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- ABSTRACT

- In “this paper we prove a generalization of Shannon's
Coding Theorem for Discrete Channels.
Formally, we assume we have k, a finite set of
elements, which is the input alphabet. We define X
to be<fte doubly-infinite product of copies of X. We
let Fx be the o-algebra generated by all cylinders in
'X. Then together with X, a probability on Fy

the input message space, X, FX,A) .
. ‘A channel is defined by:
(4) (X,Ey,y)-—a probability space Which we construct
from the finite set Y (the letters to be transmitted)
in a manner analagous to the construction of the input
message space. - - ' o
(ii) (W F ) -a measurable space constructed from the )
finite set of output letters W. v , S —J
(iii) ~v( , ) =a function on XXergiving thertrapsitiOh
probabilities. Thus v(y,C) is the probability that the
" transmitted message y will be recelved in the subset c
of W. o '
. The channel is usually assumed to be "noisy", i.e.
the message Wthh is received may not be identical to
the message Wthh was transmitted. Shannon's-Theorem says
that for a certain class of channels we can choose a code
(a measurable mapping X+Y¥) such that the probability of
_ errors in transmission is small while the rate of trans-
mission is arbitrarily close to the capacity of the
~channel. Pfaffelhuber in 1971, proved - this result for a
7 clase'cf channels (channels Wlth asymptotically decreasing
‘memcry’and‘antICIpatxcn) “that satisfy two conditions. In~

chapter 3, we show that the second of these is ‘stronger

than the concept of strong mixing, and hence by a result

(iii)

', we have



of Adler (which says that any'érgodic input is admissible
with respect to a channel which is weak mixing) proven in |
chapter 2, we can replace this condition with the assump-
tion that the channel is weak mixing. We then modify the
arguments of Pfaffelhuber and Billingsley to prove Shannon's
Theorem for a larger class of channels, namely those that

satisfy condition 1) of Pfaffelhuber and are weak mixing. .
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CHAPTER I: INTRODUCTION

§1 HISTORY

Claude Shannon [1] in 1948 began mathematically to
formalize the concepts of production and transmission of-.
information. One of his main results was the coding

theorem. Postponing the formal definition of the terms, we -

can roughly state this theorem. - .. .. . ...

Suppose we have a discrete channel with a finite
number of states. Then it is possible to encode the input
’messages so that 1nformat10n can be transmltted at a rate
approachlng the channel capacity and with arbltrarlly
small probabillty of error.

' Here the channel may be "noisy". By this we mean
that due to some. imperfection in the device the message
received may not be identical with the message sent.
‘However, Shannon's proof was sketchy and proved dlfflcult
to carry out with sufficient rigor. '

v In 1953, Feinstein developed a new approach to the
' proof of Shannon's theorem. We qdote Rhinchin [2,p.90]:
"Feinstein's idea consists in deriving from the channel
iteelf‘as'much as can possibly be used to prove Shannon's
theorems, before'codihg and eVen before connecting the
channel to any particular source." Khinchin [2], using
' Feinstein's lemma, proved the theorem for a class of
channels with finite memory and zero anticipation.

- Later, Blackwell,Breiman and Thomasian [3], proved
a coding theorem for indecomposablz\finite state channels,

'”thus avoiding some of the patﬁéIogles inherent in channels -

,ﬂwlth flnlte_memary.eWHouever*hthe cqncept of finite- -gtate

channels is somewhat unsatlsfactcry because given any
7 physical channel, it is in general difficult to determine
this internal structure.



-

A

~ In Wyner's "Récent Results in the Shannon Theory"
[4], he states that the mostlgeneral version of Shannon's
Theorem is by Pfaffelhuber [5]. 1In [5], Pfaffelhuber

~ introduces the coﬁcept of channels with asymptotically

decreasing memory and anticipation and outlines a proof
of Shannon's Theorem for these channels. He also shows
that both channels with finite memory and anticipation,
and indecomposable finite-state channels, have

" asymptotically decreasing memory and anticipation. Thus

[5] generalizes the theorems of [2] and [3].



 '§2 QUTLINE

Chapter one introduces the notation and the basic
ergodlc theory we will employ. Following Halmos [6],"
we state the functional forms of ergodicity, weak mixing,
and strong mixing. From Billingsley [7] and Feinstein [8],1

' we give two versions of the very important asymptotic

equipartition property. Again from [7], we very briefly

 define and give some properties of the entropy function.

' The theorems of chapter two originate with Adler [9].
Here we also introduce the definition of a channel and |
some of the related concepts, such-as asymptotic independ- -
ence from the remote past. It is Theorem 2.4 from this |
chapter that enables us to generalize the results of [5].
| In chapter three, we introduce the notion of channels
with asymptotically decreasing memory and anticipation

and we give some examples. We then show that condition 2)

in the definition of channels withvasymptofically. -
decreasing memory and anticipation is stroﬁge: than the
notion of strong mixing. This implies that Theorem 2 of [5]
is weaker than Theorem 2.2, which Adler had proven more
than a decade previously. We ﬁhén prove the extensidﬁ

of Feinstein's Lemma. ,

Finally, in chapter four, Qe prove a version of
Shannon's Coding Theorem for channels which satisfy
condition 1) in the definition of'asymptoticg}ly 7
decreasing memory and anticipation, and are weak mixing.
The proof’involves the extension of Feinstein's Lemma
and a modification of the proof of Shannon 8 Theorem (in

the memoryless case) glven in . [7]



53 NOTATION R e

We'give'a summary of the notation that will be employed
‘throughout this paper. Note especially the use of (tl't2]

SC is the complement of the set S. ’ .é%p
#S is the number of elements in the set S. B
v s™ means E g+ l.e. the Cartesianaproduct_of m copies of s.

’1 (x) is the characteristlc (or 1nd1cator) function of S.

-H s b i.e. the doubly—lnflnlte product of copies of S.

;f_f T T A
If seS then s will denote the t-th coordinate of s.” 4T;_f
3

(tl,t2]={t an “integer: tl<tst2}.

s esaes8, )
l+1’ tl+2' ’ tz

A.a.a.x means for all x, except possibly a set of )\ measure

If seS then S(tl,t2]=(8t

Zero.. , ; ,
g;;m a, is lim £ ? la i.e. the Cesaro limit of a, -
N+ N J =0 J ] '
S+T*(S T)U(T -8) i.e. + is symmetric dlfference.
~ L_ is the set of functlons £ satlsfylng
| T Pee, | , o
o(S) is the c-algebra generated by S. i ' °
iff will mean if and only if. : ' 3
f//. will be used to denote the end of a proof.
ERG is a contraction for ergodic,
WM for weak mixing, and |
SM for strong mix1ng.

_mpt means measure-preservlngftzansfgrmat;on,,A,HMd_eﬁﬂmmfe;ﬂ_wwﬁe,,ﬁ

b4 denotes the set of all lntegers.



\Q\ B

'(mpt) if

Let (X,F,P) be a probability»space (i.e. X is a

nonempty set, F is a o-algebra of subsets of X and P is a -

measure on F such that P(X)=1). 7 _
Let T be a measurable transformation :X+X. Recall
that T is measurable if AeF 1mplles that
7l [A]={xeX:TxeA}eF. P

,WetWillwsaytthatﬂT;is;lnvertibleﬁife i

(i) T is one-to-one,
(ii) TX-X and
(iii) AeF 1mp11es TAEF.'
We w111 call T a measure preserV1ng transformatlon

p(il[A])=P(A) for all AeF.
We note that if T is invertible, then T is a mpt

T iff

P(TA)=P(A), [7,p.2].
an ergodic transformation can be characterized as
one in which, for almost all x (i.e. for all xeX except
for a set of measure zero) the orbit of x (which is the
set {x,Tx, sz,...}) replicétes“ X. By this we mean that
for all a 1n F, the orbit of almost all x enters A with
asymptotic relative frequency P(A). This is expressed

formally by i k-1
;&ml(Tnx)—;m_E 1, (T"x)
g & k n=0
k-1 =p({A) P.a.a.X.
Note that z l (T x) is the number of elements of the set
n—O B
h(x,Tx,...Tk’Igi that lie in A.

A set AcFy -ig invariant under T {or T-invariant)
p(A+§l{A]) =0.
T is ergodic {ERG) if every T-invariant set has

measure zero or one.




,4”eAThiseisetheNSgnsew;nvyh;ghmtheﬁqghiFEWQFWanQe;se@iQW‘;ew'

A function f(x) which is F~-measurable, is sald to be
T-invariant if

£(Tx)=F(xX) . s

ks
»
&

We can now state a theorem of fundamental importance in

ergodlc the?ry For proofs see [7] and for more geéeneral ver-

sions of the theoreﬂ see Foqﬁel [10]

- Theorem 1,1 The Pointwise Ergodic Theorem.

1f stl, _then there exists feLl which is T-invariant
such that

clim £(T®x)=£f(x) P.a.a.x, and

o
E(f)=E(g). (Here E(f) is the expec;atioﬁ of £,
i.e. SEGOIP(ax).) o
Furthenmore, if T is ergodlc,vthen

f(x)—E(f) . P.a.a.x.

We can obtain one useful application by taking T
ergodic and £ to be the characteristic function of A, for
AcF. We then have

(1.1) Clim lA(T x)—E(f)
n+e

B, —Eu) ILB.L& .X . .

transformation are said to replicate X. Roughly, it says

B i T T S S



that for large n, the set'{x,Tx,..;,Tnx} has the same
statistical properties as X. _
.If (1.1) holds we say that T respects A. By Theorem

1.1 we can see that an érgodic"mpt respects each set A.

__We say. that Eo,iswan“algebraﬂif$”, L

(i) F, is a nonempty class of sets,

0
(11) El IFZ
(iii)‘EéFo implies that E® eFo

eFo implies that EfJEZEFO’ and

If FO |
The o-algebra generated by Fo,'denoted o(FO) is the
smallest o—algebra containing F,. Now from [7,p.l7] we

have

Theorem 1.2 Let FO be an,algebra_genexating_the og-algebra
' F. Then T is ergodic if 7

(1.2) Clim P (a"T°[B])=P (a)P(B)  for all A,BeF,.

n e - ' ‘ .
‘This theorem says that to prove T is ergodic on a

o-algebra F, it is sufficient to show (1.2) holds on any

- ) - : ’ .
algebra which generates F. v ‘ L e
o ~ ) ‘ | ’éiﬁfwf*

,,”WW,ALtheorem analaggus to Theorem 1.1 is the Mean Ergodic

;Theorem jG,p le]. One conseguence of 1t is the functlonal

form for ergodicity. See [6,p 36] for proof

/

v et o A b e+

is closed under countable unions then F, is a o-algebra.

e S e A A i, a1 N S A I (b B S 05

oAb RS e s+

Sl 6 et R b, RS e

o ok g e s BT b d bR

At e+ ey bl



Tﬁéorem.l.3 T is eréodic iff

Clim J’f ,(T.nx')'g (x) P (dx) =If (x)p (dx) - Jg (x)P (dX), e

T now

for all f,geLz;



§5 STRONG MIXING

| _;A mpt T is said to be strong,mix;ﬁg‘(SM) if
(1.3) ' P(A“Tn[B]r*P(A)P(B) for.dllﬂA,BeF;'és.nfw .
Equivalently if 7 ot 7 |
 lim P(F"[B}]A) ~ B (F[B})=0. - -
Hencen;:xing is related to the “Qearing-off" of the
initial conditions. As for ergodic mpts we can ptbve'the
followihg 7 - 7

Theorem 1.4 Let Fo be an algebra génerating F. Then if

(1.3) holds for all A,BeFO, then T is strong mixing.

Theorem 1.5 T is strong mixing iff

lim ff(T?x)g(x)P(dxr=Jf(x)P(dx)'Ig(x)P(dX)

>

for all f,geL,. .



" §6 WEAK MIXING

If T is a mpt, T is weak mixing (wM) iff

(1.4) Clim ]‘P(-I-‘n'[A]"B)—P () P (B) |'='b for all A‘,Be'F.

. D -

' Analagous -to theFSM,case; we have the following:

Theorem 1.6 Let Fy be an algebra generating F. Then if

"(1.4) holds for all A,B8F0,4then T is weak mixing.

‘Theorem 1.7 T iS'weékfmixing iff

Clim IIf(TnX)g(x)P(dx)-Jf‘x)P(dx)ajg(k)P(dx)|=0

n-»>w - !

for all f,gst.
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§7 THE RELKTIONSHIP BETWEEN SM, WM, AND ERG, WITH EXAMPLES

It is clear from the definitions that SM implies WM,
and WM lmplles ERG .- Following [6,p. 38] we can give an

intuitive 1nterpretat10n of these. We 1et T be a partlcular

" way of stlrrlng the contents of a vessel full of 90 percent

 gin and 10 ‘percent vermouth. Let F be some reglon of the
vessel;,Ergod1c1ty is exéressed by saylng on‘the average
V_F has 10 percentjvermouth. Strong mixihg is expreesed,byf
saying after a while flﬁillvhave 10 percent vermouth in it.
Weak mixing can be interpreted by sayihg that after a-
while F wiiIﬂhave 10 percent vermouth in it withAthe excep-

~ tion of a few rare instants during which it may be either

too strong or too sweet.

Examg;e 1. 1 A Model for a Doubly-Inflnlte Sequence of

Bernou111 Trlals.
Let X be\a set with r (flnlte) elements This set
is assumed»to be the number of,possible’eutcomes of an
experiment; Let E be the set of all subsets of X. We

define the probability p on X by assigning to eath xeX a

__nonnegative p_ such that .. e —

xeX



FLet (X F, P) be the doubly-lnflnlte product of copies of

the probab;llty space (X,F,p). Now, xeX is a doubly-;nf;nitev

sequence (;..,x_l,xo,xl,f.;)‘of‘elements from X. We can
interpret x as an infinite number of Bernoulli trials,IXA'
being the outcomevof the trial at-time n.
The o- algebra F is generated by the (thln) cyllndere,f
These a are the sets”of the form 77777 .
. {xeX: xj=1J with 1JeX and Je(n n+k]}.
(Recall our nonstandard usage of- (n n+k]- to denote the
set {j an 1nteger. n<j<n+k} ) This set is called the
: cyllnder determined by the interval (n,n+k] and the
sequence: (ln+l’ln+é"f"in+k) | o
We define P on F by its values on cyllnders
P{xeX:x.=1 with i eX and je(n n+k]}-n+k p; .
=="3 73 S 3=n+l j
The fact that this uniquely defines P is a oonsequence of
the Kolmogorov Exten810n Theorem [2,p.3]. |
We, now define T, the shift-on X, (1n this example T
’15 the Bernoulli shift) by ~
Tt...,x_l,xo,xl,...)=(£..,xo,x*¥x2,...) or
(Tx) =

-

n~*n+1 . . : . :
(Recall that (Tx) is the n-th coordlnate of Tx ) T shlfts

 each coordlnate of x by one to the left.

"'T is 1nvert1ble, a mpt, and is strong mixing. To prove

the last assertion, let A and B be cyllnders in X. Then A

S I
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'Wﬁn[g] is also a cylinder in X, and if n is taken suffic-
o iently large, the iﬁéervals determining é_and‘ﬁn[g] are
disjoint. Thus 7 |

P (20T [B]) =P (A) P (B)

for large enough n. Thjf}£%§3)holds for cylindefs( Applying

" Theorem 1.4 we are done.

To indicate one other application of‘Iheorem 1.1, let

for ieX o o o o , B
o 0 if x,#i : A R
£(x)= '
“ 1 if,xl=i .
So that
0Ly g )
n_l< - ' .
Now I f(TkE) is the number of occurrences of i in {xl,...
k=0 E . o

xn}.’Hencevclih f(Tki)_is'thevasymptotic relative frequency ‘

n-+w .
of occurrence of the outcome i in the trials at positive

time points. By the Ergodic Theorem this limit exists

is the strong law of large numbers for Bernoulli trials.

See [7] for further examples and applicatiohs.

g and is E(f), which is Py almost everywhere. Note that this
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§8 ENTROPY

We begin with a number of definitibns.;Wé wili‘say
A={A1,A2,.,.,An} ié‘ah F—dééompositipn of X if A is a
finite collection of nonempty elements from‘F forming a
,,partition”of‘X,,ThemAifaremca}ieq ﬁhéhgtomslof ﬁl‘Thergfm1,
is a cbmplete duality betwéen F—decomPOSiﬁidhs and finite
subfields (the terms algebraAana field are equivalent) of
' F. By this we mean a finite subfield of F induces a unngé

F-decomposition, and conversely.

The entr0py functlon n(t) for 0<t<1 is'defined by

0 if t—O
nit)=
' -tlogt if 0<t<1l ..

Here we let B be the base of the logarlthm It is easy to
’verlfy that n(t) is continuous except at zero and is non-

negative.

We can now define the entropy bf;a'finite field A with.
atoms {A ,...,A } as - |

RA)= £ n(ea;))
, i=l ,
S + S
==z P(A )logP(A S
1‘1,””7 :




B S S

pe ]

If C is another finite subfield of F with atoms

{Cl,...,

given C by

Cm}, we can defife the conditional‘ehtropy of A

o ,
H@C)z P(C.)E n(P(a,]|c.)) .-
| 4=1 J i=1 1"3 :

From [7] we can give some intuitive ideas behind

'”fhesé‘defihitiéhé"Tﬁé“éxpféSBiOKA e

r .

(1.5) Zn(p )=-L lp ;1ogp;

i=1
is a measure of the amount of randomness in a single roll

of a die if py,...,p._ Trepresénts the probability of each
1 r ’ ;

‘of the different faces. Kolmogorov derived.(1.5) from a

set of_akioms one feels a measure of randOmness:should

satisfy. A die that one would aséﬁmelis the most random
would be one w1th each P; ~l/r. Note that thlS ch01ce of
Py maximizes (l.S). At the other extreme, (l 5) is zero

if and only if one pi=l. In this die the outcome is the

- least random. Thus (l1.5) measures the randomness in the

‘experiment consisting of one roll of the die. This we will

call the entropy of the ekperiment. It also measures the
information in the experiment, the amount we learn fron -
the outcome. |

" Somé of the basic properties of the entropy of the .

finite field A and of the.conditionai entropy of A given B.-
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where B is another finite field, are the following
(al) H(AvB|C)=H(a|C)+H(B|AvC),
(A2) H(A|C)<H(B|C) if AcB

(A3) H(a|C)<H(A|B) - if Bcﬂc.

Here C is another finite field and AvB denotes the o-algebra

‘* génerated'by~A~anddB.m—



Example 1.1 can easily be extended to obtain a general—
ized shift on X. Here T is assumed to be the shlft as .
before, but now P is any probahility preserving T.' |

Let us denote by H(xo,xl,.;.,xn_l)_the entropy,of the
finite field "ﬁavj_ng “as atoms thev ™ SetS,’*(I‘ecal"lihg‘t‘haﬁ’ R
#x=r) {xeX: x[o n- l]-u} for ueX". The Kolmogorov—sinai
Theorem then 1mplles that the entropy of T, denoted h(T) 1s

h(T) lim l/n H(x ,x . e e X ) v.
7 e 0’1’ 'n-1’ .
x

‘The asymptotlc equlpartltlon property (AEP) 1s a con-

- sequence of the follow1ng theorem; see [7,p 128] for proof

Theorem 1.8 The Shannon-McMillan—Breiman Theorem.
If T is an ergodlc Shlft then
lim { -1/ log po(xo,xl, ..,x l)}—h(T) P.a.a.i.
n-+w
Here po(xo,...,xn_l) is the probability of the sequence
(xo,;.,,x -l) being observed. More specifically, for any
positive 1nteger n, the mapping X into (xo,...,xn l) induces
.a probability on x". The probablllty of such an n- tuple
u=(u1,...,nn) is

‘p01u5=Pf§£§ix{§,h-1}=ﬁ)"f“ 7777777777 ';Wﬁf;“””hé"”m”



J—

18

into two subsets. The first subset has low total probability

and the second subset consists of n-tuples with probabil-

ities near p~nh(T) Thus we state from [7,p.135]

- Theorem 1.9 The Asymptotic Equipartition Property.
‘ ' Let T be an ergodic shift with eéntropy h. Then for any.
Vﬁoéitiéé”E”Ehe}é*éki§£é"ébﬁdsiiiéé"iﬁ£é§ér'56kéfﬁéﬁ¢hf£ﬂét"l

if bzbo(e).then xP décomposes into two sets H and L such

~ that

‘; P tu)=P{x eLl<e o J
 ueL 0 (0,b] ™"~ | '

‘and such that

g-b (h+e) -b (h-¢)

for.any b-tuple ueH. | .
Anothexr version of the AEP is given by [8,p.88].

Theorem 1.10 Let T be an ergodic shift with entropy h.

Then for all positive € and § there exists an integer

n(e,8) such that if S is the set of ueX" for which .

|1/n log po(u)+h[<e

does not hold, thén
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CHAPTER II: ERGODIC AND MIXING PROPERTIES OF CHANNELS

§1 THE CHANNEL

Let (X,F ) be a measurable space (i.e. a set X and a

oc-algebra Fy of subsets of X such that \V, r%x) we Wlll

. 2 R FEF e S

.,denote by (§,Fx), as befbre, the doubly-infinite product

space . A S

If X is a probability on F, we call_(g,Fx,A) a

message space or information source.
Let T denote the shift on X. We shall say the
message space is stationary if T is a A-mpt and we shall

say (§,FX,A) is ergodic if T is an ergodic A-mpt.

In addition, we assume we have the following

doubly-infinite product space

@0

(LEH=T  (Y,F),

o ... j=—w

- where (Y,FY) is a measurable space.

R ” - ————

We can now define a channel'as a triple

((X, F A},(Y F ),v( )),,where v(' ) is a functlon A

onfngY such- that

(1) v(x ) is a probablllty on F A a.a.x,

(ii) v( ,E) is a measupable function of x, for
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” all £ EcF »
The function v(?iij is ;eiled the kernel of the channel.
For previty, we will write the channel as {gjg,v).

| The channel will be called stationary ifi

v (Tx,TE)=v (x,E) k.a}a;g_and for all EeF,. .

Wo,,A,o,,,HerewweﬁhaveﬁdefingdulAQnmﬁixwéswthg4§i§§?EAP¥QQHQFu9§W.Mmumﬁmwdm

the shifts on g and Y, viz.

T(x,y)=(Tx,Ty) .

In the above, X corresponds to-the input aiphabet,'
. a set (usually finite) of letters to}be transmitted.
Hence, (X, FX,A) describes the input to the channel. Sim-
ilarly, ¥ corresponds to the output alphabet and (Y F )

, descrlbes the output A message is xeX with the 1nterpret-
" d

at:|.onvthat:»:.l is the letter sent at time i. The kernel
v{x,E) is the pfobability thatrtheemeesage/k after being
fed through the channel w111 lie in a subset E of F

'Finally, channel statlonarlty means that the structure of

the channel is t;me-lnvarlant.

Example 2. 1 The Channel Without Memory.r

Let (ch} be a stochastlc matrix (1 e. each row con—

‘sists of nonnegatlve entrles Whlcﬁ sum to one) The “rOWS and e
columns are indexed by elements of X and,Y»respectively.'We~

can now define the kernel by



Let

—— — n
vix,{y;=k;: l=m,...,n})=N c .
, 1 1=m *1%1
Recall that v is uniquely defined by specifying its
values on cylinders. ‘ B | ' A
This channel is stationary since each letter is . s

treated independently. Here,.cjk is the prbbability

. that the letter. kAlsArecelved,glven that<the letter-j — ——

has been fed into the chlannel.

Take X=Y={0,1}; this is the binery symmetric channel.

1 oY
(cjk)= -
In this case we have a "noiseless" channel.. It has the
property that if the'messege §_is sent, X isireceivedt:
with perfect'accﬁracy. | ,,.p L

Usually, however, we expect the message to be affected

H

) by the presence of noise in the channel ‘For example,“

w1th the blnary symmetric channel we may have;f
_ B S S |

C{eLu)= N
¥ Los 3

In. thls 1nstance, the recelved message may ‘not necessarlly

”correspond exactly to the transmltted message. The

presence of nclse in the channel may lead to a loss of

1nformatlon.

~ Coding theory deals ‘with the problem of ccaing“

messages so that the transmlssion of information is

effective despite the presence of noise. -



e

§2 THE COMPQUND MESSAGE SPACE

(X A} with (X,¥,v) deflnes a compound message

 space (§§§,FXXFY,w), where w is a p:obablllty on FXXFY

— -— -

which describes the joint distribution of ‘the input and

output of the channel. We define .. . . - o

(2.1)  w(EE=|vEE) @8
C S

for CxF, and ‘ExFy.

We now prove this is the correct expression. The
integral is well-defined since v is a kernel. For

: geFEsz takelmore'generally S
(2.2) w(gd_)=jv(:_g, {y: f(i,x)‘egd_})‘k(dz{_).
. X : .

Let A denote the class of sets in F xF, for which the

integrand in (2.2) is measurable,-and let B denote the
clase of measurable~iectangles.‘ If MeB then MeA since
{y: (x,y)eM} is a section, thus measurable since v is a
kernel, Halmos [1l1,p.l1l43]. | |

If M is a finite disjoint union from B,’ then MeA |

' since we can then express the 1ntegrand as a sum of

'measurable functzons;ﬁ Thﬁs A contalns the ring (p rlng 13 -

Ta cIéss “of sets closed under flnlte unlons and flnlte

intersections. ) generated by B, [ll,p.l39].

BB TR o Ll A e 1T s e b vt



A is a monotone class since a limit of measurable
- functions is measurable. Hence, by the monotone class

theoremn, [ll,p.27],'A_COntains ¢(B), which is FXXFY-

Hence the integral in (2.2) is well-defined. Since v
is a kernel, ahd‘Qg,F +A) is a probability space, it
follows that w is a probability.
| Furthermore, w is the unique,probability satisfying
(2.1) since any two probabilities that agree on a ring
must agree on the generated o-ring [11,p.54].
‘From the compound message space can be coostructed
the output message space (¥,Fy,u) with
'u'(_E_).=w (X%E) , 3 .
=;V(§J§)X(d§). forVEgFg.
% =

We have the following result.

Theorem 2.1 If (X, FX,A) is a statlonary ‘message space
and (X Y,v) is a,statlonary channel, then the compound
messagerspace'and the output message space are both
statiopary.“' 7 |

Proof. Let A=CxE w1th CeFx,EeFY (We note thar it is
sufficient to show the result for measurable rectangles ).

S e I —————-_-o

S }v {x,TE)A(dx) B

TC .

Now using a change of variable E;Tfli,
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=[v (Tz,TE) A (Tdz) .

c , B
Since T is a A-mpt, and by channel stationarity
fotz e
& ,

=W (CxE) .

The result for the output message space follows by

c=x. //-

o

setting



- (Recall . that E
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' §3 PROPERTIES OF CHANNELS

We let K~(§_ v) be a channel. .

(a) (Khlnch;n) K lS sald to have flnlte memory if there

ex1sts a pOSltlve integer m, such that if EeFY (t t+n]

Y, (£, t+n]
by the cyllnders in Y determined by (t, t+n] y and 1f

Lt—m t+n] (t-m t+n]

- t [}
(xt-m+l"="xt+n) |
for t an integer and n a nonnegative integer, then -
Vix,E)=vix',E). *'
Hererthe message segmept x(t,t+n] depends alee qn'

the m letters immediately preceeding Xy The smallest,sueh

m is called the length of the memory; .if no such m exists

the channel igesaid to have 1nf1n1te memory. In example 1.1

we have m=0.

denotes thefdialgebra»generated”ww,ﬁﬂ,

(b} (Takano) We‘will say K is‘independent from the remote =

past if there exists a‘positive integer m, such that if

EeFY (i,51 ‘and FEFY (1,k] with i<j, 1<k, and J+m<; then

vtgﬁEf?)=v(x,E)v(x F)  A.a.a. X 7ﬁ' f%j

l 1 we have =0,



T "fC) —(Adler) K- ISﬂwtOmﬁiYTndeperﬁmtimyﬁe =
remote past if for any two cyllnders E, FEF

lim [v(x,T EAF)-v(x TnE)v(x F)]= o A.a.a.x.

n--oo

Khinchin stated that if an ergodic message. space

is fed through a channel with finite memory then the

'output message space and the compound message space are .
both ergodic, i.e. using the terminology of -[8;,p.87],

' an ergodic input is "admissible" with’resPectto'achannelb
with finite memory. However definition (a) iS[insﬁfficient
to giVe'thevresnlt.. |

It was first proved bvaakano by strengthening the
definitionlto include (bf as well The result we prove,
due to Adler [9], uses only (c) of Wthh (b) is obv1ously
a spec1a1 case. It says that any ergodlc 1nput is admls-,
sible with respect to a channel whlch lsrasymptotlcally‘

independent from the remote past.

Theorem 2.2 Let (g,Fx,A) be an ergodic stationary:message
space and (X,Y,v} a stationaryVChannel_aSYmptotically~
independent from the remote past. Then the compound

) _ message space and the output message space{arepboth

L ergodrc. S ' B

. Proof. BerheorenLl,zfto prove 1 is. ergodlcrj.t sufflces,,,,,,r,,,,,,,,-i o

to show

Clim w(T"A"B)=u(A)w (B)

n-+ew
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for A=CxE, g=gxr with.C, D cylinders in F, and E, F

cylinders. in F

Y’ ,
g j v TBY G, (@)
N n=0 o
T On
- - K
1 N- 1 o
‘ = _ I Iv( E)l (T x)v(x,_)l (x)A(dx)
B TN n=0" o =Re |
X
Now, by the»stationarity of the channel
R N-1.
':'_ X IV(T X E)l (T x)v(x F)l (x)k(dx),
N n=0 - ,
X

<which v v
o fv(g_,g)lc(ﬁ)‘xcdg) Jv(}_g,g)lb(x_’)x(dg) as N
x oz
=w@w(B). | -
This follcws from the functlonal form of ergod1c1ty,
Theorem l 3, w1th ' »
| f(T Px)=v (T "k E)i (T;ni)}'and
g(x)-V(x E)l, (x) |
‘ Both are functlons 1n L2 We note that T is ihvertible
, , I

so that we can take TP as well ae T, Now by the~'-

: asymptotlc 1ndependence from the remote past we have

v (2, TEO) ~v (x, E)» V;x “guio; a.a.x

-as nio, A fortlorl

o [v(x,T"EﬂF) -v (%, F)-V(x "E)]J. n;

L~

2 ()90

A.a. a. x as n-oo,



Egéﬁ the Lebesgue Dominated Conve:gencé Theoreﬁ

lim J Iv‘(}_(_,Tng:_ﬁE)—vi‘(x_i_z,TnQXV'(J_{_‘,g)]’)\Cdg_c‘)=0,

n-»-o ’ . . . ’
TchD

andisincé convergence is stronger than Cesaro convergence

Clim I IV({,Tngﬂb;_)-V'(J_{,Tng)V'(}i,E)])x(d}_{_)=0

n+o

- 1crp

8

-

WA a.a.x. Comblnmg these VLl.‘LIﬂltS we obtaln

N-1
lim 1 Z w (T AnB)—w(A)w(B)

N=-1 ) S
=1lim §{ 1Z I v (}_{,Tnghg) A (dx)
"N+« } Nn=0 n T
. T 'CNhD.

R-1 -
-1.% JV(i.Tng)v(ggg}A(dg)
N n=0 ' ‘
TCND

[ veTBvE B @) - e@em)
" N n=0 n.. ’ e .
’ T7enD
=0- 7
The result ‘for the output message space follows by letting

c=D=X. //.

We now rﬁake some further defini«tions".' For ’che follow-

_1nq we asaume thaLall measu::e&amichannel& are— sta%xen—r—»;'—f——r———'fﬁf—

ary. We let K«V(X Ivj be the channel‘,, ,,,«,,,,,’,’f,,, ,,,,,,,, ,A,,,,',,-,,:,,,fi_,,,_,‘, ,,,,,, e

'(l) K is sM if it is asymptotlcally J.ndependent from the

remote past.



”V”W**ﬁ*“*”;““fZT”K”i§“WMﬁif”fof*éﬁy*two“c§1+hdA's‘E‘F*F“tﬁere 1s a
| sequence of pOSlth& integers J, w1th den51ty Zzero such that
:for all neJ©
(2.3) ’ Iv(x TnE“F)—v(,x T E)v(x F)]1»0 as n»= IA.a.a”.ii.‘
(the density of J is the limit of the ratio 1/n-#(3™(0,n]))
Bj for all n EJC, we mean that if n is restricted to Being
~in 3% then (2 3)Ahoids. A condxtron equlvaient to- (213) g
(2.4) - Clim [v(x T ENF) -v (x, T E) v (x. F)I— ~ A.a.a.x.
This equ1v212nce is an ‘immediate. consequence of the foll— | .
ow1ng lemma, see [6] for proof. S
. Lemma'2.3 If'{an} is a bounded'secuencerf real numbers'
then | |

Clim la _-a|=0
Clin |a -2l

1ff there ex1sts a sequence J, of pOSlthe 1ntegers such

that the*den51ty of J is zero and such that 1f neJ then

’ lim a_=a.
, T n

(3) K is ergodic if for all E,FeFy -

Clim Iv(gkmngﬁg)-v(g,Tng)v(§,§)]=0 A.a.a.x.

n+w

We can formulate the definitions of chapter one for

© 7 the input measure A as well.
(1') X is SM if for all C,DeF,
1im [A{T"cMD)-A(C)A (D)]=0.

n-+>w
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(2%} A is WM if for all C,DeF

clim |a(r"crD)-2(C)

N>

Equivalently, if there exists J, a se&uence‘ofvpositive
integers with density zero, such that if ned®
A(TCcAD)>A (C) A (D) .

(3') X is ergodic if for all C,DeFy

Clim [A(T™CAD)=A(C)X(D)]=0.

The theorem that follows is an extension of our main
result (Theorem 2.2). We employ the same technique and not-
ation used in the proof of theklatter.

Theorem 2.4 If (E;FX,A) is a stationary ergodic message

space}'and if (X,¥,v) is a'stationafy WM channel; then

Vthe compound message space and‘the output message space

are both ergodic. Thus, any ergbéicvinput,is admissible -
with respect. to a channel which'is WM.

Proof. For an ERG input, we have from the proof of Theorem

2.2 that | | -

Clim j v (x,T°E) v (x,F) A (dx) =0 (&) & (B) .

R "*‘-’BY*'.the’ WM jpropertyi,pf,, the channel ,-we have that there exists =

J, a seguence of positi?e integers with»dénsity zero, such



-~~~ that for all ned°

1lim [ v(x,TENE)-v(x,T E)v(x,F)]=0 A.awthx.

n->« .

Then for all neJc,

lin [ v, T v (6 B (5, ) 1 (a0 =0
n-»<ee ’ .
T'chD

~A.a.a.x. Now by Lemma 2.3

Clim f - [v(x,TTENF)-v (x,T'E) v(x,F) ]A (dx)| =0

n->c : » .

T"cnD

A.a.a.x. Now =

Clim J [v(i,Tngpg);v(i,Tng)v(ﬁ,g)]A(d§)=0

nr<e . . .

T°CcND .

— —

A.a.a.x. Here we have used the fact that Clim Ian-al=0 .
: : . n-row

implies that Clim a =a, [6,p.38]. To complete thesprddf we

nrw

combine limits as in the proof of Theorem 2.2. //.

To complete this chapter we summarize some of the
results we have proven together with related results from
[9]. For the.latter) the proofs mimic the proof of Theorem
2.4, using the appropriate functional forms equivalent

to SM, WM, or ERG.
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7 Channel o o - .
Input> (g;g,v)' ' - | - : | ‘ RS
;4(§'F>»<-'X) - o sM
a ERG ERG | ERG
sM | wM SM

-0f the input (row entrY) and of th»phannel_(column entry).
Note that the method of proof we have employed is
not applicable when the channel is only assumed to be
ergodic. This is because in the ergodic case we have no
' Ch&radterizationJanalagbué'to (2.3).'ﬁ”
' These statements summarized in the tablé, are the
strongest Epssible in the general case. This can be seen

by setting .

e

"'v(§,§)=u(§) for all xeX, with u some prob- -
ability on Fy. Then

w(DXE)=A (D)u(F) for DeF, and FeF,; that is, w is

X

the direct product measure Axu. It can be shown that w =

will take on the weaker of the properties (SM, WM, or

" ERG) of A or of yu.




" conditions on ml,m (1ntegers or iwj:

CHAPTER TII: CHANNELS WITH ASYMPTOTICALLY DECREASING.

| MEMORY AND ANTICIPATION .

' '§1 DEFINITIONS AND EXAMPLES

I3

Let K=(X’Y v} be a channel. We consider théffdllbwing"

a) for all finite 1ntervals (tl,t ] ‘and each cyllnder
DEY determlned by thlS 1nterval, we have |

v(x,D)=v(x',D) whenever

=x"' .
(tl ml’tzfm2]<X (tl—ml,t +m2]

b) For all pairs (t ,t2]/and'(ti',t2'] of finite intervals

and all palrSvD and D' of cylinders in Y that are
determlned by these Lntervals (respectively), . we have~ for
all xeX (or‘k.a.ati if there %s a‘probablllty A on X)

b, 7 DnRR DY) =v (x, B¥D) v (x, BE D)
(Here R isvthe:right shift, i.e.’the’invefse éf tﬁe ehiftan
as defined ihrchapter 1.) | | |
whenever k and k' are integersrsuch that

k! —k>t -t.'+m

2 71 1°

That is, whenever the _separation between the 1ntervals

determlnlng the cyllnders RkD and R D' is greater than ml.

Now the infimum m, of all o, satlsfylng a) for some
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my, is called the anticipation of the channel K. The
- infimum m. of all m, satisfying a) and b) for some mé,
is called thefmemory of K. . Thus a palr ml,m2 satisfies

a) ana b) iff ml>mm and m2>m .

"We will say K has asymptotlcally decrea51ng memory

and aﬁtlclpation 1ff

Condition 1) for 3%; finite intervals (tl,tz] and each

~_output event DEF S ‘that occurs 1h thlS 1nterval
Y (tl,tzj
we have
: Al, ' '
Qfxi% v(x (-oo,tl—ml]x(tlfml,t2+m2]x (t2+m2,m]'P.)
my > ' '

=v(x,D)

Unifo:mly:with respect to tl,tz,g,ivand x', for all §,x g§

{ or A.a.a.x and’g‘).‘ Here
x' X, e x' e
(==rtymmy 17 (e mmy Bty 17 (Bptmyp ]
=(...,x‘t -m»'xt e 4+17° ¥ am ,x't tmalf )
A I R R 2 M i S

Another formulation of condition 1) is the following:
for any positive ¢ there exist ihtegers m, ,m, such that

for any finlte interval (tl,t ] and every output event D

occurrlng in thlS 1nterval we have

“|vix,D)-v(x',D)|<c  whenever



X (t,-m, ,t +m j=x'(t ~m t'+ﬁ 1
17172772 bRt T Sy

1<

Condition 2) For each pair“of'cylindersﬁg,g‘ in
, o ,
1im - [v{x,RFcrR® ¢')-v(x,R¥C)v (x,RF ') =0
K'=kse T T T T 7

for all xeX (or A.a.a.x)..
... ... This condition requires that two output messages
that occur in different intervals given (almpSt) any X,

are almost independent if these intervals are sufficiently

 far apart.
It is clear that any channel with finite memory and

anticipation satisfies conditions 1) and 2).

We will now constrﬁct éXémplés; 7

‘Let 2'and\¥ be finite nonempty sets. For all Xexvrr‘
letAéky[x)Abe“a piobaﬁiiity oVer»Y; Furthermore, assﬁme
ply|x) is depen&ent on x.; Otherwiserthe‘outputrwould
be independent 6f the>input and no information could be.
passed through the channel.

Let e(1)>0 for'all te2 (Recall that Z is the set
. 5 - N
of all integers.}, and ‘

I e(t)=1 . Define
e el ;,,»,,*,,‘71;2;,,

—————

s E)E%,,9,&2@&_;&,&?2 _ for teZ.

This is a probability over ¥ for all x in X. Now let



'Tﬁis;is-also a probability over ¥ for all XeX; see Neveu

[12,p.165]. Wé{will now specialize this example.

 'Exam§ie“3.l Take

0 elsewhere.

vix,C)=I {f p(C,|x,_)e(n)}
%91 iy L

=It['p(CtiXt) ,

for xeX and CeFy.

In this case each letter is treated indépendentiy;
Ve @Q=p(Cylxg) |
is the probability that Ct is received givén that X is
sent through the channel. This is clearly the channel
without memory, example 2.1; it has memory and anticipatioh'

equal to zero.

Example 3;2 Take

1/3 if 1=0,%1
e(t)= :
0 elsewhere.. .

777777 *"QTE;EIEH*1731@{@;Ti€:i7¥§(C£TiET¢FTCQTXEIETT“75””"fm*W””’
t - -

We claim that this channel (with X and Y as before) has

memory and anticipation equal to one.



Proof. (i) To show ma=l.,Let (tl’tz] be finite; let C be
a cylinder in Y determined by (tl,téj. It suffices to
show -
v(i,g)=v(§f;§) whenever
b =y ‘. .
(tl-l,t2+k] (tl—l,t2+k]

t

_for k a positive integer. From the definition of w3t oo e

follows that for all xeX |
v, (x,0)=1

Cif Ei(tl—},t24k] and it depends on x, if telty=1,t,+k].

Thus the result follows. [

(ii) To show mm=l. This is clear since the
condition

[ _’vgb
k .kiF2 ty +1
guarantees that the iniervals determihing the cylinders
t .
ch and RF C'" are separated by at least two. The

result then follows from the defln;tlon of V- /e

From this type of argument we can see that the

anticipation corresponds‘to the number of e(t)>0 for

p051t1ve T and the memory correspoqﬁgﬁto_}?gﬁgumbq;ugg

e{1)>0 for. negatlve . In thlS manner we can construct
L ~ e L e — —_ = —————— — - } Tt T T T T
channels w1th any flnlte or 1nf1n1te memory and antic-

1patlon.



-

Example 3.3 Suppgeeﬁ»ﬁ 77777777777777777 o S U
Ee(T)=l
T

as before, and furthermore that

xQ
z z e(T)<e .
i=0 |t|>i

With X and Y:as before, K=(X,Y v)Vhas asymptotically

decreasmg memory and anticipation. The proof of this ..

fact is lengthy but reasonably stralghtforward

S
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82 INleCOMPOSABLE FINITE STATE CHANNELS
’ ~.

For the remainder of.thislpaperrwe wili assume X énd
“ Y arelfinite, nonempty sets. o
Let S be a finite, nonempty set and for all xeX,
4’”“K;(X)Y S’Y) ig called a flnlte state éhannel.r The elements}fuw
of S correspond to the p0551ble states of the channel .
and y(s" Xy{sfg)itgpresents ?hQNPFQbap%l;tY,Of_gOlng,tQi o
stare s; and outputting y;'givenvthe input x ahd'preseht j
state's.':_
'Forrtez, seS let |
o(s,t)={s'eS: s‘t;s}xz.
o e
This ds-in FSXY(t ol for all t t -
‘This'iS’thevevent corresponding to béiné in state s
at rime t. If t ié gn?inreger and m a positive iﬁteger,
let C be é’(;hin)vcylinder'in S determined'by (t,t+m]‘
and's(m)=(slé..;,sm)esm; 1otv2'be a oylioder inrg 7
determined by {t,t+m} and y(m)=(yl,.,1,ym)er. We define

for soeS and xeX

1y o U e R e+ e s SR A L et

i=1

A

e ety n T viepyilsg ey

I follows from the Kolmogorov Exten51on Theorem [7,p 3] :

¢ b A e

that for,allrtez; ses, xeX, (3.1) 1nduces a unlque'
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probability Yt(!]q(s,t);xf on FSXY (t =] This'probf

ablllty has the property that if - EeFSxY (tl'tz] nith

tl'finite, then vy, (ch(s;t )}5) depends only’on
: 1

ft N ]. Thls follows immediately from (3 1) and the
lf

fact that E is generated by cyllnders determlned by

”At,(tl ] SR - |
) Secondly, 1f DeFY (t,=] " with t finite then
(3.2) ,—Yt(chr(sft) X)= Yt+1(RDLc(s,t+1) Rx)

‘Again this follows easily from (3.1).

A finite state channel K=(X,Y,S,yv}) is called
indecomposable if the following holds:

¢

Condition ID: for allwpoeitive e,jthe;eiexietsﬁe'ppsitive

integer?No, such that fof\semerinteger t (Hence for all
Tt by (3.2).)\and evefy s,s',s''es, geﬁe(or A.a.a.i), mzNo,
we have ‘ '
lyt m(c(s t)}G(S'E) m),g)fyt_m(a(sjt)]d(sfi,t-m),gl

<t

Roughly,,this means that the effect of‘theyinitiel stateily

wears off as time increases.

 Given an lndecomposable finite state channel,

K=(X,Y,8,vy}), we can construct a channel K=(§,g,v) ;whieh‘

A bt
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- is stationary and has Zero_anticipatiOn. For ‘QeFi , let

It éan be shown (see [5]) that this 11m1t ex15ts 1ndepend-'

Vv(x,D)=1im Yt (SXD|o(s',t—m),x) .
m->e

"ently of s and is unlform in t,D,x and st.

Now, from [5] we can state the follow1ng result.

. e e e C D

Theorem 3 1 Let K—(X Y S,Y) be an 1ndecomposable flnlte

state channel and let K=(§,z,v) be the channel_construCted
frole.;ihen X ﬁas”asymptotically,decreasingfmemory and

anticipation.

We can now give examples from Gallagher [13], of f1n1te

state channels whlch can be shown to be 1ndecomposable.

Example 3 4 A Slmple Model of a Burst~error Channel.

ThlS is an example of a channel where errors tend
to cluster together ln "bursts". State 0 corresponds to
relatiﬁely:geed,transmission of_data,rwhile state,l
eorresponds toethe‘error-prone'phase of the channel.
State’traneition'dlagram: pij‘represents the
prebability'of'going fromvstate i terstate j.~




i -
: L a2
- Input-éutput probabiiities:‘qij is'theiprbbabiliéy -
~ of receiviﬁg;j‘given that i was sent. |
In state 0 ' In state 1
g =000k gy g=a2E

: qqq=-99999 . gqp=-10

qpq=-00001 © qp=e30 .

Note that in this example the state transition probab-

ilities do not depend on the input.

"Example 3.5 A'Simplé.Model of IntersymbollInterference.

In this examples the state at a given time is the same

as the input at that time. The probability of an error is

gre;tervlf X, #%X,_q than when x =x _, .

State Ep&nsitidn'diagram




T L e R UL ke e s s e e ek A 4eme n r e L rsamies e et v

¢ : _ :
Input-output probabilities:

In state,O - In State‘l

9007

999

'qlo."-‘

q00=.990

.010

qp1=-010 dy=-001 .
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- §3 THE RELATIONSHIP BETWEEN STRONG MIXING AND ASYMPTOTICALLY

DECREASING MEMORY AND ANTICIPATION

fhéofem 3.2gﬂLet K=(X,¥,v) be a channel with asymptot-

ically decreasing memory and anticipation. Theﬁ_K is SM with
_respect to R and with respect to T.

Proof. By hypothesis, forkanf two cylinders C and D in ¥

lim [v(g,ngbRk

t . "k kl

D)-v(x,R°C)v(x,R" D)]=0 .
k' ~k+= T : ‘
Take k=0 and let k'»« , Then

L k' k
lim [v(x,COR™ D)-v(x,C)v(x,R

k!> .

'D)]=0 .

This says that K is SM with respect to R. Now take k'=0
and let k-« ., |

lim[v (ﬁ,ng"Q_) -v (§,ng)v (x,D)1=0

—k oo ,

lim[v (z,7%cPD) -v (x,T°C) v (x,D) 1=0 .

k2w

This says that K is SM with respect to T. //.

Furthermore, it appears that asymptoticaliy décreasing
:memory‘andhanticipation is a stricfly stronger propérty than
-strong mixing. The fofmer allows the cylinae;s g and D to
'~ be shifted arbitférily}'6hlyffédﬁiiiﬁéyfﬁéfwﬁﬁé;diéféﬁdé’”ﬂ””"
“"between the intervals determining these shifted cylinders = =

- becomes large. Strong mixing, on the other hand, allows



only one of the cylinders to be'shifted, the other being

fixed. | | :
Theorem 2,of‘[5],"$ays thétAany eréodic inpqtris

 admissible with respect to a channel with asymptotiéally

decreasihg memory and anticipation; Iﬁrchapter II, Theorem

2.2 (2.4) says that any ergodié input'is admissible with o

respect to a SM (WM)’éhannel. fﬁéﬂéa;tdéﬁ;; Eﬁé;édﬁﬁo” ”M7W

" theorems are formulated for the left shift T, rather than

the right shift R (as in [5]) presents no?probleﬁ.,This is, l,

becausé if T is invertible, T is ergodic iff 72 is; see |

[7,p-9].

By the above remarks and Theorem 3.2, we can see that

Theorem 2.2, and a fortiori Theorem 2.4, are stronger than

<Theorem 2 of [5].



. §4 CHANNEL CAPACITY - - .
_ Let‘(z,Fy,A) bevaﬁ input message space and let - N
K=(Y,W,v) be a channel. We have three shifts
(1) R¥xW Wlth ‘the compound measure w on YXW
(11) RY with the probablllty A on Y,.and
(iii) Rﬁ with the output measure 1 on W.
' We'defihe'the'ratetof'transmiésiOn'R{A), of (EJEylA)'

over K by

R(A)—h(RY)+h(RW) hRye) -

From [7,p 156] we can obtaln another formulatlon.

’R}A)=llm 1/n {H(yo,...,yn_l)+H(w0,.-.,wn_l)

n-r«

‘H(Yo""'yn—l’wo""’Wn-l)}}

=1lim 1/n {H(wo,...,wn 1)

n-ro©
‘H(WOI s e s 'Wn‘liyol""Yn_l)}
=1im 1/n {H(y,/sees1¥n_q)
e 0’ 'Tn-1

-H(yo,...,yn_llwo,...,wn_l)} .

This is the amount of information received per letter.

We can make the following inbderpretation: the mean
"aﬁaﬁﬁfmbffiﬁféiméiiéﬁi§§iﬁédwbyﬁf‘EéiViﬁgwthe*message"Wﬁ”’““"Wf'”“W”
T Wgre e i¥piy) is Hlyg,...s¥yp) - However, the message - -
actually received is (WO""'wh—l)’ from which we try to

Heduce the original message. The amount df'uncertainty,
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~involved in this is H(Ygreoer¥p_ylWprennuw, ;) « So that
the amount of info:mation we receive is the amount of infor-

mation in the message sent, minus the uncertainty about the

message sent. )
The~quantity
volim l/n HUy,, EEES Y LUSSREYU AR B R
=h (Ry) ~R(})
 =hRy, ) -h®Ry)
i5~calied tﬁerequiéoéatiéﬁjﬁégvlefter. Clearly a low
rate of equivocation is desirabiq{fthis correSp@nds to
a high rate of transmission.
We caﬁ now define the statiqnary capacity of the '
chénhei K by - _ | | |
C;(K)=sup {R{M): A is such that R iS‘a;l-ﬁpt} .
Thé ergodié capacity is - ) | |
Ce(K)=sup {R(A): X is such that R is erquic
| witharespect’toAA} .
‘ The rate of transmission apa'caéacity are'difficuit
to compite except for some simple channels. For’examplé,
we can compute them for the channel without memory, example
s e
| Bl 12 12| .

*
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Here it can be shown (see [7,p.159]) that the transmission =
rate equals the entropy of the inpuf. This channel, although
ﬁoisy, is called "lossless". It has stationary and ergodic

capacity equal to log 2 .

For a second example, suppose the rows of (cjk) are
all identical. So that c;x is independent of j. Here =
and it can be shown that the transmission rate is zero
- for any input. Of course no information can be sent through

-this channel. The stationary and ergodic capacity are both

Zero.
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§5 FEINSTEIN'S LEMMA

This section deals with Pfaffelhubef's versidn (from
[5]) of Feinstein's lemma. The definitions are from [8]
and the procf is a variation of Feinsteinfs proof.

. We define a maximal set M[e],(for 0<e<l/2) ina

channel (X,Y,p) as a set Xqpeee Xy (N>1) of elements of

X such that: | ‘
(i) To each xi there corresponds a B, in ¥ such that

p(Xi,Bi)z}-e .

(ii) The Bi are disjoint.

(iii) There exist no g+l and Byl such that RyrseorXygey
and Bj,-..rByiy satisfy conditions i) and (ii).

Given a channel (X)Y,p) with input measure A, a set
M[e,K] (for 0<e,K<l ) of elements of X,’{xl,.;.,xN} '
(Nzl)'will be called an enlarging set with resPecf to A
if to each xi there corresponds an Ai in Y such that
(i) p(xi,Ai)ll—e ~ and

(ii) AAI<K

e for dim) e, N e



A maximal set'M[e] will be said to be L-bounded
(for 0<L<1l) with respect to an input measure X if the
B, satisfy

A (B<L

for i=l1,...,N and N>1 .

Theorem 3.3 Let K=(X,Y,v) be a stationary channel

which has eigodic capacity C. Assume further that the
input'measurelhrbeing ergodic implies that w and u-are -
ergodic as well. If H;aﬁd e are positive and H<C , then
thére exists a positive integer n(e,H) such thét if
n>n (e ,H) |
- there exist Ul,...,UN in X" with
N> H |
and disjoin£ seté Al’f“'AN in Y! é;chrthatr
p(a,[u;)>1-e
for is=l,...,N .
( The meaning of p(Ai¥ui) will be clarified in the proof.
The following préof'is a summary 6f the proof given by
Feinstein; see [8] for the details.)

Proof. If H<C , there exists an érgodic input measure XA

——guch that T T T T T T T T e e e s e e e e T

o "7""'77H’Rx;) +h(RY)7__I1_(RX7X7Y}7>H e e e e e 7’ o e

Let us denote the elements of x? and y? by u and v



. _Given _¢g

respectiveiy.

Given positive € and §, let V' be the set 0f>(u,v) -

satisfying

]1/n(1ogw(uxv))+h(RXx§)I<E/2 .

Let S' be the set of v satisfying

,,W,ll/nﬁlespﬁY)?fh(3y>fﬁ?/z,,:W”,)MWW.W

By assumption w and i are ergodic since A is. We can

now apply Theorem 1.10. Thus for sufficiently large n,
given pdsitivé”&l o ' |

w(v')>1-61/2
and - ' '
| WS )= (S")

| >1-5,/2 .

Lét | 7 |

v=V' N (X"x5")
(3.3) w(V)>1-8, .
Hence for any (u,v)eV {b

Here

|1/n logp (u|v)+h (Ry, ) -h (Ry) [<e .

plulv)=w (uxv) /ulv) .

8,20 o det o

 ugetuex™ |I/moghtal)+h(®p e’} .

Applying Theorem 1.10, we obtain that for sufficiéntly

large n



| ’ SiAi

(3.4) '1'A(UO)>1—52» . | | ﬂ
Now .take nAlarge*enough so that (3.3) and (3.4) ho]..d.'i
To gach uer ,flet l

A é{veYé: (u,v)ev} . ‘f
For 0<é<l , let ‘ |
Ly {ueUO- p(A Iu)>l a}
By Lemma 2 [8,p.48].
AU)>1-§,-6,/a
It is easy to see that for uely
A(u)<B-n(h§RX)f€') ,
and for (u, v)eV ' | -
. p(ulv)>B n(h(RXIRY)+€) .> R | : -
(Here - h(RXIRY) is the equiVOCatiop: h(RxxY)—h(RY)..)

Let ucl and let vsA , then .

1
p (u|v) /A (u) >B n(h(Rx’Ry)+€) / B'n(h(Rx)"€ )
n(R(X)—s e') '

For notational convenience, let
d=n(R(A)-e-c') .
We have no& that |
w (wxv) /A (w) >BN (v)
Summlng over A ’

(3.5) w(uXA ) /2 (u)>BS u(A )'W;f

The lefthand Slde of (3 5) is bounded by 1’fﬁéhcé“**—~’r~ﬂ~

-a’
.u(Au)<B -
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Hence, U; is an enlarging'set',M[aﬁ,Bfd

] relative td_x,
eesuming U, is not,empty. Let |
‘Mle]={x. ,...,xN}
gela (B; )-bounded maximal set relatlve to A, Then
ﬁl-Ufﬂﬁ[el,,ls still an'enlarglng set  M[a,B d] dlsjqint
’d>(e -a) (0 U HiLe])+ (1me) A (ufe])
zmln(e—a 1-e) (1~ —6 /a) <
 Given e and H, choose A such that
C>R()X)>H ,.‘ | 7
Let (taking n sufficieﬁfly laréej:
. a—e/2 ;"u.f e‘ | - o .
e+e'—(R(A) -H)/2 ; o
2-(261)/ezl/2 R
m=min(e/2,l—e§‘ .
Then 0<m<l , and | |

N> (m/2) 50 (HF (R() -H)/2)

=ph (B+ (R(A)=H) /2+ (log (m/2)) /n)

Spifi | /.

be a statlonary channel whlch

Theorem 3 4 Let K-(X Y v)

C>0 be 1ts ergodlc capa01ty.

satlsfles condltlon l} Let

Let A be such that A ergodlc 1mp11es w and y are. Then for
any >0 ; there exist mo,ml,m2ez such that 1f’m3m0, then

there exists an integer N satisfying

~ from M[e]. Now the ineguality of [8 .:pe-‘ 4,61“1i§l§i§
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and N distinct input messages xél),.;.,xéu) ofhlength
M—m+m1+m2
N)

and N dlSjOlnt groups v(l?,..;,v( of output messages

Yo of 1ength m, such that for any 1ntegers tl,t2 with

mpt -t

'and for all i= 1,...,N , we have

V(x ’Y(t t ]EV(l))>l e

whenever - = v

| ( (1) -

x! =X -
(tl-ml,t2+m2] M

Preof.v By Theorem 3.3, we can choose a probablllty A

on FX maklng (X, FX,A) an ergodlc message space. Further-

more, we can choose an 1nteger m0 such that for any

m>m there ex1sts ‘an 1nteger ‘N satlsfylng

N>Bm(c €) ,

0

such that there exist N input messages of length m,

{ull"'luN} , and N disjoint groups V(l) ...,v‘N) of

output messages of 1ength m. These have the property that

for 1=1,...,N

- Here - ‘ < e

(i), -
SR — {xgx,, (0 A]~41 }o- R

i,e. the cylinder determined by (O,m] and u, . Similarly

_(1)={1;§: Y(O,m]sv( )} .

P, P L 4 P bt 0 e ram v e



(3.6) *ch‘”ta‘lH j ' v(x,E‘”)udx) / u(&‘”)
- v g(J.) e | -
>1l-e/2 . |
Hence, there exists _(l) g( 1) such»that
,(3 7 v(x(i) ‘(1));1-(35)/4 .

otherw1se (3 6) cannot hold

“By. Condltlon l), we can choose mlrmz such thégwmm
aee e v E v g <o

‘whenever
| % (1) .
o (t —ml,t +m2] 14ml,t2+m2]
for all ;1~l,...,N . P -
Row define-
(}) x(l)
M (-ml,m+m2]
Then (3.7) and (3 8) yield that

v(x,y(o ] V(l))>l-
if |
' (i)

X {-m, m+m2] Xy

The result follows by the statlonarity of the channel. //.

" Using the termlnology of [2], Theorem 3. 4 says that

%
there ex1sts a dlstlngulshable group of

: - ppRleE) : o
o input ’;é&ﬁ;;éé;";317”:";";’;’;“(1??”55 length . .

&

M:m+ml+m2 .



We conclude this chapter Wlth one appllcatlon of

: Theorem 3 4' see 7, P. 174] for proof.

7

'Theorem 3 5 We assume’ the hypotheses of Theorem 3.4 and

. furthermore that the 1nput measure x satisfies

(3 9) )‘{(Xll'°'lx )E{ngl),,-.., (N)}} l ‘ A
(i.e. w1th probablllty one’ the transmltted messagefls ,,ﬁﬂr;iugfpmﬂ”
‘one of ‘the x(l)) .
then | | o |

| H(xlz---erIYIr-.-,ym)<n(e)+n(l—e)+elog(#X)
if ,
e<L/B .
AN

A A [ et s tee
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. CHAPTER IV: THE CODING THEOREM

51 THE COMPOUND CHANNEL
We now défine'forﬁaliY~£helcOncept of a code'¢, as a
measurable mapping :X*Y¥ . A code is said to-be-stationary -
if"' . A
IRER 0x
This meahs thé£ tﬁé étfucéﬁré ofrtﬁé,éodiﬁéréeViéérié
time-invariant.
A code is nonanticipating if for all ieY
al{x: yn=i}={§i (¢x) =i}
is in the o-field generated by {""xﬁ—l’ﬁn} . This says
that the coding device need not be clairvoyant.
If RK=(Y¥,W,v) is a channel, then a code ¢:X>Y
gives rise to a compound channel .
This follows from thesfact that v(¢(+),”) .is,a kernel

if v is. The measure P on Xx¥xW is given by

Ap(gx_s_xgﬂ[ L vxL,OAER)

[B] -

K3

with ‘_X_Eiﬁx r BeF

, and CeF

14 W

5 B
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§2 AN EXAMPLE OF CODING TECHNIQUES -
e ‘ - : o

Shannon's‘first version of the coding theorem in [1], in

part says that for a certain class of channels we can

- choose a seguence of codes giving us increasingly small®

ﬂwprobagility~of—erroryrTblclarify*this'wehwill'give”af9‘*ML**“Wf -

simple example of how we could encode input messages in

this manner. This question of éhbosing codes to fit a cer-

tain channel is one of considerable practical importance.

'In our example we take the binary symmetric channel
without memory. So Y=W${0;l} and |
.95 - .05

(c..)= _
B L .05 .95 .

.

Suppose further that the ihput alphabet is {a,b,c,d}=X ;

Fy is the set of all subsets of X; Fy and Fy both'equal

the set of all subsets of {0,1} ; the input measure A,

is such that Al{x)>0" for'all xeX .

———

5 AN
We now construct'the following codes:

:X+Y¥%  such that

1

¢ la)=00 e
C, (p)=0l )
c,(c)=10

Cl(d)=llA'7



mission of one input letter is clearly

if x=100000 and y=011110 then HW(x)=1 , HW(y)=4 ,

most probable 1nput sequence was. For example, 1f we recelve

e T S TR UG RISt s e e e <

With this code the probability of the incorrect trans-

(.o5)%x.00 . -

‘ 3 ‘»' ‘ ) 4 HI
Let cz:x4Y6 such that ‘ '

L€, (a)=000000=d; - oo T

~ . .
- . +

Cz(b)=01QlOl=d2

Cy(e)=101010=d;
C,p(d)=111111=d, .

The code c, is an example of an "error-correcting"” code.

- Whereas using Cl'we would lose information if one error .-

in transmission occurred, this code Cos gives us the

capability of recovering frem errors. Using the definition®
of Van "Lint [14] we will call~theeﬁumber of'enes in a

particular finitetseéuence from Y the Hamming weight, HW.

-~ The Hamming distance HD, betweenjtwo elements of anis the

number of coordinates where they do not agree. For'example,
and HD(x,y)=5 .
fUpon rédeption of a particular. output sequence’we’

use maxXimum llkllhOOd decodlng to determlne what the

Td=001600 we w1ll 1nferrthet the letter a was sent That is

we determine the d; for whlchVHD(di,d) is mlnlmal. In our



one letter lS

example the Hammlng distance beween any two of the d

is at least three.'From this 1t follows that 1f any one'

' error OCCur¥s in the transmlsSLOn we can Stlll decode
correctly, in some cases even 1f two errors have occurred

 Hence, the probablllty of error in the transmission of

[

a

exactly one error)
-1—[( 95) +6( 05)( 95) ]

l""t96 . o ’ . . . ’ ‘ i ‘ “

Hnece with this second cading scheme we can reduce

the probability of error. It is of course possible to

create longer codes which have'aesmaller probebility ofl

error. But note that in this way we %fe maklng the trans-

‘m1351on error smaller by employlng redundancy in the coding.

At the same time we are maklng the transm1551on rate lower.

The strength of Shannon's Theorem is that one can reduce
the number of errors in transmission while retaining a
rate of transmission arbitrarily,cloSe to ‘channel capacity.

We now prove this result for a wide class of channele,



§3 BLOCK CODES

-We assume the following:
(i) (&,FX,A) is an ergodic, stationary input message
space with entropy h;

(ii) (Y,%W,v) is a stationary, WM channel which satisfies

‘condition 1) and has ergodic capacity C;
(iii) X, Y and W are finite alphabets;
(iv)

(v)

For all positive integers b and all integers n, let

xn=(xnb+l"'t7xnb+b) and

X-‘-‘(-..,E_l,;{.‘),;{-l,.-.) .

Here X is an element of the space X of doubly-infinite
‘ seduences from X°. We will similarly define ¥, w, Y and

W.

We define a b-block code ¢ :X>Y determined by a

stationary code §:X+Y with

Note that ¢ is not strictly stationary, but is stationary

- in blocks of b, i.e.

¢Rb§?3b¢5 .
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Since ¢ is not stationary the original definitions of
rate, equivocation, etc., are not immediately applicable.
We will define these quantities for x, y and w by

dividing by b the corresponding quantities for X, ¥ and w.
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§4 THE CODING THEOREM BY BLOCK CODES

Theorem 4.1 We assume conditions (i) to (v) of §4.3

hold. If h<C and §6>0 there exists for some positive
integer b, a b-block code ¢, such that if X is transmitted

through the compound channel then the rate of transmission

exceeds h-§ .
Proof. Choose e such that:
(4.1) ~ hte<C-e
(4.2) - nle)+n(l-e)+elogt<s/2
(This is bossible sinée n(G)=n(1)=0 .)
(4.3) elogr<é/2
(4.4) _akl/B .

In wHat follows, P is the probability on the compound
message space as dgfined in §4.1, and ¢ is thé'b—blodg\

Ay

code to be constructed.

Take b>b,(e), with by(e) as given in Theorem 1.9.
Hence Xb can be partitioned into two sets H (the high

probability group) and L (the low probability group) such

that
4.5y PU(xy,...,%x )eL}<e o R
and
(4.6) P{ (X100 ,xb)=u}>B'b (h+e)

for all ueH.
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Take b>M , with M as given in Theorem 3.4 and
Theorem 3.5. Now given that ¢ is such that with probab-
ility one §é(yl,...,yb) ' is among the distinguishable

group '{ul,...,uN} of Yb, we have that

(4.7) ,H(yl,...,yb]wl,...,wb)<n(e)fn(l—e)+eblogt .
Also o :
. (4.8) L ,N?_BD(C-E) SRR e e

Fix bzmax(bo(e),ﬁ)

#H<Bb(h+e)<Bb(C-E)
from (4.1) and (4.6).

This implies that there exists y:X™»¥® such that H
ié carried one-to-one, onto y(H), a proper subset of )
{ul,...,uN} . All elements of L are mapped into some
u, £y (H) . -

We define § (and ¢) by
(6x) =¥ (%) .
Now
¥,=v (%)
is in the set '{ul,...,uN} . So by (4.7)
(4.9) H(§1|§l)<n(e)+n(1—e)+eblogt- .
Since b>l1 and n(a)>0 for O0<a<l , the right-hand side

of (4.9) is

bn(e)+bn(l-g)+eblogt

<bdé/2 .

T e
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by (4.2). | .

Since ¢ is one-to-one and onto, if §i€¢(H) then it

completely determines §1. Hence for uey (H)

(4.10) ,Z b n(P(x 1=VIy=u))=0 .
veX

For ahy ueYb; since # b-r , the left- hand side of (4. 10)

is~dominate&kby~log~rp;~see [7,p.61].
Since v

| N rP{flew(H)}=P{§leH1‘, s

‘Wwe have

(4.11) H(xllyl)ielog r

< bs/2
by (4.10) and (4.2).
By (A2) of §1.8
HGx W) <HE T 1) -

Now by (Al).

SH(T, 7 +HE T ) -
~ Using (A3) _— .

<SH(T, W) +EGE 1T -
Now using (4.9) and (4.11)

H(gl|w1)<b671”7;7ﬁww

H(xl,...,x ]wl,...,w )< 2 o H(xllw ,...,w ) .
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By (A3) .
. _ o _ n N
- ’g(xl,...,xnlwl,...,wn)§§= H(xilwi) .
Thus

«

1/n H(Xypeee X [Wpeee,w )<bS .

“Hence in the limit the equivocation (transmitting X+w -~ o

through the compound channel) is <bé . Thus the

equivocation for X is less than 6 and it then follows

~that the rate of transmission is >1-8 . //.
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