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ABSTRACT 

In 'this paper we prove a generalization of shannogls 

Coding Theorem for Discrete Channels. 

Formally, we assume we have X, a finite set of 
elements, which is the input alphabet. We define X - 
to b e p  doubly-infinite product of copies of X. We 
let FX be the o-algebra generated by all cylinders in 

X. - ~ h g n  together with A ,  a probability on FX , we have - 
the input message space, (X,FX,X) . - - 

-A channel is defined by: 
(i) '(Y,Fy,y) - -a probability space which we construct 
from the Finite set Y (the letters to be transmitted) 

in a manner analagous to the construction of the input 

message space. 
(ii) (W,FW) - -a measurable space constructed from the 

finite setof output letters W. 
(iii) - v( , ) -a function on YxFW giving the transition - 
probabilities. Thus v(y,C) - is the probability that the 
transmitted message y will be received in the subset C - 
of W. - 

The channel is usually assumed to be "noisy", i.e. 
4 

the message which is receiyed rpay not be identical to t 

the message which was transmitted. Shannon's-Tbeorem says 
that for a certain class of channels we can choose a code 

( a  measurable mapping X+Y) such that the probability of - - 
errors in transmission is small while the xate of trans- 

C 

mission is arbitrarily close to the capacity of the - 
channel. Pfaffelhuber in 1971, proved-this result for a 

- - - - - - - - - - - - -- - - - - - - - - - 

class of channels (channels with asymptotically decreasing 
memory a d  axticipatim) that satisfy - t w o  contlitions . In 
chapter 3, we show that the second of these is stronger 
than the concept of strong mixing, and hence by a result 

(iii) 



of Adler (which says that any ergodic input is admissible 
with respect to a channel which is weak mixing) proven in 

chapter 2, we'can replace this condition with the assump- 

tion that the channel is weak mixing. We then modify the 

arguments of Pfaffelhuber and Billingsley to prove Shannon's 

Theorem for a larger class of channels, namely those that 

satisfy condition 1) of PfaffeJhuber and are weak mixing. 
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CHAPTER I: INTRODUCTION 

51 HISTORY 

Claude Shannon 111 in 1948 began mathematically' tq 
formalize the concepts of production and transmission of- 

information. One of his main results was the coding 

theorem. Postponing the definition, of the 

can roughly-state this theorem. 

terms, 

Suppose we have a discrete channel with a finite 
number of states. Then it is possible to encode the input 

messages so that information can be transmitted at a rate 

approaching the channel capacity and with arbitrarily 
small probability of error. 

Here the channel may be "noisyn. By this we mean 
that due to some imperfection in the device the mess&e . 

received may not be identical with the message sent. 
However, Shannon's proof was sketchy and proved difficult 

to carry out with sufficient rigor. 

In 1953, Feinstein developed a new approach to the 
proof of Shannon's theorem. We quote Khinchin [2,p.90] : 

"Feinstein's idea coneists in deriving from the channk 
itself as much as can possibly be used to prove Shannon's 

theorems, before coding and even before connecting the 

channel to any particular source. Khinchin [2] , using 
Feinsteinls lemma, proved the theorem for a class of 
channels with finite memory and zero anticipation. 

Later, Blackwel1,Breiman and Thomasian [3]  , proved 
a 

a coding theorem for indecomposable finite-state channels, 

_ w i t h  f raexxzy_. Hmzeuer ,-_the _ concept of _finite-state - 

channels is somewhat unsatisfactory because given any 
physical channel, it is in general difficult to determine 
this internal structure. 



-- - - - - -- - - -- - - - -- -- -- - - - -- - - --- - -- - -- 
In Wynerts "Recent Results in the Shannon Theoryn 

[4], he states that the most general version of Shannon's 
Theorem is by Pfaffelhuber 151. In [53, Pfaffelhuber 

introduces the concept of chamiels with asymptotically 
decreasing memory and anticipation and outlines a proof 

of Shannon's Theorem for these channels. Be also shows 

that both channels with finike memory and anticipation, 

and indecomposable f inite-state channels, have 

aspptotically aecreasing memory and anticipation. Thus 

[ S ]  generalizes the theorems of [2] and [ 3 ] .  



52 OUTLINE 

Chapter one introduces the notation and the basic 

ergodic theory we will employ. Following Halmos [ 6 ] ,  

we state the functional forms of ergodicity, weak mixing, 
and strong mixing. From Billingsley 17) and Feinstein [ 8 ] ,  

_we give two versions of the very important asymptotic 

equipartition property. Again from 171, we very briefly 
define and give some properties of the entropy function. 

- 

The theorems of chapter two originate with Adler [9]. 

Here we also introduce the definition of a channel and 

some of the related concepts, such as asymptotic independ- 

ence from the remote past. It is Theorem 2.4 from this 
* 

chapter that enables us to generalize the results of 151. 

In chapter three, we introduce the notion of channels ' 

with asymptotically decreasing memory and anticipation 

and we give some examples. We then show that condition 2) 

in the definition of channels with asymptotically - 
decreasing memory and anticipation is stronger than the 

notion of strong mixing. This implies that Theorem 2 of [ 5 ]  

is weaker than Theorem 2.2, which Adler had proven more 

than a decade previously. We then prove the extension 
of Feinstein's Lemma. 

Finally,.in chapter four, we prove a version of 
Shannon's Coding Theorem for channels which satisfy 

condition 1) in the definition of asymptotically 
< 

decreasing memory and anticipation, and are weak mixing. 
The proof involves the extension of Feinsteinvs Lermna 



We g i v e  a summary of  t h e  n o t a t i o n  t h a t  w i l l  be employed 

throughout t h i s  paper.  Note e s p e c i a l l y  t h e  u s e  of  ( t l , t 2 ] .  

sC is t h e  complement of t h e  set  S. 

1s i s  the number of el&ents i n  t h e  set S. 
m srn means S, i .e. t h e  C a r t e s i a n  .product  of  m copies of S. 

.. 
a .. i=l 

\ 

- - 

1 (x) is t h e  c h a r a c t e r i s t i c  (or i n d i c a t o r )  f u n c t i o n  of  S. 
. S o o  
S= - -11 S , i .e .  the d o u b l y - i n f i n i t e  product  of c o p i e s  o f  S. 

I•’ stS t hen  st will denote  t h e  t - t h  c o o r d i n a t e  of s.* 
P--% 

- - - 
(tl, t2 ]={ t  an  . integer: t l < t 5 t 2 ) .  

- 

I f  SES then  s (t ,t ]= - - 
1 2  

h.a.a.x means f o r  a l l  x ,  excep t  p o s s i b l y  a set of h measure 

zero  
1 N-1 EJAm an lim - z a i.e. t h e  Cesaro l i m i t  of an. 

j N- N j = O  

S+T= (S-T)V (T-S) i. e. + i s  symmetric - d i f f e r e n c e .  

L is t h e  set of f u n c t i o n s  f s a t i s f y i n g  
P 

f l f  p c - .  

o ( S )  is the o-algebra generated,  by S .  

i f f  w i l l  mean i f  and o n l y  i f .  

//. w i l l  be  used t o  denote  t h e  end of a proof .  

ERG is a c o n t r a c t i o n  f o r  e rgod ic ,  

WM f o r  weak mixing, and 

SM for  &rong mixing. 

- - - -  mpt means meaqwe-preservin~transfn-fion. - - - -  - -- - - 

Z denotes t h e  set of a l l  integers. 
- - - - - - - - - - - - - 



4 u-EmcxTyp - - -- --- - - --- - - 

Let (X ,F ,P)  be a probability space (i-.e. X is a 
-9 

nonempty set, F is a a-algebra of subsets of X and P is a 

measure on F such that P (X)=l) , 

Let T bk a measurable transformation :X+X. Recall 

that T is measurable if AEF implies that 
T~~AJ={XEX:TXEAIEF. ,. 

We will say that T is invertible if - 

(i) T is one-to-one, 
(ii) TX=X, and 

(iii) AEF implies TAEF. 
We will call T a measure preserving transformation 

bpt) if 
p (5' [A]  ) =P (A) for all AEF. 

We note that if T is invertible, then T is a mpt . 

- iff 

~n ergodic transformation can be characterized as 

one in which, for almost all x (i.e. for all XEX except 
for a set of measure zero) the orbit of x (which is the 

2 set {x,~x,T x, ... 1 )  "replicates" X. By this we mean that 
i 

for all A in F, the orbit of almost all x enters A with / 

asymptotic relative frequency P(A). This is expressed 

formally by 1 k-1 
g g  lAP~)=~h - E ,  ~ T " x )  

k n=O 

T is ergodic (ERG) if every T-invariant set has \ 
measure zero  o r  one. \ 



A function f ( x )  which is F-measurable, is said to be 

We can now "- state a theorem of fundamental importance in 

ergodic the*ry. r For proofs see 173 and for more general ver- 

sions of the theorem see ~ ~ ~ % e l  [lo]. 

Theorem 1.1 The Pointwise Ergodic Theorem. 
* 'i 

If fcL1, then there exists f&Ll which is T-invariant 

such 

i.e. 

that 
h 

C l i m  f (~~x)=f(x)' P;a.a.x, and 
n+= 

h 

E ( f ) = E ( f ) .  (Iiere'E(f) is the expecfation of f, 

If Cx)P CW .) 

Furtherpore, if T is erqodic, then 
h 

. ~cx)=E(~) P.a.a.x. 

We can obtain one useful application by taking T 

ergodic and f to be the characteristic function of A, for 

AEF. We then have 

- - - 2his-i.s the sense in which the-orbits of an ergodic - --, 4 

transformation are saia to replicate X. Roughly, it says 
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'Theorem 1.3 T is ergodic i f f  



55 STRONG MIXING 

A mpt T is said t o  be strong mixing 

EquivalGntly if 

-n 1i.m P (?[3] /A )  - P (T [Bl)=O. - - 

n+= 
Hence mixing is related to the "wearing-off" of the 

initial cond i t ions .  As f o r  ergodic mpts w e  can prove the 

following 

Theorem 1.4 Let Fo be an algebra generating F. Then if 

(1.3) holds f o r  all A,B€FO, then T i s  strong mixing. 

Theorem 1.5 T is s t r o n g  mixing iff 

for all 



-- 

If T is a mpt, T i s  weak mixing CW)' 

Analagous . t o  t h e  S M  case, we have t h e  fol lowing:  . . 

Theorem 1 . 6  Let Fo be an a lgebra  generat ing F. Then i f  

( 1 . 4 )  holds f o r  a l l  AIB€FO, then T i s  weak mixing. 

Theorem 1.7 T i s  weak mixing i f f  , 

f o r  all 



57 THE RE~TIONSHIP BETWEEN SM, WM, AND ERG, WITH.EXAMPLES 

It is clear from the definitions 'that SM implies WM, 

and WM implies ERG.- ~ollowing 16 ,p.38] we can give an 
w 

intuitive interpretation of these. We let T be a particu~ar 
$:. 

- ' &  

way of stirring the contents of a vessel full of 90 p;cent 
- - 

gin and 10 prcent vermouth. Let F be some region of the 
3 

vessel-. Ergodicity is expressed by saying on the average 

F has 10 percent vermouth. Strong mixing is expressed by 

saying after a while F will have 10 percent vermouth in it. 

, Weak mixing can be interpreted by sayihg that after a, 
u 

while F will have 10 percent vermouth in it with the excep- 

tion of a few rare instants during which it may be either 

too strong or too sweet. 

Example 1.1 A Model for a Doubly-Infinite Sequence of . 
Bernoulli Trials. 

a, 

Let X by a set with r (finite) elements. This set 
is assumed to be the number of possible outcomes of an 

experiment. Let F be the set of all subsets of X. We, 
A 

define the probability p on X by assigning to eakh xeX a 
'' 



Let &,F - - ,PI be the doubly-infinite prGduct of copies of 

. the probability space ( X , F , P )  . Now, xcX is a doubly-infinite - - 
sequence (...,x-~,x~,x~~...) of elements from X. We can , 

interpret x as an infinite number of Bernoulli trials, xn - 
being the outcome of the trial at time n. 

The o-algebra F is generated by the (thin) cylinders; - 
These are the sets of the form 

{XEX: - - x =i with  EX and jo(n,n+k]). 
j j J 

(Recall our nonstandard usage of (n,n+k] to denote the 

set f j an integer: n<jcn+k].) This set is called the - 
cylinder determined by-the interval (n,n+k] an8 the 

sequence* (in+l 
1. 

We define P on F By i t s  values on cylinders - 
n+k 

P ~ X E X : ~  =i with i . ~ x  and jc(n,n+k])= II pi, . .- - j j 3 j=n+l J 

The fact that this uniquely defines P is a consequence of 
- 
the Kolrnogorov Extension Theorem [2,p.3]. 

Wqnow define T, the shift-on X, (in this example T - 
is the Bernoulli shift) by 

(Recall that (Tx)* is the n-th coordinate of Tx.). T shifts. - 
each coordinate of x by one to the left. - 

- 
--- - - -  -- - - - - 

- - -- 
--- - 

T is invertible, a mpt, and is stcong mixing. To prove 

the'last assertion, let A and B be cylinders in X. Then - - - - 



?[I31 is also a cylinder in X, and if n is taken suffic- - 
, iently large, the Lntervals determining A and ?"[J3] are - 

disjoint. Thus 

for large enough n. (1.3) holds for cylinders. Applying 

Theorem 1.4 we are don 

To indicate one other application &'Theorem 1.1, let 

for  EX 

So that 

Now C f ( T ~ x )  - is t h e  number 
k=O 

of- occurrences of i in 

k 
Xn' . Hence Clim f(T x) - is the asymptotic relative frequency 

n- A 

of occurrence of the outcome i'in the trials at positive 

time poihts. By the Ergodic Theorem this limit exists 
f) 

and is E ( f ) ,  which is pi almost everywhere. Note that this - 

is the strong law of large numbers for Bernoulli trials. 

See f.71 for further examples and applications. 



58 ENTROPY 

We begin with a number of definitions..We will say 

A = { A ~ , A ~ , .  . . ,An) is an F-decomposition of X if A is a 

finite collection of nonempty elements from F forming a 

- partition of X. The Ai are called the atoms of A. There 

is a complete duality between F-decompositions and finite 

subfields (the terms algebra and field are equivalent) of 

F, By this we mean a finite subfield of F induces a unique 

F-decomposition, and conversely. 

The entropy function 
TO if t=O 

for is defined 

-tlogt if Wt<l - . 
Here we let B be the base-of the logarithm. It is easy to 

verify that q(t) is continuous except at zero and,is non- 

negative, 

We can now define the entropy of a finite field A with, 
* * 



If C is another finite subfield of F with atoms 
-- _ 

----6 

{Clf.. . ,C m 1 w e  can defiee the conditional entropy of A 

given C by 
m n 

H@~C)=L P(C~)C I-I(P(A~~c~)) 
j=l i=l 

From [7] we can give some intuitive ideas behind 

these -definitions. The expres~io~ 
r r 

is a measure of the amount of randomness in a single roll . 
of a die if pl, . . . , p ,  repressts the probability of each 

of the different faces. Kolmogorov deri~ed~(l.5) from a 

set of axioms one feels a measure of randomness should 

satisfy. A die that one would assume is the most random 

would be one with each pi=l/r*. Note that this choice of 

p. maximizes (1.5) . At the other extreme. (1.5) is zero 
1 

- if and only if one p i = l  In this die the outcome is the 

least random. Thus (1.5) measures the randomness in the 

experiment consisting of one roll of the die. This we will 

call the entropy of the experiment. It also measures the 

information in the experiment, the amount we learn f r d  

the outcome. 



where B i s  another  f i n i t e  field, are 

Here C i s  

- generated 

the 

another f i n i t e  

by A and-B. 

f i e l d  

. - -  

if 

if 

and 

Ac B 

BcC.  

following 

AvB denotes the o-algebra 



Example 1.1 can easily be extended to obtain a general- 
* 

ized shift on X .  - Here T is assumed to be the shift as 
before, but now P is any probability preserving T. 

Let us denote by H(X~,X~,...,X~-~) the entropy of the 

finite field having as atoms the rn sets,-(recalling that 

# X = r )  {xEX: - - x 
Nrn-11 

=u} for UEX". The Kolmogorov-Sinai 
e 

Theorem then implies that the entropy of TI denoted h (T) ,is 

D 

The asymptotic equipartition property ( A E P ) ~ ~  a con- 

sequence of the following theorem; see [7,p.128] for proof. 

Theorem 1.8 The Shannon-McMillan-Breiman Theorem. 

If T is an ergodic shift then 

Here po(~or.*o ,x  n-1 ) is the probability of the sequence 

(xO. ... ,X ) being observed. More specifically. for any n-1 

positive integer n, the mapping x - into (x~,...,x~-~) induces 
a probability on x". The probability of such an n-tuple 



The  AEP says t h a t  f o r  l a r g e  n,  X" can be decomposed 

i n t o  two .subsets.  The f i r s t  s u b s e t  h a s  l o w  total p r o b a b i l i t y  

and t h e  second s u b s e t  c o n s i s t s  of n- tuples  i i t h  probabi l -  

-nh(T).  Thus w e  state from [7,p.135] i t ies  nea r  B 

Theorem 1 . 9  The  Asymptotic E q u i p a r t i t i o n  Proper ty ,  

L e t  T be an e rgod ic  s h i f t  w i th  eh t ropy  h. Then f o r  any 

* p o s i t i v e  E t h e r e  e x i s t s  a p o s i t i v e  i n t e g e r  bo ( E )  such t h a t  
Y .  

i f  b>b0(&)  - then xb decomposes i n t o  two sets H and L such 

t h a t  

, Po (u)=pfx EL)<E: 
UEL Khb] - 

and such t h a t  

f o r  ,any b-tuple usB, 
.c 

Anotheg v e r s i o n  of t h e  AEP is given by f 8 , p 0 8 8 ] ,  

Theorem 1.10 L e t  T be an e rgod ic  s h i f t  w i t h  ent ropy h. 

Then f o r  a l l  positive E and 6 t h e r e  exists a n  i n t e g e r  

n ( ~ , 6 )  such t h a t  if S is  t h e  set of UEX" f o r  which 

does no t  hold ,  then A 



CHAPTER TI: ERGODIC AND MIXING PROPERTIES OF CKANNELS 

Let D(,FX) be a measurable space (i .e. a set X and a 

o-algebra FX of subsets of X such that u F=X). We will 
- 

-x 
- 

,denote by (X,FX), as before, t h e  doubly-infinite product - - 
space , A- 

If X is a probabi1i.t~ on FX we call (X,F~,~) a - 
-> - 

message space or information source. 

Let T denote the s h i f t  on X. We shah say the - 
message space is stationary if T is a X-mpt and we shall 

say (X,F~,X) - is ergodic i f  T is an ergodic X-mpt. - 
In addition, we assume we have the following 

doubly-infinite product apace 
ED 

where (YfFy) is a measurable space. 

We can now define a channel as a triple 

on XxFy - such that 

(i) v F,* - ) is a probability on Fy h.a .a .5 ,  - 
Cii) v (' ,E) is a measurable function of 5, for- - .  



' P 

The funct ion v C* i s  c a l l e d  t h e  kernel  of t h e  channel. 

For brev i ty ,  we w i l l  w r i t e  t he  channel as (X,Y,v). - - 
The channel w i l l  be  c a l l e d  s t a t i o n a r y  i f  

v(T-,TE)=v(x_,E) 1.a.a.x - and f o r  a l l  - EeFy. - 
Here we have defined__T on XxY - - a s  t h e d i r e c t  - -  product of 

- 

t h e  s h i f t s  on X - and - Y ,  v i z .  

I n  t h e  above, X corresponds t o . t h e  i npu t  alphabet ,  

a set  (usual ly  f i n i t e )  of letters t o  be t ransmi t ted ,  

Hence, (XtFXtA) - descr ibes  t h e  input  t o  t h e  channel. Sirn- 

i l a r l y ,  Y corresponds t o  t h e  output  a lphabet  and (Y,Fy) - - 
descr ibes  t h e  output .  A message is  xeX - - with  t h e  i n t e r p r e t -  

a t i o n  t h a t  xi i s  t h e  letter s e n t  a t  time i. The kerne l  

v(x,E) - - i s  t h e  p robab i l i t y  t h a t  the message x - a f t e r  being 

f ed  through t h e  channel w i l l  l i e  i n  a subse t  - E of  Fy. 

F ina l ly ,  channel s t a t i o ~ a r i t y  means t h a t  t h e  s t r u c t u r e  of 

t h e  channel i s  t ime-invariant .  . 

Example 2 . 1  The Channel Without Yenory. 

columns are indexed by elements of X and Y respec t ive ly .  W e  

can now define t h e  kerne l  by 



Recall that v is uniquely defined by specifying its 

values on cylinders. 

This channel is stationary since each letter is . L. 
treated independently. Here, c is the probability 

jk 
- - that -the letter: k is--receive& given that. the l-etter- j---- - -- - A  

has been fed into the channel. . 
Take x=Y={O,~); this is the binary symmetric channel, 

Let 

In this case we have a "noiseless" channel: It -has the 

property that if the message x is sent, x is received - - 
with perfect accuracy. 

Usually, however, we expect the message to be affected 
d 

by the presence of noise in %he channel.' For example, 

In this instance, the received message may not necessarily 

correspond exactly to the transmitted message. The 

presence of noise in the channel may lead to a loss of 

- - - - - - - - - - - - - - - -- 

Coding theory deals with the 

messages so that the transmission 

effective despite the presence af 

of information is 

noise. 



. 52 THE COMPOUND MESSAGE SPACE 

D ( r ~ X  , 1) with ( x , Y , v )  defines a compound message - - - - 
space (XxY,FX~Fy,w), - - where o is a probability on FXxFy, - - - - 
which describes the joint distribution of the input and 

output_of th_e _channel, We define A L 

. * 

for - CxFX and ExPy. - - - 
We now prove this is the correct expression. The 

integral is well-defined since v is a kernel. For 

M E F ~ X F ~  take more generally - - - 

Let A denote the class of sets in FXxFy for which the 

integrand in (2.2) is measurable, and let B denote the 

class of measurable rectangles. If MEB then MEA since - - 
{y: (x,y)~M} is a section, thus measurable since v is a - - 
kernel, Halmos fll,p.l431. 

If M is a finite disjoint union from B, then MEA - - 
since we can then express the integrand as a sum of 

measurable functions. Thus A contains the ring (A ring is 
- 

-- - -- - - -  - 

- 

. < 
- - - - - -  - - -  

a crdsspof sets closed underp finite,' unions and finite 
< - 

intersections. ) generated by B, [ll,p. 1391 . 



the 

- 
A is a monotone class since a limit of measurable 

functions 'is measurable. Hence, by the monotone class 
* 

theorem, Ill,p. 271 , A contains G (B) , which is FXXFy. 
Hence the integral in (2.2) is well-defined. Since v 

is a kernel, and (X_,Fx,X) is a probability space, it - 
follows that w is a probability. 

- - -  - - - - - - -- A 

Furthermore, w is the unique probability satisfying 

(2.1) since any'two probabilities that agree on a ring 

must agree on the generated 0-ring rll,p.54]. 

From the compound message space can be constructed 

output message space (Y,Fy,p) - with 

We have the following result. 

Theorem 2.1 If (X,FX,X) - is a stationarymessage space , - 
and (X,Y,v) - - is a stationary channel, then the compound 

-I 

message space and the output message space are both 

stationary. 

Proof. Let A=CxE with - - - 
sufficient to show the 

CcFX,E~Fy - - (We note that it is - - 
result for measurable rectangles,). 

Now using a change of variable - Z=T-%, - 



Since  T is a A-mpt, and by channel 

The result for the output 
- 

message 

stationarity 

space. follows by setting, ' 



.•˜ 3 PROPERTIES. 6 ~ '  CHANNELS 

We let K=(X,Y,V) be a channel. - -  
(a) (Khincwn) K is said to have finite memory if there 

exists a positive integer m, such that if EEF - Y,(t,t+nJ_ 
(Recall that t,t+fi denotes the-a-algebra 

by the cylinders in Y determined by (t, t+n] . ) - 

for t an integer and p a nonnegative integer, 

generated 

and if 

then 

Here the message segment x 
(t,t+nl depends also on 

the m letters immediately preceeding xt. The smallest such 

m is called the length of the memory; if no such m exists 

the channel isaaid to have infinite memory. In example 1.1 

we have m=O. 

(b) (Takano) We will say K is independent from the remote 

past if there exists a positive integer m, such that if 
* .. 

EEF - Y, ( i , j l  and FEF - Y r  (irk] 
with i<j ,  l < k ,  and j+m<l then 

1.1 we have m=O, . 



Khinchin s t a t e d  t h a t  i f  an ergodic message space 

i s  fed through a channel wi th  f i n i t e  memory then the  
- - - A - - - - uL 

output  message space'and t h e  compound message space are 

both ergodic,  i . e .  using t h e  terminology ofS18,p.87],  

an ergodic input is "adsnissible" w i t h  respect t o  achannel .  

with f i n i t e  memory, However d e f i n i t i o n  (a) i s  i n s u f f i c i e n t  

t o  give t h e  r e s u l t . .  

~t was f i r s t  proved by Takano by s t rengthening t h e  - 

d e f i n i t i o n  t o  include (b) as w e l l .  T h e  r e s u l t  w e  prove, 

due t o  ~ d i e r  191, uses only (c) of which (b) i s  obviously 

a s p e c i a l  case.  I t  says t h a t  any ergodic i npu t  i s  a h i s - -  

s i b l e  with r e spec t  t o  a channel which is asymptotical ly" 

independent from t h e  remote pas t .  
, - 

Theorem 2.2 L e t  ( X , F ~ , ~ )  - be an ergodic s t a t i o n a r y  message - < 
space and (X,Y,v)  a s t a t i o n a r y  channel asymptoCically - - 
independen* from the  remote pas t .  Then t h e  compound 

< 



for A=CxE, B=DxF with C, D cylinders in FX and E, F - - -  - - -  - - - - - 
cylinders in F,. 

X - 
Now, by the stationarity of the channel 

which 

=w (A_) w (B) 4 . 
This follows fsom the functional form of ergbdicity, 

Theorem 1.3, with 

f (T-"x) - =v (T-"x ,E) lC ( T - ~ x )  ; and - - - - 
g ( g = ~  ( ~ , g  lD (x). - - 

. Both are functions in L2. We note that T is invertible' 
0 

k _  so that we can take T-" as well as T". Now by the - 
a, 

asymptotic independence from the remote 'past we have 

as n+=. A fortiori 



From the Lebesgue Dominated Convergence Theorem a 

and s i n c e  convergence is s t ronger  
t 

than Cesaro convergence 

-- - - - - 

~ & r n ~ i n i n ~  these  l i m i t s  w e  ob ta in  

l i m  
N-- 

The r e s u l t  , f o r  the output message space fol lows l e t t i n g  

We now k k e  some f u r t h e r  def in i t ions7.  For the 

independent from (1) K is St4 i f  it is asymptotical ly the  

remote past.  



[the d e n s i t y  of 3 is t h e  limit of the r a t i o  l/ne # ( J f i ( O  ,n] ) ) 

By f o r  a l l  n E J ~ ,  we mean t h a t  if n i s  r e s t r i c t e d  ' to being 

h J~ t h e n  (2.3) -ho lds .  A c o n d i t i o n  equiva3ent- t o  (F .  3)  is - - - 

C2.42 c l h  /vc~,T~E~~F)-v(x,T~E)v(~,F) - - -  - - - -  I =o  h.a.a.x. - 
n+bD 

This equiva lence  i s  an immediate consequence of t h e  •’011- 
- 

owing lemma ; see 161 for proof, 

Lemma 2 . 3  If Ian} is a bounded sequence of r e a l  numbers 

then 

i f f  - t h e r e  e x i s t s  a sequence 3, of p o s i t i v e  integers  such 

t h a t  t h e ' d e n s i t y  o f  J i s  zero ,and such t h a t  'if n d  then  

K is e r g o d i c  i f  fo r  a l l  E,FcFy - - 
- C .  

(1') h is SM if for all - CtD€FX - - 



Equivalently, if there exists J, a seGuence 

integers with density zero, such that 

ergodic if for all C,'DcFX - - - 

positive 

The theorem that follows is an extension of our main 

result (Theorem 2.2). We employ the same technique and not- 

ation used in the proof of the latter. 

Theorem 2.4 If (X,FX,X) - is a stationary ergodic message - 
space, and if (X,Y,v) - - is a stationary WM channel, then 

the compound message space and the output message space 

are both ergodic. 

with respect to a 

Proof. For an ERG 

2 . 2  that 

n+* 

Thus, any ergodic input is admissible 

channel which is WM. 

input, we have from the proof of Theorem 

By-the hM&operty a•’ the channel, we have that there exists - 

J, a sequence of positive integers with density zero, such 



Then f o r  a l l  n a f  , 

A.a.a'.x* Now, by Lemma 2 . 3  - 

A.a,a.x. N o w  - 
r 

A.a.a.x. Here w e  have used the  f a c t  t h a t  C l i m  lan-a]=O - 
n-- 

implies t h a t  Clim a =a, [ 6 , p . 3 8 ] .  To complete the-proof we 
n+m 

combine l i m i t s  as in the  proof of Theorem 2.2.  //. 

To complete this chapter we summarize some of the  

results w e  have proven together with r e l a t ed  r e s u l t s  from 

[9]. For the l a t t e r ,  the  proofs m i m i c  the proof 05 Theorem 

2.4,  using the appropriate functional  forms equivalent 



H e r e  t he  en t ry  i n s i d e  t h e  t a b l e  g ives  t h e  property of t h e  
e3 

compound (and output) message space, given the proper t i es  

of t h e  input  (row en t ry )  and of tke channel (column e n t r y ) .  

Note t h a t  t h e  method of proof w e  have employed is 

no t  appl icable  when t h e  channel i s  only assumed t o  be 

ergodic. T h i s  is because i n  t h e  ergodic case w e  have no 
:' 

charac te r iza t ion  analagous t o  (2.3)  . ' * 

These statements summarized i n  t h e  t a b l e ,  a r e  t h e  

s t ronges t  poss ib le  i n  t h e  general  case. T h i s  can be seen * 
by s e t t i n g  

/-'I 

V (xr$ =Ft fo r  a l l ,  XEX, -- with p some prob- 

a b i l i t y  on Fy. Then 

w (DxF)=k - - ( D ) p  - (F) - fb r  D&FX - and F E P ~ ;  - that is, o i s  

- q- 

w i l l  - t ake  - on - - t h e  - - weaker - - - - of - - the P prope r t i e5  (SM, e, or 

ERG) of A o r  of p. 



CHAPTER III : CXSNNELS W I T H  ASYMPTOTICALLY DECREAS,ING. 

MEMORY AND ANTICIPATION 

$1 D E F I N I T I O N S  AND EXAMPLES 

Let K= (X,Y ,v) be a channel.  We consider the following - -  
P A  - - - 

condit ions on Kl , m l  (ZritiSgers o r  2-1 : 

a) for all finite intervals (tl,t2] and each cylinder 

DEY - - determined by this interval, we have 
- - 

v(x,D)=v(xt - - ,D) - - whenever 

X =x ' (t -m t +m ] (tl-ml,t2+m2] ' 1 1'2 2 

b) For all pairs - (t t ] and (tlt , t2' ] of finite 2' 2 
intervals 

and all pairs 

determined hy 

D and D' of cylinders in Y that are - - - 
these intervals (respectively) , w e  have- for 

all - XEX - (or h.a.a.x - if there is a probability h 

k k' b ( X , ~ k g n ~ ~ ' ~ t ) = v ( x , ~  - - _ - D)V(X,R - - D * )  - 
I \ 

(Here R is the-right shift, i.e. the inverse of the shift T 

as -- defined in chapter 1.) 

whenever k and kt are integers such that 

That is, whenever the separation between the intervals 
- - - -- - - - - - - - - - pp -- - - -P 

kt determining the cilinders IlkD andSR D1 - is greater than ml. 
-- - - - - 

the of all m2 satisfying a) for some 



~- 

ml, is called 

all m, satisfying a) and b) for some m2, infimum mm of 
A 

memory of called the 

an8 b) iff 

K,' Thus a pair ml,m2 satisfies 

m >m and 1- rn 

We will say K has asymptotically decreasing m e m o r y  
- - - - - - -  a >- - -- A - - \  

and anticipation iff 

condition 1) for a&.& & .  finite intervals (tl,t2] and each 

output event DCF = that occurs ih this interval, - Y I  0% , t , f  
have 

to t ,t , E , x  and X I ,  for all S E ~ E X  1 2 - -  - Uniformly with respect 

Here X.3.a.x and x'). - - 

 noth her fo&mulation of condition 1) is the following: 

any positive E there exist integers ml,m2 such that for 

any finite interval (tl,t2] and every output event D - 
occurring in this interval, we have 



Condition 21 For each pair of cylinders C,C' - - in Y - 

for all xsX - - (or h.a.a.x). - 
This condition_ requires- that two output messages - A A 

that occur in different intervals given (almost) any x, - 
- .  

are almost independent if these intervals are sufficiently 

far apart, 

It is clear that any channel with finite memory and 

anticipation satisfies conditions 1) and 2). 
e 

We will now construct examples. 

Let X and Y be finite nonempty sets. For all XEX 

let p(y [x )  be a probability over Y. Furthermore, assume 

p (y 1 x)  is dependent on x. Otherwise the output would 

be independent of the input and no information could be 

passed through the channel. 

Let E ( T ) > O  - for all rEZ (Recall that Z is the sef 

This is a probability over Y - for all x - in X. - Now let 



 his i s  also a probability over' Y - for a l l '  XEX; - - see Neveu 

112,p.l65].  We w i l l  now specialize this example. 

~xam&? 3.1 Take 

for  XEX - - and - CcFy. - 
In this case each letter is treated in ; 

is the probability that Ct is received given that xt is 

sent through the channel. This is clearly the channel 

without memory, exarcple 2.1; it has memory and anticipation 

equal to zero. 

Example 3.2 Take 

We claim that t h i s  channel (with X and Y as before) has 

memory and anticipation equal tb one. 



Proof. (i) To show m,=l. Let (tl ,t2 1 be finite; , let C be - 
a cylinder in Y determined by (tlIt2]. It suffices to - 
show 

whenever 

for - k a positi~~integer. F r o m  the definition of-vt it - 

follows that for all XEX - - 

Thus 

if t$(tl-l,t2+k] and it depends on xt if t&(tl-l,t2+k]. 

the result foflows. 

(ii) To show m,=l. This is clear since the 

condition 

guarantees that the intervals determining the cylinders 

k k t  R C and R C t  are separated by at least two. The - - 
result then follows from the definition of vt. //. - 

From this type of'argument we can see that the 

anticipation corresponds to the number of E ( T ) > O  for 

positive T and the memory corresponds to the number of 

& I T ) > O  for negative T .  In this manner we can construct 
- - - - - - -- - - - - 

- 
-- - 

4. 

channels with any finite or infinite memory and antic- 

ipation. 



Example 3.3 Suppose 
- - - ------- - 

as before, and furthermore 
w 

C C E (TI-. 
i=O I~l>i 

that 

decreasing memory and anticipation. The proof of this - 

- - - - 

fact is lengthy but reasonably straightforward. 



52 INDEC,OMPOSABLE FINITE STATE CHANNELS 

For the remainder of this paper we will assume X and 

Y are finite, nonempty sets,  

L e t  S be a finite, nonempty set and for all xsX, 

SES , let y ( 1 s ,x) be a probability over SXY: Then . 
- - - -  - 

- K=tx,Y,S,y) is calledaua finite state channel. The elements 

of S correspond*to the possible states of the channel . 

and y'(slxyls,x) represents the probability of gofng to 
- 

state s f  and outputting y, given the input x and present 

state s. 
+ 

For tsZ, SES let 

o(s,t)={sf~s: - - sft=s3x~. - 
for all t'<t. This is in FSXy 

- (t' P I  
This is the event corresponding to being in state s' 

at time t. If t is anJinteger and m a positive integer, 

let C be a (thin) cylinder in S determined by (t,t+m] - - 
- .  

and s (m) = (sl,. . . , s ) E S ~ ;  let D be a cylinder in Y m - - 
determined by It,t+m] and y(m)=(yl,  ...,y Icym. We define m 

for sO€S and X E X  - - 

r 

It follows from the Kohogorov Extension Theorem [7 ,p.3]  
, 

t h a t  f o r  a l l  t s Z ,  SES, ? X I  (3.1) induces a unique 



ability has the property that if ' EsP - - S x y t , ( t l ~ t 2 ]  w i t h  

tl f i n i t e ,  Men y ( ~ / ~ ( s , t ~ ) t ~ )  depends on ly  on 
- 

Tt ,  , t, I . This  fol lows immediately from (3.1) and the 

fact t h a t  E is  generated by cy l i nde r s  determined by - 

Secondly, i f  DeF - Y , ( t , m ]  
w i th  t f i n i t e  then 

, 

Again t h i s  fol lows e a s i l y  from (3.1) . 
A 

A f i n i t e  s t a t e  channel K=(X,Y,S,y) is  c a l l e d  

indecomposable i f  t h e  fol lowing holds: 
h 

C 

Condition I D :  f o r  a l l - p o s i t i v e  E, t h e r e  e x i s t s  a p o s i t i v e  
i 
U 
I 

i n t e g e r  N such that f o r  some i n t e g e r  t (Hence for a l l  O f  
3: 

t by (3.2).) and every s , s ' , s t E ~ S ,  xeX (or X.a.a.x), m>No, - - - 
w e  have 

Roughly, t h i s  m a n s  that t h e  effect of the 

wears off a s  time increases .  

o (S ' , t-m) ,xi 

i n i t i a l  s t a t e  

- 
- - - - - - - - - - - - - - -- - 

- - -- - - -- -- - - - - - -- - 
- 

1 - 
- - - - - - -- - - -- - - - - - -- -- - - -. - - -  

- - -  

Given an indecumpusable f i n i t e  state  channel 
A 

K= (X ,Y ,  S ,y) , w e  can cons t ruc t  a channel K= (X,Y, V) which 



is stationary and has zero anticipation. For . D€Fy - ,' let - 

It Can be shown (see 151) that thig limit exists independ- 

ently of s ' and is uniform in t ,D ,x and s . - - 
Now, from 151 we can state the following result: 

Theorem 3.1 Let K=(X,Y,S,y) be an indecomposable finite 
, 

state channel and let K=(X,Y,v) be the channel constructed - - 
A 

from H. Then K Eas asymptotically decreasing memory and 

anticipation. 

. We can now give examples from Gallagher 1131, of finite 

state channels which can be shown to be indecomposable. 

Example 3:4 A Simple Model of a Burst-error Channel. 
- 

This is an example of a channel where errors tend 

to cluster together in "burstst1. State 0 corresponds to 

relatively good,Cransmission of c?ata, while state 1 

corresponds to the error-prone phase of the channel. 

State transition diagram: pij represents the 

probability of going from state i to state j. 



Input-oUtput p robab i l i t i e s :  qij is t h e  p robab i l i t y  

of rece iv ing  j given t h a t  i was sent .  , 

In state 0 I n  s t a t e  1 

Note t h a t  i n  t h i s  example t h e  state t r a n s i t i o n  probab- 

i l i t i e s  do po t  depend on t h e  input .  

Example 3 . 5  A Simpie Model of Intersymbol In te r fe rence .  

In t h i s  example the  s t a t e  a t  a gives t i m e  is  t h e  same 

as the  input  a t  that time. The p robab i l i t y  of an e r r o r  is  

g rea t e r  if x d x n - l ,  than  when x =x n n-1 ' 

s t a t e  t r a m i t i o n  diagram 
+% 



znput-output probabi l i t i e s :  

In s ta te  O In state 1 



9 3 T?IE FU3LP.TIONSHIP BETWEEN STRONG MIXING AND' ASYM'PTOTICALLY 

DECREASING MEMORY AND ANTIC'IPATION 

Theorem 3.2 Let K= (X,Y - - ,v) be a channel with asymptot- 

ically decreasing memory and anticipation. Then K is SM with 

, respect to R and with respect to T, 

Proof. By hypothesis, for any two cylinders C - and D - in Y - 

Take k=O and let kt+ . Then 

This says that K is SM with respect to R, Now take k'=O 

and let k+-- . 

This says that K is SM with respect to T. //. 

Furthermore, it appears that asymptotically decreasing 

memory and anticipation is a strictly stronger property than 

-strong mixing. The former allows the cylinders C - and D - to 
- 

1 be-shif ted arbitrarily, only -yequ&Lng-that t he  digtarice 

between the intervals determining these shifted cylinders 

becomes large. Strong mixing, on the other hand, allows 



only one gf the cylinders to be shifted, the other being 

fixed. 

Theorem 2 of f5], says that any ergodic input is 

admissible with respect to a channel with asymptotically 

decreasing memory and anticipation. In chapter 11, Theorem 

2.2 (2.4.) says that any ergodic input is admissible with f 

respect to a SM (WM) -channel. The fact that these two 

- theorems are formulated for the left shift T, rather than 
the right shift R (as in [5]) presents no problem. This is 

-1 because if T is invertible, T is ergodic iff T is; see 

c7 ,~. .91.  - 

By the above remarks and Theorem 3.2, we can see that 

Theorem 2.2, and a fortiori Theorem 2.4, are stronger than 

Theorem 2 of [51 .  



5 4 CHANNEL CAPACITq 
b 

t 

L e t  (Y,F,,X) be an i n p u t  message space  and l e t  

K=(Y,W,v) - - be  a channel.  W e  have three s h i f t s  

(i)_RyxW w i t h  t h e  compound measure w on YxW, 
- - - - 

( i i )  R w i t h  t h e  p r o b a b i l i t y  X on Y,  and 
Y - .  

(iiil % w i t h  t h e  ou tpu t  measure p on W. - 
W e  d e f i n e  t h e  rate of t r ansmiss ion  R(h) ,  of (ytFy,X) - - 

over  K by 

From [7,p.156] w e  can o b t a i n  another  formula t ion .  

T h i s  i s  t h e  amount of inform t i o n  rece ived  p e r  letter. 

\ 
W e  can make t h e  fo l lowing r p r e t a t i o n :  t h e  mean 

- - - - 

amount of i n f o r m a t i o n  gained -by tke-message - 

. ) , from which we t r y  t o  a c t u a l l y  r ece ived  i s  (wO,  . . wnS1 
aeduce t h e  o r i g i n a l  message. The amobnt of u n c e r t a i n t y  



involved i n  t h i s  is I3 (yo,.  . . 1 ~ , - 1  [w0 t I W , - ~ )  a So t h a t  

t h e  amount o f  information w e  r ece ive  is  the amount of  in fo r -  

mation i n  t h e  message s e n t ,  minus the unce r t a in ty  about  t h e  
F - 

message s e n t .  

The quan t i t y  

is c a l l e d  t h e  equivocat ion per le t ter .  Clea r ly  a low 

r a t e  of equivocat ion i s  desirable, ;  , t h i s  corresponds t o  

a high r a t e  of t ransmiss ion.  

W e  can now define t he  s t a t i o n a r y  capac i ty  of t h e  

channel K by 

~ $ @ l = s u p  ~ R ( X ) :  h is  such t h a t  R is a'h-rapt] . 
-. 

The ergodic  capacity i s  - 

Ce (K) =sup (R ( A )  : A i s  such t h a t  R is  ergodic  

The rate of t ransmiss ion and capac i t y  are d i f f i c u l t  

t o  compRte except  for some simple channels.  For example, 



rate equals the entropy of the input. This channel, although 

noisy, is called l'lossless". It has stationary and ergodic 

capacity equal to log 2 . 

For a second example, suppose the rows of (cjk) are 

all identical. S; that cjk is independent of j . Aere - a 

and it can be shown that the transmission rate is zero 

for any input. Of course no information can be sent through 

. -this channel. The stationary and ergodic capacity are both 

zero,  



55 FEINSTEIN'S LEMMA 

This section deals with Pfaffelhuber's version (from 

Feinstein's lemma. The definitions are from [8] 

of Feinstein's proof. proof is a variation 

define a 
-- 

maximal set 

of elements of channel 

X such that: 

such that (i) To each xi there corresponds a 

p(xi,Bi)>l-e - . 
(ii) The B. are disjoint. 

1 

(iii) There exist no %+1 and BN+l that x~~...,x~+~ such 

and (ii). 

Given a channel ( X , Y , p )  with input measure A ,  a set 

M [e,K] (for O c e ,  Kc1 ) of elements of X, {xl,. . - , 
will be called an enlarging set 

each xi there corresponds an Ai 

with respect to X 

in Y such that 



A maximal set Mle] w i l l  be s a i d  t o  be L-bounded 

( f o r  O < L < l )  w i th  r e s p e c t  t o  an i n p u t  measure X i f  t h e  

Bi s a t i s f y  

f o r  i = l , . , . . , N  and N > 1  - . 

Theorem 3 . 3  L e t  K= (&,Y,v) be a s t a t i o n a r y  channel  

which has e r g o d i c  c a p a c i t y  C.  A s s u m e  f u r t h e r  t h a t  t h e  

i n p u t  measure X being e r g o d i c  impl ies  t h a t  tiz and p a r e  

e rgod ic  as w e l l .  I f  H and e are p o s i t i v e  and H<C , t hen  

t h e r e  e x i s t s  a p o s i t i v e  i n t e g e r  n ( e , ~ )  such t h a t  i f  

t h e r e  e x i s t  U1, ..., UN i n  xn w i t h  

and d i s j o i n t  sets A1,. . . ,AN i n  Y" such t h a t  

f o r  i=l,.. .,N . 
( The meaning of ( A ~ ~ U ~ )  w i l l  be c l a r i f i e d  in t h e  proof. 

The fo l lowing proof i s  a summary of t h e  proof given by 

F e i n s t e i n ;  see f 8 ]  fo r  t h e  d e t a i l s . )  

Proof. I f  HcC , t h e r e  e x i s t s  an e"rgodic i n p u t  measure X 

L e t  us  denote t h e  elements of xn and Y" by u and v 



respectively. 

Given positive E and 6, let V' be the set of (u,v) - 

satisfying 

I l/n (lo& (uxv) ) +h (%,*) I . 
Let S f  be the set of v satisfying 

By assumption w and p are ergodic since A is. We can 

now apply Theorem 1.10. Thus for sufficiently large n, 

given positive bl 

w (V') >1-61/2 

and 

Let 

Hence for 

Here 

any (u,v)EV 

- Given - r ,6*>P , let - - - - - - - - - - -- 

- - u*={uEx~: ~ l / n ( l ~ ~ ~ ( u ) ) + h ( ~ ~ ) ! < ~ ' )  - - .  - - 

Applying Theorem 1.10, we obtain that for sufficiently 

large n 



(3.4) X (u0) >1-62- . 
J 

Now take n large' enough so that (3.3) and (3.4) 

rTo each U E U ~  , let 
A~={VEY": (u,v) E V ~  

For O<a<l , let 
u l = h ~ v o :  P ( ~ U I  ~),1-al 

By Lemma 2 [ 8 , p . 4 8 1 ,  

X(Ul)>l-62-61/a . 
It is easy to see that for 

A (u) -33 -n (h ( R ~ )  -E ' 
f 

(Here - h (% I Ity) is the equivocation 

hold. 

=B n(R(1)-c-s' ) . 
For notational convenience, let 

d=n(R(Xj-&-&I) . 
We have now that 

w (uxv) /A (u) > ~ ~ p  (v) . 
Summing over AU , 

- - - - -- - - - - 

d - 

- - -  

(3.5) (uxAu) /A (u) >B v (AU) 
- - - - - - - 

The lefthand side of (3.5) is bounded by 1, hence 



-d Hence, U1 i s  an e n l a r g i n g  set M[a ,B  ] r e l a t i v e  t o  A ,  

assuming U1 is n o t  empty. Let ' 

bs a ( B - ~ )  -bounded maximal set r e l a t i v e  - ', 
t o  A .  Then 

-d U1-UlnM[e] is s t i l l  an e n l a r g i n g  set M[a,B ] d i s j o i n t  

from M [ e l ,  Now the i n e q u a l i t y  of 18,p.461 y i e l d s  . a  

L e t  

. 

4 NB > (e-a) h ( u ~ - u ~ M [ ~ ]  ) + (1-e) h (Mle] ) 

>min (e-a, 1-e) (1-62-61/a) . - 
Given e and H ,  choose A such t h a t  

l a r g e )  : (taking n s u f f i c i e n t l y  

Then O < m < l  , and 

Theorem 3 . 4  L e t  K=(X,Y,v) - - be a s t a t i o n a r y  channel  which 

s a t i s f i e s  c o n d i t i o n  1) . L e t  0 - 0  be i t s  e r g o d i c  c a p a c i t y ,  

L e t  X be such t h a t  h e r g o d i c  impl ies  u and p a r e .  Then for? 

any e>O , t h e r e  e x i s t  m o l m l , m 2 ~ Z  such t ha t  i f  m>mo, - t h e n  

t h e r e  e x i s t s  an i n t e g e r  N s a t i s f y i n g  



and N distinct input messages #) . . . , of length 
.. 

(1) and N disjoint groups V , . . V of output messages 

ym of length m, such that for any integers tl,t2 with 

m=t2-tl 
- - - .  - -  - 

'and for all i=l,...,N , we have 

whenever 

h 

Proof. BY- heo or em 3.3, we can choose a probability A 

on FX making (X,F - , 2 )  an ergodic message space. Further- X - - 
more, we can choose an integer mo such that for an; ' 

mLmo there exists an integer N satisfying. 

N > B m ( c - ~ )  I 

such that there exist N input messages of length m, 

(1) , .and N  disjoint groups V , , . V N  of 

output messages of length m. These have the property that 

for i=l ,...,N 

i.e. the cylinder determined by (O,m] and ui. Similarly 



Hence, there exists x(~'E< - - (i' such that 

otherwise (3.6) cannot hold. 
- -  - - - 

By condition l), we can choose ml,m2 such - that 

whenever 

for all i=1, ..., N . .. - 
. . 

Now define 

Then (3.7)-and ( 3 . 8 )  yield, that 

The result follows by the stationarity of the channel. //. 

Using the terminology of 121, Theorem 3-4 says that , ' 

9 
there exists a distinguishable group of 



* 

We conclude this chapter with one application of 

Theorem 3.4; see 17,p.174] for proof. 
I 

Theorem 3.5 fYe a"ssume <he hypotheses of Theorem 3;4 and 

= furthefmore that the input measure X satisfies 

(i . e . with probability one the transmitted message -is --- 

(i) one of the xM 

then 



51 THE COMPOUND CHANNEL 

We now define formally the concept of a code 4 ,  as a 

measurabze mapping rX+Y - - . code is said to be stationary - 

This means that the structure of the coding device is r 

time-invariant. 

A code is nonanticipating if for all ~ E Y  

is in the a-field generated by ~...,X~-~,X~} . This says 
that the coding device need not' be clairvoyant. 
.. 

If K=(Y,W,v) - - is a channel, then a code $:X+Y - - 
gives rise to a compound channel - 

Q 

This follows from the fact that v ($ ( ) , ) is a kernel 

if v is. The measure P on XxYxW - - -  is given by 

I B 3 
- -  - -  - A I =  - -- -- v re, (x),c_l W x _ I  ---- - - - - - - - 

C, 

I g <. 

w i t h  %EJ$ - _ .. @Fy I and CEFW - - 4 - 



92 AN EXAMPLE OF CODING TECHNIQUES =e 
P 2" - 6 

Z 

Shannon's first version of the coding theorem in [l] , in 
1 

part says that for a certain class of channels we can 

choosae a sequence of codes giving us increasingly small- - 

probadi~ity of error. To clarify- this we will give a - -  

simple example of how we could encode input messages in 

this manner. This question of choosing codes to fit a cer- 

tain channel is one of considerable practical importance. 

In our example we take the binary symmetric channel 

without memory. So Y=w={O,I) and . 

.95 .05 

Suppose further that the input alphabet is {a,b,c,d)=~ ; 

FX is the set of all- subsets of X; Fy and FW both *equal 

,the set of all subsets of {0,1) ; the input measure A ,  

is such that X (x)>O for all XEX . 
c "L-- 

4 .  

We now construct the following codes: 

C1:x+y2 . such that , 



.- . - .. ~ . - 7 ,  - .  ,~. ". . . - - .  . I  - . .--- .- . . . , l l-_YII~-.  . , I-. -- -.. _ g ' --.I-- ..,..-., ",._-__-____ _-  

& 
g"" 

- 

g; 
$ . - 

g~ -;> 
.u*- - -  

- - - -~ ~ ~ - - 

;r? 
rr, 
5" 

59 
* - - - - -  - - - - - - - - - ' - - - -  +- 

7- - ~ - 

iL1 

L' 
F 
5 With this code the probability of the incorrect tran&- 

- 
mission of one input letter is clearly 

Q 
L -+ 

Let C :x4y6 such that 
2 P 

- - c;(a) =aOoOOQ=dl - - - 

The code C2 is an example of an "error-correcting" code. 

Whereas using C1 we would lose information if-one error 

in transmission occurred, this code C2, gives us the 

capability of recovering from errors. Using the def initionk 

of Van'Lint [14] we will call the number of ones in a 

particular finite sequence from Y the ~amming weight, HW. - 
> 

' The Hamming distance HD, between two elements of Y" is the 
, 

number of coordinates where they do not agree. For example, 

if' x=100000 and y=011110 then WW(x)=l , m(y)=4 , 
i 

and HD(x,y)=5 . 
Upon reception of a particular output sequence we 

use maximum liklihood decoding to determine what the 
----- --- - -  - - -  

- 

- - -- - -  - - -  - - -  - -  - - - - -  - 

most probable input sequence was. For example, if we receive 
- -- - 

- - - - 
- - 

- - 

d=001060 we will infer that the letter a was sent. That is 

we determine the di for which BD(di,d) is minimal. In our 



is at least three. From this it follows that if any one 

error occu~s in the transmission we can still decode 

correctly, in some cases even if two errors have occurred. 

Hence, the probability of -error in the transmission of 
r 7  

one letter is 

cl- [probability of no errors) - (probability of 
.a 

exactly one error) r 
% - 

/ Hnece with this second cading scheme we can reduce 

the probability of error. It is of course possible to 

create longer codes which have a smaller probability of 

error. But note that in this way we a e making the trans- <\ 
mission error smaller by employing redundancy in the coding. 

At the same time we are making the transmission rate lower. 

The strength of Shannon's Theorem is thak one can reduce 

the'number of errors in transmission while retaining a 
' 

rate of transmission arbitrarily close to -channel capacity. 

We now prove this result for a wide class of channels. 



-- -- 

9 3 BLOCK CODES 

We assume the following: 

(i) (X,FX,X) is an ergodic, stationary input message - - 
space with entropy h; 

(ii) (Y,W,v) is a stationary, WM channel which satisfies - - 
- - -- 

condition 1) and ha$ -ergodic capacity C; 

(iii) X I  Y and W are finite alphabets; 

For all positive integers b and all integers n, let 
- 
xn= (xnb+lp rx nb+bl and 

Here Z i s  an element of the space g of doubly-infinite 
b sequences from X . We will similarly define T I  GI P and 

E. 

We define a b-block code $:X+Y determined by a - - 
stationary code T:%8 with 

Note that 9 is not strictly stationary. but is stationary 
- - - - - - - - 

- - -  - - -  - - 

in blocks of b, i.e. 



Since 4 is not stationary the original definitions of 

rate, equivocation, etc., are not imnediately applicable. 

We will define these quantities for 5, y and w by . - 
dividing by b the corresponding quantities for z, y and w. 



54 THE CODING THEOREM BY BLOCK CODES 

Theorem 4.1 We assume conditions (i) to (v) of 8 4 . 3  

hold. If h<C and 6>0 there exists for some positive 

integer b, a b-block code 4 ,  such that if x is transmitted - 
through the compound channel then the rate of transmission 

- A  

exceeds h-& . - - 

Proof. Choose E such that: 

(This is possible since q (O)=n (l)=O , ) 

( 4 . 4 )  

In w h t  follows, P is the probability on the compound 

message space as defined in 54.1, and I$ is the b-block 
\ 

\ 

code to be constructed. 

\ 

Take b > b 0 ( c ) ,  with bO(~) as given in Theorem 1.9. ' 

Heilce xb can be into two sets H (the high 

probability group) and L, (the low probability group) such 

that 

(4.6) ~f ( x ~ ,  .. ,xb)=u1>B -b (hf E ) 

for all uaH. 



- 
- ---- - 

TBlke D M  7 with- M s  giTveX GTheorern 3.4 and 

Theorem 3.5, Now given that 4 is such that with probab- 

ility one ?= (Y1,, . . . ,yb) is among the distinguishable 

group u 1  of @, we have that 
( 4 . 7 )  

Also 

Fix b>max - (bo ( E )  ,M) . 

from (4.1) and (4.6). 

This implies that there exists $:xb+@ such that H . 
is carried one-to-one, onto $(H), a proper subset of 

{ul,...,uN} . All elements of L are mapped into some 

We define $ (and $ 1  by 

Now 

is in the set {u~,. . . , % I  . So by (4.7) 

Since b>l and n (a ) >O for O<u<l , the right-hand side - - - 



completely determines 3. Hence for ueq (H) 

For any uEP,  since #xb=rbI the left-hand 
b 

is dominated-by log -r- ; see [7,p.61]. 

Since 

we have 

by (4.10) and (4.2). 

Using (A31 

Now using ( 4 . 9 )  and (4.11) 

But by (Al) and (A3) 
- - -- - - n 

side of 



Thus 

.. - 
the limit the-equivocation {transmitting x+w - 2 -  

through the compound channel) is <b6 . Thus the , 

equivocation for x is less than 6 and it then follows 
that the rate of transmission is >I-& . // *  
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