 

shear-free o r  d ivergence less  w i l l  be needed fo r '  n u l l  congruences 

in a V4 and f o r  congruences of a V3. The r e s u l t s  i n  V4 a r e  

well-known, and w i l l  be c i t e d  a t  t he  appropr ia te  time. We o u t l i n e  

here  a d e r i v a t i o n  f o r  V3. 
- 

Le t  X 
(1) 

be tangent  t o  t he  congruences i n  ques t ion ,  and 

f onning along wi th  1 (2 and A f 3) 
an  orthonormal frame. F i x  a 

t r a j e c t o r y  T of  X . We could c h a r a c t e r i z e d t h e  behaviour o f  
(1) 

neighbouring t r a j e c t o r i e s  of X by a p a i r  of vec to r s  {tl,i2> 
(1) 

undergoing Lie-transport d o n g  t h e  t r a j e c t o r i e s :  - - 

1 

c. <* 
, EAl = 0, A = 1,2 . However, we f i n d  it more convenient t o  

4' 
use  a p a i r  of v e c t o r s  {EA} normal t o  t h e  t r a j e c t o r i e s ,  s i n c e  we 



can then describe t h e  behaviour of t h e  t r a j e c t o r i e s  i n  terms of 

f ami l i a r  transformations of the  plane spanned by (5 A ). The 

r e s u l t i n g  desc r ip t ion  . w i l l  be independent of t h e ' i n i t i a l  choice of 

{EA}. Thus, we  allow the  normals EA t o  " s l ide"  along the  

t r a j e c t o r i e s ,  t h a t  is  f. v 5 = 0 f o r  some function c~ 
v 

cP A(l) A . - A '  

Then we say t h a t  t h e  congruen.ces of X 
(1) 

a r e  shear-free,  

i f  a l l  it takes  i s  an expansion and r o t a t i o n  of X and X 
(2)  (3) 

i 

t o  br ing  them i n t o  coincidence with % and E 3  along T: 

bt 

where , p  and cp a r e  complex. A s  a consequence of t h i s  we g e t  

(Appendix D) 

Thus we may c a l l  $ t he  complex shear ,  and 1 1 t h e  shearing. 
"P 

It may be noted t h a t  1 $ 1  is  an invar i an t  property of the  

' r  t r a j e c t o r i e s  of and does not  depend on the  choice of X 
(1) (2) 

For the  next  case  we f i x  the  frame by requiriGg - 
'231 - 

0, i . e . ,  the vec'tors and X(3)  do not  " ro ta te"  along 



- - - - 

X 
- - 

(1281, p. 0 9  1 .  The congruences of 
*(1) . 

w i l l  be s a i d  t o  
(1) 

b'e d i l a t a t ion- f ree ,  i f  l ( 2 )  and l ( 3 )  
a r e  such t h a t ,  i n f i n i t e s i -  

mally, a shearing motion is  a l l  t h a t  i s  needed t o  achieve a cA : 

As  a c o n s G e n c e  of t h i s  we f ind  (Appendix D) 

Notice t h a t  t h i s  implies was normal t o  surfaces ,  s ince  

- 
'123 - '132 

. We c a l l  Y - 
123 '132 

the  t w i s t ,  and y the  complex 

"d i l a t a t ion .  The twist and complex d i l a t a t i o n  a r e  separa te ly  

independent of the  choice of frame. 

If 5 2 2  + Y133 
= 0, gut=-possibly y - 

123 Y 1 3 2 # 0 ,  the  
- -  -- ----- 

.~ 

congruences of be-divergenceless  . This term can 
(1) -- 

- - -- --- - - -- 

be j u s t i f i e d  by an area argument. A t  a give-n po in t  t C T, pick , .  

52 
'and c3 s o  t h a t  E 2 ( t )  = (t) , and S 3 ( t )  = ( t )  (on 

--a 
nearby poiIrfs;'~of course, t h i s  equa l i ty  does not  ho ld ) .  The r a t e  

1 
't 

evaluated a t  t ,  equals  t h e  r a t e  of change a long .  T of  E2  5 )  , 
- 

of change of t h e  ( a rea l2  of the  parallelogram spanned by 5 and 2 

E 3  (by an order of magnitudes argument).  ow 
B 



Thus y 
2 2  

122 + '133 
= 0 implies & ( E  5 ) = 0, s o  t h a t  . the  area  

(1) 2  3 

of t h m a r a l l e l o g r a m  spanned by E2  and E 3  i s  f ixed.  

F ina l ly ,  f o r  completbness we w i l l  wr i t e  down the  invar i an t  
- 

form of the  Gauss and Codacci equations ( [ 221 ,  2. 461, though we 
- * - - 

not need them. The formulation i n  i n v a r i a n t s  i s  p a r t i c u l a r l y  
- ---- . . 

-- 

appealing. If + is normal t o  the  hypersurfaces i n  quest ion,  

th& the  invar i an t  form of the  second fundamental form i s  j u s t  (and 

we may take  this a s  a  d e f i n i t i o n )  I 



Gauss' equation, which r e l a t e s  the curvature tensor of the V, t o  

v 
t ha t  of the hypersurface V n-l , i s  jus t  

and Codacci's equation is  

\ 

where A,B,C,D # N, !j r e f e r s  t o  frame-covariant d i f fe ren t ia t ion  

in the Vn-l , and the sign depends on the indicator of h: 

The treatment of dual i ty  in  invariant's i s  especially 

simple. We r e s t r i c t  ourselves i n  t h i s  dis&sion t o  ?our dimensions. 

The invariant components of t he  permutation tensor turn out t o  be 

just  the Levi-Civita permutation symbol: 

i j k e  
X X X X  = 

'ijk-! N M P Q 'NMPQ 

where qijkc = dlg 1 ei jkC . The dual of any bivector F is - AB 

defined a s  % 



Taking the  dual  twice a f f e c t s  a s  a f a c t o r  of - 1: 

With any such b ivector  we can form the  complex self-dual  combina- 

t i o n  [29] 

It is self-dual  i n  t h e  sense that  

Any Weyl tensor  W behaves a s  a b ivec to r  with 
NMPQ 

respect  t o  t h e  index p a i r s  NM and PQ, so we may form o duals:  /" 

r +- ? 

' An a l t e r n a t i v e  d e f i n i t i o n  i s  [41: gk = Fm - iF* 
AB 

With t h i s  one has, perhaps more na tu ra l ly ,  Ff =iym . 



. I@ may be shown t h a t  (by a ca lcula t ion  i n  I s r a e l  [ 41 ,  o r  by 
*a 

inspec t i o n )  
, 

F r o m  t h i s  it full8ws t h a t  t h e  two duals  a r e  equal: .' 

It  should be  noted t h a t  t h i s  i s  a consequence of the  "vacuum" con- 

d i t i o n s  s a t i s f i e d  by W. 

Petrofr [301 hap h t r o d u c e d  bivector  indices  a s  follows: 

Thus F -++ F where (NM) c+ a ,  and f o r  a Weyl tensor we have 
NM a '  

W ++ W - with W* - W b a .  For reasons which wil lbecome 
W S  ab ' 

. $  

apparent,  we r e s t r i c t  t h e  range of a , ,  . . . t o  1,2,3,  from 

now on. 
- - -  

Duali ty i n  t h i s  f o m l a t i o n  behaves as follows: 



The self-dual combinations i n  bivector space are,  

- rV CV 

and we have W* = - iW* . Working with these self-dual 
ab -.- 

combinations enables us t o  dispense ent i re ly  with the indices 4 ,  

5,  and 6. 

It may be noticed tha t  the bivectors form a six-dimensional 

vector space b6 o+er the ~ a l s ,  and the self-dual bivectors a 
. . f ' 

three-dimensional complex vector space, which we denote by . If  b3 

{X X h X ) is  an orthonormal te t rad with X 4  timelike (the 
1' 2 '  3' 4 

signature + 2f ,  a baiis, fo r  the space b6 i s  defined by the choice 
. * 

We have' el* = e4 , eZ* = e5 ,, and e3* f es ,  so the following 



. I 
5 combinations are self-dual: 

and they form a basis for the space 'b3; An inner produck on 

bivectors is defined by W = uakag . Using this one finds the 
.. . 

orthonormality relations = - 6* . It follows that any 

proper orthochronous Lorentz transformation in M corresponds to 

an SO(3,C) transformation in b3, Indeed, we have the isomorphism 

L+ 2 SO(3,C) (Israel [ 4 ]  , for example) . 
t B 

Petrov has based a classification of Einstein spaces in 

V4 on the algebraic properties of the Riemann tensor. In vacuum 
- 

Space;times %CD = 'ABCD 
which'is a Weyl tensor, so we may use 

C 
Y 

all the machinery above. Petrov's classification may then be %a 

carried out on the self-dual Riemann tensor xab . According to 
%. 

his result (translated into our terms) transformations from SO(3,C) 

rU 

suffice to put the matrix R* into one of the following three 

forms (Petrov [3Ol, p. 110): 

i; 



I . . 
(2 .15) where a + a + a = 0 

1 2 3 

.- : 
? 

Further classification is based upon the various possible . 

specializations of the complex quantities a, al, etc. (for details 

see [ 51 ) .  In particular we single out the types 



* 
and reserve the sy;nbols I, I1 for the nondegenerate cases. 

N 

We could expand R& in  our basis of self-dual bivectors 

" r r N N  
. (elf  e2,e3). However it i s  more convenient go use a modified basis 

N N - 2  - 2  
eo and e i  are  &: e = e *  --- 0.  They thus correspond in the 

0 0 

rea l  bivector space t o  nul l  vectors ( [ 4 ] ,  p. 3 9 j .  Indeed, w e  find 

( X ( l ) a  + $seap = 0 so tha t  1 + X i s  tangent t o  the 
(1) (4) 

N 

null  direction defined by e 
0 -  

For brepity we may sometimes 
4 

P J  

write U = r O  , V = e g .  M = %  . Makingf, s l ight  variations in the 
1. 

7 

a$ (i) are scalars? i = 1, . . . ,5. where Va = % Vap , etc . ,  and R .  
P 



.The s c a l a r s  R (i)  a r e  r e a d i l y  computed: 
'i" 

hr 

A b a s i s  , . . , i n  which the  matrix Rab takes 
* 

one of the  forms (2.15) -(2;16) i s  ca l l ed  a p r i n c i p a l  t e t r a d .  I f  a 

(1) a b  b a s i s  is  chosen i n  which R = 0, t h a t  is  i n  which R*U U = 0 ,  

the  n u l l  d i r e c t i o n  defined by U is  ca l l ed  a p r i n c i p a l  n u l l  

d i r ec t ion .  There i s  a t  l e a s t  one and a t  most four such f i e l d s b f  

d i r e c t i o n s .  [ 3 l l .  

An a l t e r n a t i v e  charac ter iza t ion  of the  Petrov c l a s s i f i c a -  
1 

t i o n  may b- by the  various poss ib le  coincidences of these  

p r i n c i p a l  n u l l  d i r e c t i o n s  [321: 



type description of principal symbol 

nul l  directions 

I four d is t inc t  

D two repeated 

0 indeterminate 

I I one repeated, t w b  single 

& 

bl one repeated [41 

111 one repeated, one s ing19 1311 

i Finally, we may remark that  the bivector space also 

admits of a convenient formulation in fiber bundles. In th i s  
* 

formulation certain connecting quantit ies BbaB defined by Petrov 
-4- 

([30], p.  g o ) ,  play a role  analogous t o  tha t  of the 
oi al; i n  the ' 

spinor calculus (see Chapter 4 ) .  



. I L 

3 Sta t ionary  spaces and de r iva t ion  of  the  f i e l d  equations. 

We now t u n  to  station,& space-times which s a t i s f y  t h e  
L 

, - 
vacuum f i e l d  equations. To be  prec ise ,  a space-time i s  a p a i r  

(M,*) where M is t h e  manifold and @ is a M r e n t z  metr ic  on , 

M. "The associa ted  ~ iemanni& connection is assumed t o  s a t i s f y  the  - * 

lr 

f i e l d  equations = 0. F ina l ly ,  the  space-time i s  s t a t i o n a r y  

means the re  e x i s t s  a one-parameter gqoup,of motions on M which 
0 

l eaves  @ i n v a r i a n t ,  h o s e  t r a j e c t o r i e s  are- t imel ike  curves, and 
\ 

which has no f ixed  points .  We could be much.mre a b s t r a c t  and 

I 
reformulate everything i n  f i b e r  bundle language, bu t  such g e n e i a l i t k  

a 

a t  t h i s  s t age  would be beside the  'point. It might be appropr ia te  

i n  the  s tudy of global  topologica l  quest ions,  bu t  we,are concerned 

only w i t h  t h e  l o c a l  geometry, where the  t polcqy i s  q u i t e  t r i v i a l .  b 
In  any system of coordinates adapted t o  t h e  m t i o n ,  t h a t  

i i i s  in which the  k i l l i n g  vector  f i e l d  E has components 5 = 64 , L 
b 

say, we may w r i t e  the  metr ic  form a s  
-2 

where-- i t  j = 1, . . . ,4; a , $  = 1.2.3; gap, a,, and o a r e  func- 

1 2 3  4 t l o n s  of X ,X ,X ; and we have wr i t t en  t = X . We have chosen 

0 -e a s  the  c o e f f i c i e n t  of d t 2  because of the'  t imelikeness of 

the  t r a j e c t o r i e s  and because t h e  k i l l i n g  vector  f i e l d  Is everywhere 

L .. 



.t 

nonzero. ' A  decomposition of i n t o  squares  shows t h a t  i n  ord r A 
f o r  a s i g n a t w e  of  + 2 t o  o b t a i n  w e  must have t h e  me t r i c  form 

p o s i t i v e  d e f i n i t e  ( [ 3 1 ,  p. 111). I t  d e f i n e s  a Riemannian V3 

which we c a l l  t h e  a s soc i a t ed  V3 . It is  a l s o  known as t h e  space-- 
< 

quot ien t ;  and i f  we were be ing  a b s t r a c t  we would i d e n t i f y  it a s  

t h e  base-space of t h e  p r i n c i p a l  f i b e r  bundle M ( v 3  ,R)'. 

We s t i l l  have t h e  fol lowing freedom i n  t h e  choice  of 
> 

fl 

coordina tes  : 
I 

i A i i i 
Under such a  transform&-- 2- =1_ = 6 , so t h e  coord ina tes  

4 

remain adapted- to  t he  motion. 

In  t h e  fol lowing,  indices '  i , j , k . . . and N , M , P ,  . . . 
w i l l  t ake  t h e  range 1 ,2 ,3 ,4 ;  while  a , @ , y ,  . . . and A,B,C,  . . . 
w i l l  t ake  1 ,2 ,3 .  

and A ( 4 ' 4  = eai2. I f  AA is  an orthonormal frame wi th  r e spec t  

t o  t h e  me t r i c  of t h e  a s soc i a t ed  V3 , i.e'., 



--.. then  d e f i n e  forms dA i n  M by t h e i r  components 
i \ -. 

A -w/2 A A 
A, = e  Xa ? A 4  1 0 .  

We may then w r i t e  

N s  i 
matr ix i nve r se  t o  (Ai 1, which w e  denote by (AN ) expresses  

components of t h e  vector frame d u & t g  -{A:]-; it takes  t h e  form 
- 

-- - 

t 
- - - - - 

The 

t h e  



The frame {AN) • ’ o m s  an orthonormal frame, s i n c e  we have t h e  

i . e . ,  w e  have @(AN,AM) = qNM = d i a g { l , l , l , - 1 ) .  

E x p l i c i t l y ,  

A 

- I i 4 2  i 
- * ( 4 )  

= e 64 
- ,  

- 

i 0/2 i e0/2a i A, = e 
4 

I A  - A 4 (where XA = 0). 

\ 
re 

Note t h a t  A 
(4) 

i s  thus .eodi rec t iona1  wi th  the k i l l i n g  motion, , a s  

might have been expected. 

N In  t h e  fol lowing,  except  f o r  t he  p l aces  wheref4A , 
/- 

e x p l i c i t l y  occur ,  we w i l l  hold t o  t h e  convention t h a t  a l l  t enso r s  

o r  connection c o e f f i c i e n t s  whose components a r e  taken on,the frame 
- -- ~ - - - -- -- 

$ be proceeded ~~bya--sty+erscriptt (4)  ; a l l  o t h e r  q u a n t i t i e s  s h a l l  
- - - - -  ~ - ~ -  ----- 

- have compqnents taken on t h e  frame XA . Thus ( 4 ) - ~ - -  - - -  

W 
'B 

connection one-forms i n  space-time f o r  t he  frame {AA,A4} which 

- A 
may be expanded i n  t h a t  b a s i s  a s  , (4)oA - (4 )  A AN; whi le  rn 

' B BN B 
q-- 

are t he  corresponding quantities i n  
A 

V3 , with  = $  k c a  ' I3c 
- 

1 2 3  
Moreover i f  f = f l X  , X  , X  ) i s  any func t ion  (inde&;dent of t ime) 



\ ' 
fd<-+ t 

then ''df = f ,a d& = e0l2f dA "here by the above convention 
\ ,A 
a 

f , ~  = .+a . Similar remarks hold for higher-order tensors. We 

define f\p = a a , ~  - ap,a ' 
.Po find the relationship between (4IwN and w A , we 

'M' B 

compute the exterior derivatives of the basic one-forms: 

The first equations of structure (2.la) for the V4 may 

be written 



"hese equations give the  r e l a t i o n s h i p  between the  ~ i c c i  r o t a t i o n  

coe f f i c i en t s  of the  V and V4 . We record hare,  f o r  f u t u r e  
3 

reference,  t h e  e x p l i c i t  formulae. Let A, B, C # . Then 

where - 

/ 

For the  sSke of convenience we have included, i n  the  l a s t  e q u a l i t i e s  

of (3.6d) and (3 .6e) ,  equivalent  expressions which a r e  a consequence 

of the  f i e l d  equations. Note how the  equations ( 3 . 6 ~ )  and (3.6e) 

r e a l i z e  the  c r i t e r i a  f o r  A 
(4) 

t o  be i n  the  d i r e c t i o n  of a  k i l l i n g  

motion (2.9). , 

Towards the computation of (4) RN 
MpQ 

from the  second 

equations of s t r u c t u r e ,  we have the  following: 



1 - B A C  + - m i  2 N N C A  ~ B ] A * * A ~  



From these  we read o f f ,  

(4)  RA 
BCD = e ~ n : ~  + 2eJ2 [(eaI2) 1 1 ~  [C 6B D l  - (,J2) /IB[c 6A Dl 1 

(3.9) and (3.10) come, respect ive ly ,  from (3.6) and (3.71, Equations 

but  a r e  cons i s t en t .  A t  t h i s  point  it is worthwhile t o  note the  

saving i n  wr i t ing  of t h e  right-hand s ides  which we have achieved by 

going t o  the  invar i an t  formulation. Compared with the  formulae 

(2.3-2.6) & Kloster ,  Som, and Das [351, we s e e  t h a t  our (3.8) 

p e r f o m s  the  function of both (2.3) and (2.4) ; and i n  the  r e s t  of 

t h e  formulae the number of terms a r e  more than halved. - 
-- The f i e l d  equations,  (4 )  = 0 a r e  now a simple matter 

/ 

t o  G i t e  down. From ( 3 . 8 ) ,  y ie lds  
- -- 



f o r  which t h e  c m r d i n a t e  ve r s ion  i s  

?, 

F ~ G "  (3 .9)  , ( 4 ) R 4 B  = 0 y i e l d s  
- 

1 2 0  BC 2w 
Suppose w e  w r i t e  +A - - - 2 &me f  , o r  simply 4A = e fgC , where 

= + 1; then t h i s  becomes - 'ABC + C I / D  IIC = 0 for C,D = 1,2,3; 

t h e s e  a r e  t h e ' c o n d i t i o n s  of i n t e g r a b i l i t y  f o r  t h e  equat ions  - - 
+,c 

+C . &us t h e  t w i s t  p o t e n t i a l  4 i s  defined by 

which, i n  coord ina tes ,  becomes 



~t t h i s  p&nt ,we note t h a t  the  c y c l i c  iden t i t i e s .  (4 )  R4 
, -2, 

. [BAC] -= O 

applied t o  (3.9) y ie ld  
f [ABI/C1 = 0. 

This may be rewr i t t en  i n  

terms of the  p o t e n t i a l  4 a s  

Final ly ,  combining the  vacuum conditioks from (3.8) and (3.11) and 

1 
denoting GgC = sC - 7 R6BC , we have the  two equivalent  s e t s  of 

equations 
4 .  

1 - - It may be shown t h a t  t h e  i d e n t i t i e s  
(RBC) 1 i B  - when applied 

\ 

' t o  (3.17), y i e ld  the  previously obtained f i e l d  equations,  t h a t  i s  

t o  say (3.121, (3.131, (3.15): Hence equations (3.17) a r e  

s u f f i c i e n t  f i e l d  equations f o r  the  s t a t ionary  vacuum; the  problem 
. . 

- has been reduced t o  f inding pos i t ive  d e f i n i t e  V 's s a t i s f y i n g  * 
3 

Pram t h e  '%tructure equations f o r  V3 , we w r i t e  down the  

complete s e t  of f i r s t - o r d e r  equations: l e t t i n g  A,B,C #, A , B  not  



% 

' *  
S 

For  c o n v e n i e k e  we a l s o  u s e  t h e  " p o t e n t i a l  e q u a t i o n s "  (3.12) and . 

C C 
(b) Q , ~ ~  ++, ,rDD - 20+,= 0 .  

t 2 

F i n a l l y ,  we w i l l  f i n d  it conven ien t  t o  use t h e  Riemann 

t e n s o r  of t h e  V4 expressed  i n  t e r m s  o f  t h e  t w i s t  p o t e n t i a l  4 .  
-. 

A s e p a r a t e  c o n s i d e r a t i o n  o f  subcases  i s  needed: - l e t  (ABC) # i n  

the A t  B,  C n o t  summed. ' 6 



d 
(B not summed). 

The symmetries of the Vacuum Riemanh tensor demand tha t  the following 

ident i t ies  be sa t i s f ied :  (4 )  
%BAB = - 

(4)  
Rc4c4 

a glance t e l l s  us tha t  these are ,  indeed, sa t i s f ied  by (3.21). 



4. Spinors and complexification of the f ie ld '  equations. 

The spinors a r i se  i n  the theory of r e l a t iv i ty  because the 
/ 

/-- 

group Sl(2,C) is  a double-yalued representation of the proper, 
-I 

isochronous Lorentz group L++. TO be precise, considering S l (2  ,c) 

(or more exactly something isomorphic t o  it) as a subgroup of 

+ 
G1(4,R), it is the universal covering space of L + . To take 

advantage of this fac t  one can introduce, local ly  a t  l eas t ,  a spinor 

C3 structure on the space-time M (Geroch (81 and 191; Lichnerowicz 

' . [ 7 1 ) .  This can be introduced i n  two ways. In bothwe assume M 

is time- and space-oriented, and the bases concerned are  likewise 

p \ 

oriented . 
/ 

For the fi'rst approach, reca l l  t ha t ,  given a principal 

B 
f iber  bundle P(M,G), i f  H is a maximal compact subgroup of G 

then G may be reduced to  H. *ere, Sl(2 ,C) is  not compact; it 

turns out tha t  the reduction of G 1 ( 4 , R ) ,  the s t ruc tura l  group of 

the bundle;bases, t o  Sl(2,C) is  only possible under certain con- 
7 .  

dit ions on M. These condities are  mentioned i n  connection with 

the second approach. If  such a reduction is possible, we may 

identify the reduced principal f ibe r  bundle S(M) a s  the spinor - 

structure.  This approach, in  i t s  abstractness, may be said to  

s l ight  the representational advantages of spinors. 

The second approach was tha t  actually used by Geroch; he 

s tar ted from OT (M) and went "up" t o  S (B : The s i tuat ion is - 



F 

i' 

s l i g h t l y  d i f f e r e n t  i n  t h a t  OT(M) cannot be obta ined  from 
5k 

by a reduct ion  of t h e  group, s t r i c t l y  speaking. Now t h e  , 

def in i t ion : -  A sp ino r  s t r u c t u r e  on M i& a p r i n c i p a l  f i b e r  bundle 

S CM , S 1 ( 2 , ~ )  ) o r  S (MI with  group S l ( 2  ,C) ove; MI a long wi th  

a 2-1 mapping a: S (MI -t OT (MI , such t h a t  

( I F 0  'maps each f i b e r  o f  S(M) on to  a s i n g l e  f i b e r  

- (ii) o c o m t e s  wi th  t h e  group opera t ions :  f o r  
L 

U C S1(2,C),  a 0 U = A ( U )  o a where A:S1(2,C) -t 

L++ is t h e  covering mapping of t h e  r e s t r i c t  ? 

Lorentz group. 

4 - -1 
A sp ino r  a t  m € M is? a mapping from TT (m) (where n:S(M) -t M 

i s  the n a t u r a l  p r o j e c t i o n )  i n t o  a r r a y s  of c&lex numbers. 

p: : : ? a .  ' 
D.. . such if Y,Y C n-' (m) a r e  r e l a t e d  by 4LB C Sl (2 . c )  , 

then - 
One can now d e f i n e  a sp ino r  f i e l d  to be a cW p iec ing  together ,  of 

c 

t h e s e  sp ino r s ;  a l t e r n a t i v e l y  it i s  a s e c t i o n  of  some a s soc i a t ed  ~ 

/ . I  

tensor, bundle t o  S . I f  O T ( M )  has a semi-~ieniannian connection - 
- 

then  S(M) may be de f ined  s o  t h e  induced connect ion o*oij i s  

semi-Riemannian. Geroch [91 has shown t h a t  M admits  a sp inor  



I 

1 c s t r u c t u r e  i f f  M i s  p a r a l l e l i z a b l e .  We w i l l  never  have t o  worry 
. - 

about t h i s  because,  i n  so lv ing  t h e  f i e l d  e q w t i o n s ,  w e  always work 

on a  p a r a l l e l i z a b l e  s u b a n i f o l d  of M. 

7" 
i Notice tht o i s  a bundle map, b u t  n o t  q u i t e  a  r e d u c t i o n k  

I - 
of t h e  s t r u c t u r a l  g2oup, s i n c e  it f a i l s  t o  b e  one-to-one. I n ' t h e  

f 

n o t a t i o n  o f  C h a p t e r  1, our buhdle map 
, 

is  given by 

fM = i d e n t i t y  

fG = A ,  t ke  covering map of S l ( 2 , C )  -+ ri+ . C + '  
, I .  

I 

t he  fol lowing cond i t i ons  being s a t i s f i e d :  

O O R  = R  P CT f o r  U € S l f 2 , W .  
u A m )  

., We can ob ta in  a  more concre te  r ep re sen ta t ion  of o. F i x  



a sec t ion  { ( m ; l , 2  S ( 1  f o r  some open s e t  .u 2 M, and l e t  .. 
5' a 

t h e  image under u of t h i s  s e c t i o n  be { (rn; h (i) , . . 1 1 

oT ( U )  . We denote t hese  s e c t i o n s  by (Ca) and , 

r e spec t ive ly .  Then t h e  a c t i o n  of a on any o t h e r  sec;tiop - over  

* 

Upon conver t ing  t h i s  i n t o  numerical r e l a t i o n s  between t h e  

components of 4 ' and = ( 1  r e l a t i v e  to t h e  bases  
J 

(ga) and (h) , r e s p e c t i v e l y ,  we ob ta in  t h e  well-known - 
connecting q u a n t i t i e s  of Van de r  Waerden (Bade and J e h l e  [ 3 3 ] ) .  

-. 

I n  l i e u  of a  proof ,  we only  c i t e  t h e  well-known correspondence 

+ 
between L + and S l (2 ,C)  using these  connect ing q u a n t i t i e s  [33]: 

Eere,  iKH C L++ r ep re sen t s  t h e  components of o (zav )  r e l a t i v e  t o  

V ( J . ~ )  '++aim uaC F Sl(2 ,C)  g ives  t h e  components af (Ca r e l a t i v e  

t o  Ka) . This  provides u s  i p s0  f a c t o  wi th  a  mawing o wi th  a l l  

m e  r i g h t  p r o p e r t i e s .  The c; 
H 

a r e  fou r  cons tan t  + m i t i a n  

mat r ices  f o r  H = 1,2,3,4. We may note  t h a t  t hese  a r e  t h e  analogues 

i n  " inva r i an t s "  of t he  rri ' of Newman and Penrose [I31 , not A?' , 



t h e i r  

- We do not  need the  f u l l  spinor s t r u c t u r e  i n  our ana lys i s  

of s t a t i o n a r y  space-times. The s t a t i o n a r i t y  condit ion picks out  a 

t imel ike  k i l l i n g  vector  f i e l d ,  which i f  we rega rd  as  f ixed  induces - 
a contrac t ion  of the  usual  Lerentn &;up t o  the  r o t a t i o n  group of 

3 
R . In the  sp in  space t h i s  corresponds t o  a c m t r a c t i o n  S l ( 2 , ~ )  + , 

SU(21, the,,group of unimodular', un i t a ry  2 x 2 complex matrices 

1331. I n  order  t o  p a r a l l e l  the  work of Chap te ruv  i n  s p i n o r i a l  

terms w e  would have t o  invent  a bundle map from S ( M , S ~ ( ~ , C ) )  

v t o  a new bundle S (V3,SU(2) ) with s t r u c t u r e  g roupfsu(2 )  and 

base space t h e  associa ted  V3 , paying due a t t e n t i o n  t o  the  

respect ive  connections. This i s  e s s e n t i a l l y  what Pe r j e s  (141 has 

done, although a more e legant  formulation than h i s  could perhaps'be 

provided by t h e  spinor  forms of Bichteler  [341.  

Hovever, w e  have already done the  work i n  re&f terms; a l l  

t h a t  i s  necessary is t o  def ine  a new spinor s t r u c t u r e  on the  v3 

in a way analogous to  ' t ha t  f o r  the  V4 . That i s ,  we work "up" 

from 0T(V3) ( the  bundle of or iented  orthonormal t r i a d s )  t o  

V S (V3,SU(2) 1 .  NOW t h e  group S U Y ~ )  i s  the  simply connected covering 

group of SO (3, R) ; we have 

V so t h e  mapping c : S  (V3)  -+ 0'P(V3) which def ines  t h e  spinor s t r u c t u r e  



will again be a 2-1 mapping. Proceeding in a way analogous to 
Y- 

the &dye, we arrive at connecting quantities aH * satisfy& .d 

H c * are the Pauli where QK € SO(3,R) and Va C SU(2). aH - 
P 

- d 
matrices. Since V C SU (2) must be unitary, Vc = Vd and by - 

defining a new set of a's we can rewrite the above equation in 

the form 

where oH* are certain symmetric connecting quantities first 

defined in their coordinste form by Perjes [141. However, we will 

stick with the previous formulation in terms of Pauli matrices. 

Now the whole complex vectorial formalism follows 

naturally. First of all a may also be considered as a mapping 

from hemitian spinors into vectors (linear, in this case) . We may 

identify the preimage of a in this interpretation with complex 
- -~ - -  

combinations of vectors by fhe recipe 



Having placed the complex methods which we will use in 

the larger context of the spinor calculus, and having shown their 

essential simplicity, we now proceed with. the "complexification" 

of the field equations. 

We choose the frame - -- 

Complex Ricci rotation coefficients may be defined in the obvious 

way. We denote them as follows: 
,- 



-- 

Here, a, , and y have the same meaning as in Chapter 2 when 

. written in terms of y ' s .  
ABC 

We may employ the frame-covariance of hD to 
complexify the right-hand sides of equations (3.18); for example, 

For the left-hand sides we use the complex version of fhe defini- 

tion o•’-the Riemann tensor, -. 

where 

which may also be obtained from abstract spinorial considerations. 

The commutation relations 12.8) for invariant differentia- 

tion, in the complex version, are 



where 

1 
Defining F = $eO + i 4 )  ( d i f f e r i n g  by a  f a c t o r  of 1/2 

from Kloster ,  Som and Das [ 3 5 1 )  the  r e s u l t  is  P 



The first three equations (intentionally grouped) it may 

be noticed, invol-ve derivatives of a, p ,  and y only, on the 

left. This is related to the fact that these 'quantities are of 

, geometric significance for the congruences of l(l).p We recall 
- 

that I a1 = first curvature, I $  I = shearing, and y = dilatation 

of the congruences of l(l). The question arises as to whether the 

equations (4 )  and ( 5 )  are of similar import for the "congruences" 

*(0) 
in an appropriately generalized sense. 

We may mention that we need not stop at the level of the 

orthonormal frame in our complexification. We can introduce com- 

plex variables, in which the%wariant derivatives take the f o m  

, . 
I '  

3 

In order to investigate general questions in the 

classification of stationary space-time, we construct the complex 

self-dual combinations of the Riemann Tensor. They are, very simply, 





5. Consequences of the f i e ld  equations. . 

/ 

In t h i s  chapter we list scene simple observations and ,,A" , 

techniques dealing with the bare eq6ations derived i n  the previous 

sections, which w i l l  allow us t o  classify the example of the next 

chapter with a minimum of complications. 

In general we are particularly interested i n  spaces of 

nondegenerate algebra& types I, I1 and 111; type I for  physical 
t 

reasons, because it i s  the most. general type of vacuum spae=-time, 

and a l l  three types because they determine their principal te t rads 

uniquely, We may use t h i s  l a t t e r  property t o  develop an invariant 

approach t o  asymptotic f la tness  and the presence of other motions. 

We can go about t h i s  in  two ways. - 
The mos t  obvious route is  t o  transform to  the principal 

tetrad. Tpe corresponding FtLcci rotation coefficients then supply 

us with an abundance of invariant functipns. These must a l l  go t o  

zero a t  i n f in i ty  i n  order for  the space to be asymptotically f l a t .  

A mre convenient, necessary condition for  space-times outside the ' 

1 2 PcE. class  i s  t o  use coordinates w = X , 4 = X ; i . e . ,  the 
4 

gravitational potential  and twist  p t e n t i a l ,  and an appropriate . 
3 

invariant for  X ; then a l l . invar ian ts  and the i r  derivatives must 
. - 

vanish a t  $he origin for  asymptotic flatness to  obtain. (The con- 

di t ion i s  only necessary because the space may instead become f l a t  

a t  some f i n i t e  point.) For Petrov types I1 and I11 it may be more 
\ 



appropriat 'f for the invariants t o  approach the values for  the 

corresponding spaces of maximum mobility (Petrov [301). Any group 

of motions must manifest i t s e l f  as the invariance group for  t h i s  

s e t  of functidns, making i ts  determination easier  than would be 

the c& with the classical  theorem [30]. 

The second route, which has a chance of giving a complete 

answer only for spaces of type I, i s  t o  investigate the orthogonal 
Y 

TV 

invariants of the matrix of the self-dual Riemann tensor Rab. 

These a re  defined as:-follows: denoting 

+ 

they w i l l  be invariant under changes of basis defined by transformad 

t-ens in  SO ( 3 , C )  , which of course suffice t o  bring US- t o  the 

principal tetrad. In vacuum space-time I- = 0 always, so bnly 
R 

Ilk and I IL  rernain; four real  functions i n  the most general 
R R 

cases. In spaces of type 0, N,  and 111, a l l  the invariants 

vanish; in  spaces of type I1 and D ,  there eke two rea l  functions, 

and i n  type I ,  four. These easily obtained invariants can yield 1 

important necessary conditions for  asymptotic f la tness  and the 



existence of motions. It M y  be noted t h a t  they a r e  a lgebra ica l ly  

r e l a t ed  t o  t h e  w e l l - k n w  second-order inva r i an t s  formed f r m  the  
I 

,metr ic  tensor and curvature tensor 1111, of which a r e  a t  most four  

i n  empty space-time. 

P It w i l l  b  noticed t h a t  these  orthogonal inva r i an t s  .i 

8 enable US t o  d i s . i n g u i s h  between spaces of type D and 111, 

which have the  Lame number of p r inc ipa l  n u l l  d i r ec t ions .  The 

a lgebra ic  c l a s s i f i c a t i o n  can then be completed by f ind ing  t h e  t o t a l  

number of  p r i n c i p a l  n u l l  d i r e c t i o n s  defined by the  

most e a s i l y  done a s  follows. Beginning from a t e t r a d  

{A (1) 
, . . . ,A } adapted t o  the  t imel ike  k i l l i n g  vec to r  f i e l d ,  

(4) 

with 1 
(4)  

tangent  t o  t h e  t r a j e c t o r i e s ,  w e  d e f i n e 4  C e n u l l  t e t r a d  

The "null  r o t a t i o n n  of Sachs [311, defined by 

fo r  a complex, maps n u l l  t e t r a d s  i n t o  n u l l  e t r ads .  By applying 2 



such n u l l  r o t a t i o n s  we can map k , i n t o  a  p r i n c i p a l  n u l l  d i r e c t i o n  
k -  

L. A 
.. 

k. The condit ion f o r  k  t o  be a  p r inc ipa l  n u l l  d i r e c t i o n  is  t h a t  
-- 

A - ^ a A b  ( )  = 0 ;  i. e. , RabeO eg- = 0, which t r a n s l a t e s  i n t o  a  q u a r t i c  

equation f o r  t h e  complex parameter a: 
*9 

The number of rwts of t h i s  equation is equal t o  the  number of 
P-h ' 

- " pr inc ipa l  n u l l  d i r e c t i o n s .  This equation a l s o  o f f e r s  a  method f o r  

Q the  cons t ruct ion  of the  p r i n c i p a l  n u l l  d i r e c t i o n s ,  by t h e  speci f ica-  - - 
. ~ 

'.tion (5.2) . 
, 

Another way of c l a s s i fy ing  s t a t ionary  spaces is  by t h e  

geometry of the  associa ted  . ThereJ is an inherent  d i f f i c u l t y  
4, -.- 

in t h i s  type of c l a s s i f i c a t i o n , ' - ~  t h a t  i f  t h e r e  i s  more than one 

k i l l i n g  vector  f i e l d  the re  a r e  i n  f a c t  an i n f i n i t e  number, with 

d i f f e r e n t  associated v j r s .  This d i f f i c u l t y  a s ide ,  we f i n d  it 

useful  t o  d i s t i n g u i s h  t q e  s p e c i a l  congruences of curves i n  the  

associa ted  V3: The l i n e s  of fo rce  a re  t h e  normals t o  t h e  --- 
equipotent ia l  surfaces  w = constant;  the  l i n e s  of t w i s t  are the  --- 
normals t o  surfaces  of constant  t w i s t  p o t e n t i a l ,  4 = constant;  

and the  eigenrays, f i r s t  s tudied  by Per jes  1141, are defined a s  the  

- t r a j e c t o r i e s  of i n  an orthonormal t r i a d  %I + 2 )  J ( 3 )  - 
{ A l  A 1 s a t i s f y i n g  



\ or,  equivalently, 

TO every curve in  V3 may be associated a nul l  c w e  of 

V4 by the mapping of uni t  tangents . + l(&) + %4) where 
~r 

A (4) 
is along the timelike k i l l ing  vector f i e ld .  I t  thus beaomes 

of sicjnificance for  the algebraic classif icat ion t o  exp the 

A T  geometric properties of nul l  t ra jector ies  ( i n  W4) i n  terms of the 

properties of corresponding curves of 
V3. 

To t h i s  end we may use 

the formulae (3.6) for the Ricci rotation coefficients of V j  ahl, 

V4. Let { k , t , t )  be a nul l  t r i a d  as above, and { h  J(2) 4 3 )  

an orthonormal t r i ad  i n  V3 codirec,tional with A 
(1) (2) (3) . 

r 
Then, referring t o  I s rae l  [ d l ,  the null  curves with tangent ka 

are : 

(5.5) geodesics i f f  = k takp = 0 
alp 

N 

shear-free i f f  $ = ka = 0 
,. 

4 
complex4ilat?tion-free i f f  7 = kal  B p t p  = 0 . .-' 



r 
- 
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1 

If the  n u l l  curves a r e  geodesics, the  r e a l  and imaginary p a r t s  of 

N 

y have t h e  s i p i f i c a f i c e  of  divergence and t w i s t ,  j u s i  a s  i s  the  
* %,& 

case f p r  y i n  Vj. Thus i f  is r e a l  f o r  geodesic n u l l  curves, 
I *  b 

the  curves are normal t o  ~ l e h c e  tangent t o )  n u l l  hypersurfaces .[3;]. 
3, 

We f ind:  < 

W e  take  note of a  number of r e l a t i o n s h i p s : '  

(a) 
+ A - is  shear-free i f f  X 

(4)  (1) 
i s  i n  the  V3. 

is  geodesic i f f  A 
(1) 

is. 
? 

(c) I f  the  eigenrays a r e  geo$esic and shear-free,  the  .L 
', 

space i s  a lgebra ica l ly  specia l .  

8' 
(dl By a fo r tuna te  choice of terminolcgy, the  amount of 

twis t ing  i n  A P 

(1) - ?  

d i rec t ion ,  i n  t h e  sense of 

'. aXa (11 
, suppl ies  the  d i s p a r i t y  between the  " twis t"  

- 
Similar ly  the  g rav i t a t iona l  p o t e n t i a l  w i s  r e l a t e d  



t o  t h e  respec€ive divergences.  

a 

Property (d) may admit of a convenient phys i ca l  i n t e r p r e t a t i o n  i n  

terms of s t a t i o n a q  observers  and s i g n a l s  t r a v e l l i n g  wi th  the  

fundamental v e l c c i t y .  

The e igenrays  haxe an even c lose r  r e l a t i o n s h i p  t o  t h e  
3 

p r i n c i p a l  n u l l  d i r e c t i o n s .  - W e  have ind ica t ed  t h a t  t h e  congruences 
# 

Of %, + A 
(4 )  

a r e  along% p r i n c i p a l  n u l l  d i r e c t i o n  i f f  = 0 ,  0 0 

t h a t  i s  j f f  

I f  X i s  chosen along t h e  eigenrays,  and t h e  e igenrays  a r e  
(11 A 

shear-free,  this equat ion i s  i d e n t i c a l l y  s a t i s i f i e d .  Thus shear- 

f r e e  eigenrays correspond t o  p r i n c i p a l  n u l l  d i r e c t i o n s .  

I t  may be noted t h a t  i n  t he  s t a t i c  and Papapetrou-Ehlers 

c l a s s  (o and 3 func t iona l ly ,  rp- lated)  spaces ,  t h e  eigenrays 
-- 

coincide with t h e  Lines of fo rce .  Also, one cou ld .de f ine  a s i m i l a r  

L 
s e t  of "eigenrays" f o r  s t a t i c  e l ec t rovac ,  arid g e n e r a l i z a t i o n s  i n  

% i 

t h e  s t a t i o n a r y  Einstein-Maxdel l  f i e l d s .  I t  would be i n t e r e s t i n g  t o ,  * . , 

see  the  comes-ponding geoutetrical r e l a t i o n s h i p s  i n  t h e s e  cases .  



6 Case of the eigenvalues of the Ricci subtensor equal. 
r 

The class of stationary g r a ~ i ~ t a t i a n a l  universes which we 

deal with in  this chapter can be'solved up t o  a,pair  of s'imple 
6 

par t i a l  different ial  equations, which hold out the promise of - 
. . " - 

further analysis. -The problem i s  a "natural" one, i n  view of the 

significant of ~ t h e r  specializations of the Ricci subtensor: The 9 ' \ ( .  
case of only one nonzero e igedalue  corresponds e i ther  to  the s t a t i c  

space-time, with vanishing twist  potential; or Papapetrou-Ehlers 
--- I 

clask, in which the l ines  of t w i s t  coincide with the l ines  of - force. 

The i ik ld  equations i p  invariaht' form are 

The determinental equation i s  (Ericksen [ 3 6 ] )  

0 = det (MAB - %B) = x3 + I ( -  R * ) X ~  + TI(- R*)X + III(- 

where I ,  11, I11 denote the.orthogona1 invariants defined in  

Chapter 6.  AS roo-ts w e  find 
a, - 

L - 4 



Thus X = X i f f  A F = 0 iff A2F = 0 ,  t h e  l a t t e r  a  r e s u l t  of the  
2 3 1 

p o t e n t i a l  equation ( 4 . 9 ) .  This r e s u l t s  i n  

Hence the  l i n e s  of twist a r e  normal t o  the  l i n e s  of force .  
s 

Choose T-(21 along the l i n e s  of fo rce  and 
X(3)  

along 

the  lines of t w i s t .  Then it follows from (6.1) t h a t  

3 

Choose the  o r i en ta t ion  s o  that .Saw - - - , ( 2 )  
Q , ( 3 )  . Since 

W e w  - - 
(3 1 

automatical ly,  it follows t h a t  
.+, ( 2 )  

i 

F = 0 where do = 1 / 7 2  A ( )  + i h  1 
1 ( 0 )  (3 

so  X 
(1) 

i s  along the  eigi$nrays. We have, as we l l ,  F 
,(1) 

= 0 .  

- 
Put t ing  F and F i n t o  the  metric  equations W l  and 

I 

? 
TI 2 ,  and u s i n g ? ?  6, w e  ge t :  



,'= i 
f r m  bm2: F = -EFo . Putt ing t h i s  i n  

91: pF6 = 0 . 
d. 

A 
-, & 

Since Fo f 0 ,  a = = 0,  hence the eigenrays a r e  geodesic and 
C 

# 

shear:free, and the  space' is a lgebraical ly  spec ia l .  

From the  f a c t  t h a t  and \ ( 3 )  
a r e  normal t o  

r (21 

surf aces, we have . .  . .  .,. 
\ 

- 1 - - - - + (F - - F I G  = =s From 7 3 ,  yo = 0 S O  - 2 Yo- Since 0 = (F - F ) O  

- - 
Fo - f'; , -Fo i s  r e a l  and w e  may put Fo = Q. "since o and 9 

a r e  functionally independent we can choose complex coordinates 

, with F = z ,  leaving x1 f r e e .  These r e s u l t s  imply f 

t h a t  the frame takes the form 

And the reduced f i e l d  e e a t i o n s  become 

1 ? 

* 



With our choice of f r a m e  t h e  metric is 

B 

We MY note t h a t  the csse of y i r n a g i n q  is ruled out 

by p 7 ( a )  but real is not. This i s  an example of the more. 

general theoren i n  any space-time !I t o  t h e  e f f ec t  t h a t ,  i f  K~ 

i s  tangent t o  a g e d e s i c  and shear-free nu l l  congruence with 



-4 

' 4 ) ~ .  . K ~ K ~  = 0 ,  then Rey = 0 a Im? = 0 [371 .  If v i s  complex, 
I 1 3  

then t h e  e igenrays  have t w i s t ;  i n  view of F = O,, s o  do t h e  , A -+ 

corresponding repea ted  p r i n c i p a l  n u l l  d i r e c t i o n s .  A t  t h i s  p o i n t  

we d i v i d e  i n t o  tvo subcases,  according t o  whether o r  n o t .  Y i s  
1 

zero.  

- Case I. y = 0 .  

W e  no te  t h a t  t h i s  has  a s  an immediate consequence t h a t  

is  along t h e  t r a j e c t a r i e s  of a k i l l i n g  motion i n  the V3. 

1 -1 A By a t ransformat ion  x -t x , z = 2 ,  we may p u t  P = 1. - 

Then the f i e l d  equat ions  @) , become 

V Equation fh ) y i e l d s  E = - QZ; s u b s t i t u t i n g  t h i s  i n t o  (dv)  

g ives  an  equat ion  in Q a lone ,  which is transformable t o  

I 



with t h e  so lu t ion  Q = (')' h arbit* Equation (9') 
( z  + Z) 1/2 ' 

is transformable i n t o  

which implies ' = f Q 12 
f o r  r e a l  f .  W e  s t i l l  have some freedom 

1 in x , namely the  change of "gauge" 2' = x1 + ~ ( 2 , ; ) .  Put 

G1 = x1 - f, = z, then 

s, 
Thus ,  dropping ha t s ,  q = 0 ,  P = 1, A and the  metric i s  

/ 

The metric of the  V4 is transformable t o  



This i s  a s p e c i a l  ca se  of  t h e  well-known plane-fronted g r a v i t a t i o n a l  

waves (with p a r a l l e l  r a y s ) ,  f i r s t  found by Brinkman [381 and 

descr ibed i n  d e t a i l  by Ehlers  and..Kundt [371. The gene ra l  case 
- 4 

can be recovered by an a p p l i c a t i o n  of  a r e s u l t  of Pechlaner  and 

7 Das [391 ( t h e i r  theorem 3 )  : t h e  r e s u l t i n g  me t r i c  • ’ o m  i s  

where o + u = 0. Of course ,  t h i s  m e t r i c  no longer  f a l l s  i n t o  
= w  

t h e  subc la s s  of s t a t i o n a r y  spaces w i th  which we a r e  concerned. 

Case 11. y # 0. 

We again choose x1 t o  make P = 1 : then ,  i n t e g r a t i n g  
' + 

?'(a) , y-l = x1 + $ ( z  ,;) where i s  a r b i t r a r y .  W e  k e  s t i l l  

- 
allowed a change of gauge = x + A ;  we choose 

1 
A = '  + I Reca l l ing  t h a t  y is  an i n v a r i a n t ,  we then have 

- 
y-I = x1 + 7 ( z I z )  where 7 i s  imaginary. 

f" 
We have the fol lowing consequences: 



d 
? 

From g v ( b ) ,  ? = QT,, - 
- 

From mv(f) , Q = hiy/ where h = h ( z , z )  is a real function. 
. . 

From the preceding relations 

v 
which satisfies (el identically. 

differential equation 

Equation qv (c) is identically satisfied by the above relations. 

V Finally, after quite lengthy calculations, we get from (d), 
' h -  L* * 

with the help of (6.31,  the "potential ;quation" 

Making the substitution V = - 2Enh, we can rewrite the system 

(6 .31,  (6.4) in the form e 



which represents  t h e  reduced s e t  of f i e l d  equations. 
,- 

Although a t  f i r s t  glance our equations appear innocent 

enough, they may not  admit of any c losed- fo rm~olu t ions .+  However, .:., 
from general  cons idera t ions ,  the re  should be a funct ional  l 

dependence upon two a r b i t r a r y  harmonic functions.  A similar, 

soluble  equation t o  (6.5) has appeared i n  s t a t i c  f i e l d s   as 1161 ) , 
I 

bu t  the  l/ (z +. term was missing. (We might say that t h e  

add i t iona l  t e rm. in  our equation represents  " s t a t i o n a r i t y . " )  . A - 
genera l iza t ion  %of I6.5a) has appeared i n  n u l l  Einstein-Maxwell 

- 
f i e l d s  (Trollope 1401);  t h e  s u b s t i t u t i o n  W = V - t n ( z  + z)  br ings  

us  t o  a spec ia l  case of equation (4.1) of t h a t  paper. These two 

po in t s  of contac t  with o the r  types of space-time n a t u r a l l y  suggest 

ways of genera l iz ing  the  p resen t  work, but  we cannot pwsue  t h a t  
-, 

here.  r 
1 

However, we can make some progress i n  a s p e c i a l  case .  
i - 

If  V i s  assumed t o  be a function of z + z alone,  then (6.5a) 

tu rns  i n t o  an o r & i m r y  d i f f e r e n t i a l  equation. I f  we a s s w e  

- 
T = T ( Z  + Z )  a s  w e l l ,  then we can e x p l i c i t l y  so lve  f o r  a metr ic  

depending on two a r b i t r a r y  parameters (though t h e  so lu t ions  may 

s t i l l  not  admit of a closed expression).  A s l i g h t l y  more d i f f i ~ u l t  

(or tedious)  prablem r e s u l t s  i f  we leave z genera l .  

In  any case w e  may wri te  down the  metric form f o r  the 

V3 a s  it present ly  stands:  



2, 
Petrov Classification. 

We now carry out the algebraic classification for both 
0 

. , 
'-tt 

cases. We have a =  $ = 0 ,  F = Q ,  F *  = F  = 0 .  Substituting . o  0 ,  (1) 

these into the formulae for the ~ e J f ~ 4 u a l  combinations of the 
- .  

rv rJ N 

The counterparts of these in the basis {el,e2,e3} are 



PV 

From whence t h e  m a t r i x  t a k e s  t h e  form 

where f o r  b r e v i t y  we have d e f i n e d  

S i n c e  a l l  t h e  p r i n c i p a l  i n v a r i a n t s  of such a m a t r i x  v a n i s h ,  t h e  

space-t ime i n  b o t h  c a s e s  must b e  of t y p e s  N or 111. 

A g l a n c e  a t  t h e  q u a r t i c  e q u a t i o n  (5.3) w i  t e l l  us  which 
. c 

type. Wehave R ( ~ )  = R t 2 )  = O  when y + O  

I f  v 1s co~tplex, i n  a d d i t i o n ,  t h a t  is  7 # 0 ,  thk'  r a y s  

have t w i s t .  According t o  Kinners ley  [41] such a s o l u t i o n  h a s  n o t  

been found p r e v i o u s l y .  



Discussion. 

We have developed a  po r t ion  of t h e  theory  of connections, 

on p r i n c i p a l  f i b e r  bundles and pointed o u t  some o f  i t s  a p p l i c a t i o n s  , 

t o  t h e  theory of g r a v i t a t i o n .  I t  seems t o  o f f e r  t h e  b e s t  way of 

understanding and gene ra l i z ing  such formalisms as t h e  sp inor  

ca l cu lus ;  i n  f a c t ,  any i r r e d u c i b l e  r e p r e s e n t a t i o n  of t h e  Lorentz 
3: 

group w i l l  g ive  r i s e  t o  an a s soc i a t ed  vec to r  bundle w i th  a n a t u r a l  

* 
concept of cova r i an t  d i f f e r e n t i a t i o n .  Also, it may be noted t h a t  

3 -  

t he  bundle of  bases  i t s e l f  is e s s e n t i a l l y  a  phase s ace  
this is . .. 

shown i n  a  concre te  way by t h e  c a l c u l a t i o n s  of ~ p p e n d i x ~ $ ? ' ,  I t  i s  

n a t ~ r a l ' t o  a s k ' i f  we could p r o f i t a b l y  r a i s e  E i n s t e i n ' s  equat ions  t o  

g loba l  onek on B (MI o r  t o  some assoc ia ted  t e n ~ & - b u r i h ' .  
.-A * * - 

The method of ' & f f e r e n t i a l  forms o f f e r s  t h e  b e s t  a lgori thm 

f o r  computing t h e  connection c o e f f i c i e n t s  and curva ture  t enso r  i n  

any frame,. We have used t h e  method ifipcon junc t ion  with orthonormal 

=< 
frames, b u t  the 'same advantages k re  "apparent i n  a context  of spinor  

forms [ 341 .  

A s  t o  t h e  phys i ca l  Signifi-cance of t h e  subcase of 

s t a t i o n a r y  spaces which we have considered,  we w i l l  have t o  w a i t .  

far f w t h e r  (numerical . o r  q u a l i t a t i v e )  a n a l y s i s  of our  reduced 

P 

equat ions .  I n  tw meantime t h e r e  i s  t h e  sugges t ion  t h a t  it could 
_a 

be a phys i ca l ly  me&ingful gene ra l i za t ion  o f  t h e  plane-wave so lu t ions .  
I, 
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Appendix A. Some calcula t ions .  

1. The vector  f i e l d s  & a r e  v e r t i c a l .  k i  

Using the d e f i n i t i o n ,  

Since n o f is the constant  function on Gl(n,R). P 

- - 
2. E x p l i c i t  construct ions of Eir&E,@ir%i . 

- - - - 
Let xi = u 0 and xkt = ukC i O #J = be the  

- 
coordinate functions on U C B (M) , and p € r. ~ h &  



Thus 

- 
For t h e  components of  oi , l e t  x = bi a/axi + 

- 
bik a/axTilk. Then n,x = bi a/axi = b k h ' i ) ~  (i) ., Hence oi (x) = . 

- q = \ ( i )dxk = k(i)  considered a s  a form. 

- 
The connection one-forms oij must be dua l  t o  

' i j  

we may write 

i k .  
So f a r  aijk Pan be any func t ions  of x and , which i n  

B (MI are independent va r i ab l e s .  But proper ty  (1.5) (b) 

r e s t r i c t s  us: ~ r o m  %*Gij = A-' A .o it f o l l o w s t h a t  a ir SJ rs i j k  

are " invar ian t"  components i n  t h e  f i r s t  two indices-- that  i s  

a ijk = X C ( ~ ) ' ( ~ )  ? m k where rm C = rmCk (xi) are 

So we have 
d - 



- 
(A. 3 )  oij = A&- ( i l l  ( j )  rp, m k  4 ,k + ,k(i)axk ( j )  

F i n a l l y ,  t o  calculate ek , l e t  e = b n a / a P  + P~~~ a/a 
e k k  * 

,J - - 
Then { ~ ~ , 6 ~ ~  1 is the dual frame to {oi.coij) impl ies  

and 

(A. 4 )  
n C 

'L = I(;) 
- 9 m ' n 1 ( k ~  " a / a ~ ( ~ ,  . 

3 

- n 
A coordinate b a s i s  of H is, since Itk) - i s  nonsingular P 



Appendix B. Brief account of covariant differentiation in an 

associated vector bundle. 

3 
The associated bundles were mentioned in passing in 

Chapter 1. But the important topic of covariant differentiation in 

associated vector bundles was not touched upon. We will avoid the" 4 

explicit definition of these fiber bundles, but remark that they 
e- 

are characterized by having a vector space as typical fiber,and 

cite as examples the well-known tangent bundle and the various tensor 

bundles. 

I•’ h ( ~ )  has a connection H,' then any associated vector 

bundle W has a naturally defined induced connection H'. (In the 

case of the tangent bundle this 

port 'of vectors .) Let X:U + W 

t € N,,, , m € U. Then we define 

respect to g to be 

- iC 

DtX = X, (t) - H' (X* (t) 1 .  

makes possible the parallel trans- 

be a section over U E M, and let 

the covariant derivative of 5 with 

i.e:, it is just the vertical part of X,(t). Since DtX is 



tangent t o  the f iber  w e r  m and th i s  fiber i s  a vector space, it 

may be identified with a point i n  W. Hence DtX is  a quantity 

of the same "typen as X. 



~ppend ' ix  C.  How a change of s e c t i o n  a f f e c t s  t h e  b a s i c  and connection 

one-forms on . M. 

(rn) C G l  (n ,R)  f o r  each m 6 U. 

I. Let  Xp C Bp , where p = (m;h(i)b C f ( ~ ) .  . 

Then n. X = o i ( ~ ' ) X ( i )  ( d e f i n i t i o n )  
P P 

= n * ( R  X 1 ,  
A* P 

"z where % X * P 
Gi th  PA = (Itk;X(i)Aik). . 

A - 
Then (c.1) together with t h e  def i n i t i a n  of oi gives  

Hence -- 



n - k i k 
11. %*ai = R ~ *  (ai jrdx + \ dh( , from (A.  3)  

Hence 





11. Conditions fo_r_congruences of 

A ( 3 ) +  

h t o  be dilatation-free. .  

- - 

hralu'ating this a t  8 = 0, -and using cp t o  take care of the . 

A (1) -bpendence, w e  have - 



As a consequence of our ch'oosing Y = - 
321 '231 

= 0, . we have 



Appendix E. Some Observations, Made ~d Late For inclusion i n  the  . . 
- - 

&in B6dy.of t h e  Thesis. 

Ch. In fa&, no f t h e r  conditions of i n t e g r a b i l i t y  can 'g 
be obtained from t h e i e  in 'any case. 

(l.ll)ps f i n i t e  r e l a t ions .  
1 - 

0 

This i s  evident  from the  form of 

v 

Ch- 5 I a&. (5- 5,) . It s b u l d  be noted t h a t  t h e  actual magnitudes o f  t h e  

q u a n t i t i e s  and 7 have the indicated in te rp re ta t ion  only when the  

a a gauge i s  such that k - is  pf the form ka= d~ /dvI where v i s  an a f f i n e  

N 

parameter. Ibwever, t h e  v k i s h h g  of z. ~ e y ,  and b y ,  does not 
b 

depend on the gauge. 
* r--- 

# 

Ch. 6. p. 86, bottom. A. Held (Lett.  Nuovo Cim. 11: 545. 1974) 
- -$ 4 

u s i n g t h e  Newman-Penrose formalism has found so lu t ions  f a l l i n g  

within our case  (11) : they correspond t o  the  case  o f  equation (6.5) 

where the  unknown V i s  a c e r t a ' n  function of  2 + E alone,  and i t - 
i s  chosen t o  be exponenfial i n  z - z .  However it i s  necessary t o  

extend eV t o  negative values. I. ~ a u s e r  (phySI kev. Let t .  33 : 1 1 1 2 ,  
" - 

1974) has found solu t ions  of type N with twis t ing  rays. %a$ they 

w i l l  no t  coincide with any of our solut ions.  These recent  a r t i c l e s  
C 

were ca l l ed  t o  my a t t e n t i o n  by Steve Kloster. 
b 




