P SeP LSS ST T
z T
] - AN
_ _National Library Bibliothbquenationale ____ CANADIAN THESES. _ ___ THESES CANADIENNES
of Canada - du Canada T ON MICROF|CHE SUR MICROFICHE '
= A

LI - J

S

S -
"PATRIEK ALLEN. BLACK

NAME OF AUTHOR/NOM DE L AUTEUR

y‘iTLE OF THESIS/TITRE DE L‘;I i se_QUERY PROCESSING ON

DISTRIBUTED DATABASE SYSTEMS

UJ!LQ/ERSITY/UNIVERSITE' SIMON FRASER UNIVERSITY

DEGREE FOR WHICH THESIS WAS PRESENTED /

MASTER OF SCIENCE

GRADE POUR LEQUEL CETTE THESE FUT PRESENTEE

"YEAR THIS DEGREE CONFERRED/ANNEE D*OBTENTION DE CE GRADE

1982

DR. WO-SHWN LUK °

NAME OF SUPERVISOR/NOM DU DIRECTEUR DE THESE

Permission is, hereby granted to the NATIONAL LIBRARY OF

CANADA ‘to microfilm this thesis and to tend or sell

of the film. ’ B
ES

The author .reserves other publication rights, and neither the

E'S

i thesis nor extensive extracts from it may be printed or other-

copies -
. T

L'aUroy’san’on est, par /a présente, accordée 3 la BIBLIOTHE -

QUE NATIONALE DU CANAD}J de microfilmer cette thése ot

de préter ou de vendre des exemp/aires du film.

L auteur se réserve les autres droits de publication; ni la
" théseni de longs extraits de celle-ci ne doivent étre imprimes

ou autrement reproduits sans |'autorisation écrite de I’auteur-—

: .
wise reproduced without the author’s written permission.

: o

: R .

. DateD/DATE_APRIL 1h; 19827 SIGNED /S/GNE
PERMANENT ADDRESS/RESIDENCE F/

4
=" B

:

; NL-91 (3-74) ~

]

l* Naticnal Library of Canada -
' Collections Development Branch

Canadian Theses on

Microfiche Service sdf microfiche

NOTICE

k3

The quality of this--microfiche- -is- heavily- dependent
upon the quality of the original thesis submitted for
microfilming. Every effort has been made to ensure
the highest quality of reproduction possible. -

___ ._If pages are missing, contact the university which

granted the degree.

Some pages may have indistinct print especially
if the original pages were typed with a poor typewriter
ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journa! articles,
published tests, etc.) are not filmed.

Reproduction in fuil or in part of this film is gov-

erned by the Canadian Copyright Act, R.S.C. 1970,
c. C-30. Please read -the authorization forms whigh
accompany this thesis. =~ ° -

THIS DISSERTATION’
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

" Bibliothégue nationale du Canada pe
Direction du développement des collections

Service des. théses canddiennes . . i

gl

AVIS

-

----La qualité de cette microfiche dépend-grandement-de - -

la qualité de la thése soumise au microfilmage. Nous
avons tout fait pour assurer une qualité supérieure
de reproduction. . T

mangue. _des.pages, - veuillez. .communiquer_. -
avec l'université qui a conféré le grade. f

La qualité d'impression de certaines pages peut
laisser a désirer, surtout si les pages originales ont été
dactylographiées a {‘aide duin ruban usé ou si |‘'unjver-
sité nous a fait parvenir une photocopie de mauvaise
qualité.

Les documents qui font déja I'objet d'un droit
d’auteur (articles de revue, examens publiés, etc.) ne
sont pas microfilmés, = .

La reproduction, méme partielle, de ce microfilm
est soumise & la Loi canadienne sur le droit d‘auteur,
"SRC 1970, c. C-30. Veuillez prendre connaissance des
formules d’autorisation qui accompagnent cette these,

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

Ottawa, Canada
K1A ON4

NL-339 {(Rev. 8/80)

T e

& ‘ - '] -

v

~ QUERY PROCESSING ON DISTRIBUTED DATABASE SYSTEMS

by
Patrick A. Black

B.Sc., University of British Columbia, 1972

4

.
A’THESIQ'§UBMITIED IN PARTiiL;iULFiiLMéNf OF
THE REQUIREMENTS FOR THE DEGREE OF
_.,HASTEK;OF SCIENCE
'in the Department
of |

Computing Science

® Patrick A. Black L982'

 SIMON FRASER UNIVERSITY

January, 1982

Ve

[-

e — ALYl -ri 4’ffSﬁTVeﬁT“ThfS‘fh?SfS‘ﬁ&Y‘ﬁut be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

APPROVAL

Name: [Patrick-A]len Black

Degree: Master of Science)

Title of Thesis: Query-Processing on Distributed Database Systems

Examining Committee:

Chairperson: - Thomas K. Poiker
~ Wo Shun Luk
"7 - Senior Supervisor

*

Nick Cercone

Richard F. Hobson

Brian Alspach
External Examiner
Professor ’

_Date Approved: ‘\)“""“‘“’ﬁ 7{(78 =

Department of Mathematics
Simon Fraser University-

b an

ii

.

"PARTIAL COPYRIGHT LICENSE , _

| hereby grant to Simon Fraser Oniversi?y the right to lend
my thesis, project or extended essay (the title of whWCH is shown below)
Té users of fhe Simon Fraser University Library, and to make partial or
single copies 6nly for such users or in response to a request from the
library of any other univérsify, or other educational institution, on
. i+s own behalf or for,one;Of its users. .| further agree that permission -
for multiple copying of this work for &cholarly purposés may be granted
by. me or the Dean of Graduate Studies. It i; undeksfobd that copying

or publlcaflon of this work for flnanCtal galn shall nof be allowed

without my wrlffen perm155|on.u

Title of Thesis/Project/Extended Essay

—

QUERY PROCESSING ON DISTRIBUTED DATABASE SYSTEMS ,

Author:

(signature)

PATRICK ALLEN BLACK -~

(name)

APRIL 14;'1982"

(date) i .

/’\
-
L %

'ABSTRAéf'f’

Quéery processing on ‘a distrTbutéd“détabaSé“systém‘requfreswﬂ“*‘*
tthtransmission of data between computers on a 'communication
netwdrk. Minimizing the amount of data transmission is important
to -reduce query ©processing costs and{ to prevent network

s

congestion,; o

The semi-join operation is importaﬁt in formulating query
processing strategies. It provides significant reductions in the
amount of data communication required in processiné queries. The
accurate estimation 6f database state reducéions by ;Qpi?join
operations is~ necessary. Current distributed database system "
models are inadéquate in thés‘~respect. A new distributed

database ‘" system model is developed to this end and is utilizes

o
«

in this research. The method for detérmining correct semi-join

cost/benefit is shown. - ' ‘ e)
We have developed algorithm BLACK which cohtains heuristias
for generating sehi?jbinﬂpféprdéeséithStfatégiéé for queries.
| We have constructed é simulation model to evaluate the
performanée of eéisting query Zpreprocessing algorithms
(algorithms AP}IBET ‘and HEVNER) ?nd algorithm BLACK. Thisr model
tests random queries and the results are presented 'and
discussed. It is shown that the performance of algorithms AP, .

OPT and HEVNER prodhce semi—ig;k preprocessing,strategies'that

perform poorly in comparison to algorithm BLACK. A 'speed-up'

algorithm (WS) 1is utilized to further improve upon algorithm

<

BLACK's performance-. -

~} - iid

ACKNOWLEDGEMENTS 4 o
I wish'to thank my senior éupervisor aWO—Shun Luk for his 7
invaluable guidance of my résearéh; and Nick Cercone, Rick
Hobson and Max Krause for . proqfreadigé my thesi§, qnd mékingv
valuable comments. I wish to expresé my gratigdde to Ethel

Inglis for her invaluable help.

’

iv

Table of

APPROVAL...cvvvunrnenennnnnannns
ABSQ&QCT......Q.....};........{.
ACKNOWLEDGEMENTS................
LIST OF TABLES..:eveeeesonsonans
LIST OF FIGURES.euseseanosaannnn

Chapter

<

‘1. DISTRIBUTED DATABASE SYSTEMS

1.1 INTRODUC&;ON e
MOTIVATION OF THESIS
PLAN OF THESIS ,........}

RELATIONAL DATA MODEL ...

RELATIONAL QUERIES

Contents

I§FR0DUCT16N AND DEFINITIONS

RELATIONAL OPERATIONS

® e 0 0900000 0 0

3. DISTRIBUTED QUERY PROCESSING - .eveseenesen..

INTRODUCTION

ATTRIBUTE VALUE ASSUMPTIONS

DATA TRAN%%}SSION COST FUNCTION ..

.

ALTERNATIVE AND OTHER RELATIONAL _DATABASE.- MODELS

o
e o 0o 0 0 0

..9
12
.13

.15

3.5 COMPLEXITY CONSIDERATIONS ...oeeees-.

3.6 DATABASE STATE UPDATE CONSIDERATIONS

O T
1T
R
P Y
e 22
e eeeeeeeeeee..23
et 28

4, SEMI-JOIN COST/BENEFIT ESTIMATION

[RNT

4.3

4.4

4.5

INTRODUCTION v vt aeie e e eeenetesennnesennnennnnns ce...24

THE EFFECT OF SEMI-JOINS ON RELATION AND JOINING
ATTRIBUTE CARDINALITY +.vevvevocnonnnnens et 26

4.2.1 QUERIES WITH A SINGLE JOIN ATTRIBUTEe......30
4.2.2 QUERIES WITH MULTFPLE JOIN ATTRIBUTES ceee..33

THE EFFECT OF SEMI-JOINS .ON NON—JOINING ATTRIBUTE
CARDINALITIES 4uveucucneoneononacnnosensaisosananenns ..38

BENEFIT AND UPDATE CALCULATION“ALGORITHMS;.;......41'

IMPLICATIONS -FOR A.DISTRIBUTED DATABASE SYSTEM MODEL .. 45

PREPROCESSING STRATEGIES FOR DISTRIBUTED QUERIES47

INTRODUCTION + e eeueeeennnncnncnceneneenconcaneneenensssd?

VTHE/INITIAL FEASIBLE SOLUTION ..iicetrececccceancoesssssq8

ALGORITHM HEVNER +uveueevoeecooboooneconacnoooneennneassdB
ALGORITHM AP Y-

ALGORITHM BLACK ...t veeeereesocsoesvensasoncsescssooseesdd

ALGORITHM WS A S 1 -

ORDER OF COMPLEXITY OF THE ALGORITHMS «..u.veveeeenesn.60
=~ . ~
AN EXAMPLE . .iviteresesnoegeatocennenaanncosannaaesnenasb0

5.8.1 HEVNER'S RESULT 4vevveooonsnonoanosnsonsanananseabl

5.8.2 AP'S RESULT aevuuseeenneenneennneeanneeennnnenssab2

T

5.8.3 BLACK'S RESULT uvvuverueeonennennen N 3.

SIMULATION MQDEL AND RESULTS +iceeevoacsoccccsnaesansanssessbd

6.1

6.2

-

INTRODUCTEON teuuveeinencennnnaionnnnnasanannnanaabansabd

”

GENERATEVG RANDOM QUERIES ...sesvanaacsascasscossennsesbd

6.2.1 VARYING THE NUMBER OF JOIN CLAUSES65

6.2.1.1 QUERIES WITH A MINIMUM NUMBER OF JOIN
CLAUSES vvveeuuneseserannnnneeseeannnsssb6

6.2.1.2 QUERIES WITH A MAXIMUM NUMBER OF JOIN

CLAUSES +vvvsneoacassnnnncnconeneeneanasabl

—~

vi

6.2.1.3 QUERIES WITH AN INTERMEDIATE NUMBER OF
JOIN CLAUSES sevueveonosusoncasnancanaseab?

6.2.2 VARYING THE NUMBER OF RELA’i‘IONS", ATTRIBUTES AND
AVERAGE SELECTIVITY .cciceecevccccscccccnnooscnnsbd/’

6.3 RANDOM DATABASE DESCRIPTIONS P -1:
6.4 STEADY STATE CONSIDERATIONS +uvuvevevevecenencnoonnnoessb8

6.5 RESULTS & veevsoeecsoosessensesossaseeeesesossnssennsenes.b8

.

6.5.1 IMPORTANCE OF THE INITIAL FEASIBLE SOLUTION69

6.5.2 COST COMPARISON OF . THE IFS TO SEMI-JOIN -
PREPROCESSING STRATEGIES .uuveeeeeneeoeneeennansall

. "6.5.3 TMPORTANCE OF THE NUMBER OF SEMI-JOINS00...73
6.5.4 SEMI-JOIN PROGRAM COST .ivuveeecncccasnncccneaceseslb
6.5.5 COMPARISON OF ALGORITHMS ..veveeeeeecocaccaeannenal

6.5.5.1 RESULTS FROM VARYING THE NUMBER OF ‘
RELATIONS tuevvenencennnsocananooananssaasTd :

6.5.5.2 RESULTS FROM VARYING THE NUMBER OF
ATTRIBUTES .vetiveeennnecennonencncneeesss83

6.5.5.3 RESULTS FROM VARYING = THE AVERAGE

SELECiIVITY PP - '

6.5.5.4 SUMMMRY OF RESULTS e.eevvovenennensnsns.0 :
7. CONCLUSIONS AND SUGGESTIQNS FOR FUTURE WORK .evueevsesons..9l :
R.EFERENCES'.’O-10--.-,000000:; ----.-;;no---n--.o...-a-.o-----’---.¢93 %

vii

BRI ety s ondn s g

TABLE

-

Pl

TITLE

Average AVG COST,

Average AVG _COST,

Average AVG_COST,

LIST OF. TABLES

PAGE
varying No. of Relations........... 82
varying/No. of Attributes.......... 86
varying Averadge Selectivity........ 87

viii

10
11
12

7' " No.

“a

Intermediate No.

9'—*—83—GGS$%A¥G:GQSI\iersus No.

SJ COST/AVG_COST”versus No.
AVG COST versus No.

AXG_COST versus No. of Relétions for an-

of Relationsw;..Q.......t77

of AttributeS.eeeeeeseess??’

§J COST/AVG_COST versus Average Selectivityeeeeoeeanaa78 « °

of Relations for a Minjmhm

Of Join ClauUSeSeceecececencecsscoecsacsscssoscssascsesd0 .

EN

of Join ClauSeS..eeeseeasenenonsss80

versus No.

. T L
N LISdebwgiéﬁﬁiéfuﬂW7' | V ’ f;%
FIGURE TITLE a paGE
1 Lemma 2, graph Gt..,....;:..........;,......r....;...34 f
. e, » : $ e
2 Lemma 2, graph G"""""’;""’i'}"'?""""""'34 - L
3 Lemma 3, graph G1.{....L;.,.Q,,,,.f{.ﬁ;.......,,37“
4 - Lemﬁa‘3}tgraph‘6‘.........;..........;.....;;.g.;.]..3§\‘-‘
5 'IFS>COST/AVG_CQST‘versus No. of Relations......,.....71 :
6 IFS COSTVA&G'COST versus No. of Attrlbutes.,...,.....il
7 ”’IE’S”COST"}A&E COST versus Average Selectivity.....ss.12 o
) 8 No, of Séml-J01ns versusrNo.rof‘Relatlons.........L..75

14 AVG_COST of Relations for a Maximum 1
ﬁo. of Join Clauses..;..,...;;;...;{..f............Sl ;
15 AVG_COST versus No. of Attributes-fﬁr a Minimum i
No. of Join‘Clauses.....:.......{..................84 :
16 AVG_ CQSTAIﬁLSUSmND4tof,AttllbuteS4fQL4aD44444444444444444444444ﬁ
~ Intermediate No. of Join Clauses...................84
17 AVG_COST versus No. of Attributes for a Maximum
No. éf Join Cladses..................t;............85
18 s ty 7 j

AVG COST versus Average Selectivity for a Minimum

ix

PO

A) o Lo

No. of Joim Clauses..... ..

19 AVG _COST “versus Average Selectivjﬁy_fdr‘an

- -
Intermediate No. of Join ClauUSeS...eesecsscosioans
B .) .) - o) ~y B
20 AVG_COST versus %yerage’Selectivity for a Maximum5
No. ¢f Join Clauses,-..l..,.2..§..;,....;}.;.;.,¢
) I
- ‘if - R) =
N‘; ~ —— *
/‘

-

1. pISTRIBGTED’DATABﬁSE SYSTEMS .

N

1.1 INTRODUCTION

Typically in a"cbmputerized information system' we have a

‘J
database and methods to access data from the database in

response to queries. Thesg database systems usually exist at an

organizationsegentral office, in private enterprise or in a
» N . P R - R - ' . S B [P ,v N
government agency or department., There is also a need for

geoqzaphically‘distributéd components of these orgaﬁizatiéhs to

,acc'fes,S,‘,da,ta,,,f,r,,om,,c,en,t’r.a,l, databases. o

' Ongé me thod “to satisfy this need 1is to establish a
communication i}nkAbetween the central computer and the- site
whe%emmdggéqagre required. This method‘ ﬂaérits drawbacks for

several reasons. If telecommunication lines are utilized, either

a dedicated communication line or the public communication lines

may -be utiliZedr”Ifiaﬂdedicated communication: link --—.exists,. the . - —-

cost of _this 1link- is often exhorbitant. If the publié
communiéation lines are‘used; one must contend with problems.
Lines are‘required to establish a lgnk with the central computer
which mayrbe unavailablélif lines are busy. In any case there is
AIQays the dial up;time fgéhired to establish the link with the
centrai computer. The central computer‘may'also be serving. the

maximum number of -users and service may not be available.

=

:‘«Jka&-upw‘e..:;ih Hedemt ot

it

SR

LTS PERIRE NN

"Eﬁ6fhér‘arawbaék-1s system reliability; 1f the central computer

¢

Sl et At

i

ma%fﬁﬁet%onsf#%ﬁﬁr%Kx%ﬁs—is—ﬁén&ed%—#s—thefinfOfmationLneeds—of
the organization grow it becomes more difficult and more
expensive to increase the >speéd and. capacity of the central

1
&

[T R J(;;.,_‘,,‘ e b

-

computer. It is foreseeable that .a single chntLéithomputen;,,,;fw,”
oéeratihg with.the latest technology may not be able. to operate:
efficiently on‘a large datébase.' |

Anothef method of satisfying this neéd'for distributed data
isvto provide eéch geographically dispersed site with a complete
copy of ﬁhe central database. One problem with this app:oachv is
the simultaneous updating 'bf data .at Yeaéh site so_tha£ ;
consistent version of the database is available to ali ;usefs.

po .
This{épproach would also involve expensive haranrezcosts.

A; pépular intermediate approach,-which . is receiving much
attention in the literature [{Good79, Hevn7%a, Hevn79b, Ston76,
Wong79, Yu79], 1is to have data distributed such that the data
most ﬁecessar& to, and most often accessed by, a site is ﬁresent
at that -site., In this .manner the large central database is
divided iptq smaller databases and most data would bé
distributed'Vnon=redundantly”among"the'sites, although'somé‘data
may be replicated. The site computer and database system need
not be as 1large -as the single ceqtralized version. System
reliability is enhanced éince the failure of a site computer
generally only affests that site. Hardware and software updates
aré much‘simpler an s COSLJy +as local demands increase.

Communication between sites 1is only required when the data

required by a query is not resident at the site of origin. This

attractive intermediate approach solves information processing

"heeds of geographicaily dispersed~organizations. We call such a -

system a distributed database system.

There are many'uhsolved problems with distributed database

1.2 MOTIVATION OF THESIS

systems. Researtch is currehtly being ‘done in the areas of

distributed concurrency control,‘systémﬁréIiébTTif??"féfTUT%%ﬁﬁﬁ“””””’”

recovery,\' distributed database design, distributed 'syétem
control, query proceésing, and security. The focus of this
research is on distributed database design 'with paftiéular
eméhasis on the query processing.aséect. The motivation for this

research is discussed in more detail in the next section.

“

The rnged for communication betyeép sites'distinguishesjg‘
distributed database system from a eentralized database system.
A low 1level view of this communication is digiti;ed data ‘being
transmitted from site to site. The purpose-of this EOmmﬁnication
is ‘to access data at other sjftes 1in the "network and for
transmission of déta in response torqueries.

Queries in database ,systemsﬁiare tYpically ,expressgd _in.
terms of application programs written in higﬁ level procedural
languages for batch processing of queries. Interactive query
processing 1is especially popular in distributed systems. Higﬁ
level query languages such as INGRES' QUEL [Ston76] have been
utilized to this end. An example of a QUEL query on a supplier

database is shown below.

RETRIEVE (SUPPLIER.PART NUM)

WHERE SUPPLIER.PART NUM = ORDER.PART-NUM AND
__ORDER..PRICE > 1000 - e

This query requests all part numbers in the SUPPLIER relation

such thgt the part numbers are on order (in the ORDER relation)

-

~ | o o,

T,

anardthese part numbers have ‘théir parts pricé Qreater than
$lOOO.AH3ghilevel query ;ahguages ﬁermit complexrégééiéktréétish
without the necessity of procedurally specifying how it is to be
ﬂéxtracted. The relational data model is an ideal data model for
‘this approach. Codd [Codd70] defined_thé relational data model
and showeéd how data may be accessed in terms o% relational
algebra and relational calculus, both of which form the ba;is
for high level query languaéeé. A high level ~query may be
interpreted by the local distributed database management system
as commands (operations) that will extract the necessary
distribﬁtea data to satisfy queries. 7 o
An aspect of query processing on distributed database
systems that has received‘\?uch attention 1is what operations
(relational ones) will be utilized in pro?essing queries. *The
semijjoin operation [Bern8la, Bern8lb, Chiu80, Hevn79b] (half a
jéjn in relational algebra) has been found to be a goodlstrategy
for query érocessiﬁg on disﬁfigdﬁedréyéféﬁs} Semi—join may be
utilized "to reduce relation sizes of distributed relations.
Since semi-join may be defined in‘ﬁathematicalfterms which form
the basis for ‘relational -set theory and-since its physical
operations on data are clgarly defined, semi-join is ,a> VEery
useful tactic for processing queries dn distributed database

systems,

To answer queries, one strategy is to move all relevant

relations to the nodé where the result is required. This is a

N

costly data communicatijg/process. Semi-join is used to reduce

the size of distributeq;felations before they are transmitted on

e T e

the network to. the node where the fresult of the query is
desired. Considerable rresearch V[Bernsla(Bern81lb, Chiu80,
Hevn79a, Hevn79%b, wong79] has been done”conoerning semi—join
tactics and their use in distributed database systems. Three
algorithms [Good79,ﬁjHevn79a, Wong79] have been publlshed that

produce semi— jol§g§trategles for preproce551ng querles. In order

to formulate a query processing strategy one must assume a

particular model of the distributed database system. ThlS mo&ei

should correctly estimate the effect of semi-join on the
$

database state. One motivaton of this work is to review the

existing models of distr?buted database systems. A goal of this
work is to defing & comprehensive médel of a distributed
database system, since the models presently in use are shown to

be inadequate.

1.3 PLAN OF THESIS

. »

NFN\,/The issues discussed above are investigated 1in later

chapters. The relational data model is described in the context

»

of a distributed database system. The relational operations that
we will utilize are introduced and the applicability of the

relational data model and other database models to'this area is

discussed.

In Chapter »3 we dlscuss query proce551ng on dlstrlbuted

database systems. The basic assumptions of our work in this area

are given. Qur views on communlcatlon network data transmission

and incurred costs are presented. Semi-join is introdubéd and

its use as a query preprocessing strategy is outlined. The

sl

|
PR r-wuqm—::#unmv R U R g+

random gqueries that

complexity of determining optimal query preproceésing strategies

»

is described. Finally, we 1introduce the <concept of "database

state updates (i.e. how is the database affected by a semi-join

operation). '

i

iﬁ‘ghapter 4 we investigate the problems discussed 1in the
last section of Chapter 3.7 The correct cost/benefit

determination of a semi-join isu formulated. We . introduce the
semi-join ‘history' problem and determine a solution for it. We
develop estimating 'functions to determine the resultant
cardinalities of a relation (and 1its attributes) when it=is
reducedg'by a semi-join. We introduce an algorithm, which
combines these results, that gllows us’ to make correct ubdates'
of the database state. In the last Section, we discuss thé
implications andb applications of the‘results Bresented in this
chapter. ~ | |

~In Chapter 5, we extend the diécussipnrqé ugingrrsemi—join”
as -a preprocessing strategy fof queries. We introduce two
published algorithms [606679, Hevn79%a] which produce semi-join
preprocessing strategies. We introduce an algorithm (BLACK) we
have developed and discuss itsrapproach. éinally an example is

given to demonstrate each of these algorithms.

In Chapter 6, we introduce a simgygxion model that tests

the performance of the algorithms mentioned above. We discuss

.

how teo - generate- randomr~queriesW~andffdesc;ibewthegélasses”oi;gmgf

re tested in the simulation program. In

§3€ discuss the results of the

the last section we analyze

simulation.

g

‘ }
2. THE RELATIONAL DATA MODEL ‘

. . J
2.1 INTRODUCTION AND DEFINITIONS

] N
The relational data model was originally formulated by Codd

fCodd?d, Codd71, Codd72]./ The relational data model provideé a

ﬁormali high;level description of a collection Qf data items
(i.e. a database) in terhs of relations. The terms .domain,
attribute, relation, relation schema, relation state, database
schema and database state, contribute to the definition of + the
relational data model. These termsiare defined as follows:

1. Domain A set of data wvalues.

2. Attribute A name given to a set of data values. Jhe°§et of

data values an attribut® name describes is a subset of the

possible "~ values in a specific domain of values. Hence, each
attribute is uniquely defined on one domain of values.

3. Relation A relation may be thought of.as a table in which

each row of the table is called a'tupie'and'eaéh'célhmh of

the table is 1labelled by the ‘attributes comprising the

~relation. No two tuples ingghe relation are identical.

4, Relation Schema A relatio%}schema'names the relation and _ the

attributes in that relation. .

I

5. 'Relation State The contents of a relation at some moment in

P

time is called the relation state.

~

6. Database Schema A set of relation schemas.

7. Dafabase Statee A set of relation states such that there is

one relation state per relation schema.

BORN

»Wumum Pr

&

In this work, relation names are capital letters from the¥

'1a;ter part of the alphabet (e.g. Q, R) or the capital Tetter,.
R, indexed'by the integers,(e;g. Rl;‘RZ etc.). Attrib:ie nameg
are- either capital lettersgfrom'the fifst pdft'of thé alphabet
(e.g; A, B) orthe capitalfletter, A, indexed by the integ:rs
(e.g. Al, A2 etq,), Some specific relation examples will use
more d;scriptive relation and attribute names. A

Given the preceding definitions, we can define the
following relatidn}and étt;ibute parametérs.

L

For a relation R, let:

n = number of tuples (ths relation cardinafity).
a = number of attributes. S
' a
SR = size of R, sR=n * I Wi
' i=1 B\

" For an attribute Ai, let:

Di = number of possible domain values .
(the 'domain cardinality).

.Ci = number of distinct values currently in Ai
(the attribute cardinality).

Wi = size of a data item in Ai.

sAi = projected.size of the attribute with no

duplicate values, sAi = Wi * Ci.
We assume Wi, the size of a data item in Ai, is one unit of
data in size. This aSsumption does not limit the generality of
our work since fhe projected size of an attribute is always

direbtly proportional to the cardihality of the attribute and

the size of a relation is always directly proportional to the

cardinality of that relation. Furthermore this assumption allows

us to make the following simplifications on the relation and

attribute paramé%ers.

»
w1

!

u.*‘?; “.“ .

('S
-3

For a relation R, then:

n = numbef of'tuples.
a = number of attributes.)
sR = size of R, sR = n * a.
For an attribute‘Ai, then:) | .
Di = number of possible domain values. .&‘k\
Ci = number of distinct values currently iéxiﬁﬁh\ ‘
sAl = projected size'of the. attribute with no TNM\\J

“"duplicate values, sAi = Ci. : .
'In the next section the relational operations will be

introduced.

2.2 RELATIONAL OPE&QTIONS

>

Each node in .Qu distributed database scontains a 1local

™,

N ,
database. Each local database is described by a database schema
: <, .

.

and ' a particular manif%gtation of this database schemai' the
database state. Relational operations in partigalafgthé join
oberation,may be defined intra-nodally (@ithin a nodé) or
inter—nodally (between nodes) .

We now introduce the relational operations.

1. Restriction A restriction is énﬂintra—nodal operation and

-may be represented as follows: R[A=x]. Attribute A in

relation R is.to be restricted to those values in column A

suéﬁ that they -equal the wvalue x. (In practise, any

appropriate boolean condition may be applied rather than

e S — -y

equals.) Formally:

T R{A=x] = {r e R | r.A=x}

. - =3

10

i
G

.) S ,
where r.A is the value of attribute-A in tuple r.

Projection A projection is an intra-nodal operation and may

ay

be représenﬁed as follows: R[A]..Thé projection of~ relation
R“3n§§§tribute A is obtained By eliminating allvéolumns of R
not,labelled by A and then* eliminating duplicate .tuﬁiés.
Formally:
.R[A] = {r.A "' r € R}

This definition may be easily‘generalized to projection on a
set 6f attributes from relation R. |

Join A Jjoin operation_ may be represented as follows:
R[A=B]S.- The join opératipn is used to combige two
rel;:Zons. Attributes A and B musf be defined on the same

domain. A wvalue of A in R is compafed with a value of B in

. . \) 3
S. If the two values have the relationship specified in ‘the

o

5

join operation (e.g. "=', equality), then the tuples of the -

relations are c¢combined to form a third'felation.'Formally;
RiA=B]S = {rs | reR, s €8S, and r.A;s,BI

The Jjoin 1is inter-nodal if the two rélations are at

different noées in the network. fO'perform an inter-nodal

join, one of the relations must be moved in its entirety to

the node where the other relation resides.

‘Semi-join The semi-join is used as an inter-nodal operation

and may be represented as follows: R<A=B]S. The semi-join

operation . may be used to perform the join of two relations-

‘without moving an entire relation to perform the join., The

semi-join. 4s performed by first projecting S.B at the node-

where relation S resides. S.B is transmitted to "the node

N < . 11
T
where relation R resides. R 1is then ‘restricted to those-
_vélues of VR.A equaiWEB those;vaiuesriéwS.B; Ifﬁghé EéQéfgé
_semi-ﬁoin were then performedr(iue. S<B=A]R', where ,R; is
Z ‘the fesultfbf the first semi—join) we would effectfvely have

completed the join‘of relations R and S. Férmally: ‘ -
‘R<A=B]Ss = Jre R | (3 s>e S)(r.A=s.B)}
, .
X The following example illustrates +the above -operations. - ;

Given the two relations R1 and R2, with relation states:

~, .

R1: A B R2: C. | D
: 11l unary | - - 1 . =
3 ternary - 2
12 binary * 2
/ 2
+ 2 -

The restriction, R2[D=2], has the £dllowing result.

R2':

+ X % 1L [O

2,

N NN o

The projecfion, R2[C], has the following result.

R2':

+ 0% O

The intra or inter-nodal join, R1[{A=D]R2, has the -following

-

result. "
- R3: N c[o ' ’
1) unary | -1 1 o o - ”
2 binary - 2 ;
2 binary * 2 !
2 binary | / 2 ;
2| binary + 2 f

Pr-MC

‘"the node at which R2 resides.

Bt

The semi-join, RI1<A=D]R2, has the following result at the

_node at which{RI'resides.

unary

R1': A B
o b -
2 binary

If we wish to complete the join of RI1 ‘and> R2, we first

« .

4

perform the reverse semi-join, R2<D=A]R1', with the result at

<

R2': C D}l
- 1
- 2 ‘
* 2
/1 2 -
+ 2 I - -

and then, if R1' and R2' at sonﬁifwint are at a common ‘node, a J

join of R1' and R2' on attributes A and D will prodhce the same

" result as the join~R1[A=D]R2.

-~
2.3 RELATIONAL QUERIES

Queries in a relational database system may be expressed

using high-level non-procedural query languages. Codd's original
) ~ ~ ,

. ™
paper [Codd70] set the/ﬁasis for two families of relational

query languages, relational calculus and relational algebra. The

definitions of restriction, projection, Jjoin and semi-join

presented earlier are expressed in relational algebra. We assume

a relational algebra -interface to our distributed database
+ :

system. , R , B

Queries are then formed of two parts, a 'target list' and a
T T - - : - + b)) .) .

'qualification’ art. The target 1list is a 1list of the
q p g j

T 4

attributes to be output in. the result of the query. The

conjunction se ar"ely. Join clauses are .all assumed to be .
J , P » :

in terms of the relational data model [{Zani79]. The relational

'data model is an ideal data model for this translation "because

quer ies may be expressed in high-level non- procedural type query

13 ‘.

qualification part 1is a 'boolean combination <of restriction
clauses and join clauses. The att;ibutesmin~theAtafge%—%iSt——afefi fffffffff —

implied projections. We® assume that qualifications are pure

" conjunctions. . Disjunction is handled by’ placing‘,v the
' , LN

qualification in disjunctive . normal form and 'treatfng each

“.

equi—join‘ clauses - (i.e. R[A—A]S) for 51mp11c1ty of treatmeﬂt Z% o
’ .) o <
The distributed aspect of relational queries will be dlscussed %
in Chapter 3. o : ‘ ' RS
¢) P
)— ‘{;fvﬁ.

2 4 ALTERNATIVE AND OTHER RELATIONAL DATABASE MODELS ' e

Many database models are in.use today. For example there is
the DBTG model [CODA71]. from the CODASYL group, IBM's - -

hierarchical data model, IMS tIBM78], and a :elgtional database o

model, SYSTEM R [Astr76]. The nodes in a distributed .da;abase

system may utilize different database models. Ipmiswgeeessaijifi

that the distributed database system operate under a single
database model to simplify translations between local database ’ 4
models éqg to unify the query\ proceSSing aspect. Given a 4

particu}ér' database schema under a particular database model, a: : §

R

set of relations may be defined which represents a .translation

-

of its géne”§14;y4,From the,froni,ﬁndmpoint of view, relarinna1”

U R)) ko L e

languages. Other database models operate on a ‘one record/gt a « -

time' basis and are not amenable to this approach since data 3
o [— o e o i B

, 14
* :
communication between nodes tends to be costly. In this sense’

other datébase models are Cﬁégfderédwte~b@—i}ew~%eveii—andh€he~w~——f~

relatonal datd model is considered tQ;Bé’fhigh—level'. Thus the

results deséfzbed in*this work are applicable regardless of the

underlying internal database structures.

4 -
PR . ‘
>
- (728
.
>
° -
/ =
~
. .
- " \
. »
)
/7 ”
[
s
s
-
.
e - -
&
-\‘~
-,
A~
\ 4
3 - ‘ -
% .
P
-
. Z - 1
. a “ i
N
> -
- v
; e
2
e , >
“a ;
& . N
- R : Y Y
> ! ’
& : i h
Y _
- - - i
Pl =
. % a \
o L
- >
¥ _ -
N
~ 5 - - : -
o "
” 5
-

" management system. Since data may be stored redundantly at

3. DISTRIBUTED QUERY PROCESSING

3.1 INTRODUCTION

The objective of query proceséing on distributed databaser
éystems.is to -have users express queries as if tﬁg’,dis£ributed
database were a single unified database; The £#ét that data is
éctually distributed physically is transparent EB the user. The
user should howevéﬁ be,ableAté direct the,result of a.query. to
any node in the network. This'hoge is tg?ﬁgh the 'result node'.

.Queries are analyzed by the - local distributed datapase

different nodes’ in the distributed database system, it is
necessary for .the local distributed database mamrragement system
to determine a non-redundant mahifestation of the distributed

database to wutilize 1in answering a query. For example, if a

query references a part number relation for automotive parts and

Egere‘ is:rérédpyrofwtﬁiérkéiéééénlgfw£ﬁbiéiffégénérﬁddés';n ﬁﬁe
network, then which manifestation of-this relation 1is wuytilized
ipa answering the query? The probiem\’of defermining which
manifésééﬁion-to use is not within the scope of this research.
Thus we henceforth aséume that data are stored nqn—redundantly.'
If the query has no distributed data requirements then it~

may be solved using local prbcéésing alone. Otherwise .the query

requires distributed processing. At each of the set of nodes

where data is reguired, we_ assume that there 1is a single

TR Y

relation from which to access data. If two or more relations at

a node are referenced in a query, we can Jjoin these relations

15 ' I

v+h~',: v e

2 it e el el g, Wt e

16

using an intra-nodal join to)fo;m a single unifiedrelatién}
Once a quéry has been expfeséed we heea to follow some

query processing scheme to answer the query.. The query

processing scheme 1in general use [qud79, Hevn79al is as

follows:

1. 1Initial local processing. The relational operations of

»

projection, restriction and intra-nodal Jjoin are done first
. to réduce the amount of data before any data transmissions .
are made.

2. Processing strategy. A sequence of data transmission steps

and local p}océééiﬁg stéps are done to further reduce the
amount of data involved in answsring the query. This step
can be considered to be a preprocessing-.step (for the nJﬁE
step). :
P

3. Final data transmissions. Data is thenvtraniiiiggd from the

distfibdted nodes to fhe result node where final 1local.
.éfocéééingris doherggrfé;ﬁrfge résﬁlt”ofréﬁeVQJéfy; - ”
"Steps 1 and 3 represent well known techniques ig database
managemeét systemé. Step 2 has been the focus of much research
in recent vyears [Good79, Hevn79a, Hevn?éb, Wong79]. Without
processing strategies, whole relations would always have to be

transmitted on the network to answer queries. This would lead to

exhorbitant data communication costs and & high likelihood of a

severely congested communication network. This research

investigates query processing strategies.

17

3.2 DATA TRANSMISSION COST FUNCTION

We devote our ‘tention to the distributed query processing
aspect-and we assume that all initial local processing (Step 1)
‘Has alréady been berformed, that is, projections, restrictions
or intra-nodal joins have>fT?Eady.Been performed. We are left
with a query referencing N distributed nodes at each of which
one single relation exists. The query consists of a set of
equi-join clauses, on any number of attributes. B

The costs in processing this type of query are:

1. Local processing cost. We assume, as other workers have done

{(Bern8lb, Hevn79al], that any further 1local processing
required has’ zero cost. This assumption is justified since
data transmission on a network is known to be costly vis‘ a
vis -local processing. |

2. Data transmission cost. Hevner and Yao [Hevn79b] have

assumed that for each data transmission done on the network
there exists -a start-up cost in addition to the cost of
transmitting the data. This cost function 1is expressed in
~ the following formula:
DT(X) = C + X
where DT(X) is the cost of transmitting X amount of data on
the netwo;k and C is the start-up data transmission cost

constant. This cost function assumes distance has no effect

on the cost of a data transmission. In the future this may

be a wvalid assumption. This function-also assumes that X

amount of data can be transmitted in a single transmission.

This certainly. is possible but considering the recent,

R 18

proliferation ofﬁpacket switching Eécﬁ%ology [Mart76], it is
unlikely that this would be the case. We therefo;e, do not
assume this - cost function but assume the data transmission
cost to be directly proportional to the amount of déta
transmitted. This assumption is valid if the amount of data
to be transmitted is greater than the size “of a packet.
PacKets in packet switched neéworksrappear to averagé about

1024 bjits in size [Mart76]. If PS is the packet size then

our data transmission cost function may be expressed as

follows:

DT (X) = CEILING(X MODULO PS) * C + X
If X is always greater than PS then DT (X) - is directly
proportional to X. We can then ignore the first term above
and = quote results relative to the amount of data
transmitted, X.

The literature is divided on which cost function to use.
SDD-1 [Good79] uses the cost function we have adopted.

It 1is necessary to define in what units, the amount of data
transmitted on the neﬁwork, X, will be measured. Our attribute
values have been defined to be one unit of data in size, perhaps
a byte or a word. It iIs not important to define exactly the

\ -
number of bits of data transmitted on the network. We are

concerned only with the relative amounts of data being

transmitted. Typically, we will be transmitting on the network a

column (i.e. the distinct values of a particular attribute) from

a given relation. The cost of this data transmission is defined

to be the number of units of data in that column.

. u,ﬂ_*\

A ‘ - 19
For example, if We have an attribute'A in Rl,,théﬁw E(ﬁi;éji
is 'the cardinalityvof that attributé. C(RI.A) is also the size
of that aﬁtr}bqte((in units of data és we have defined them). If
C(R1.A) is leOO and R1[A] is transmitted on the network, then
the cost of this data transmission is 1000. We do no£ consider
attribute value sizesrgreater'than one unit of data. Clearly, in
a typical database, attribute value sizes vary. We have made
this assumption for simplicity in the treatment of attribute and

relation sizes and it does not affect the generality of the

results presented in this research.

Ny

3.3 ATTRIBUTE VALUE ASSUMPTIQNS

It 1is necessary to“'make some aésumption about how the
attribute values are distributed in an attribute. If we know
this distfibution then we can statistically estimate the result
of, say, a,semi—join'én that attribute. (Thisfestimatiﬁgvproblém

is tackled in the next chapter.)

Assumption 1: In each attribute, the discrete values are
uniformly distributed.

The probab{ﬁty that a tuple has a particular value 1is the
same as the probability that it has any other value. This is
clearly a critical.assumptibn' since it will be utilized in

forming qguery processing strategies. If attribute wvalue

distributions are non-uniformly distributed then the strategies

rﬁegmed~—wii}—aﬂetrpeffe{m~as—ﬁfeéie%é%1'Th%sﬂassamptieﬁ—is—qﬁ%te—¥f———;

strong and this statistical model is a crude approximation. For

example, a salary attribute would be unlikely to have uniformly

-
20 ...

’ }

r

distributed data values. Eaéh rattribﬁte iﬁ the database is-
likély to have 1its own chéraéteristic distribution of data
values. These distributions may also change over time. To model
this situation is indeed complex. Better statistical models may
be devised and utilized when the particular characteristics of a
given database are known. .

_ Within a relation, an attrib;te may be either dependént er
independegt with respect to other attributes in that relation.
If some éependency does exist then’ the problem of estimating
“ cardinality reductions of the attributes becomes very cdmpléx.

Assumption 2: Each attribute in a relation is independent of all

other aftributes in the Samé relation.

This assumption will allow us to estimate cardinality
changes of all attributes in a relation.
. Assumption 3 is similar in nature to Assumption 2.bUt>it

deals with attribute independence between relations.

s

Assumption 3: An attribute in a relation is independent ‘of an

attributes in other relations.

The three assumptions are necessary for formulating query
processing-strategiés since these strategies will need to make
estimates of how relation and attribute cardinalities will be

affected by‘relational operations.

3.4 COST/BENEFIT OF A SEMI-JOIN . S

After all initial processing is . complete, the only

operations left to perform are joins between the distributed

relations (inter-nodal joins). Since these joins require moving

21

whole relations on the network, we use the semi-jbin operation

as a preprocessing tactic. The rationale vfor‘ the use of

semi-join tactics is described next.

Let R and Q be relations at different nodes in the network

and say we have the join R[A=A]Q to perform. Let the sizes of R
and. Q be 2000 and the cardinaltiy of R.A and Q.A be 500 and
1000, respectively. If we transmit one data item on the network,

we say the cost in data communication is one (unit of data). .If

the Jjoin were performed on the network it would require

transmitting 2000 units of data on the network. To perform this -

join using semi-joins we first execute the éemi—join Q<A=A]R.
ST , . ,

This is done by first projecting on attribute A in relation R,

R{A], then transmitting RI[IA] to relation Q, requiring the

transmission of 500 units of deta on the network. Relation Q0 is

2 . : .
joined with R[A] to get relation Q'. Assume Q'.A has a resultant

cardinality of 500. (We discusg how ~to make ‘this estimate

rigorously in the next chapter.) The semi—join R<A=A]Q' is then_

performed by first projecting on attribute A in relation Q' and
transmitting Q'[A] on the network to R, requiring the

transmission of 500 units of data on the network.'Q;[A]'is then

Foined with R to get relation R'. Effectively, R and Q have now

Y

'been joined. The cost of this Jjoin 1is conservatively, the

transmissieh of 1000 wunits of data on the network. The above

tactics are illuetrated below.

et s

A Lkl

Ry

22.

JOIN TACTIC: - ,
Move R to site S. S B
Transmission Cost = 2000 data items

SEMI-JOIN TACTIC: . -
. Q<A=A]R (Move R[A] to{§site S)
Transmission €ost = 500 data items
R<A=A]Q' (MoverQ'[A] to site R)
Transmission Cost = 500 data items

-Total Transmission Cost = 1000 data items

The 'bénéfit' of a semi-join is the amount of data reduction at

the relation being reduced by,thé semi~join. A semi-join is said

to be cost beneficial if the cost of data transmission incurred

by that semi-join is less than or eéﬁal to the benefit. The

semi-join operation 1is then used as a preprocessing tactic to

reduce the cardinality of relations distributed on' the. network
-~

before they are transmitted to the result node. 2,
Our query processing strétegies will utilize the semi-join

operation éxC1u51vely. We will call the sequence- of semi-joins

that ﬁégfbrm these data reductions a 'semi-join program'. The

semifjofh program represents a 'preprocessing strategy' .for the
query. A " semi-join program . is intended to be executed
sequentially; 1i.e. the first "semi-join in the program Iis

"executed first, the second semi-join is executed second, etc.

8

3.5 COMPLEXITY CONSIDERATIONS

Since, in the general dquery envikonment, the problem of

determining an optimal semi-join preprocessing strategy is an

'NP—Héﬁﬁwwb;bblem [Hevﬁ59a]:mréi§6fi£5ﬁ§ which generate these

preprocessing strategies are necessarily heuristic in nature.

.ij

3.6 DATABASE STATE UPDATE CONSIDERATIONS — - —— -~ - - -« —

A problem is'enéountered when semi-join is used<§s a query
-pPreprocessing tactic. When a particular semi-join program is
‘generated, the cost beneficial. semi-~joins are " added to it

incrementally. For each semi-join added to the ‘semi-join

program, the -database state needs updating to réfléc; the

execution of this 'semi-join so that the next semi~-join to be

considered may have its correct cost and benefit determined. We

have found that the ‘history' of previous semi-joins that are

already in -the semi-join program can affect the effect on the:

database state of a new semisjoin that is being <considered for
addition to the semi-join program. This history problem is dealt
with in the next chapter of this work. The. solution to this

problem leads to a more accurate definition of a‘distributed

database system model.

S

A b cia e

“4. SEMi—JOIN'COST/BENEFIT ESTIMATION

4.1 INTRODUCTION

The main concern of 'thié chaptér is f%e cost/benefit
’estimatiop Yof a candidate semi—join‘.(abbreviated CSJ) for
possible.aaaition to the semi-join program (to be referred to as
RHO) . The cost of the CSJ depends on thé current state of the
database. The benefit, which 1is the amount of reduction that
could be obtained after the semi-jQin is pefformed, will invol?e
a hypothétical” “update of tﬁe database state. Thus »fhe
cost/benefit estimation préblem is reduced to the problem of
estimating thé database stater eacg'time é semi-join has been
added to RHO, i.e.>an update pfobleh.

TBe,Lcurrent state of the database consists of tHe
éérdinality (iﬂe.-the number of tuples) of each relation aﬁd the
cardinality of each attribute (i.e. the ﬁumbér of distihctv
values) in eacﬁ relation. Given a new semi~join to be added to
RHO, we only update- the state of the relation that is- being

EN

reduced. A simple‘updating method,'used in [Yu79], [Hevn79al and
[Good79], is as f01lﬂﬁf: (define this calculation as the normal
effect calculétioh (abbreviated NEC))

Consider the semiFjoin Rj<A=A]Ri, where RJj 1is being

reduced. Then

(NEC) ¥ CC(Ri.A)/

CC(Rj.A) := CC(Rj.A) * CC(Ri.A)/DC.A

\\\\\:Tfre CC(Rj) and CC(Rj.A) _are the current cardinalities

(abbreviafed\CC)'of Rj and Rj.A respectively and DC.A stands for

24 ' \

25

the domain .cardinality of attribute A. Note that. the factorrrrw

CC(Ri.A)/DC.A 1is crucial iﬁw”tﬁe'céiéﬁIEETSHT”It TS”§6EEtime§
i referred to in the literature -as the selectivity.
L -

What is often ignored in the literatUre is the fact that
the va11d1ty of NEC depends on two 1mportant assumptlons.
1. atqgmbute Rj.A is independent of.attribute Ri.A. (KQEETptlon 3
in Chapter 3.).
2. Rj.A is independent of Rj.BﬂHS'being "any Vattribute ~in the
relation other than Xﬁ (Assumption 2 in Chepter 3.)

Assumption 2 is often taken for granted in the literature. With

this assumptlon we can isolate semi-joins with one attribute

from semi-joins with other Jjoin attribytes and -consider the-

effects of these semi-joins within this - subset. Though
Assumption 1 is of a similar nature, it does have a different
implication here. This is because within the subset of relations

which are affected by the semi—joins with the same-attribute,

Say A, the estimates of CC(Rj:A)ien87Cé(ﬁi.A) hay not be derived

independently of each other. EXAMPLE 1, ‘introduced below,

illustrates this point.

Consider the distributed database ghich has three

relations; R1, R2, and R3 with 10, 50, and 1000 tuples

i

respectiVely and attribute A in R1, R2, and R3 with 10, 45, ande

50 -distinct values respectively (domain cardihality of A is 50).

Let " the query be such that it}'requifes join operations,

R2[A AlJR1 and R3[A= A]Rl

EXAMPLE 1l:
Semi-join 1: R2<A=AlR1
Semi-join 2: R3<A=A]R2
Semi-join 3: - R3<A=A]Rl

il 2]

i AN e S e el

&%;ﬂ,‘.m«,.m;u;“ vt] L ik $ ikl e

5

W

In Semi-join i, R2.A is restricted to those -tuples of RL.A -
that Jjoin with it. In Semi-join 2, R3.A is restricted to those
tubles of R2.A that join with it, after Semi—join 1. At this
poinf R3[A] F R1{A]. The_executibniof Semi-join 3 will result in

no benefit (feduction) at R3 but we will acquire the cost of

Semi-join 3 in this dquery prepfocessing'strategy. WOh§e;»if
there were seﬁi;joins afte;'this one, the cost and benefif of ’
each of them would be estimated based on an incorrect détabase
- state. . |

- Other anomalies may arise when the history of--previous--- -
semi-joins 1is 1ignored in the cost/benefit estimation. This
chapter corrects these anomalies. ‘ .
" . The next section describes h§w to determine the effect of a

semi~join on the cardinality of the relation being reduced and

on the cardinality of the joiningﬁ attribute in the .relation

L 2

'being'ifeduced. Thé”"ﬁéit'ééétiaﬁ describes how to estimate the
gffect of a semi-join on the ﬁon—joining attributes in the
relation being ‘reduced. The next sectioﬁ summar izes these
results in the form of algorithmrUPbATE. Thé last séction .of

thisa chapter describes how to use the results presented-in this

chapter,

o

Q*ZMTHEWEFEECT;ngSEMI:JDINSmgggRELAIébQWAND,4JQININ644AIIRIBUIE;h4744W

CARDINALITY

Tttt/ o - r

In this section, we determine how to estimate the effect of

a semi-join, say R<A=A]S, on the cardinality of relation R and

v

S

27

on the cardinality of the Jjoining attribute, R«A. First, we |
: . i - g
~*fntroduce ‘sbmé'd;finitionsfthatfafegneeessafy~iﬁmthewdiseussienﬂév~4ﬂ4a¥

— K .

i “that follows. : f L o o

A distributed;relationali databasge syste$ consists of N
reigtional database systems at N siiéé. Portions of the.database
ar€'§t§r;d nonredundantiy at each éite.‘we denote a query by Q,
witﬁ rqualificatioﬁﬁ C. Local opérations such as restnictions{
prOjecE?%ns; and joins of relations in the same node are assumed

to have no cost. and are excluded from C. Thus each 'site is

assumed to contain only one relation. C is then a conjunction of

= - - -clauses of"thew—fgrm*'Rj{A=A}Riyfwhefeﬁijand:RifaferEelatiah&ﬂi:—rw

do] e

stored at sites jJ and/i, respectively. The cloSure of C, denoted
C+, 1includes all clauses implied by C under transitivity
[Good79]. Let J+ be the set of semi-joins implied by C+ (e.g. if

Rj[A=A]Ri is in C+ then Rj<A=A]Ri andy Ri<A=A]Rj are in J+).

Algorithms that generate semi-jdinl programs will utilize a é

subget of J+ in generating a semi-join program (to be referred
: i , :

to as RHO) that-is to be executed on the distributed datdbase.
. N\ -

We assume that once a semi—jo}n is added to Rﬁb it is rth . é

considered again as a possible addition to RHO. Each semi-join v §

in RHO is fepreseﬁted byl the double: k,Rj(AﬁA]Ri where " k %

indicatés sem{?join Rj<A=A]Ri is the kth semi-join added‘to RHO. é

and is the kth eegi-join that will be executed on the database. %

%Hﬁs semi-join is often called SJ-k where k is. some positive %

L I , » 3

integer. K i

o ' wéjﬁse,a graph repféséﬁtation for a semi—join program. Let- ;

G be the graph of the semi-join progrém RHOVgenerated by an ‘
| ’ { . ' ST - I

-

 directed edges labelled with the same attribute from Rm. to Rn

_an A_PREDECESSOR of R3) so that RI1[A]

EXAMPLE 2:

and CSJ: R1<A=A]R3°

gt C : S .
. P - . . 28‘-

algorithm so far. As each new sémi—jqiﬁ is added”to RHO, G is

- . N /
updated as follows: For the kth semi-join, (‘k, Ry<A=ATRiL), if

Ri (or Rj) is not a vertéxrin G then add a new vertex Ri (or Rj)

to G. Add a né; directed edge from Ri toTRj in G labelled with
k,A. An A_PATH. in G from Rm to Rn is defined to be a path of
in
G such that the k component of the edge labels from Rm to Rn be
in strictly increasing order. If Rj is on.an A_PATH in G from Ri - - — .
then Ri is called an A PREDECESSOR of Rj.

This graph, G, is wused to ‘trace the past history of -

CC(Rj.A) for every relation, Rj, and 3join attribute A. In

EXAMPLE 1 there is already an A_PATH from Rl to R3 (i.e. Rl is

and R3[A] are already

related. This expiains'why NEC does not york foryEXAMPLE 1. We

shall now introduce two other circumstances under which NEC does

not work. ' R ' - ‘

. W?
|
|
|
|

RHO:
1,R2<A=A]R1
2,R3<A=A]R2Z,

G: R) '
§ 1,
) ’ 2,A
-~ R3

In G, after SJ-2, Rl is an A_PREDECESSOR of R3. The CSJ

makes R3 an A_PREDECESSOR of Rl. (This is in contrast to EXAMPLE

1]

1 “where the third semi-join makes Rl redundéntly‘:an

A_PREDECESSOR of R3.)-Since after §J-2, R3{A] c RI[A], the

effect of the CSJ on Rl‘will be:

:= CC(Rl)'*'(CC(R3.K)/CC(R1.§J§9

CC({R1)
and s

CC(R1.A) CC(R3.A)

-~

-

i

the CSJ in effect here is CC(R3.A)/CC(R1.A), where CC(R1.A) is

the cardinality of Rl1.A before the semi-join.

EXAMPLE 3:

RHO: ' G:
1,R2<A=A]R1 1
2,R4<A=AJR2 9§R2
- 3,R3<A=A]R1 ?R 2

and CSJ: R4<A=A]R3
After SJ-3, R3 and R4 are on parallel A PATHs in G and Rl

is an' A_PREDECESSOR of both R3 and R4. Since R4[A] c R1{A] and

" R3IAT] ¢ R1[A], R3TA] and B4[A] are related. Thus the CSJ Should

not have the reducing effect on R4 suggested by NEC. Knowing the
history of semi-joins which have an effect on the reiations. in

the CSJ 1is important. This problem is dealt with in the next

section.

These examples provide a small insight into the problem of

accurate effect estimation. Tt shows 'that when the two relations

involved in the CSJ have some common A PREDECESSORs they are no

o

- longer 1independent; thus, the assumption under which NEC is

valid is no longer true. We conclude this section with the

following lemma. ’ - : -

-

LEMMA 1: The normal effect calculation, NEC, of CSJ, Rj<A=A]Ri,

Cﬁmﬁaring this result with NEC};WéWhEEé”EBéEWEHé SeléiEGVity of T
5 t: :

B ST

works'correctly if and only if the set of all A PREDECESSORs of

Rj and the set of all A PREDECESSORs of Ri are diSjoint.

PROOF: If the two sets do not intfersect, then the two values,
; I s '
CC{Rj.A) and CC(Ri.A) are derived independently of each other.

By the assumptions we haye made earlié}, NEC aépliés. -

AT TR AT TSNP (L

s

M TRk, S5 R <

30

If the two sets intersect, then one of the following cases
must exist:

(1) Ri is an A PREDECESSOR of Rj. Hence Rj[A] c Ri[A] and Ri.A

and Rj.Alare not iﬂdependent.
(i) Rj is an A_PREDECESSOR of Ri. Hence Ri[A] ¢ Rj[A] and "Rj.A
and Ri.A are not indééendent.

(3) There exists sﬁme Rk that is an A PREDECESSOR of both ‘Ri and
Rj-but neither (1) or K2)‘is true. Hénce Ri[A] S Rk[A] and Rj[A]
¢ Rk[A] and Ri.A and Rj.A are not indepeﬁdent. N\

Thus NEC is correct only if the two sets are disjoint.

4.2.1 QUERIES WITH A SINGLE JGIN ATTRIBUTE

In this seétion we solve the semi-join history problém for
quefy qualificatiéféfihvolving only'a single Jjoin attribute. The
single attribute‘ solution will ©provide an insight for a more
rigorous—tréatment,in~the—nexti section for the - -general: éaSeL,
where we shall consider querfes "with more than one join
aﬁtribute.

Consider the following example where 211 semi-joins have

the same join attribute: ‘ ' -

EXAMPLE 4:

RHO: . G: ,
1,Rk<A=A]Rp Rp
2,Rj<A=A]RK 1,A \3,A
3,Rm<A=A]Rp
4,Ri<A=A]Rm Rk Rm

- ' 2,A | 4,A
R & Ri

and CSJ: Rj<A=A]Ri

Consider the states of Rj.A and Ri.A before the CSJ is

applied. By (NEC) we have:

CC(Rj.A) = OC(Rj.A) * OC(Rp.A)/DC.A

' * OC(Rk.A)/DC.A
and . : L

= OC(Ri.A) * OC(Rp.A)/DC.A"

CC(Ri.A)
, _* OC(Rm.A)/DC.A

where OC is the abbreviation for original cardinality. We see

that the effect of the semi-join 83J-1 on R3j.A (via Rk) 1is

equivalent to adding 1its selectivity as a factor in_ _the.

calculation of CC(Rj.A). The order of application of +the

semi-joins §J-1 and SJ-2 is unimportant. Hence G is’ééuivalent

to G' below:

G': Rp : Rp
Ry Ri

Rk ' Rm

After the CSJ is applied on Rj, G' would become G'' as follows:

G'': - Rp

Rk

‘where the duplicate of Rp is removedwfrom G'.
we now introduce a data structure, A_LIST, which ~has the
~ capability to represent .G' or G". For attribute A with
relgtions {R1,R2,...,Rm} in the qualification, define its A LIST

structure initially to be:

"

R1 : R1
R2 : R~ T e e - -

Rm : ~ Rm——— .
The relations on the left are indices and the list on the fighf

contains those relations by which/the index relation on the left

32

has been reduced. As each new sg@i:jginp say Rj<A=A]Ri, is added
to RHO, A LIST(Rj) 1is replaced by the un&on of4A_LISQ(Ri) and
A_LIST(Rj).‘That is, all relations on an A PATH to Ri are added
to A_LIST(RJ) as relations on an A PATH to Rj. ‘ ’

The A LIST state of EXAMPLE 4 is:

Rp : Rp
Rk : Rk, Rp
Rj : Rj, Rk, Rp

Rm : Rm, Rp
Ri : Ri, Rm, Rp

If we add the CSJ to RHO then after the update, A LIST(Rj) will
contain Rp, Rm, RIi, Rj and Rk and:
CC(Rj.A) = OC(Rj.A) *
OC (Rp.A)/DC.A *
OC(Rm.A)/DC.A *
OC(Rk.A)/DC.A *
OC(Ri,A)/DC.A
More generally, if there are r elements 1in A_LIST(R]),
i.e. {Rl,...,Rr}, (Note Rj is always an element of A LIST(Rj)))

then the current cardinality of Rj.A is given by:

. :
CC(Rj.A) = OC(Rj.A) 7To (Rk.A)/DC.A

k # 3

._.a

The update method is aé'describéd above. If the previous and
current cardinalities of RﬁZA are Cl and CZ respectively, theéen
-the effeqtive selectivity of the semi—join—Rj<A=A]Ri is defined
to be C2/CI. If the previousrcardinality of the relation Rj ié

C3, then the current cardinality is C3*(C2/Cl). If Rj contains

Tal attributes, then the benefit of the semi—join is

— - - -

,f?CB*a)-((CB*CZ/Cl)*a), given the assumption made on attrlpute

value size in Chapter 2. The cost is the cardinality of Ri.A.

33

4.2.2 QUERIES WITH MULTIPLE JOIN ;ATTRIBUTES

We now extend our result to quefy7QUalific5tions cdntain%hg
more than a single join. attribute. |

Considef _the case where semi-joins on different attributes
are considered. If the set of atfributes referéhb@d in J+ is the

set {Al,A2,...,Am} we have the following A LIST structures to

‘consider:

- Al LIST, A2 -LIST, ... , Am_LIST
When-we considered the single attribute case it was

sufficient to know the original cardinélity (0C) of each

relation “that héér}gaﬁced, say, Rj. HoweVéry ifwﬁkaﬁééW7fédﬁEédr

Rj on attribute A, but Rk itself has beenmreduced.earlier by Rp
on attribute B, then it is C(Rk.A) (the cardinality of RK.A)
after semi-join Rk<B=B]Rp, instead of OC(Rk.A) that is relevant
in the reduction of Rj. A LIST(RJ) is ﬁodified so the «correct
E(Rk.A) that apﬁiied in the reduction4of Rj is present. C(R&tA)
willnowbeui?? for removing the effeéﬁ of a semi-join which is
considered redundaht 'in calculating the correct state of a
relation.

We also have tormodify'the updating method. In géneral, if

there is a non-NULL intersection. between A LIST(RJj). and

A_LIST(Ri), we may have different'cardinaiifies associated with’_;,

the same relations in the two lists. We need to find out how

 A_LIST(Rj) should be updated if the CSJ is added to G. To this

end, Lemmas 2 and 3 are - developed below.

- Consider two A PATHs which terminate at Rj. Suppose the two

A_pATHsbintersect at some other nodes (relations) as well. Then

J/

34

there must be a node, Rk, such that-thé'two sub-A PATHs from the

node to Rj, do not intersect. In other words, Rk succeeds all

other nodes in the intersection. Thus, Rk is defined to be the_

nearest - common predecessor (abbreviated NCP) on the’twg.A_PATHs
With respect to Rj.

G and G' in Figﬁ}es 1 and’ 2, réspectively, are identidéi
except that semi-join Rn<A=A]Rk has been removed from G to make
G’T:Rk~is the NCP with respect to Rj. All semi-joins shéwn in G
and G' are on attribute A. Iﬁ G', A_PATH1 is an A_PATH from Rn
to Rj and A_PATH2 is an A PATH from Rk‘to Rj. Other semi-joins
(ngt shown ihrc-or G'") onrdiffereht attrfbutes,rhay occur on fhe
relations in A PATHl1 or A PATH2 in G or G'.

, . k
Rn Rm

A PATHY} _ ... A PATH2 ...
_ ~ =
Rj L ' Ai Ri
Figere'l: Lemma'é,'graph'c

Rn T ‘ ~——so Rm .
A _PATH1 ... © A_PATH2
R 5. i Ri i

Figure 2: Lemma 2, graph G'

We assume that the cardinality of Rk[A] Jjust before

semi-join Rn<A=A]Rk takes place is greater than the cardinality

of Rk[A] right before semi-join Rm<A=A]Rk takes place. (i.e.

Rn<A=AJRk occurs first 1in G and Rm<A=AJRK occurs sometime

later.) : : -

o

N

s

35

.

LEMMA 2: Rj[A], after A PATHl and A PATH2 in G have-been
executed, is identical to Rj[A] after A_PATHl and A_PATH2 in G'

have been executed.

PROQF : | ;’

In G, for semi—join Rn<A=A]Rk we h;ve valﬁes of A, Rk[A],
sent to Rn and Rk'[A] ¢ Rk[Aj sent to,Rﬁ on semi-join ﬁm%A:A]ﬁk.
After Rn<A=A]Rk is éxecutéd, we have'at Rn, (Rn[Aal\ kaAjii

In G', we can view Rn at the start as comprising the 'union
6f two relations: Rn(i), whose columnvﬁwisr(Rn[A] - Rk[A]), and
Rn(2), whose column A is (Rn[A] i Rk[A]). Clearly, those valﬁes
of A at Rn in G after Rn<A=A]Rk will be exactly the same values
of A in Rn(2)[A] in G', as defined above.

When A_PATH1 in G; is executed, Rn(l)[A] and Rn(2)[A] are
séﬁt from Rn to be,joined.with those relations along A PATHl. If
. Rn(l)'[A]f'and,,Rn(2)f[Alﬂ are _the data. transmittéd,to,Rj via_ ..
A_PATHl‘in}G', we will havean(i);[A] ¢ Rn(1l)[A] and Rn(2)'[A] c
‘Rp(2)[A]. Moreover Rn(1l)'[A] is disjoint from Rk[A].

‘ After A PATHl in G has been executed, if Rn'[A] is
transmitted to Rj then clearly Rn'[A] is exactly the same as
Rn(2)'[A], since originally (Rn[A]l N Rk[A]) in G and Rn(2)[Aj in
G' wefe the same énd A PATH1l in G and G' from Rn to Rj rhave

4exactly the same semi-joins.

When ”A;PATHé“inmG”and"G*;fs*eiecuted7;Rk*TAT‘TS‘SEnt%tO“Rﬁmm”*“*
and eventually a subset of Rk'[A] reaches Rj. Let the values of —
A sent on semi-join Rj<A=A]Rirbe Rk';[A] ¢ Rk'[A] in both G and

G' (since A PATH2 in G and G' is the same) .

-

36

Since Rn(l)'[A] at Rj in G' is disjoint frem Rk[A] and

hence disjoint from Rk"“'[A] (since Rk'*[A] ¢ Rk'f{A]l- ¢ Rk[A])

those QaluesV of ‘A in Rn(l)'[A] will be”eliminated from Rj on
éemi—join, Rj<A=A]JRi. (For ease of argument Qe are aésuming here
that Rj<A=A]Ri is the lan semi-join to oécur in both G and G'.
Our result will be the same if this is ﬁot true.) Hence, in é
the final stape of Rj[A] will be (Rn'[A] N Rk''[A]) and the

final state of Rj[A] in G?jwill be (Rn(2)'[A]N Rk''[A]l). Since

Rn'[A] 1is exactly the same as Rn(2)'[A], the final states of

Rj[A] in G and G', are>identical.

It is also easy to show that the finai statgfof the whole
relation Rj in G in G' will also be identical. Roughly speaking,
the lemma ?hows that G and G' have idéhtiégi 'reducing effect!’
on Rj. Comparing G with G', it is obvious that théﬁ;réducing

effect' of Rk is delivered via A PATH2. Thus, we <call A PATH2

the ‘'effective' A PATH from RK to Rj. Lemma 2 also applies when _

there are more than two A_PATHs from Rk to Rj. The ‘'effective'

A PATH from Rkk%b Rj is aiwa;éwfhe one which includes the-latest

semi-join starting at Rk.) |
We Tan furtherlgeneralizé Lemma 2 so thi} relation Rk In G

does not necessafiiy have to be an NCP with ;éspect,to Rj.’This

can be obtained by recursively applying Lemma 2. Let Rp- be a

‘relation in G which has two A_PATHS,;eaqing to Rj. If Rp is an

-

~

+

N P - — _ — &

coC o e T T A
NCP with respect to Rj then Lemma 2 appli€s. Thus, suppose the

e - -

two A_PATHs first intersect at a point, say Rj' (Rj' # Rj), then
fgmma 2 appiies to Rp and Rj', as Rp i§¢QQW'an NCP‘ﬂiEEw.respect

N

A
Ry

e

‘97 respectively. With the addition of the CS8J to G, Rk will have

37

to Rj', and there is one and only one effective A'PATH from Rp

to Rj'. . S e

Consider the CSJ, Rj<A=A]Ri where A LIST(Rj) and A_LIST(Ri)

have a non-NULL intersection. This means there is at least one

node say Rk, which has A PATHs 1leading to Rj and Ri,

v

two A PATHs to Rj. Lemma 2 (and its extensions) applies even

when Rk ="Ri. However, the same lemma does not “apply to the

situation when Rk = Rj; in tHis case there is a cycle which

includes Rj.,Lemma 3 will deal with this situation.

To be precise, we have G and G' in Figures 3 .and 4,
respectively, which are identical except that semi-join
Rm<A=A]ijhas been removed from G to . make G'. Al s“miljoins

: : \
shown in G and G' are on attribute A. A PATH] in G is an A PATH

from Rj to Rm and back to Rj again. A PATH]1 in G' is an A_PATH
from Rm to Rj. If any other semi-joins on different attributes
. opcur'to'the relations in G, they also occur to the relations in

e

-

G'. These semi-joins are not shown in Figures 3 and 4.

Rj

Rm

... A_PATH1

38

N

e

° ... A_PATHI

Ri

Figure 4: Lemma 3, graph G'

LEMMA,3: Rj[A] after A PATH1 in Gr has been executed is
'&aéhtical fo Ry[A] after A PATH1 in G' has been executed..
" The proof‘of Lemma 3 is omitted since the argument is very
’similar to the proof for Lemma 2;

The significance of Lemma 3 is that effective A PATHs have
. Iy *

no cycles. Combining Lemmas 2 and 3, we have:

THEOREM 1: There 1is at most one effective A PATH (involving no

cycles), between any pair of relations in G.

With this theorem, we can define a structure, A TREE, such
that only the effective A PATHs .on -attribute A to Rj are in
A_TREE(R]). Rj is the root. A TREE(Rj) contains no cycles and

#

there is only one-occurrence of each relation in A_TREE (Rj).

4.3 THE EFFECT "OfFWW7§EM7I:7J'ﬁTIS'”@ NOI;};JOINING ATTRIBUTE

- "CARDINALITIES - — T

There is no agreement in the 1literature regarding how

cardinalities of attributes -other than A are updated with

giptng.

A

) N ' 39

respect to’ the semi-join, say R<A=A]§,~rg@pgingLR,ALhIQgggzggl7;h
maintains that they shbuld remain unchanged, while [Yu79] argues

that they should be reduced in the same manner as R.A by

v

applying the selectivity of the semi-join to the current

cardinality of each attribute.‘[Good79],USes an approximation of
Yao's function [Yao77] which depends on the selectivity of the
‘semi-join. We feel that [Good79] has the most realistic approach

but we have determined that there are sevefalr-ﬁhfeéiisffér*

Y

assumptions wutilized in his approach. [Good79]'s approéch is

-explained next along yigh7ggg”pesefva;ionsﬂapopt his method.

Algorithm AP [Good79] (implemeéled on SDD-1, -an
experimental distributed database system by the Computer‘
Corporation of America) analyzes the effect on other aﬁtribUtes
in R .as a 'hit ratio’ problem, given Assumption 1.‘If Qg are
given n = cardinality of R "objects", distributed uniformly\over'

m = cardinality,<qf,RLB]Aﬂcoi@yrsﬁ (where B # A i then;theﬂhit
ratio problem may be stated as, “ﬁow many colours’ are we
expected to hit if we randomly éeléct r of the objects?".

The answer is given by [Yao77]:

r o .
Y(m,n,r) =m * (1 =TT [(nd -1+ 1)/(n~-1i+1)]

i=1 S g . ‘
where d = 1 - 1/m.

The computation of this function is time ¢onsuming, so in

practice [Good79] approximates Y (m,n,r) by:

_ v) T EAr v £ m /D
r Lt OLT— LT <4/ =2
r+m)/3 , for m/2 < r < 2m

AY(m,n,r) = {-

3~
-~

for 2m £ r -

There are two ;roblems with Y(m,n,r) and the way in which .
[Good79] utilizes it, zés Luk [Luk80] has shown. It is quite
clear that the function ¥Y(m,n,r) is-not linéarﬁin either m, n or
r. While the values of n and m are known heré, r is a random
- variable of some unknown distribution. [Lukél] has shown that in
the literéture the average value of r is invariably treated as a
fixed- value in ¥(m,n,r), (as [Good79] does), instead of taking
the‘aQefage ofdéii function values over the distributionA”of ”r;
Given m, when the upper bound of the range of r is between 2 and

10 time 'gé great,as,m,‘ the,mg;;of, iqtroduced in qalcﬁgg;ipg,,_j;i

B

Y(m,n,r), when using a.fixed value for the average vaiue of r,
is greatgr than 10%. o
B [Gooa79]'implicitlyfaésumes that -if ’we have m distinct
values 1in- - any column (attribute) thén there are exactly n/m
occurrences of each distinct value in R in A. Luk has pointed
--out- - that 'thisffisW”an'extremelywunlikelyvsituation'and~ié—only'—
1ikely to occur when R is the cartesian proauct\of the set of
all attribute values for each attributé in R.iLuk,aSSUmes'the
number of tuples iniR with the same value of attribute B is a
random vériable and is distributed according to Zipf's
distribution [Zipf49]. Luk has shown that, wusing [Good79]'s

assumption, errors in estimating Y(m,n,r) are often greater than

50% and sometimes as large as 100%. g

-

4WWJCléé}I§7 if one repeatedly applies results from Y(m,n,r)

T T without cofréCtiﬁg“thé“fWé“prbbTéms*‘méntibnéd“abUVE7“1jﬁr*f““‘*
estimation of new database states through the wuse of this

function will be erroneous. - - . -

.

+ N L . S

‘»

We have 1ncorporated§ Luk's result in this work. ©Luk's

- i , .
result is also computatlonalty time consumlng, so in practice it
. r*

ﬂ? ~ .

~.

may be'approximq;ed byt

t/2 ~, for r < m/2
: 3r+.1lm” , for m/2 < r < m
AL(m,n,r) = (r+m) /5 , for m < r < 2m
.lr+.4m , for 2m < r < 4m
.04r+.6m , for 4m < r < 9m
m ’

for 9m < r
AL (m,n,r) is then ke estimating function to determine the new -
‘cardinalitieSA{dfa,attributes, other than the joining -attribute,

in a relation being reduced by a semi-join.

- R - i e TR

~4.,4 BENEFIT AND UEDATEftALCULATION ALGORITHMS

A
™~

We now make use-of the results . from the last: section to
,correctly calculate the cost and benefit ef Aa isemi;join
Rj<A=A]Ri. To do this we must first identify effective A _PATHs
from ‘other relatlons in G to RJ‘,The A_TREEidgﬁeweppqup;eryill‘
be used for thlS purpose. ‘

A straight-forward method to estimate the state 6f_ a
relation Rj is to work with A__TREE.(R'j), B_TREE(RJ),... etc, for
all the join attributes, A, VB,... eﬁc. The effects of theh
semi—joine in all these lists are calculated accordjng to the
sequence number of the4semi-joins. V

This process can be considerably simplified if wehimake an,

, assumptionwonqthefcpmmutatiyityfbfkthegestimatinggiunctionsffﬁe@———;ff—
e .

f be the function to estimate the cardinality of Rj[A] after

some semi—join,rsey Rj<B=B]Ri (SJ-1), with selectivity Si. Let g

be the function to estimate the cardinality of Rj[A] after some

e . ~

‘N;«

42

semi-join, say Rj<A= A]Rk (83-2) , w;th selectivity Sk. If the -

chrrent card1na11ty of R]{A] is denoted by CC(R]. A), then the

new CC(Rj.A) after SJ -1 will. be f(CC(R] A),Sl) and 1ndependent1y

the. new CC(Rj.A) after SJ-2 -will be—g(CC(Rj;A),Sk); We now

assume that the estimated cardinality of Rj[A] .after SJ-1 and

then SJ-2 \+is the same as- after SJ-2 and then 'SJ;l, or
7

w

equlvalently,

g(f(CC(Rj A),Si),Sk) = .
f(g(CC(RJ.A),Sk),Si) | .

F

Now Sk = CC(Rk.A)/DC.A énd'according to (NEC),

g (CC{RJ.A),Sk) = CC(Rj.A] * ' T
, CC(Rk.A)/DC.A

so that we have:

£(CC(Rj.A) *CC (Rk. A)/DC.A, Si) = , ¢
f(CC(Rj A),Si)*CC(Rk.A)/DC.A ®

Consider now an effectlve A PATH from Rl to R3. For

convenience, we assume there is only one semi-join applied to R2

"and R3 with a join attribute other than A and selectivities s2

.

and S3.
Since the ~ order -of ‘exgéution of the semi-joins is
unimportant, CC(R2.A) is equal to C \ i

£ (OC(R2.A),S2) * OC(R1.A)/DC.A
andithe CC(R3.A) is equal to ,
f (OC (R3.A),S3) * o ' ' : .
£(OC(R2.A),S2) * : - . ~

OC(Rl.A)/DC.A\

I . 7 . : 7 —] TE

To generalize, if we have n semi-joins on a branch of

A\
}

A TREE(RJ), this branch,is equivalent to the following tree:

Wt

where EC(Rk.A) (@bbreviation for effective cardinality), iﬁkin,
represents the Eardinality of Rk after all thevsemi-foiné with
~Join attributes other than A have been applied to Rk. If there
is” no such semg:join on Rk, EC(Rk,.A) is the'OC(RK:A)q'the”aléé

~that 1<j<n. ,

. By Theorem 1, "all branches of A TREE (R]) are 1independent, ‘

so that an A TREE(RJ) with n semi-joins is equivalent to another

A_TRE%JR&) with n parallel semi-joins. The advantage of this

represenéation is that the effect of- each semi-join onm Rj is

'normalized' so that the removal of the effect ogf a certain
'semi-join is now a trivial task. Note the §imifé;§€;’of this

representation and the one for the single join aft;ﬁﬁ ,emcése,'

We now modify the A LIST(Rj) to reflect this representation

of A TREE(Rj): . B

%

Rj : {(EC(R1.A),I1),..., (EC(Rn.A),In)

where 1Ii, 1<i<ny represents the semi-join nupber assigned for
e

that semi—join (in RHO). If i=j, then Ij = Infinity (abbreviated

INF). Thus,

1

. n
CC(Rj.A) = EC(Rj.A) * TI EC(Ri.A)/DC.A

[WO

i

This formula is similar to the one derived for the single

attribute case discussed earlier in this chapter. The algorithm

to update the A LISTs is given below. Initially A_LIST(ﬁﬁ)'Will

=

P o e

Wl

44

2

_contaih one element, i.e. RJ(EC(Rj.A),INF) where EC(Rj.A) =

OC(Rj.A). 1% i

Eon

ALGORITHM UPDATE: -

Let the semi-join being added to RHO be: p,Rj<A=A]Ri
NON-JOINING ATTRIBUTE UPDATE: : "
IF (Bzis an attribute in Rj) -

THEN B LIST(RJj) will contain RJ(EC(RJ B) ,INF).
Update EC(Rj.B) here to:
f(BEC(Rj.B),S), S being the
select1v1ty of the semi- 301n.,,
JOINING ATTRIBUTE UPDATE:
IF (A LIST(Rj) M A LIST(Ri) = NULL)
" THEN A_LIST(Rj) := A_LIST(Rj) U A LIST(Ri)
ELSE A LIST(Rj) := A LIST(Rj) U A LIST(Ri)
: 'SUCH THAT: - S S

) FOR EACH RELATION, SAY: .

Rk (EC (Rk.A),v) (an element of » .
‘A LIST(RJ)) and RK(EC(RkK.A),u) o T

(an element of A LIST(Ri)) -
in the intersection, then:

IF (u <= v) ,
(i.e..u is an earller SJ)
= THEN
Leave Rk(C(Rk.A),v) in A LIST(R]j).
ELSE -

" Replace Rk(EC(Rk A),v) in A LIST(R])
with Rk(EC(Rk.A),u) from A LIST(Ri). -

~ At any s£epw ﬁf&mf the beginning, we know the current
cardinalities of Ri.A (i.e. CC(Ri.A)), Rj.A (i.e. CC(Rj.A)) and
Rj (i.e. CC(ij)L If we use the above algorithm to update the
database state after the CSJ Rj<A=A]Ri has been added to RHO, we
have a new cardinality of Rj.A, say NC(Rj.A). The' effective
selecﬁivity‘of the semi-join is then NC(Rj.A)/CC(Rj.A). Thusﬁ,"
COST (of the C8J) = CC(Ri.A), and A

BENEFIT (of the CSJ) =
(CC(RJ) * a) - ((CC(RJ)*NC(Rj.A)/CC(Rj.A)) * a)

where 'a' -is the number—of-attributes—inm Rj: -

4. 5 IMPLICATIONS FOR A DISTRIBUTED DATABASE SYSTEM MODEL

The main contrlbutlon of this chapter 1s_the def1n1t10n of
a realistic distributed . database " system model (abbreviated
DDSM) . Since we are mainly concerned w&th query proces51ng, our
work has- concentrated on the accurate estimation of new database
states wﬁen semi-join operations are executed. We have developed

an estimating function to correcslxbdetermine, after a semi-join

is executed, the new cardinality of both “the"relaticn”*being“”

reduced and the Joining attribute . in that relation. We have

developed an estlmatlng function to determlne the new

e S . - T T e - PR

cardinaliiﬁes of the non-joining attrlbutes, in the relatlon‘

- being reduced. Algorithm UPDATE utilizes these estimating
functions to update,the database state.‘Clearly the information
and assumptions. these -~ estimating functions wutilize define a

particular model of a distributed;database system. The ultimate

goal is to have semi-joins perform in practice as they do in

one's model of the distributed database‘system. It is felt that
our model is a realistic one. l
There are two ways that the estimatingr functions will be
used in‘this work.
In algorithms that generate semi-join programs, the

estimating functions may be utilized to determine the potential

benefit for, each semi-join considered and once a semi-join is

O S

chosen, -to update the database state via algorithm UPDATE., In

this way we can develop and test the performance of algorithms

that use semi-join tactics under our DDSM.

If we already have ‘a semi-join program., and wish to

'

|
A ek LTSN T e e e P i U AP

NP [P GRPSTERTIR WA RO Y

46

'

determine how it performs under our DDSM then we can re-execute

thié semi-join progrém. fﬁe rQéyi tol éééo%éiﬁéhrﬁthis,,iswégh
coﬁggder each semi—jdin in the semi—jgih program in order. Let
the ith. éeﬁifjoin be R<A=A]S. Then ﬁﬁe cost of R<A=A]S can be
determined by'examining' the current: détabase state for the

cardinality of S.A. We execute the semi—join by updating the

database state; using algorithm UPDATE to determi "the new

cardinatities of R, R.A and the other non-joining attributes in -

R. If we then total Ehe. costs 'detefmined for éach of the

semi-joins in the semi-join program, we have 're-cost' this

semi-join program. We can thus check the performance of

semi-join programs produced by . other published algorithms.

5.‘PREPROCESSING STRATEGIES FOR DISTRIBUTED QUERIES

5.1 INTRODUCTION

In the generai distributed query enVironment, the semi-join
ope:atioh has been used as a preprocessing strategy for qUerieS;'
The,dbjectiVe of éemi—join prepfoc;§sing is £o'reduce the total

- amount of data required to be transmitted on ihe network by
first reducing the cardinalitigs of distributed relations “using
semi—joins ahd then transmitting éhe resultahfrrelationsvto thé
resﬁlt node. Algorithms that utiiiZe semi~join tactics produce

o, . ,

= - as output - a--semi-join - program- thatrisﬂto~berexecuﬁed~on.thve<ffw:;

network. | |

In this chapter weirfirst 'présent two existing query
preproceséing- algorithms, algdrithm, AﬁIEGopd79] ;na algofithm
HEVNER [Hevn79$]. Algorithm AP is currently implemented on SDD-1
an experimental distribuﬁed database system. Algorithm HEVNER is _ ‘ 5
a query"prﬁcéssihg’aigéfitph proposed in the PH.D £hésiS"'6f" A,

Hevner [Hevn7%al. We next présent algorithm BLACK, a query

preprocessing algorithm that represents a result from our work

in this area. We then present a 're-organization' algorithm
called WS [Luk80] that, when given a semi—joih pragram as input,
produces' a new semi-join program that is guaranteed to have a

new cost less than or equal to the cost of the original
- ,'&.,L

semi-join program. Algorithm WS is used in;qgﬁjuﬁg%ion with

; algoritﬁm BLACK to produce lower cost semi—jgbn' preprocessing

ray

strategies. The -last section of this chapter gives an example - :
i ’ . F

query along with the semi—join programs prpduééa byvthe various

47 ' ' . ST

48

algorithms on this query.'

It should be noted agein thet ‘all these fa'ié;oirlitfﬁxﬁ’s’é{é ’
heuristic in nature slnce the determlnatlon of an eptimal-
semi-join program is an NP-HARD problem. To date, eo algorithms

produeing optimal semi-join programs are known.

5.2 THE INITIAL FEASIBLE SOLUTION
The 'initial feasible solutien' (abbreviated 1IFS) for a
given query is to first do all initial local processing then

transmit all relations to the result node.

o

5.3 ALGORITHM HEVNER

o

Algor1thm 'HEVNER was called Algorithm General- Total Time
in [Hevn79%al. Hevmer and Yao [Hevn79b] were the fifst
Vresearchers to determlne an opt1ma1 solutlon for solv1ng simple
,quer1esl (queries with only one joining attribute and no output
‘attributee other than the joining one) . Hevner‘proved that the
optimal solution for hore general queries is an NP-HARD problem.
Hevner, in- algorithm HEVNER, utilized tactics developed in the
solﬁtion for simple queries. For these;Querles, the'relaEions
are ordered‘'according to their cardinalifies. Starting from lthe

smallest one, a relation is sent serially to the next smallest-

one to,pe;form,themsemi:jQin,”Thus+_$nly_ihe transmission cost

at every step is guaranteed to be minimal, a minimal size

relation is also created, which 1in turn guarantees minimal

transmission cost at the next step. Hevner utilizes the concept

N g

49

of a relation schedule , i.e. a sequence of semi-joins to be

executed in linear order to that relation, as a preprocessing

step for that”relatipn, The construction of a relation schedule
is based on simple query tactics. This is the main reason why a
schedule results in mihimum transmission cost. A problem with

this tactic, though, is that relation schedules are independent.

That 1is, 1if R2 is reduced in cardinality in Rl's schedule, in
the schedule for R2 no notice of this fact is made. Algorithms- - -
AP and BLACK always make note of, and utilize, reductions of

relations. Also even though HEVNER uses simple query tactics, it

;,isr so construétedyfhétibpfiméi solutions for simblé”dhéfies”dbﬁi;r“

oy

‘not occur. and in fact ‘AP and BLACK 'perform better on simple

queries than does RAEVNER.

Before intfoducing algorithm HEVNER, the data structures

and terhinology used in the algorithm will be explained.

For each attribute A in the query we can define its isimple .

query solution' in the following way. For those relations, say

{R1,...,Rm}, with atttibdte A, create a schedule 'S such that the

relations are ogggred in increasing order ofiﬂm;;ardinality of

attribute A. (We are assuming here that all refationsv are at

different nodes in the network.)
For instance, if this ordering happened to be R1,R2,...,Rm

then the simple query schedule (solution) is:

R1.A R2.A . Rm.A

o v COER B ikt s b o B ey T e

s b e L it

B s redin 4

I s B I

"The schedule is to be executed from left to right, The
semi-joins are R2<A=A]R1l, R3<A=A]R2, cee Rm<A=A]Rm-1. The last

transmission is to the result —néde. R1.A has the -smallest

50

cardinality of‘Rl.A,RZ.A,...;Rm.A and the abové solution is the
- optimal rsolution if thié is a éimple QQery. A£;;igﬁte A in R2
gets reduced in cardinality by the (semi—join,_iR2<A=A]Rit The
reduced R2.A reduces R3, and'éq on. | |
-For each attribute, CASE 1 serial schedules are forméd; For
example, let there be three rélations, R1, Ré and R3, each atf

different nodeé in the network, and let the cardinality order be

R1.A < R2.A < R3.A: Then the CASE 1 serial schedules are defined

’

as follows:

R1.A
e 4 L = f
RTf.A R2.A

| ' I !

R1.A R2.A R3.A

If we are trying to determine the relation schedule £o
relation Ri in HEVNER, we first form the CASE 2 serial séheaules
for"réiation Ri. For example the CASE 2 serial schedules for
relation R2 from the above example will be:

R1.A
| |

R1.A R3.A
R | _ |

This is done by eliminating R2.A's transmission from the

-

CASE 1 serial schedules and eliminating duplicate schedules.

Algorithm HEVNER then utilizes these CASE 2 serial schédules in

~forming relation schedules.

We now present algorithm HEVNER. -

Y

ALGORITHM HEVNER : e e e T

1.

2.

- 3.

4.

g%ocedufe TOTAL

Generate candidate relation schedules. iéolate each of the

joining attributes and consider each to define a simple

query with an undefined result node. Form CASE 1 serial

A

"schedules.

P

Select the best candidate schedule. For each relation form
the CASE 2 serial schedules for each attribute. Each

“schedule in the set of CASE 2 serial schedules is considered

to be a ‘'candidate schedule' to the relation for that -

attribute.r Ifr the rcoStV};T arcandidate seﬁedﬁi;ﬁbi;é théyv
final transmissionAﬁo the result node has 1essfco§t than the
inifial*feasible solution\férvfhat relation and is the least
cost‘Candidate schédule then save that éandidate ~schedule

for that attribute for that relation.

Integrate the schedules. If only one schedule has pg¢n savgd

for relation, Ri, then this is the schedule to relation Ri.
Otherwise the saved schedules need integration. This is done
by Procedure TOfAL'given below.

Remove scheaule redundancies. Eliminate schedules for

relations which have been transmitted in the schedule for

another relation.

1.

Candidate schedule ordering. For each relation, say Ri,

order = the saved schedules in increasing order of total cost

o

3

‘The length of. a gap

52

5

(i.e. the .cost of the schedule plus the cost of the jm~w'

’transmission of Ri to the result node).
2. If 51,52,...,5n are the saved schedules to relation Ri, i
ordek' of vinbreésing total cost, then form the integrated
schedules SI1;SI2,...,SIn, whiéhr consist of the parallel
transmiésion of the saved schedules to relation Ri, such
that S1 is therénly scheddle in SIl, él'and’SQ are the only v
scﬁeéhies in SIZ, and Si (i<3) aré tﬁerénly scheduies in

-8I7. Select the integrated schedule SIj that fésults in ¢the

~minimal total _time value.

«

Since HEVNER produces‘? parallel independeht relation

L4

schedules, we,ha%e converted HEVNER's output 1into a semi-join

program using the following process. We will present the

algorithm using anW'eﬁample: Consider the ~ following 'relatidn'
schedules:
R2.P# . - R1 -~ -
R1: | - e | Resmode
420 . 420 ‘ \\

Rl.s# R2 _
R2: | | } | Result Node
120 420 , e
. R1.P# R2.P# R3 . A ——
R3: | | | | Result Node
420 , 180 500

signifying a transmission (or semi-join) is

meant to be proportional to the transmission cost 1labelled an

that gap. The final transmission in each relation schedule is

the transmiésion of that 'relatién"to the result node. This

53

transmission is ignored in forming the semi-join program. We

generaﬁe a semi-join program from these rélation schedules by

first examining all schedules;énﬁ choosing the semi-join with’

the 1least distance from the beginning of a relation schedule.
This prbcéss effectivelyﬁtimes the occurrence of the semi-joins
with respect to ‘the relationwseheaules, This semi-join is added

to RHO, the semi-join program. In this case, the semi-join first

chosen = is -R2<S#=S#]R1. This semi-join is noted as being used. =

The next semi-join chosen -is the one with the next least

distance from the beginning of the relation schedules. This

semi-join is R1<P#=P§]R2. Then R2<P#=P#]R1 and R3<P#=P#]R2 .are-

‘chosen in orde;: The semi-join program; RHO, is then
R2<S#=5#]R1 s R e =
R1<P#=P#]R2 '

R2<P#=P#]R1

R3<P#=P#}R2

=W+
M wm wm W

. -
N .

If any semi—jo}nsﬁwere duplicated in RHO the later duplicates in-

RHO deldwbé"éiiminatéagmﬁupii¢a£é"sémi—joiﬁéyféhd[ﬂfoﬁ in¢réaSé'

the cost of RHO. ’ ‘ : g

By adding a- timing. consideration for the execution of

O 3 -) ' . ‘ - : -
semi-joins . in Hevner's relation schedules, intermediate

reductions of relations are now being utilized hence there will

be a decrease in the cost of his query processing strategies.
The basic principle of using relation schedules in his algorithm

has been .retained and effectively we have introduced an

et 52 s 0

enhancement to his algorithm. v

- "'ﬁ“#"fgfffgzﬁfmwf =

, -
/ »
/ R .
7 .

|
iR R B 4 sl b th D b

5.4 ALGORITHM AP

Algorithm AP Q(ACCeSS Plannet), [Goodféir ie a~ greedy..
optimization algorithm 'since the semi-joins it 'thooses to
include - in RHO are ‘always' the 1least coSt semi-joins - as
determined by- the SDD-1 model'of a distributed databasehsystem.
There'ate‘only‘two requirements for a sehirjoin to be included
in RHO. The first is that it must haveitherleast cost in terms

. \ &
of the amount of data transmitted and thg second is that the

A

cost must be lese,than-o: equal to the benefit. The benefit is
defined as the amount of data reductlon at the relation being
reduced by the semi-join. Clearly w1th these conditions' the

semi-join prodram produced will always lead to a preprocessing

-

strategy with total eoet (the cost of gxecuting the semi—joins
plus the final transmissions to the result node) less than otA
equal to the initial feasible solution. | ‘
~ ,Thﬁt semi-joins AP con51ders for Ainclusion in RHO are those
‘imo"ed by the transitive clasure of the join clauses expressed

. ’ i 7 —
in the initial query, as discussed earlier. A semi:join once
‘included in RHO is not conSidered again for possiple addition to
RHO. |

Before;algorithm AP is introduced, the data structuree used’
in the algorithm are discussed.

RHO is the resultant semi-join program to be executed on
the wdlstrlbutedfdatabase systemT—QMEGA—%s—the—set—of—semk—jziﬁs~——%—f——f
thatWAP con51ders. When a semi- JoLn4;s_1ngluded44inggRHDAAJJ;tuiitttggggf

eliminated from OMEGA and OMEGAprofltable. OMEGAprofltable is

the set of semi~joins from OMEGA whlch have their cost less than ‘44"\%

2

‘or equal t& their benefit. The algorithm utilizes "the current

database state fo? determiningfthe current cost and Benefit.of'

- . 1

'semi—joins. ‘This consists of the'cufrent relation cardin

alities

and the cardlnalltles of- all attributes in those relatlons. Wheh

.a semi- 301n is chosen to be 1ncluded 1n RHO the currapt d

state is updated to reflect the effect of that*seml 301n
’ 3 v
datdbase state. Clearly only the state: of one - relatlon ne

bei‘dpdated for a given semi- 301n. When a semi- 301n is 1

atabase
on the .

eds to

ncluded

B4

“in RHO, OMEGAprof1table must be”.updated‘ﬁcn those ~sem1—301ns

ich freduceW”theﬁﬁrelatLonﬂm}ust;:peducedmandmthoseﬂsemizjcinsf:ij:;,

_wkh

emanatlng from the relatlon just reduced to determine ;if
G

sem1—301ns should- stllf\ be ‘in OMEGAprofltable and to-

- /

B T J
their cost and benefits.

ALGORITHM AP T

STEP 1 - INITIALIZATION: , , “' - 4
a. RHO := null program ' H <

~~b. OMEGA := the set of “legal - Seml 301ﬁs T T

c. OMEGAprofitable := those semi- joins from OMEGA
) such that cost <— ‘benefit
STEP 2 - MAIN LOOP
WHILE OMEGAprofitable is not null DO
Append to RHO the semi-join in OMEGAprofltable
‘that has the leéast cost over all semi- jolns
in OMEGAprofitable. Remove this semi-]Oln '
from OMEGA and OMEGAprofitable. |
-~ Update the database state. Update OMEGAprofltable.
STEP 3 — TERMINATION L
The reduced relations are now transmltted to the
result node. We assume here that the result
node is none of the relations referenced in a
join clause in the query and all reduced
felatiensma;e transmitted to this node.

o

those

update -

AN
N

Ll gt oeme s

N

The main problem with this algorithm ~’is 1its meth

od for

‘Updating the database state. Under the distributed 4

system mdédel used in SDD-1 the hlstory of prev1ous semi-]

~RHO" 1is 1gnored when d01ng databaSe ‘state updates. A

~

atabase

OlﬂS» in

s shown"’

T,

3

5,

5

]

: : s s ‘ Je . '
—-of. the seml—ggln progtrams produced in question.. -

%

i
=

PR

o) _ _ ,)

- S R | 56
earl}er, this ﬂleadsgtd irroneoesepdatesané.leaves~the‘qu3}ygyf-«X\r
‘ »

w

Recently}(Dec. 1981) a new nersion of algorithm'AP (called
OPT), has been publlshed [Good81] . OPT incorporates the solution
for the‘seml—JOLn hlstory problem;_ The primary rheuristic ‘for .

determining \the' next semi-join to be included in RHO has alseo

been changed' Instead of ch0051ng.%he least cost semi-join in '

OMEGAprofltable, OPT chooses < the semi-join with the greatest

profit (i.e. the benefit minus the cost of ,the semi- join) In

’

, Chapter _6f __present results,show1ng thetpégﬁormaace eﬁwboth—ezirz::

algorlthm] AP and OPT.

5.5 -ALGORITHM BLACK
Algorithm BLACK 1is similar in style to algorithm AP,

however there are three 1mportant dlfferences;uThe hlstory of

previous semi-joins that have been included- in' RHO is not
ignored when"calcu}ating’ the benefit ‘ot, a 'se@i-jdin. The
cardinalityf of xnpnhjoining attributes in a breiation being
redqced by a semi- 301n;¢é?e updated according' to AL(mcn,r)
(introduced in Chapter 4)’ We’use-the simple quer§ strateqgy as a \
heuristielr for' more {general queries. Wei can identify two

heuristics. The first is transmit the 1east amount of data at

*

ea:}step'(i.e. choose the lea ggﬁt semi-join). The second S

he rlstlc is to choose a semi~join that when it is executed, =

produces the Jsmallest cardlnallty ‘attribute. These tﬁo
. 4
heurlstlcs are 1nterdependent- that is, the second heuristic

prov1des the bas1s for the f1rst. We utilize these heuristics in

algorithm BHACK, ‘and in"this sense we say that algorithm BLACK

B , s - , ‘
takes a midd]e position between algorithms AP and HEVNER. These
,3 : f: ‘) - .
heuristics afe discussed in more detail below.
s . .

When choosing ~ the least cost semi-join from’

OMEGAprofitable, there will likely be several semi-joins with

the same least cost. When we compute the transitive closure of .

_'\J Lt

. be involved 1in Jjoins with two or more relations on the same

Aok T

attribute;* hence adding semi-joins of equai' cost to

.- “set of least -cost- semi-joins that prodﬁCes the §mallest
cardinality attribute. (Note that we have made the assumption in

~ Chapter 2-that the attribute size and*qardinality are equi%aient
§
and hence . the cost of disemi-join, say R<A=A]S, is the same'as

- the cardinality of S.Aﬁ Further, if R<A=AlS 1is -a 1least c¢ost

‘semi-join in OMEGAprofitable, then the cardinality of R.A is =~

guaranteéd.to be less than or equal to the cardinality of _S;A
Co- 3

afggr the semi-join is- executed; This 1is true 'since the

semi-join R<A=A]S is known té be cost‘beﬁefiéial. The 4equality

holds only when C(R.A)=DC.A éﬁuwhen R.A before the semi—jéiﬁ is

executed is a subset of S.A. If we assume neither of these

" the -join.clauses in a query, ‘it is likely that a ‘relation™ will

)

a -

A

S "4OMEG#pfofitéblE:”A}gUrithm'Btkexfehoosesmthe“sem%=ﬁﬁin*ffﬁm:th%sf*f:"'%

-

conditiops is true then we are guarantéed_ fhat the next - E
semi—join chosen by AP or BLACK will be a semi~}61n :emanétinQ) %
frgérf;éiéégggmiﬁ. N;Lis is true since the.only effect on the i
Tdétgbase state when R<A=A]S is executed"is ‘the reductién of g
relation R, hence the cost of all seﬁi-joins in OMEGA and %

OMEGAprofitable remain the same except for those from .«elation

-

e

I

e it By T

V'd -) ”v4. B V o 58

R. We eaﬁ’recursively apply this argument‘for”the“relétidﬁ“beihd "’

reduced as 16ng ‘as the semi—joins in RHO and the CSJ have no

common history and there are st111 semi- 301ns in OMEGAprofltable

o ¢

from the last relation that has been reduced -

This process‘occurs 1n\algor1thms AP and BLACK; however,'in

BLACK we have added a new heuristic. We do not arbitrérily

»

choose a semi-join to be included ih RHO fromvthe'set of least

cost semi-joins as AP .. does. We <choose the semi-join to a

relation that will produee the smallest cardinality attribute in

- that relation (joining'er'nonéjeiniﬁg attribute}'o?er the set of ~

least cost semi-joins. The rationale for this choice is based on

the previous discussion. The next semi-join chosen will 1likely

be from the relation w1th the smallest card1na11ty attr1bute7

because semi-joins on thls attrlbute from this relation will be
the least cost semi-joins in OMEGAprofitable (if there are any).

The next semi-join chosen will then have less data communication

cost and greater benefit at the relation being -reduced.-

- <
Algorithm UPDATE 1is wutilized to take into account the

a

history of previous semi-joins in RHO.. When a semi-join is added

to RHO, UPDATE . may be utilized to determine the new database

=

 state. When the benefit of a semi-join 1is to be determined

either when updating OMEGAprofitable or when examining

semi-joins 1n OMEGA UPDATE may be ut1112ed to determine the new

hypothet1ca1 database state if thlS semi-join were executed and

hence its behefit.

-Algorithm BLACK is now presented.

ALGORITHM BLACK S .

STEP 1 - INITIALIZATION
a. RHO := null program
b. OMEGA := the set of legal semi- 301ns L
c. OMEGAprofitable := those semi-joins from OMEGA

such that cost <= benefit

STEP 2 - MAIN LOOP
' WHILE OMEGAprofitable is not null DO

Append to RHO the semi~join in OMEGAprofitable
that has the least cost over all semi-joins
in OMEGAprofitable. (If there is more than
one semi-join in OMEGAprofltable with the
same least cost then the semi-join appended
to RHO is the one which produces the
smallest cardinality attribute in the relation
being reduced.)
Remove this semi-join from OMEGAprofltable
and OMEGA.

Update the database state using algorithm =~ T

UPDATE (from Chap. 4). Update OMEGAprofitable
using algorithm UPDATE. .
STEP 3 - TERMINATION)
The reduced relatlons are now transmltted to the
result node. k

5.6 ALGORITHM WS

7Aigofithm WS ftuﬁSO] is an algorlthm that seeks to 1mprove

-y

a semi-join :program produced by some arbitrary heuristic; 'tHév

program- is transformed into one with non-increasing cost and
non—decreésingibenéfit. Let RHC be the input semi-join program
and RHO', the output semi—join program‘ffom.algorithm WS. Theﬁ
RHO' satisfies the following conditions:A

1. RHO' and RHO give ‘the’ same answer to any given querf.

2. RHO' has a cost no greate; than RHO for all instances.

FEEPE SRS

£ e A N b S

3. RHO' has a benefit no less than RHO for all instances.

4. RHO' is produced glven only the program RHO; no additional

information, such as card1na11t1es of the attributes and.

‘relations, is available to algorithm WS. _

60

Furthermore, it has been proved that the improvemént of
'RHO' over RHO is optimal in the sense that there will not - be.
- another RHO'' which, is better than RHO' and still satisfies -

conditions (15 to (4). For a more detailed description of

algorithm WS see [Luk80].

5.7 ORDER OF COMPLEXITY’QE.THE ALGQRITHMS T . s
~Algorithms HEVNER}F\Aé and BLACK all run in the worst case
complexityxdf O(NA*(NR**Z)) where NA is the number of éttributes
~and NR is/-the- numbervfoff~re1aFjon5';in the gmery. This time *
complexityfgeflecté'the number of possible semi—joins when we

have NA- attributes and NR relations “in a query. The .time
complexity of algofithm‘ws is O(NR**3), . n

7 -

5.8 AN EXAMPLE
An example is‘ now presented ,to illustrate tHe ‘results .
produced by algorithms HEVNER, AP, BLACK and WS.

The example query has the following qualification. e

R1[P#=P#]R2 AND R1[P#=P%#]R3 AND
R1[S#=S#]R2 AND R2[A#=A#]R3

The database state is initially: i
RELATION JOINING ATTRIBUTE CARDINALITIES
SIZE P#] S# Af ~
R1l: 1000 400 100 ‘
" fR2:.._. 12000 | 400 —| —450 100
R3: 3000 900 v 300 o

" where the domain cardinalities for attributes.P#, S# and A# are,
respectively, 1000, 500 and 300. R1, R2 and R3 are at different

nodes in the network. The cost in data communication for the

ks

w?t

¥

4

initial feasible solution (IFS) for this query ~would be,

l000+2000f3DQO;6000.JThe results presentedfbelo#_maywbeﬁqompa£ed—;4 ———————

to

61

the IFS cost to see how well the semi-join pfepfocessing

strategies perfbrm.

The results produced from this query are given in the next

sections.

5.8.1 HEVNER'S RESULT

Algorithm HEVNER when given this query produces the

following relation schedules.

- R2.P# . .. Rl." . . R
“Rl: i i | Result Node T
400 -400
B ’ -
R1.S# R2 : .
R2: | i . | Result Node
100 400 - :
. "R1.P# R2.P# R3
R3: . | |
400 160 | , :
| | Result Node
- R2.A%- {7 160 — o
| | :
100

b W
- ' n N e~

The total cost of these schedules (ignoring Hevner's data

-generated from these relation schedules is: -

R2<S#=S#]R1
R3<A#=A#]R2
R1<P#=P#]R2
R2<P#=P#]R1
R3<P#=P#]R3

transmission cost constant) is 2120. The semi-join program we .

Thié'sémi4join program, re—-cost under our DDSM, has a total

of 836 'including transmissions to the result node.

62

5.8.2 AP'S RESULT

=

Algorithm AP produceé'the foiiowinq*semi-join*hprogram—*for* e

the example query.

-

R3<A#=A#]R2 - S S
R2<A#=A#]R3 S - -
R2<S#=S#]R1 .) </ﬂ
R1<S#=s#]JR2 ~ °

R2<P#=P#]R1

R1<P#=P#]R2 R

R3<P#=P#]R1 : : ~
R2<P#=P#]R3 : -

OIS WN
L T T T Y

‘This ‘semi-join prdé%éh”ﬁith'a‘total cost of 485 under aigOfithm
AP's DDSM Qhen re-cost under our DDSM has a total cost of 821.
- The 1large differenge in these coséS‘is'mainly due tovaigorithm
; AP igﬁégéng ghe history of previdus seﬁi—joiﬁs in'RHb;’f”

. R -

5.8.3 BLACK'S RESULT -

Algorithm BLACK produces the following semi-join program-

. £
for the example query.

R2<S#=S#]R1 -

R3<A¥=A¥%]JR2 - T o o e .
R1<S#=S#]R2 : :
R1<P#=P#]R2

R3<P#=P#]R1 ’ . .

R2<P#=P#JR3 - - - . _ .
R1<P#=P#]R3 _ S o
R2<A#=A#]R3

R3<P#=P#]R2

COIN U WN -

L L T L T T IR Y

The total cost of this semi-join program .is 571.

When algoritﬁg WS is applied to Ehé above sémi—join

program, it produces the following semi—ﬁoin program.

R2<S#=S#]R1 _ - .) _
R3<A#=A#]R2 : - ey e S -
R1<S#=S#]1R2 ' o . . : .
R1<P#=P#]R2 ——
R3<P#=P#]R1 ‘
R2<P#=P#]R3 ,
R2<A#=A#]R3 .
R1<P#=P#]R2 ’
R3<P#=P#]R1 .

W3O WN -
- W W - = - - W W

®

The total cost of this semi—joinfprograﬁ is 525. -

Algorithm WS has made changes to the last three semi-joins

in the semi?join proéram produced by BLACK. Semi-join 8- ~from- -
BLACK "has been repositioned by WS to fbécohe semi-join 7.
Semi-join 7, Rl<P#;P#]R3, from BLACK has been chaﬁgeduby WS to-
semi-join 8, RI<P#=P4IR2. Semi-join 9, RI<P¥-P#]R2, from BLACK
:’has been changed by WS to- semi-join 9, R3<P#=P#]RI1. Theée last
'twq chanées by WS are responsible for the éost reduction ?etween
the semi-join prograﬁs produced by algoritﬁms BLACK and WS. (

In summary,.ﬁe see that algorithm HEVNER‘and' algorithm AP
both produce more costly semi-join programs than algorithm.

BLACK. This greater cost is due to an over-simplified DDSM in

HEVNER's case and an incorrect DDSM in AP's case.

vy

6. SIMULATION MODEL AND RESULTS _ . -

-

6.1 INTRODUCTION

We have developed a simulation 'program to test the

performance = of the,'algérithms introduced in the previous
section. This program accepts as input a stfeam of queries along
with a aatébase deséription for each query. Each algorithm
inperprets éa¢h~query.and generates- a semi-join program. ~The
'sémi—join péégram ié re-cost under our DDSM and the cost ip data

communication of the semi-join program is recorded. The program

outputs for each algorithm'theASvgrage total communiééfion“coét

per query. This value includes the cost of executing the

semi-join program and the final trqnsmission’6f_fgiations to the
result node. The cost in data communication on the network of
the semi-join program is the sum of the costs fqéveacﬁ'semi:join

in the semi-join progr;ﬁ?%#The cost of a semi-join, say

Ri<A=A]Rj, 1is. C(Rj.A). The <cost of the final transmission of
/ .

relations to the result node is the sum of the relation sizes

H

after the semi-join program has been executed on the database.

In " the. next section we discuss . a method of generating .

-

random queries and what criteria we place on these queries.

¥

6.2 GENERATING RANDOM QUERIES -

4

" We are interested in how each algprithm performs in a

-

‘general query environment. To.be able to compare the performance
of each algorithm, it was necessary to average total"
communication costs for each query for each algorithm over a

- 64

65

L

farge number of querles. To g1ve some feellng of the range that

possible results. could have, the number of join clauses in the
o E N

queries was varied. This variation occurred over three

?{tervals; qgueries with ‘a minimum number of Jjoin clauses¥:

queries with a maximum.number of joih'clauses, and queries with

an - intermediate number of join clauses. How these queries were

generated is discussed next.
e S : : ’ | 3

6.2.1 VARYING THE NUMBER OF JOIN CLAUSES N

Lo

= f
Given the number of attributes and relatlons in a quevy, it

is 7p0551b1e to generate random querles w1th a minimum, maximum
and intermediate number of join clauses. Since there is one
relation per node in the distributed database, a graph withethe
relations as vertices may be-used;toqmodelpa guery. The‘edges in

»

the graph are labelled with attributes. If'ran edge .exists

between say,Rl and R2Vlaberlegfwfiggattribute”A;”thehVﬂthe join,r,l

clause, R1[A=A]R2, is present inwthe query.vThe graph i's mede a

connected .graph otherwise the query degenerates into two or more
independent queries.

If, for example, we have a query with four relations and

two attributes, then a query- with -a. minimum number of join

clauses can be expressed as a graph G, as follows:

G: A

SRS R TN |

" R3 6 ~o R4

The 3join clauses are R1[A=A]R2, Rl[A=AjR3 and R1[B=B]R4. The.

‘Join -clause RZ{A=A]R3 is al§og?present and is implied by

-y

R T

) E - \\
. . //a - ”777§67

“transitivity: For this number of relations and attributes and

graph G, the number of/join clauses is minimal. We cannot remove
a relation, an edge or '‘an edge label from G without changing the’

query, disconmecting G and unlabelling an edge, fespectively.

-

We ecan construct a query with a maximum number of Jjoin

clauses by allowing G to be the complete Qraph~on four vertices

-an@kgabelling;every edge with every attribute, as follows:

&',/b:‘ ' 7 , A,B

. R1 R2 .
A,B
, A,B_
) R3 R4
14 ' . .

.= R . . . -

‘ y . ' L .
It is easy to see that every join clause possible is represented

<

in G.

The method used for generating these types of queries is
. ‘ T, .

e d

described in more detail below. Queries with an intermediate

number of join clauses are discussed in jmore detail below.

s

‘&
. 4
~a

6.2.1.1 QUBRIES WITH A MINIMUM NUMBER OF JOIN CLAUSES

Queries with a minimum number of join clauses are generated

an

I

by randohly generatingy_minimally connected graphs with the
relations as vertrées. Attributes are‘randomlyﬁaséigned“ to the

edges. If there are more attributes tpan edges, the extra

attributes are randomly assigned to the edges. If there are

fewer attributes than edges, the extra edgés are randomly

assigned attributes.

6.2.1.2 QUERlES WITH A MAXIMUM NUMBER OF JOIN CLAUSES

Quer1es with a max1mum number of jo1n clauses are generated

-

by form1ng the complete graph with the relations as - vertices.

Every attr1butev1s assigned to every edge.

\ , ' RN

' \6.2.1.3 QUERIES WITH AN INTERME’DIATE\%@ER, OF JOIN CLAUS
Queries with an intermediaté number of jbin clauses are
generated by first forming a minimally connected graph.with -the ~ -

relations as”:the vertices. A random number of edges are then

added to this graph,. 1gnor1ng coll1s1ons, no more than half the

number ° of edges in the . complete graph 'féf’ th1s number of

1

vertices are added. The median value. of the. number of edges

added is half the maximum value. Attributes are then assigned to.

~the edges as -in queries with a minimal number of join clauses.

A

6.2.2 VARYING THE NUMBER OF RELATIONS ATTRIBUTES AND. AVERAGE

SELECTIVETY

For each of the three types of queries above, the number.of
- . 4

lattributeS'is va%ied over the range l—S,Ithe number of relations
,wis varied over the range 2-9, and ‘the average select1v1ty of
attr1butes in relat1ons is var1ed 6ver the valuesr 0. 05,' 0‘10,“'
0.20, 0.30, 0.40 and 0.50. If AS is the average select1v1ty then
Vthe-range ofdselectivity values randomly generated to arrive at

the above means are 0.0<AS<2AS.

In the next section we - discuss - Qow- the database. ?

cardinalities for both relations and- attributes were randomly

generated.

6.3 RANDOM DATABASE DESCRIPTIONS

Once tnaTnunbér of relationa in a qué;§jfi§ kndnn tha
cardinality of the vralationa“ dan be randomly generated. Tha
maximum cardinality isv set af‘ 100,000. Resuits from this
vsinulatiqn, aré quoted relative to&eadh‘oﬁher sonabsolute values
become unimpnrtantﬁﬁjb ‘ ' _ ‘ s ‘ , | A

The " domain ' cardinalities of the atfributes. are then
fandomly generated. The'cardinalities'of the-attributes in the -
relations are randomly generated to a - maximum of ithe domain

cardinality for that “attribute or the relation ca;dinality,

whichever is smaller.

All random values are generated uniformly.

6.4 STEADY STATE CONSIDERATIONS

The simulation program is allowed to test endugh queries of
a given type so that the <cumulative average of the total
transmission cost of a query quietens (i.e. reaches steady state

r

where there is little fluctuation in this value).

6.5 RESULTS

The major statistic compilied 1in the simulation is the
N V4
average cost in data communication per query, AVG COST, on the
netwotklm”AMG:QOST”ing1udesithe;cnétmciithemsemi:joinipxogramman_iﬁ;444

,a}ggzi;hm produces and the cost of the. final transmissions of

relations to the resuylt node.

In the fiqures that follow, some quantity‘is always plotted

“the” average select1v1ty7 When the number of ‘relations is

'AVG;COST‘:for?”these' experimental conditions is" determined;”'w

6.5.1 IMPORTANCE OF THE INITIAL FEASIBLE SOLUTION SR

y

.,“_ ') - /

. - o . T " : DR " <

> J&
against the number of" relatlons or the number pf attr1butes or

- - - — - o e = - - ‘

stepwise varled,, Say, the number of attributes. is varied

- randomly‘in'aeuniform fashion over the values 1 to 5 and the

average selectivity is varied randomly in a uniform fashion over

the range‘O?to 1. For each number of:; relations many random

queries afe generateéd and tested ,sd; that a steady value of

3

Likewise, the number of attributes and the average selectivity:

are stepw15e varled. In thls way we can get a feellng for how

each parameter (relatlons, attrlbutes and average select1v1ty)

affects. the performance'of the algorlthmsvtested. Eagh parameter

is tested fot ‘queries with. a minimum, an intermediate and a
maximum number of join clauses, respectively. : L i

. . . 3 K : ~

strategy only 0.13% of the t1me for the total number of querlesvv Z
tested by algorlthm BLACK. When broken doanﬁin terms bf;’the @t %
’number of join causes, the IFS was determlned to be’ the best) é
query process&ng strategy 0. 02% of the time for queries with évfr* é

‘ 3

are available. -

The IFS was determlned to be the Dbest query procesgﬁng

.
N SRR

minimum number of join clauses,VO.OS% of the}tlme‘for queriesaf'

dfiar

~

with an intermediate number of join clauses “and 0.0G% of ‘the ™ _.-_

timewfor,queries_with;aﬁmaximummnumbergeﬁgéoin—ciauses,

Clearly the IFS does not piay‘aFSignificant role as‘a‘queru

processing sfrategy when good semi-join preprocessing strategies

~
I
|
|
| |
\4
| - .
s ep L s oot T s e b

'STRATEGIES

- ‘ | .70

- . C . B — g e -

6.5.2 COST COMPARISON OF THE IFS TO SEMI-JOIN PREPROCESSING

[N
N

For each query, the cost in data communication of the IF§£?

is the sum of tHe relatlon sizes of the relations- involved in
the quer lgorlthm BLACK only produces a semi- jo1n ‘program if

Yy
it can im ve. upon the cost of the IFS. Algorlthm, WS .£urther

~reduces. this cost by rearranging or changing the semi-join

s -

“program produced by algorlthm BLACK. Since only 0.13% of all

quer1es tested by algorithm BLACK had the - IFS as the best query
proce551ng strategy, we can 1gnore the contrlbutlon of IFS costs

in ‘our esults. If we compare the IFS cost for a query (IFS

L]
N

COST) to the actuéL‘ cost . of the qpery processing strategy
produced (AVG_COST) - by algorithm BLACK in conjunction. with
algorithm WS for that query, we get'the resultsfshown in Fiqures

5, 6 ‘and 7.

[-

b

. In Figure 5 as the number of. relatlons increases the ratlo,,ﬁ°,,m”

of the IFS COST to AVG COST increases. For an 1ntermed1ate

number of Jjoin clauses when we have greater than 3 distributed

"relations in a query, the average improvement of the semi-join

preprocessing strategies over the IFS is greater than 10:1. The
average improvement is never less than 5:1.
In Figure 6, as we increase the "number of attributes in

queries, the ratio of the IFS COST to AVG_COST also increases.

3

“For an intermediate number of join c¢lauses this improvement i
) . - .

as the number of attributes increases.

In Figure 7 as the average selectivity increases, the ratio

71

i
f - R .
i ,,/)

- : v<,_-f ££§E£ v . ” . ‘ WAWIXEW @
- o wpx_ouzcmazu. ® - S C . 7 uvIoaNeANT @ -
] - x«‘ . z:z_z_:; I . |) c THORININ @
i i . , = - : ‘ ~ .
, ‘. $3SNYT3 N1OF 40 “ON g . §35NB7D NIOC 40 “ON

@ S T
d I et X
‘ . 3 o S
! S “
o
Z
o 0]
on 3
LY-E m,
= e
— .
o5 e 2
8z 8 8
L% w1
&
W >
© <
s . =
. Awnu %
\ TunN (4]
wl
[# 3
—t
| | 2

00°02¢ 0O0'ONe 00°09) _ 00°08 . 00'O° , 00°0S! 00Dl 00°08 - 00°Oh 00"

: 1803-9AB/4S03 S41 , , pmou 9AH/1S0D mm_

y

4.00

OF- ATTRIBUTES

\\

T
3.00

FIGURE 6: - - |
IFS COST/AVG COST versus No. of Attributes

~

-
- 2.00
ND.

.00

¥

IFS COST/AV

3g.00

15.00

.00

HIN[MUM
INTERMEDIRTE
MAX [UM

NG. OF JOIN CLRUSES

i
o
a

.00 0.10 0.20

0.30. © 0.40 0.50
AVERAGE SELECTIVITY -

i

 FIGURE 7: _
IFS 'COST/AVG_COST versus Average Selectivity

s

' b : ~ ‘ 73

of the IFS COST tQ'AVG_COSTVdeq;ea§g§,WWThi§miis Vaé one would
expect, except that this ratio decreases exponentially. This

fac£ indicétes Ehat-proper sélectivity estimation is a critica1'>
factor if semi—joip pfépfoceSSing strategies will perform in.
reality as they do on one's DDSM. For an intermedia£e number of

join: clauses the improvement of semi-join tactics over the IFS
is neVef—fg;; than 22:1. . . o . -

6.5.3 IMPORTANCE OF THE NUMBER OF SEMI-JOINS ' I

number of

ether _the

. There 1is _some

guestion as to wh
semi—joins in a semi-join preprocessingastrategy is important.

In a“backet-switched network it is the total amount of data to .
be <transmitted'tha£‘is significanﬁ: In this type of'hétwork thé- .
number of éemiﬁjﬁins to be executed should be unimportant. In m?
rordinary switched network'the Stéft-up cost causes the nﬁmbe; of
semiéjoins ‘to be executed -to -~ become sigificant- -fHevn79a}i-~ -~
Whatever type éf network is utilized, there is for each
semi~join some overhéad to‘consider inlloCal processingrvby “the

local distribqﬁed database managemenf system.' This overhead
consists of the number of instructions required tovgenerate . the
information lheadef for transmiséion of the éemi;ﬂbin operatioﬁ

on the network. This cost has been assumed to be ~zero in tﬁis i -

work, but if preprocessing strategies are produced with a large

number of semi-joins this cost could become a significant

factor. - | | o
To get a feel for how the number of semi-joins varies in-

preprocessing strategies, we Compiled'data Qn'the'averagefnumber4”***?”

N

74.

of semi-joins produced in preprocessing strategies for algorithm

BLACK for all types of queries tesﬁed._-Algorithm BPACK oni
average ,always 'produced fewer semi-joins in the query
preprocessing strategies than the other algorithms. |
In fighre 8 as the number of relations increases theAnumber
of semiljoins'producedvin the preprocessing strategies iné;eases
Iinearly. . The number of semi—joins'p§oduced when the the numbef
of attributes or the average selectivity is varied, remains

conﬁfant. We conclude that it is solely the number of relations

(or nodes in the distributed database) referenced in a query

\phat determines, on average, the number of semi-joins produced
\;\\ '
in\Rreprocessing strategies generated by algorithm BLACK. This
. \\ . - '
is aigp true for algorithm AP. The interesting thing to note
\ : '

from Fiéﬁ{e48 is that the number of Jjoin ,clauéfs in a . query

(i.e. thé\qgery complexity) has little to do with the number of

-semi-joins prddpced~in~the preprocessing strategies. This result

is 'indirectly \éqppO{fig by the fact that varying the nuhber of
attributes producea nq changes in the number of .semi-joins in
‘the pféprocessing sffategies. The ratibnale for this résuit is
difficult to assess. Angritth'AP and BLACK always choose the
next least cost semi-joih-jto :ber added to the'preprocessing
strategy. A least cost semi~join is effectiveiy the one with the

.) 4
highest selectivity (the domain sizes being equal). Relation

~cardinalities will decrease rapidly as semi-joins tend toward

. _ 1 ‘- i
~~ even higher selectivities. Our result says that slightly less

than 2 semi-joins are reguired to redyce each relation enough so

that there will-be no more cost beneficial semi-joins. Even when

§

N

75
o
.o) L o . . o o
w B) - o S
m,
Z "~
-—o -
Do ’
—)N_
=
wt
(7p)]
o
Lo
,DSQ- _ e (7 _ R
wl
N : 3 w
[D] -
. 2 w
Z - a
o [&) —
(=]
,© = LZ X WX
= — =2 x =2
o h =4 [+ s x
-y — w —
Z b4
w — = a
» - [»] x — x
8 .
[]
. r : . . z g © 4
2. 00 4.00 6.00 8.00 10.00

NG. OF RELATIONS
FIGURE 8: : : K

L-7§9,rpfrsemifqginswyeysus No. of Relations

' 6.5.4 SEMI-~JOIN PROGRAM COST

76

thére are a minimum number of join clauses this result holds.
Considérinévthe large decrease in network communication
costs produced by semi-join preprocessiné oQér the IFS and the
relativeiy sﬁall number of semi—jdin$ (2 per referenced node on
average) in these strategies, the‘ sémﬁ—join tactic must bé

considered a very good one.

-
.

-

When a semi-join preprocessing strategy has been dérived,

what proportion of AVG_COST is the semi-join program itself?

AVG_COST is made up of the cost of the semi—jdin program and the

-cost of the final transmission of the reduced relations to the

result node. The cost of the semi-join programs gannot be
isolated independently from AVG_COST. The cheaper a semi-join
prbgraﬁ is, the higher its ovefgll‘effective selectivity sn' the
database will bé; hen the final size of the'distributedr
relations will also be smallér5

Figures 9, 10 and 11 present the ;esults obtained when 'phe
numbgr of relations,. the number of attributes and thé,avergge
selectivity are varied, respectiVely..Figure 9 shows that the
proportion of the "cost of the semi-join program in AVG;CQST

generally increases as the number of relations increases. There

is a fair amount of scatter .in these results. The reason for - —

;o b
this is not known. The same result applies in Figure 10 -as -the .

number of attributes in a query is varied. In Figure 11, as the

average selectivity is vaMied, the semi-join program cost is in

constant proportion to‘AVG_COST, except when there is a maximum

-COST

‘¥) COST/AVG
4o

SJ COST/AVG-COST

1.00

0.80

60

1

0.

0.
LG8

1

0.20
. OF JOIN CLAUSES

NO.
0 MINIMUM

. MRXTMUN

o fﬂkyrenneolnrs ‘

A

.80

.00 4,00 5.00 8.00 10.00
'NO. OF RELATIONS

FIGURE 9:
SJ COST/AVG_COST versus No. of Relations

[y

.60 .
(

0

4o

0.
ol

MINIMUM

"INTERMEDIRTE
HAX T MUM

NO. OF JOIN CLAUSES

1.00 200 To00 400
NO. OF RTTRIBUTES

o
d

-
5.00

FIGU 10:
'SJ COST/AVG COST versus No. of Attributes

78

. o
— . 8 |
[=]
D.
o'd
—
[Op]
DO
Uw
5e
- |
< ‘ S
'_O
‘03 R . . o
]
U u);
- 2 w
g -
ad 5 ¥ X
g8 E £ X
P 4 — b
] s ¥ £ £
8 : . £ 8 e
.00 0.10 .20 0.30 0. 40 0.50 = Y -
AVERAGE SELECTIVITY
v4 FIGURE 11:
SJ COST/AVG_COST versus Average Selectivity
e . o -, by

number of join clauses. , 7

The 1ow percentage of the semi-join program coSt# in

™

AVG_COST when~$emgave\{e%énumbers' of relations or attributes
e ‘ o

indicates a better eemi—join program could produce more .

significant 'improvements in AVG_COST. Because under - these
conditioné there are fewer semi-joins to choose from inlgﬁally,
'some very good new heuristies will be needed to produce” these

improvements. o L ' ‘ o .

¢

N

6.5.5 COMPARISON OF ALGORITHMS " y

The performance of algorlthms AP, BLACK, HEVNER and OPT in

formulating query processing -Strategies is.fnow. 1nvestlgated.

Since the cost of the IFS varies for each‘query, all the costs

of query proce551ng strategies (AVG_ COST s) ha¥®—been normalized
2 .
so that the cost of the IFS for each query is 1000. This w111

-allow the comparison-of results-between-the algorithms. -AVG COST -

é

then has a maximum value of 1000. All semi-join preprocessing
strategies formulated by algorithms AP, HEVNER and OPT areA
re—-cost under our DDSM so that their perfor nce may pe compared
with algorithm BLACK (and BLACR+WS). |

In the next section, the effect of varying the number of

relations in a query is investigated.

ax
P

-

6.5.5.1 RESULTS FROM VARYING THE NUMBER OF 'RELATIONS

In Figures 12 to 14, AVG _COST is plotted agalnst‘;he number

of relatlons for queries with a minimum, an intermediate and a

maximum number 6f Jjoin clauses, respectively. Five curves are

MINIMUM NB. OF JBIN C'LRUSES

k

wn
X
« +
x .. wi x
g - z g
-t o a ool
ﬂ? [=] a r m
D h N
T y - . . 8 © € + X
.00 4.00 6.00 8.00 10.00
NOG. OF RELATIONS :
FIGURE 12:
AVG COST versus No. of Relations
for a Minimum No. of Join Clauses
3 x4 i
o .
ln-\
m . _
o .
(=)
C;-w
[o]
o
(=]
)
» (T2]
R 5
[]
) RS}
48 z
> [~}
(J:g4 o,
b W
[]
o
[z
o _
. W 721
E‘f — ; o :o‘
— x (™) x
| =] Q- =z (8]
w [« ~— B > a
x - Q. a Jd -
I xrX @™ ® a@© r © _
5 2 |
) ' . Z 8 © 4 +. x
.00 4.00 10.00 :

V 6.00 8.00
NOG. OF RELRTIONS
FIGURE 13:

5 ¢

for an Intermediaﬁé No. of Join Clauses

AVG_COST versus No. pf Relations

<.

81
- i N
| . \ S S
o -~ N v\\
D "N. -
'.d :
S0 - . N,
o -~ - O .
= =,
3 N
) ©
o .
[w]
=] .
o .
o] LN
Q u .
| (%3]
(_:)8 2 -
. >- = -t
T3 S .
- = -
(=)
=
8 5 -~
. w
ol N x -
m~ 5 hid [+ = +
z x R s x
(&) z Q
x a - > a
= -l o o w - ~
v I ©® ©® o T o
=3 x
Q N
— T . T B © 4 + X
.00 4.00 _ 6.00 8. 00 18.00
NO@. OF RELATIBNS
FIGURE 14:) L
AVG_COST versus No. of Relations -
for a maximum No. of -Join Clauses
. 0 /
\' S0
I . W S /
. 7
3 ™ ®

present in each figure, one for each algbrithmitgsted,wmw
" In the figures,_as the number of relations increases, .the
N . v o

cost of the semi-join preprocessing strategies decreases as a

percéntage of the cost of the IFS. This trend is also noticed as
. o _ 5 , .. v)
the number of join clauses in a query increases. We can conclude

o

that "when ‘there are more join clauses in a query (hence more

: ’ ‘ e : - ‘ : .
semi*-jains to -choose from) query preprocessing strategies

formulated by these algorithms become éheéper.

Table 1, presented below, summarizes the results in Figures

-

12 to 14. The values quoted are- the average value _of AVG; COST --

for .the points on each curve. / :

—— A

ALGORITHM ' " NUMBER OF JOIN CLAUSES
R MINIMUM] ~_ INTERMEDIATE MAXIMUM
BLACK . < -| 101 - e 52
OPT - : “14s5| 93 _ 58 '
_|AP ~ o 18y 921 ST
HEVNER 193 o131 : - 81 S
BLACK+WS ~ 85| "~ 64 ‘ 52
Table 1:° - v
Average AVG_COST when varying
the.No. Qf Relations . -

From the results in Table 1, we see that algorithm HEVNER

~

' performs worse, on average, than any of the othet orithms. Lt -

is. interestigg to note that the new version of algorithm AP,

OPT,'performsjworse than AP whgn there are a ‘minimum and

intermediate number of Jjoin clauses in Jueries. Since OPT has

incorporated a solution for the semi-join history problenm, ‘one -

would expect it‘\t% perform better 'thgh AP, which does not

A‘\i»;, o . v . - T 7777”'7,/7 I ,8,3, R — ?

N L4 .
utilize this result. The OPT heurisitic of choosing semi-joins

with a maximum ptofit must be a veryvpoor strategy, indeed. This

also indicates that the heuristic used in AP; choosing the least
' ~ ' [
cost semi-join, is very g Algorithm BLACK uses an extension

of AP's heuristic and .also incorpotates a solution for the

3

‘sggi;join history problem. One would expect BLACK . to perform

!

better , than 'AP‘,or OPT, which it ~does, significantly. The .

“*speed-up' algorithm WS provides on the semi-join programs

produced by BLACK gives an even greater improvement.

6.5.5.2 RESULTS FROM VARYING THE NUMBER OF ATFRIBUTES

In Figures 15 to 17, AVG_COST is plotted against the humberN

”

of attributes for queries with a minimum, an intermediate and a
maximum number of join clauses, respectively.

For queries with a minimum number of join clauses, as the
/) 8

\ . .

i

preprocessing stfategi s produced by HEVNER and OPT increases. -

Since there afe a minimum number of join clauses in these
: ke -

. - T, . P
queries (i.e. a miniﬂ’l number of edges 1in the query graph),
each relatiéﬁ‘ SChedule 'HEVNER produces will contain fewer and

fewer semi-joins -as the number of attributes increases. Thus. the

Eg

fffectng _selectivity ~of each &schedule will decrease and, as

® =T

seen,/AVG;COST fncregéﬁé as the number of attributes inc}eaées.

B i e i R e L b e e

- number of fattrfbuteSw~increase57w~the~ gﬂ§t9ﬂof"wthe*'Sgﬁi;join'f"""'

With only o%e’,attgibute, the queries are basically siméle '

queries and the r;lqﬁ%on‘sqhedules formed will have a maximum

k3

number of semi?joins préSent. EVNER performs Eést in this case.
As the npmber»df'jdiﬁ clauses in queries IncrquﬁéffffﬁfgﬂmEééé*:
. . - » L {% e : «

¢ -

200, 0d

160.00
.y

120.00

1 00
. . ?\
: /
i
!
MIN[MUM NG. OF JOIN CLAUSES

M

CAVG-COST

(=)
_— - Yo, 200 3.00 4.00 5.00
T NO. OF RATTRIBUTES

el

) FIGURE 15: }
: : AVG_COST -versus No. of Attributes.

for a Minimum No. of Join Clauses

-

~

BLACK
oPT
AP
HEVNER
}auacxous
|
|
!

S
x

HEVYNER
BLACK+WS

AP

1N1EH<;>IRTE N8. OF JOIN CLAUSES

: D o]
8] '
)) " .00 2.00 3.00 4.00 5.00 .
; ‘ NG. OF RTTBIBUTES ’ S
: | ' T FIGURE 16: |

AVG_COST versus No. of Attributes

for an Intermediate No. of Join'Claﬁsegl

BLACK
aer -

(U
®-
+7
X

- .) o
: 1
< oy)
B} RN - - _ . _ R __ o _ e T _ e
. e . A IR - S _
(=)
a.
- "‘v“ "
T (2]
ud
n
2
a
- '
[}
.. - z
D »
e I e I o __
- ;
()
- 72}
. = 4
- o R B
-4 x Wt x
. [} -4 [&]
x a — > [o of
= s} [+ a {1} -
x m | =] a p o m
f
= . __ : - $ B8 © € + X
1.00 2.00 3.00 4.00 5.00 -
‘ NG. OF ATIRIBUTES : |
FIGURE 17:
4
i 4
AVG_COST versus No. of Attributes
for a Maximum No. of Join (@;ses

& E
’:l;lf.' -~
. IR . . i
- .86 «
. . :] o ,///,, e

becomes less févorabley;since”'relation -schedules will ~become

— _
more cost beneficiaf)}with ~parallel attribute schedules, thus.
\increasing the overal selectivity of thé»schedulé;
Th; behaviour of dPTQis bery.similar to th;t of HEVNER. For
a minimum'number of join clauses, when we have one attribute in
the queries, OPT hés-the most candidate semi~joins to choose
from. As the numbgr—bf @ttfibutés iﬁcreases,'thé nﬁmbgr of jbinl
clafises remains constant, but the number of implied semi—joins'

decreases. One can conclude 'that the heuristic used in PT for

choosing semi-joins does not work well when it choice of
profitable semi-joins is limited.
Table ?, presented below, Summarizes the fesults shown in

%

Figures 15 to 17.

ALGORITHM NUMBER OF JOIN CLAUSES
' MINIMUM INTERMEDIATE _MAXIMUM
"éLACK' - 74 a3l . 26
OPT . ., 130]° - eal| 31
AP ~ 90 ' 64| . 41
HEVNER 147 : 92 48
BLACK+WS '56 | 39| 46

- : Table 2:) |
Average 'AVG COST when varying

the No. of Attributes . .

_ The resultsﬂpresented"in"Tabie”é'éhow'the ‘same—trends ‘as- . -
- the results" presented in Tab&e~ifw%é¥e;{%efﬂﬂmbef~efrfelakionsi

in queries was varied.

et

6.5.5.3 RESULTS, FROM

VARYING THE AVERAGE SELECTI

ITY

In Figures

18°

to 20, AVG COST 1is plotted against the

average selectivity for queries with a minimum, an intermediate

and a maximum number of join clauses, respectively.

' For each algorithﬁj as the average selectivity is varied

from 0.05 to 0.50} AVG_COST increases. Semi-joins with -an

initial §Verage selectivity of 0.05 would be expected to have

greéteq reducing

effect on the

-

size

of the

- semi-joins with an average selectivity of 0.50.

database

than

For a pa?thUIarlselectivity value, as the number of join

clauses in dueries increases, AVG_COST decreases. When there are

more Jjoin clauses in queries, this result reflects the greater

.choice and greater numbers of semi-joins to choose from when

forming query preprocessing strategies."

Table 3, presented below, summarizes the results in Figures

Again, the samevgeneral trend of results

Tables 1 and 2.

1

the Average Selectivity

18 to 20. R
ALGORITHM E NUMBER OF JOIN CLAUSES
MINIMUM INTERMEDIATE MAXIMUM
* "|BLACK 44 23 7
OPT 75 B 36 10
AP - 48 36 15
HEVNER . 86 44 16
BLACK+WS 30 21 7
 Table 3: R

Average AVG_COST when vasying

is noticed

as

in -

200.00
4

160.00
ot

120.00

RVG~CCOST

80.00

1

40. 00

’

.00

J

~100.00

80.00

1

60.00

0ST

&)
wo
=O
To

4

20.00

T T T~
0.10 0.20 0.30

AVERAGE SELECTIVITY = .
' FIGURE 18:

.J'

T
0.40

o

.50

B AVQ_COSEfversus Average Selectivity

for a Minimum No.'of Join Clauses

t

~

. 0d

.00

Y T
0.10 0.

20 0.30
AVERAGE SELECTIVITY

EIGURE 19:

0.40 © 0.50

AVG _COST versus Average Selectivity

for an Intermediate No.

of Join Clauses

MINIMUM NO. OF JOIN CLAUSES

]

OF JOIN CLAUSES

INTERMEDIRTE NO.

.
.
+
»
4
I & _ S

w

x

@« +

X d x
(] =z (&)
a — > o
pou } a o Lot —J
om [=) a e o4 [+e]
B © 4 + .x

A
w
x
o« + .

X w 4
Q =z [
a ~— > o
pou } [Q. ut -
[¢a] [=] a h s m
3] < + x

AVG—COST

o

o L 3

o. .

=

o

[w]

o

[ep]

o

[w]

=

[9¥]

O e

O N

3.

o

o

G;—.

o

e

.00 0.10 0.20 0.30 0.40 0.50

RVERRGE, SELECTIV ITY

. ' FIGURE 20:

AVG_COET versus Ayerage Selectivity’

for a Maximum Nb‘. of Join Clauses

OF JOIN CLRUSES

MAXIMUM NO.

BLACK

u

OPT

.

AP

+

HEVNER

BLACK+NKS

x

6.5.5.4 SUMMARY OF RESULTS

No one of the algorithms has any time advantage in deriving

a query prepro?essing;Strategy for a query, since they all have
the same order ofwtiﬁg4compiexity, (Algorithm BLACK will derive
a strategy for ‘a query in the order of a few millisecbnds of
computer time.)

| Alédrithm HEVNE? always';performsr worse :than the other

alg‘Brithmsr The strategies it derives are at least twice as

costly as those'derived'by élgorithm BLACK.

Algorithms AP and OPT peform similarly when queries hqveﬁéﬁ'

.

intermediate number, of join claus®s. AP is significantly better

than OPT when queries have a minimum number of join clauses. OPT

is slightlykbetter than AP when QUeries have a maximum number of

join clauses. "

AlgSrithm WS produces its greatest improvements on the

- output of algorithm BLACK when queries have a minimum .number of

. F :
join clauses. When queries have a maximum number of Jjodin clauses

algorithm WS produces iit;le improvetht.)

"7. CONCLUSIONS AND SUGGESTIONS’FOR FUTURE WORK
We have seen that the DDSM's that algorfthms‘ AP and HEVNER
. utilize are not realistic ehough since the "~ semi-join

preprocessing strategies produceﬁ”do not perﬁorm well under our

DDSM.

The‘ parallel indepehdént relation scheduieslfha£ algorithm
HEVNER produces are the main reason for its failure to perform
well when com;gzed to our algorithh. B 3/
Ignoring the semi—jbin history/problem is" the main failing
4+ - of al%érithmgAP'smethodof producing semi-join preproceésingv
.strategies. -)
We 'saw that recent improvements in algorithm AP (OPT) have
not grpducedla better algorithm. Choosihg the most ‘profitébie
u\semi—jqin férr inclu§ion in RHO is not a good heuristic and it
- dancelé thé beﬁefit OPTF has,overbAPfih ihcorporating a salution
for the sémi—join hfstory problem.. o 4
vAlgdrithm BLACg\is significantly better than algofithms AP
and OPT in producingzgood semi-join preprocéésing strategies.
Algorié%m HEVNER, evén -with bur enhanceménqﬁ,does not produce

good semi-join preprocessing stratééies. It is unlikely that

HEVNER can be improved significantly with a minor modification

of heuristics. - Algorithm WS achievesr further signifibant
reduction . of query processing costs by 'speeding-up' the
semi-join éxéprocessing strategies formulated by valgorithm
BLACK. |

One question cogcerning this research-that has not been
answered is, how closé\@re our results to an optimal :;glution?
1 _] .)
91

92

At the present time no worker has proposed an'alﬁéfffﬁm;féf'thel

optimal solution. If.the results presented here ~are within —a-

Fs

factor -of 2 to the optimal solution; more work in this area is

- gnnécessary. Even if an optimal solution were proposed, since
~— , % ' ‘ SN
t algorithm will necessarily be exponential, it may be

[4

possible to determine optimal results only for a very 7limited

-class of queries. This question needs to be answered to provide

be necessary to allow such an algorithm to determine results for

the general class of queries. | .

N

‘a benchmark fd?\hQQE£StiC algorithms. Some novel -solution will

i

93
- REFERENCES

Astr76 o , , :
Astrahan, M.M., et al, System R: A Relational Approach to

Data Management, ACM Transactions"on Database Systems, 1:2,
1976, pp. 97-137. : Co

Bern8la - S . - .
Bernstein, P.A., and D.W. Chui, Using Semi-Joins to Solve
Relational Queries, JACM 28, 1 (Jan. 1981), pp 25-40.

/ Bern8lb : : ' ' : .

" Bernstein, P.A., and N. Goodman, The Power of Natural =

Semi-Joins, SIAM J. Comput. 10, 4 (Nov. 1981). w -
Chiu80 ’ ‘

: Chiu, D.M., and y.C. Ho, A Methodology for Interpreting Tree
Queries into Optimal Semi-Join Expressions, In Proc. ACM SIGMOD
Conf. May 1980. ' =

CODA71]
CODASYL [1971], CODASYL Data Base Task Group April 1971

Report, ACM, New York,.

v

Codd70 | 5
' Codd, E.F., A Relational Model of Data for Large Shared Data

Banks, Communications of the ACM, Vol. 13, No. 6, June 1970, pp.
377-387. -
Codd71 : - , - SRR
Codd, E.F., Normalized Database Structure: A Brief Tutorial,
Proceedings ACM SIGFIDET Workshop, New York, 1971. ‘

Codd72 .

Codd, E.F., Relational Completeness of Data Base
Sublanguages, in Data Base. Systems, Courant Computer. Science
Symposia Series, Vol. 6, Prentice-Hall, 1972, pp. 65-98.

Good79 ‘

Goodman, N., P.A. Bernstein, E. Wong, C.L. Reeve, J.B.
Rothnie, Query Processing in 'SDD-1: A System for Distributed
Databases, TR CCA-79-06, Oct. 1979, Computer - Corporation of
America. ‘ : .
Good8l - - ST S G

Goodman, N., P.A. Bernstein, E. Wong, C.L. Reeve, J,B.

Rothnie, Query Processing inAarSystemmio;mDistrLbuted “Databases .- -

(sbD-1), ACM Transactions on Database Systems, Vol. 6, No. 4,
Dec. 1981, pp. 602-625., ,) '

7

94

Hevn79a 5 , : -

Hevner, A.R., Optimization of Query Processing 1in
Distributed Database Systems, Ph.D. Thesis, Purdue University,
1979. ‘

Hevn79b ,

Hevner, A.R., S.B. Yao, Query ' Processing in Distributed
Database Systems, IEEE Transactions on Software. Engineering,
Vol. SE-5, No. 3, May 1979.

IBM78 | | . | (
IBM [1978], 1IMS/VS ©publications GH20-1260, SH20-9025,
SH20-9026 and SH20-9027, IBM, White Plains, N.Y.

Luk80 : o ; o
Luk, W.S., Optimizing . Query Processing in a ,Distributed
Database System, TR 80-4, 1980, Simon Fraser University.

Luk8l
Luk, w.S., On. Estimating Block Accesses 1in Database

Organizations, TR 81-10, 1981, Simon Fraser University.

Mart76
Martin, J., Teleéommunication and the Computer,

Prentice-Hall, Englewood Cliffs, 2nd edition, 1976.

Ston76

Stonebraker, - M., E. Wong, P. Kreps, and G. Held, The Design
and Implementation of INGRES, ACM Transactions on‘%ngabase
Systems, Vol. 1, No. 3, Sept. 1976, pp. 189-222. ,ul

5, ¥

v

Wong79
Wong, E., Retrieving Dispersed Data From SDD-1: "“Bystem for

Distributed Databases, Proc. 1977 Berkeley WOrkshop @Q{ Dist.

Data Man. and Comp. Networks, May 1979. b

i

Yao77 : . ST
Yao, S.B., Approximating . Block Accesses to Database

Organizations,CACM 20, 1977.

Yu79 _ (: v
. Yu, C.T., K. Lam and M. Ozsoyoglu, An algorithm for
Tree-Query Membership 'of a Distributed Qﬁexg*_ln ‘Proc. COMPSAC
1979, IEEE Comp, 9bc1ety, November 1979.

Zani79) :
Zaniolo, C., Design .o0f Relational Views over Network
Schemas, International Conference on thé'Managémeqi/of Data s
ACM-SIGMOD 1979, pp. 179-190. '

Zipf49
Zipf, G.K., Human Behavicur and the Principle of Least
Effort, Addison-Wesley, Cambridge Mass., 1949,

A

