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ABS&RA&T U

This wofk treats count?ble cé;;I;;e theories having a finite
number of countable models énd satisfying restricfions on complexity
of formulae. Most of the emphasis is on theoriés ﬁith more than one
countable model, but somebrelated results on the hature of complete
theories which admit elimination of quantifiers and have one binary
relation symbol are given. It is shown that there cannot be two
incompafable definable equivalence relations if such a theory.has
infinite models and ohe l-type. Tournaments whose ﬁheories admit&
elimination of quantifiers are considered, and it is shown that there
is one finite example and there are two‘countable examples where the -
set of successors of a member are linearly ordered.' It is shown that
there are only four)countable undirgcted graphs which omié the complete
graph on three‘yerfices and whosé theories admit elimination of
guantifiers.

It is shown that if a countable complete theory has three count-
able models and admits elimination of quantifiers in a language with
one binary relation and constant symbols then the tﬁeory is "essentially"
the Ehrenfeucht example—~ < Q , < , n >n€w .
Some conjectures regardiné the complexity of theories satisfying

restrictions on language and number of countable models are formulated

and discussed. A theory T, is constructed which has nine countable

models and a noﬁprincipal l1-type containing infinitely many 2-types.

A theory T is constructed which has foﬁr countable models and an

1
inessential extension T2 having infinitgly many countable models.

(iii)
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Introduction

~ This work is concerned with those countable complete theories

which have a finite number of countable ﬁodels. An eieéanf cﬁafacter-
ization ofrfhose theories‘which have one countaﬂle model is-the
theorem'éf Engéler [31, Ryll—NérdZewski [9] and Svenonius [11]:

a theory is wo—categorical just in'case for each n there are

a finite number of n-types. The work of Vaught [12, p.320] shows that
no countabie complete theory canfhave'exacﬁly two éountabie models.
Work of Baldwin and:Lachlanb[Z] and Laéhlan [6] shows th;t a counts?}e
complete theory with a finife number of countable models but more than

annot be superstable. In a letter to Professpr Lachlan, Shelaﬂ )
onjectured that no such theory could be sfable.  To.od} knowledge the
conjecture remains open. Further progress on the general probleﬁ _
aééears_to be very difficult. We shall restrictsourselves to t£eories
which are simple‘in complexity of language. The main eﬁphasis will be
on theories with more than one countable modei, but we also present
SOmé results whicﬂ are Strictly concerned with wo-catégorical theories.
We shall first give a brief account of the history of theories with
more than one model. |
For fourteem years the only widely known examples of theories

with a finite ﬁumber of countable models but more than one were those
due to Ehrenfeucht [12, §6]. The archetype of the éxample is

<Q,<,n, D where < Q , < > 1is the rational

>
m  né€w,m<kK
numbers under the usual order, and the Dm are disjoint dense subsets

of Q Jhose union is @ . The theory of this structure will have

(K-~1) + 3 countable models. In a like manner certain other countable
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order typés can be distinguished by constants in g model of dense -
o L R - R . . L] . it

linear order to give a structure whose theory will have finitely many

rcountablé models.

Certain téchniques can then be applied to known examples to
yieléhothers. For example the constants in EhrenfeuchtiS’example may
'bé-reélaced by unéry predicates which detefﬁinerinitiél segments of
the order. At the expense of elimination of quantifiers an exampie
with a finite language can be giﬁéﬂ [12, §6]. For this example one
takes an equivalence relation E which is a congruence relation with
respect to a binary relation R . The equivalence classes under -E
.are densely ordered by R , and for each n theré is exactly one
class with (n+1f members.. For n<m the equivalence class with
(n+1) -members -precedes that with (m+1) in the ordering indﬁced by
R . Another way of fbrming a'hew theory_is to conséruct a disjoint
union. Given two theories UO ' Ul which have n , ny‘countégle
models,resbectively we can form the .disjoint union W having n*m
countable ﬁodels in the following manner. et P_, P Abe‘newvunary

0 1
predicate symbols and ¢ a new constant symbol. We may assumg that

U and U have no nonlogical symbols in common. Then the language

0 1
of W 1is the union of the languages of UO and Ul with

{PO ’ Pl , c}. The nonlogical axioms of W are the following:

1) (Pv VPV VvV VO = c) A _lPOc A M P

00 10 1

FE > A P,v, £ R +1) -
2) Rvo, ,vn . lvJ or an (n l)°ary
J=n '

predicate symbol of Ui' i=2o0,1
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~ . ,
AN

23

- v, > fv ,...,v._=c for f an +1) -
3) 7 Pi vJ VO( n=¢ £ (n+l)-ary
" o 'function symbei of Ui» and j = n\yii = 0,1 “ . <
4) The relativization to Pi‘~of each néhlogical

axiom of U, for i=0,1. g

. _ : v
With "linking" of the.copies in the disjoint union some further control
on the number of countable models may be exerfed. A link between an
m-type p and an n-type @ is an (m+n)-typer r such that rD p

and for every formula ¢

peg > s ..y ] €r . 111

0 n-1

V yeeesV
[V 'Vitn-1

.

Linking then refers toi the addition of suitable links. , Yet another

way to proceed is to form the product U of two theories

%o

which have a finite number of countable godels, say m,n respectively.

Essentially its models are obtained fromrmodels " M,N of % and U

P

respectively by replacing each member of M by a copy of -N

1

Formally we assume that U have no nonlogical symbols in common.

O’Ul

A new constant ¢ , two unary‘predicates PO”P and two unary func-

1 .

tioh symbols p p, are added. The nonlogical &axioms of UO.Ul are:

0 ¥

1) The relativization to Pi of the nonlogical

axioms of U, for i = 0,1

2) Axioms assuring that outside Pi the nonlogical

X4 quctq‘(

symbols of Ui have trivial interpretation.

a) Rv .., v, > A P,v, for R an n-ary relation

jén 3

symbol of U, and i =0,1

o

o'



[ - — S

b) vaPv, >fv ,...,v. =c for f an
j<n -1 -] 0" n ;

(n+l)-ary function symbol of Ui,' and i = O,l‘

(P AP AP c A—P.c .
3 TG (Bovy A By A TTRGe AR o
4) . po,pl arevcbofdinate'projections onto Ré;Pl ) : R
a) Vv (v, VPV Vvg = e RV = c)- for .i =0,1 ..

0 170 0

y f AFBr A P pov) f P = ‘
b) VVO(VO # c~—r_]?be ERESNCE ipivo) or i O,l:‘

« - - .

o+ € -

: b v APV, >3V ( = APV, = -
S) WUy (BVy A Pyvy, > 3V, (Bovy = Vo ARV = V)
It is natediffiguit.tojsee that . UO'Ul will have ‘men- countable

5

models; and if m>1 or n>1 ,AEBJUI' wiil have infinitely,hany non-
N - . o

principal k-types for some k . ‘As far as we know no:gaEé Sophis%i—

- . . . ) o9 & ‘ '~

=il

cated techniques than those discussed.above have been mentioned in the

x

literature. )
’ ’ # ’ f:‘%
The restricted nature of the Ehrenfeucht examples and others :
élosely related to them led to the folldwing’conjectufes. ' Ca
(Cl): If p 1is a nonprinéipal l-type in a complete theory with" .

a finite numbér of countable models, and M the countable séfuratea
model then th; relation on. p(M) : "a 'isAprime over b" is a total
partial order.

(C2): Let T be a countable‘complete thepry with a finite
number of couﬁtable models and let p be a non?rincipal 1-type in T.
Let. M Dbe the countablé saturated modelfofi T and p(M) the sét of
individuals of M which realize o) - Thenléhére is a definable.linear
order on an infinite subset of p(M) . The subset need not be

definable.
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. of 2-types.

¢ : ’v\" : “\. .“V‘S-

. {C3): A nonprincipal l-type in a countable complete ‘theory with

_a finite number of countable models can contain.atrmost a finite ngmber ‘

oy

(C4):iMI£¥

is a complete theory with ;»finite humﬁer of count-
dﬁle modgls then évefy‘inessential\extension of T Has a finife
number of ééhntable models.

(C5): Every ﬁodel of'a comple;g‘reéursive'theory with ;t,most
fédrkcountable models is totally;recurgive. J

(Cl), (C2), (C3) arose when we were first attempting to character-:

ize theories with three countable models ip’}974, As far as we’know

(C2) remains open to this day. - The conjecture is given some shpport

~such that if (a;b)"realizes‘ g 1in a model then b is prime over a .

N

by Lemma- 2.1 Chapter 2 where it is shown that a nonprincipal 1-type in

. e

a complete theory with three countable models: qontains a 2-type q

while yaf'is not prime over b . (For precise deéinitiong iefer t6
Chapter 1). C3 would confirm C2 for theories with three cdunéablé
models by an application of Ramsey's theofem. C4»deriyesvfrom work:
by Benda [1], and C5 is due to M. Morley (unpﬁbligggd). Tﬁe conjécture
Cl never seemed very plausible but does focus attention on an interest-
ing class of theories.

The state of knowiedge described above was drasticallyéhanged'
when wé learned by letter of the example of Peretyiatkin [8, §5]3
He introducea a dense\binary tree. With thanks to A.H. Lachlan we/

reproduce the following model of the theory in question,

M=<«< M, AN> where A 1is a meet operationon M . < Q , < > |is

jihe rational numbers under the usual order.

Kiamaas St

wﬁ
4



M= {ffj&EéﬁfE{B{BEd}msj{d,iyr and BNBBO;TZ.,BN such that

BN,= a and VBSBO(f(B) = 0) and Vi<N(Bi<Bi+l & f(Bi)if(?i+lx &

VBB, < B=B, . > £(B) = £(B, N}
For f£,g EVM let o ge the‘largest rational such that o belongs
?o the domains of f and of ‘q and .

o ¥ < a (£(B) = g(B)) .

Define f A g=f } {B:B < a} .
It is then not dif;icult to show that the class'of finite substructures
of M 1is just the class of finite binary trees. Also by a back and
forth argument one can show that any isomorphism of two finite sub-
structp;es of M can be extended to anvaﬁtomorphism of M .. Using
the techniques of Chépter 3 wé then know that the theory of M ’
Th (M), admits elimination of quantifiers and also.that anyncountable
binary tree can be embedded in M . These facts ensure that TH(M)
i’'s equivalent to the theory -TO of §2 of [é]. If a binary trée which
is & subtree of the complete binary tree ><w2 ‘and which has only one
infinite branch(is distinguished in M by constants the theory of the
structure will have three countable models. Since thére‘is a
recursively enumerable‘treebwith one iqfinite braﬁch and that branch
is ZOnrecursive Peretyiatkin was able to give a counterexample to C5.
That C5 could not be strengthengd by replacing four by six was known
because of an example of Lachlan (unpublished) where the order type

W* + W was distinguished by constants in a model of dense linear

order.



Peretyiatkin's example also shows that Cl is false. As non-
principal 1l-type we take the type of an upper bound for the members
of the infinite branch. For the 2-type ¢q we take the 2-type in p
which contains (v0 A vl £ vo) A (vO A vl £ vl) i.e. the 2-type of
two incomparable elements realizing p . Those theories for which
Cl is true will be considered in Chapter 6.

A comparison of Ehrenfeucht's example with that of Peretyiatkin
raises the question of whether the presence of’é function symbol in
the latter is really essential. We may formulate the question
precisely as follows. Call the language of a theory (or structure)
small if the language contains a finite number of nonlogical symbols
other than unary predicate symbols or constant symbols and the theory
(of the structure) admits elimination of quantifiers. The question
can then be phrased:

Ql: Let T be a countable complete theory in a small

language which has no n-ary function symbols for n > O.
Does T satisfy Cl through C4?
A second question which naturally arises is:
Q2: Which of C2 through C3 hold for theories with
small languages?

In Chapter 2 we give a partial answer to Ql. There we define
precisely what we mean when we say that a structure is like the
Ehrenfeucht example. Roughly it means that the model can be viewed

as the union of a finite number of "dense orders" and an

' mo—categorical set. Each "order" is actually the induced relation

with respect to a definable equivalence relation and it densely
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&

orders the‘equivalence clagsgg;»W;grgggQWSQEQgrfwgbere are,infinitél&;, -
many principal 1l-types which are "almost"farfénged innan w-seguence..
We conjeéture that: i ., |
C6: Any complete theory with exactly -three countable models in
a small language without funétion symbols other than const;nts is like.
the Ehrenfeucht examplé.
In Chapter 2 it is shown,tha? any compléte theory which has only
c&nstént‘symbols,'which admifs eiiminatioh of guantifiers andkwhich
hég exactly three'countable_models is like the Ehrenfeuchﬁ example.
The examples ofvEnrenfeucht and Peretyiatkin show that it is

+

fruitful to examine w_-categorical theories in small language in order:

0

to build examples of theories w%th‘other finite numbers o£ countable
modéls. Oof particular interést.ére those having one binary relation
symbol. fn Chapter 3, methods of Jonsson [5] and Morley énd-Vaught [7]
are redeveloped for the purpose of constructing ang chafacteriziné
examples of theories with small languages. Given a class % of |
finite étructures for a finite language such thatv Z haé the
amalgamation propertyland has a prime structure, a denumerable.

% .
Z;homogeneous J-universal structure M is constructed such that
each finite subset of M  'is containgd in a méﬁbér of 2 . When 2
contéins arbitrarily large finite structures M is countable and
when 2 1is closed undgr substructure and therefére ;niform bounds on
generated'substructures,‘ Th(M)_ édmits e;imination of quantifiers.

This result is given a partial converse. ILet M be a countable

structure in a finite language such that the~theory of M admits

w



3
3
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5

ellmlnatlon of quantifiers and every flnlte subset of - ML‘;s,contalnedrrrr;%rf

in a flnlte substructure Let Z be the ¢lass of finite subsrructures
of M. Then 2 has the amalgemation property and M is the
denumereble» Z-homogeneous 2—uhiversal-structure.

Using the resultsvof Chapter 3 we turn our attention to those
countable'complete theories whioh admit elimination of quantifiers and‘
have one hinary relation symbol. There are .two approaches which may
be used to classify this class‘of theories. From rhe work of Chapfer 3
we see that each such theory is determined by the class of finite
graphs which can be embedded in its countable model. A natural question
is thep:

| 03: 1Is there a proper suhclass of the class of finite graphs
which serves to determine every countable graph whose | .
theory admits elimination of quantifiers?

Another approach uses the notion of neighbourhood. Let H = (F,G) be

such that F -and G are finite classes of finite graphs. Then N (H)

. 1s the set of isomorphism fypes of those countable graphs whose theories

admits elimination of quantifiers, in which each graph in F can be
embedded, and in which nofgraph in G can be emoedded."N(H) is a
-y . H
neighbourhood of K Jjust in case the‘isomorphisﬁ type of K 1is in
N(H). The examples of Peretyiatkin [8, §4] show that not all graphs
have even a countable neighbourhood and also show thét:the first
e e - | - Wo 1
approach is little help 1nxclassifiCation. He builds 2 - graphs
whose theories admit elimination of quantifiers as follows. For each

subset A of w he shows that the class I(A) of finite graphs in
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£

which the undirected (n+3)—c¥clecn ”cannotmbe,embeddedw£9x~4néAf7;;ﬁ
has the amalgamatioh property. By the results of Chapter 3 there

is a graph G(A) whose theory admits elimination of quantifiers and -
such that Z(A) is the class of finite graﬁhs which can be embedded

in G(a). Thus there are many néighboufhoods which contain_uncount—
ably many members. SeVérol napuraloquestions are'immediato.

Q4:  Are there?couﬁtabiy infinite neighbourhoods? Are there
finite ﬁeighbourhoods? Are there nontrivial eméty
neighbourhoods?

Q5: Does évery neighbourhood have a finite subneighbourhood?

An examination of the examples of Peretyiatkin reveals that all possi-
ble 2-types occur. ILet @ be the graphvwith onerelement a ahd
relation {(a,a)}. Let - be the graph witﬁ universe {a,b} qnd
relatioo {(a,b)}. Let ©° o be the graph with oniverse {a,b}‘ and
empty relation and let o— be the graph with universe {a,b} “and
relation {(a,b), (b,a)}. We conjecture

C7: Each of H(,{o,~}), H(G,{ove o)) ana H(4,{o,e—])

are countable. |

In Chapter 4 we give examples which show that the answers to Q4 are
"yves" and to Q5 "no". Also we provide some arguments which lend
support to C7. 1In this chapter three basic situations are considered,
and the theories are assumed to have only one l-type, and indeed it
is assumed thot their models are irreflexive. AIn'the second section
we show that such a theory cannot have two incomparable definable

equivalence relations if it has an infinite model. This provides us
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with a nontrivial empty neighbourhood. In the third section we give
partial results for those theories whose models are tournaments, i.e.
which omit @& , o—~ , and o o . It is shown that there is only one
finite tournament whose theory admits elimination of quantifiers, and
that there are only two such countable tournaments which have the
Property that the successors of an element are linearly ordered by
the relation. There is also the countable tournament homogeneous and
universal for the class of finite tournaments. We do not know what
other examples exist. 1In the fourth section we turn to undirected
graphs whose theories admit elimination of quantifiers. Work of

A. Gardiner [4] neatly classifies the finite examples. We show that
for each n the class Zn‘ of finite undirected graphs which omit the

complete graph with n+2 vertices K

Y has the amalgamation property

and thus obtain infinitely many countable graphs. The conjecture that
H(¢,{®,~}) is countable is supported by the main result of this
section where it is shown that there are only four countable graphs
which omit the triangle and whose theories admit elimination of
gquantifiers - i.e. H(¢,{G,+,K3}) has four members.

In Chapter 5 we use the results of Chapter 3 to furnish a counter-
example to C2. The example is related to that of Peretyiatkin. We
produce a dense tree with infinite branching - the subtrees above.a
node being indexed by the rationals. Using this a complete theory T

0

with nine countable models is produced. The nonlogical symbols of To

are two binary function symbols, a unary predicate symbol, a binary

Predicate symbol and countable many constant symbols. To admits
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eliminafi;hméfrqﬁéﬂégfiers and hasia_gonprincipal 1-type which
contains infinitely many,z—ﬁyées. éHerver wé conjeéture:

(C2'):  No nonprincipal l-type in a theory with three countable
models éan contain infinitely mény é-types.

‘Another way to focué the ;ttack on theoriés With a finite'number
of cduﬁtable models is to cdnsider the implications of Cl and C4. 1In
Chapter 6 we investigate thesé cbnjectures at greater depth. It is
shown that if every complete inessential extension of a theéry has a
finite number of cpuntable models then the theory has a universal
model which is prime over a finite set, thus improving a result of
Bepéa {15 Thm 2]', In the,second éection we consider a complete thepryl
Th.wiﬁh a nonprincipal l-type p with the property‘that in the
countable saturatgd model M the relation "a iéwprime ovef b"
is a lihear order of p(M); We show that in fact it is a dense order
vdefined.By a formula,  thus echoing the result of Chapter 2. Finally
- the resulté of Chap#er'3 are applied to produce a complete theory ,Tl
with a binary relation symbol, a'3—ary function symbol and‘infinitely‘
many unary predicate symbols. Tl admits elimination of quantifiers
and hasffour\cOuntable models. In the saturated model of Tl the

relation "a 1is prime over b" 1is a linhear order of the set of

elements realizing each nonprincipal 1l-type. T. has a complete

1
inessential extension with infinitely many countable models. An

interesting unresolved question is whether an examplevlike Tl can

be found with three countable models.



~ Chapter 1

Notation and Preliminaries
n this chapter we set down the basic notation, definitions and

preliminary results which we shall employ throughout. Generally we

sha}l'follow the Convéntions of Shoenfield [10] but in certain

=

important respects our notation will differ from his.

Let L be a first order language. We usé upper case Latin letters

>

to denote structures for L . If M 1is a structure for L its under-
lying set will be denoted ]MII if confusion ié pdssiblé and otherwisé
more simply by M . We shall write a¢M for aE'MI and a€M for
EEIMln when 3 is an n-tuple of elements of M . L(a) will denote
the language L augmented by constant'symbols for names of elements .
of A . 1In general wé shall abuse the notation by using an element as

its own name. If u is a symbol of L and M is a structure for L

[

then Uy is-the'interpretafion of u in M . For ease in reading we

shall also write u(M) or simply u when it is clear from context

that u_  is meant. If ACM (M,A) 1is the expansion of M to the

M
theory with names for individuals a€A with aM = a . (M,;) is
(M, Rnga) . ’
We assume a fixed list of wvariables {vn-néw} . We shall let

x,xn,y,yn,z,zﬁ .range among variables and constants of the language.

-

R ° =Y
For a formula ¢ , and a sequence x = <x0,...,xn 1> we write

X ] . It is assumed

—
£ the formula:
o (x) or the formula- ¢ ne1

o Ixgr-

n-1
that no clash of quantifiers results, and unless the context implies

otherwise that the free variables of ¢(x) occur among xo,...,xn_1 .
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If x , y. are two flnlte sequences then ¢(x,y) is ¢(x y) where

A N ) o
x for <x .. lh(x) 1is the length of x*V
If L is a firstforder language and n€w then 'Ln is the

set of formulae whose free variables occur among V_,...,V

0 n-1

»

LO is thus £he set of sentences for L . Ln(A) is ((L(A))n .

We shall use lower case Greek letters ¥, ¢, ¥, O, A'Ato range
among formulae and 0, O, £ among mappings. For a formula VY, wl
denotes —Tw and wo denotes VY . |

Let T be a complete theory with language L ahd ;et '; be a
sequence of n new constant symbols. A set f 'of.formulae in Ln
is an n;type in T Jjust in case TI[I'l = T u {@(;) : €'} is a
consistent exténsion'of‘ T . I' is a complete n-type just-in case

. ‘\
T[] is complete. We reserve the letter p to denote a complete
. l1-type in T . Upper case Greek A, I', ¢ will normally denote compléte
n-types. Uﬂless otherwise specified n—Lype will mean complete n-type.

If M is a structure for L and ¢€¢€L(M) then M }= ¢ means =

that % is validin M . If T CL then M |= T means M = ¢
. : ’ ‘ -,

for all o¢€¢I' . M F; T has the usual meaning. If a is an n-tuple
in % then téfa) = {@GLn : M F= p(a)} ., tp(a) is an n—typeriﬁ Th (M) .
tp(a;E)'= tp(a n b). We say that a realizes q if thp(a) .
1f gpeLn(M) then o(M) = {a€M : M F o3} . |
I(T,k) is the cardinality of the-set of isomorphism types\of

"models of T of power Kk . If S 1is a set, ]S[ denotes its

cardinality. Countable means infinite and countable.



m

b

3
2
3
)

2
a
o

I7 If T is a theory -then the language of T is-

T' is an inessential extensioﬁ:of the compleﬁe theory T if
T' is complefe and an extensién of T in a language which différs
from L byvfinitely many coéstaﬁt symbols.
, " Let .T be a complete tﬁeory. . We shall say thatlan~(mfp) -

type A’ is princip&l:@vér an m-type A just in case A C A and

g S

there is some 6 € A such that whenever M F T d €M and 4

realizes A we have for each X € A , M £ (8 -+ X) (a:n SV g eeelV >).

m ming
In this case © is said to generate A :over A. If ME T an

,_5 , b € M then b is prime over a Jjust in case tp(g,B) is

principal over tp(g) .

If m,n<w are given let thekﬁransposition operator Tm n be
N t

defined for each 6 by

Tm n(e) =90 geeesV [Vm""'

cee, v 1
v V peeesV ’
! 0 n-1'""n’ " n+m-1

v v
m+n-1’ "0’ " m-1

' 0 - . )
where © is a variant of 8 chosen so that no vi for i < mtn

occurs bound in 6 . We extend T to (m#n)-types in the
. I

obvious way. Note that if a is an n-tuple and 5 is an m~tuyple
then tp(b,a) = Tm,n (tp(a,b) }.

We shall make frequent use of the following well-known result.

Lemma 1.1 Let M be a model of the complete theory T and

let a, b, ¢ €M be such that b ¢ is prime over a and a is

=

prime over b . Then b c 1is prime over b .

&,

Proof. TLet 1lh(a) = m lh(E) =n lh(c) = k . Let 8

generate the type of a f b 1 ¢ over tp(a) and let ¢ generate



tp(l?;'n a) over té(g) . Then
i:Tﬁ;;+£(3vO;°;"3Vm;l€9 A Tn,mhpi”7
will generaté the type of b EA over tb(B) . o

If T isra 2-type, P.q blFﬁypes:with ;p CT' and g ¢ Tl,l(F)
then T 1is said to be in pxq .

A formula Y with one free variable v, ris said to be .
mo—éategorical<just iﬁ—gase for each m€w thére are a fin%tg.number
of m-types I which_contain W(vi)’ for i<m ;

A graph is a structure for the language with one binary relation

symbol R . If G is“a'graph |G| is the vertek set of G and

members are called vertices while RG is the edge set and members are-

called edges.
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Chapter 2

Ehrenfeucht-like theories- , L F

1. Définitions
P~

In this chapter we give some results which indicate a distinction

v

¢ , ' ’
between two types of theories in a small language - those with only
relation symbols and constant symbols and those which allow function

symbols. These differences are related to conjectures Cl, C2, and C3.

The main theorem uses severe restrictions on the numbér of countable”
models and the language. Before introducing these however we shall

present some more general results, and the notion of beihg "like"

:1an,Ehrenfeucht structure.
Vaught's argument of [12; p.320] that no countable complete theory

hasﬁexactly two isomorphism types of countable models may be_podified

4

using his Theorem 3.5 [12; p.311] on the existence of prime models to
give the following observation.

" If I(T,w) = 3 then T has countable models MO' Ml' and M

i

where MO' is prime, - Ml is saturated, énd for eéch’nonprincipal
n-type A there is a sequence a € M such that tp(g)ﬂ= A and

M is prime gyer 5. The modifiéation.is to note that T and any
complete inessential extension of T have prime and saturated count-
able models. Thué given a nonprincipal ﬁ—type A there is a count-
able model N of T and B,E N such that N riérprime over B and
b realizes A . But then N . cannot be saturatqd and it cannot be
prime. Thus if MO is a prime model of Tv, Ml; is a countable
saturated'ﬁodel of T and M is the third countable model of T

M must be isomorphic to N . We call M the middle model of T .
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" Another result which was discovered independently by Benda (1]

and the author is: , . ' ; ~

Lemma 2.1 Let U be a countable coﬁplete theory with

I(U,w) = 3. Then if A 1is any ndnprinbipal m-type there is a 2m-type

£

T with AC T ‘and A ¢ Tm m(I') “such that T his principal over A

’

. A X '
while T (T) 1is not.
> ,m

Proof. Let M be*prime over _3 realizing A . There are

-

infinitely many m-types since A is nonprincipal and hence infinitelf

many m-types over a , i.e. in /Th(M,a). Thus there is a 2n—Eype

r'2 A which is not principal over A . Choose a realizing A

qand‘ b such that a° b realizes I'' and M is prime over

P

. Consider the type I = tpl(a N 5').- ' is principal over A

]
o oh

" since ' M 1is prime over a but Tm (T') cannot be principal over A
, ;

for otherwise TI' would be principal‘over A by Lemma 1.1 . This

®

establishes the lemma. :fﬁw&?kmya
‘ o

Let T be a countable complefe theory which has a binary relation

;,wgyﬁbol R . For ¢ €_Ll defiﬁé'
o -

((Rky A Ryx) v ( TTRxy A T Ryx)) A o(x) A o(y)

X@xy
We say that property E hoids of ¢ 1if the fdllowing severf
conditions are satisfied: ) ‘ : - e
i)k, Pxy A P52z > 2Pxz e N
ie. 2 is an equivalence relation on Q. T

A TTRy

(i1) k, X“’xxl

%

AN A Rxy A1 >
Yy JRyE RV, 11

ie. W is a congruerice relation with réspect to ‘Rvdvl A 'lelvo
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(11d) ET P(x) A o(y) A o(z) A (Rxy A TTRyx) A (Ryz A T Rzy) ..

Rxz A 71 RzX | ' BN

i.e. Rv. V. A Rv.v is transitive on .
oV N TRV, St ?

(iv) jET ep(x) A oly) ?'(ny A TYRyx) .=. 3z(p A (Rxz A I Rzx) A
‘iRzy A T1Ryz)) where  z is a new variable

i.e. (Rv. V., A T Rv VO)' is dense on cp/X(p . .

01 1

(v) }&‘@(x) e dz(ep(z) A foz A T1Rzx)) where =z 1is a new
variable.

(vi) }% o(x) . Jz(p(z) A (Rzx A 71 Rxz)) where =z 1is a new

4

variable.

- ? ]
i.e. Rvovl AT RVlVO is "without endpoints" on @/Xw

and:
(vii) Either for each principal l-type p containing ¢ there

are at most finitely many l-types q containing ¢ such

-

that there is a 2-type A in pxq containing

((Rv, V) A TRV V) V Yy v -

10 0 01)'

or for each principal i—tybe p containing ¢ there

are at most finitely many l-types q conta such

that there is a 2-type A in pxq containing

P
(( *IRV v_ A Ryovl)ﬂv v

1Y0 o) - ’

u |

. lr
Roughly speaking property E holds of ¢ if in each model N

of T the structure obtained by restriction to ¢ resembles the

Ehrenfeucht example: Rﬁ is a dense ordering of equivalence classes,

and principal types are almost arranged in a sequence.

o
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A model M of the complete théofy T whose language includes

4

the binary relation symbol R 1is said to be E-like if there;are a
finite number of formulae ¢O}...,@n € Ll such that:

(1) property E holds of s for i <n

(ii) {-T - avo(@i /\' @j) for i # j

(iii) TV N is QO—categorical .
i<n

In this case we also say that T 1is E-like."

2. The Theorem

For the remainder of’this chapter we assume that T is a complete
theory in the lahguage with one binary relation symbol R ‘and constant
symbols {ai : 1 € w}l. We also assume that T admits elimination |
of quantifiers‘énd that it has three countable models.

Our m;in result is the following:

Theorem 2.1 There is n€w and there are formulae @O,...,@nvé L1
such that ‘{v @i is wo—categorical and for each i=n pfoperty E

1=n

ho%ds of :@i .

The proof of this theorem rests on the following two lemmas‘whoée
proofs are deferred to §3 and $4.

Lemma 2.2 Let o' € Ll be contained in a nonprincipal l-type p.
' Then there is a formula ©€p such that FT ® > @' —.and property E
holds of o |

Lemma 2.3 There are only finitely many nonprincipal l-types in T.

st

The following is immediate:



-

tp(b)

V' =
1

i,

Ryll-

j<n.

Lemma 2.5“’If 5 is an n-tuple in a model N of T then

is the unique n-type A such that T | j(A) 2 tp(bj) ,
’

v, €A iff b, = b, Wv,v, ¢ Aiff N = Rb.b, for
j E iy o ity 7

Proof of the theorem from the lemmas.. By Lemma 2.4 and

Nandzewski's theorem there must be a nonprincipal l-type in T .

<

‘By Lemma 2.3 there are finitely many nonprincipal l-types, say

Pyre~esP_ - Choose wi such that Py is the only nonprincipal

l1-type that contains wi for i =n . By Lemma 2.2 we may choose
- f
¢, € 1 such that F& @y wi and property E. holds of ¢, for
i = n . There can be no nonprincipal l-type which contains =1V wi'.

From Lemma 2.4 it is easy to see that TV ¢, 1is wo—cétegorical.

This

3.

this

i=<n.

i<n 1
completes the proof.

-

Proof of Lémma 2.2

Recall that we must show that if T satisfies the conditions of

chapter, p. 1is a nonprincipal l—type~of T and ¢' € p then

there is a formula ¢ € p such that FT P - @' ~and ¢ has property

Let p be a nonprincipal 1l-type of T . Let M be the middle

model of T .

Consider now those 2-types A in pxp ‘which contain VO #‘vl .

By Lemma 2.4 we see that each such A 1is specified by the pair

(i,3) € {O,l}2 such that (Rvovl)l A (Rv

3 , ;
€ . By Lemma. 2.1
lvo) A vy :

there is some type I in pxp which is principal over p while

T
1,1

(I') is not. Let 6 geherate I' with respect to p . By elimi-

nation of quantifiers without loss of generality we may take 6 to be

o where ¢ € p .

A A TR |
A wo(vl) Rv_ Vv Rv.v_ A Yy #F v o

01 10 1

0



Note that © cannot be symmetric in vo,v1 since Tl l(F) is not
. 7 - ~ _
- princiapl over p .

>Claim. T () is the only 2-type in pxp which is nonprincipal

l,l'

over p .

For proof by céntradiction assume that A is a'2—typéhip PXp
which is nonpfinCipal'over o) and;different from Ti'l(T) . Let é be
a member of the middle model M which realizes p ‘and over which M
is prime. Let M be prime over (c,d)ivrealizing A . Now (a,c)
and . (a,d) realize types principal over p and from Lemma 1.1 neither
(c,a)' ﬁor' (d,a) realizes a type principal over p . Therefore |
' = tp({a,c)) = tp((a;d)) bybLemma 2;4 . The type ‘A of (a,c,d)

, . , «

is principal over p and Tl 2(A) is principal over A . Since d
. £ [ .

i
-

realizes:'p there is a pair (e,f)€éM such that (d,e,f) realizes A.‘
' We shall show'thgt (a,e,f) also realizes A . Now (e, f) realizes -
A and as before by Lemmas 1.1 and 2.4 I = tp(a,e) = tp(é,f) since

M ié prime over a but not over e or f . Feoer M prime over e
or f would imply byaLemma 1.1 that M was prime over d , a éontra—v
diction. But then by Lemma 2.4 the type of (a,e,f) is A . By
homogeneity of prime models (see Vaught}[l2, p.310]1) there is an
automorphism of M -£ixtfig— a and taking (c,d) onto (e,f) .

Thus M is also prime over <{(e,f) . But (d,e,f) realizes a type
principal over p . Hence by Lemma 1.1 M is prime over d whence
(d,a) realizes a type principal over p , a contradiction. This

verifies the claim.



From the definition of T, T # Tl l(F%. Thus from the claim w%'

may chobse ¢ €p such that for i, j < 2
v )j Av_ #F ov))
0 Q 1

either f% —IEVOEVi (p A @(vl) A (Rv Vl)l A (Rv

0 1
or there is a unique 2-type Ai i in pxp containing
¢ ' i 7
= A A (R A - A
Xi,j [0) @(vl) A( vovl) (vavo) vO # vl
and X@ . generates A, . over p,or 1T (X? L)
; 1, 1,3 L~ 1,1 1,]
generates T (A, .) over p .

1,1 71,3

Wé call this the basic re§triction on ¢ , and assume that ¢ satisfies
the basic restriction in the remainder of this séction.

We may also suppose without loss £hat

}& Vvo(@ - Rvd?o) % VVO(@ - 7 RVOVO)

For if ¢ € p and ,F& Y > ana ¢ satisfies the basic resfriction
then Y does as well.

The proof is now reduced to a number of claims which permit one
to choose a formula ¢ € p such that F& ¢ - w' and @ is E-like.

Claim 2.1 Given a formula ¢ € p there is a formula Y- in p
such that if o* is any formula in p implying ¢ A Y then o*
satisfies E(i). |

Let ¢ bgrthe formula _ ' .

= ¢ P o .o . a®
Y af VleV2(X vovl AN vV, s - 1 A vov2)

We shall show first that Y € p . Let M be prime over a realizing
p and let b,c be elements such - -that

M F \ap A \Pbe .
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From the definition of N either Xg“ﬁ or X? 1 belongs to the

type realized by ‘' (a,b). Suppose that M F XO o &g,b) without loss

of generality. There is a unique 2-type AO 0 in pxp containing
AP from Lemma 2.4:4 since A\ (v ) o=\ (v ,V )iy A =
0,0 . 0,0 10 0,0 O 0,0

T. i , a by » . Thus’
l,l(AO,O) whence AO,O is generate ovgr P y 0,0 us
(b,a) realizes AO 0 and M is prime over b by Lemma 1.1.

similarly, M 1is prime over ¢ . It follows that tﬁé types realized
by :(a,c) and (c,a) are both in pxp and prinéipal over p

Neither of these types can contain Xg 1 whence M F=X®(a,C) .as

required.

-If o¢* is any formula in P implying ® AP it is clear that
~ o~k * *
F A7 xy A AP vz > AP xz

since by inspection Xw VoY, is equivalent to ¢* A @*(Vl) A vaovl .

Thus any ¢* in p which implies ¢ Ay will serve to satisfy E(i) .

Thus claim 2.1 is verified.

" pX A A AT .

Let be the formula X X(vl) RVOVl RVlVO
where X has at most v, occurring fr%e.

Claim 2.2 Let ¢ € p . There is a formula ¥ € p such that
any ¢* € p which implies ¢ will satisfy E(ii)

ILet Y be the formula

A® A o® A S = (v, .

Vv Vv Vv ( VoV S (v v, ) v2v3 -, O (vl v3{)
We aregu that Y € p. Let a,b,c,d be elements of M such that M
. , , ¢ P ’ ¢
1s prime over a , a realizes p and M F Aab A 87 (a,c) A Acd .

It is easy to see that b,c and d .realize p and that (a,c)

realizes [ because of the basic restriction on ¢-. Also if
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(b,d) does‘not realize f thén M is prime ovei d and thus also
nver ¢ contradicting the fact that (a,c) realizes T ;x?ﬁrguing‘
as for Claim 2.1 we see that any ¢* in p which implies QP will
satisfy E(ii) .

Claim 2.3 Let ¢ € p satisfyL.E(ii). Then there is Y € p such‘
that if ¢* € p and FT ¢* - @ A Y then o* satiéfies E(iii) . |

L3

Let Y be the formula '
VleVz(ew(vO,vl) A e@(vl,vz) - ew(vo;vz))
We show that Y € p . If M 1is prime over a realizing p and
"b,c are such that M }= ew(a;b) A ew(b,C) , then b,c realize p
from the basic restriction on ¢ . The type of (a,c) 1is determined
by the unique pair (i,j)¢€ {0,1}2 such that M += Xf’j(a,c) . If
(i,j) is (0,0)" or (1,1) then M }=K®ac which gives M F=9@(c,b)
since ¢ satisfies E(ii) . This contradicts M F=9@(b,c) . If
(i,j)/ is (l,O)"thenv (c,a) realizes I , which means that (a,c).
realizeé T (f) contradicting the facf that M is prime over a .

1,1
Thus (i,3) is (0,1) which yields M F=9@(a,c) as required.
Arguin%&?s for Claim 2.1 any ¢* in p which implies ¢ A Y will
serve to satisfy E(iii) .

5

Claim 2.4 'Lét“~p be the only nonprincipal l-type which contains
¢ . Then if ¢* € p and ET ¢* > ¢ we have that o¢* satisfies E(vii).
Let ¢ € p be such that p is the unique nhonprincipal l-type

containing ¢ . Let gq be a principal l-type which contains ¢ .
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Notice that e -

{g" : there exist® A .in gq' x g such that vaov v o% €A}

1
is finite. Otherwise, by the compactness theorem there exists non-

principal q' and A in gq' x g such that vaovlv 6% €A . since p

is the only nonprincipél l-type contaihing ¢ , we have q' = p . But

(vaovlv 6%) € A ;A B p and Tl i(A) ® q imply that g = p by the
. : ’ )

*

basic restrictionvon ¢ .j Thus q is néhprincipal, a contradiction.
This shows that ¢ satisfies .E(vii) and the claim follows»easily.

Claim 2.5 If, ¢ satisfies E(i), E(ii), E(iii) and p is the
unigque nonprincipal l-type qontaining ) then_thére is’a formgla X
in p. such that h}'X — @v and X sétisfies E(iv) .

L4

Let Y Dbe

P ¢ , ’ ¥ .
Vvl3v2(6 (vo,vl) . B (VO,V2) A B (v2,vl)) .

-

We have Y € p since P satisfies E(iii) and \ew generateé I' over
p- For if M is pr;me over a réalizing P there are-then ‘b,c
such that M‘F= 6%@,p) A %m,c) . By E(iii) M Fﬁ 6%(a,c) whence
jv2(9®(VO,V2) A Gw(v2,vl)) belongs to [ . By choice of ¢ ; @ ATy

is wo-categorical. Let po,...,pm enumerate those 1-types containing

@ A1y . We claim that there is a finite list of 1l-types qo,...,qn"

¢

extending po,...,pm such that for each i =n ¢ ¢ qi' and

(*)V¥q(g a 1-type A JA(Aa 2-type A D g A Tl

¢ ¢
l(A) 2 q A ( yovl've )

14

€ A) :=: 33 <= n (g = qj)) .

(*) says that {qo,q ..,qn} is closed under "predecessors" with

1’

respect to (6(P Y Xw). The list <qi : 1 = n> exists since ¢ already
satisfies E(i), E(ii), E(iii) and E(vii): one need only extend the list

P ,...,pm by adding those g for which

0
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(3, =m) 3A(s in qx pi”'aﬁaw'i?be v el oen .

1
Let X =df ¢ AATIX, . Now X satisfies E(i), E(ii), E(iii) and
i=n :
and (vii). Also since the list qo,...,qn extends Pore=-rPy we have

kL vvovV13v2<eX e 8% v ) a8
From (*) we qaﬁ deduce

Eovv ¥v (6% A X o> X(v))).

T o 1 1
Thus X satisfies E(iv) . 7

Claim 2.6 If ¢ € p and p. is the unique nonprincipal 1-typé
containing ¢ then kT VVOBV1(@ - Gw) :and ; satisfies E(v). For
let M Dbe prime over a realizing :p \?nd let. b € M be such that
M #= ¢ (b) .. If b realizes a nonprinéipal l-type then that type
is p and since g® generates [ over -p M #:'3V1 Bw(b,vl) .
Otherwise b realizes a principal type andiégain because of the basic
restriction on ¢ , M F='6®(b,a) . Thus ¢  sa£isfies E(v).

| Now'we shallrappl; Claims 2.1, 2.2, 2.3%3 Choose. @O-é P such

that ¢ satisfies tﬁe basic restriction; th @O - @', p‘ is the unique
nonprincipal l-type containing @O and if o¢* € p and hT @*l+ wo
then o¢* satisfies E(i), E(ii) and E(iii). By Claim 2.5 we may assume
that @O satisfies E(iv). Néw let ¢ be 3vl(épo(vl,vo)). Clearly
" ¢ € p . Also 2 satisfies'E(i), E(ii) and E(iii) and by Claim 2.4
E(vii) and by‘Claim 2.6 E(v).. ¢ satisfies E(iv) and E(vi) because
o satisfies E&iv). | f

Thus ¢ has property E and the lemma is proved.

S'ﬁ
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4. Proof of Lemma 2.3 o e

Under the conditions of the theorem we prove that there are only
finitely many nonprincipal 1l-types.

Assume there are infinitely‘many. Then there is a formula ¢
which is contained in infinitely many nonprincipai l-types and is
"minimal" among such formulae: i.e. for no formula Y is it the case
that ¢ A U and o ATy are eaéh contained in infinitely-many non-

W w
principal l-types. Otherwise there would be 2 0 l-types and thus 2 0

countable models. [12,_§531]

- It is easy to see that there a;e exactly wo nonprincipal l-typgs
p' containing ¢ such that for some w' p' 1is the unique nonprincipal
l—type{contaiﬁing Y . Such l-types we call isolated nonprincipél
l-types. Let <pi : 1 € > bbe an enumeration with9ut repetition of
all isolated nonprincipal l-types containing ¢ and lgt @i be chosen
sucﬁ’that 1 is the unique nonprincipal type containing @;

Let ® be '@é A ¢ and for each 1 > 0 let Qi Vbe

1)
j<i

Then the sequence <¢i : 1 € o> satisfies for each i, j < w
1) koo, >0
(ii) ¢ belongs to exactly one nonprihcipal l1~-type namely pi
(1ii) ET‘W HVO(@i A @j) if i # 3
and
(iv) 1if o belongé to an isolated nonprincipal 1l-type -q

there is i € w with ¢, € q .
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_ By the compactness theorem there is some nonprincipal I1-type
p2 {o} U {“1@i : 1 € w} . By the choice of ¢ and <¢; : i € w>

there is only one such p .

-

7

By Lemma 2.1 let Fi be a 2-type in P, XPy which is principal
over pi but such thét Tl,l(ri) is not principal over pi and let
' be a type in PXp with the same property. ILet M be prime over
c, realizing pi éor each i € w and also prime over ¢ realizing p .-

Let c; , 1 € w ,.and c' be elements of M such that (Ci’ci 9
réalize Fi and (c,c:) realizes I' . The contradiction will be
obtained by showing that there are five distinct 2-types in poxp .

From Lemma 2.4 there can be at most four.

We claim that thefe is a strictly increasing sequenée of positive

integers <ij : j € w> aﬁd there are pairs <ko,kl> ' <20,21> and

<mg,m, > in {0,1} such that for each j € w

(i) (R )ko A (R )kl €

i VOVl ( vlvO tp(co,cij)

| Lo 31 .
1(11) (Rvovl) A (vavo) € tp(co,cij)
ii1) R )mO my ¢ v v
(iii ( VOVl A (vavo) tp(co,cij) .

»

To find <ko,k > and a subsequence <i; :J € w> which satisfies (i)

1

we need oqu observe that some one of the four possible pairs, say

(ko,kl) must be such that for infinitely many 1i €
x k

0 1
) .
(Rvovl) (vavo) € tp(co,ci)

By thinning <i; : J € &> twice we can find <ij : j € w> ,

<20,21> and <mo,ml> such that (i), (ii) and (iii) are all satisfied.
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From Lemma 1.1 tp(égié;)rfisféiihCipal over P, ‘and

Tlri(té(gO,ci)) is principal over pi . Also tp(cO,c;) is principal

over pO and Tl,l(tp(cO'ci)) is not principal over pi ; while

tp(cé,ci). is not principal over p, and Tl’l(tp(cé,ci)) is

- principal over p. - Thus the pairs <k0'k1> ’ <20,21> and <mb,ml>

are distinct by Lemma 2.4 ., By the compactness theorem there are

1’ A2 in Py¥XP such that
k k1

0
Vl)- A (vaVO) € A

distinct 2-types AO, A
(Rv

0 0

% o

(Rv_Vv_) 0 A (Rv VO) € A

01 1 1

Mo ™
‘(Rvovl) A (vavo) € A2 .

Notice that none of A _, A A is principal over p . - Suppose, for

o 71" "2 0

example, that AO is generated by 6 over pO . By Lemma 2.4 and

elimination of guantifiers we may take 6 to be

Ko Ky -
R A (R A ' ' .
( val) ( leO) wﬁvl) where Y € 'p Every

%

formula in p is contained in all but finitely many of the types: p, -

Thus there is some 3j € w such that M F 1p(ci ). But then (cO,ci )

j j

realizes AOi' an impossibility. Thus we have three 2-types in pOx;>

none of which is principal over P, - At the same time there are at

0

least two 2-types in PO

X p , namely those realized by (c.,c) and
(cO,c') which are principal over Py This is the desired contradic-

tion.

Thus there are only a finite number of nonprincipal l-types in T.
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5. Summary

Our analysis shows that under considerable restrictions I(T,w) =3
implies that any model of T is like the Ehrenfeucht ekample. Benda
has pointed out that we may not have used the full force of the assump-
tion I(t,w) = 3 since we only'use the existepce of the middle model
M. This remark suggests the following question.
Q6: If a countable complete theory has a middlé,model, does

it have three countable models?

S

An analysis ‘of the;prdofs of Lemmas 2.2 and 2.3 shows that T

satisfies (Cl), (C2) and (C3) of the introductiorn.
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Chapter 3

Y-generic°structures

In this chapter we redevélop meghods of Joﬁsson [5] and Morley
and Vaught [7] for the purpése of constructing and characterizing
theories in a small language. |

The most important concept involvéd is that of a class of struc-
tures having the amalgamation ?roperﬁy.‘_Lé% 2 be a class of struc-
tures for a language L . We say that 3 has the amalgamation

[y

property (AP) provided that whenever -G, H , H , e e are such that

o' "1" 7o' "1 |
G, HO' Hl €2, eO : G~ HO and el : G > Hl are embeddings then
there is H € 3 and there are embeddings ;fo,fl where
4
: H H f : H H 4 f = f .
fg 3 Hg > H o 5y = Hy > Hoand faee, = 50

For the remainder of this chapter let L be a fixed finite
language. The reader should bear in mipd:that L ﬁay contain fggption
symbols.

| Let I be a class of finite structures for L and let M be é
denumerable structure for L .

M is said to be Z-universal provided that every structure in I
can be embedded in M . %h~$waww
M is said to be I-homogeneous provided that whenever G,H are
suﬁstructures»pf M which are isomorphic to members of £ and when
f : G>H 1is an isomorphis; then there is an automorphism g of M

which extends f (i.e. f c 9.
M is said to be Z-generic provided that M is Z-homogeneous,

Z-universal and every finite subset of M 1is contained in a sub-

structure of M isomorphic to a member of Z .
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The following lemma provides a.convenient test to determine

whether a mdael M is Z-homogene€ous. -

Lemma 3.1 Assume that 2 1is closed under isomorphism and that .
~every finite subset of M is.containedvin a substructure of M
belonging to Z . Then M is Z-homdgenéous just in case whenever

HO,KO,H are substructures of M belonging to I , HO C H and

g : HO -+ KO is an isomorphism there is a substructure XK of M

with K, © K an# an isomorphism § : H - K such that g C g .

Proof. Necessity is trivial. The proof of sufficiency uses a form
- ray * ) &

of back and forth argument. Let HO,KO be substructures of M and )

let 9, HO-+’KO be an isomorphism. Let {ak : k < w} enumerate M.
We extend go to an automorphism és follows. Construct by recursion
sequences <Hn :n € w> , <Kn :n € o> and <gn : n € w> where

Hn'Kh are substructures of M , and gn +: H =- K is an isomorphism
n n

for n €4 , such that M= U H = VU K° and for n € w
n€w n n€w n

H CH ’ C K - -
n n+l Kn el and gn gn+1 For n eyen Y?Amay choose
k minimal such that a £ H and choose H >H U {a } such that
k n - n+l -~ n k
H € C . o xt D
el 2 and Hn+1 M Then we may take Kn+1 Kn and gn+l gn
: H "f » » .

so that gn+l N+l 4-Kn+l 1s an 1s?morphlsm For n odd we may

ini ) : i
chqose k minimal such that a, £ Kn , Kn+l Kn U {ak} with

c .y
Kn+1 € 2 and Kn+1 M . We may now apply the condition to
. -1 . b
H ,K ~ -

Kn, n' K+l and gn to obtain Hn+l and gn+l

In the next lemma we provide a sufficient condition for the

existence of a IZ-generic structure.
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Lemma 3.2 Let I be closed under isomorphism and assume -that 32
has AP ana that there is a structure S in 2 which can be embedded

in every member of Z . Then there is a J-generic structure M ,

Proof. If there is a bound on the cardinality of members of 2z let

M be a member of 7 of largest cardinality. Without loss of

B

generality we may take S ©M . Let} G € Z . There is SQ loss in

assuming that S < G and Gf{IM=35 . Since 7 has AP there is N

in 2 and there are embeddings .fo : M~> N and fl : G- N . But

then fO is the identitf?and fl is an embedding of G in M .
Thus M 1is Z-universal. Now assume that H,K are subsfructures of
M which belong to Z _and let f : H—> K be an isomorphism. If
H=M we are done. For an application of AP consider the idehtity
mapping lH : H-> M and f : H> M . There are therefore

N¢Z,9, :trM>N,g M - N such that gl,g2 are embeddings and

2

M

g, I =g_ ¢ £ . But then gl,g2 are isomorphisms and the:e is no

loss of generality in assuming g

1 is the identity mapping on M .,

—

The required automorphism of M is then g . Thus M is Z-generic.

2

If there is no bound on the cardinality of members of 7 we
proceeé as follows. The collection of‘isomorphism types of structures
in I 1is countable so we may choose a seguence <Sn ;, n € w> of
members of £ such that SO =S and if G € Z then G Z Sn, for

some n . Now construct an increasing sequence <Mn :n € w> of

mempbers c¢f. © such that for alln M € 2, M CM and also
n n n+l
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(ii) VYnVYHYkVf3m3g(H C Mn & f : H- Sk is an embedding

= g : Sk - Mm is an embedding such that for all

h €H h=gof (h)) .
At stage m+l choose n=m , H C Mn'k and an embedding f : H - Sk

such that there is no embedding g : Sk -> Mm making g o £ = iH .

Further, make these choices so as to minimize n+k . By an application

of AP we may choose M such that M CM and there is an
m+1 m m+1

\ . . -1 .
embedding g Sk - Mm+l making g o f H

To see that the sequence {Mn :n € w} satisfies (ii) assume that
n+tk is minimal such that there are H C Mn and f : H —» Sk with no

embedding g : S > M_ with g o f = lH for any m . There are a

k

finite number, say %, of pairs (H',f') where H' C Mn| and

£f' : H' is an embedding and n'+k' < n+k . Thus we may choose

- Sk'

m<n such that for each such (H',f') with n'+k' < ntk there is an

embedding g' - M with ' of' =1 . “The construction ensures
- g

S
k' H

] : - i o =1
that there must be an embedding g Sk - Mm+£ making geo f q "’
a contradiction.

Let M= U Mn . Since SO may be embedded in each member of 2
' n€w .

(ii) ensures that M is 2-universal. It is easy. to sée from (ii) and
Lemma 3.1 that M is Zghoﬁogeneous.

Thus M is Z-generic and countable and the lemma is provea.

A back and forth'argumeht which closely resembles the proof of

Lemma 3.1 provides us with a uniqueness result for Z-generic structures.
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Lemma 3.3 Any two Z—generié structures are isomorphic.
A

- Proof. Let M,N Dbe two Z-generic structures. Itvsuffices to show

CHCM, K

0 S ¢ N, and if f : H - K

t if K H € H
that i HO, 0 2y 0 0

O .
is an isomorphism then there is an embedding g : H » N such that
g r HO = £ . But there is an embedding h ofk H into N . Also
KO and the image of HO under h aré isomorphic‘byf h {f—l .
Since N 1is Z-homogeneous there is an automorphism k-* of‘ N Which
extends h of"l . We may take g = (k)—th . |

The next lenﬁa establishes that construction 6f’a class erstfuc—‘
tures 2 satisfying the conditions of Lemma 3.2 and a cdﬁdition on
subst?ucturés is a wgy of génerating wo—categorical/theories.

Lemma 3.4 If M is Z=-generic and if tﬁere is a fﬁnétion
f : w~>w such that'whenever A is a subset of a struéture in Z‘
there is a member of Z containing A whose cardinaliti‘is at ‘most

£(|a]l) then Th(M) is wo—categorical. Moreover if I is closed

under substructure then Th(M) admits elimination of quantifiers,

Proof. Let M be Z-generic and let f : w » w be such that whenever

ACHEZ 3K€EZ ACK and |K| < £(|a]). If M is finite there

is nothing to prove. Otherwise by Lemma 3.3 it suffices to show that
i

any countable model of Th(M) is Z-generic., Since L is finite the

isomorphism type of any member of 2 can be described by . a formula

and thus every model of Th(M) is Z-universal. We claim that any

finite subset of a model of Th(M) is contained in a‘substructure which

belongs to % . Let n be fixed. There are a finite number of
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isomorphism types of structures which belong to 2 and have cardinal-
ity at most f(n) . For each a a seqﬁencé of n distinct elements
from a structure H in 2 there is a formula ¢ € Ln which fixes

-

the isomorphism type of H over a ; that is we have K‘F= @(5)'

\ _ o . .
where 'K 1is an L-structure and b € K 1iff there is an embedding of

14

H into ﬁ ,which takes a2 onto b . It is easy to see that a finite
disjunction of such formulas is wvalid in M and the claim follows.
From Lemma 3.1 any countable model of Th{(M) is also X-~homogeneous.
The extension property in the criterion of Lemma 3.1 for each HO,KO,H
and‘ 0 can be encoded in a formula,which is valid in AM .

Thus Th(M) is wo—categorical. |

Now if 2 1is closed under substructure we may employ the following
well-known proposition which we.do not prove, to see that Th(M) admits
elimination of quantifiers.

Proposition 3.1 ILet T be a countéble complete theory. Then T
admits elimination of quantifiers just in case for each denumerable

model N HOf T and for each pair of sequences E,E of the same

t
t

length, n. say, such that for each open formula U € Ln
N F= w(;) +*-¢(B), there is a denumerable elementary extension N'
of N with an automorphism carrying .3 to B”.

When 2 1is closed under substructure Z—homogeneity ensures that
the conditions of Proposition 3.1 are fulfilled and therefore Th (M)

admits elimination of quantifiers.

This completes the proof of Lemma 3.4
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The following sihple example shows that the uniform boupd on tﬁé
cardinality of the smallest member ofr Z containing a subset A is
really needed in Lemma 3.4 .

Example 3.1 Let L be the’language with one unary function
symbol P and let 3% be the class of structures for'.L isomorphic
to one of <n,Pn> for n>1 where n = {m : m<n}r and Pn(m) = m-1
if m0 and Pn(O) =0 . The Z—generi& model is then <w,Pw> =

U <n,P > .
n
n<w

The following lemma provides a partial converse to Lemma 3.4 and

strengthens the connection between classes of structures with AP and

theories which admit elimination of quantifiers.

( )
Lemma 3.5 Let M be a denumerable structure such that Th (M)
admits elimination of quantifiers, and such that every finite subset
of M is contained in a finite substructure of M . Let Z be the

class of finite structures which can be embedded in M . Then 2

has the amalgamation property, and M is J-generic.

Proof. Let A, B

+ B, €2 and let f, : A - B, be embeddings
0 1 _ i i

for i 0,1 . There is no loss of“generality in assuming that

A, BO’ Bl are substructures of M  and that fO is the inclusion of
_ /

A 1in BO . Since A and Bl‘ are finite and L 1is finite there are

open formulas which fix their isomorphism types as substructures of M.

But A, fl(A) satisfy the same open formula and so- fl is in fact

elementary since Th(M) admits elimination of quantifiers. But then

-1 ) i .
fl can be extended to an isomorphism of Bl and an extension Bi of



. B UB
A Now ( 0 1

) generates a member of Z . This argument also

shows that M satisfies the condtions of Lemma 3.1 and is

2-homogeneous.

Therefore £ has AP and M is S-generic.

\/ N
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Chapteri4\
Quantifier eliminable graphs

l', “Examples

In this chapter we apply the results of Chépter 3 to graphs whose
theories admit elimination of quantifier. Theories‘are assumed to be
complete theories with one binary relation symbol R , and to admit
elimination of guantifiers. We also stipulate ﬁhat each model be
irreflexive, i.e. model Vvo "1Rvovo . This ensures that there is
only 1l-type.

In this section we shall present several siméle examples and some
basic definitions.

We firs£ introduce abbreviationé for some basic formulas. These
A

abbreviations are I, T, AO, A U defined as follows:

l-l 2’

Ixy = df x =y )

I'xy = df Rxy A 71 Ryx

A xy =df (Rxy A Ryx) VX =y

Axy = df (T Rxy A TTRyx) V x =y . :
Axy = df (Txy VIyx) vV x =y

Uxy = df x = x

Several well—known_exampies are the following:

DO - The theory of- <Q,<> the rationals under the usual
ordering. »

n 3 * L

Ek - The theory of an equivalence relation with n equivalence

classes of power k , where 1=n , k= w .

G - The 2X(A) generic structure for the class Z(A) of
finite graphs in which the (n+3) cycle cannot be

embedded for n € A C .



DOn - The thebry of the direct product of a model of DO

and the complete graph on n points where n<w .

GiVen T we may form its‘dual T from the denumerable model

G of-T 7 <G is the graph with universe G and relation

Ra = (GxGP\(RG U {(é,g) : g€G}) . T is the theory of G .

Clearly T also admits elimination of quantifiers. DO 1is self dual;

while the duals of the other theories are not included in the list.
ThevfolIOWinq propdsition gives a wéy of constructing new

examples from known ones.

Propositibn 4.1 Let 1i,3j,k be 0,1,2 in some order and let

,TO,Tl be such thgt FTO(AivOVl Vv Ajvovl) ‘and th(AkVOVl) .

Let A,B be denumerable models of TO,'I'l respectively. Define the

'bl))

structure C by lc| = |a|x|B| ana R, = {((ao,bo)gl

= A , R . ;
(a a (bo bl) € B) Y ((ao,al) € RA)} Define e structure D

0 1
by [p] = |c| and Ry = [(aguby) s (ay,by)) = (/b)) € Ry v
((aj,a;) € Ry Ab, = bl)X} . Then Th(C) and Th(D) admit

elimination of guantifiers..

Proof: We present the proof that Th(C)I admits elimination ofiquanti—'
fiers. The proof ﬁor\ D is similar. The main idea is that from C

we can retrieve A and B 1in order to construct enough:éutomorphisms
in the Wreath product of the automorphism groups. It suffices to show

-
that if ¢,d are two sequences of n-elements of C such that



C F= cg = cm <« d,Q =,dm ’
C F= AU coc > AU dﬁdm ’
e N '
and C F ' c,e < T4

; 2 m Qdm

for 2, m<n and Uu<2 then there is an automorphism h'  ,of C

-

—

. i
which carries ¢ onto d . The conditions ensure that there are dis-

«® s l i i ',“.l., ! | EA
'aR-l € A and distinct al 'al—l such that

r
{m : a is the first coordinate of cm} = {m : ap, is the first

‘ — -
coordinate of dm} for p<f . and a realizes the same type as a'

in T . We may(choése an automorphism £ of A which carries

0
RN SN . i .
a onto a . Let p<f and consider now Ip = {m : ap is the first
coordinate of ¢ } . Let I = {m_,...,m 1 and consider the
m : P 0 r-1

r-tuples -B and b from B with Bs' the second coordinate of

- -— -t
a. and b; the second coordinate of dm . Then b and, b' realize

S : S
the same type in Tl and there is an automorphism ga of B which
- - ) . p
sends b onto b . For a £ {ao,...,aR l} let Oa be the identity
on B . Consider now the automorphism h of C defined by
h((a,b)) = (£(a),g_(b))
— C —

which carries c onto 4 .
Note that in the construction above {(c,d) : C kE Akcd} is an

equivalence relation on C .



2. Definable equivalencevrelationsv . ’ ;>1

In this section we examine the strﬁcture of the latéice of defin-
able equivalence ﬂ@latiOns of a model of a fixedvtheory T . The maiﬁ
result is the following:

Theorem 4.1 If T has an infinite model then no mgdel has two
incomparable definable eéuivalence relatiqné;

The main theorem will follow easily from the lemmas Qf this sectiqn.

Fix a theory T , which has an infinite modelf N9£e first that

if A i5 a formula in L2 which defines an equivalence relation in '

T i ival isjuncti £ £ |
then A 1s equivalent to a disjunction of some of AOVOVl'AlvOVl’.

a I
AZVOVl an vov1

The following lemma deals with the most difficult ¥ase in the
proof of Theorem 4.1 .

Lemma 4.1 Assume that T F Aiv v. ANAv.v > A for

01 i1V Vo2

i=20,1. Then either onovl or Alvovl is equivalent to vO = vl

in T .

Proof. Let A F T and let A E byab A a # b . Note that

Ak Vv, (&, b v A vy # Db~ (Tavy VvIv) a))
. . W
Claim = 3vo (Al b Vo A Ta vo)
Otherwise we have ;
A | I
= VVO (AlAb Vo A b # vy < FVO a)

Let A E byab A Abc A Tca A had Aa#d.
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By I we see that A E 7 Aocd . Otherwise (c,d) realizes the same

type as (a,b) yielding A F Tac , contradiction. Also it is trivial
that A F:'ﬂ‘Alcd Ac#d since AV v (R) is an equivalence relation.
* Thus A F: (I'cd v I'dc) . Suppose A F= 'ed , then (c¢,d) and (c,a)

‘realize the same type and we have e € A with A F= Ace A A de .

1 0
It is easy to see t e 1is none of a,b,c,d . Since Alvovl(A) is
- an equivalence relation and I holds A F lea . Comparing the triples

(a,b,c¢) and (e,d,a) we see that A F TFae since I must hold with
e,d for a,b respectively. This contradiction léaves only the
possibility that A F=Tdc . Now (c,a) and (d,c) realize the same

type whence there exists f such that A F (Alfd A Aofc) . Comparing
the triples (a,b,c) and (c,f,a) we get A kTac , a contradiction.
This establishes the claim.

Clearly the above argument can be modified by exchanging the roles

of A and A to establish that

=0 1
A 3
= vy (8,3 A 8b v A Tv a)
Thus
3V03V13V2(AOVOV1 A‘AlVlVZ AthOvz) . (L)
and '
3v03v13v2(A v.v. AA V.V A rvzvo) (2)

001 112
are both theorems of T .

Fix a,b,c € A such that A F= Aoab A Albc A Tac for the

remainder of the proof. -By (2) and elimination of quantifiers'there

exists d such that A k Alad A AOEF . Note that since onovl(A)

I

and Alvovl(A) are both equivalence relations
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A F H!VO(Ala vy A AOVOC) o (3)‘

Now it will be established that .

T k 3V03v13v23v3(A v.v, A Alv v, A Alv

A A
07072 0’1 v By Tvyv

A .
273 173 Tvyvy)

3
(4)
We require the following lemma which will be proved later.
Lemma 4.2 Suppose that the hypothesis 6f Lemma 4.1 holds and
that the conclusion fails, then fdr each :n=<w
> >
T |k VVO 3—nvl(AOval) A'VvO 3—nvl(Alval) . :
If (4) fails, then y

Ak VVO(Ala VO,A Aoc voj+ I'b vO) . | (5)
But there is arunique d such thaéy A F= Alad A Aocd . The'idea is
to eﬁploit the existence of this uﬁ;éue point and the condition (5)
to define a partition of {e : A F=:Aibe} with.paramet;rs é,b
which is independent of a in the éénse that if A k Ala'a and a'

is substituted for a the same partition will result. The existence

of many points in the Alvovl(A) equivalence class of b will then

&

furnish a contradiction. Let @(zﬁf be

A . ; .
Albz 3vl(Ala vy A AOvlzﬁAin vl)

From Lemma. 4.2 S ={e : A F= Albe} -is infinite and without loss of
~ : '

generality S' = {e : A F= p(e)} 1is also infinite. This is because

otherwise we may apply a similar argumeﬁF to {e : A }= Tlp(e) A

by Fvlb in

e #b A Aleb} . This corresponds to replacing Tb vy

the definition of ¢(z) . Nﬂ?
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Let - ed be such that & F= @Téo) and Jet fO be such That -

f A £ A f . A 1 ' .
:\ F Ala 0 Aoeo o I'b TFen F= T'a e, since (5) holds

Let o' reshlt from ¢ by replacing a by fO . Then
A F= Vv (@v P v ) .

But T admits elimination of quantifiers and there is an open formula -

6 with parameters b , fé such that

Ak Q;VO > 0 . w3

E —

Hence either

Ve(eES'&e#e*—*(AFTfoe)) (6) .

0
or Ve(e € S' s e # ey (A ETe £,). | (7

This is because there is a member of S' other than eO , and there

is an element othefxihén b which satisfies Aib v, A "lw(vo) .

Clearly there are el,ez' in S' such that for the corresponding

- \A\%—)\ l , - ] N '

fl, o either (6) holds when the subscript 0 1is replaced by either

1 or 2, or (7) holds whichever of 1 and 2 replaces 0. 1In the first
ATEf e, in t : ‘ A .

case A F= Ffle2 r 2el anétln the second A F=,Felf2 I’ezfl

Thus (4) holds in either case.

N This argument does not use the full strength of Lemma 4.2. One

needs only that F 324VA(A v v.) A 3_4v (A,v_v_) . The argument ﬁsed

T 1 " 001 17101
for (4) when applied to T gives

T k- 3V03V13V23V (onov2 A A ov1%3 A A 1VoV1 A A Vo5 A I’vov3 A Fv vy ) \%8)

From (4) and (8) however we easily derive a contradiction for we must

have . 4

A F v (AvicAbav ATb v)) A3V (A vic A ba v ATvb) .

This contradicts uniqueness in (3), and completes the proof of Lemma 4.1 .
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We now turn to the proof of Lemma 4.2

Assume the hypothesis of Lemma 4.1 holds and that the conclusion
fails. Let A F= T and let a € A . It will suffice to show that

S, = fa' : A Aoaa'} is infinite, for the same argument applied

to T shows that Sl = {b : A F='Alab} is also infinite. Assume

for contradiction that A is finite and let A = {a = ao,al,...,am}

m>1l .  One may now establish as follows that Sl is infinite. It

is easy to see that at least one of {c : A k Tac} and {c : & F= T'ca}
b

must be infinite. Assume that {c : A F= Fac} is infinite, the

argument given below can easily be adapted for the other eyentuality.

——

In the proof of Lemma 4.1 we showed that (1) holds, i.e.

T | HVOHVlHVZ(AOval A Alvlv2 A Fvovz)

Because of elimination of guantifiers this ensures that for each ¢
with A ETac there is 3<m such that A F=Alajc . But by the
pigeon-hole-principle there is some Jj<m with A F=Alajc for

infinitely many ¢ . But then Sl is infinite since aO and aj'

' I3 3 \
realize the same l-type in T .

Consider now the equivalence relation © defined on S by the

b 6
ormula vovl

Aa v A.Ala v

A V:: R R R A.
1 o VVZ(AOa vV i (Rvov2 > Vlv2) A v2vO > vzvl?)

1 2

Given j=m can definefan equivalence relation @j on Sl where
two elements of Sl are equivalent iff they realize the same l-type

over aj. © 1is then the intersection of the @j
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Consider now the partition of §; induced by ©- . Clearly f{a} —

is one equivalence class. Since T admits elimination of quantifiers
the classes are either {a} and Sl\\{a} or all singletons {e}

e ¢ Sl. The latter is impossible because it would make O the

identity .on B vyet from the form of © the number of classes in the
s . m
partition is = 2 +1 .

A :
by vov

1

Consider the egquivalence relation A defined on So

ﬁoa VO A,Aoa vl A sz(Ala v, :>: (Rv_v_ +> Rv

A R
2 0'2 1Vp) N Rvyvy == Ry

V1))

Again f{a} is an equivalence class under A . Also the equivalence

®
classes are either {a} and {a ,...,am} or {ao},...,{am} . The

1

latter can only occur if m+l = 2141 = 3 . Thus either

A = v
Aoa vo Ala vl - (I‘VOVl vV a vo)

A A =
or Aoa vO Ala vl - (FvlvO Vo a VO)

is valid in A , or m = 2 and without loss of generality

Ak Vvl(Ala vy~ (Fvlal A Fazvl) Vas= vl)

The first two cases occur only when the A equivalence «classes are

{a} and {a ,...,am} and are impossible from (1) and (2) which were

1
established in the proof of Lemma 4.1 . The third case is also

impossible because‘al would be definable from a . This completes

the proof of Lemma 4.2

Thus we see that if T has an~tnfinite model then onov1 and

milval cannot both be nontrivial equivalence relations. In the next

lemmaé we show that neither both of b.vovy and B,v v, nor both of

z VY, and szovl can be nontrivial equivalence relations.
U _



Lemma 4.3 ILet i € {0,1} . If A,v v, and A_v.v. both Fine
7 1 01 201 '

A Aiv vl)

equivalence relations in T and kT 3v03vl(vo # vy

v i ival C = -
A2VO 1 is equivalent to YO vl

A sz vl).

1

Proof. Assume for contradiction that T | 3V03vl(vo # v 0

Let A F T and let a,b,c be distinct such that
A F Aab A Abc .
= by b,be
Then A F= Al_iac follows from the hypothesis of the lemma. Without.

@

loss of generality suppose that A F= Tbc . There exists c' such that
A % l'e'b . From the hypothesis A F Alac‘ . Since (a,c) and (a,c').

realize the same type and A F= HVO(FC'V A Aia‘Qﬁ there exists b'

0
such that A F= Feb' A Aiab') . Then we have A F= Azbb' and
A F Aiab A Aiab' A'b # b' , contradiction. This proves Lemma 4.3 .

and A v v

rom Lemmas 4.1 and 4.3 no two of A v v Alvovl 2VoV1

oo1l’
can be nontrivial equivalence relations in T . We use this observation
to establish the fheorem, that is to show that the definable equivalence
relations pf T form a chain. For this it suffices to show that the
following two statements are true:

(I) Let i,j,k be 0,1,2 in some order and that

(A,v v,V Ajv vl) and (Akvovl) define equivalence

i01 0

relations in T . Then one of these formulas is

egquivalent to v_ = v. .
q o~ "1

let i,j,k be 0,1,2 in some order and that

T | v IV, (v # vy A szovl) for & =0,1,2. Then

not both of (Aivevl \Y; Ajvovlf and (Ajvov1 vV Akvovl)

r
can define an equivalence relation in T .
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To see I let A F T and a,b,c be distinct such that
) 4

A E Akab and A F Aiac % Ajac then either A F Akbc or"
A E (Ai % Aj)bc a contradiction.
For II let a,b,c be distinct members of A | T such that

. . . . A 1 . /
Ak bdac Adab. Then A F (4bc v 8sbe)  and F (85bc Vv 4,bc)

-~

contradiction.

But this establishes Theorem 4.1 . Lemmas 4.1 and 4.2 give

interesting examples of nontrivial empty neighbourhoods, namely

1
distinct in .{0,1,2} and for £,m distinct members of {0,1,2}

'EZ} , 1o, Di,j » D. ., D, .. Dj,k}) where 1i,j,k are

N({E ,E
( 0 i,k i, i

D2 o is the structure with universe {a,b,c} which models
7 . ° R

Azab A AQ

{a,p} which models 'Aiab )

bc A Amac , and where Ei is the structure with universe

3. Tournaments

In this section we turn our attentioh to;thosek T for wﬁich
VvOVvl(szovl) is a theorem. A‘model of T with two or more menbers
is 3@ tournament. In the first part of this section we characterize
those T which have a finite model. 1In so doing we present a lemma
which will be useful in Section 5 where we make a beginning on the
problem of characterizing all directed graphs without loops whose
theories admit elimination of quantifiers.‘

- Lemma 4.4 Let © € L generate an (n+l)-type in T -such

n+1l

that T F e - Y5 # v, for 1=i=n . Let G F T and let a be

-an ﬁ-tuplo from G for which G F HVOEB(Vojg) . Let H be the

substructure\of G determined by O(VO,Eﬁ(G) . Then Th(H) also
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admits elimination of gquantifiers.

¢

Proof. It suffices to show that if H  and Hi are finite

substructures of H and if f : H?i+ Hl is an isomorphism then s

there is an automorphism of H which extends f . But consider the —

substructures of ‘G determined by,>HO U Rng @ and Hl U Rng a

3

and the extension of f which leaves a fixed. This is an iso-
morphism of two finite sﬁbstructures_of G and can thus be extended

to an automorphism of G . This automorphism fixes & and therefore

a

the restriction of it to H is an automorphism of H which extends
# .

f . This complii?s the proof.

i

For the remainder of this section we assume that

T | szovl A Ev Iv (v0 # vy ) . Let Ak T and ao;al,a2 be three
members of A . We say that- {ao,al,a2}l is a 3-cycle in A Jjust
in case A }= RaO 1 A Rala2 A Ra2aO . iWe say that {ao,al ,a.} is

a transitive triple just in case A f {ao,gl;a2} F=VVOVVle2

(Rvovl A vav2 - Rvov ) . The statement "A is a 3-cycle” has the

N
obvious meaning.

We may now state the first of the two major results of this section.
Theorem 4.2 If T has a finite model then the only possibility

for T is the theory of a 3-cycle.

Proof. Let G F T and let a € G . By Lemma 4.4 we see that
0, = {b : G F=»R ab} and I = {b : G F R ba} determine substructures

of G which either have one member or are finite tournaments whose

theories admit elimination of quantifiers. Since the cardinalities
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of O and Ia » are independent of the choice of a and since

z lo_ | = 2z |1_|, we see that IO'I = |I_| . But then |G| = 2m+l -
acg 2 acg 2 a, a -

where m =1 or m is the cardinality of a finite tournament whose
theory admits elimination of quantifiers.® But then the cardinality

of G must be - (2k—l) for some k*2 , and for all k' where

2=<k'=k there must be a'tournament of power (2k -1) whose theory
"admits elimination of quantifiers. It will thus suffice to show that
there is no such toﬁrhament of power seven,

For contradiction assume that G is a tournament of power seven
whose theory admits elimination of quantifiers. Let the universe of
G be {ai : i<7} thére ’Oa = {al;az,a3} and Ia = {a4,a5,a6} .

0 0

By the above there is no loss in assuming that G F Ra AN Ra_a_ A

1%2 0 7900

A Raa AN Raa, . Now there is no loss

Ra that G
a and | a G,}= Ra4a5 536 624

31

of generality in assuming that G F= Rala4 A Rala5 since by inspection

there must be two elements in I N 0 - . Then G E Ra . Now
- ‘ 0 1

consider the edge' (a

61

o,al) . To each Jj with 2<j<6 we may associate

an ordered pair pj = (k,%) from {0,1} determined by

1

~—— G F (Raa ¥ A (Raa,?
03 J

Then these pairs are (0,0) , (0,1) , (1,0) , (1,0) , and (1,1) in
order. Now it is obvious that any automorphism of G which fixes

(ao,al) must also fix 9a2' a3 and a6 .since they are determined

by the pairs‘ P

' p3 and p respectively. Also there must be an

2 6

automorphism which fixes (ao,al) and carries a4 to a5 . This

must interchange them since it fixes ao, a a2, a and a. ..

1’ 3 6

.7

/ 18



But then G F= Ea4ag +ﬁfRaSa4, a contradiction.

This completes the proof of Theorem 4.2. We,are grateful to
A.H. Lachlan for helpiné us simplify the above proof.

It is natural to ask what;examplés exist which have infinite
models. ‘There are, of course, DO and the model generic for thé
class of all finite tournaments. There is also another counﬁable
model in which the successors of a point are linearly ordered by VR .
The counﬁable model CA may be described in the following way. First
choose a countable dense subset |C| of the unit circle in the plane
with the property that if . o € |C' then the opposite end of the
‘diameter through o does not belong to IC] . Now let

R.C = {(d,B) € CxC : signed éngle subtended by the arc Bo 1lies in

(0,m)}, that is B 1lies .on the semicircle clockwise from « and

-

is not ‘o itself. Let C = <|C|,Rc> . We claim that Th(C) admits

elimination of gquantifiers and that the set of successors of a point

is linearly ordered by R.C .

-

Thé second part of the claim is .easy to see for if (a,Bl) '

-

(a.,B.), (a,B.) € R then whether (B.,B.) € R depends on the
2 3 o) i 3 c

TN T~
magnitude of Bia and Bja . To see that Th(C) admits elimination of

i

éuantifiers we shall apply the results of Chapter 3. By Lemma 3.4 it
suffices to show that C 1is Z- homogéneous where 2 1is the class of
finite structures which can be embedded in C . By Lemma 3.1 to |
establish this it is sufficient to show that if

_& = <0 a0 d B = .. are two sequences from C
< o' , n_1> an B <BO, 'Bn—l> qu

such that the mapping g taking ai to Bi for i<n is an
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isomorphism, and if o € C then there is B €.C such that the exten-s.

N

. N . . . .
sion to O <0> of g which takes o to B 1is an isomorphism.

If n=0 or q ¢ {ao,...,an i} this is trivial.' Otherwise the-

-atomic formulae satisfied by <aifa> permit one to translate the
problem into a question about an intersection of open intervals in

the rationals, when it can be seen to be the case that B must exist

i A
i

as above.

- It turﬁs out that the rationals and C are the only two infinite
models in which the successors of a member are linearly ordered.

Theorem 4.3 If T satisfies the following three conditions then

¢

C is a model of T .
(i) T has an infinite model.

(ii) There is a three cycle in T .,

(iii) The successors of a point are linearly ordered.

Proof. Let G be countable and let G F= T . We shall show that
G~ C . First however we establish the following two claims.

Claim 1. The predecessors of a point are linearly ordered, that is

T F [ A RV'VO) -+ RvVv.Vv_ - Rv_v_ - Rv

v.]..
1<i<3 12 2 3 13

For a contradiction assume that

A A A
G F Rob, A Rbb, ARb Db iﬁB Rb.a . | |

~

Now since T admits elimination of quantifiers there is ¢ € G such
that G F Rac A RcbO . It is easy to see that ¢ is distinct from

since G F= Rac . Consider {bz,c} . Since G F= Rb_c

a'bO'bl'b 5

2

‘would mean that the three cycle {a,c,bo} was in the set of successors
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gﬁﬁwould

of b2 we must have that G F= Rcb2 . Also, s;ncg G F VRb}

mean that the three cycle {b2,a,c} lies in the outset of bl we

7 ?

b2 .1lie in the outset of ¢ ,

. B 7 14
have G F Rcbl ut then bO bl

‘contradiction.
Claim 2. Let a € G and let B = {b : G E Rab} and let

B. =1{b : G }= Rba} . Then <Bi,R

1 r Bi>»k pO for i =0,1.

G

This claim is an easy consequence of elimination of quantifiers.

To give the idea we show that Bi is infinite for i = 0,1 . Clearly

7

one of BO-, Bl is infinite, and each is linearly ordered by R.G .

Suppdse BO is infinite. Then there are bo,b ,b2 such that

l

L b2 A Bbob2 . Now a,b2 realize the same

1

l1-type and it easily follows that RG is a dense order on BO and

Bl and they are infinite.

It is clear that G -is the generic structure for the class of

s

. .
finite structures which can be embedded in G . By Lemma 3.3 to show

G=C it will suffice to show éhat if H is a finite’struéture then
H can be embeddéd in G Jjust in case it can be embedded in C.
We show the condition holds by induction on the cardinality n of H .
When n=<3 the céndition holds trivially. Let H be given ana assumé
that whenever |H| =2 4 and whenever IHOI < lH] then HO can be’
embedded in G Jjust in case it can be embedded in C .

Case 1. H is a linear order. Since B_ , B. are infinite this

0 1

case is trivial.

2
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Case 2. Otherwise there is a 3-cycle {h>,h ,h2} in H , where
' 0

1

H Ihoh) AThh A Thph . We shall assume that H < G ang show

1 20

that H can be embedded in C . The other implication is provéd
similarly. There is no loss of generality in assuming that

h € #\{h ,h ,h} and H F (Thh_ <> Thh ). Let H_ be the sub-

structure determined by H\{h} and let H. be that determined by

1

H‘\{h2}. By the induction hypothesis HO and ‘Hl can be embedded

< .
in C . Since C 1is generic for the class of structures which can

be embedded in it we may assume the embeadings agree on HO N Hl .

Let these embeddings be eO and el respectively. Now

c k (Te (h)e (b)) «> Te (h)e (h,)) . Thus eo‘éh) 7 e (h) . But
also it entails that G F thz iff C % Feo(h)el(hz) . But then

-

e, U e is an embedding of H into C .

This establishes Theorem 4.3. An open gquestion (Q7)nis just what

other countable tournaments have theories which admit elimination of

" quantifiers.

Q.C Undirected graphs
In this section we turn to another case in which combinatorial
arguments have characterized those finite structures whose theories
admit elimination of quantifiers - stmetricﬁirreflexive graphs. - In
this section we assume that the following formula is a theorem of the
theory T
VvOVvl(Rval > Rylvo) .

¥
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2

The models of such theories are jﬁstiundirected'grapbs.
A. Gardiner [4; Th. 7, Th. 12] proved the following:
Theorem 4.4 Let G F T and assume that G 1is finite. Then either

G or G 1is isomorphic to one of the following: - =

.

®

(1) K; - a model of Ei for some n, k<w ,

N

(ii) P , the pentagorr , L}

= .

or (iii) %(K3,3

*

Here the pentagon P 1is the structure with universe {i:i < 5}

and with R = {(1,9) :+ i =341 Vv =i+l V (i =4 A 3§ =0) V

2
1 = T . i 1 = K
(i 0 A j 4)} ; qu L(K3,3) is the line graph on K3'3 3
the vertices of L(K3 3) are the unordered pairs {a,b} such that
(a,b) € R, ., and the edges of L(K3 3) are the pairs (e,f) such
3,3 . 4 . ~

that e N £ # ¢ . L{ ) is easily seen to be isomorphic to the

K3,3

product of two copies of the complete graph on three vertices. Note

that P and L(K3 3) are both self-dual.

/

Following Gardiner we call a graph G ultrahomogeneous just in
case it is Z-homogeneous where 2 is the class of finite structures
which may be embedded in G .

In the remainder of this section we assume thatA T has an

-

infinite model. An interesting family ofhultrahomogeneous graphs is
provided by the methods of Chapter 3. Let Kh be the complete graph
with n vertices. For 2s<n let 2~ be the class of undirected

graphs which omit Kn . Then Zn has arbitrarily large members,

for example Rm for mé€w . We may see that Zn has the amalgamation

- property as follows.
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If G, H, H €35 and |H | N |JH | = |6] then let H be the

0 1 n O| lI

structure with |H| = ]HO] U lHll and R = RHO U RHl. Then H € Zn

trivially. Now let Gn be a Zn—generic structure by Lemma 3.2 .
Gn is ultrahomogenequs.

The main ?esult of this section is the following theorem which
lends some further support to C7

Theorem 4.5 There are only four countable ultrahomogeneous
undirected graphs which omit the triangle,\\K3 .  The proof éf the
theorem is broken down into a sequence of lemmas. Forrthe remainder
of this section graph will mean undirected graph. Also fix G a
countable ultrahomogeneous graph which omits K3 . Let Z be the

class of finite graphs which can be embedded in G . Let 52 be the

grégh <<:: where |52| =v{ao,al,a2} and R2 = {(ai,aj) :

s

i#y A i*j = 0} . Let M* be the graph , 1.e.

<{borb Ibz} ’ {(b rbz)r ’ (b2,bl) }> .

1 1

Let KE be a model of Ez , that 1s an equivalence relatioqﬂwiﬁh
n classes each containing k members.. Recall the abbreviations given
in‘§l..

Lemma 4.5 If M* £ 2 or Sé K'Z then G 1is isomorphic to one

of the following:

. w
(1) Kl
.. w

(ii) K2
(iii) k2
w
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Proof. If M* € 7 then Alvdviée) ‘1S an equivalence relation
. o] N .

and the equivalence classes have the same ‘cardinality. Since K3 £

there are at most two classes for if gl,gz,g3 all bélong to different

classes we must have (gi,gj) € R(G) for f%j which is impossible.

—

. . . W 2
Thus G is isomorphic to Kl or Kw .

If 52 £ 7 then .onovl(G) is an equifalence relation all of
whose equivalence.class have the same cardinality. Thé fact‘that
K3 f 5 ensures that each class contains at most two elements. Thus
G 1is either isomorphic to KT< or Kg , and fﬁe proof of Lemma 4.5 is
completed. |

For the remainder\df this section we assumé th;t M* apd 52
belong to 2 . From Lemma 3.5 2 has‘the amalgamation property and

we rely very heavily on this fact below. We shall show that J = 5 ’

whence G will be iébmorphic to G3 . To establish that 3 = 23 some

definitions are required. ‘ . N
For n>2 define the n-star Sn = <{ai : i<n} , Rﬁ> where

R = {(ai,aj) : i#j A i*9 =0} , i.e. S =

1 . . .
Let I = Kl r 1l.e, I = 9 and let M= K; r l.e. M = [ .

Let {Ha ;i @ € A} be a nonempty family of graphs where
H, = <]Hal ’ Ra>b. Define the disjoint union <H,E> = H{Ha : o € A}
as follows:

] = {h,0) = h €n A a € A}

and E = {((th,x),(g,B)) : a =B A (h,g) € Ra} .

~J
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1f Kk 1is a cardinal and H 1is a graph (K°*H) 1is the di$joint,uniQn ,
of kK copies of H . There is no léss in assuming that iU is
computative and associative. If H and J are graphs then (0°H) U J
is just J . Note that M* X I U M.

.We sﬂall complete the prdof‘of Theérem 4.5 by proving the fqliowing
four lemmas?r |

Lemma 4.6 For all n (n°*I) U 52 € 2

Lemma 4.7 (n°Sz) € 2 for all nzl

Lemma 4.8 (n+*S ) € 7 for all n=1l and m=2

m
Lemma 4.9 2 = 23

Of course the theorem is immediate from Lemma 4.9 for which the other
lemmas are a neéessary preliminary.

Proof of Lemma 4.6 We prove by induction that (n°I)US2 € 2 and

((n+1)+I) ¥ M € 3 . With n=0 this is simply that S, “and M*

belong to 2 . The induction stdp follows from Propositions 1, 2, and
3 below.
Proposition 1. If (n°*I) U S2 €3 then ((n+l)eI) U 82 €2 or

Proof. For an aggiication of AP we may.assume that (n°<I) U S2

o~ B0 where IBO] =N U {éhial'a2} and; R(BO) = {(ai,aj) : i#) & i*3 =0}

Let A be the substructure of BO generated By N U {ai,az} . Let b

be new and define B such that lBll = N U {al’az’b}’ and B, & (n+3)°I.

1 1

Now &, BO €©Z . Also Bl € ¥ since from Ramsey's theorem we easily

get that w*I can be embedded in G .

.
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+Thus let C € 2 and let ‘fo : Bb’é»C'vand fl'f‘Bi - C be

embeddings such that £ I A'='fl 2 . Then fo(ao)affi(b) since

0
(ao,al) € R(BOO while (b,al) £ R(Bl) . The disjunction depends on

' £ € R
whether (fo(ao), l(b)) (C)
The reader.may{find the proofs less difficult to follow from

=<

 consideration of the\figures which we shall presént; The following

figure corresponds to Proposition 1.

Figure 1, /,?“”““‘7{/fﬁ \\\\\
- @ oo
{ [ ea \
% B \ \ azfv /B ’
0 \ P K 1
S N S

Propqsition 2. If (n*I) W's_ €3 and (((n+l)+I) ¥ M) € & then

3
((n+1)+D) ¥'s, €3 .

Proof. The figure for this proposition is figure 2.

Figure 2.
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0 = 3 where

0 0'%17%27%37 0 i’3y/ ¢ W3 and 173 =0f ..

g

Iet A=NU {a2,a3} and let b be new and let Bl &~ ((n+l)+1I) b M -

o

where |B1| =AU {b} and R(Bl) F'{(az,b),(b,az)} .

. : p?":. .’f: ‘ B
Now let C € Z and let fo BO -+ C agd 1 Bl -+ C be

embeddings‘such that fb,r'A = fl f A, Then'ffl(b) # fo(ao), since

0 3 1 1 0 1

because of a2 . There is no loss of generality in assuming that

7Q,f1uﬁére inclusions. Now (an,b) £ R(C)  since K? £ 72 . There

3 3 C e

are now two cases: ] ' ) B

L

. Case 1. (al,b) £ R(C)
and Case 2. (al,b) € R(C) .

In Case 1 consider N U {a

0,al,a3,b} . This subgraph is isdhorphic:

to ((n+l)-1) ¥ 82 .

-~

’a2

In Case 2 cerisider N U {b,al ,a3} “which is isomorphic to

.

(‘S‘nﬂ)'l) U s,
Proposition 3. If ((n+l)+I) Y S, € Z then ((n+2)+I) UM €3 .

. Proof. For this proposition consider figures 3 and 4.

Figure 3.

b
#
-
3

5
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For a first application of AP let BOSE ((n+l) 1) U 82 where

IBOI =N U {b,ao,al,az} and R(?O) = {(ai,aj) : i#j and ;fj =0} .
3 ) .
et A= ‘N,U,,,ib,,afiaz_}_andflettingf—cﬁbemewuéef{ne—r —BT?-_’FEO—by
B,] =AU {c} and R(B)) = {(c,b),(b,c),(c,a)),(aj,e)} . Now let

C,€ 2 and fO : BO - C and- fl : Bl -+ C be embeddings such that

fo Ma= fl f A . Then fo(ao) # fl(c) " and without loss of*generality

fo,fl are inclusions. Since K, £3 we have §ao,c) £ R(C) .

" But then the subs tructure Cbh determined by N U {az,ao}al,c}
_belongs to. % . ‘For a second application'of AP let B =N U {az,al,c}.

et d be a new individual and let Cl 25((n+1)-I) 0] Szr be suéh that
Icl, =B U {fi} and R(Cl) = {(all c), (Cral) ’ (alrd) , (d, al) } . Now let
D € Z and go’: CO -+ D and gl : Cl=+,D bé-émbeddings with
i = . ‘ s : . * whi
9 r B 9; r B Now go(ao) # gl(d) since (ao(az) € R(CO), while

(d,az) £ R(Cl) . Thus we may assume- that 9,19, are inclusions.

Since K, £ Z,(ao,d) £ R(D) . Now the substructure aeterminedtﬁy' E

NlJ{c,d,ao,aggx\ggfgsomorphic to ((n+2)+I) ¥ M.
This completes the proof of Lemma 4.6.
We now turn to the proof of Lémma_4f7: If (n-I) Y 82 € 2 for

all n then for all n>1 (n°82) €2 .
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Proof. We prove by induction on n>1  that ((me1) Y (n°Sz)) €2

"for all m.. With 'n=1A this is simply the conclusion of Lemma 4,6.
The induction step involves three applications of AP.and is greatly
simplified by consideration of figures 5, 6, and 7.

Figure 5.

Figure 6.
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In the first two amalgamations a "label is attached to an outer vertex

of 82 and with this a 3-star is created. Then the 3-star is used to

create two 2-stars. For the reader who can follow the diagrams this

~
2

‘should suffice. However to avoid any possible obscurity let m>1
be fixed and fix K = ((m+I) U ((n-l)'Sz)) .
Claim. KX U (2-I)Us3 € L.

Fix new entities aO'ala2'bO'bl' and b. For an application of AP

let B, be determined by IBO} = |k| U {ao,al,a2,bo,bl} ~and
R(BO) = R(K) U {(ai,aj) : i3 and i*j = 0} and let

= . = +2) ¢ J (n*
A=£KU {al,az,bo,bl} BO (((m+2) 1) U‘(n Sz)) and so belongs
to % . Let B, be such that IBll = |a] U {b} and

—— T —

R(B,) .= R(K) U {(a2,b),(b,a2)} . Now B, €2 .

1
Let? C €7 and let e : B - C and e. : B, - C be embeddings

o o 1,01
i A = e. A .
with e, r ey f. | Now eo(ao) # elﬂb)u §1nce (aO,al)ué RSBO)
while (b,al) £ R(Bl) .  Thus without loss eo,el are inclusions.

>

(ao,b) £ R(C) since‘ K3 £ 2 .

For another application of AP let C_ be the subgraph determined

0

by K U {a o

a_sb ,bl,b} . Le? B=KU {ao,al,b,b ,bl}

0’21320

Let a, be new and let C, be such that |611 =B U {a3} and

R(C)) = R(K) U {(agiay), (@) a) (@ a)) (@ a0) } . Then

Cl = ((m+3)+1) O (n'Sz) € 7 .

N S : : :
Now let. D € Z and let ‘fO Cy > D and fl C, > D Dbe

embeddings with fO MB = fl f B . By inspection fo(az) # fl(a3)

and without loss fo,fl are inclusions. (a3,a2) £ R(D) since

| 3‘2 Z Buﬁ then the spbgraph determlned by KU{aO,al a2,a3 bo,bl}

is isomorphic to K U (2+I) U S_. € K , establishing the claim.

3
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‘With anothér application‘of AP we maywéee that K C} (2'82) € 2
: X AN

fet Dd be the subgraph determined by K U {aoa ,a2,§3,bo,bi} in

1 .
the above. Let e be new and let Dl be detéf@ined by . i ’
|Dl] =K U {al,az;a3,bo,bl,é}' and R(Dl),= R(K) U_{$§3ifij(e’a3)’
(bo,e) I(elbo) r(blle) I(e’bl)} ° LG"tViE = DO n Dl - Then DOIDYl €Z. '4

l‘+ F be embeddings

A4AAA—~f~*withA*g6#$4EA=fgIM$~EA:**Thenk*g6%a~}*#*g1fe%A*and“we~may*take*“**““~““““““j”

’ : H 2 .:D
:Let F € 2 and let 9y + Dy 7 F and 9, :

95797 to be inclusions. The substructure of F determined by

K U {av,a ,a.,e,b_,b.} is isomorphic to (meI) U ({n+1)+S_.) . This
: Rk B A et Lt | S A = AT 2 :
completes'the proof of Lémma 4,7.

Now we turn to the proof of Lemma 4.8, that (n°Sm) € 2 for

n~]l and m=2 .

Proof. The proof of this lemma is very similar t6 the first part
of the p;oof of Lemma 4.7. Using the amalgamation propeftf we tég one -
of the outer vertiées of an m~star and thén by anothér amalgamation
produce an; (m+l)~star. This is shown in figureé 8 and 9. o ——~\A

Figure 8.
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Figure 9.

e

Formally we prove by inducfioﬁ on m=2 that for all n2l (n'Sm) €z .

With m=2 this is just the conclusion of Lemma 4.7.

‘Assume that
(k-sm) € 3 for all k=1 . Now we prove by induction on n20 that

)) € £ . Assume that ((k*S ) U (n*S .))
1 . - m m

V >3 L] »| A L
for all k_; ((k Sm) Y (n Sp +1

-+

.

€Y for-all k>1 . Let K 2= ((k*S ) U (n°*S )). and let
- i m m+1l

..,aﬁ be distinct new individuals. Define BOAE (K U Sm) by

= |k| U {a, : i=m} and R(B)) = R(K) U {(ai,aj) : i#j and i*j = 0}

Let A =~KlJ{al,...,am} . rﬂ%} b .be new and define By by

AU {b} and R(Bl) =‘R(K) U {(b,am),(am,b)} . Then B1 €2 .

~

B : b
By AP let CO € 2 and let fo BO +'CO and fl B1 - CO e

embeddings for which fO } A= fl'f A ., Then fo(ao) # fl(b) since,

(a_,a,) € R(B.) while (b,a,) £ R(B.) . Thus we may‘aésumé that
0’1 0 1 1 < ,
£ and f  31§;inclusiop§ and then (a_,b) £ R(Cn) since K_ £ .
U \Y) o]

e

For another application of AP let B=K U {a_,...,a ',,b} iﬁé'
; ; 0. — m=1 ,

let a_ ., be new and let C, rbe sucg-that |C1| =BU{a .} and

)} . Then C, €% .

‘R(Cl) = R(B) U {(am+l'a0)'(a0'am+l 1
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Let D € Z and let ‘g'é,gl bé embeddings dffai and - Cl into D

respectively such that 9 r B = g. B . Now go(ém) # gl(am+l)

l\‘\
since (a_,b) € R(C,) while (am;l,bf’i R(C,) . Without ioss- 994
are inclusions. Now '(am,am+l) J'4 R(D)}xaﬁd K U'{ao,...,am+l} is
isomorphic’ to (k'Sm) U (Jn+l)°Sm+l) . \K\\
fhis complgﬁe proof of Lemma 4. 8. \\ - ) N
We ﬁow turn to the proof of Lemm?,giglfﬁhat is Z‘='Z3
/

Proof. It is clear that 2 C 23.. We prove by induction on the -
lexicographic order oﬁ pairs (||B]], ‘R(B)l) that if B 6-23 then
B €2 .

Thus let H € 23 ~and assume that if B ¢ 23 and B has*fewefv

vertices than H or if ||B|| = ”HH but B has fewer edges than H

then B € Z. We nowgonsider three cases.

C 1. 1 h ,h ,h €H that ' ’
Case Fhere are elements 0P1rhs such tha (hO hlf

(hO'hZ) € R(H) and such that the mapping f : (H\{hl})—¥(H\ih2})

§ o
which has. f(h2) =h, *and. £(h) =h for h-¢ H\{hl,h2} is not an
isomorphism. ;3£

(.

S

By the induction hypothesis H\{hl} and H\{h2} € 2 and we may

choose K € 7 and embeddings fO : (H\{hl}) ~ K and fl

:‘<HS{h2})'j,g,,,ﬁ”

such that fO and fl égree on H\{hl’hz}", Then VfO(hZ) # fl(hl)

since the mapping f is not an isomorphism. Thus there is no loss in

taking fo,fl to be inclusions. We have (hl'h2)'£ R(K) since

Ky £ 2 . But then HCK CG and H € 3

s
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K , e H T agah . SV —g e
Case 2 There are ho,hl,hz such that (ﬁo,th,(HO{héT

R(H) and such that the mapping f : H\Jhl} - H\{hz} defined in Case 1

is an isomorphism but such that ]R(ﬁ\ihl})l +2< |[RH)| . -

Then let k be new and let K

5 be the graph for which

1 1

[k,| = a\{hh U {k} and R(K) = R(EN( D U {(h,,k), (kb)) .
Now K, € 2, and by the induction hypothesis K, € 2 since
[R(K,) | = ]Rﬂrdhl})]+ 2 .
Let K, be the graph such that |K |'= (H\{h.}) U {k} and
1 SRS | 2 :
R(Kl) = R(H\{hz}) .N Kl € X Klﬂ K2 = (H\{hl,hz}) U {k} .
By the amalgamation property K € 2 and let £ : K, > K

: i . = K X .
£ K, > K be embeddings such. that fl A (Kl n K2) £, [ (Kl N 2)

Then fl(hl) # f2(h2), since (hl,k? £ R(Kl) while (hz,k) €

’R(Kz) . Thus without loss fl,f are inclus?;ns. Note that

5
(hl'hZ) £ R(K)Y . But then H € K and’'so H € 7 .

Case 3. Otherwise for all h ,h ,h, € 2 if (h,h)),(h ,h,) € R(H)

1
then (h,h ) € R(H) iff (h,h)) € R(H) for all h € H since Case 1

fajils; and indeed if (h,hl) € R(H) then h = hO since Case 2 fails.

{Butwthen it is easy to see thét there are m,n such that H is
isomorphic to a subgraph of n'Sm .and so H € 7 .

This completes thérpfbdf of Lemma 4.9 and hencerthéAproofrof—
Theorem 4.5.

We conjecture

(CS) For each n there are a finite number of countable undirected

graphs whose theories admit elimination of quantifiers and which omit

K . ’
n
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The extension of the techniques employed in this paper is not obvious

even for the case n=4 .

5. Finite ultrahomogeneous graphs

-

In this section we examine briefly the problem of describing all

finite graphs which model "leOvo and whose theories admit elimina-

tion of quantifiers. This project is far from complete, but continues

5 £ Tl ~Amm- A N e
from the work cf Theorem 4.2 an

the work uf Gardiner [4j. In this

eh

section G is assumed to be a finite ultrahomogeneous graph which

d 1R .
models (7 VOVO)

Lemma 4.4 holds out the hope of obtaining some inductive
characterization of such G : . If a € G then each of the sub-
structures determined by {b : G }= 'bal}, {b : G }=Tab} .

{b : G F Aoab A a#b} and {b : G F Alab A aFb} 1is a graph whose
theory admits elimination of quantifiers.

then G is K or X for

if G }
F 2 0’1 n n

i f
oVo¥y or i G E Alv

some n . If G F A2v then G 1is Kl or a 3-cycle. The work of

0’1
Gardi . . . . 4.
ardiner describes those G 1n which (AOVOVl \% Alvovl) is valid

In this section we give some results on those G which model

(Alvovl Y A2v

G F Alvovl v szovl

Ovl) . For the remainder of this section assume that

Say that G 1is connected just in case there are no non-empty

C i = = =
GyrGy € G with Gy NG =3¢, G, UG =G and (R, I GO)U(RG rGl) R

Component has the usual meaning.
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The first easy observation is the following:

Lemma 4.10. If G is not connected then G is isomorphic to

Kn for some n or G is a disjoint union of 3-cycles.

Proof. Since G is finite the equivalence relation

" a lies in
the same component as b " is a definable equivalence relation. From

\\this it follows that any automorphism of .G must permute its components.

The subgtéﬁh detérminédLBQ éiéam;;;éﬂ#A C ié theﬁﬁIEselfhultrahomq—
geneous since £he restriction ﬁo C of the appropriate automorphism
,6f G will furnish an automorphism of C extending‘an isomorphism of
subgraphs of C . |

If a,b 1lie in different components of G then G F Alab .

Hence each component models Ayv v

o1 by elimination of quantifiers.

kTherefore each'component is either a 3-cycle or each component is a
singleton.
In the sequel we asgume that G 1is connected. Then we conjecture

N

(C9) G has a Hamiltonian circuit.

This is supported by
)

Lemma 4.11 G has a spanning circuit, that is there is some sequence

B

<a_ : n<m> such that G = {an : n<m} , ao’é a and for all n<m
Ra . )

G }= n an+l - ) o o
1l -
Proof. If |G| = 1 there is nothing to prove. Thus assume that

G F= BVOBVI(FVOVl) . Now since G 1is finite the relation Sab ,

defined on G by "there is a sequence <a n<m> such that aO =a,

a = b and m>0 and G E Ra a_ for all n<m " , is definable.

+1
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Note that S is transitive. Since Th(G) admits elimination of

quantifiers |{b : Sab holds}| is independent of the choice of a .

et

Fix a € G and let a, be such that G E Raa . Since Sa a holds
we have {b : Sab holds} ¢ {b : Saob holds} whence equality follows.
Clearly Saa holds, i.e. S is reflexive. If Sab holds, then

Sba holds since Saa holds and {c : Sac holds} = {c : Sbc holds}'.l ;

G F Rab then a,b are in the same equivaience class under S .
Since G is connected any a,b € G are S-equivalent. The desired

conclusion now follows easily.
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Chépter 5

Tﬁé“?566f§“4T6”ﬁﬁ
]

In this chapter we construct an example of a complete theory T

- . .

0

in a small language which has a honprincipal l-type ‘p containing
infinitely many 2-types gq and such that TO has a finite number

of isomorphism types of countable models. The idea is to generalize

with infiniterbranching and indexing of subtrees above a node by the
ration;ls. |

Let L be the language with one uﬂary function symbol U , a
binary predicate symbol <, a binary function symbol A , a binary
functioﬁ symbol I and a constant symbol c¢ .

Let T be-the theory with language L and nonloéical éxioms:

-Group 1. <U, A r U> 1is a tree, otherwise A ds trivial.

Thus letting 'xay EDf Ux A Uy A4§Ry = x) A x#y the axioms are

A = A A A = A A A =
v, vl VAV (vO vl) v, vO (v1 v2), v, VOA v,
e
A .. ' =
VOOLV2 vlocv2 . (vooLvl) \Y (Vl,OLVO) \Y (vO ‘ Vl) ’
‘ S VYo (vpAvy =0, TUe

Group 2. <7} U\{é}, <> is a linear order, otherwise < 1is

trivials.

v v.>lUv._ AUV, AVv. ZCcAv. #c
vO < 1 U VO, U vl_. v0 # cv vl #»c

(YO < V2) - V0 < V. , V. < Vv

A
< v Ay 2 0 0

1

| U ATl A A A
7 vy U vy A v, # c vy f c A vy # VI TV < vy Y v, < VY,

~
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~

2

linear order: ' e
d > . =
—\VO vl I(Vo,vl) o

v : ' . =1 \
VO(IV A yl(1v2 > I(vo,yl) (VO'V2),

3 ¥

VooV, > U (T(vy,v)) A (Tlv,vy) # o) .

Let 2 be the class of finite models of T . _ . . . .. .

Lemma 5.1 3 has the amalgamation property.

o [}

Proof. It will suffice to show that if AB,B, €2 ,and ACB_,

; . 1 -
A C Bl and'}lBOI N lBl[ =”|AI then there is C € & with Bi'C C .
for i =0,1. Let A,BO,Bl ‘be as above. We prdve by‘induction that
the operations of BO,Bl may be extended to IBOI U IBll = lC[ to

construct the required C .

Let UC = UB U UB and let cC = c .
o 1 0 U

It is not difficult to extend < U < to a linear otder <¢ on
0] Y

Ic| \(UC U {cA}) . First define « by c < d iff there is a

sequence <zi : 1sn> where n>0 and c = z d =2z and for all
. n :

O'
i<n (zi'zi+l) € (<B U<_) . An induction on the minimun length of

B
0 1

the sequence <Zi> shows that if c<d and c,d € Bi then

1-i

(c,q) ¢ <Bi - Indeed c =12z, and d4=2 ., arebothin B, . ==
If z € B. we are done for (z ,z2 ) € < . Otherwise =z € B N A
n 1 0O n Bi ‘ n 1-i
. B ki =1 .
whence both Zn-l and zn+l € 1-i assuming n2l Now
: : i<n+1 .
zZ 1 <8 Z 41 SO the sequence <z, i1=n+1> can be shortened . .
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Thus in each case‘the shdrtest SequehceihasAlehgtH§2 if c,éﬁgwﬁrm;
That < can be extended to a linear order is clear.

We now show by induction on IUCI that there exist functions
. o ,

e Ig respectively for i =.0,1
i i |

A, I on [CJivéxtending A

cC C B

I c> 1is a model of - T . Let Ai, I.;

such that <[C], U } < 4 A i

C C c' ¢

denote AB ' IB respectively. Let ai be the partial order
i i '
corresponding to Ai as in the definition in Group 1.
There are now two cases.
Case 1. 3i < 2 3x ¢ Bi\ A Yz € Bi(‘]x ai z) 3
Choose such an i and x . By the induction hypothesis there
i AY T f A A B I . I.|(B.
are extensions o it N M« i\{x}) and I, .. lr( ;\{X})

to C\{x} such that the resulﬁing structure is a model of T..

Now let x. be the maximum of {y : vy o, x} and for z € C define

0

ZANX=XANz= Xx 1f z=x

z A! xo otherwise

and I(x,2) = cA

I(z,x) I (z,xo) i z £ {xo,x}

,X) 1if z==x. .

‘Ii(x 5

0

Case 2. For every X € Bi:.there is a € A such that
X=aVvxo, a. ' -
l ' .
Choose i from 0,1 and x ¢ Bi\A such that

YyVz (x o, v >y € A A X o, ¥ Ay o z —+ 2z € A) .

1-i

et A = {a : xa. at .
0 i

/:.
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As in Case 1 let A', I' extend Kl—i' Ai f(Bi\\TxJ) and
Il—i' Ii r(Bi‘\{x}) respectively to C\{x} such that one obtains
a model of T

Extend A' to C by letting xo be the least element of A

which is greater than x and for all =z € C

zZAxX=xAz= x 1if =z € AO U {x}
%, A' z otherwise
Let I({x,z) = Ii(x,z) if z ¢ AO
c otherwise
A
and ' I(z,x) = {I'(z,xo) if  z#Ex .
It is an easy calculation to check that C is a model of T . This

completes the procf of Lemma 5.1.

2 clearly has a member which can be embedded iﬁ each other membef/u
- a structure with one element which is a model of T . Also & has
arbitrarily large finite members -and is closed under substructure.

Finally it is easy to see that there is a bounding function for the
cardinality of generated substructurés and so we may apply Lemmas 3.2

®
and 3.4. ILet M be a Z-generic structure. Then Th(M) admits elimina-

=<
oy

tion of guantifiers.

Let cn:ném and dn:néw be new constant symbols and let LO bé

—_

the language L U {cn:néé} U {dn:néw} . Let M_ 'be an expansion of

o
¥ to the language LO to model:

b
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B ]

TuUuc A c, #c for all m, c_ < <, for m<n ,

m m
U d for all m , d Ad =4 for m<n ,
m m n m :
’ = f .
and . I(dm dm+1) cO or all m |

Let TO =’Th(MO). We shall show that TO has 9 countable models and

-

that there is a nonprincipal l-type-which contains infinitely many
2-types.

First note that TO admits elimination of quantifiers since Th(M)

does.

The 9 models are characterizediby’the upper‘bounds for {cn:nEw}
éﬁd {dn:nEm} . Let the models H,K agree on the following four
infinitary sentences:

dx (A c. < x)
i<w .

Jx (A 4, a x)
: i

i<w
3xYy (A c, < x .&. (A c. < y) > x = vy)

i<w i<w

ngy (.A di a X .&. (.A di o y) > x dvy)

i<w i<w
The first two sentences assert that ‘{ci}, {di} respectively have
ﬁpper bounds, the third and fourth sentences that {ci}, {di}
respectively have least upper bounds. When these least upper bounds
exist we shall denote them by 'sup{ci}, sup{di} respectively.
We spall show that H = K .

Write 11U (A) for (U VO)(A) .
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We may apply the a%gument for the Ehrenfeucht structures discussed in
[12, §6]1 to obtain an isomorphism
: -~ K
o [7U(H)]H [‘1U()]K
where [S]A denotes the substructure of A generated by S .,

We now apply a back and forth argument on UH and UK to extend ©

to an isomorphism of H and K . _—

Let {en:n<m} enumerate U_ and let {fn:n<w} enumerate UK .

H
We construct enumerations {hn:n<w} of UH and {kn:n<w} ‘of UK
such that for each n there is an isomorphism
: H i 1 U {k.:i<n
o [TU()U{hi1<n}]H~>[ U (K) {l<]r]K

and such that the following conditions are satisfied for all- n

(1) pn extends ©
(ii) p  (h,) = k, for i<n ‘ .
i i :
. _ = £ .
(iii) hO (sup{di})H and kO (sup{di})K if these exist
(iv) hn is an upperbound of {di} in H iff kn is an
upper bound of {di} in X .
There is no difficulty in choosing hO and ko to be sup{di} in
H,K respectively when these exist since for any upper bound h of
{di} in H and any upper bound k of {di} in X
H I(d = d K =
F ( m,h) N an k I(dm,k) S,
for all m .
Thus we may assume that {hn:n<N} and {kn:n<N} have been Ehosen

to satisfy the conditions and N>0 if sup {di} exists. We present

the argument for even N , with N odd we extend the range of QN in

a symmetric way.
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Let n be minimal suck that - e £ {h :n<N} and set h_=e .
’ . n n - N T

let H' = H r L and K' = K \L . There are now two cases:
Case 1. H F dﬁ o hN f all m .

Let A be the finite substructure of H' generated by {hn:n<N+l} .

Let a be the least of tﬁe upper bounds. of {di} which bélongs to A .
If a ¢ [{thn<N}]H then let B beé thé substructure of H' generated
by {hn:n<N}\U\(A N 73U (H)) . Now oy F B is an embedding and K' |

is I-universal and Z-homogeneous. Thus P r B can be extended to an

embedding of A in XK' . Let kN be the image of hN ~in this

AN
N |
embedding. This determines %ﬂ+l . We do not verify all the details
that Prs1 is an Lo—isomdrphism but check the relevant clause to
N |
, . .. =
see that One1 respects I .\\If k € Pne1 ([{hl,. ,hN}lJ U (H)]H)

N\

-

and k o kN then either %k o p;{a) in which case

IK(g,kN) = IK(k,pn(a)), or pN(a) o k‘\ln which case the extension of

B t r that
QN r O A ensu gs _ha pN+l

is an isomorphism,

Now suppose that a £ [{hn:n<N_}]H . Then {di}H{ has no least

upper bound, but there are upper bounds. If there are no upper bounds

for {di}H which belong to [{hn:n<N}]H then we may choose for kN

any upper bound of {di}K . Otherwise let b be the minimum of those
. . /

upper bounds for {di}H which belong to [{hn:n<N}]H . Choose an

upper bound k for {di}K such that k a pN(b). Let j ¢ MU(H) be such

A":-—(

that o(j) = IK(k'ON(b)) . The idea from here is to seg that we can
use X 1in the way we~used pN(a) in the first part of this case.
We construct a member of I in order to use the Z-generic nature

of H' to find a suitable preimage for k , the analogue of a
A . 3

in the first part.
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Let S be the substructure of H' generated by {hi:iSN} U {5}
and let h be a new individual. Consider the structure € for L

whose universe is |S| U {h} and which satisfies im addition to the

condition that C | |s| = S the conditions
(1) h € U,
(ii1) x Ac h=h=nh AC x for x € S satisfying ags}< or
if x =nh
1191 i A = A = 1 .
(iii) x c h h c ¥ Cq if | x £ UC

(iv) Ic(h,x) 3 1if x € s and a a-. x

CH otherwise

(v) Ic(x,h) IS(x,a) for x ao_ h..

C

Then C € 2 and since H' 1is Z-generic there is no loss of general#ty
in assuming that h € H .

Now observe that the substructure of ®H*'

[{hi:i<N} U{h}t U (Cu (C))]H, and the substructure of K'

{{ki:igﬁ} U {k} U (oM u(c)) ] are isomorphic by the unigque

K'
mapping OO compatible with DN which takes h to k . Using the
Jgenericness of K' we can find kN so that 00 extends to an -
isomorphism Ul : [{hi:i<N+l} U {h} U (_IU(C))]H. -+
K, ti<N+ ! { -
r{ : i<N+1} U {k} U G(‘]U(C))]K, where ol(hN) k

v r

. . ] f
Since k a»kN kN is an upper bound of {di}K and for

.
Pat1

we can take a restriction of the unique common extension of OI~\and

o

. It i t i -1 h 1 . i
pN S easy to see that pN+l is an LO isomorphism This

completes the first case.
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]

Case 2. Otherwise, i.e. Jm [(d.m)H r. th

Let m be minimal such that '(dm)H A hN - ,Let A Dbe the sub-
structure of H' generated by {hi:i<N+l} U {di)H : i<m+1l} . Let. B
be the substructure of A generated py {hi:i<N}U{di)Hii<m+l}U ’!U(A)
By hypothesis pN r B is an Lfisomorphism from B to the substructu;e
of K' generated by {ki:i<N} U {di)K : i<m+l} U o(mu (A)). Sin;e

K' 1is Z-generic we may find kN a suitable ihaée in K for hN

and an L-embedding o

1 of A in K' which extends QN r B such

that Gl(hN) = kN . As in the first case we let pN+l be the unlque

common extension of p and o Again it is easy to see that pN+l

N 1t

is an Lo-isohorphism.

!

Thus H = K as was £o Ee proved.
We have shown thét the iéomorphism type of a countable model of 'TO
is determined by the truth values.of four infinitary sentences. These
sentences are not\independen£ because existence of a least upper bound
implies existence o% an upper bound;' The reader will easily see that
there are in fact 9 different possibilities for the quadruple 9f truth-
values. From this it is easfbto sée thaé\ TO has 9 cougtablé models.
Let p be the type determined by {Ux A di a x : i<w} . p is
nonprincipal: Also there are 2-types q in pxp . There are
at most w  since I(To,w) < w and {qn : néw} where q is the
2-type in pxp determined by {x a y A I(X,y) = cn} is a familx_of

distinct 2-types in pxp .

We summarize these results in the following theorem. | .
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Theorem 5.1 There exists a compiete theory with a small language
which has 9 countable models and a nonprincipal 1-type whichvcéntains
infinitely many’2—types. |
" In the next chapter we shall see how to construct a complete
theory f with a small lanquage with countably many unary predicate
symbols such that T has 4 countable models and a nonprincipal l-type
containing infinitely maﬁy,2—types. Thewfollowing ié open.

E9: If T has finitely many nonlogical symbols'except

for constant symbols, if T admits elimination of
gquantifiers and I(T,w) <« 9 can T have a non-
principal l-type containing infinitely many 2-types?
Another question is thé following:
©lo: If I(T,») = 3 and T has a small language can T
have a nonprincipal l-type containing infinitely

many 2-types?



Ch@ptez'6

Cl, C4 and the Théory Tl

1. ‘Cl and C4

In this chapter we shall consider further complete theories with
a small language which have a finite number of countable models. In

this section we describe some properties of theories which satisfy

o . %
Cl or C4. In the next section we shall.construct the theory Tl ,
o . ‘ !
which satisfies Cl but for which. C4 fails. 4 , ‘\

In this section we assume that T is a complete theory with a
pouqtable5language and that T -has a finite number of countabls
models and more than one. Let M beAa countable saturated model ofi

T , and let p be a nonprincipal 1l-type of T .

e

In the next lemma we explore the consequence of assuming that T .

satisfy a strengthening of Cl.
Lemma 6.1 Assume that the relation R on p(M = {a €M : a

)

realizes - p}" defined by
1

- aRb iff b is prime over a

S\\xii/x&linear order. Then,K T satisfies th¢ followiné conditions:

(i) there are a finite number of 2-types in p
(ii) R is definable (in the sense that there is a formula

v -

whose restriction to p defines R)

. {iii) R 1is a dense order.
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Proof. Let {q]: n<o=w} be a family of formulas in (L)é- such - -
that if  a,b realize .p in M and aRb then for some n en
generates tp(a,b) over p , and for n#m p U {Evl(en A Gm)}

is, contradictory.

To see (i) assume for contradiction that there are infinitely

many 2-types in p . Then o = ® . But then by the éompactness
theorem there is a 2-type g in pxp containing : : (T\\
. ‘ }

(Ve :ne} U AT, (76 :né} Udlvy# ¢} . /)

/

But then if a',b' realize g in M we have neither a'Rb' nor
b'Ra’ a contradiction. Thus (i) holds.

We now easily obtain (ii) from (i), for oa<w and % Gn will
' n<g
defing’ R on p(M). -

z ‘

®

Since p 1is nonprincipal it is clé@{ that p(M) is infinite and

that R 1is without endpoints. Now let n<a and observe that for b

!

realizing p in M {atM : M k= en(a,b) & a realizesﬁ;p? must be
b, /
infinite since R 1is linear. For the type q. génerated by en over .

p 1s not principal in its second coordinate, i.e. Tl 1(qn) is not
r

principal over p . But now if al,az,b realize P in M and

M E 8 (a;b) A8 (a,b) Aa #Db

we must have that alRa2 holds 6r azRa.1 holds. Thus ‘ -

3 ;2 ’ VA A r > . Si i i
V2( ; k(VO v2) Y Bk(v2 Vl)) beloengs to q. ince this is true

X< k<l

for each n<o it easily follows that R 1is dense’on p(M) . This
completes the proof of the lemma. >
In the next lemma we present a strengthening of a result of Benda

[1, Thm. 2]. He showed that if every inessential extension of T has
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a finite number of countable models then T has a universal model
t+ which is not saturated.
Lemma 6.2 If every inessential extension of T has a finite

number of countable models then T has a. universal model prime over

a finite set.

Proof. Recall first that if a theory has a finite number of

countable models then the theory has a poWerful n-type for some n .

An n-type is powerful just in case every model of the theory realizing
the type realizes every m-type in the theory [1l, p. 1l1l1].

Assume that every inessential extension of T has a finite
number of countable models. Let {an : nfw} be an enumeration of M .
Let an be the n-tuple {ajv:'j<n} . Now Th(M,gn) has a finite
number of countable models. Let Hn be a powerful kn—type in

Th(M,E ) and let b realize II in (M,a ) . Let 2 be the
n n n n n

—

(n+kn)—type of ,an H‘Bn . Note that ZO is a powerful’ ko—type in T.

‘ We shall show that the model N prime over bé realizing Zb is

universal.

-t
We choose by recursion sequences {a; : nfw} and {bn : n€w}

’ -7 -1 -
in N such that a n bn realizes Zn where an is the sequence
n

¥

{aj : j<n} . Then M is isomorphic to an elementary substructure

LA

of N so that N is universal.

"Assume that a' and gr'n have been chosen for mn such that

m1
L

- N o=t , -1 .

a ' b realizes 2 for m«n , and n>0 . Now (N,a ) is a
m m m n-1

model of Th(M,Elr_l ) and B; realizes I , a powerful type

-1 -1 - n-1

in Th(M,an_l) . _But then it is eas§'to see that we may choose
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a' and b' in N such that a n 51, realize 2 since the type
n-t n n n n

of <a > N En‘ in Th(M,an_l)> must be realized in (N,a ) .

This completes the proof of Lemma 6.2.

2. The Theory Tl

In this section we construct a theory T1 which has 4 countable

models but which has an inessential extension T2' having infinitely
man§ coun£ab1e models. T, is in a small ianguagveith coﬁntably
many unary predicate symbols. Tl satisfies ‘Cl, indéed ip has a
nonprincipal l-type p on which the‘relation "a. is prime oyér b"
is linear.

The construction of T uses the tools of Chépter 3 and resembles

1

the development in Chapter 5. First an mo-categoricai theory is
construéted, the models of which are linear orders with tw6 sorts of
elements: "rationals", and "“irrationals" indexed by increasing triples
of rationals. This theory is obtained by amalgamation techniques.
Consider the language L with nénlogical symbols: a unary«pfedi—
cate symbol U, a binary relation symbol <«, a 3-ary function symbol I,
and a constant symbol ¢ . Let T be the theory with languaée L and
the following axioms.
Group l. < 1is a linea}agrder with least elements - ¢ :
(x<y A y<z .f« x<z) , 1xx ,.
(%<y V x=y V y<x) ’ Cc=x .

Group 2. I 1is a mapping from increasing triples of U to

T u\{c}' and is otherwise trivial:
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e

Iv v_Vv < AVv.<v. AUV_ A UV, A UV
VoViVa F S5 VoY 1~V2 0 1 2’

Ivv.v Ssv ,10(Qvv.v. ) .
012 o' 012
Group 3. Distinct increasing tuples of U index distinct

irrationals:

I = AT . = A = =
VOV1V2 Iv3v4v5 VOVlVZ # g - vO v3 vl v4 A v2 v5

3

Let 2 Dbe the class of finite models df T .

Iemma 6.3 2 ‘has the amalgamation property.

Proof. To see this it suffices to consider AO,Al,A2 € 2 -with

RN Al » Ay © A, and !AOI = lAl]'ﬂ JAéI . ‘The;e i;ﬂnb loss of
&

generality in assuming that Uy U Uy U {CA} contains no triple and

("IUVO A v, #“c)(Ai) = {(u,v,w) : Ai F= WV A vew A Uu A UV A Uw}

for i =0,1,2 P
- 5 . K
First-let < ' befan extension of <, U<, to a linear order
. M :7», l 2

of [A

ll\U |A2l . In the proof of Lemma 5.1 we have ?lready seen how

J

to amalgamate two linear orders. ' ‘q

. Now define A, as follows: ‘ N

» U =U_ Uu , ¥
A3 Al A2 .
~f A = A A H
’ 3' | 1‘ U | 2! Ud{e, YU {ta,v,w):u,v,w € U and,
. 0 3
, . S . .
u< VvV , V< Wt, )
"V‘ -4

C = C ’ :

A3 AO B i

e : :
IA (u,v,w) = |(u,v,w) if u,v,w € UA and u < v, Vv f w
3 '3
I

c otherwise ,
A 0 ‘
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<a I {(u,v,w):(u,v,w) € IAB'\\JIAl] U [Azl)} is the

3
lexicographic order induced by < '
c. < (u,v,w) < x for x éd( A I U IA l)\{c’ } and (u,v,w)EIA I\
A3 1 2 A, 3

(Ja.] U ]a_ ) and < is a linear order which extends <' to |A
1 2 A3

5

Then clearly Al - A3 ’ A2 C A3 and A3 €2

This completes the proof that Z. has AP and Lemma 6.3 is established.
Clearly there is a one element structure in 2 which can be

embedded in every structure in % , ¥ has arbitrarily large finite

members, and 2 1is closed under substructure. Also there is a

bounding function for the cardinality of generated substructureyso we

may apply Lemmas 3.2 and 3.4.

et M be a countable Z-generic structure. Th{(M) admits elimina-

tion of quantifiers. It is easy to see that <]M], <u> is a dense
order with first element in which Uy and (IMI‘\UM) are dense sub-
sets. Alsc M bk Tluv. = dv. v v (Iv.v.v = v ).

a 1 VA3 (V) V5 = V)

Now let Ll be the first order language obtained from L by
adding countably many unary predicate symbols {Ui:i<m} . Let M

be expanded to a structure Ml for L1 to model for each i<w :

A
Ui vO vo<v1 -+ Ui v1 ’

U u, v,

i+1 Yo 7 Y1 Vo

Ui VO —>—3vl(vl<vO A Uivl) ’

-
= Ui vO ﬂ-Bvl(vd<vl A Uivl) ,
= u,c ,

i

- )
and BVO( .Ui+1 vO A UivO)
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That is we expand M by distinguishing an increasing sequence of

irrational cuts in < .

M
Now let Tl = Th(Ml) . We shall show that Tl has four countable
models. Consider the following four conditions on a model A of T :
Condition I. N Ui(A) = ¢ .

I<w

Condition II. There is a € UA such that a € N Ui(A)
i<w
and for all b<a b £ N Ui(A)

J<m

Condition III. There is a € A\UA such that a € N Ui(A)
i<w

and for all b<a b £ N Ui(A) .
i<w

Condition IV, None of Conditions I, II, III, that is for all

a € A there is b € A such that a € N U,(A) - (b<a A b€ N Ui(A)).
i< T i<w

If Condition IT or ITIholds we say a is sup{Ui} . It is clear
that the conditions are exhaustive and mutually exclusive. We shall
show that if A and B are two countable models of Tl which satisfy
the same condition then A = B . To do this we first require some further

properties of Ml

For j<o let L(j) be L U {Ui : i<j} and let 2(j) be the
class of finite structures for L(J) which are expansions of members
of 2 which model for each i<j :

A
Uivo vo<v

17 %Yy

. " ]
Ui+lv0 —>—UivO when i+l < j

10U, c .
i



We then have Z(0) = Z and M, [ L(0) = M and the following lemma.

Lemma 6.4- M, I L(3) is Z(j)-generic for each j<w .

Proof. The proof is by induction on j . With j=Odrthisbis
just the choice of M . *Assume that Ml F‘L(j) is'Z(j)—homogeneous
and Z(j)~universal. We shall let a symbol refer to the inférpretgtion
in Ml unless otherwise specified. B

We first show that Ml I L(j+1) is Z(j+1)-homogeneous. Assume
that H,K are finite substfucfures of Ml r~L(j+l) and that 0 1is an
isomorphism of H onto K . In order to see that we may extend O
to an automorphism of Ml r L(j%l) by a back and forth argument it
will suffice to see that if H, is a finite substructure of
M, M L(§+1) with HC HO theﬁric may be extended to HO ¢

The idea ié to feduce the problem to 2Z(j)-~-genericness by
introducing "brackets" for Uj . Given a structure N € Z(3+1)

define the canonical extension N' € Z(j) of N as follows.

) #
be new individuals and leff N' satisfy

Let QN, rN
1) n']=]|n] U {2} UD and N [ L(j) ¢ N'
UN' = UN U {QN,rN} (Qi)N' = (Ui)N U,{QN,rN} for i<j .
2) <X is a linear order of |N'| such that QN < ry and
(af if a € |N|\(u.) then a< , %
J N N N
(b) if a € (Uj)N then ro <N3 a ,
3) D= {(u,v,w) : at least one of u,v,w is QN or rN and

u,v,w € U, and N' B (v A ww) )},
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4 < M D is the lexicographic order induced by

<N, [\UN' ’

5) N |k c<d Adb for d €D and b € [N |\(DU {fegh o

-

d € D and i<j ,

6) N
and 7) N' (u,v,w) for (u,v,w) € D .
We say that RN,r (U )N

We first show that we may take the canonical extension of K to

be a substructure of M1 ML(3) with QK £ Uj and re € Uj . We

first choose first'apprqximétions Ro,ro , that is we choose ZO € Uge

El

such that
£ €U f i<
(a) 0 i or 11<j - .
Q i .
(b) "0 £ Uj ; _ _
and } (c¢) k £ Uj -+ k < RO‘ fof k € K ; and choose ro € U such
that
E . \ f - -.< .
(a) rO Ui or 1i<j ‘
~-and (b) k £ U, — ro < k . for k € K.

- g\ ) J '
\ 1 - K
Let K~ be the substructure of Ml r L(j) generated by

* are new. We now construct

k| U {Ro,ro} . We may assume that QK,rK ;

. 2 ) 2 oy
a common extension K of Kl and K' such that X° € 2(j) ./f/

Let K2 satisfy clauses 1), 3), 4), 5), 6) and 7) of the definition

. . \ ) 2 . .
of canonical extension with Kl in place of N, K in place of N' ,

2 for RN , and r for r._ ; and let K2 satisfy

0 0 N
2"y < 5 is a linear order of IKzl such that 20 is the
K .
immediate successor of QK and r, is the immediate predecessor of Ty
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o

By the induction hypothesis there is ne—lessrin‘assuming that

K2 C Ml r L(j) . But then k' C Ml I L(3) and since -20 £ Uj

QK £ Uj and since rO € Uj we have rK € Uj .

The next step is to introduce brackets for HO . It is clear that

Hé can be taken to be a substructure of M F L(j) and.that the sub-

structure of Hé generated by |H| U {QH Ty } is isomorphic to H'
0 o S
and so we may identify it and H' . Now O may be immediately

extended to an isomdrphism N of H' and K' with OIQRH ) = RK
0

and O (r_ ) =r_ . But then since M r L(j) 1is Z(j)-generic we
1 HO K 1

[
v

must have that © can be extended to an isomorphism o. of HO

1 2

be she substructure of

and a substructure of M, I L(3). Let K,

and let ©p

Ml r L(j+1) generated by the image of IHO] under 02

. Then p is an isomorphism of

ol

be the restriction of 02 to IH

HO and KO since vQK and rKV bracket Uj ' for'

h € (Uj)H > r, < h - ry < p(h) - p(h) € (U

)
0 0 1K

O a

h £ (Uj)HO—+ h < QHO +ﬁp(h) < RK -+ p(h) £ (Uj)KO .

X

This completes the proof that Ml r L(j+l) is Z(j+1ypniversal,A
Next we show that 'Ml [ L(3+1) is Z(j+1)-homogeneous. Let

H € 2(j+l1) . Consider H' . Without loss wf generality we may assume

H H

that & ,r €M and % € N U, \NU. and r_ € U. . Now the sub-
H 1 H i<3 i J - J

structure of H' generated by {QH,rH} "is a substructure of
Ml P L(j) and so by the Z(j)-genericness of Ml r L(j) we may

assume that H' < M [ L(j). But then it is easy to see that
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-« Y

HCM LG since (b £ U (H) +h< &) and (RE€U(H) > r, <h).
This cémpieteé the proof that 'Mi»f‘L(j+l) is 2(j+1l)-generic

and the lemma follows.

4

With lemma 6.4 we can prove the following theorem.

Theorem 6.1 Tl - has four countable models.

Proof. Assume that A and B are two countable models of Tl

which satisfy the same one of Conditions I, II, III or IV. We shall
prove that A and B are isomorphic by a back and forth argument.

Let {en : nfw} and {fn : n€éw} be enumerations of u, and Uy

respectively. We construct enumerations {an : nén} .and
{bn : nfw}  of UA and UB such that for each n :

1) if A satisfies Condition II then a, = sup {Ui} in A

}

d b= i .
an bo sup {Ui} in B

2) if A satisfies Condition III then I(ao,al,az) is

sup {Ui} in A and I(bo,bl,bz) is sup {Ui} in B .

(TN

3) There is an isomorphism pn of [{aj j<n}]A and

[{bj : j<n}]B which sends aj to bj for ij<n .
Here [S]N is the substructure of N generated by S . When S is
finite and N F= Tl then [S]N is finite also. It is easy to satisfy

1l). Also 2) is straightforward for if agra;ra, € A and

bo,bl,b2 € B are such that

A A
F ay<a; A a<a, A Ui°IaOala2 for i<w

d B A A <
an E b<b, A b<b, AU Ibb b, for i<

then [{ao,al,az}]A and [{bo,b ,bz}]B are isomorphic since thgre‘

1



H

are no other increasing tuples in U . We may assume n>0 in case
Condition II holds and n>2 1in case Condition III holds.

We present only the argument for even n . When n is odd we

extend {bi : ixn} symmetrically.

Let m be minimal such that e £ {ai : i<n} . Let a =e .

Let An = [{ai : i<n}]A . Bn = [{bi : i<n}]B and An+l = [{ai : i<n+l}]A.

Case 1. a' =minfa € A : a €N U.(A)} = min{a € A :a€l U.(A)}
n . i n+1l . i
i<w i<w

or {a €A
n

:a€ni A is. ty.
I ‘Ui( )} is empty.

1<W

In this case let 3>0 be sufficiently large that for a € An+I

if a € U._l(A) then a € 0 Ui(A). Now B FIL(j) is (j)-generic
' J ’ icw '
from Lemma 6.4 and An and Bn are isomorphic under P, - Also

An+l r L(3j) € Z(3) . Thus there is an extension o of P, which
A . . 3 . - . s
embeds n+l r L(j) in B P L(3) Let bn p(an) Then it is not

difficult to see that we may take pn+l = 0 to obtain an Ll—isomorphism

of 4l and [{biv i<n l}]B The only detail to check is tha

and k>7j .

a € Uk(A? > pn+l(a) € Uk(B) , for a ¢ An+l

o .
If kx»j and a ¢ Uk(An+l) then a 6,.0 Ui(A). and so

i<w
[ ]
< ) i A) f
pn(a ) pn+l(a) so pn+l(a) € .ﬂ Ui‘B) Otherwise a £ Ui( ) or
, i<w
some i<j and the result follows. : A

Case 2. Otherwise, that is there is a ¢ B 1 ~with a€ 0 U, (8)
i<w

and for all a' ¢ An with a' €N Ui(A) a<a' .
In this case A and B must satisfy Condition IV. Before applying

the techniques of Case 1 we must first establish an upper bound in B

4



to play the r8le of pn(a') » suited to the introduction of a preimage '

to play the r8le of a' .

Let Db" €0} Ui(B) be such that b" € U(B) and b" <« b for
i<w .

each b € [l Ui(Bn) . Since B r L(1) is Z(1l)-generic we may choose
i<w ’ :

b' € U(B) such that

1) b"=Db'

2) if b€ N U.(B) then b'<b
i<w 1 n

3) B F= —iUO(I(u\fw)) whenever u,v,w € Ian U {b'} and
at least one is b'
4) B F? I(uvw) < b when b € Bn \‘{CB} , u,v,w € anl U {b'}
and at least one of u,v,w is b’
5) the orderiﬁg on {i(u,v,w) : u,v,w € U(Bn) U {b'},
one of u,v,w is b' , and B_F= wv A v<w}w:is the
lexicographic order.
We leave the explicit application of the tecﬁniques of the proof of
Lemma 6.4 to the reader.

Now choose 3Jj >0 such that for all a € An if a € Uj- (a)

+1 1

then a € N Ui(A) .
i<w

From Lemma 6.4 A P L(j) is Z(j)-generic. Thus we can choose
a' € 'U(aA) such that

L al cu (3

2y if a € An+l and a € Uj_lr‘then a'<a

3) A F 1 UO(I(u,v;w)) whenever at least one of u,v,w is a'

U {a'}

‘and u,v;w € ’An+l|
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%) A F= I(fuvw) <« a when a € An+l \\{QA} at least

one of u,v,w 1is a' and u,v,w € !An+ll U {a'}

5) the ordering on {I(u,v,w) : one of u,v,w is a' ,
&

u,v,w € U(An+l)lJ {a'} , and A F= wVv A vew} 1is the
lexicographic order.
| ] 3 | ] L 3
Now [lAnl U {a }]A r L(j) and [IBnl U {b }]B r (j) are
isomorphic by the extension of Py which takes a' to b' .
Since B 1is 2Z(j)-generic this may be extended to an embedding p

of ‘[lA

n+l| U fa'hy, M L(3) into B ] L(j) . Let b =opa) and

<

- . . ' , ..
let pn+l o) P An+l « The choice of a' , b ) and o 1is sufficient

to show that p is an isomorphism by the argument from case 1 . .

n+l1

Thus A =B , and T, has at most 4 countable models. Since

1

Tl is easily seen to have at least 4 countable models the proof of

the theorem is complete.
!
Let p be the l-type of a member of [ Ui , i.e. the l-type gen-
. 7 i<w
erated by {UivO A Uvo : i<w]. Then there are only a finite number of

2-types in pxp - each principal over at least one coordinate: the

types g where ¢

) {vO = vl}, g, D {VO < vl} and

0’919 0 1

q, > {v

5 1< VO} . Indged one may show that if A is the countable

saturated model of Tl then given a,b in A a is prime over b

or b 1is prime over a . Oﬁe need only modify the first steﬁs in

the proof of the theorem to construct the désired automorphism of Xy -
There are, however, infinitely many 3-types in p . For each

j>0 there is the 3-type rj in p ﬁiuch that

D A A .
rj {vd<Yl .v1<v2 A Uj_l(Ixfovlvz) ‘lUj(Ivbvlvz)}



K if j # k . There are also the 3-types ro and r.

-

Clearly rj #£ r
in p where o
1
r, 2 {vo<vl A Vi<V A UO(I AR )}

and r ° {VO<V1«A vl<v2} U {Ui(Ivalvz) : §<m} .

Tl has an inessential extension T2 which has infinitely many

countable models., Let co,cl be new constant symbols and let T2

be a completion of T U {cho : j<w} U {c0< c:l} . There are now
infinitely many models satisfying Condition II. For each J<w there

is a model Mj with an element a = sup{Ui} such that (a,(cO)M.,(cl)M')

] ]
realizes rj . Thus the M  are distinct countable models of T2
J ‘

"The construction of Tl .uses an infinite number of unary predi-
cate symbols. We have not succeeded in finding a copstructionkthét
gives an example in a small language that is finite except for
constant symbolé%; Also Tl has 4 countable models, This raises
the following questions:

Qll: If T has a finite number of countable models and if

T is in a small language whicQVhas only a finite number
of symbols other than constant symbols,‘does every
inessential extension of T have a finite number of )
countable models? , and

Ql2: If T has three countable models does every inessential

extension of T have a finite number of countable models?
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Conclusion

It is to be hoped that the techniqqes employed in this Qork can
be used to develop more examples of theories with affiniﬁe number’bf
countable models. The reader will have noticed that all of the examples
considered have an underlying dense, albeit partial, order and thus
satisfy C2. Some further examples whiéh cast light‘on this conjecture
would be w;lcome. :

_The properties of theories with a small language are of indepen-
dent interest as shown by Q11 and C6. The class of such theories with
function symbols appears to be much richer than the class of theories
in a small language which do not have function symbols.

However, the results of Chapter 4 indicate that considerable
comélexity isfpossible‘;%en for those theories}with one binary relation -
symbol. The problem of classifying all finite ultrahomogeneous graphs
is an illustrgtion.

Finally it appears that theories with three countable models may
have very special properties since they have middle models. A separate
investigation of such theories would be worthwhile. An open question

is whether the existence of a middle model is equivalent to the property

of having three countable models.

<
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