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ABSTRACT

The two-time method is applied to the wave equation with

.

- L

small nonlinearity to obtain the general form for the lowest order

approximation to the solution. - This is then specialized to the case

. where the nonlinearity is of Van der Pol type and.the integro= . ... .. .

o differential equation governing the lowest order apprOximation is

explicitly derived. Viewed as an ordinary differential equation, it

e turns out that it belongs to a class of equations which ordinarily
cannot be explicitly solved. The stationary solutions are found

and a Stability analysis provides a complete classification of the

possible asymptotic solutions that can be generated. These solutions

represent waves having sawtooth profiles, one wave moving in"each

direction. An application to a model for wind-induced.osgillations -

7777 T T T T . -

of overhead power lines is given. » ' ‘ ,
Two non-stationary éolﬁtions for the integro-differential
*. . . ’ - . .

‘equations are also given and in each case the-asymptotic solutions _

f‘ .’ attained are comsisgent with those found from the stability’aﬁalysié.

] LT - - - . -
" Several theorems on gemeral time dependent behaviour of the solution

. reduce the problem of predicting which;égymptotic'solutioﬁ ﬁill be:-

' generated from given  initial values. - Numerical splutiohé of the

~equation for a variety of initial values show asymptotic solutions of

— ~r;fv:m~“-4ﬁ~the*éame type as those predicted by the stability analysis.

»>
v . . - —
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CHAPTER 1 B

1. Introductiocon.

Much recent research has necessitated finding the.solutions
. . . N
of certain nonlinear - dlfferentlaIWequatlons ‘and while- gpneral solutlons‘

e P JUSE— . g

”:ji—f;;:i; 7; are normally not available, a con51derable amount of success has“been

VU VORI PP SRS

achieved, particularly in problems related te nonlinear vibrations, by w

__using certain asymptotic methods. The principle—techniques—inciude

the KBM methoq {17, [2}, the method of a;eraging f{2] -and the two~-time
[31 or multiple scale [4] methods. They Qere pioneered for use in
. ordinary differential equations but more recently'they have been -
,‘successfully applie@gto certain partial differential equatroﬁs.A In

this regard we can mention the work of Bojedziev and Lardner [51, .

T S Iel, [7] ‘and Myerscough [8] u51ng the KBM method and the closely 7;7
related work of Davy and Ames [9], Keller and KOgelman [10] end
Lardner {il] using the method’of averaging. Two-time expansions )
have been used by Chikwendu and Kevorkian [12], Nayfeh {13] and
Lardnerr[l4] end more recently Lardher [15] has ;seé a three-time
expapsion to obtain the lowest order approximarion valid for time

£

5 . » .
t=0 € f i - = - .
(1/ 7) or ;he equation u, uxx E(2uxuxx 2Aut)

- In this thesis we shall be con51der1ng the appllcatlon of

—————————the two~time method to the weakly n0n11near wave equation. For.

certaln classes of ordlﬁary differential equations it has been
shown by'Morrison 16} rhat the two-time method and the method of -

]



1
.

——————between the exact solution and the approximate Solution given by the

Bogoliubov [2] justifying the method of averaging, we have indirect —

v

,justlflcatlon for the two—tlme method for these equations. For S

certaln classes of partlal dlfferentlal equatlons, it has been

shoyp by Lardner {141 that the method of averaglng and the two-time

method lead to the same lowest order approxlmatlon. A justlflcatlon

‘ of the two—tlme methog_for a certa;n class of nonllnear wave4equatlonsewueaa»ae»a

‘has been ‘given by Ekhaus [19]. o / - . T

In the;hext chapter we apply the‘two-time method‘to obtain

an‘IE%Z§§§f§?§§§?EHEEQIAEQuatlon whlch governs the lowest order

- ¥

approximation to the solution of the weakly nonlinearvwave‘equation

u -u =€ E(x,t,u, uru €) .

tt plo'y t'

Here € 1s a small parameter and E a;generalr,sultablygdlﬁferentiablef”*”“‘*”r*

" function of its arguments. The solution is obtained in the form of a

uniform expansion

ux,t) = uo(x,t,T) + € ul(x,t,T)-+O(62)

{ -

where T = €t/ This solution remains valid for times t = O(Ll/€).

In §2.2 we show explicitly‘that when E =a-2ut— €u , the difference

end conditions u(0,t) = u(f,t)=0,

t 2 0 and initial conditions of the type u(x,0) = X¥(x) and



_ut(x;O) = Y(x), it is shown that the lowest order solution-becomes

»

u(x,t) uo(x,t,T) =VG(G;T3 - G(B,T)

where o =t + x, B =+t - x . The integro~differential equation

) ar}d 1!,1,1121@; ,,Yél,lgueSg,f,druthewfunctionmg (8,-[) ,=,.Ge (e +T) (e . represehting‘""
@ or B as required) are then:obtained. These are then applied to

“the case when the nonlinearity«is of van dér Pol type (i.e.,

- _- -

E=u,_ - glut).' We obtain the equatlon

where : : , 1.1)

This equation, which will be the priﬁary topic of consideration in
this work, was derived in this form by Lardner [14] A special case
whlch turns out to be valld only in the case of 1mpu151ve initial
conditions (u(x, O) 0) was oktained by Myerscough [l?].

3

Chikwendu and Kevorkian [12] have investigated an application to

progressive‘waves'»(u(X)p) = x(x), ut(x,0)¥-x'(x)). A direct

derivation of this same equation using the method of averaging is also

given at the end of Chapter 2.



- If we view eqn. :(1.1) as an ordinary differential equation
(0 appearing only parametrically), then’ﬁe see that it belongs to a
class of equations wh%gh cannot, in generalj be‘explicitly solved.
It is poésible however<to obtain its stationary so6lutions and this
we do inJ chapter 3. (Much lof the materiai in this chapth has

recently appeared in the 1itefaturé'[18]).'7buem£07£heféu§§éxgégggé/;w;hwdwu;A/“

of the equation obtained by setting 9. = 0 , there arewthree

stationary values. gl/~g2, 9, each of which represents'a’possible.

— - ——solution along-some-portion -7 157 T, respectively of the interval

1

-£ =9 = ¢ . The length of each of these intervals is 2£Ap

1]

(p =1,2,3) where Kl + Xz + X3 =1 . A stability analysis (only

_ these solutions which are ‘stable are obtainable as possible asymbtotic
solutions from time dépendent behaviour) shows that in no case is one

of these three root cases stabie.' The only possible stable

configﬁfétidﬁé arise’when,one of the intervals has length zero.

That is, one Ap = 0 and thé corresponding root gp does not appear
in the stationary solution. For example, if we take without loss of
generality A3 = 0 , then the stationary solution is given by

g -

= +
9, = 2 /3%2 on Il

and 9, =3 /3Al on I Moreover, we must

for stability. A maximum asymptétic displacement-

Wi

have %—< Xl <

of 2/3Kl(l—Al)8 is obtained. This value is maximum when - v
SN

1 Lo . :
5 and corresponds to the special case given by Myerscough [8].
,/{/—/«/

v
w

o
NV

Il

He considered the equation .



as a model for Q;qd induced oscillations of bverhead transmission
lines. In §3.4 1% relate our results to his for various Galues of

~ -~ "7 the parameters c,/ and B . Finally, in §3.5 we show that

3 .
eqn. (l.1) can be transformed into a coupled, infinite system of
differential equations. A form for the stationary solutions of these

-~ . is derived, but dué to6 the complexity of the system no stability -
analysis is. attempted.

. In Chapter 4 we &OLS_idgrfAzﬁzioasmen-ssta—tienanry*solﬂﬁmfs' T

and general theorems concerning the time dependent behaviour of the
solution of egn. (1.1). For odd initial conditions

g(8,0) = -g(-6,0) . we have g(0,1) = -g(~-06,1) for éll T and hence

gB(T) = 0 . «Then egn. (l1l.1) can be solved [14]. Asymptotically, it

is shown that ¢ + #/3/2 , the sign depending on whether the initial

HGéiﬁéhwésiéésiéiéé”or,negativé. ?pis is’ consistent with the type'of
behaviOurEfound by Myerscough [17]}. If the.initial conditions are piece- 7
wise constant (essentially independent of 8) subject to the constraint
that g = 0, a solution to thefgall equation (1.1) can be found. It

~is shown that the solution retains the same distribution of positive

and negative values as it originally had and attains an asymptotic

solution of a type similar to those found in chapter 3. A third

| _non-stationary solution is sought using a perturbation omthe odd —

solution. Observing that equation (1.1) can be solved in the case

of odd initial conditions, the question arises as to the feasibiiity
of obtaining a solution when the initial conditions are slightly

different from those in the odd case; Unfortunately, it‘tu;né out .



that the perturbatlon grows._ expOnentlally 1n the nelghbourhoods of

solutions.

. — e —

the zeroes of the odd functlon and hence the attempted perturbatlon

solution is non-uniform.

- AlthOugh it does not seem possible to solve the generéi

prokﬁem (g VU # 0), it would be desirable to be able to pick whlch

of the asymptotlc solutlons a given set of 1n1t1a1 values would,,.wk”ﬂaeﬂmt,aww

‘produce. This would involve determining the value X = A, (hence

o1

A

. Y]
AZ = l-A = 1-)) and the location of the intervals le and 12 . It

value of A . In §4.4 we show that if g(el,o) > g(62,0) for

6 6., € [-8,5]_'then g(el,r) >‘g(82;T) for all finite T . Knowing

17 72

A , this result allows us to predicg the location of the intervals

from the initial wvalues. Furthermore, we show that if two sets of

initial wvalues are related by g (8 O)/g2(9 0) = constant, then the
eanemasynptotlc solution is attained. From this it is speculated that
A may be found in terms of eertain scale,invariantAratios. Lastly

we prove that the migration of the zeroes of the solution function

is directly related to the presence of the g3 term.

In the last chapter various numerical solutions foz.eqn. (1.1)
are presented. In each case the form of the asymptotic solution

attained is found to be consistent with the predicted stable asymptotic
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THE TWO TIME METHOD FOR THE WAVE EQUATION WITH SMALL NONLINEARITY

+

"In this chapfer we consider the equation

tt XX X ;

where € is,a small parameter and E a general, suitably differentiable

functlon of 1ts arguments. The two tlme methqd [ 3] is employed to T

e S .

,obtain the general integro-differential equation which govérns the lowest
order solution of egn. (2.1). Two time expansions have been used
previously by Chikwendu and Kevorkian [12] and Lardner [14] to

.investigate wave equations with small nonlinearities.

For the case when E . is of Van der Pol type, that is

"E=u_ - =u >, the integro-differential equation describing the

t 3 't

lowest order approximation is explicitly derived./ This-has beeﬁ given

previously by Lardner [ia ].' “An alternatlve derivation of this equation

“ising the method of averaglng [ 2] 1is given.” Myerscough [81, [17]

has also investigated this egquation but it turns out that his con-
clusions are valid only for the case of impulsive initial conditions

w?i;e.;mu(x,O) = 0). Keller and Kogelman [10] have applied the method

- --ou, . —u = €E(x,t,u,u ,u_,€) U o (2.1

of averaging to the Klein-Gordon equation with small nonlinearity and

have discussed in detail the case where the nonlinear term is of
Van der Pol type. The wave equation presents a more difficult

problem than the Klein-Gordon equation because infinitely many



gk

" internal resonances are brought into operation by the

P g . - 7 S e T,;,,,,,j;;,—;fAi ,,,,:;,,, - i,fi,,f, '77"”’8: S

- ”

Van_der ﬁol '

. nonlinearity.

Q3 Tl

2.1 = The Two Time Method.

el L According to the two time method we seek a solution to

egn. {2.1) in the form. i !
: ‘ - 2 : :
) u(x,t) = uo(x,t,T) + € ul(x,t,T) + 0(€) v (2.2) .
"”'fwhérgfiff=‘€t . We suppcse“tnatmiﬁﬁi‘“ls a small correctIUn"to;Eﬁél*ua ******** .

Vterﬁ and that the expansion is uniform in' the sense that the ratio

-

Eui/uo is o(l) for all t in the interval of interest. Since the

solution,eqgn. (2.2),is to be valid for times as large as 0(1/€), this
condition requires that we-cannot allow terms in. ul,,which grow .
linearly with respect to t . That is, we must have

"»v'//(,//’//,.'_'

Substituting eqn. (2.2) into egn. (2.l1) and comparing terms

of orders 60 and 61 . Wwe obtain

0(1) Uger = Yoy = © o (2.4)
o€y T SO T Ty o 7 E(Xlt,{uo(xlt,T)},O)r (2.5) ‘
_Where E(i‘(ltl{uoﬁif;xltl-[)}lo) = E(xltl uo(xrtlT) ,uox(lf',f,ﬁ lubt(‘XItlT) IO).
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“and B = t-x it follows that egn. (2.5) can be written as

"The solution of eqn. (2.4) is simply given by

Uy (x,t,T) = G(t4x,T) - H(t=x,T) ' (2.6)

for two suitably differénfiable functions G and H . To this order

approximation T appears only parametrically. Setting o = t+4x

e - a8 | o8 BT )
dujgp = 7206, - Hg) + E(S el {c@, 1) -8((B,D},0 . (2.7)

Integration of eqgn. (2.7) gives

o B,y L Llf[geB e _
_ul = -3 GT +3 HT + 7 f[ E( z " T2 ¢ {G(Q,T), H(B,T)} ,0)dodB

Tt R

+ G e,T) - HB,D

where the last two terms represent the complementary function. To

- eliminate any secular terms we impose condition (2.3) which in

this case takes the form

Hence we obtain the following integro-differential equations for the

determination of ¢ and H . »

/



. . 10. -
1 o= oL+ . -
- - G = lin - 3= || 22, %ﬁﬁ%%&ﬂ%&wsﬁ——
T 28 2 2
B> o - :
ot S o o ) ’ (2.9). .
. 1 o~ o+ ;
H_ = 1lim - - E(——B ' L) » {Ga,T) - H(B,T7)},0) dadp . :
T . 20 2 2 5 .
\u + o0 ) ‘_r: P - . - =
. ( ) :
2.2 A Simple Example. - X
" In this section we shall compare a known exact solution to a WUM*NAkIE
wave equation with small nonlinearity to its approximation solution , ;
~ obtained by the two time method. Consider th?ﬁEEEEELEE;,_A,ﬂwA,WWhwﬂgi” o !
' 2
wo-w = —2€ut - €u . i
It is straightforward to show that the general solutiorn of this ?
equation is . . L ]
: =€t ;:
u{x,t) ="e [£(t+x) - g(t-x)1] : ;
where f and g are suitably differentiable functions of their 3
arguments. T3
'To apply the resulté,from the previous section, we . ;
consider the equation , . EL
- » - ) . %i
2 : 5
T Ue—=u__ =J2£ut———6—u =<1 2ut €ul = 5
: . E
_where we note that g~ is nowgagﬁunqxion—e£4~€4T¥4TheAlewest—crdergglggggggfggggg/féé
solution is given by eqgn. (2.6) %
uo('XrtrT) = G(G,T) - H(B'IT) A ) o .g




7?,Qhere @ = t+x and B = t-x.. The T—depeﬁdéhce of G and H is to
be determined from egqns. (2.9). It then follows that: o
‘u =u 4+ ug = Gy (0, 7) - HB(B.T) . .
Setting E(x,t,{do(x,t,T)},O) = +2ut in egns. (2.9), we obtain - B
_ ] ) o T B 7 ) . ) . * o .
1.
GT (arT) lim 28 J[ _2{Ga (ar.’[) HB (81 T)} dadB
B > ™ '
;"i . - e T e e T 77* TET T TR T e - -
’ . : l ) .
=-1lim E;JBG(a,T) -oHE@B,T] - -
B > , . ~
- ) , : B 5 .
= - G(a,T) . i
Similarly ,HT_(B!@, = - H(B,T) . _ These equations have solutioms .
’ -T -T
Gla,7) = £, (w)e » HEB,T) =g,(pe =
where fi/fand 9, are arbitrary differentiable functions of their
arguments. Thus the lowegst order solution becomes

.go(x,t,-r)’ = e-T[fl(a) - gl(B)]

I P ' l‘_

where T = €t.. This solution is valid for ¢t = 0(6), If we impose

arbitrary initial conditionéxwu(i,O) = x{x) and ut(x,O) = P(x) on

L7



) _ A Y
- . L - ) o ﬂx& 'g,f?

T the solution, we shall find that f = flf and g =g, . Clearly

then for the time interval in which the’approximate solution is valid, ... .

.. we would have -

- = VO ‘ _ N -
fu uol (1) _
: -as €->0. B
2.3 Application to Fixed End Conditions.
N
- = A . ,, A —
TE T T e Hereﬁecor%ider ‘the problem - ’, R
) Upp " Uy = € Bl tuu €
u(0,t) = u(é,t) =0 , t=>0 (2°l_0)
u(x,0) = x(x) u (x,0) = §(x)  0<x=<£
To the order of approximation being sought u(x,t) = uo(x,t,’r) + 0(€),
we have from eqn. (2.6) that
J *
u(0,t) = G(t,T) - H(t,T) = 0
and i 7
o ? ‘ N T . . Fl
. = Gt Ty H(t-E T =0
v ’ These conditions are satisfied if we take- - >
N B '%’ - -



.

G(6,7) = H(B,T) , G(_e-f:ZZ,T) = G(6,T) (2.11)

for all . 0,1 .7 Hence in this approximation, the functions G and H

are equal and 2£-periodic in their first arguments.
Since the functions G and H are to be equal, it follows

“that emns. (2.9) should reduce to a single equation. If we extend the

definition of the function E by
e e e e E:,\fEf,(;xA;b-;u,ui.—-A}t,— ,ﬁ——)fffr—i'péx,:tfrwfu;;trtj_ffb*—ff*f"*’ e T
and .
. 7 E(X+28,t,g,ux,ut,/€) = E(x’ﬁ'u"hx'ut'f) ’ h - - _
.then egn. (2.9) can be replaced by the siﬁgle equation
: . 1 - a+B :
G_ = lim = E(——B, ——é-, {c(@, 1) - G(8,1)}0)dadB .
T 2R 2 2" -
B > oo X ; v .
Differentiaﬁing with respect to a and éetting_’g =‘Ga r we obtain the -
usual form for this equation - ,. - v b ;o
P - ) . s - i
s 1 a-f a+ :
g_= lim =% E(——éy ——§v {G(a,T) - G(8,T)},00dR . (2.12)
T - 28 2 2
B >0 j .
The - lowest order solution (2,6) becomeé
< &
ulx,t) = G(a,T) - G(B,T) + 0(€) . (2.13)
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I - with corresponding derivatives
u (x,8) =g, - g(B,T) + 0(€)
(2.14)
u (x,8) = g(o,T) +g(B,T) + 0(€) .
From the initial conditions we have = .
_ _ ¢
M 0 . g(x,0) - g(-x,0) = ‘P(X) - )
_ g(x,0) + g(-x,0) = x'(x) L 0=x=4£ . [
} 7
- ) i Thesé can be inverted to give
. 7"”" T 1, o, 7 ;
S - 9(8,0) = ZY(®) + x'(O)1
o h P (2.15)
1 , o ' - “
g(-6,0) =3[9 +x'(®] ~0=65¢ . =
- L ' .o ) ) s . 5,
We see that the initial values of g are known on the interval
_-,/.-.5467 = ¢ andiso by pe‘rioqicity can be extended to all values of 6.). .
The problem of the first apgroximation for fixed end-conditions .- .
. 4 cornrsists of . solving the integro-differential équation (2.12) subject =
%40 the initial condition (2.15). ‘
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w204 Two Time Method for Wave Equation with Van der Pol Type

Nonlinearity.

@

Here we specialize the results of the preceding sections

to the case where

. § 1
E(x,,t,ufuxr,utr,f) = uF L

-

The lrorwe's',t order solution for fixed end conditions is given by (2.13)

- ) "‘;‘. . . * »
~while from (2.14) it is clear that eqn. (2.12) becomes . )
’ S 1 1 ' 3
9. = lim  Z=|Hg(a,1) - 9B, T} - Hgla, ) - g(B,1)]]dR .
T 2R SR 3ETRT L
B > : :
" performing the integrations, this can he written as
1 1 i3
St G0, T =g T) —— MM Sz g B TIAR = = g7 (o, T) ‘ .
: T 2 B> - 28 6
“ 1 2 1 N 2
+3,9 (@0 lim f g(B,T)dB - 5 9(a,T1) lim J g (B,T)dB
. . B =+ o B > o .
¥ « . - *
' 1 { 3 ' ¥y
' q+g[g(8,r)d8- ‘ ’
- Since g(o,T) is ,'2&-peri6dic in a , it follows that the long time
- averages can be replaced by the average over onegeriod. Setting .2?
d - —-- »'7 . .
) S ]
n ’ 1 n 1 ¢ n
g ()= 1lim &£} g (B,1aB = 55 g (B,T)aB
B %z, v )
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) 37 1 3 13 :
= (1 - - = = . 2.
29, = X -gDg -39 +39 . (2.18)
Since G is a 28-periodic function in its first argument, the first
. v : p
moment of its derivative g ,
e e e o e e e e
: 1 1 :
' g (1) = =5 g(8,1)ap i
2¢ -§ - K]
—=———————is—identically zerc. Eqn. (2.16) is to be solved together with the
initial conditions (2.15) to obtain the lowest order solution for the é
case of the Van der Pol nonlinearity. §
2.5 The Method of Averaging for the Wave Equation with ;
Van der Pol Type Nonlinearity. ;
In the previous section we derived the integro-differential =~ |
equation which governs the lowest approximétion to the problem ;
) ;
13 ;
- = e - e :
Uee T Uy T By T3 u) ;
u(0,t) = u(f,t) =0 t=>0 ;

@
¥

Q

N
I

X(x)y ,- u (x,0) = Vlx) O=x<2& .

In—this section, we shall use the method of averaging to give an
alternate derivation of egn. (2.16). —Lardner”[I4T”Hésfbté§i6u§1y, T i

A

shown that for a large class;equatiensi/theftwo time method and;nﬁﬁigfi/)




' - Tt T T T T e T e ’77;1 7 e
u,,,ﬁ,,,“Qfmayeraginggleadytomthefsame—lowestgeféer4appreximation744ﬁere‘we*shaii““““““fﬁ
demonstrate explicitly that.thisiis the case for the above prdblem.

To apply the method of averaging we first obtain the solution

for the case € = 0 . This is given by

o R R h
u(x,t) = 2 Ilrl. z ellﬂt + ;-e:llnf]sin A X
- £ n=1 n n . n n

where Xn = nn/¢ »and Zn' Eg' are constants determined from the initial

conditions. For € # 0 we assumevthat a solution can be obtained in

””” - tire form B o e ’ T ’ o T e 77’

[
w
a
|
)
I o~1 8
:Jlf—'
N
jai
3
]
'-h
o]
+
N
5" |
3
4]
]
'.l
jaj
L2
n
"N
=
:,>"
5
S
¢
3

which requires that . 7 ) -

_ —z'(T)eikﬁt'+ z' (T)e 'n- =0 : » (2.19)
. n n - .

~ for each n . Substituting (2.17) and (2.18) into the differential

—_equation, we obtain— —
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7 o ,WJ.)\nti_—' “A ] . : . :
z z) e oz e n_51n,>\nx ZP sif A x
n=1 ) , n=1 : :
5 2 oorﬂoo =) o b . ' e
+ 2277 1 ] ePr_sin(dxsin( x) sin (A x)
- 38° n=1p=l1g=1 "P% P '
At — =it o 2 .
. = n - —_ .
where P o=ze z e . Multiplying by 7 sin A anq
- integrating-over {0;4}- Vgives*’ - - - - B
A e o1 e o
Tzt et FT et - P +3 L P +PpPq Sunpa ‘
***** ":,:?77;:—;7> = *;._’7: =T 7—m7—;::j;l: i,,/g}'f — = ST = —_ *ffi?z’fq:]: = B S T T ————————
 where , ) - o . =
nnpq = -3_4 JO 51n(kmx) 51n(>\nx) 51n(kpx)51n(kqx)dx .
. } ,,Mékin,g,psg of egn. (2.19), we obtain tHe exact system of equations_ . .
L T oo a - . @ 7 - - S )
2z' =P e Hat 4 -;— ) P PR, © l}‘m»tfj;;p? B
n,p,q=l :
This system J'.;s,nom,re?iaii:ced’]'éi}/tl’ie following averaged system
- T T
2z' = 1lim lj p e tAmtae
m T > ® T 0 m ~
—_—— 77, — —_ — o I -
. 1 1 : it
+ = lim = PPPe M g }at .
— - - 3 T t 2 Rp9q mRPg
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> . - ’ e o
¥ o o T o S -
¢ X : , , - 19.
B O L A S R
Bogoliubov [2] . has shown that if . T is restricted to a finite~™
- 'inter{zél 0<T=T1 , -where ‘1, is any constant, then ‘the difference
between the -solutions . zn(T_)h,' of the original éy§tenf and the averaged -
-~ syskem j 1) as € - 0. The initial values zn(O) for each
system ar esumeci to be the same.
. _ Performing the int,égrations and taking the limits, we .
o " .obtain the autoriomous system . ]
-, V l 0 ™
2z' =z += ) I J - o (2.200
S e MM - — IR —m@RRg T T T T e T e e e e = —
*n,p,q=1 Pa Pd o . . ' :
wheré ’
. 1 (T iA t il t iAt — -id t
I = lim = (z e -~ n)(z e 'p -2z P
npq . > o T o n , P
_ o o ¢ ell\qt,_,'i;»: —J,,qut) é-,l)\mt,d,t, e U o
q
e =z z oz - if m = n+pt+q t
npg : e
-z z z if _m = n+p~-
, TR IP q -
T -z z z if m = n- B
n“p’q ~n-p+q B
- zz z if m = n-p-
n%p%q o m=mepd
-z 2z Z o if m = =-n+
: n“p“q L )
zZzZz if m = -n-
e ———————— P q p+q
- znzpzq if m = -n+p-q
-~ if  m=-n-p-g .
nZp?%q P—q



—~—We also have o T -
4,"'2 Y/ , :
J = ———-J sin A x sin A’x sin A x sin A x dx
mnpq 34 0 m - n B e
n? (t y» : ' : Yoo 1
= ;;Z [0 {c§sfkﬁ—1n+kp-kq)x + co§g}m—}n-kp+A§%§ - co§(km—kn+kp+xq)x
r*gggiAm:An:Ap:Aqlx“r’Cos(km+lﬁikﬁflq)x'_”FOS(Am+Aﬁ’Ap+Aq)x" R,

+ cos(A +A_4+A _4X )x + cos{A _+A =A_-=A )x}dx .
mn'pg m n'p g

Noting that a contribution to this integral is obtained only when ohe

of the arguments is equal to zero, we obtain that
Tr2
) Jﬁn' =— z t+ § (m,tniptq)
7 2L +'s

where §&(i,j) is the Kronecker dg}ta; This Summation consists of “the

sum of eight distinct delta: terms. In summing, the + .. sign is chosen

when the number of internai.minus,signs is"odd and the - sign is

. chosen when “the number of ~internal minus signs is even. R

Introducing these expressions for I and J into the
) -—-_> 7 npd - mnpg . :

sum in eqn. (2.20), we obtain tha£ , -

S . - 2 ©
. - ] . _
1 J 5 - T3 : z z z - 6(m,n+ -z 2z z_ §(m,n+
“ninﬂ npq “mppg | L3 .._2 12072 (m,n+p+q) nZpZq O (mm4p-a)
TRITE T+ -3/ = "H’a—‘l',

-z z zq S (m,n-p+q) + anqu § (m,n-p-q) - :z;nzpzq 5(m,-n+p+q)'

-



e P B -
ooy B » . r . ’ . .—'
W3 Smn-pra) + 5z 6m—mieed) <333 80 )1 ~
T “n"pq ', p+q F gy m’: n+p-q. T Za%p%g © m,rn/p%‘q‘
[~8 (m,n+p+q) + 6 (m,-n+p+q) + 6 (m,n~p+q) - + & (m,n+p~q)
- 8(m,~n-p+q) - §(m,-n+p-q) - §(m,n-p-q) + 8(m,-n-p-q)1 .
Performing~the multiplicatons, disregarding terms which give no -
contribution and making use of the symmetry in n,p and q leads to
- -
T A R 77’.;[ o G 7;;? -
) I J = — ) z zz S(muntptq) - 2z ) z Z
n mn, : : 3 m —_—
,n'p'q=l P 2d 2¢ n,p,q=1 o Mu/ o -
o 372 < ' ) 372 ® 7 -
R ) z,2.2 6 (m,n+p~q) ~ _1r_3_ ) znZ z_ 6(m,n-p-q) .
28~ - n,p,4=1 P 2L n,p,q=1 Pa . SR
B "'VUVSihérthémabOVmeé results, egn. (2.20) becomes
_ . 7 7'"727 ] E - '"2 i) o - -
2z) =z - —3 Zz2zZ -—2z z z T -
n m g3 meniptq " P9 g3 m,, nn
e ‘ . ‘
. ‘ . 7 T T3 Z Z Z 2 - —— 2 ZEE (2.21)
- E ‘233 w=n+p-q o p 9 283 m=n-p-q npd :
Taking the complex Wt‘:bnjug/a:t'e"gives ,tﬁéfégrﬁéspéndinq, conjuéate equation
L



. _ L - * _ _ el
_— _ .74 - ﬁ:% - - ; - 7_ Tl'2 =]
22! =z - —3 y zzz -3z y z z
627 m=n+ptq P s Mmoo B
n -' = 2 =
- —3 Z 'znz z - —3 2 - znzpzq' . (’2.22)

In each case the index m and the summation indices are adgsumed

The -above -eqns:-can-be simplified by the - following technique.

positives
pefine z = z and z. =0 and consider the sum e
m -m 0 L T -
// - T 2 Z Z 2Z . o
. - n p
‘ m=n+p+q =
Here we again assume that m > 1 ' ',bBE ,;hat,,:.rk,lprlﬁaﬁdﬂlq)ﬂgfﬂe'
allowed to take on both positive and negative values. A little — >
~ consideration-then shows that ‘we can write
N zzz = Y zzz +3 3 zzz +3 Y zzz .
_m=n+ P = n,p,9>0 "Pd.qp,p0 TPQ n,p,g>0 P9
- e mEntpHg . mentp-q- -~ men-p-q .
o - {& :
Using this 'i:esult? it follows that egn. (2.21) can be written as
m ' ‘ E S - ) T a
2zt;l‘= z -3 ) z2 z z + 3Zm Z z 2z s (2.23)
6£” | m=n+p+q pd n=-—®

Taking the complex conjugate of this equation, we obtain .




Letting Ek =2z and k' = -k for k = m,n,p,d gives
2 . © .
"ﬂ' R
221;1, = zl;l.--—-— z z ,z2 .,z , + 3z_, E z2z_ |-
6_8 mlsnl_‘_pl.‘.q' n=-— o
Here m' < -1. Hence eqn. (2‘,2’3)' is valiglrﬂf,QLa:l}fm"‘iQ:. T : B
7;D7e,,f,iné**‘ o ': - :ﬂﬂ_ﬁ‘_( e — L R " PR -
- - © [ T
- RO L
z(6,71) = ) =z (T)elxmﬁ, § - (2,24)
~ _ _ N 'mi——;:'/gnji rE{,,/::f;ff - e - = ——— e =
7 17/—7/r~//, — — ~
.~ L ix_6 I ,
e Multiplying (2,23) by e ‘M. .- -and summing over all m # 0 , we obtain
5 z 2 elxme - 2 Zm el)\me _ 1_3_ z elxme ( 2 2z )
m#0 T m#0 6 mf0._ . - “nip¥gmm P 9
e o ,i e P il ',7,,,7 g~ _ . I
STy g Ml o2z :
27 m#0 m , n=-© -
2 i [ee)
=) ze Amd ——"3, y ;l)\me « 3 z.z z)
R T m#0 68 =- n+p+g=m pd T
o —,)’*’2///‘%7/ N 2 =<} . o
T + =7 zzzo- 2 e (v zz ). (228
6£” ntp+g=0- Pa 2p° p=lfe B n=-

2 - Z oo
L 2 -1 i i(A.+2)0
zsf_zzwﬂ)de _25[ X zzpel w p’ "dd



b + _ _ o - 24. e
[o0]
= bemEs ey *
n+p=0 P n=-—c
and
R J— - ,B . . - T -
PR 1 » , : I '
e : 'ﬁ f ‘23(@/,T)de = 2 an Z_ e T
- | S ~ n#pag=0- " P

" Finally, when use is made of (2.24), eqn. (2.25) can be expressed as

2 2 8 E 2 Y : :
T LN PP
: 4 ~2 e T

/28 -
= _ng— g(6,7) (2.26)
| ) -and writing . | "

we finally obtain

+39° . , (2.27).

N ‘ . fiwmmmmmumod—
of averaging the integro-differential equation which governs the

IS



_Hence we have identical expreséions for the derivative U . In a -

e T . . A L
. 4;4k4_lowest order,approxlmatlonftouthe problemdefined by éqn. (2,10).—
We can now show that the functiogg7,g,/defiﬁéd'5§ieqns. (2.16) and
(2.27) are the-same to this order of approximation.
From egn. (2.14) we have that
u, (x,t) = g(a,T1) -~ g(B,T)
» L - R * R
e - o R P — - e e - ‘- ://;///774/’7///7 e . . . - —
=7g(t+xllf)i; g(t"XrT) . g
% :Théféﬁffé§§6ﬁaiﬁ§7Héfivafiﬁéﬂwﬁ;7 for the method of averaging is
. S )
given by'eqn. (2.18). This can be rewritten as
. 13
‘ ° "}\ ) - \ id_(t+ )”
- u (x,t) = l y [z (1) e n (B4 Zn(T)e 1A p(t+x
",;28 n=1 - ) d
| [ e s ik (e )-' | |
T 1
) - ””E* z(TYl ¢ xL'”WﬁTél = .
v2£7 n=1 L J
’ Making use of egns (2.24) and (2.26) we obtain
T A (t+x) iX(t- x)
U(x’t)—TT Z('r)l Ll E Z(T)e o )
n=—°° V28 n=- o
= Ul z{t+x,T) - l z(t:-x,T)
;28 ;23!
v:l:), - = q(t+’QlT) - g(t"XlT) .
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|

—- similar fashionmrit—can be shown that the derivative u is obtainable

as : : -

ux(x,t) = g(t+x,Tf7; g(t-x,T) S,

~

dsing either method. Thus to the order of approximation being

© . -

sought here, u(x,t) = ,,B.U(x,t,ﬁt),,, ;+“O,(,€)A/'4efﬁavs\gxac‘t agreement between .. .

the two methods., . i 7 :

Y
~
Y
- 1
-
'
o [ N
-
s
r
a




THE STATIONARY ‘SOLUTIONS OF THE g-EQUATION

Here we investigate the stationary solufibns,of the equation

2 : 1
o 29, = (1=9)g -39 + 39 (3.

depéndent behavioﬁr.

3.1 The Stationary Solutions.

Settiﬁg 9; =0 in egn. (3.1), we obtain

——— —

3 2 . 3 )
g + 3(g-1l)g-g =20 : ' (3.2)

n . . N . .
where g. are now all constants. This equation is cubic in g .

Denoting the three possible roots by 9yr gz and ’g3\, we can replacé

(3.2) by the three conditions

+ = , : '
9,+9,%9, = 0

——




- %eaq@fess—9r thfWW

9 for a fraction Ap of the interval =-£ < 6 <& .

(p=1,2,3). Then.

that g(6)

— ¢
- . n = _l.. 7 n =
) 9 =33 f_g,g (6)ae Algl+A292+A3g3
'  where A #A#A, =1 . Therefore, we obtain the following set of . ' . .

T

conditions to be satisfied by '{kp,gp}

e — ﬁﬂ_g——l’ — — (3.3)
A‘ +X +A3 =0 | (3.4) ,
91+§2+93 =0 | ' o A ‘ (3.5)
- | 9192%9,93%939; = 3(X191+A +A393 no ; T e
O s agnggingd e

The second of these conditiéns comes from the fact that we require

g =0 . The last of these equations (3.7) can in fact be derived from

~ L I

the first four and hence is rédundant.

To obtain the solutions to this set of equations, we first

assume that at least two of the Ap are unequal. Without any loss of

generality we can assume that Al # Az + If we now set 93 = (Al-A2)A

*”'”*”;"“/‘“‘“"‘and‘Sﬁbeitute into (3.4) and (3.5), we obtain that 9; = (AZ-A3)A
and g9, = (A3-A1)A . To obtain the expression for A , substitute

these forms for the gP -inmto-egm. (3.6). After some manipulation
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we find that thisvequation reduces to- ' o _
A%(1-27A A) = 3
1 23
when use is made of egn. (3.3). Hence the general solution for the
‘case when at-least two of the. Ap, are different is obtained as-
9, = (>‘2-A3)A( g, = (A3-)\1')A, 9, = (Al—AZ)A (3.8)
where 7
/ 3 ' |
A = i— Y, B . " (3. 9) .
1-'-27}\1X2A} ‘
For the case when -Al'=, }‘2 7=',h3 = % this solution becomes o .
) -7~ indeterminate. To obtain "tﬁ'e*s‘t?éT&rfa?f ‘solution in this {agg’,’};g T
. } B s . i a
- set )\p = -;-‘— (p = 1,2,3) in equations (3.4)-(3.7). We easily find - .
that they reduce to » .
i B . ’
) 2 2 2
3 = 3 3+ 3 . -
919293 T 93795795 -
Again the last of these equations is redundant, and the solution of e T
- 7 _ . .
the other two can be written in the form
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_ 1 2 i _ 1 _ » 2 '
9, =5|-9; ih/v4-3gl - A ,-7_.2- ~g, ¥ v 4—3gl ' (3.10)
. .

- . . : 2 . -
~ Here we require that 9; < 4/3 . Hence for each p we have that

g; < 4/3 . BAlso, from egn. (3.10), when 9, ='1/Y3 we have either

g, Or g,=- 2/¥3 . Thus we must also have g; >1/3 .

3.2 Stability Analysis - General Case.

' d Having obtained convenient expréssions for the stationary

solutions, we must now investigate their stability. Only those which
are stable are obtainable as asymptotic. solutions of a general time

.dependent solution g(8,7) of egn. (3.1).

\ Let gO(E)) be a stationary solution of the type discussed

in the previous section. We suppose that b

90(8) =< 9, for 8 € I,

9, for 6 €I3

Yo

where IJUI2UI3 = [-£,2] and the length of the set Ip is ZZAP'.-

-

To investigate the stability of this proposed solution, we

consider a perturbed solution

-

(3.11)

g(g,t} = go(e) + v(8,T) .

L gl

"

N b i R




Substituting this into egn. (3.1), using the fact that go(e)( is a

solution of this equation, and retaining only linear terms in v , we
, ) . T
_obtain the following first-order perturbation equation

: 2 T3 = 2
2vT = v-gov~gov-2govg0+gov *(3.12)
e " where, once again, the bar denotes an éverage over 6 .  °

We can observe that since g = 53'= 0 it must follow that

== v = 0 . Taking-the average of—eqnm: (3712 over 6, we obtaim
- 5
2vT = (l-go)v ‘ ‘ i

which is consistent with the condition v = 0 .

Suppose that ' ' S
- e N
vl(G,T) for © ¢ Il
v(6,T) =’4 v2(6,T) for 0 ¢ I, ' (3.13)
‘ o ) )
' ‘“'3&’;;?17
V3(61T) for B € I3
and X
1
k-{t)y = v—{8,;1)d0——
P 26 P
P

It then follows that we can write



R A "\L?E“TO“QZTV 21’9’1’ Tk, +g3f3f fglﬁgzﬁfﬁ”) T

2

e gﬁ il)_-tg;kz (T)+ggk3(‘r) .

P -

Choosing 6 to be respectively in '11, 12 and I3 , we see that
: e 7

equation (3.12) is equivalent to ’the fbllowing syéfem of equations

for vl, v2v.and v3

2
L = (=94~ g1)"1 - 2(91 1’?92]‘2‘”93 309+ (gl 1*’9”2}‘2‘”93k ).

.3 ' : .
2v, = (1-g, 92)v2 - 2(g;k +g,k +g k) g2 + (glkl+g2k2+g3k ) f (3.14)

We can obtain differential equationé for the averages kp(T) by

I and -

integréting these equations respectively over the sets Il, 5

13 . We obtain

e S AR N

R
11 [i (l+2A )gl A2g2 X3g }K + Algzlgz-Zgl)k + Alg (g3 Zgl)k3

' 2 2. 2 ‘
2k, = A,9, ;gl—zgz)kl +[l-(l+2A2)g2-Algl-A3g3]k2 + X,9,(9,729,)k, 3 (3.15)

- ‘ 2 2 2
2k3T = 7\3gl(gl 2g3)?<l + A gz(g2 2g3)k + [l—(l+2A3)g3—Algl-ngz]k3

This system of equations with constant coefficients can feadily

be solved for. kl’ k2 and k3 and the solutions substituted into

"to give v., v, and v
B

egns. (3.14). This latter system can then be immediately integrated

~ « (If we sum together the eqns. of (3.15)
3 -

2
=

we note that we obtain
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1g1 -A,9,"

- - A

27A3g )(k +k_+k )

2(kl+k +k3)T = (l -\, 2

2

2
= (l—go)(kl+k2+k3) .

»

This is consistent with the requiremént that v = kl+k2+k3 =0.)

It turns out, however, that we can eliminate most of the
general cases by simply considering eqns. (3.14). It is evident
from the form of these eqns. that if the coefficient of vp is

p051t1ve in any of the equatlons, then the solution will have = w

exponentially growing terms and will there¢fore be unstable., That
is, we have instability if (l-gg-g;) >0 for any pP .
Substituting from egns. (3.8) and (3.9) we obtain for the first

of these coefficients

l'90 91"1 (k1g1+A292+A393)'91

=—§-A (1-33,) (1-31,) -

with similar expressions for the:other two coefficients. Now, the
three quantities (1—3A1), (1-3A2) and (1-3A3) sum up to zero.

Hence, provided that none of them is equal'to zero, two of them must

be of the same Sigh,ﬁand the product of these two must be positive.

—te

. . 2 . . :
The corre;pondlng coefficient (l-go-gi) is then also positive.

Consequently, when each Ap # %‘) the stationary state go(e) is .

-

always unstable.



~—-———= -~ ~The reason-why the last case musSt be considered separately is that

It turns out that case (c¢) is the only one which is capable of

_Thus, in searching for stable stationary solutions; we are

4

immediately restricted to considering certain special cases. These -

are:

- . ) l
(a) One A= . for example A3 ==, Al,lz #.3-;

| L | -
™ A=A =A =3 | S

0 , for gxample A3M= o, A1+A2v= 1.

8
R
j=]
o
>

o]
n

I3

is empty, and so the third of egns. (3.14) and (3.15) must be dropped.
producing stabl?{;tationary solutions.

3.3 sStability Analysis - Special Cases.

We have seen in the previous section that the search for

"stable stationary solutions has been narrowed down fo several special

cases. We consider the stability analysis for case (c) first since it

is the only one which produces stable solutions.

-(a) " The special case A37= 0.

Here we investigate the stability of the stationary

‘solutions {3.8) when one of the ,Apﬁs is equal to zero. Without any

WW;,Aggiessgef~generaiity*WE/cah*také“ig‘EvU . Then the set i3 is empty

and there is no function 'v3(8,1) in egn. (3.13) to consider. The



,7thi;dwgf,eqn511434l4)ﬁisuabsenfgaad;uk§4='ﬁi*soﬁwe have
. - - 3 N - ﬂ 7
_ .. 2 2 ' 2, 2
vy = (1-g, gl)V.l"' 209k ta k0 9y + (9K tayky)

S (3.16)
v = (1-_5' 2 . - 2(g.k. 4.k )g. + (g%k.4+q2k.) . |

CVoq T UT9,79,) Y, 915179257 9y * L9 KR tak,) .

, J

When ); = 0. it follows from egns. (3.8). and

»(3.9)-that:~

where Al+A2Z# 1. 'Substituting these values in eqns. '(3.16), we find

that these equatibns reduce to

. S Bl

Vg

' 2
(l—3l2)vl - 3)\2kl + 3Xl(l+X2)k2

(1-3)\1)v2 + 3A2(1+Al)k1 - 3)‘lk2

» 2v2T

- -

Furthermore, the first two of egns. (3.15) take the form

f . @an

, , ~
gle'= (1—3A2—3A112)k1 + 3Ai(l+k2)k2
> - (3.18)
2k, = 3A2(1+A )k, + (1-3A -3 )k, .
2T 2 1’71 171202
| '-Bearinq m mipdihgcoﬂstxainf; v = kl+k2 =0 eqf:z (3.18)
reduce to : ‘
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‘whose solution is of the form .
kl = Ae , k2 = ~pe’
where A 1is a constant. Substituting these into egns. (3.17) we obtain B ) ;;N
2v. = (1-30)v. - 3ae"T
11 2’1 ;
e TR e e e S 7 SR ¢ P £ B
C2v. = (1-30)v. + 3me T . | '
2T 1" "2 - J
These equations will have sqiutions which tend exponentially to zero
as T > @ provided that -(l-3kl) and (1-3X,) are both negative. R
‘That is, provided that 1/3 €’AI<”2/37;77IH these cases fheiefore, - ?
- ﬁﬁevcorresponding stationary solution is stable. ' o g
. We conclude that the stationary solution of egn. (3.1) é
given by
[ +/3(A-1) for 6 €1, .‘ ]
go.(e) ,‘= J : ’ (3.20)
FY 3 A for 6 ¢1
- 1 1
_ ' i
I D T

4774———fmuwheze—theglength4ef44I144dﬂ}——2&kI—T4is4stab&e4if4and4oniy4iff“““““‘f“““““‘f

1/3 < Al < 2/3 . There are no other stable stationary solutions.




____From egns. (3.17) we- ulate the” te—at which

e - 2

the stable solution is approached. / The solution of these equations

—
St .

is given byi///

-*:(2-3)( Yt
. : 1 3. -1
vl(e,r) = fl(G e + 5 Re

-§(3A1-l)r 3 -
- 3 e”

T

f(e)de=f £ (6)dad = 0 .
] s

1 2 - , R

The slowest of the three”éiﬁéhéhtial terms in the abbye equations

determines the rate at which v, -and v_ .decay to zero. It is

1 2
easily seen that vy Warné/fQ{ _fyzﬁgi,eggy,,,ig,,p,rgpqr;ipn, to e %' where, - S -
‘ q = Min{>(3\.-1) , =(2-3% )} ' | (3 21').
2L T2 1 T

and so the decay time will be q-l .

In the next chapter we develop an explicit solution for
eqn. (3.1) for the case of odd initial conditions. That is

g(-9,0) = -g(é,O). It turns out that asymptotically, the solution ‘
- e
o tends to one of the values + ¥ 3/2 , the sign depending on whether the ’
initial value is positive or negative. It can _alsoc ke easilyv shown that
' . . . - ~T/4
_ the rate-of approach to these asymptotic solutions is e

. This



case corresponds to taking 1] 52 =% in.the above analysls.%A

Than the statlonary solutlon given by eqn. (3.20) becomes = _ .°

»

4

. r " . :
+ v/ 3/2 for 0 € Il
9,(0) = ‘J : n
g T/3/2 for 6 41, - s
. - Hand éé;: (3 ZiS becomes751mply q=7. Thus we have con51stency

between the results from the stabllltyfanaleis'and,the analytic

.

solution., . - .

S ; | A typical solution of the fype (3.20) is shown in
T T - R ] P .
Figure 1 . The upper grap ‘shows g(6,T) and the lower shows

§ G(8,T) (recall that g = GY). 'We have illustrated a case where
'Al = 0.4 and I, and;'I2 feach consist of two disjoint intervals.

The solution u(x,t) in lowest order consists of the difference

between two such sawtooth waves, one moving in each direction.

the diffefence between the maximum and minimum values of G

is greatest, for given value Al , when the wave has a simple

triangular profile.. Thet is, the sets Il and 12 consist of 51ngle

intervals (see Fig; 2).‘ Thls difference is then equal to

ZVFEKl(l-Al)E . Eromveqn. (2.13), the maximum value of u(x,t) is

equal to the maximum value of G minus its minimum value. Hence for

v

e T "'ngVEn“k“T‘thé‘ﬁéiimum possible amplltude of u(x,t) 1is

1
) i , ,”,ﬂ,2#tékgf}—%4}&444—Th1sAmaximum*tSAgreatest‘Whe N i and

is then equal to /F§8/2 .
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Fig. 1
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- -Here-we can proceed”aSMin"the“general“case:””If'we*exémine”thé“réadiﬁ§”

\o=1

(b)

In this case, g, and 95 are given in tegmsrof' gi ‘by

»

eqns.’ (3.10). It follows that

2
- ; go

s

E)

3

v

1,2 2. 2 _
= §4gl+92+93) = 2/3 °

/3 .

coefficients in equations (3.14), we find that

*

. g
1 2 1

1-9459, = 3(4-39;) 7%

(4-391)

g

7 2 1 2 1

1-95793 . 3(4-39))

(4-3g

The first of these is

If 9 >1/vV 3 it is

. Sl 2 '
is positive except when 9, = 4/3 (Recall that we must have 4-3g

2

negative provided 9, >1/¥ 3 or g; < - 1/v 3 .

not difficult to see that the second coefficient

1 > 0).

| If g, <-1/Y/ 3 the third coefficient is positive provided gi #4/3..

Thus among this clasg of stationary solutions, one of the

three coefficients is always positive, and hence we have instability,

2, 2

—except-in -the cases 97

are zero,

considered.

=1/3 and 9, = 4/3 .

In each of these

4

,W”44cases,cne_of*thegleadingfcoeﬁﬁieientsgisgnégativeganégthe—éthergtwc

This leads us then to the final special case to be



(Cji fhéisbeéiaiwcase .A3 = %..

Wwhen A3 = %—,,A1+A2 = 2/3 , it is readily seen from eqns.

(3.8) and (3.9) that the stationary solution reduces to

9 =9, =13, g, = -2g, (3.22)

e

(The rémaining solution from subsection (b) belongs to this class.)

" Then eqns. (3.14) become T
3 ‘T '
1 8 ‘
) _ - 2vip = - gk tky) + . N -
1 8 L o ey
7 2v,. = - Flkj+k,) + 3 k. - o _ (‘3.2'3)
- 5 -4
2yp = V3t 3 k) -k
el ‘
and eqns; (3.15) become ‘ o s -
Al Skl i
e TRy 5T Ry |
A 8h,
e T 2 S
ey = =50k +ky) + ==k, (3.24)
_ 5 ' 13
2k, (k) +k.) 5 kg
L

Bearing in mind the condition k1+k2+k3 = 0 , we can easily

solve equations (3.24)., The solutions can be written in the form
, ‘ .

- -T = 2 =T - -T
kl =C 3A1A_e ek, C 3A2Ae r ky = 22e



where A and C are arbitrary constants. Solvfng"equations (3.23)

" therefore, we obtain ‘
v, (8,T) = -38e " + £, (0) S : T
1 1 . %
- a {
v.(8,T) = -38e ' + £_(0) , C
) : 2 r 2 - s __v"_ -77 7",“:; -
s e ' 'é v' i;fu;Aga, R ‘;ejt'; L
N (- B S TR N Pl TR
3t : 3% . :

: B 1
where fn(G)‘(ggé 1,2,3) are arbitrary. functions of 8 satistyihg i -
the conditions . ) . ‘ IR

- A f fl(e)de = -f f2(8)d9 = 28C, J f3(9)d67= o. .
I, ) I, S C : R
From this solution it appears that the quantities 'vD(B,T) B -
do not grow exponentially with time, but as T > they approach the
values » - ‘ ’ , , ,
Vl (BIT) > fl (e) ’ Vi (eIT) > f2 (e) ’ V3 (e,T&O - . :
Thus we appear to have a form of neutral stability. ’
However, this outcome is solely a result of ocur- having considered

only a first-order stability anaiysis: 7 'wise th Iution ~g(6,1T)-

given by egn. (3.11) would appr




) ( gy + flge). for 6 € 1. -
g9(8,1) > 4 g, + £,(8) for B €I, (3.25)
/ 9, for § € I

.

/ﬁg// {;'

and this solution would be a stable stationary solution of egn. (3.1).

However such solutlons are not among the p0551b1e statlonary m;;;uhLlnb

solutions.

)

It is clearvtherefore that a solution of the type (3.25)

cannot be a statlonary solution of the full nonllnear equation (3.1).

Its apparent stability disappears in a higher order analysis. 1In
. Rl -

substituting eqn. (3.11) into egn. (3.1) let us retain terms which

-~ areof second order in v .

(

is replaced by the following equation

Then the perturbation equation (3.12)

2 2
2v =;(1-g0-go)v -

T 29,v95 * 9

2

- Zgovv

Introducing YP(B,T) as before via eqn. (3.13) and

1 ,
k = =} )
p(‘r) ) f: vp(B,T)dG . hp(T)
P

1 . 2

-ZTJ 'Vp(e,T)de ’
I .
b

we see that this equatjon is equivalent to the system of equations

. 2 2 ) 2, .2
2vp,r = (l-’gg-’gp)vp - 2(g1kl+g?k7+g )(v +g ) + (g_'k1+<_:;2 +g3k3)
2 .
- gpvp -g (h1+h2+h3) + (glhl+gzh2+g3h ) (p = 1:2,3).



-7 T . . T T T N S mrmmosmmmmn e e T T 7”""”"7:/777” T ""774?77 T
e e n —~~f~~m—ﬂfn4thercase~*%3 = %ﬁ, ‘the stationary solution is given by eqn. -(3.22)
_ and these second ordér perturbation equations take the form
v, = - 2k.+k.) + S k. - gv2 - 2qv. (k.+k_=2k )l-'3h
AE LI s R A T T T R R B L
2 = -<&-k +k.) + 8 x. - gv? - 2 v(k +k_-2kg) - 3gh, A T
Var T TFMM) H 3Ky - av,y - 299, (kg #k,ym2kg) - 3ghy, ,
v ‘—V‘+2(k+klr)-ik + 2 2--2 (k,+k_~2k_) + 3g(h +h.)
3T U3 T 3VRITRY) T 3 R T 29Vy T cgva kg R, ek EA B
- fi?m:ﬁﬁeié;79”§1§i25517}r-7{Wﬂéihé;mm£;;£;;k;757O , these' can be simplified
to - : ' S . .
{
2v,_ = 3k, - gv> + 6gk.v. - 3gh - o
1T 379V TRERY T ey -
2v. = 3k - 2+6k‘;r - 3gh | |  (G.2e)
I bl S TR L0 Tl . Mt L= SIS S
32 l=’v‘ - 3k, + 2gv° + 6gk.v. + 3g(h +h.)
Vit V3 V3 373 7 G - )
Since we simply wish to demonstrate instability we need only
find a perturbation vP which grows with time. Therefore, for -
simplicity let us suppose that>each vP is independent of & . Then
k =Av. and h = A v ? . The condition k_+k_+k_ = 0 then .
p PP P PP 1723
— impliesthat v3=:-J(Alyl+sz2)r and the third of equations (3.26) can
be dropped. Setting U= gvy and u, = gv, , the first two of

these equations become
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' 2u = -3 u+hu) - [u+3(u +Au)l> (p=1,2)
s - S L S hr L A I PR P = lel) .
Int?oduc1?g r = u-u, and s = Alul+A2u2 ,;these are't;ansformed to
. 4r = rI3(Al—A2)r - 18s]
] (3.27)
4s_ = -[3\, A r’427s°+4s]
ST ot Tels TEst .
Let us suppose without loss of generality that }\l > )\2
L and let . _ o
D={(,s)|r>0, s<o, 3}\1}\2r2 +:27¢” + 4s > 0} .
CAS -
— I

Fig. 3



- L4 e

This set of points in the rs-plane is illustrated in Figure 3. Then

we can show that any trajectory of egns. (3.27) which starts in D

moves away from the origin. And furthermore suéh avt;ajedtory

remains in D and therefore continues to move away from the origin.
N :

This will establish the required instability of the point r =:s=0

(or ul = u2 = 0). -

FITst of all, it is:easily seen from egns. £(3.27) that if

(f;éfﬂJiléé in D , then rT > 0 And sT < 0 . Thus the trajectory

moves further away from (0,0) and in particular does not move out of

D across the boundaries r=0 and s=0. . .

. Setting W(T) = 3A1A212 + 27s2 + s it follows from eqns.

(3.27) that

aw

= 4 > .
aT + W GAlAerT + 5 ss_ 0

””'TherefOrel’thé*fﬁhétiéﬁ”’WTTYéT"’iéwéﬁmihéféééiﬁéffﬁﬁéfibﬁﬁaf'jfﬁ:7WW7
Since it is positive in D , it remains positive, and so a trajectory
in D cannot move out of D across the elliptical boundary on which

W= 0. This completes the proof of instability.

3.4 Application to the Powérline Model;

‘In his investigation of overhead transmission lines,

Myerscough [ 8] considered the equation

2 - ay - By’ o ' .
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For typical values (see Table 1) of a,B and £ as given by him, we

obtained from the analysis of case (a) of the preéceding séctipn.

Table 1

_Typical values for a4 and B ..

a B
o o -1 0.0228 * 0.0151
0.0694 0.00514

If we set t°

the above equation into

ct and y = %

/O :
- u ,

3R

" can estimate the value of the maximum amplitude - v 3£/2 - which was

we shall transform

where € = a/c . BAlso, for a stretched cable, we can relate the .

wave speed c to the distance between the leoné £ according to the

approximate relation

2

c = 5‘98

1

"

L
6(d-2)

whefg d 1is the actual length of the cable between the pylons. For\\\

and use the quantity d-¢£

as a small parameter,

following values for the maximum ampl itude.

T ~typical values ¢ = 133w/sec and £ = 400m given by Myerscough,

we obtain the




S a9,
T - o Table 2
Typical‘ values for the maximum amplitude v -g— L .
- characteristic
-1 V3 1 /a
a-¢ - = =z ==y =
c 0 -~ sec u 5 £y c ¥ 3gy decay
m. |} m/sec|. B - mz/sec m. m. time = é— - sec. -
‘al.%=,o;0228" - : ‘ )
0.4 159 L 346 " 1.55 175
| 8 =o.015 | L }
~| @, = 0.0694 , _
0.4 159 346 4.0l © 58
' B, = 0.00514 ) C
N o .= 0.0228
0.6 144 346 1.71 175
Bl = 0.0151
| @, = 0.06%4 )
0.6. 144 346 5.08 58
82 = 0.00514
| o = 0.0228 f :
~0u8- - 134 f - T e — 346 [~ L83 175 0T e
Bl = 0.0151
| @, = 0.0694 -
0.8 134 - 346 5.46 58
82 = 0.,00514
: i al = 0,0228 .
1.0 127 N 346 1.93 175
Bl = 0.0151
dz = 0.0694
1.0 127 346 5,76 58
B, = 0.00514




~ For the case of overhead transmission lines Which are
sepérated by a vertical distance of about 10 metres, no displacement .
greater than 4.5 m., is allowable. (It is undesjrable to have the
conductors closer than 1 m. apart.) Tovthe extent which this model
is applieablevte the actﬁal sieuation, we have, for the range of

values of d-f considered, acceptable displacement values for the

~parameter54*ai““and~’81 P

)

«

3.5 Stationary Values for the Moments.

Thus far our discussion has been concerned with finding the
'statioﬁary solutions of egn., (3.1) and determining which of them are
stable. There is however, another formulation of the problem which is

available to us. If we multiply egn. (3.1) by 1/28 gn-l(e,r) and “

integrate with respect to 0 over [~£,£], we obtain

‘ dIn 1 1 - .
T (1-12)1 - §-In+2 + -§-I3In_l (3.28)
3 rr——ls

where we have now set }fNT) In(T). Setting :IO(T) =1, we can

then define this system for. values of n such that n > 1 . (Note
, o ar.

that I,(1)' = 0 then implies that 'Tﬁ% = 0.) This is an infinite

system of coupled, first order equations. It clearly indicates the

-

dependence of the moments I, and I

3 which occur in egn. (3.1) on

2

each of the higher moments. From eqns. (3.28) one-can gain a certain

appreciation of the complexities involved in trying to solve egn.

(3.1) . Attempted numefical integrétion of these equations has met,

thus far, with little success. -

~,

AN



o )2

. '”’"""""""ﬁd:'f”*"""’i’ - — — :
If we set 7;§-= 0- in‘egn. (3.28),we obtain the following

-- -'non-linear recurrence relation

o 0
I - 3(1—I2

0 0.0 .
n+2 n

-I71 =0 . o (3.29)

which is essentially the same equation (cf. egn. (3.2)) as that
considered for the statioﬁary solutions for g . If we denote the
three roots of the characteristic equation by pyr P, and Py -

we obtain

where ul, Uy and u3 are arbitrary‘parameters.

-

We have previously seen (§3.1) that this is precisely the form
derived for the Ig's using an eSsenﬁially different approach.
Moreover, we have also seen that the above definition can be

~ extended to Ig, Ig and ig as well.

It would of course be desirable to investigate the stability

of these stationary solutions. However, due to the complexity of

the infinite system given by egn. (3.28), this approach seems to be
at least considerably more difficult than the approach adopted

.earlier in this chapter.



_ o - PO
o - LEtting"”fp1}4~correépqnd,to -{Ai} and {pi} correséond
. to {gi} with My =0, we have SR W
‘ . 0 _ n n-’ ‘ é
B SOt T
- = /—3}\(1-}\)[({/?)\)’_"1 + -1" (3 - /?,A)n'l]' . (3.30) -
B - . , B 5 I 4
If A> 1/ 38 .577 or A<1-1//3% ,423 (recall T <A< gg, -

' ! _0. o , '
then we have that I @ as now This of course means that

‘we are not able to approximate eqns. (3.28) by a suitably truncated
system, but that we - st keep tﬁe'entipe system. .- o

If we were able to determine any one of I 's in terms -
A,‘”‘ - . nv -
of the initial values {In(O)}) then we could obtain the appropriate

value for A from eqgn. é%?sO). In the next chapter we show that,

, _ - this value of A is all we really need to construct the asymptotic .
solution g(6,») .

. L
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S CHAPTER 4
—— ' i M ‘%‘
NON-STATIONARY SOLUTIONS AND _GENERAL - THEOREMS
t . v o
. , In this Chapter we investigate various non~stationary
‘KL; o solutions of egn. (3.1) along with several results regardihgigggéygluﬁédKw*ummvugﬁwruf
¢ °  behaviour of its solution. The integrability of egn. (3.1), considered
-as a differential eqﬁation, is seen to be directly related to the .
/%utjgi)????““*fff(g‘5::1:;;

--presence-of=th ffg% =term. ~If “this term 1s absent, them eqn.

belongs to a class of differential equations which can be integrated

in a straightforward manner.

4.1 Impulsive Initial conditions. -5
If the initial conditions for the problem defined by eqn. "
(2.10) are of impulsive type (i.e., u(x,0) = 0) then it follows
from egn. (2;15{\fhat the initial values to be satisfied by the -
solution of egn. (3.1) are odd. That is g(8,0) = -g(-0,0). It can
then be shown as follows that if egn. (3.1) is assumed to have a
unique solution, ‘this solution remains an odd function of 6 for
all time. :
Setting g(8,T) = -h(-8,T) in eqn. (3.1), we obtain
- ey h 1 Y .
- 2n_= (1-hYh - = h” +=n .
h_[ \ (L-h") 3 h™ + 3 h



Furthermore, if g(8,0) = -g(=B,0), it follows that -h(8,0) = (6,0}«

Hence g and h satisfy the .same equation and have the same initial
values% Assuming a unique solution exists, we have g(@,T) = h(G,ty‘=','.

-g(~-8,T)y for all T ..

As a consequence, for the case -of odd-initial conditions,
eqn-,(3.l)'feduces to - » ' o )

) 2 1 T
29, = (1-9)g -39 P C PR

Y S — S e

since g‘(f) 0. Thls ‘can be regarded as a Bernoulll or R1catt1

- type equation which can be directly ihtegrated in terxrms of the\*

, 2 ST .
unknown function ‘g~ . Introducing an integrating factor, we can-

rewrite eqn. (4.1) as

AN e T TR
"””aT -CXP. ,, 1?9 VLJ]dI' = v—exp--—J-tl—g Y4ty S
| 7, |

\

T

Setting w(T) = exp {%—f [l-gz(T")]d‘r"} and g(8,7) = w(T) £(8,T) we

0

obtain

- v -

1 2, -3 . °
fT(B,T) “gVv (t) £7(6,1) .

This may be integrated diréctly and, the solution written in the;form




.- £(8,T) = f(e 0)__ ///J,%
[:l +//Qb('r)f (e 0)]

Ia «
.Since w(0) =1 and ¢ (1) = wz(Tr it follows that we can wrlte.

1-g (T")} AT AT e o L (402)

30,1 = g(6,0| —2 0 S .

143 $(g°(8,0)

We have thus obtained d‘formal solutioﬁrto eqn. (4.1) in terms of the

.o .. unknown function- ¢(Tf‘?”;Ifmwe*substifﬁté‘thig”§51afiaﬁ“535k”15t6“”””*"
eqn. (4.2) we obtain an equation for $(T) which takes the form

)

I S £ 1 2
T - énd'(T) = 7 Znjl + 3-¢(T)g (6,0).146 . _(4.4)
0 ' L R

«

Having solved this equation for ¢(T)

» the solution function 'g(f,T)

is then found from eqn. (4.3). It is immediately evident from the

form (4,3) of the solution that the sign of g(6,1)

is the same as

the sign of -g(g, 0) - In particular, the zeros of the solution

functlon are simply the zeroes of the initial value function.

-



- It is of intereét to examine the form of -the solution for

large times and to compare this solution with the previously

determined statiopary solutions. In order for egn. (4.4) to be

satisfied as T + ® , it follows that ¢(t) and ¢'(1) > > as well.

'Then we can replace egn. (4.4) by the approximate equation
e 3 26 B T S O S USSR

T - £¢np' (1) = 57 Zn §¢(T)g (6,0)|a6 ‘
. . Jo s o . ;f v
- Y 12 - (1 2l R T -
o 2z |, ™3¢9 g ¢ oy_| + 3ot
Hence we f_ind that ’ -
2 ) B 74‘ o 7 * ’ - - V
G(T) ~ ceT/ . as T r® P - ’ /
) i ) T ’. ' 28 1 2 N . )
where vc 4 exp{ 57 f £3 g (6 O)} d0 7 . substituting this form
R 'f—af:’q; in egn.’ (4.3) we obtain _
, g(0,1) ~ 3 sgn[g(8,0)] as T »= .
Thus g(8,T) - tends asymptotically to qhe or the other of the two
constants '/%-— . This result can be ‘seen as folidws to be in ‘. .
. complete.égreement with the previously ‘obtained forms for the

- - stationary solutions.
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initial value is an odd functlon of 6 , then the solution functlon
remains odd for all time. Since the solutiqn'always retains.the
seme sign as it had’oriéinally}‘it'f0110ws that the asymptotic
distribution of positive and negative values must Qe exectly the
same as the\initial distribut;on. But for an odd function this
meane _that one half_ the 1nterval,ui-& £] ~is c0mprlseduopros¢t1veemuﬁm;ewe~ume7wl

values for g(G,O) (assuming g(68,0) # 0) - and the other half

~ negative. That is, aeymptotically, Xl = X} = %-. For these

- values, we obtain from egns (3.20) that g tends asymptotically

V3
2

to- £ ¢ as explicitly derived.

It is of interest to note that the solution given by
.eqn. (4.3) can be extended to inciuderany initial values g(9,0)
which have a point of antisymmet;y. If»this is the case, then a

_suitable coordinate. tr:anslatlam will transzéom 43{3,4}},7 ifito-an-odd ,,,,_,,,,,7,,,,,,,,,,,,,,

2

functlon w1th respect to the new coordlnate system. For example,
g(G,O) = cos HB/& is such a function. A.numerical solution for . - .
KB this initial value is given in the next chapter and this type of

asymptotic behaviour with Xl =A, = = and g ~'# {g is clearly

22
- indicated. ' o | -

L

£

: 4.2 Piecewise constant Solution.

L3 -

Although the full equation (3.1) cannot be solved in

general, ‘it turns out that there is one. simple case when an exact

solution can be obtained. This occurs when g is taken to have a

o

g

piecewise constant profile. B



Suppose that g has the form

Here we assume that 9, is positive and- g_ negative. Let the

g_;(‘r) for 8 €1
g(o,T) =
. g_(T)‘ 7 for . i+ # I.

interval I

have length (l;k)(Zt). We must set 9, = oA and -

g_ - -a(1-}) in order to have g=0. We then fjjnd i
7 7 o« A Co
. g(t) = Fl-A{g+ + Ag_ = ai(l-A) - ai(1-A) =0
;(r) = (l-k)gf + Agf = azx(l-k) (4.5)
;S}T) = (l—l)gi + Agiﬂ = —a3k(}-k)(l—2l) . ) - ::
From egn. (3.1) we obtain the follgwing p@irréf‘equations
29,0 = (1—;_2.)‘3+—%'4gi +§? .
9 = aghg -2l }
B for g, and é_ - Substitution of the assumed forms for g,  and g;

N

=

along with egns. (4.5) into these equations then gives a system of

equations for o and A



B} B} B R B9
2 L (o) = -adra-nie - 2623 - 2ada-n a-2n

art 3 -3 '
2 4 {~a@1-1)} = - —[1-aZA (1-2)Ja(1-2) + L a3(1-A)3 -1 a3A(1-A) '(1—2)\) .

at ¥ 7 3 3 .

After some algebraic manipulations, these reduce simply to

" The solutions of these equations are given by

al(t) = a(0) /3 ~ A(T) = constant = A(Q) .

L
[az (0 + B-a(0)] e-T]

We may easily extract the asymptotic behaviour from these solutions. . ... ..

As T - we see that o + ¥3 and A remxins constant for all time.
These results are consistent with the asymptotic solutions obtained

in the last chapter namely g, ~ /3) , g_n~ - Y3(1-)), except here

-

. we note that there is no restriction placed upon A . It may have

’ : i 2
any value between zero and one. (If X < %- or A >-§ the

i3

asymptotic solution is unstable under certain non-constant »

perturbations.)

4.3 A Perturbation approach.

In Section 4.1, we investigated the case where the initial

coﬁdiiions ééiié%irrg{ﬁ;di = ?é(ée,b{rrférréii 6 . Since this implies



"that the solution alw&&s remains odd, we were able to dewvelop an -

explicit solution. The question then arises‘as to what happens when

»

the initial co{‘dgtions differ sljghtly from those in the odd case.

To investigate this situation set

+

g(B.T)’=,gOfG,T,) + nge(G,I), T . (4.8)

B P SV U PP PP PSS oo s e e e e e b S e

where go and nge are the odd and even parts of the solution

function g and n is a small parameter. Substituting this form

for g into the full equation (3.1) and comparing powers of n
~wé obtain

0 B R 13

. | , . 4.7 :

————

T c T - ; TOTeTTTT - = | :—-j_: 2‘ ¢ 2
‘F”hf - n : ZgéT 1 90 gO)ge * 9% :

‘Here we have made use of the even and odd pr0pertiéé of 9o and gor

——
v -

respectively to set 959, = gg =0.

The first eguation of the system (4.7) is the same as

egn. (4.1} and hence its solution is given by egn. (4.3). The second

equation can, in principle, be solved and in the following we briefly

- 1{1 —5 2y = l. 2
25790790 9% T 2 90%-
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-~ - and note from the first equation that

sd-g,-9,) = — -

1,2 2 _%1 1
2 070 '
9, 3

2
go'

Making use of egn. (4.3), it follows that the integrating factor for

the above equation can be expressed as

L (T .. 928,009 (1)
exp| -~ EJ {l-go(O) - 90(6,0)}60 = 3 . . g
’ 0 gO(Q.T) o -

o . . 2 .
‘Then the solution in terms of the unknown function 9,9, 1Is

93(6,1)
g (8,1) = > g (8,0 + 5
e 90,09 (1) | ©

L (T 90,08 ©@) —5—
f 3 goge do |. (4.8)
0 90(8,0) '

———— JE .

 minally  an S o N )
Finally, an expression for ‘gogevn can- be obtained from this equation,

Multiplying by 15%-93(8,T) and integrating over ([-£,£}, we obtain

the following linear Volterra integral equation for f£(T1) = ggge(T)

: T
£(1) = h(D) +f £(0) K{T1,0)do . (4.9
0 N
Here we have set
-
1 r? GG(B.T)ge{G.O)
h(T) = 2—,)! 3 ae

-2 gO(B,O)¢'(T)
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5
. K(T’G) = ‘4_6— ‘( . 3 de
-t ¢' (1) g, (6,0

!

Thest are known funétipns in terms of gO(G,T). ‘Then solving eqgn.

(4.9) for f and substituting in eqn. (4.8), we obtain the complete

solution to the second equation of (4.7). However, while this

procedure is always possible, it is rather more instructive to consider

the asymptotic forms of eqns. (4.7).

“In Section 4.1, we saw that g(8,T) ~'t ? as T+ ., Thus .

and gggefv-— g =0. (If g «defined by egn. (4.6)

2 and —Efv-i
99 -~ 90 z 9%

4
is a solution, then to be consistent with g = 0 we must have

g

o 0.) Using these values in the equation for the even

perturbation, we obtain

asymptotically. This result seems to indicate that the perturbation’
ultimately dies out. It is based on the assumption that the

perturbation remains uniform for all 6 . Unfortunately, for this

approach this is notrthercasé}rrrr ﬂ/f/ '

. We can see &irééfly'as follows from egn. (4.8) that the

solution 9, must grow exponentially in the neighbourhood of a zero

D 5= 4, of the odd function. From egn. (4.3) we have that

go(e:f) ~'go(9r0) [5,3'(‘[)]1.5 for 6 close to Bi . The solution



9 “then becomes

T e——a
3 1 , .1 2
4g,(6,0 + 3 ( ———— ggg_ 40

‘9 (8,7T) ~ [§' (1]
© - 0 I¢' (01"

——im.

T
near ei . Since ¢(T) ~ ce /4 and ggge + 0 as T = © , the

integral is convergent and hence

ge(e,TY'v const'[¢'(Tf]%'v const‘-eT/8 as T > > ,

. To see how this relates to the system (4.7) let us =

=" "Suppose for simplicity that our odd function is such that
gO(G,O) <0 for 0 < 0 and gO(B,O) > 0 for 6 > 0 where

8 € [-£,2]. Then the asymptotic solution for this function will

simply be + {% , the sign-at each 8 depending on whether the
initial value there was positive or negati&e. Now let us consider

an. aSY@gﬁg@iq _solution ,(,Eig,-,,,é,a),"_,whi;:,h,diffens,'slightl,yp from_this odd ———— — — ——

asymptotic solution and decompose. it (Fig. 4bf into its even and odd .
parts. It is clear from this simple consideration that in some
neighbourhood of the sero of the odd funqtion at 6 = 0, the odd
“solution iiseifrﬁu$£ die out and the asymptotic solution in thatrregion
'iértbiaily’ééminated by the even solution. .This is apparently what
happens in the case of the even perturbation.

If we denote by A the interval over which 99 ‘tends to zero,

- 777" then the long time behaviour of 9, is more'appropriately described by -

outside A)

Q
o
2
|
Q
o
]
o
>
+
N
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1 1 2
-= == gg for B¢ -
- - géT -8 % 2 707 = &
and
1 1 2 o : )
Ier * T 90 =5 99, for 6 £4 .

Thus, for suff1c1ently large times, . the even perturbatlon must grow

_exponenti ally fqrwthose values of -6 €.A and- the resulting- expansion——

(4.6) is no 1onger uniformly valid.

It is 90551ble to carry out an asymptotic analy51s of eqn.

(4.9). The procedure is long and . somewhat 1nvolved, and ultlmately

leads to conclusions which are'consistent with those reached above.

That is, the even perturbation grows exponentially in the neighboyrhoods

of the zeroes of the odd function.

4 4 Genmeral Results.

Although it has not yet been poSsible to dévelop a complete

solution to egn. (3.1), the task of determining the appropfiate»

asymptotic solution of the type found in Chaptet 3 may be further

reduced by applying the results of‘éeveral genetal theorems.~ It is
- ( -

* shown in the follow1ng that the problem 1s really that of flndlng the

value,of A and from that constructlng the asymptotlc solution in terms

of the initial valyes.

Theorem 1.

Let 91 and 6 be~tﬁorvalues of 0O such that g(91,0) > g(62,0).

2
Then g(6.,T) > g(6,,T) for all finite T . ' ‘ -



Proof. . ) ) K - ¢
;zzggiﬁﬁnmiirﬂ Substltutlng g(6 ,T) and g(62,T) into eqgn. (3.1) and"
, . subtracting the two resulting equatlons, we obtain -
3 - ' ’ : - x
g JifiA - ' A : S
de( 9) = A g ‘ SR i : -
- ' ' y 1. 732
where we have set Ag(T) g(G ,T) - g(Gz,T) and A(T) = Exl-g )
S ""19 (9“7T) + Q(GWTTY§YGATT) +g (6 YT . Sinéé”‘A(f)dhfg”é“”“'”*gu“‘* - i
~ . . ' oo R )
. bounded function of 1, it follows that . _ ' : . .
A —— T | \
A Ag (1) = Ag(0){exp [' A(t')ar'} _ .-
cannot be zero for any finite T . Hence Ag(T)‘z 0 » and the result
follows.
This result'allows us to calculate the final fo:m of the S
) . N N
7 asymptotic solution if the value of A, is known. Suppose A is '
known, then for 0 € Il r 9(8,1) » - /P(l-A) as T + o and for e
/676 I, . g®,71) »/3 )\ as T > .‘ The- lengths of the 1nteryals Il
and 12, respectively are 2ZA and 28(17A). Then in order to
# ) : :

determine the location'of these intervals we simply must find a , - .

‘ value 9 such that the length of the set {6 I 9(6 0) < go} is
‘ ~
equal to 24X . This set is then Il and its complementvw;th respect

to [-£,8] is 12'. - ' . : -

Thus the prohlem is reduced to dete;m;44ngﬁthe4yalueeofeeAeeelgggggergee

frgQ. g(8,0). we next show that the value of X ‘does not depend on

the scale of the initiadl data. .



-

This equation can He cast in.the form of egn

{3.1) if we require that

Blg

I D
-z e 3
S

6T,
i ’
Theoxrem 2 .
b If 'ii(e,O) and gZ(Q,O) ‘are any two initial values.related
by gé16,01‘= k gl<e,0) where k = constant > 0 , tHen the - 7 o B
cor;espondihg solutions 91(6'T) ‘anq} g2(9,T) tend to the same i
as§mptotic eoiutioh as T » o , i
- Proof- 1 - g . e SV P VP S
- ,AA‘H :eAe : [, T
Suppose g(d,T) is a solution‘of eqn. (3.1). Then, introducing
a tlme dependent scale s = sf?) and new time o =0(t) , we can -
eaSlr?:gﬁﬁiffﬁif“*ﬁiTef?ii;u47f7§73"67 is also a solutlon oE”ééh.
(3.1) provided that :
‘\‘t o
‘:1 ] _ —8
U s(T) = [1 + ae” Y
t\“ .
and ”$<~ ) , 7 (4.10)
Yj;» “} ) e 77777,),,67",;,,,‘,,,,,i, e — - —
K BRI o S e v )
' N S L*'G(T) En{e +A} . .
" :
: . i
where A is an arbitrary constant. Substituting for g(0,0) = : -
glﬁeni)/S(T) in %qn. (3.1) and rearranging, we obtain .
V \\“x . v . S
pdt 20, ] = (g L 3,13 -
do 11 91 91791 739 F39 -
‘ o ’ :
i .



e o e8.. ..

" . N "

These equatlons can be solved 1n a straightforwafd manner and the
solutions are,glven by eqns.r(4.10).‘ We can now qsé theée results
to establish the theorem.

For T =0 we have s ?>11+A)_% andA‘o =+0, so that

[ T :
. . . . ;

g, (8,0 = (1+8) 77 g(8,0 .

A "Also, as T>®, 0(t) ~T and s(1) ~1 so él(e,y)fv gle, v .

Slnce ‘the value of A is arbitrary, it follows that if rg1(6;0) and

e — == = = 3

gz(e,ﬂ);'are rélated by ’§2(6,O)/g1(6,0) =k = constant, then the

N . . : .
‘corresponding solutions g,(6,7) and g9,(6,7) ‘approach the same
‘asympfotic solution. That is, the value of X is hot dependent on :

the scale of the initial data.

In view of this.reéulf, it can be speculated that a~ -

S —— frconvenientfexpression—fbrﬂfk~rmayﬂbegfoundjinwtérmsfof*scaie“invariantg*é”*'*mlﬁ* g
) ) " Ed ’ ‘ . ‘g . ‘ ; “v'. N
ratios of the type T S TR, . .

o ’ x 5 - N
\ . A :
5 .
1 12 12 : s
3 5 5 ,
_, . ’ r .. €tc. *
- LI, IIg I,T, R ‘
ﬁoﬁever no such expression has yet beén found. o
¥ ¥ . N b .

In the two cases (§4.1 and 4.2y ﬁﬁere we have been able to .

;,m_,_mgf,,44d£Y£lOPAﬁxpllClIASOluthnS—ﬂ&EAﬂFL*43ji}Tfthe‘
the initial value and solution functions is that thg4pg54;;Qnsggfgtheggggggﬁggggggf

. .
zeroes of these functions remains fixed.: But for arbltrary 1n1t1a1 ) \\'

N

X

‘ B .- -

— o .



o

conditions this is not generally the case, and it may be shown that

the local migfatiOn of the zeroes is directly related to the presence ' ‘
" Of the g° (T)  term. o ST
: :Suppose that ’6‘=’6i//is the location of a simple,zero of
the initial value function g(8,0). (i.e., g8 0) 0). Then for . ‘
,fi#ﬁd,,e' ﬁe§r~16i y it foIlows that we can wrlte
g(é T‘) ~ k’(‘r)j[ev‘-'é ‘(T)‘] * i k (’T)[é -8 (‘r)]2 +
R TLTRT  T T 2 T2 4 _ R
e e T T e e e e
- where 0. (T) represgnt§ the new location of the zero which was . -
orlglnally at 6 - In a neighbourhood of- ei(T)f we then have
. from ‘eqn.  (3.1) that )
) 5g ' kl(r) o | = )
- -—-z k! - ! - - °
o a7t m{[e 6, (). "R 5] eflm} k, (18] ) [e 65 (r}] 5
L1 S22, . 173
D R N 1°3 . | -
=3 [lf g ]kl(T)[e - GiST)] +»g‘9 . ‘ | L ‘
. }xsince it is assuﬁed'thét 8 = ei(f) remains small, we have on #
. comparison of terms = 4 . RO {/" _—
S e K'(T) = 201 - g2IK. (1) + K. (1) 8! (1) : 8
, 1 27 1 A
R . : : ] 13 - : S
- - -+ Y} = - = Cem e o o R
k, (11 8] (1) “§9 - - .
y - . .
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. Integration of the second of these -leads to B}
. ; B T R
= . 77
Qi(T) 9 i(0) f . ¢ "
. B 0 - -
where fk' (1) is ultima"tely determinable from an infinite sy.gsi:em’ of's - 7
" di ferentlal equatlons for the coefficients k (T) [9 -. B (T)] )
NG ‘ _ Thus t\a locatlon of -the zeroes of -the solutlon is~ seen to be ‘: dl!.'ectly
VNS SV VI 3 S e gt it i S s et o 1 SR s b
N term.” For the odd solutlon thls
N ¥
\“\\\\ term 1is 1dent1cally zeyo and the zerods remain fixed for all time.
e ] —*:ri\—t‘-i;{«;fi:f——f = e = ‘
) S ) -
5N . <
. N A
e 1\\\\ i .
’) ¥ N EV -
“ i
B i . R . ' 5 S
’ R >, -
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; - - . : B
o NUMERICAL SOLUTIONS :
s ‘s - - .
',7gin th er we presept‘various numerica17501Uti6ns of
. ) 7 E v . ; . N N ‘ . ) . 'v . vg - .
- "reeqﬁ. (3.1). For arDBitrary initial conditions,*it was found that the
e asymptot1CAsolution‘wﬁléh yas attalned was. entlrely con51stent with
the type of solutlon fOuhd 1n Chapter 3. However, the questlon of
;how thls asymptotlc sOluthn relates to the glven initial values
remains unansWered.
. 5.1 . The Numerical Method. b
ks oy :

. For the purposes of numenlcal ‘integration eqn. (3.1) was

xreated as a,system of ordinary differential- equatlons. The value

Wfﬂ&”' 1" was chosen and the resulting 6 interval -1, 1] waEWEhen

__.—\ __

uniformiy partitiontd. The averages .gz \and g /ger//replaced by

elther trapezoldal or Slmpson s rule type approxlmatlons and the

resulting system of equatlbns for the mesh values,

*

.Vi \\\ N . ) gp(T.)N = g‘(ep"r) - v p = l,.n.,“

i B a
. * ‘. - p
., ) . %

R . B e R . - . . i +

- \
- 4 : \ \1 &\3\§ o i o ’ : E
wds then integrated ﬁith, espect to T using a Runge-Kutta method.

Hany dxfferent runs u51n9 a varlety of initial values were made to

> the flnal asymptoflc solution obtained from each apprOxlmatlon “for a

¥ —
§

compare the trape201dal and<51mpson S approxlnatlons. On comparlng

Tl . e

-



given initial valuye, no si

. : , asymptotic sél&tion,was found in ry case to be very well

!

e

established for wvalues of T > 35

- Certain problems arose in the course. of ebteining these
pumerical resulté. Partiéhlatly for the case of odd initial

condltlons, it was found that convergence to the flnal solution was

e e qxeatly assxsted‘ihg choosz.ngJ.L part:.tlon for. which .none.-of- theemeshAw NS

’f:h ’ poiht§_coincided with the location of a zero of the initial value
function;A (For -example, for an odd function of 8 , the point 6 =
should be excluded as a mesh point.) This is because the zeroes of the’
odd solution remain fixed for all time.

] ) A second, more significant problem arose due to the
) requirement that g = O for all time. In earlier runs, when this
restriction was not applied, it waéafOuéd thetrthe first moment was

,;ﬁ,;wlll,el,ll,u,lgrow1ng,1nuacco:danceﬁthgheerela ion — . : —

5 =3 097 ~ L a-nenAF as tew. .
In orger to counterace this growth,’the calculated value of g was
periodically subtracted from the coordinate values. Thls ensired
. i | . - 7 .
) 7,4" . that g remalned identically zero. 7 7 <:w 4 .

LI

TB test the possibility that the final solution ‘might be

dlrectly related to the p051t10n1ng of the zeros of the 1n1t1a1 value’

functlon; a large number of runs was made uszng a trlal ﬁunctlon of

. therform



T - "ﬁ__'__,__m.—————""f"—
- - - . - o 777'""’" v 77’3 ;/7'7 777;7'777' .
0+1 o '
g(8,0) = §____T§ g >1. (5.1)
‘ (8+8) -
This‘functioﬁ’has the following two properties: 7
: (a) for any value of 8 > 1 i

) 2 [1 (80+1)d0 _
S -1 (048> -
T "~ and (b} it is possible by appropriately choosing B to place a

zero of the function anywhere in the interval ¢-1,0).

-

After working with this and other trial functions, it could be

—

- 3
concluded that_for the general case (g # 0), there is no apparent

\

simple relationship between the location of the zeros and the

directly related to the moments gn xxcf. egn. (3.28)) of the initial

value function.

5.2 Examples of Nunerical,SolutiAns.

7 In this section we present seve al examples of numerical

sclutions for egn. (3.1) obtained by the ﬁfthod of the previous section,

- 1
Tn4each4case—the4seiatien—has~beenggraphéd*fo;‘variDUS‘tiﬁég‘wﬁicn

* . N r‘ : ‘
clearly show the evolution of the agymptotic solution. As noted

previously, the final solutions are of the samé type as those



- .

We have pFesented the folloWwing:

" (a) Figs. (5) and (6) show the evolution of the final
solution from odd iﬁitiai ponditions,r A
‘(b) Pig. (7) for the initial value g¢(6,0) = cos w6
shows that fhe>so}ution to eqn. (3.1) given by the eqn. (4.3) can be
extended to certa;p poq-odd fuycﬁiqns,r o o

ST ey UFigET (8), (9) "and (10) are examples of Ehe trial

function givén by egn. (5.1),

- . “and . (d) Figs. (9) and (10) also demonstrate the scaling

invariance result proved in Chapter 4. In this case we have

glfﬂ.o)/ngﬂ,O) =8 -

The values of Al and Az 'shbwn with these solutions were

. obtained by estimating gz numerically and equating

»



g(e,0)=s

Asymptotic Solution:

A=0.50 X =0.50

L . . o FRigla S5
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- :ig(e,o) = 2Q'si,nhe

Asymptotic Solution:

Ai=0.50 \,=0.50




-0 g(6,0)=cos e i

’ N _ .
B Wﬁu
¥ .
4 -
. &

o~

A, =050 )\,=050



~ Asymptotic Solution:
\=0.56 A,=0.44

i

£

s E

i

. i
Fig. 8 v




3 10 (B+1)
9(6,0) = =50
B (0+B)
1.0
Asymptotic Solution:
- A, =053 L)\ =047



//(
-
g ——

- .40

' 7 Q(B,O)?

&

80(p0+1)

50

(8+B)
: Aswﬁptotic S'ollution:
A=0.53 . )‘?:, 0.47

Fig. 10
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