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 ABSTRACT

'This thesis consists of a survey of the properties of a
class of héﬁiltonian graphs called hamiltonian-connected graphs.
.Chapter 1 consists 6f'a brief s&;;ey‘of the current status’éf%
studies on necessary and sufficient conditions for a graph to be
hamiltonia;l Chapter 2 iS'devotéa to a survey‘of necesgary and
sufficient conditions for avgraph té be hamiltoniaﬁ—conﬁected.i
In chapter 3,va characterization of<Cayle§_§raphs on an abelian
group which are hamiltonian—conhected is‘éivén. In chapter 4,
some necéssary and sﬁfficient coﬁditions for the g%%étence of
two special classes of hamiltoﬁian—connected dgraphs, called,

respectively, PLD-maximal graphs and péncoﬁnected graphs, are

. -7

'fﬁﬁéstigated. Various examples and counterexamples concerning
some open questions and a few conjectures on the path length
- distribution (PLD) are presented at the end of Chapter 4.
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- CHAPTER 1

AN INTRODUCTION TO SOME

CURRENT RESULTS ON HAMILTONIAN GRAPHS B

Section 1.1 Introduction

%

Studies on the existence and properties of paths and cycles on a
specified number of vertices in a graph have been of considerable
interest to both pufé and applied mathematicians aév&el} as researchers
in other disciplines. Important practical applicationg of such studies
can»be found in fields related to—operations~research, eleCtr;cal
engineering, computer algorithm analysis as well as maﬁy other éreas‘of

scientific research. This thesis primarily concerms itself with the

study of graphs which have a path connecting any two distinct vertices

N o
4

such that all other vertices %? the graph are contained in the path.

Section 1.2 Recent results on hamiltonian Qraphs

The definition of a graph and all the notations employed primarily
follows that of . Bondy and Murty [5]. A graph G=(V(G),E(G)) as
defined in'[SJ is assumed to be loopless and without multiple edges.

Otherwise it is called a pseudograph.

Definition 1.2.1 Let G=(V(G) ,E(G)) be a graph. If a cycle C in

w



2

G satisfies lv(c)l =Iv(G)] , then it is said to be a hamiltonian
cycle. A graph is said to bea hamiltonian graph if it has a
hamiltonian cycle.

Definition 1.2.2 A graph G=(V(G) ,E(G)) is said to be a hamiltonian-

connected graph if for every pair of distinct vertices u,vev(G),

there exists a hamiltonian u,v-path in G.

Since the four-color theorem hasvrecently,been proven with the
aid of a cpmputer,.the oldest and the most famous unsolved probiem-in

the theory of’qfaphs is undoubtedly'that of constructing an elegant amd

practical characterization of hamiltonian graphs. Indeed, thesestwo
o, &

-

problems are not entirely unrelated. It is known that [46] evéryj
;hamiltonién plape map is 4-colorable. The problem of récognizing a
graph -to be hamiltonian is notQ;iously difficult. In fact Karp, -,

- Lawler, and Tarjan [32] proved that it is an NP-complete problem.

' Combined with a theorém of S.A..Cook L16], the existence of a good,
charaétérization of nonhamiltonian graph seems unlikely. Cénsequently,
‘major efforts have been devoted to constructing certain Va#ieties of
sufficient conditions forAdiffefeht claSses of graphs and a few
Aecessary conditions -for a graph to be hamiltonian.

There are two main objectives ihifhis thesis. The first objective
is to provide a thqrough up to date survey on the existence and the
properties of a specia;zclass of hamiltonian graphs called hamiltonian-
connected graphs; in particular, the panconnected graphs and‘PLD—

maximal graphs. Chapter 2 of this thesis is concerned directly with

the necessary and sufficient conditions for a graph to be hamiltonian-'
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connected and general%za£ions of qpch conditions to graphérwhich aré
n—hamiltonia;zconnected. In Chabter 4, the concept of hamiltonian-

R o
connectedness will be generalized td\congider even a smaller pléss of
hamiltonian-connected graphs called panconnected graphs ana PLD-
maximal graphs.»-A-graph G=(V£G),E(G)) is said to be panconnected if
for each pair of distinct vertices u;V’EVWG) and for each £ satisfying
“dG(u,VKXKW(GH -1, where dG(u)v) denotes the d}stance betwéen u and v,
there exists»a uv-path of length{ .. Clearly, each PLD-maximaligraph is‘
a paﬁconnected graph. |
The second‘oﬁjective is to provide a éomplete characterizatiqn of

- .

the hamiltonian-connéctedness of a Cayley g;aph‘on an abelian group.

This is given in Chapter 3.

Finally the present chapter is intended to provide a brief survey

§n the relevant general necessary and sufficient conditions for a
graph to be hamiltonian, Since it is ﬁbt ‘the objecfi&é ofrthiéwtheéig
to pursue the details of such conditions, the probf of the theorems‘
presented in this chapter will not be ﬁrovided. Instead, numerous examples
. will be presented to illuminate,the strength and the sharpness of these
theorems: The followiné categéries of\sufficient coﬂditions for a graph
to be hamiltonién will be discussed: degree conditions, edge conditions,
the condition of being the ﬁower of a graph and conditions.which involve
some topological parameters like connectednéss andlindependence numbg:.

We now begin with a few simple but important necessary conditions

for a graph to be hamiltonian.
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Theorem 1.2.3 [5] Let G=(V(G),E(G)) be a hamiltonian'gréph.' Let

)S be any non-empty proper subset of the vertex set V(G) and let

=

-y

Q(G—S) be the number of components of the subéraph~§V(G)—S).' Then

c(G-s)<|s|.

As a conseqguence of this theorem we have

Corollary 1.2.4 Every'hamiltonian graph is neéeséarifyréiconhected.

Necessary conditions are very useful for identiinﬁg

nonhamiltonian.graphs. For example, the graph in Figure 1.1 is non-~

a

hamiltonian since the removal of the vertices labelled ul,uz,u3 results

in a disconnected'graph with 4 components.’ "However, the converse of
Theorem 1.2.3 is false as illustrated by the graphs in'Figure 1.2 and

Figure 1.3.- In fact the graph in Figure 1.3 is the smallest graph which

figure 1.2 V figure 1.3

K

is a count’ere#ample to the converse of Theorem 1.2.3. The converse of



- Corollary 1l.2.4 is also false as the complete bipartite graph

ijn' where m<n, serves as a counterexample.
, .

Chvatal [14] introduced the definition of a graph to -be

—

i—tough if-C(G—S)§TS{ is satisfied’for every nonempfy subset S
in V(G). It foliows from Theorem 1.2.3 that eVery hami ltonian
graph is necessarily l—touéh., Chvateluhas,further,extended,this
idea by defining the tonghness t(G) of a graph G by

r

t(G)=min{ S is a cut set in G}. A subset S of V(G) is a cut -

e
c(G-S)
set in G 1f c(G=8)’1. Intuitively, the toughness t{(G) of a graph
is the measure of the ability of a graph to hold together when
subsets of vertices in vV (®) are removed. G-being l-tough.
implies that t(G)21l. A lower bound and an upper bound for the

toughness of a graph may be established from the connectivity kK and

independence number ﬁ of a graph G.

Theorem 1.2.5 [14] Let G be a graph,not isomorphic to a connected

graph with connectivity K and independence number'a . Then,

K (Gl k.
2

P‘ E

The lower bound of Theorem 1:2.5 follows directly from the fact

that for ahy cut set S in G, |sl2k and c(G—S)Sp. The upper bound is
obvious. - Note that X is exactly the bound for the complete bipartite

graph Km The concept of toughness provides a necessary condition

’

for a graph to be r-hamiltonian.

Definition 1.2.6 [36] A graph G is r-hamiltonian if the removal

of any k vertices from G, 0¢k<r results in a hamiltonian graph.

Note that a r-hamilténian graph is (r+2)-connected.



John Molluzzo [36] proved the following neceésary condition.

Theorem 1.2.7 [36] If G is n-hamiltonian, the't(G)Zl+£:

B :

He also proposed the following conjectures.

Conjecture 1.2.8 [36] 1If t(G)>2, then G is hamiltonian-connected.

Conjecture 1.2.9 [36]1 1If t(G)>2+x, then ¢ is r-hamiltonian.
g : :

The next well-known and useful necessary condition to be discussed

is -the egquation of Grinberg.

Theorem 1.2.10 [4] Let G be a planar graph with a hamiltonian
Iv(c)| ' - ' o

cycle C. Then (i-2) (¢'-¢")=0, where ¢i and ¢£ are the

. i=1 i i '

numbers of faces of degree i contained in Int C and Ext. C,

respectively.
With the aid of Theorem 1.2.10, one can easily show that tﬁe graphs

'in Figure 1.4 and Figure 1.5 are nonhamiltonian.

Grinsberg's graph

figure 1.4 figure l.% : -

The grgph in Figure 1.4 is the Grinberg graph. Each number in

a region of the graph represents the degree of the region (that is, the
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number of edges which constitutes the region;). HTo show that it
is nonhamiltbnian we . assume tﬁe contraryf Then the faét that

~ the Grinbérg graph has faces of dégrees 5, 8 and 9, the Grinberg
equation~yieids.B(¢é—¢g)+(¢é—¢§)+7(¢f—¢§)=0>whichlimplies that
7(¢é—¢§)=0 (mod 3). Thié, however, is impqssible since the value

. of the leftvhénded side Qf the last equation is -7 or 7 dépending‘
on whether the face of degree 9 is in Ext C or Int C.

A ;imilar argument shows that the graph in Figure 1.2 is
nonhamiltonian. Assuﬁe the contra;y. If a haﬁiitoﬁian cycle C can
be found, then the resulting Grinbérg's equation is 2(¢é—¢2)=0.

This, hoﬁevef, is impossible -since there are 'an odd number of
regions of degree 4 in the graph. }
The equation of.GrinEerg will be eméloyed again in Chapter 4
. %
of this thesis to help construct an important set of counterexamples -
to a well known conjecturé by ﬁ.j.Faudree and‘R.ﬁ. Schelp
concerning hamiltonian-connected graphs [23,24]. (See Theorem 4.4.8).

There is a wellenown sufficient condition [15] for a graph
to be hamiltonian which is expreésed in" terms of the topological
parameters connectedness K and independenée number p.

Theorem 1.2.11 [15] Let G=(V(G) ,E(G)) be a K-connected graph with

independence number'P. 'Ifi<{ﬁ;‘ﬁhen'b is hamiltonian.

Two more sufficient .conditions for a graph to be hamiltohian
expressed in terms of congé%tedness and locally connectedness can be found
m_ ‘ L 1S . ; . ) ' . .

v
- . X ,
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in Section 2.2. A considerable amount of effort has been devoted to
the development of sufficient conditions for a -graph to be hamiltonian

expresséé:in terms of the degrees of thé‘vertices.

Foe

Chronéloé?cally, Dirac [17], Ore 1391, posa [41], Bondy [6] and
Chvétal'[l3] have determinéd such conddtions, with each successive result
strenéthening those-preceeding>it. Let GéV(G),E(G)) be a graph on n
vertices; Without loss of generaiity we éssume that the set of vertices
V(G)={Vi""'vn} satisfies the deg;ee séquence dlSdZS...Sdn, where di
is the degree of'vi in G

Suppose that n=|V(G)|2 3. Then Theorems 1.2.12 through Thebrems

1.2.16 hold.

Theorem 1.2.12 (Dirac [17]) If S(G):Min{di[lSkSn}>E, then G i§$
: T2

hamiltonian.

Thebrem 1.2.13 (Ore [39]) Suppose that for each pair of
nonadjacent.vertices u,vev(G) . deg(u)+deg(v)> n. AThen_G is
hamiltonian.

7

Theorem 1.2.14 (Posa [41]) Suppose that for each k,*lfkf

dk>k. Then, G is hamiltonian.

Theorem 1.2.15 (Béndz:[6]) Suppose that for each_j,k satisfying

d, ¢k and djfj(j#k) implies that dj+dk2n. Then, G is hamiltonian.

Theorem 1.2.16 (Chwvatal [13]) SuPpose»that for each k,
dk$k<21 dh_kzn—k. Then G is hamiltonian;
2

A sequence of nonnegative integers d sdzf.,.Sdn is said to be’

1

‘graphic if’it is the degree sequence of a graph on n vertices. Let

:d &4, ...&d d s':d!<d’<...<d’ i t
S 139, n and S 149;¢ d) be two graphic sequences.such tha



for each i, 1¢if¢n, d_idi.
. i

The sequence S' is said to be degrée—majorized by the sequence S.

In particular, every graphic sequence dls...idn which fails to satisfy

Theorem 1.2.16 is degree majorized by the degree sequence S: d.¢...<d ,
where d,=k for each i, 1$igk, di=n-k-l, for each i, k+1€i¢n-k, and
\ » -~

di=n—l for n-k+1%i¢n. S is precisely the degree sequence of the graph

Kk+(KkUKn 2k) in Figure 1.9a. The graph of Figure 1.9a is not hamiltonian

+ byl . ’ .

figure 1.9b

Ko (KpoKy) E>- o

" figure 1.9a figure 1.9¢c

because of Theorem 1.2.3.

It is in this sense that Chvatal's;theoreml(l.2.16) is sharp. Note
that the lower bound in Dirac's theorem (1.2.12) cannot be further

reduced as the examples in Figure 1.10 illustrate.

figure 1.10a “figure 1.10b
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By Theorem l.2.3, it is cleér that the graphs in Figure 1.9 and 1.10 are
nonhamiltonian. )
Clearly, if a graphié sequence S which satisfies the hypothesis of
any one of Theorem 1.2;12 to Theorem l1.2.16, so dbes any graphic seqguence
which majorizes S. Although in the sense.discussed above that Chvatal's
condition (Theorem i}2.16) is the strongest possible, it has been -
generalized by Las Vergnas [33]vand by Chvatal and Bondy [7] as

follows.

. e
Theorem 1.2.,17 Lét G=(V(G) ,E(G)) be a graph on n23 vertices with

degree sequence d S'..&dQ' Let V(Gk{vl,...,vn} Suppose that

l i RF
F 3 .
for each j,k such Ehat ji§a k!n—j,vjvkéE(G),dij, and'dkik—l we have
‘ A
d_+dk2n. Then G is hamiltonian. -
]

Using Chvatal's condition, one can easily deduce a

sufficient condition for a graph to be hamiltonian expressed in

o 3 ~ 1

terms of the number éf edges. .

Theorem 1.2.18 [5]° Let G=(V(G) ,E(G)) be a graph on n={V(G)|2 3

vertices and IE(G”>(n—

1 : -
)+1. Then, G is hamiltonian. Furthermore,
"2 ) n-1
the only nonhamiltonian graph with n- vertices and( >f1 edges
. 2
is gxg;isely‘Kl+(RfJK ), and additionally, for n=5,K£%(R5Kl{ as

.

shown in Figure 1.9b and 1.9c respectively. .

n-1

Bondy [5] defined the colsure‘él(G) of a éraph G to be the Q&aph
obtained from G by recursivély joining pairs_ofﬁnonadjacent‘vergices
with-degree sum at least |V(G) . It is easily shown that the
construction of Cl(G) depends only on G and not on the order in which

the new edges are added to constitute C1l(G). The following closure



11
theorem is easily verified.

Theorem 1.2.19 G is hamiltonian if and only if Cl(G) is .

hamiltonian.

An immediate corollary is as follows.

Corollary 1.2.20 LetLG be graph on n23 verticéé. If Cl(G):Kn,

then G is. hamiltonian.

Corollary 1.2.20 can be a result emplpyed to deduce Chvatal's
condition in Theorem 1.2.16:

The sufficient conditionsvof Dirac, Ore and Pésa (Theorem 1.2.12
through Theorem 1.2.14,respectively) have been generalized to
r-hamiltonian graphs [11]. Theorem 1.2.21 below is the geﬁeralization
of Dirac's condiﬁion in Theorem 1.2.12.

Theorem 1.2.21 [11] Let G be a graph on n 3 vertices and let

0¢nér-3. If every vertex of G has degree at least n+r , then
. . 2
G 1s r-hamiltonian. o T .

The.generalizations of Theorem 172.15 and Theoxem 1.2.16 are as

presentéd in Theorem 1.2.22 and Theorem 1.2.23,respectively, in the

following.

Theorem-1.2.22 [113 Let G be a graph on n23 vertices and let

'0¢r¢n-3. If for every pair of nonadjaéept-vertices u and v of

G( degG(u)+degG(v)2n+r, then G is r-hamiltonian.

-

Theorem 1.2.23 [11] Let G be a graph on n23 vertices, and let

O¢r<n-3. If

-

(1) for each j, r+lij<n+r-1 , the number of vertices of
. . ) 2
degree not exceeding j is less than j-r

and (2) the number of vertices of degree not exceeding n+r-1

/ 2

g
wiey
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does not exceed n-r-1, then G is r-hamiltonian.
2 ) ,
The bounds in Theorems 1.2.21, 1,2.22 and 1.2.23 are indeed the

best possible as we will now show. Denote'by K. A the complete
m,,m, ,m
) 1772773 A
tripartite graph defined by having its set of vertices V(Km nom ).
' : 172773
partitioned into three non-empty independent subsets Vl'VZ'V3 where
IV(V.)|=m.,i=l,2,3, and u,vev (K ' ) are adjacent if and only if
A | i m.,m.,m , .
1772773
ufvj, vevk,jyék.

For each pair of nonadjacent vertices u,v in K
) r,r,r+l

deg(u) +deg(v)2n+r-1 and every vertex has degree at least n+r-1.

. 2
But Kr coril is not r-hamiltonian since the removal of a partition of
RS . _ .
size r leaves a bipartite graph isomorphic to K which is non-

r,r+l

N hamiltonian.‘»Theorems 1.2.21 and 1.2.22 are in this sense sharp.
For r=0, Theorem 1,2.21, 1.2.22 and 1.2.25 are reduced to
' Theorems 1.2. 12, 1.2.13 and 1.2.14 respectlvely In particular, Theorem

1.2.23 1is reduced to the cond1t1>h of Posa. To show that Posa's

>
v

theorem is sharp, we consider ;ﬁ; graph G isomorphic to Ki+(KﬁKn—k—l) for
14k¢n-l. G is nonhamiltonian since it has a cut vertex and it has .

2 i ‘ L
exactly k vertices of degree k.

Supppse\now that n is odd and k=n-1. A graph G=(V(G) ,E(G)) is
R . 2 )
defined on 2k+1 vertices as follows. Let V(G)={vl,...,v

e}

E(G)={xixj|l£i$k€j52k+l}. G is nonhamiltonian and it has exactly n+l
- 2

vertices of degree n-1.
' 2

It remains to consider the case r>0. The graph K clearly
L - . . . r,r,r+l

satisfies Condiﬁion (1) in Theorem 1.2.23 and it is 'not r-hamiltonian.

5

If to the graph K a new edge is added to V3, where |V |=r+2.

r,r, r+2'

The resultlng graph satisfies Condltlon (2) of Theorem 1.2.23 and Condltlon

P

~
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(1) except for the value j=n+r-2 and G is not r-hamiltonian.
- 2 : . ~ ‘
The necessary condition in Theorem 1.2.18 has also been generalized

in [L11] as follows. | T

Theorem 1.2.24 [11] Let G=(V(G) ,E(G)) be a graph on n23 vertices.

If lE(G)I)(nvl)+r+l, then G is r-hamiltonian.
: )

We now have several necessary and sufficient conditions for a
graph to be r-hamiltonian. bespite the apparent difficulty in giving a .= f
practical characterizétion fot’é;graph fo be r;hamiltonian,{for some
large values of r, however, there are conditions‘which are both necessary

and sufficient. Clearly, for @By:graph G on n23 vertices, G is (n-3)- .=

hamiltonian if and only- if it i coﬁplete, and a graph G on n24 vertices
N - . ‘
is (n-4)-hamiltonian if and only.if G is a complete graph from which a

collection of mutually nonadjacent edges has been removed. One can

[

observe that for n23, there is exactly one (n-3)-hamiltonian graph up

to isomorphism.. For n24, there are exactly‘l-[n] fionisomorphic (n-4)-

2

a

hamiltonian graph on n vertices.
It has been shown previously that the lower bound on §(G) in"

Dirac's theorem (Theorem 1.2.12)cannot be further reduced. Thus, if -

¢

we wish to generalize such a condition, additional constraints must

be imposed. Perhaps the first condition which méy come to anyone's

mind would be that of 2-connectedness since every hamiltonian graph is

following basic Lemma.

Lemma 1.2:25 [48] Let G be a 2-connected graph on n,  vertices with

§(G)>n+2, and let C be a longest cycle in G. Then, V(G)~V(C) is an
3 :
independent set in G.



14

The sharpness of Lemma 1.2.25 is demonstrated by the graph in.

Figure 1.11.

-

figure 1.11

As a consequence of Lemma 1.2.25, we have,

Theorem 1.2.26 [49] If G is 2-connected graph on n vertices, with
Eﬂﬂgp and §(G)21(n+2), then G is hamiltonian.

3 S
With the help o the Hopping Lemma [52] , Woodall

established a tHeorem on the lower bound of §G) as follows.

Theorem 1.2.53 {52] 1If G is a 2-connected graph on n vertices,

with §(G)>1(n+2) and |N(S)|2 L(n+ |S| -1) for all SSV(G), then G
3 3 ' ‘
is hamiltonian. '

Regular graphs possess additional structure that gives theﬁ
interesting and often stronger'properties.& As we shalltsge in the
foilowing that the lower bound of . G) in Dirac's Eéndition can be
further féducéd for regulqr graphs.

Nash-Williams has shown the following.

Theorem 1.2.28 {501 Every k-regular graph on 2k+l vertices is

hamiltonian. This bound was further reduced by Erdos and Hobbs
[20,21] by imposing 2-connected as an additional constraint. -

Theorem 1.2.29 [22] For k24, every 2-connected k-regular graph on

2k+4 vertices is hamiltonian.
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Theorem 1.2.30 [21] Let G be a 2—connectéd, k-regular graph on

: 2 if i )
n-vertices, where k2% (n-cyn) and C={J- if n is even

"1 if n is odd.

Then G i$ hamiltonian.
Bollobas and Hobbs:[4] obtained the following

stronger result.

Theorem 1.2.31 Every 2-connected, k-regular graph on at most

Fﬂi] vertices is hamiltonian.
4
Finally, a much stronger result on

3

graph'iS’that of the generalization of Theorem 1.2.31 by Bill Jackson [30]

in the following.
) >

Theorem 1.2.32 ({30] Every 2—connected, k-regular graph on at most

3

Tm

3k vertices is hamiltonian.

.Furthermore, Theorem 1.2.32 is shérpl since the Petersen graph is
a nonhamiltonian,2-connected;3-regular graph on 10 vertices. For
k24, thefe‘exisés nonhamiltonian, 2-connected, k—régular.giaphs on

3k+4 vertices for even k, and on 3k+5 vertices for all k, respectiveiy,

as illustrated in [19,28].

Definition 1.2.33 Let G=(V(G),E(G)). be a graph. For each integer
m2l, let the mth—power of G,Gm=(V(Gm),E(Gm)), be the graph with
m ) m m, . | .
V(G )=V(G) and for each x,ye¢V(G ), xy¢E(G ) if and only if
P e,
G(x y)$m
. th , . Cos e
Being the m -power of a graph, m22, is a strong condition for a
graph to be hamiltonian. In a paper by J.J. Karaganis [311, it has been

e . ' . 3, :
shown by induction on the number of vertices that G 1is always

hamiltonian-connected for any connected graph G.'

N
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/
Y. Alavi and E. Williamson £ 3] have generalized this result to/?he effect

3
that G , G a connected graph, is in fact panconnected as will be shown.
ih'Chapter 4 of this thesis. Following are two well known results of

Herbert Fleischner.

Theorem 1.2.34 [26] The squaré'G2'of every 2—coﬂheptéd graph G

is hamiltonian.

‘ ' 2 .
Theorem 1.2.35 [27] The square G° of a connected bridgeless
DT- graph G (that is, every edge of G is incident to a vertex of
degree 2) is hamiltonian-connected.
L .

Furthermore,'R.J. Faudree and R.H. Schelp £23] have generalized

both Theorems 1.2.34 and 1.2.35 by showing that the square of

=

bridgeless connected DT-graphs and 2-connected graphs are, in fact,

|l

]

panconnected. These results undoubtedly might lead one to speculate

whether or not there exists a good characterization of graphs with
' o

‘

hamiltoqgan squéres.vE. UndergrQuhd L4673, howévqrd has“shown that such

. .

a characterization is extremely unlikely by constructiﬁg thé‘follow%pg A

example. Given a graph G with the set of vertices V(G)={ul,.g.;un}, a

. - .
new graph H is defined with the vertex set V(H)={ul,V]fw1f..”,uh,vn,wn}

and two vertices uiuj in H are adjacent-if and only if"‘uiuj are

adjacent in G. For each i, ] is adjad%nt to both di and w, . It can
1 . : : - N

' 2 . .
be easily verified that G is hamiltonian if and only if H ~ is hamiltonian.

-

This implies that the problem of recogniwing graph with a hamiltonian

square is NP-complete and the hope for a good characterization of such

graphs is further diminished.

Due to the vast amount of research taking place on the hamiltonian

properties of graphs, many important topics have been omitted in this ,

v
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chapter. Among ?hese’are the decomposition of graphs into hamiltonian
cycles, hypohamiltonian graphs, hamiltonian line gréphs, hémiltonian"
directed graphs (with the éxceptibn.of Cayley color digraphs), the
vegistence of paths or cyclés in graphs random graphs and m-partite
graphs for m22. | |

For classifications of the notations employed in this thesis, the

reader is referred to the Appendix.

] E

—s



C AP&%E 2

ON HAMILTONIAN-~CONNECTED GRAPHS B

'

Section 2.1 Degree and Edge Condiﬁions

As far as results on necessary and sufficient conditions for a

graph\to-be hamiltonian-connected, it is perhaps mostéépptopriate to

~begin with the classic work of Oystein Ore on edge and degree conditions

{£40]. 1t is clear that a complete grapﬁ Kn=(V(KnL E(Kn)f on nx2

vertices has IE(an = n(n-1) edgeé and is always hamiltonian-connected.
One natural-question one would like to ask is as follows:~ "What is the

o~

smallest b(n) such that givén;any graph G=(V(G) ,E(G)) on n vertices

G is necessarily hamiltonian-connected if E(G) Z b(n) is satisfied?"

-

For small values of n, in particular,»n51,2,§,4, it is clear that G on
® . .

n vertices is hamiltonian-connected if and only if it is isomorphic to
. b\ hl
the complete graph Kn. For n=5, the graph obtained by the deletion of

a single edge from K_5 is. hamiltonian~connected. The deletion of 2 non-

adjacent edges (t&o edges ére nonadjacent if and only if they‘do not
sharé a common vertex) from KS re;ults in é graph which #is again
hamiltonian-connected. However, the deletion of two adjacent edges
results in a-graph on 5 vertices which is not hamiltonian-connected

since there exists no hamiltonian path connecting the two vertices

adjacéhi to the vertex of degree 2., Thus, we can conclude- that:



- : | ' 19
b(1)=0, b{2)=1, b(3)=3, b(4)=6, b(5)=9. |

A sharp lower bound on b(n) can easily be obtained by generalizing the
above observation. Let G=(V(G), E(G))rbe a graph on n 24 vertices with»
a vertex . veV(G)) satisfying degG67)=2. Then, there exists no hamiltop—
ian path connecting the two vertices adjacént tov. Therefore, if
n-3 edges incident with a single'vertex X in a complete graph Kn'on nid
vertices are rembved, then the fesﬁlting graph is not hamiltonian- .
conpected.r |

* +This implies that for ‘n 24,

- b(n)Z %n(n-1)- (n-3) + 1= 15(n—l)(n_--2)+3: »
The followiné theorem which is parallel to Theorem 1.2;13, which can.be

found in many standard text books on Graph Theory (See Behzad and

Chartrand [8]), allows an upper bound for b(n)%to be determined.

Theorem 2.1.1(8] Let G=(V(G),E(G)) be a graph on n vertices.
Suppose that for each pair of nonadjacent vertices § u,v} ,
degG(u)+degg(v)2 n+l is satisfied. Then, G is hamiltonian-connected.
Theorem 2.1.1 is sharp in the sense that the léwer bound n+1 of the
inequality caﬁnot be replaced by n as indicated by the example mentioned
~in the previous paragraph. Namely, for eacﬁ pair of nonadjacent
vertices §x,wy} satisfies degG(x)+ degG(w)=2+(n—2)=n, and the~resultipg
graph is not hamiltonian-connected as we observed earlier. Note that
the resulting graph is still hamiltonian éccording to Theorem i.2.13.

Theorem 2.1,2 below follows readily from Fheorem 2.1.1.

Theorem 2.1.2 For n24, b(n)=% (n-1) (n-2)+3.
Proof: From the previous discussion, what remains to be shown is

that any graph G=(V(G) ,E(G)) on n > 4 vertices-which is not.
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isomoi'phic to K and with |E(G)]2%(n-1) (n-2)+3 is necessarily a
hamiltonian~connected graph.- Let G be a graph on n vertices. Let
X,y € V(G) be an arbitrary pair of nonadjacent vertices in G and let
Gn__2‘ be the induced subgraph (V(G)—{x,y}) 6n n-2 vertices.r Clearly,»

|E(G)| =deg , (x) +deg (v)+[E(G_

_2) | . Since I%(Gn_2)| <(n-2) (n-3),

2

deg. (x)+deg.(y) 2 |E(G)] __|E(Gn‘2.)|2n+l. |

By 7Theoi:em '2.1;1, G .is hamiltonian—connected and the theorem

follow;',. ' | ’ ' [ |

Following Theorem 2.1.2, one might naturally be prompted to '
investigateiwhich graphs G on n2 4 vertices satisfying |E*(G)|=l:(n-l)
(n-4)+2 remain hamiltonian—copnected. It will be shown that all such
graphs with only a few exceptions are still hamiltonian-connected as
'Theorem_ 2.1.3 below indicates. Let G%=(V(GO6)), E(G%)) be a 'graph on. 6
vertices defined as follows:- V(Gi)fi}tll,uz,u3;vl,v2,’v3} , E(G%)={ui uj I

. 0 ‘
l.‘.i<j£3}u{?viuj|i, j=l,2,3}. The graph_'G6 is shown in. Figure 2.1, Giwven

any ui,uj eV(G%), i¥ 9, it is easy to show that there exists no

hamiltonian u u.-path in GO.
i’ g 6
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Theorem 2:1.3[40] " Let G=(V(G),E(G))Abe a graph on nz4 vertices

-

with deg(v)23 for each vev(G). If |E(G)|l.=(n-1) (n-2)+2, then G-is

2

hamiltonian-connected except when it is isqmorphié to G6.‘

Proof: Let G be a graph satisfying the hypotheses‘Of the theorem
and lét'x,er(G) be a‘pair of nonadjaCent vertices. 'As in Theorem
2.1.2, 1et‘Gn_2=<V(G)—{x,y}>. It is thénrclear that dggG(x)+degG(y)
:IE(G)I—IE(Gn_Z)IZn which still allows Theorem 1.2.13 to guarantee 4
G to be a hamiltonian graph.

By Theorem 2.1.1, G can fail to be a hamiltonian-connected graph

i

only in the case that there exists abpair of nonadjacent vertices
X,v€V(G) such that degG(x)+degG(y)=n. This, however, implies that

|E(Gn_2)|=jE(G)|—(deg(x)+deg(y»=(n—l)(n—2) 4+2-n=(n-2) (n-3). It
2 ’ 2

follows that the subgraph Gn is isomorphic to. the complete graph

-2

on n-2 vertices. Hence, G in this case consists of a complete

subgraph Gn on n-2 vertices.with‘the property that n edges from

-2

two vertices x,y not in V(Gn—2) are incident. When either of x or.
y has degree less than or equal to 2, the graph G is clearly not
hamiltonian-connected as indicated in a previous discussion. It

. X . . ' s 0
remains to show that, with the single exception of G the case

6’

with 3sdegG(x)$n-3 and 3$degb(y)$n—3 always results in a
hamiltonian—éonnected graph. This implies that n=degG(x)+degG(y)g

6, Since a total of n edges are incident with n-2 vertices in Gn-2

and x,y, there are at least two vertices w.,w EV(Gn—2) which are

1772
adjacent to both x and y.
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figgre 2.2

We proceed to construct a hamiltonian path between any two

. . .3 ‘. . . 0 Co
vertices in G if G is not isomorphic to G6 . There are three

cases to be considered.
‘Case 1 A hamiltonian x,yvpath'P(x,y):

Let Q(w,,w,) be a hamiltonian w -path in G_ A hamiltonian

1'% -2.

x,y—pat? can be P(X(Y)‘ xle(wl,yz)wzy.

Case 2 A hamiltonian x,u-path (or x,y-path) P(x,u) (or Pp(y,u)

f V(G :
or any uev( n__2)

Without loss of generality, Wl#lais assumed. Let wiEV(Gn_z)

such that wi#u and wiyeE(G). Let Q(wi,u) be a hamiltonian path in

the induyced subgraph (V(G)—{x,y,wl}>. Then, a hamiltonian

x,u-path can be consturcted by the concatenation
P(x,u):xwlywiQ(wi,u)a

P(u,u) is constructed similarly.

Case 3 Given any u,ve€V(G ), a hamiltonian u,v-path in G is con-

n-2
structed as follows provided that n>6.
Case 3.1 We first assume that {fu,via{N(x) N(y)=@. Under this

assumption, a hamiltonian u,v-path can readily be constructed by

the concatanation.

P(u,v);uwixwzyij(wj,v),
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where'HjEV(G)—{x,y,w ,w2}and ywjeE(G) and Q(wj,v) is a hamiltonian

1
wj,v—path in the induced subgraph (V(G)—{x,y,wl,w2}>. We next

w

assume that {u,vyn(N(x)uN(y)#$. Without loss of generality, u=wy

5

and w,#w, for some w.eN(X). If there exists a vertex w.€V (G )
i1 i . 3 n-2
different from u,v and wl, one can form a hamiltonian u,v:path
with the concatenation
. - P(u 1 U=w, O (W,
(u,v) -wlngQ( j,V)

where Q(wj,v) is a hamiltonian wj,v—path in the induced subgraph
V@) -{x,y ,wy w3, ,

It remains to consider the case where all the edges from

y are incident with the vertices w,,u and v, hence, deg(y)=3. Due

1
to the symmetry of x and y, a hamiltonian u,v-path can also be
similarly constructed in G if x does not satisfy these conditions.
Finally, we are left with the exceptibnal case where n=6 and
degG(x)=degG(y)=3 and N(x)=N(y). This describes precisely the
graph isomorphic to Gg which has been shown previously to be not
hamiltonian-connected. This completes the proof of the theorem. ..
For a graph G on n vertices, it is now known that b(n)=%(n-1) (n-2)

+3 is the least number of edges sufficient to guarantee that G is

hamiltonian-connected. It is therefore most natural for one to determine
the least number of edges e(n) a—hamiltogian—connected graph necessarily
has (that is, e(n) is the greatest integer su;h that for any graph

G=(V(G) ,E(G) on n vertices, |E(G)]<e(n) impliesvthat G is not

hamiltoniaﬁ—connected).

Theorem 2.1.4 L J.W. Moon,371 The minimum number of edges e(n)

2 hamiltonian-connected graph on n34 vertices can have is

1
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(% (3n+1)] .
Proof: Let G=(V(G),E(G))be a graph on n Verﬁices,'having less
than [%(3n+1)] edges. Then, there exists a‘vertex of degree at
most 2. Therefore, G is not hamiltonian-connected. To complete
the proof, it remains to construct a hamiltonian-connectéd graph
on n24 vertices with exactly [%(3n+1)] édges. We first consider
the case where n is odd. Let n=2m+l for m22. Let F :denote the
. - n .

graph containing two disjoint paths of length m Pm:plpz...pm, and‘
Q:qlqz...qm together with the edges P.d; - i=1l,...,m. An additional
-vertex x %s adjacent the vertices pl'ql'pm'qm' The graph Fn is -
shown in Figure ?.3. It can be easily verified that Fn is

\%
hamiltonian-connected.

X : -F

9 9 93 -1 I 9 9 93 -1 I
figure 2.3 figure 2.4

It remains to consider even values of n. If n=4 the only graph

on [(3.4+l)]=6 edges is the complete graph K If n=2m+2, m>2,

2 4
let ¥ differ from F in that p and g are not adjacent to
n n"l ) m m

X but to an additional vertex vy, where x and y are adjacent (see
Figure 2.4). It can be easily verified that F in this case is
n

also hamiltonian-connected and this completes the proof. m

A sufficient condition for a graph to be hamiltonian-connected
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which is parallel to Theorem 1.2.15 has been established by D.R. Lick

[34] as follows.

Theorem 2.1.5[34]1 Let G=(V(G),E(G)) be a graph on n vertices with
degree seQuence dlsdzi...Sdn. Suppose that for each k#4, dk5k+ 1
and di£2+].imply thét_dk+d£2n+]” Then, G is hamiltonian-connected.
E{ggi:» Let x,yeV(G) be‘any two distinct vertices. A new graph H
is formed from G by introducing an additionél vertex z and two new
edges zx, zy. Since the degree sequence of (G satisfies the
hypotheses of the theorem, the degree segquence of) H clearly
sétisfigs the hypothesis of Thédrem 1.2.15, Hence, there exists a
hamiltonian cycle C in H containiﬁg the edges xz,zy. The;segmeht
of C obtained by the deletion of the edges xz,zy from C results in
a hamiltonian x,y-path in G. This shows that G is hamiltonian—connected.y
Section 2 Topological Conditions‘
Chvatal and Erdos [lS]ﬁave”éstablished a sufficient condition for

hamiltonian—connectedness parallel to Theorem 1.2.11 as follows.

Theorem 2.2.1 [15] Let G be a K-connected graph with independence
number B . Iflc—lkﬁ, then G is hamiltonian-connected. The bound |
for this theorem is sharp.

g;ggﬁ:, Suppose to the contrary that there exists a graph

G=(V(G) ,E(G)) which satisfies the hypothesis of the theorem and is

not hamiltonian-connected. RQ\LV
Then there exist verticesvurv,we (G) where wgV(P) for a

longest u,v-path P in G. Since G is K-connected, there are K paths
starting from w and terminating in P which are pairWise vertex-

disjoint apart from the vertex w and share with P their
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terminal vgftices pl,pz;...Q#ESee Fheorem 1,183, Without 1§ss of
generality, we may assume that wi#V'fdr i<k, Denote the successor
gin the direction from u to v) of each pi(iCK) by11i. Since G has.
no K.indépendent vertices, there is an edge wu, or uiuj.
In both cases, a path connecting u toAv longer that P can be

constructed which contradicts the choice of P. This completes the

proof, The complete bipartite graph KR.K.ShOWS that the bound
r

for P is indeed sharp. : ’ =
It is interesting to observe how the relationship between & and
B governs the existence of a hamiltonian path or cycle as Theorems

1.2.11, 2.2.1 and 2.2.2 below show..

-

Theorem 2ﬁ2.2‘C153 Let G be a K=connected graph with independenéé
number'p. IffK+lZP, then G is traceable {(that is, there ekiéts a
hamiltonian path in G). The bound fof P in ﬁhis case is sharp.
EEQQEF Let G be a K~connected graph which satisfies K+l!ﬁ. A new
graph H is formed from G by intro&icing a new vertex X and joining
té it all vertices of G. Then, the graph H clearly sétisfies the
hypothesis of Théorém 1.2.11 with k+1 in place of K. Therefore,
there exists a hamiltonian cycle in H. This implies that G is
traceable. The complete bipartite g{aph Kx+2lx'shows‘that the
bound for @ is sharp. ' : : ||
In what follows, it will be shown how loéally m-connectedness
conéributes to a sufficient condition for a graph to be hamiltonian-
connected.

Definition 2.2.3 For m2l, a graph G=(V(G) ,E(G)) is said to be

&

’
locally m-connected if the induced subgraph {N(u)) is m-connected
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-

for each u€v(G).
There are various articles on the hamiltonian properties of

graphs which concern connectedness and local connectedness.

Theorem 2.2.4 [12] If G is a connected, locally connected’

(locally l-connected) graph with maximum degree &(G)S4, then G is

either a hamiltonian graph or isomorphic to the~tripartite graph

3

K,1,3° '

Theorem 2.2.5 [38] If G is a connected, locally-connected graph
én at least 3 vertices which contains no induced subgraph
i§omorphic to the bipartite graph Kllj,fthen G is hamiltonian.

G. Chartrand, R.J. Gould and A.D. Polimeni [9]1 have eétablished a
. sufficient condition for a graph to be hamiltonian-connected by employ-
ing hypotheses similar to that of_Theorem 2.2.5. A preliminary lemma

is reguired to establish this sufficient condition.

Lemma 2.2.6 [9] 1If G is a connected, locally m-connected graph,

m2l, then G is (m+l)-connected.

Proof: We proceed by induction on m. Suppose that there exists

a graph G which is both connected and locally connected and is not
2-connected. Thén, there exists a cu£ vertex u€vV(G) such that

{V(G)-{u}> is disconnected. Let C_,C .}.C ’ t22, be the

l’ 2’, tl

components of {V(G)-{u})>. Since for each i, 1%¢i¢t, V(Ci)nN(u)#¢,
;(N(u)) is necessarily disconnected which contradicts the
hypothesis on G. Hence, G is 2-connected.

We next assume that for some kziibit has been established.for

each 2 satisfying 1¢8¢k, that every graph which is connected and

-

locally @-connected is necessarily ({+1)~connected. Let G be a graph

%

which is qiﬁnected and locally (k+1)=connected.

R
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For any vertex veV(G), {V(G)-{v}Dis clearly connected and
locally k-connected. Since v has been arbitrarily choéen, (V(G)—{v})
is by the induction hypothesis, ;+1;Connected and‘the result
folllows. [ |
We are now in the position to investigate theé sufficient condition

mentioned above. .

Theorem 2.2.7 [2] Let G be a connected, locally 3—copnécted

graph which contains no induced subgraph isomorphic to the

bipartite graph K Then, G is hamiltonian-connected.

1,37

Proof: Suppose to the contrary that there exists a graph

G=(V(G) ,E(G)) which satisfies the hypotheses of ﬁhe~£heorem and is

not hamiltonian-connected. By Lemma 2.2.6,.G‘is 4-connected. .This

implies that G is {-connected for 1¢8<4. Let u,wV(G) be such

that no hamiltonian u,v-path exists.‘ Sincé G is 2-connected, there

exists two iﬁternally disjoint u,v-paths in G (see Theorem 3.2,[5))7

This implies the existence of a u,V-béth of_léngth at least 2 in G.

Let P:u=uou1..;um=v, m:2, be a u,v-path of maximum length in G.

Since G is a connected graph, there is a vertex x¢(V(G)~-V(P)) which

is adjacent tq‘some vertex ui on P, 0¢i€fm. One can in fact assume

without loss of génerality that 0<i<m; for otherwise, if each vertex

veV{(G)~-V{(P) is adjacent to only the términal vertices uo=u and \\
: \Vs

um=v on P, then {V(G)-{u,v}) is a disconnected graph and this

would contradict the assumption that G is 3-connected. SinceCG

is locally 3-connected, the iniﬁé;d subgraphu<N(ui)> contains an

AP

“’g\; nor v as internal vertices.

X,u, -path Q which contains n 3%5

+1

Furthermore, the path ¢ either does not contain the vertex ui—l or
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it contains an k,u_ 1 subpath of Q not containing u, e '~ By
. 1- _

symmetry, there is no loss in generality to assume that Q does not

contain- the vertex \u, Clearly, x can be adjacent to neither

1= 1.

u.i 1 nor lﬁ+la for otherwise, a 4u,V-path of length m+] can be

constructed in G which contradicts the choice of P. Since the.
induced subgraph(?,ui_l,ui,ui+]})cannot be 1somorph1c to the bipar-

tite graph K EE(G). In addition, if V(P)nV(Q)—{u

1,3, —1 i+] +1}

then a u,v-path of length greater than m can be constructed in G.
LB
Hence, V(P)nV(Q)#{ui+l} 1; assumed.
A vertex wQ(V(P)nV(Q))—{ui+l3 is said to'be,a singular vertex
if no vertex ih’N(w)nV(P) is adjacént to u, . Since V(Q)SN(ui),

for any singular vertex w and its neighbouring vertices Wy sW,-0n P,

~{wl,w29\V(Q)=¢. Also, w.w,€E(G) since U, W,w,,W, cannot be iso-

WY 2

morphic to Kl 39 It remains to consider the following, two cases.
, .

Case 1 Each vertex in (V(P)nV(Q))—{ui+l} is a singular vertex:
In such a case, for each wd&(P)nV(Q»—{ui+}and the two

neighbouring vertices w v, of wonP. wwg€E(G) is satlsfled We

1 12

proceed to construct a u,v-path of length greater than m accordingly.

Starting with the initial vertex u, traverse the path P where for

}

n < i i ‘ o
each vertex ujGV(P)‘V(Q), j<i, we bypass uj using the edge uj_luj+1

This process is continued until u, is reached. From u, proceed to
1

the vertex x along the edge u,x‘and‘then subséquently along the path Q t.

ui+l’ Then, from u +1, proceed along P and for each uk V(P)nV(Q),
Kyit . e .
k»1+2, and bypass the vertex uk using the edge uk—l uk+l until v 1is

reached. The resultlng u,v-path contains all- vertices u, , 0€iqn,

and the vertex x. This contradicts the choice of P.



e

30
Case 2 (V(P)nV(Q))—{ui+l) contains nonsingular vertices.

Let Uy be the first nonsingular vertex incountered if Q is

. Either u €E(G)

traversed in the direction from x to u; k—lui

i+l

5

uiEE(G) must be satisfied. Without loss of generality,

or uk+l
o luiGE(G) is assumed. The path P can now be replaced by a

different u,v-path P* of length m as follows.
If k€<i, then set
* .
B R O S R TS A T L O RS
If k>»i, then set -

X .
P 'uOul'"ui—lui+l'f'uk-lgiukuk+l"'um'

e

W
A

_In either case consider the x,u subpath Q* of the path Q. By

k

the choice of s (V(P*)nV(Q*))—{uk}does not contain nonsingular

vertices. A construction similar to that in Case 1 allows a

2 .

7 P

u,v-path of length greater than m to be produced. This contradict-
ion completes the proof of the theorem. o | ]
- At this point, it is important to observe that there are graphs
which satisfx;the hypothesesroﬁ Theorem 2.2.5 and are not hamiltonian-

connected. Féraéxamplg, for each n23, the graphs K

+ .
(Kn—2UK2) satisfy
P | .

2

these proper{ies.
However, it still is unknown whéther or not Theorem 2.2.7 is
the best possible iﬁ thezsensé that it might be possible to replace
the condition flocally 3~connected" by "locally 2-connected."
We nextfinvestigate-a necessary condition for>a‘graph to be

-

hamiltonian-connected expressed in terms of toughness [36]. Aas

indicated in Chapter 1, every hamiltonian gréph is 1l-tough. It is

natural to attempt to determine a similar condition for hamiltonian-
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connected graphs.

Thegorem 2.2.8 [36] If G is a hamiltonian-connected graph, then

the toughneés of G satisfies t(G)>1. This is best possible in the -
sense that there exists a sequence of hamiltonian-connected

oo ‘ .
graphs {6} - with the property that lim t(G}=1.

Proof: Let G be a hamiltonian-connected graph."Hence, G is

-

hamiltonian and t(G)=min S ! o .
: >1
s (V@5 ) =t where tﬁe mln;mum is taken

-over the cuf sets of G. To show that t(G)#1, suppose the contrary
and let ScV(G) be a cut set with [S|=e¢(KV(G)-S>)=k>1l. Let S=

be the k c¢omponents of

2 k

{xl,xz,..j,xk} and let Cth ;+..C
{V(G)-S>. Suppose that P is a hamiltonian xl,xkfpath in G.
Without the loss of generality, let the lébelling of the vertices

"in S be so arranged that xl,x2,x3,...,xk are precisely in that

order as the hamiltonian x ,xk—path’P is traversed. For i#¥j, there

1

exiéts no edge between Ci and Cj' Hence, for each i, 1<i<k-1l, every

vertex between xi and xi on P belongs to a single component Cz,

+1

1£9k. This implies that P can contain vertices of at most k-1
. hl

of the components C.,C.,...,C This contradicts the choice of P

1"72 k’

énd this completes the first part of the proof. ,
To show that this result is best possiblé, for each n23 let
Gh be the graph on 2n+l vertices as defined by J.W.»Moon in
Theorém 2.1.4 (See Figure 2.3 and 2.5).
It can be easily shown that t(Gn)=gi£ .and this completes

n 4
the proof. ’ : N



Note that the converse of Theorem 2.2.8 ié false as the‘foliowiné
example shows. For each n23, let H be the graph obtained from G
n o n

defined above by removiné the Vvertices u,v. Then for each n23, H is -
_ n

not hamiltonian-connected and t(H )=n+l .
o
n
The combination of Theorems 1.2.5, 2.2.1 and 2.2.8 indeed have
shed some light on the relationship between the connectivity and the
hamiltonian-connectedness of a graph.
Let G be a graph with connecting K, independence numbeigp and
toughness t(G). There are three possibilities for thé.graph G:
1. 'lgkgt(G)
B~
2, k¢lgt(G)
% F"
3. k¢t(G)l
*One can at least conclude the following. r
By Theorem 2.2.8, G is not hamiltonian-connected if 3, is satisfied

and by Theorem 2.2.1, G is a hamiltonian~connected graph  ifl. is

satisfied.
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Section 3 r-hamiltonian-connected graphs
A natural extension of the concept of a hamiltonian-connected

graph is that of an r—hamiltonian—éonnected graph, r20.

Definition 2.3.1 A gréph G=(V(G) ,E(G)) is said to be.r—hgmiltonian;
conneéted if for each SEV(G) , with Is| €xr, thé induced subgraph
{V(G)~s» is hamiltonian-connected. It is clear that the
Q—hamiltonian—connected graphs are simplyathé hamiitonian—
conneqted graphs.

An immediate ;bservagion is that fo; any graph G=(V(G),E(G)) with
a cut‘set of 2 vertiqes {u,v} in V(G), thgfe can be no hamiltonian‘
u,vepath in G. This implies that a hamiltonian—cqﬁnected gréph is
at least’3—connected. This for each r20, ‘an r-hamiltonian-connected
graph on ﬁ24 vertices is necessarily (r+3)-cohnected. If K is the
connectivity of G, then the minimum degfee 3(&) of G satisfies
8(G)2Kef+3% Tt follows that the minimum number of edges that G
can ﬁave satisfies IE(é)IZV”%VZ deg(v)é%n(S(G) )>n(r+3).

vEV(G) 2
It is interesting to observe that many of -the degree and edge

~

sufficiency conditions for a graph to be hamiltonian-connected can

) ? -
be generalized in a similar manner with amazingly minor modifica=-

~tions to cover r—hamiltonian graphs as D.R. Lick [35]vhas shown.
A theorem. on degr;e suffii%%Pcy conditions for a graph'tq be

», r—hamiltonian;connected parallel to Theorems 2.1.1 and 1.2.13 is
as follows.

Theorem 2.3.1 (35] Let G=(V(G) ,E(G)) be a graph on n24 vé;!;ces

such that for every nonadjacent pair of vertices u and v in V(G),

degG(u)+degG(V)an+r+l, with 0¢r¢n-4. Then, G is r-hamiltonian-

J
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connected.

Proof: The case where r=0 issimply Theorem 2.1.1.

5

Itvremains to investigate thebcases where 1l¢r&n-4. Let
ﬁzll...grk}CV(G) be an arbitrary set of k Nertices.in G, OSkﬁr.
Define G*=<V(G)—{vl,...nﬁg> and for each vertexxleV(G*),'denote
the degree of U in G and G* byAdegG(u) and degG*(u), respectively,
Let 11fvbeAa/pair of nonadjacent vertiees %n G*. Clearly,
uv ¢EG).D Ey fhebhypothesis of the theerem} gegG(u)+6egG(v)2n+r+l.
Therefore, degG* h”+degG*(V)Zn+r+l;2k=(nfk)+(r—k)+l

=|v(G*) ]v+r—k.+l

2{vic*) [+1

Hence, by Theorem 2.1.1, G* is hamiltonian-connected and this
. : )

shoﬂzvs that G is r-hamiltonian-connected. . : ]

,';' The sharpness of the bound in Theorem 2.3.1 is given by the

— us..

7;follow1ng examplef Let Kk be the complete tripartite greph on 3n

3,3,3

i >
vertices, n22, Leth}K3’3,3) Vluvzuv3 be the partitions of K3 3,3°

(That is, XEV. and y(Vj imply that. xy€E (K ) if and only if i#q).

a - 3,3,3

Note that for each pair of vertlces u,vev (K ), deg(u) +deg(v)=4n=

3,3,3

3n+n. It is clear that K _ is not n—hamlltonlan»cennected since for
‘ 3,3,3 _ S .

each i=l,2,3,(V(K3 3 3)—Vi>is easily shown not to be hamiltonian-
. 14 14 . . .
connected.

A moment of reflection allows Theorem 1.2.14 to be related in the

following manner.

Theorem 1,2.14a Let G=EV(G),E(GH be a graph on n23 vertices such
& : '
that for each j, i<j¢<n, the number of vertices with degree not
2 . :
exceeeding j is less than or equal to j-2, that is,



35

_l{veV(G)ldeg(vjsjﬂs j-1. -Then, G is hamiltonian.
A sufficient condition for a graph to be hamiltonian-connected
very much in the flavor of Theorem 1.2.14a is now discussed.

Lemma 2.3.2 [35] Let G=(V(G),E(G)) be a graph on n24 vertices such

that for each j; 2¢jsn, [|[{vev(G)|degtv)si}<i-2. -Then, G is

. : 2 : .
hamiltonian-connected:
Proof: Let G be a graph that sétisfieﬁ the‘hypotheses of the
theofem. Note that G is hamiltonian since itvalsé_satisfies éhe
hypotheses of Theorem 1.2.14,a, Let u,veV(G) be any two diétinct
vertices in G. We proceed to conétruct a hamiltonian u,vgpath;
There are two cases to be considered;
Case. 1 uveE(G),
Let £ be the maximum value of the lengths of paths in G which
contains the edge uv. Let P:u_u u be a path of length'i

172772+l

=v with 1¢j¢4, such- that

containing the edge uv, where uj=u an,d‘uj+l

the sum of the degrees of the initial vertex u., ‘and the terminal

1

vertex u

. . . = e . E . 1 g
. 1S maximum. Let S {ui V(P)lului+l E(G)} Since no

path in G containing the edge uv can have length greaﬁerthan £,
N(ul)EV(P). Also, for each u.€s, P*:uiui-l'"ului+lui+2”fqg+l
is a path of length £ which contains the edge uv whenever i#j.

By the ghoice of P, it is clear that for each i¥j and uiES,
d?gG(ui)SdegGkui). Thus, tbere arerat'least,(degG(gl)-lf vertices

- in S with degrees not exceeding degG(ul). By the hypotheses of the

theorem, degG(ul)>E_

5 A similar argument shows that degG(gz+l)>§u

Therefore, degG(ul)+(u£+l)>n and this implies that |N(u£+l)nS|22,

-3
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in which case there exists at least one vertex uieN(ul+l)nS with

1¥j. Hence, Czuiuifl""ului+lui+2’"'92+lui is a cycle of length

L+1.

(-)e

figure 2.6

The proof.of Case 1 is cdmplete if n= +1. It remains to consider
the case where L+1<n. Let the vertices of the cycle C be relabelled

as C:v.v Since G is a hamiltonian graph, there is

1 2"szV£+1vl'
a vertex w V(G) adjacent to some vertex VhEV(C)- Then, it is

clear that at least one of the following two paths Pl,P2

Pl:wvhvh+l°"YLv£+lVlv2"'vh—l

P h-1 V1Yee1Y Ye-10 Vel

is a path of length g+1 which.contains the edge uv, This contra-
dicts the choice of P.
Case 2 uv4E(G).

Define a new graph Gszgiuv(that is, V(G)=V(G*) and EtG*)=
E(G)u{uv}). Cleafly, G* satiéfies the hypothesis of the theorem
and the argument in Case 1 asserts that the edge uv in G* is
contained in a hamiltonian cycie. Hence, there exists a
hamiltonian y,y-path in G and this cémpletes the proof, |
It is worthwhile to ﬁention that a graph is said.to be edge-

hamiltonian if every edge of the graph is contained in a hamiltonian

cycle. Thus, a graph which satisfies the hypotheses of Lemma 2.3.2

is necessarily edge-~hamiltonian.
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Lemma 2.3.2 above is needed to prove the following result for

’

r-hamiltonian connected graphs.

Theorem 2.3.3 [34] Let G=(V(G),E(G)) be a graph on n24 vertices

such thatAfor each j, r+2Sj$gi£’; %{&(V(G)ldeg(v)Sj}lSj—2—r.
Tﬁen, G is r—hamiitonian—cohnicted.
E£99£: Let G be a graph which satisfies the hypotheses of the
théorem. Lemma 2.3.2 yields the desired rgsult for the»cése
where r=0. vIﬁ remains to investigate the case where 1¢rsn-4.
Let Oskgr and let S={vl,...A@;CV(G) bejé set of k arbitrary
vertices in G. Consider the induced subgraph G*={V(G)-S>on
n*=n-k vertices. To verify that G* is a hamiltoniaﬁ-connected
graph, let 3 be/such that 2<j<n*  and - [{vev (G*) ldegG*(v)S Y|
2
. Clearly for each ye{VEV(G)ldegG*(v)gj},fdegG(y)$j+k. Qbserve that
2+k5j+k59_f+k=_r3_42r_1559+_r'. If j+k<2+r, then {vev(GY) degG*(v)Sj}s{vev(G)I
degG(v)Sjik}E{veV(é)ldegG(v)$r+2}. By the hypothéses of the |
theorem, l{vEV(G)'degG(v)Sr+2}l$(r+2)—(r+2)=0. This implies that
m=0. Otherwise, for 2%r$j+k$gi£_ m<j+k—r—l$j—l.. Hence, G* is
' 2

hamiltonian-connected. . It follows that G is r-hamiltonian-

connected.

figqure 2.7
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The bounds in both Lemma 2.3.2 and Theorem 2.3.3 are sharp as
Figure 2.7 shows. The graph which demonstrates the sharpness of the

bound in Lemma 2.3.2 is schematically illustrated in Figure 2.7.

<

For each n>7, define a graph Gn on n vertices as follows. Let-

Pr be a path on r vertices, where r=|n}{-1, and KS be a complete graph on
. © 2

s vertices with s= n;B . Let V(Pr)={ul,...,ur} and V(Ks)={vl"'°'vs}f

respectively. The graph Gn is constituted accordingly by defining

V(Gn)=V(Pr)UV(KS) and E(Gn)=E(P uE u{u vy vr+1}u{ Y l2<j<1<r} if

n is odd. If n is even, then the edge urv in the previous set is

r-1

v replaced by urv It can be easily shown that for each j, 24j¢n, the

. n
+ p—
| r+2 | 4 5
number of vertices of degree not exceeding j in Gn is exactly j-1.

However, G is not hamiltonian-connected since deg_, (u,)=2 even though

n Gp 1

it is a hamiltonian graph. This verifies the sharpness of the bound in
Lemma 2.3.2,

' In order to construct a graph which demonstrates the sharpness of
Theorém 2.3.3, a preliminary lemma is required. We first review the
definition of the join G, +G_. of two graphs G, and G, as defined in

1772 1 2
[s, 47].

Definition 2.3.4 Let Gl=(V(GlLE(Gl)) and G2=(V(G2),E(G2)) be two graphs.

The join Gl+G2=(V(Gl+G2),E(G1+G2)) is defined to be the graph where

V('Gl+ G2)=V(Gl)UV(G2)

E(G_+G_)=E(G

1*G, PVEG, IV xy| xev(G) and er(Gz)}.

In particular, if one of the graphs Gl and G2, is isomorphic to

K then G,+G_, is denoted by G, +v.

1’ 1 72 1

Lemma 2.3.5 If G is an. (r-1l)-hamiltonian-connected graph, then

G+v is r-hamiltonian-connected.
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Proof: Let G be an (r-1)-hamiltonian~connected graph on n vertices
“and Sz{zl"'f'xr—l} be an arbitrary subset éf r-1 vgrfices in G.

Clearly, G'={V(G)-S) is hamiltonian-connected and G' is
isomorphic to‘G"=<Y}G+v)-{v,xl,...,kril}>. Hence, G" is hamiltonian-
Connected.’ Let yl,y2-,y3 be any three vertices in G“ and

P:yl=vlv2...vn_r+l=y3 be a hamlltonlan yl,y3—Path in G", where y_=v_ .

2 'k

Then, Q:Yl=V1V2'”'Vk-lv?k+lvk+2"'un—r+l=y3 is a ham;ltonlan

v,,v,-path, in G..u=(V(G+V)—{y2,xl,x2,...xr_l}>. T}'lis implies that

that the graph G+v is ;—hamiltonian—cdnnected. B
Note that for any hamiltonian graph G and an additional vertex v,
. | | | L
the join G+v contains a spanning subgraph isomorphic to the wheel
graph on |v(G+wWJl=vertices. Hence, G+v is PLD-maximal. In particular,

'

it is hamiltonian-connected. )

We are now ih a position to construct the féllowihg example to
demonstrate the sharpness of the bound in the inequality of Theorem
2.3.3.

Let Gn {see Figﬁre 2.7; be the graph® defined in the example

preceding.

Definition 2.3.4. For a fixed integer r, let {xl,...,xr} be r
additional vertices. By lemma 2.3.5 and the preceding discussion

l)+x2)+x3)+...+xr__l

it is clear that the graph G=(...(((G +x )5!-xr

is (r-1)-hamiltonian-connected. However, G is not r-hamiltonian-

connected since it has a vertex of degree r+2. Also, it can bg

easily shown that for each j, r+2¢j<ntr, there are ekactly j—f—l
; 2

vertices of degree not exceeding j. This example consolidates

the sharpness of Theorem 2.3.3.
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The sufficiency conditions for a graph to r-hamiltonian-

connected expfessed in terms of_the numger'ofredges in the graph
is the next most naturél generaiization of Thébrem 2;1.2C

We first characterize the {n-4)-hamiltonian-connected ‘graphs
;

on n24 vertices.

. Theorem 2.3.6 [35] Let G be a graph on nx4 vertices. Then G is

(n~4) -hamiltonian-connected .if and only if G is isomorphic to the

1'- A ' ‘ 1.
graph Kn. ‘ \ . N

Prpof: Let G be a graph on n24'vgrtices. If G:Kn, then the

El

removal of k vertices from_G,'O§k5n—4, results in a graph
isomorphic to the gomplete g aph oh n-k verticéEIK k" Hence,
G is (n—4)—hamiltonian—¢gnnectéd. Conversely, suppose that G is
not complete. There exists a vertex véV(G) such tha degG(v)Sn—2.
The removal_éf n-4 Vertices‘adjacent to v results i; a graphtG'
wifh degG(V)52. Hence, G' is not hamiltonian—connected and G is

9
not (n-4)~hamiltonian-connected. [ |

The generalization of Theorem 2.1.2 can now be established.

Theorem 2.3.7 [35] Let G=(V(G),E(G)) be a graph on n24 vertices

such that’E(Gﬂ&(n—l)(n—2)+3+r, for Osrsn-4. Then G is r-
— .
hamiltonian-connected. k-

ﬁ‘."ﬁ

e
a

55223: For r=0, Theorem 2.1.2 gives the desired result. if r-n-4,
thenlE(G)'=(n—l)(n-2)+3+(n—4)=n(nil),‘in which case G is isomorphic

2 2
to Kn which is consistent with Theorem 2£§.6. It remains to consider
the case 0<r<n-4. Let 0OsksSr and let S={vl,v2,...JVk} be an

arbitrary set of vertices in G. Let G*={V(G)-S) on n*=n-k

vertices. Since at most k(k-1)+k(n-k) edges have been removed from
2



G to form G*. |E(G¥)|> (n-k-1) (n-k=2)+(r=k)+3; (n*-1) (n*-2)+3.
2 - 2
Hence G* satisfies the hypotheses of Theorem 2.1.2 and is,

therefore, hamiltonian-connected. It now follows that G is

r-hamiltonian-connected. - .l

Indeed; the bound in Theorem 2,3.7 is sharp as the graph in the
following example shows. For eagh n25 and 0<¢r¢n-4, a graph G on n

vertices and (n-1) (n-2)+r+2 edges is constituted by a completé gfaphr

2
K .7 and an additional vertex v adjacent to (r+2) vertices {vl,vz,...,
v . }EV(K ). It is then clear that G has (n-1) (n-2)+r+2 edges and
r+2 n-1 , i —_— A

2

the graph G'=(V(G)—{vl,...,v ,vr}> has n-r24 vertices including the-

r-1
vertex v of degree 2 in G'. Hence, G' is pot hamiltonian-connected.

As Theorem 2.3.6 suggésts,rfor sufficiently large 'values of r,
graphs which are r-hamiltonian-connected can be charactérised without
a great deal of difficulty. So it is perhaps most appropriate to
close this chapter by presenting a characterization of graphs on n25
"vertices which are (n-5)—hamiltonian—connected.

el

Theorem 2.3.8 [35] Let G=(V(G),E(G)) be a graph on n25 vertices.

Then, G is (n-5)-~hamiltonian-connected if and only iva is a
complete graph from which a set of mutually nonadjacent edges has
been deleted.

Proof: Let G be a complete*graph on n25 vertices with two adjacent
‘edges xu, yu removed. Then, degG(u)Sn—3=(n—5)+2. Hence, the
removal of n-5 wvertices adjacent to ﬁ in G results in a graph G'
such thathdegg,(u)$2. Therefore G' connot be hamiltonian-connected
and it follows that G is not (n-5)-hamiltonian-connected.

Conversely, if G is a complete graph from which a set of
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mutually nonadjacent edges has been removed, then §(G)2n-2. Irii
particular, for each pair of nonadjacent vertices u,vev(G), deg(u)
+deg(v) 2 (n-2)#n-2)=n+(n-5)+1. By ‘Theorem 2.3.1, G is (;1_5‘)_
hamiltonian-connected ranc.l the theorem now follows. ‘ [
It is now clear that for each n24, there is uniguely one (n-4)-

hamiltonian-connected graph up to isomorphism; and for each n25, there’

are precisely 1+ [% non-isomorphic (n-5)%hamiltonian-connected‘graphs'
2.

up to isomorphism.

P
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CHAPTER 3

ON THE HAMILTONIAN-CONNECTEDNESS OF

CAYLEY GRAPHS OF A FINITE ABELIAN GROUP

The study of the hamiltonian properties of Cayley graphs is
important; especially because a Cayley graph is a vertex-transitive
graph. L. Lovasz in 1968 conjectured tﬁat every connected vertex4
transitive graph contains a hamiltonian path. This conjécture has been
verified for vertertransitive graphs on a prime number of'vertices by
J. Turner. - The validity of‘this conjecture in general, however,
remains far from beinq settled. Furthermore, it has been conjeétured
that every connected Cayley graph is hamiltonian. If is hoped that the
studies of the hamiltonian properties of Séyley graph will provide
some helpful insight into constructing at least certain partial
solutions to the conjecture of L. Lovasz and related problems. In
this chapter, a characterization of the hamiltonian-connectedness of

a connected Cayley graph of an abelian group will be presented based on

the work of C.C. Chen and N.F. Quimpo [ 42].

Section 3.1 Cayley graphs

Definition 3.1.1  Let U be a gfoup with the identity element e.

A subset S=U is said to be a symbol for U if the following two
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conditions are satisfied: -\
(1) e¢s.
| e 2 . -1
(2) For each s €U satisfying s #e, s€ S implies s ¢ s.
o1 -1 , .
Let S ={s |s€.S}. It is clear that the subset consisting of
S ) ) -1 -
the set of all finite products of eléments in SuS , denoted by< S?,
is a subgroup in u.

Definition 3.1.2 Let S be a symbol for a group U. § is said to

generate U is and only if U=<S»>.

Definition 3.1.3 Let S be a symbol for a g?oup U. An element s€ S

is said to be‘redundant if and only if (SF{S})=(S>. é is called a

minimal symbol if it contains no redundant element..

Based on the conbepts introduced,in tﬁe last few defihitions, the
definition of a Cayley graph of a group can now be given.'

Definition 3.1.4 Let U be a group'and S€U be a symbol for U. A

Cayley gr$§Q of U with respect to S, denoted by C(S,U), is the

undirected graph whose vertices are the elements of U and whose

My

edge-set is described below. Without ambiguity, one can write

. V(C(S,U))=U. Any two distinct vertices x,y € V(C(S,U)) are joined

3 ot

by an edge if and only if s€ S and either s=x_ly or s=y X
( that is, x Yy &svs ! ). |

All fhe Cayley graphs studied in this chapter are assumed to be
“finite. In particular, an abelian group will be denotéd by A. It is
instructive to consider an example of a Cayley graph of an abelian h

group.

273

Example 3.1.5 Consider the abelian group A=szZ xXZ_ and a

minimal symbol S={(1,0,0),(0,1,0),(0,0,1)}.
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(0,1,2)

(11'11‘2) '

(1,0,2)

(0,0,0) (0,0,1) - (0,052)
figure 3.1

Néte‘that the Cayley graph‘C(S,A) in this above example is
connected and A={S). 1In generél, it is clear that for any group U and
a symbol S&U, the associated Cayley graph C(S,U) is connected if and
only if U=(S).

Definition 3.1.5 (Bondy and Murty [51] )

»

Let Gl=(Vl,El) and G2=(V2,Eé) be two graphs. The. graph Gle
~ :
condists of the vertex set V(Gle2)=V

2

le2 such that for all

,; .
(xllx2)l (yl’yz)GtV(GlXG’Z)’ (x

L,x2) is adjacent to (yl,yz) if and

only if X,

=yl agd x2y2€E2 or yl=y2 and xlxzﬂﬂl.
‘For any integers n2l and m22, let Ln be a path on n vertices and

Cm be a cycle on m vertices, respectively. The Cayley graph as shown

in Figure 3,1 contains a spanning subgraph isomorphic to C3xL4f This
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is suggestive of the possibility that a similar spanning subgraph H
isomorphid to Cthn,~satisfying n2l and m22, is in general contained

in a connected Cayley graph of an abelian group of order mn. 1In
general, thié is due to théfact that a finite abelian group A has a
. — 3
decomposition A=Zm x...me , for some collection of po*itive integers
‘ Pl n ‘
{ml,...,n%} satisfying LAl=ml...mn. It will be shown in the next

7

section that the hamiltonian-connectedness of a connected,Cayley

" graph of an abelian group is due to the existence of appropriate -
« .
hamiltonian paths in such spanning subgraphs. It is clear that

L xt, i i ub h of x4 d C x1. is i subgraph
X, A4S a spanning s gfap o Cm , and C xL a spanning graph

of Cian. We now proceed to study the hamiltonian properties of
L_xIL , C xIL_ and C_xC_.and their applications to the characterization
m T n m- n n"m ¢

of the hamiltonian-connectedness of a Cayley graph of an abelian group

of Lrder mn.

4

Section 8.2 Some hamiltonian properties of L xL , C xL_and C xC .
m n m n . m n

Without loss of generality*thé vertices of either Ln or Cn can be
conveniently iabelled py {O,l,...,n—l}, fgr.some n satisfying nzl.
Let G=(V(G) ,E(G)) be a graph.isomorphic to meLn or meLn or émXCn'
for some positive inteéers n and m. v ‘ G

For the analysis in the remainder of this chapter, it éill be
assumed that the ve;tiqesrof G wili be partitioned into two ser by
the following coloring scheme, A vertex (i,j)e€V(G) is colored black
ifvand only if i+j is even. Otherwise, it is colored white. An edge
which jpins two black vertices will be called a black edge and an

edge which joins two white vertices will be called a white edge. An

[
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edge which is incident with a black vertex on one end and is incident

-

with a white vertex on the other end is conveniently called a grey

edge. For each i and j satisfying 0%i¢m=1 and 0¢j<n-1, the vertices

(1,0), (i,n-1), ((%j) and (m-1,j) are called side vertices. 1In
particular, the four vertices (0,0), (m—l,O),‘(m—l,n-l) and (0,n-1) are
called corner vertices. The remaining vertices in V(G) are called

P

interior vertices.

Lemma 3.2.1 Let G=(V(G) ,E(G)) be isomoxphic to meLn such that
mn is an even integer and m,n22. If x is a corner vertex in
V(G) , then for any vertex 'y ian(G) colored differently from u,

there exists a hami?ltonian x,y-path in G.

e

Proof: From the symmetry of the problem, there is no loss of
generality in assuming X is the black vertex (0,0) and m is an

even integer. Let m=2k such that k21. We proceed by induction

on n-and k. We first consider tHe case where k=1 and induct on

n. Let n=2. Then, y can either be (O,l)‘or (1,0). The hamilton-

=

ian paths (0,0) (1,0) (1,1) (0,1) and (O;b) (0,1) (1,1) (1,0)
will suffice, respectively. Suppose that the lemma has been
proven for k=1 and for each integer n¥l, L-1...,1, for some £22.

Consider the graph G=L an such that n=£+1. If y=(1,0), then the

2
path (0,0) (0,1)...(0,n-1)(1,n-1)(1,n-2)...(1,0) is a hamiltonian

x,y-péth in G. Let y-ﬁe a white vertex such that y#(l,O).' In
this case y cag either be in the form (O;j), for some j satisfy-

ing 2£9¢n-1 or-(1,4), for 1%j¢n-1l. We partition V(G) as follpws.

Hl={(i,r)|i=0 or 1 and 0%r<j} and

Hy=v(G) -H, -
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If y=(1,j), then by the induction hypothesis, there exists a
hamiltonian (0,0),(0,j-1)~path Pl in‘(Hl> and there exists a
hamiltonian (0,3),(1,j)-path P2 in< H2>. A hamiltonian x,y-path

and P, using the

2

in G can now be constructed by concatenating Pl

edge (0,3-1)(0,9). If y=(0,9), then by the induction hypothesis,

there exists a hamiltonian (0,0),(1l,j-1)-path Pi in <H1{and a

hamiltonian (1,3),(0,%) -path P) in <H>. similarly, the

concatenation of the paths‘Pi and Pé using the edge (1,3-1) (1,3)

ceg#titutes a hamiltonian x,y-path in G. This establishes the
validity of the lemma for all n22 and for k=1 (that is, m=2).
Suppose that the lemma has now been established for each n22 and for

each k=2,0-1,...1, for someR2 1. Let k=f+l and consider the graphs

an'for some arbitrary n satisfying n22. We partition the

G=L2k

set V(G) as follows:

H3={(s,j)|0555m~3,'Oﬁan—l}, and

H4=V(G)—H3. (See Figure 3.2)

Let y=(a,b) be any white vertex in H . Observe that (m-2,0) is a
4 raa -

black vertex in'H4 and (m~3,0) is a white vertex in H3. By - the

induction hypothesis, there exists a hamiltonian (0,0), (m-3,0)~-

s

path P_ in <H3> and a hamiltonian (m-3,0) (a,b)~path P4 in <H,6>. The

3 4

concatenation of P3 and P4 using the edge (m-3,0) (m-2,0) constitutes

a hamiltonian x,y~path in G. Suppose that y is any white vertex

in H3 such that y#(m-3,0). By the induction hypothesis, there

exists a hamiltonian x,y-path Pé inn<H3>. Notice that the
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vertex (m-3,0) is a white corner vertex of degree 2 in

CH,». The edge (m-3,0) (m-3,1) is necessarily on the path P3.

3

By the induction hypothesis, there exists a hamiltonian

(m-2,0) ,(m-2,1) -path Pé in< H4). The hamiltonian x,y-path Pé in

<H3> can now be extended to become a hamiltonian x,y-path in G

by replacing the edge (m-3,0)(m-3,1) on the path Pé by the path

{m~3,0) (m~2,0) Pa (m-2,1) (m~3,1). Finally, let y=(m-3,0). By

the induction hypothesis, there exists a hamiltonian x,y-path

P;,in <H3>. If the edge (m-3,0) (m-3,1) is on the path Pg,‘then Pg

can be extended to become a hamiltonian x,y-path in G in a manner
similar to the last construction. SupposeAthat the edge

(m-3,0) (m-3,1) is not on the path Pg. Then, it is clear that

. b4
n23., Since the vertex (m-3,n-1) is a corner vertex in H3, it is

clear that the edge (m-3,n-1) {(m-3,n-2) must be on tﬁe path Pg.

By the induction hypothesis, there exists a hamiltonian

(m=2,n-1) , (m~2,n-2) -path PZ in <H4).” Then, the hamiltonian

X,y-path Pg in <H3> can be extended to become a hamiltonian x,y-

path in G by replacing the edge (m~3,n-1) (m-3,n-2) on R;

by the paﬁh {(m-3,n-1) (m-2,n-1) PZ Km—2,n—2)(m—3,n—2).

This completes ‘the proof of the lemma. |
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- figure 3.2

Lemma 3.2.2 Let G=meLn such that both m and n are positive odd
integers gfeater than or equal to 3. Then there exists a
hamiltonian path connecting any black corner vertex and é
distinct black vertex in G.

. e
Proof: From the symmetry of the problem, there is no loss of
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generality in aSsumiﬁg“ihéf the: corner QerteX»x=(0,0)L " Let
y=(a,b) be any other black vertex in G. If a2l, then we ‘ J

partition the vertex set of G as follows. ‘Let Hl={(0¢j)|0$j£n—l}
| (

and H =V(G)—Hl. Since |H2| is even, by Lemma 3.2.1 there exists

2

~

a hamiltonian (1,n-1),(a,b)-path P  in <H2>. Let

2

PltY0,0)(O,l)...(O,n—l). It is clear that the concatenation of

- Py and P2 using the edge (0,n-1) (1,n-1) constitutes a hamiltonian

X,y-path in G. Suppose that a=0. Then, we partition V(G) as
follows. Let H3={(i¢0)|0$i5m-l} and H4=V(G)—H3.
As before, by Lemma 3.2.1,‘there exists a hamiltonian

(m—l,l),(a,b);path P4 in'(H4>. Let P3:(0,0)(l,0)...(m—1,0) be a
hamiltonian path in (H3). It is clear that concatenating P3 and

P4 using the edge (m-1,0) (m-1,1) results in a hamiltonian x,y-path

in G. This completes the proof of the lemma. [ |

A
x

Let m and n be positive integers satisfying m,n22. A very
useful.construction of a hamiltonian path between any two side vertices
in a graph is isomorphic to meLn is summarised in the following

corollary.,

Corollary 3.2.3 Let m and n be two positive intggérs greater
than or equal to 2 such that mn is an even integer. Then there
exists a hamiltonian path connecting ény two adjacent side

* .
vertices in a graph G=meLn.
Proof: Without loss of generality, we assume that m is an even
integer. Let Xx,y€V(G).be two arbitrary adjacent side vertices.

If either x or y is a corner vertex in G, then by Lemma 3.2.1 there

exists a hamiltonian x,y-path in G. Hence, it is assumed for the
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remainder of the p&oof that neither x nor y is a”éqrner vertex.
Suppose fhaf n is al;o an even integer. By the symmetry of the
problem, it _gsuffices fo consider the case where x=(i,0) and
y=(i+1,0), for some i satisfying l¢ifm-3.. We partition the’ set
V(G) as follpws. Let Hl={(r,s)|0$rsi,05s£ﬁ—l} and'H2=V(G)-Hl.

Then, by Lemma 3.2.1 there.exists a hamiltonian (i,0), (i, 1l)-path

P_ in <H1> and a hamiltonian (i+1,1),(i+1,0)-path P_ in (Hz); A

1 2

hamiltonian x,y~path in G can be constructed by concatenating Pl

and P2 using the edge (i,l)(i+i,l). Suppose that n is an odd
integer and let x=(i,0) and y=(i+1,0), for some i satisfying‘
lSiSm—3. We partition V(G) as above. If both lHl| and [sz are
even, then the construction used in the last argument will
provide é'hamiltonian x,y-path in_G. |
If both lﬁll and |H2| are odd, then by Lemma 3:2.2 there
exists a ﬁamiltonian (i,0),(i,n-1)~path Pi in <Hl) and a
hamiltonian (i+1,0), (i+1,n-1)-path Pé in (HZ). The concatenation
of Pi and Pé uéing the edge (i,n-1) (i+1,n-1) provides a hamiltonian
x,y=-path in G. By the symmetry of the problem, the only case
which still is requiredftq be examined is when x=(0,3j) and
q€§=(0;j+l), for-some j satisfying 1¢j<¢n-3, assuming that n is an
odd integer. Let V(G) be partitioned as follows.
let H3={(r,s)!0$r$m—l,sfj} and H4=V(G)—H3. Since m i% an even
integer, an argumeﬂt similar to the first constructioﬁ employéd
in the proof of this corollary will provide a hamiltonian

x,y-path in G. . L »

We now apply Lemma 3.2.1, Lemma 3.2.2 and Corollary 3.2.3 to
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e <

produce more generalized hamiltonian properties in meLn and‘meLn.
The technique of extending a path used at the end of the proof of

Lemma 3.2.1 will be useful in many constructions in the remainder of

N

this chapter. It can be summarized in the following definition. -

Definition 3.2.4 Let G=(V(G),E(G)) be a,graph and Hl and H2 be

-

‘nonempty disjoint subsets of V(G). Suppose that there exist four -
distinct vertices x,y€Hl and'u,v(H2 such that there exists a

hamiltonian x,y-path P, in (Hl) and a hamiltonian u,v-path P_ in

1 . 2
(H2>. éurthermore, suppose there is an edge u'v' on tﬁg path Pl
such fhét‘uu',vv'éE(G). -Then, a hamiltonian x,y-path ini
(HlUHz) can be‘constructed by rgpiacing4the edge u'v'.on Pl by the
path u'uP2vv'. Sﬁch an extension scheme is called a

[Pl,P2]-ext§nsion.
Notice that a [Pl,P2}~extension has a different meaning from a

[Pz,Plj;extension.

Lémma 3.2.5{ Let m and n be two positive integers greater

than or equal to 4 such that the product mn is even. Let
G=meLn. Then there exists afhamiltonian path copnectiﬁg any two
vertices in G which are colored differently.

Proof: Let G be a graph which satisfies the hypotheses of the

lemma and m be an even integer. By the symmetry of the problem,
it suffices to consider two vertices x=(i,3j) and y=(h,k) whic£
are célored blaék and white, respectively,véuch that j<k.
Furthermore, if either x or y is a corner vertex, then by

Lemma 3.2.1, there exists a hamiltonian x,y-path‘inzG. Hence,

we assume that neither x nor y is a corner vertex and consider
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the following cases.

Case 1 j <k. Supp6se that j >0 and k< n-}. We partition V(G) as

follows. Let Hl={(r,s)|0$r5m—l and s<j} and H2=V(G)—H Since

1
m is even, it is cléar that either (0,9) or (m-1,7) is a white
vertex. If (0,j) is the white vertex, then (0,j+1) is a black

vertex. By Lemma 3.2.1, there exists a hamiltonian (i,3),(0,3) -

path P

1 in (Hi> and a hamiltonian (0,3j+1), (h,k)-path P, in <H2>'

The concatenation of the paths Pl‘and P2 using'the edge (90,7)

(0,+1) will result in a hamiltonian x,y-path in G. An argument
sim%}ar to this last construction will provide a haﬁiltdnian
X,y-path in G if (m-1,j) instead of (0,j) is the white vertex.
For the remainder of Case 1, it will be‘assumed that either
k=n-1 or j=0. We first investigate those situations where
k=n-1. If.k>j+l, then iet Hfrﬂr,s)lOSrimfl and sSn—3} and

H2=V(G)—H An argument similar to the last construction above

e

1°

will provide a hamiltonian x,y-path in G. If k=j+l=n-1 and n

is an even .integer, then it suffices to consider only the case

where ifh. We introduce the following partitioning on V(G). Let
}H?ﬂrus)eri and szj}, H2={(r,s)|r2i and s<j} and

H_=V(G)~(H are

3 VE) It is clear that [Hl|,|H2| and |H

51
even integers. By Lemma 3.2.1, thére_é%ists a hamiltonian
x,y-path Pl in,(Hl>. For some integér £ satisfying isf¢m-2,
there exists an edge of the form (£,j) (£+1,j) on the path P,. By

Corollary 3.2.3, there exists a hémiltonian (£,5-1) (£+1,9-1) -path

P2 in (H2>. A [Pl,PZJ—extension will constitute a hamiltonian

X,y~path P} in <HlUH2). If H,=@, then P! is a hamiltonian
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X,y-path in G. Otherwise, there»ex;ségagn edge of the form
(i,tx(i,t+l) on the path Pi, for some t satisfying 6§t$n—2. By
 Corollary 3.2.3, there exists a hamiltonian (i—l,t);(i-l,t+l)-péth

P3 in <H3>. A hamiltonian x,y-path can now be constructed by .

EPi,P3]—extension. We next suppose that k£j+l=n—l and n is an

odd integer. 1If i<h, then the set V(G) is partitioned as
follows. Let Hl={(r,s)irsi'and s27 L H2={(r,s)|r5i aﬁd s<j} and

H =V(G)-(HlUH ). Notice that|H | H

3 5 and |H3| are all even

ll ’ 2'

integers. For some £ such that £<i, let (£,3) be a white
vertex in Hl. By Lemma 3:.2.1, there exists a hamiltonian
(i,3),(&,3)-path P, in H ). Since (£,j-1) and (1;55 are black

white vertices in H respectively, by Lemma 3.2.1, there exists

2!
a hamiltonian (£,j-~1),(i,0)-path P2 in <H2). Since (i+1,0) is
a black vertex in H3, by Lemma 3.2.1, there exists a hamiltonién

(i+1,0), (h,k)-path P3 in <H3>. It is clear that the concatenation
of the paths Pl’P2 and«P3 using the edges (£,3) (&,7-1) and

(i,0) (i+1,0) constitutes a hamiltonian x,v-path in G. We now
consider the case where i2h and we use the same partition on

V(G) as in this last éonsfru?tion. Note that x,y€Hl under such an

assumption. By Lemma 3.2.1, there exists a hamiltonian x,y~path

Pi in (Hl>. Let £ be an integer such that £<i and (£,73) (£+1,3) is

an edge on the path Pi. Since [H2] is an even integer, by

Corollary 3.2.3, there exists a hamiltonian (£,3-1), (£+1,9-1)-path

P; in <H2>' Let P} be a hamiltonian x,y~path in (Hﬁigai\\f///,//"
cgnstructea by [Pi,Pé]eextension. Since n25, there exists an

edge of the form (i,t) (i,t+l) on the path Pi for some t



56

satisfying 0$t<n-2, By Corollary 3.2.3, there exists a
hamiltonian (i+1l,t),(i+l,t+1)-path Pé in <H3). A hamiltonian,
X,y-path can be constructed by'[Pi,Pé]-extension}

We next investigate the situations where j=0. Under this

assumption, i is necessarily even. If k>j+1, then let

Hr={(r,s)l0$r£m—2,s$l} and H2=V(G)—Hl; It is clear that the

vertices (O,l)€Hl and (Q,2)6H2 are colored white and black,
respectively. By Lemma 3.2.1, there exists a hamiltonian
(i,0),(0,1)-path P, in {(H > and a hamiltonian (0,2),Zp,k)—path

P2 in <H2>' A hamiltonian x,y—path caﬁ be constructed by
concafenating Pl and P2 using the édg? (0,1) (0,2). For ‘the
remainder of the investigation of case 1, we assume that y=(h,1).
If i=0, then Lemma 3.2.1 guarantees the existence of a hamilﬁonian
x,y-path in G. Hence, i22 is assumed. 'Suppose that isﬂ. Let"
Hl={(r,s)|r£i énd 0¢s¢n-1} and Hz;V(G)—Hl. By Lemma 3.2.l;

there exists a hamiltonian x,y-path Pivin <Hl>. Let t be an
integef satisfying 0$t&n-1 such that the edge (i,t) (i,t+l) is on

the path Pi. By Corollary 3.2.3, there exists a hamiltonian

(i-1,t), (i-1,t+1)~path P} in {H >. A hamiltonian x,y-path can be

constructed by [Pi,Pé]—extension. If n is an odd integer,
then the additional case where i>h must be considered. ° We
partition V(G) into the following three subsets. Let
}H?ﬂrys)lrai and s¢1}, H2={(r,sﬂ r<i and s&l} and

H3=V(G)—(HluH2). Since the vertices (i,1l) and (i-1,1) are

colored white and black, respectively, by Lemma 3.2.1, there existg

a hamiltonian (i,O»(i,l)—path P

\

L in<H)> and a hamiltonian
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(i-1,1), (h,1) -path P2 in <H2>. Lét-Pl 5 be the hamiltonian -
B 4 .

x,y-path in <H10H2>. Since IH3| is an even integer, by
Corollary 3.2.3, there exists a hamiltonian (i-1,2), (i,2)-path

f‘P3 in (H3>. A hamiltonian x,y-path can now be constructed by

’[Pf 2‘,P3:l—extension. This completes the constructions for Case.l.
14
Case 2 j=k and i<h. Suppose that i is an even integer and j#n-1.

We partition V(G) in the following manner. Let Hl={(r,s)[‘r§ i

apd szi}, H2={(r,s)|O£rSm—l ?nd s<j} and H3=V(G)ﬂ(H19H2). Notice

thatlHﬂ ,JHJ and lH are all even integers. By Lemma 3.2.1,

3l

there exists a hamiltonian x,y-path Pl in (Hl). Let t be an
integer satisfying i¢t¢n-2 'such that the edge (i,t) (i,t+l) is an

edge on the path P If.,H3l¢O, then by Corollary 3.2.3 there -

1=

exists a hamiltonian (i-1,t),(i-1,t+l)-path P_ in (HB). Let

3
PJ_’3 bé the hamiltonian x,y-path ih (HlUH3) construéted by
-[Pl;PBJvextension. If |H2|#0, then let g be an integer satisfying
0<q¢m-1 such that {1,3) (g+1,3) is an edge on the path Pl,3' By
Corqilar§ 3.2.3, there exists a hamiltonian (q,j-1),(g+l,j-1)-path
P2 in (H2>. A hamiltoniaﬁ x,y-path can ﬁow»be constructed'by
tPipB,PB]r3Xtension. Subpose that i is an even integer and'j=n—l.
This impiies Fhat.n is necessarily an odd integer and we

consider the following partitioning on V(G). Let

H;={(f,s)[r2i andeSsSn;l} and H2=V(G)—Hl. By Lemma 3.?31,
‘.there’existS'a hamiltonian X,y-path Pl in (Hl)u Similarly, if
-lel#Oﬂ there exists an integer t' satisfyiﬂg 0st'Sn~-2 such that
thelgdge (i,t')(i,t'+l) is on the path Pl. ByVCOrollary 3.2.3,
there exists a hamiltonian (i-1,t'),(i-1,t'+1l)-path P2 in <H2)'
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A hamiltonian x,y-path in G can be constructed 23 [Pl,Pé]—
‘extension. For the remaining constructions in Cese—2} we assume
that i isvan odd integer and the set V(G) is pareitioned as
follows. Let Hlé{(r,s)lrﬁi and OﬁsSn—l} and H2=V(G)—Hl. It is
clear that the vertices (i,O)EHl and (i+l,0)€H2 are colored white
and black, respectively. By Lemma 3.2.1, there exists a

hamiltonian (i;j),(i,O)—path P. in (Hl) and a hamiltonian

1

(i+1,0), (h,k)~path P

5 in <H2>' The concatenation of Pl and P2 using

14

the edge (i,0) (i+1,0) results in a hamiltonian X,y-path in G.
This completes the constructions required for Case 2.

Case 3 j=k and i>h. From the symmetry of the probiem this ease
is required to be considered only'if n is an odd integer.

_n
Furthermore, it suffices to assume that j=k$[§]+l. Suppose that

i is an even integer. We consider the following partitioning on -
V(G). Let Hl={(r,s)[r2i and ssj}, H2={(r,S)|r<i and ssj} and

H3=V(G)-(H10H2). Observe that (m--l,j)EHl and (O,k)eHz'are colored

white and black, respectively. By Lemma 3.2.1, there exists a

hamiltonian (i,j), (m-1,j)~path P_ in <Hl> and a hamiltonian

1

(O,j);(h,k)—path P_ in <H2>' Since |H3|'is an even integer,

2

Lemma 3.2.1 also guarantees the existence of a hamiltonian

(m-1,3+1) (0,3+1) -path P, in <H3). The concatenation of P P, and

P, using the edges (m-1,j) (m-1,3+1) and (0,3) (0,3+1) results in a
hamiltonian x,y-path in G.

Finally, we assume that i is an odd integer and consider the

following partition on V(G). Let H1={(r,s)'rsi and sSj},
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H ={(r,s)lr$i and s>j} and H =V(G)—(HluH2f} This parfitioning

2 3

yields that JHlI, ‘Hzl and 1H3l are even integers. By Lemma 3.2.1

there exists a hamiltcnian x,y-path P, in <Hl>' Suppose that

1

|H3]#O.L There exists an integer g' satisfying Oiq'fj—l such that

the edge (i,q')gi,q'+l) is on-the path Pl. By Corollary 3.2.3,

there. exists a hamiltonian (i+1,9"'), (i+l,q'+1)-path P

3 }n (H3>.

Let Pl 3 be theAhamiltonian X,y-path obtained by [Pl,P3]—extension.

Since j=k$ Fq+&d there exists an integer p satisfying j+1¢p<n-1
2 .
such that the edge (i+l1,p) (i+1,p+l) is on the path P

. B
1,37 Y

Corbllary 3.2.3, there exists a hamiltonian'(i,p),(i,p+l)-péth

P, in <H2>. A hémiltonian X,y-path can now be obtained by

) [P1’3,P2]—extension, If |H3|=0,,then x=(m-1,7) and there
exists an integer £ satisfyihg OSI#&—Z such that the edge

(£,3) (2+1,3) is on the path P By Corollary 3.2.3, there -

. l .
;exists a hamiltonian (£,3j+1), (£+1,3j+1)-path Pé in

<H2>’ A hamiltonian x,y-path in G can now be obtained
by [Pl,Pé]—extension. This completes the proof of the

lemma. : B
It is important to realize that the lower bounds on.
- .
m and n in Lemma 3.2.5 are sharp.

Lemma 3.2.6 Let m and n be two odd positive integers

-+

greater than .or equal to 3.‘ Let G=meLn. Then there
exists a hamiltonian path connecting any tweo black
veftices in G. |

Proof: Let G be a graph which satisfies the

hypotheses of the lemma. Consider two arbitrary
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distinct black vertices x=(i,j) and y=(h,k) in G. From
the symmetry of the problem, there-is no loss of

generality in assuming that iSh and j<k. There are

thiee cases to be considered.

"Case 1 i is an odd integer and i<h. Consider the
.following partitioning on V(G). Let Hl={(r,s)] r¢i,
0Oss¢n-1} and H,=V(G)-H,. It is clear that the vertices

(i,0)eH. and (i+1,0)€H_ are colored white and black,

1 2
respectively. Observe that lHlI is an even integer and
IHZI is an odd integer. By Lemma 3.2.1, there exists
a hamiltonian (i,j),(i,O)-path_Pl in <H1). By Lemma

3.2.2, there exists a hamiltonian (i+1,0), (h,%k)-path

in <H2>. The concatenition of the paths Pl and sz.

/using the edge (i,O)(i+i,O) results in a hamiltonian
"x,y-path in G.

Case 2 i is an odd integer and i=h.: - Under the
assumptions of the case, j<¥ must be satisfied.

Let Hl={(r,s)|OSrSm—l and ssj} and H2=V(G)-Hl. It is

clear that the vertices (O,j)EHl and ?{fﬁ+l) are

colored white and black, respectively. Furthefmore,

|Hl| andIHZI are even and odd +integers _ respectively.

By Lemma 3.2.1, there exists a hamiltonian

(i,3),(0,3)-path PJ in (Hl>f??By'Lemma 3.2.2, there

=

exists a hamiltonian (0,3-1) Th,k)-path Pé in (HZ). A

™.

hamiltonian x,y-path in G cén be constructed by

concatenating P; and P) using the edge (0,3) (0,j+1).
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~Case 3 1 is an eveh integer. TIf either x or 9 is

a cdrqer vertex, then Lemma 3.2.3 can be épplied,
directly to construct a hamiltonian x,y-path in G.
For the remainder of the proof, it will be assumed
that neither X nor vy is a corner vertex. We first
‘assume that i#m-1 and consider the following partiﬁ-
ioning on V(G). Let Hl={§r,s)lréi and s2j},

Hzé{(r,s)lrzi and s<j} and H =V (G)~ (H vH,). Then,

3

lHll is an odd integer while both |H and |H are even

5! 3T

integers. By Lemma 3.2.2, there exists a hamiltonain

Xx,y-path P} in <Hl>' Suppose that |H2I#0. Let 4 be

an integer satisfying iﬁﬁim-2 such that the Adge

(L,3) (£+1,3) is on the path P}. By Corollary 3.2.3,

there exists a hamiltonian (£,j-1), (£+1,j-1) -path

p; in (H2). Let Pi 5 be the hamiltonian x,y-path
[

R [ 3
obtained by [ i,PE]-extension.‘ Suppose that WJ#Q.

It is clear that there exists an integer.t satisfying
0¢t¢n-1 such that tq: edge (i,t) (i,t+1l) is on the

path PV By Corollary 3.2.3, there exists a

1,2° ‘
hamiltonian (i-1,t),(i-1,t+1)-path Pg in (H3). A
hamiltenian x,y—path in G can now be obtainedvby‘

[Pi+2,Png§x£ension. The cases where either |H£=0 or
s

|H3|=0 can be treated similarly. It remains to

consider the case where i=m-1. This, hOWever,

implies that h=m-1 and j<k. By the symmetf¥y of the

problem, this is equivalent to constructing a
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hamiltonian (0,j),(0,k)-path in G which has already
. o » . o
been accounted for in the lasgt construction..
This completes the proof of the lemma. . [ |
It will be shown in the. following how Lemmas 3.2.1
through 3.2.6 can be used to establish the hamiltonian-

connectedness of a graph isomorphic to meLn, for any

integer n22 and any odd integer m23.

Lemma 3.2.7 Let G be a gfaph isomorphic to meLn for
any integer n22 and an& odd integer m23. Then G is
4h?miltonianfconn?cted.

Proof:b'Let G ée a graph whieh satisfies the hypothesis
of thé lemma. Let x=(i,j) be a black vertex in G and
y=(h,i) be any vertek in G distincﬁ f;om x. From

the stﬁetry of the problem, it is clear that there is
no loss of generality in assuming‘that 0¢i¢l, i¢h and
jtk. in order to apply Lemmas 3.2.5 and 3.2.6, we
first invgstigate the'hamiitonian—connectedngss of

G where the lower bounds n24 and m25 are Satisfiedl

[3

The remaipgng-cases'will be-éxamined separately after
the‘foll;wing four cases have been considered.

CéseAl n is an odd integer and h>1l. If vy is a black
vertex, then by Lemma 3.2.6 there exists a hamiltonian
x,y-path in G. Hence, y is assumed to be a white

vertex in G for the remaining constructions. Consider

the following partition on V(G). Let
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H, = {(r,s)| 0¢r¢l and 0ss¢n-1} and H,=V(G)-H;. The
vertices (1,0) and(2,0) are of colors white and black,

fespecﬁively. By Lemma 3.2.1 there exists a

-

hamiltonian (i,3j),(1,0)-path P_. in (Hi), and a

1

hamiltonian (2,0),(h,k)-path P_ in <H2>. The concat-

2

Ve

.enation of Pl and P2 using the edge (1,0) (2,0) results

in a hamiltonian'x,y-path(in G.

Case 2 n is an odd integer and h¢l. For.the reason
mentioned in Case 1, it suffices to aséume that y is a
white vertex. If x=(1,7), for séme j satisfying
1¢j€n-2, thén we partition_V(G) as follows. Let
Iﬁfﬁr,s)|0£ril, j$s€n-1}, H2={(r,S?|2£r$m-l, o¢s¢n-1}

and H =V(G)-(HfJH2). Observe that |H is an odd

3 5l

integer while both |H and ’H3|are even integers. By

1!

Lemma 3.2.1, there exists a hamiltonian x,y-path Pl

in (Hl>. By Lemma 3.2.6, there exists a hamiltonian

(2,n-1), (m-1,n-1)-path P, in <H . Since y=(1,k); for

some k satisfying j+1¢k<¢n-1l, it is clear that the edge

(0,n-1) (1,n-1) is on Py Furthermore, (0,n-1) is

adjacent to (m-1,n-1) and (1l,n-1) is adjacent to

(2,n-1). Let P1 5 be the hamiltonian x,y-path in
, , 3

(Hlqu) which is obtained by [Pl,Pz]—extension. It is

clear that the edge (0,j)(1,j) is on the P, portion

of the path P By Lemma 3.2.l, there exists a

1,2°
hamiltonian (0,j-1),(1,j-1)-path P, in <H,>. Then, a

hamiltonian x,y-path in G can be obtained by
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[Pl 2,P3_]-'-extension..‘W'e next aSsume that x is of the
, g
" form (O,jf for some j satisfying 0<j¢n-1. As long as

j<k, the last construction can still be used to -
providé a hamiltohian X,y-path in G. If j=k, then
consider'the>fpllowing partition on VkG). Let
Hl={(r,s)"0£r£l, j¢sén-1}, H2=‘{(r,s)|2$t.$n'1-l, j¢s¢n-1} '
and»H3=V(G)—(HluH2).  It is clear that IH2I is an odd |
integer and |Hll and |H3| are even intege?s. Suppose
that jsn—i. By Lemma 3.2.1, there exists a hamiltonian
x,y—path’Pi in <Hl) and by Lemma 3.2.6, there exists a

hamiltonian (2,n-l),(m—l,n—l)—path Pé in <H2>. Since
the edge (0,n-1)(l,n~-1) is. on the path P!, a hamiltonian

- ' . - g , o] ¥ -
X,y-path P1,2 in <HluH2) can be obtained by [Pl,P2] |

extension. Let £ be an integer satisfying 2sf¢m-1

such that the edge (£,3j) (£+1,j) is on the path Pi g
. 7

Suppose that IHBDO. By Corollary 3.2.3, there exists

a hamiltonian (l,j—l),(ﬁ+l,j—l)—path P!

3 in <H3>. A

hamiltonian x,y-path in G can be qbtained by
[Pi’2fPé]—extension. ‘The cases where j=n-1 or j=0 can
be treatedisimilarly:

Case 3 n is even integer and h>1. 1If y is a white
vertex, then Lemma 3.2.5 guarantees the existence of
~a'ha:;\iltonian Xx,y-path in G. Hence we. assume that y
is black. Clearly, ( 0m—l) and (m-1,n-1) are white
vertices invG and consider the following partition on

V(G). Let'Hl={(r,s)|o$rsl, 0fs¢n-1} and H,=V(G)-H,.
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By Lemma 3.2.1, there exists a hamiltonian'(i,ﬁ),
(O,n-l)-pau1Pl in <H1) and a hamiltonian

(m—l,n—i),(h,k)—path P. in <H2)' .The concatenatiohx

£

2

of Pl and P2 using tHe edge (0,n-1) (m-1,n-1) results

in a hamiltonian x,y-path in G.

®

Case 4 n 1is an even integer and h€¢l. Bs in case };
it suffices to‘assume tHat y is a white vertex.

Suppose that y#(l,n-l). Then, k&n-2 and we partition
V(G) as follows. Let Hl={(r,s)l05r5mfl, 0 <s¢n-2} and

H_ =V (G)-H

5 1 By Lemma 3.2.6, there exists a hamiltonian

x,y-path P. in (Hl>. ‘'Let £ be an integer satisfying

1
0%L¢m-2 such that (£,n-2) (£+1,n-2) is an edge on the

1° Let P2 be the hamiltonian (£,n-1) (£+1,n-1)-
' 5

> defined by (z,n—i)(£—l,n—1)...(0,n-l)

path P
path in (H2
(m-1,n-1) (m-2,n-1)...(L+1,n-1). A hamiltonian:x,y-path
in G can be obtained by [Pi,P;]-extension. It remains
to assume that y=(1,n-1). If x=(0,n-2), then by

Lemma 3.2.6 there exists a hamiltonian

(o,n-2),(2,n-2)-path Pi in (Hl>. It is clear that the

path Pl:(2,ns1) (3,n-1)...(m-1,n-1) (0,n-1) (1;n-1) is a

hamiltonian (2,n-1),(1,n-1)=path in <H2>_ A hamiltonian

X,y-path in G can be constructed by concatenating Pi

and Pé using the edge (1,n-2)({(l,n-1). If x#¥(Q,n-2),

then by Lemma 3.2.6 there exists a hamiltonian (i,3j),

(0,n-2)-path Pi in (Hl>. Furthermore,
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sz(o,n-l)(m-l,g—l)Lm-Z,n—l)..,(Z,h-l)(l,n-l)_is a
hamiltonian (0,n-1),(1,n-1)=path in <H2>.v The
concate;ation of P] and P; using the edgé(O,an)
(0, n-1) will result in a hamiltonian x,y-path in G.

For the remainder of the proof, we assume that
‘either n¢3 or m=3.

We firét consider the situation where m=3 and n
is an integer gréater than br equal to 2 and examine
the following two cases.

Case 1 n is an odd integer and m=3,7'It is clear that
it suffices tovconsider only the case where y is a
white vertex. Suppose‘the x=(0,3j) for somé |
satisfying 0¢j¢n~1. TIf j=n-1, then we let

=V (G) -H

Hl={(r;s)l05r51, l1¢s€n-1} and H By Lemma

2 1°

3.2.1, there exists a hamiltonian x,y-path P_. in <Hl>‘

1
Let £ be an integer satisfying 0££%1 such that the

I Let P2 be a

edge (l,l)(2+l,l) is on the path P
‘hamiltonian (Q,O),(Q+l,0)ﬁ§ath in <H,> which contains
the edge (0,0) (0,2). A hamiltonian x,y-path in G can
bé obtained ?y [Pl,sz—extension. If j}nél, then the
following partition on V(G) applies. Let

Hl={(r,s)[05r$2,15s$n-l}’H2={(f,s)|05r52,Ys=n—l} and

H, =V (G)-(H and by

UH2). If v#(1,n-1), fhen yeHl
j

3 1 N
Leméz\E.Z.l there exists a hamiltonian X,y~-path Pi

>

in (Hl). Let t be an integer satisfying 0%t¢1l such



.67

that the edge (t,n-2)(t+1,n-2) is on the path Pi.

There exists a hamiltonian (t,n-1), (t+1l,n~1)-path Pé‘

in £H2> which contains the edge (0,n-1)(2,n-1). Let

P UH2> obtained by

1 2‘be the hamiltonian x,y-path in <H
14 .

1
[P',Pé]—extensidn. Observe that |H3| is even. If

|H§>O, then Pi , can be extended in a similar way to
r

a hamiltonian x,y-path in G by applying Coroliary

UH2>-and P! itself

.2, ise, G=¢
3 2 % on (§3) Otherw1se, G=<H 1,2

1

is a hamiltonian path in G. Suppose that y=(1l,n-1),

Since (2,n-2) °is a white vertex in Hl' by Lemma 3.2.1,

there exists a hamiltonian (0,3)(2,n-2)-path P} in

1). Let PE:(Z,n—l)(O,n—l)(l,n—l) be the hamiltonian

(2)n-1),(1,n—1)-path in <H2>. Let P" be the hamiltonian

{H

" A n -
1 and,PZ

Xx,y-path in <H uH2> obtained by concatenating P

1
using the edge (2,n-2)(2,n-1). If IH3I=0, then P" 1is

'a hamiltonian x,y-path in G. Otherwise, P" can be

extended to a hamiltonian Xx,y-path in G by applying

Coféilary 3.2.3 on <H)? in a way similar to the last

3
construction. Finally, we assume that x=(1,j) for

some j satisfying 1¢j¢n~2, and we partition V(G) in the
following manner. Let Hl={(r,s)|0$rs2, 0ss<j},

H2={(r,s)|05r€2,%*15§£n—2}'and H3={(r,s)|05r52,s=n—l}.
- {

If yeH

\
1+ then y=(?,j). By Lemma 3.2.1, there exists a

TN
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hamiltonian x,y-path P_ in <Hf>' Without loss of generality, P

1 1

can be chose in such a way that the edge (0,3)(1,3)

is on the path P If |H2I>O, then by applying Coroiiary 2.2.3

1"

there exists a hamiltonian (0,j+1),(1,j+1)-path P2 in'<H2>_ Let

Pl 5 be the hamiltonian x,y-path in G obtained by
’ ) :

[Pl,Pz]—extension. In a similar manner Pllzlqan be

extended to a hamiltonian x,y-path in G. If y€H2,

then by Lemma 3.2.1, there exists a hamiltonian

(2,3+1) , (h,k) -path Pé in<H2>and a hamiltonian

(1,5),(2,9)-path Pi in<H1>', Let P' be a hamiltonian

‘X, y=path in<H UH2> obtained by concatenating P! and

1 1
Pé using the edge (2,7)(2,5+1). P' can again be

r

extended to a hamiltonian x,y-path in G. Iffy§H3,

then by Lemma 3.2.1, there exists a hamiltonian .-

(1,3) ,(2,n-2)-path P1,2 1n<HluH2>. Let

sz(2,n—l)(0,n-l)(l,n-2).' Then the concatenation of

Pi 5 and Pg using the edge (2,n-2) (2,n-1) results in a
14 -

a

hamiltonian x,y-path in G.
, _ o
Case 2 n is an even integer and m=3. We first assume

that y is a white vertex and x is a black vertex of the

form (0,j) for some j satisfying 0€j€n-2. We partition
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H_ =V (G)-H

2 1° Since IHl! is even and x is a cornex

vertéx in H,, by Lemma 3.2.1 there exists a hamiltonian

x,y-path P_, in (H1>.' By Corollary 3.2%3, there exists

1
"a hamiltonian (1,j-1), (&+1,j~1)-path quin <H2>for some

satisfying 04R2¢1 which can be used to extend Py to

a hamiltonian x,y-path in G by [Pl,Péj—extension.- Next
A ‘ v !
let x=(1,79) for some j satisfyihg 1£jsmyl and partition

oF

V(G) into the two subsets H1={(r,s)|05r51, 0%¢s€j } and

.H2=V(G)~Hl.

if y=f2,j), thenrgy Lemma 3.2.1 there
"exists. a hamiltonian x,y-path;P%%in 4%1>which contains
the edge (O,j)(l;j). By Corolla;f 3.2.3, there exisfg
a‘hémiltonian (0,j+1)((1,j+;);Path Pé in <H2>which is
used to cénstruct"a hamiltonian x,y-éath in G using
[Pi,Pé]—extensioF. It remains to‘cons;derbthe case
where y is also a black vertex. If y#(1,n-1), Ehen

let V(G)_be,partitionedvingo two subsets

=V(G)-Hl. By Lemma

Hl={(r,8)|05r52, 0£s$n-2} and H,

3.2.6, there exifts a hamiltdnian‘x,i-path Pi in <Ei)
wHich/contaihs the edge (1,n-2) ({+1,n-2) for some
satisfying QfQSl.v If 2=l,'then the path
P2:(l,§—l)(0,n—l)(2,n—l) can be uéed to‘éonstruct a

hamiltonian x,y-path in G by'[Pl,Pz]-extension. .The

case where 1=0\can be treated similarly. If y=(1,n-1),

S
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and let Pé=(l,n—l)(p,n—l)(2,n-1). By Lemma °

€
then vy H2

3.2.6, there exists a hamiltonian (i,j), (2,n-2)-path -

Pé in <Hl>. The concatenation of Pi and Pé using the

edge (2,n-2)(2,n-1) is a hamiltonian x,y-path in G.

We proceed to complete the proof of the lemma by

conSiderng the case where n=2 J?\&\gai;m'is an odd

3

inteéer greater than or equal to 5. Sup;3§ﬂ\that
n=2 and x=(0,0). If y is a white vertex in G, then by

Lemma 3.2.1, x is connected to y by a hamiltonian

path. If vy is a black vertex, then partition V(G) into

two subsets Hl={(0,0)7(0,l)} and Hsz(G)—Hl. Since —_

[

(m-1,1) is a white vertex in~ H, , py Lemma 3.2.1, there

exists a hamiltonian (m-1,1), (h,k)-path P, in~<H2). A
hamiltonian X,y-path can be c¢constructed from the’

concatenation of the path P_ with the path

2
P:(0,0)(0,1) (m-1,1). If x=(1,1), then consider the

partition on V(G) as follows: Let Hl={(r,s)|05r$l,oﬁs$l}

and H2=V(G)—Hl. By Lemma 3.2.1, there exists;a

!

hamiltonian (1,1), (0,1)-path Pi in (Hl) and a hamiltonian

(m-1,1) (h,k)-path Pé in (H2>. The céncatenafion'of

Pi and Pé results in a hamiltonian x,y-path in G.

Finally, we assume that n=3. Lemma 3.2.6 accounts for

the case when both x and y are black vertices and it

¢

i
remains to assume that y is a white vertex. By the

symmetry of G,'it suffices to assume that x=(0,0) or

(0,2). Suppose that x=(0,0). If y=(h,k) such that
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h21, then we partitiéﬁ V(G) into two subsets

= = <5< nd H = “H. . ; . ;
Hl>{(i,s)|r 0,0%s22 }and H2 V(G) Hl Since |H2| is

even and ‘(m-1,2) is a black vertex, there exists’a

o€

hamiltonian (m-lfél

g}h,k)—path P2 in {Hé): A

hamiltonian x;y—path'can1be constructed by concatenating

P, with the path él:(o,O)(o,l)(o,z)(m—l,z). If y=(0,1),

then we partition V(G) into the two subsets

From the

Hl={(r,sYTcsr$m-l; 0%s¢1 } and_H2£V(G)~Hl.

constrxuction used in the case where n=2, it is clear

' : . . <
that <H.> is hamiltonian-connercted. P! be a hamiltonian

1 1

i

(O:O),(O,l)—path in (Hl>. There exists an integer t

satisfying 0£tf&m-1 such that (t,1) (t+1,1) is an edge

on the path Pi. Let

Pé:(t,2)(t—l,2)...(0;2)(m—l,23(ﬁ—2,2)...(£+i,2) be a

hamiltonian (t,2),(t+1,2)-path in‘(Hz).' A hamiltonian ;

...

x,y-path can be obtained from [P‘,Pé]—extension.

Suppose that x=(1,1). We cdnside& the same partition
- hd . ) {‘

on V(G) as in the last argument. If yé€H ‘then

ll

construct a hamiltonian x,y-path in <Hl) and extend it

to a - hamiltonian x;y-path-in G as in the last

construction. If y=(1,2), then l€t Pi be a hamiltonian’

(1,1),(0,1)-path in <H12 Let

P;:(olz)(m_l,z)(m-2p2)...(l,2) and the concatendation

of Pi and P; constitutes a hamiltonian x,y-path in

G. 1If y=(h,2) for some h23, then V(G) is partitioned

-
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. Since

into H={(r,s) 0fr¢m-1, 1552} and H,=V () -H,

> is hamiltonian—connectedn'a hamiltonian x,y—path

(Hl

in <Hl>is obtained which can be extended to become a
hamiltonian x,y-path in G as in a previous argument.

This completes the proof of the lemma. ®

Lemma 3.2.8 Le; n and m be two integers greater
than or equal to 2 and G be a graph isomorphic to meLn.
If G contains a white edge, then there exists a
hamiltonian (0,0),(m—l,n—l)fpathxin G.

- Proof: Let x:(0,0) and y#(m—l,n—l). If both m and n

_are odd intégers, then by Lemma 3.2.6, there exists a

hamiitonian X,y=path in G. If one of the integérs
m and n is even while the other one is odd, then y is
a white vertex and by Lemma 3.2.1 thefe exists a
hamiltonian x,y-path in G. If both m and n are-eveﬁ
integers, then a étraight forward double induction ?nk
maénd n in a manner similar to the proof K in Leﬁma!3.2fl
will establish the existence of aihamilfonian X,y~path

—

in G. This ,comp'lete:s the proof of the lemma. ‘ |
Befére we apply the results obtained so far to establish
a characterization of the hamiltqnian-cdnnectedness of a
graph isomo;phiC'tO’meCn fo?_some integers n22 and m23, two
useful éomments are in order. It is important to observe
that if n=2 or 3 .and m is an even positive integer, then
' : ,

the graph meLn is not hamiltonian-connected. However,

any two vertices in the graph which are colored differentl&
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by a hamiltonian path. Y

Lt

EE
Tl

The second comment concerns with;simpliinng of notations.

Let G=(V(G),E(G)) be-a graph and’Hi'and H2 be disjoint

and urveHz, there

' , h ) .
subsets of V(G) such that for some x,yeHl

exists a hamiltonian x,y-path P

1 in <Hl> and a hamiltonian

u,v-path P2 in'<H2>. We shall simply say that Pltis

-

extended to a hamiltontan path‘in'<H10H2> by including H2

to denote a [Pl,PZ]—extension,'without specifying
explicitly the forms of the vertices u,v and the vertices
u',v'EV(Pl) such that uu',vv'¢€eE(G). - ‘ k™

Theorem 3.2.9 Let n and m be positive intégers

greater -than or equal to 2. Let G be a graph
™™ A
isomorphic to mecn. Then G is hamiltonian~connected

if and only:if G contains a white edge and a black edge.

Proof: Let G=mecn for some positive integers m and n
greater than or equal to 2. Suppose that one of the
integers n or m is odd. Without loss of generality,

~let m be an odd integer. Then, G contains a spanning

subgraph isomorphic to meLn which satisfies the

hypotheses of Lemma 3.2.7. This implies that G is

v

hamiltonian-connected. Furthermore, G contains at
least one black edge and one white edge. Hence, for

the remainder of thefproéf, both m and n are assumed

to be even integers greater than or equal to 4.

We first establish ~the necessity and assume that

G is hamiltonian-connected. Observe that V(G) is an

3 . '}"‘
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even intéger gréater»thén or equal»toiEG. Let u andbv
be two»érbitrary white vertices and P be a hami}tonian
u,v-path in G, It is‘clear that the numbervof black
vertices and the number of'white vertices on P are
_eQual} Let u' ana v' be two vertices on P such‘thét
the edges uu' and vv' aré on the path P. Then the
nuﬁber,of black i}fgiCes on the u’,v'-péth P', obtained
‘from P by removing the initial and terminal vertices
u andiv,_exceed the number of white verticés on P' by
2. It is clé;r that there exists at least one black
edge on P'. 'If u and v were chosen to be black vertices,
then a similar atguﬁenf will show that fhere exists ‘at
least one white edge on P'. This established fhe )
necessity of the theorem.

It remains to establish the sufficiency of the
theorem. Let x=(i,j) and y=(ﬂ,k) be two artitrary ver-
tices in G. If x and y are of different colors, then
by Lemma 3.2.5 and the comment preceeding the theoremn,
there exists a hamiltonian x,y-path in G. It remains
to aséume that both -x and y are of the same color.

Due to the symmetry of the problem, it suffices to
assume that both x and y are colored black and x=(0;j)
for some jE{O,Z;;..,n-Z}. Let yQ(h,k) be an arbitf&ry
black vertex in G distinct from x. We proceed by

induction on |j-k| to construct a hamiltonian X,y-path
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in the underlying_spanning,subgrapﬁiof G which is
isomorphic to meLn.A We first consider the case where
|j-kl=0. Under this assumption, j=k and h€{2,4,...,m—2}.
We partition V(G) into four subsets as follows (see
Figure‘B.é). Let |
Hl={(r;§)|05rfﬁ-l, j<s<n-1}, H2={(r,s)IhSrSm;i,szSn-l}

Hy= {(r,s) Jo<rsn-1, 0fs<j-1}andéf,={(r,s) |hsrsm-1,j<s<n-1}.

Observe ‘that IHl" IHzl, |H3[ nd ,H4I are even integers;
O ,_.(IL € (n-1,n-1)
T ©.n-1) T T
. 1
x=(0,5) (h-1,k) , . y=(h,k) J (m-1,k)
” (0,5-1) (h-1,k-1) ' (h,k-1) (m-1,k-1)
H3
O—0- O
(OIO) (m—llo)

£

igure 3.3

By the hypotheses offthe theorem, there exist two white

vertices w

1 and w

2

in V{(G) such that w

are four cases to consider.

1
Case 1

W W

w2€E(G).

There

2€Hi’ for each i=1,2,3,4. Suppose wlw2€H2.
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By Lemma 3.2.8, there exists a hamiltonian
(0,3), (h-1,n-1)-path P, in (Hl). By Lemma 3.2.1,

there exists a hamiltonian (h,n-1), (h,k)-path P2

Let P be the hamiltonian‘x,prath in (HIUH2> constructed

from concatenating Pl and P2 using the edge

“ (h-1,n-1) (h,n-1). The path P can be extended to a

in <H2>;

hamiltonian path in G by including H§IH4. If wl,wzéH2

then by Lemma 3.2.8 there ‘exists a hamiltonian

(m-1,n-1), (h,k)-path P! in <H2>. Let P! be a hamiltonian

2 1

(0,3),(0,n-1)-path in <Hl). The concatenation of P!

23

and Pé using the edge (0,n-1) (m-1,n~1) constitute® a

hamiltonian x,y-path P' in <HlUH2>. P' can now be
extended to a hamiltonian x,y—éath G by including

H3UH4. If wl,w

a _hamiltonian (h—l,k—l),(0,0)—path P; in <H3>. By

2

€H3, then by L.mma 3.2.8, there exists

Lemma 3.2.1, there exists a hamiltonian (0,j), (h-1,k)-

path P" in (Hl>, a hamiltonian (m-l,O)(m—l,k—l)-path

1

PZ in (H4> and a hamiltonian/(m—l;k),(ﬁ,k)—path P

in <H2). The concatenation of the paths P", PS,#

@

2
P

4

1] ~

(m-l,kj;)Yﬁ—l,k) constitutes a hamiltonian X,y-path

-

G. Ifrwl,w2€H4, then there exists a hamiltonian

(h,O),(m-l,k-l)-path-PE' in (H4). By Lemma 3.2.1,

[ K3}

there exists a hamiltonian (O,j),(ﬁ-l,k)—path Pl

in (Hl>, a hamiltonian (h-1,k-1), (h-1,0)-path Pg'

3

in <H3) and a hamiltonian (m—l,k),(h,k)—path Pg'in

'and

P" using the edges (h-1,k) (h-1,k-1), (0,0)(m—1;0) and

in

-
oty
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H2 . The concatenation of Pf', P;', Pé" and P&" using the edges
j& (h-1,k) (h-1,0), (h-1,0)(h,0) and (m—l,k—l)(mll,k) results in a
hamiltonian x,y~path in G.
Case 2 (le Hl and v, € H3) or (wle H2 an’d v, €H4) br
N
(wl§ H3 -and W, EH4) . Supapse that wl€ Hy and w, € H,. Byé\Lemma

3.2.1, there exists a hamiltonian x,wl—path Pl in <H1>"a,“‘:
hamiltonian W (h-1,k-1)-path P3 in <H3>, a hamiltonian

> and a hamiltonian (m-1,k) ,,(h,k‘)‘

(h,k-1), (m-1,k-1)-path P, in &H

4 4

-path P2 in < H2> .- The concatenation of Pl’ P2, P3 and P4 using

w., (h-1,k-1) (h-1,k) ahd (m-1,k-1) (m~1,k) results in

the edges Wy 5

a hamiltonian Xx,y-path in G. The other two cases where wle H2

4 can be treated similarly.

y .
aﬁdﬁw2€H4 orwle 3andw2EH

' H € )
Cas§ 3 (le 1 and w2 H4) or (wlé H2 and w2§H3)

Suppose -that wl‘€ Hl and w2€ H4. By Lemma 3.2.1, there exists a

-path P

hamiltonian x,w in < H1> , @ hamiltonian w2, (m-1,k~1)-

1 1

path P4 in <H4> and a hamiltonian {(m-1,k),(h,k)-path P2 in <H2>.

’

By concatenating P

1’ P2 and P4 using the edies W, -and

. ’ . 1
(m-1,k-1) (m-1,k), we obtain a hamiltonian x,y-path P in

{H VH UH4) . The path P can now be eXtené%d"’ to a hamiltonian

12

x,y-path in G by including H_. Using a similar argument, a

3

hamiltonian x,y—path in G can be constructed if wlé H2
and v, €H3 .

and w2€ H. . We first suppose that either

Caser 4 wle H 5

1
-
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m26 or the white edge w

78
lw2 is not in the for@
(h-1,k) (m-1,k). By Lemma 3.2.1 there exists a

hamiltonian x,wl-path P. in (Hl>.and a hamiltonian

1

w2,y—path-P2

in (HlUHz) produced by concatenating P. and P_ using the

1 2

white edge w If |H3UH4I>O, then P can be extended

1Yo

to a hamiltonian x,y-path in G by includingJH3UH4.f 1f

IH3l=th|=O, then P itsélf is a hamiltbnian.x,}—path

in G. It remains to consider the cése where m=4 and
the white vertices Wy and wé afé~in the forms (1,3)

and (3)j), respectively. Consider the x,y-path
P‘:(O,j)(l,j)(3,j)(2,j). JIf'|H3UH4l>O, then by
Corollary 3.2.3, éhere exists a gamiitonian
(0,511),1,j;l)—pathf;§% in <H3UH4). Let P* be the,
x,yfpath in(HfJH3UV(P‘)> constructed by [P',P34 ]—"
extension. It is clear that there exists a-hamiltoniap

(2,j+l),(3,j+l)—path P in ((Hlqu)—V(P')). P* can

1,2
now be extended to a hamiltonian x,y-path in G by
[P*,Pllz]-extension.
This establishes the hamiltonian-connectedness of
G when j=k. Suppose that for some nonnegative integer
1*20, the theorem has been esatblished for each value
4 . ,;:;5 =
of lj-kl satisfying O0%2|j-k|sg*. ©Let x=(0,j) and ‘
y=(h,k) such that 3j-k =9*+1. The case where k?j will

be considered separately from th;kcase where k<j. We

first investigate the former case.

in <H2>' Let P be the hamiltonian x,y-path
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Case a k=9+ (2*+1) >j. )

We first assume that j2 2 and k £n-2 and partition

V(G) into two subsets
H = {(r,s)] 0sr<m-1, 0<s<j} and H, =V (G)-H,. Suppose

: ; - :
that the white edge LS is in <Hi?. By the induction

hypothesis, there exists a hamiltonian (O;j),(mff,j)—

path P :h1<H1>. Since (m-2,7j) is a black vertex in

1

Hl’ (m-2,j+1) is a white vertex in H2. By a comment

preceeding Theorem 3.2.9 or by Lemma 3.2.5, there

exists a hamiltonian (m-2,3+1), (h,k)-path P2 in (H2}.

The concatenation of P1 and P2’using the edge o

(m=2,7) (m-2,3+1) provides a hamiltonian x,y-path in G.

Suppose {Eft the white edge w,w, 1s in <H2>, Let g

be a integer satisfying 12£g€¢m-1 such that (gq,j+1l) is a
black vertex distinct. from y. By the induction
hypothesis, there exists a hamiltonian (0,j+l),(h;k)—

path P} in <H2>. By Lemma 3.2.1, there exists a’

3amiltonian (0,3),(q,3)~path Pi in <Hl>. A hamiltonian

X,y—path in G can be constructed from the concatenation
~ .
of Pi and Pé using the edge (q,j) (g,j+1). Next, we

assume that w, €H, and w,€H,. By Theorenm 3.2.5 or by

the commént preceeding Theorem 3.2.9, there exists a

- hamiltonian (O,j),wl-path P" in <H >rand’a hamiltonian

1 1
w2,(h,k)-path \3 in <H2>. A hamiltonian x,y-path can

be constructed by concatenating P; and P; using the

white edge Wi W, It remains to assume that either 1j=0

ES
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>

~or k=n-1. If G contains meL2 as a spanning subgraph,

then it éan be easily shown that G is hamiltonian-
connected. Hence, we let n24 and consider the case

where x=(0,7j) and y=(L,n-1), for some odd integer &

sdtisfying 14£84m-1. If an—4,5then a construction
éimilar to the previous argumént will account for the
existence of a hamif%onian x;y—patb in G. If x=(0,n-2)
then y=(h,n—l) and we let V(G) be partitionedlinto two

=V(G)-H,.

" subsets H3={Kr,s)|05r$m—1, n-2%s¢n-1} and H, 3

If the white edge w is in <H

. 1¥2 3

there exists a hamiltonian x,y-path. in <H3> which can

be extended to a hamiltonian x,y¥path in G by including

H4. iIf the white edge wiw, is inr<H4>, then by the

induction hypothesis there exists a hamiltonian path

P4 connécting any two black vertices in H4 of the

form (p,n-3) and (q,n-3), respect{vely. In particular,
we choose p=1 and g to be the'greafest odd'integer such

that gfh and let H., be paftitioned'f?%d two subsets

3
H ={(r{s)l0$r<q,n-2$s$n-l} and H '=H -H ={(v,s)|
3 Ty, 32 -3 31
g¢r<m-1,n-2¢s<n-1}. It is clear that x€H, = and yeH, .
' AN

It is clear that there exists a hamiltonian (0,n-2),

-¢1,n=-2)~-path éBl in (H, 2 4nd a hamiltonian

(g,n-2), (h,n-1)-path P iJ1<H32). A hamiltonian x,y-path can be

32

constructed by concatenating 94, P3l and P52 using edges (l,n—l)

{1l,n-2) and (q,hil)Zl,n—Z); The  construction is valid as long as

-

y#(1l,n-1). If y=(1,n-1), then by the induction hypothesis, there

3

>, then it is clear that
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exii;s a hamiltonian (0,n-2),(2,n-2)-path P' in

<H4J{(r,s)lOirﬁm-l,s=n+2}>.’ Let

P":(l(n—i)(O,n—l)(m—l,n-l)(m—2,n—l)...(2,n—2) be a hamiltonian

1

(1,n-1), (2,n-2) -path in <H - {(r,s) 0¢r¢m-1,s=n-23> The

concatenation of P' and P" using the edge (2,n-2) (2,n-1)

-

constitutes a hamiltonian x,y-path in G. It remains to consi@eg
v

the Case where v&EH and viH4. In particular, let n&=(q,Q). We-

3

first assume that y#(1l,n-1) and use the same partition on H3 as

the above. If g2h, then there exists a hamiltonian y,wl-path Péz

i i i 11172 ), L, e )~ SR | H_.
1J¥<H32? and a hamllignlan (0,n-2),(1,n 2) path P3l in <€ 31>'

-~

Furthermore, eithe;'by Lemma 3.2.5 or by the comment preceeding

Theorem 3.2.9, theré,exists a hamiltonian (l,n—2),hb—path P4 in

<H4>. The

edges (1,n-2) (1,n~-3) and Wlwz constitutes'a hamiltonian x,y-path in

concatenation of the paths Pél Pé and P52 using the

A}

'G. If g<h, then W16H31 and by Lemma 3.2.1, there exists a

<

L _
hamiltonian x,wiipath P;l in <H,,>. Observe that (m-1,n-3) is a

black vertex in H4_; By Lemma 3.2.1, there exists a hamiltonian
Wb,(m-l,n—3)—path PZ in <H4> and a hamiltonian .

5

(m-1,n-2), (h,n-1) ~path sz iIl(H32). A hamiltonian x,y-path can

be constructed by concatenating Pgl, sz and PZ using the edges.

Wiwg'and (m-1,n-3) (m~1,n~2). Now, suppose that y=(l,h~l). If

uﬁ#(o,n—l), then we let H_. be partitioned into two subsets

3

H,,={(0,n-2),(0,n-1), (m~1,n-1) (m-1,n-2) } and
and H34={jr,s)llSrSm-Z,n—2ss£n-l}. It is clear that y,w1§H34>and
by the comment preceeding Theorem 3.2.9, there exists a

hamiltonian wl,y-path P33 1n(H33). Let
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" Lemma 3.2.1, there exists a hamiltonian x,w

82

Péﬁ:(O,n—Z)(O,n-l)(m-l,n—l)(m—l,n-2) be the hamiltonian path in

<H34>. Since (m-1,n-2) is a black vertex, by Lemma 3.2.1 there exists

a hamiltonian (m-1,n-3),w 337

-path P!" in <H,6>. The concatenation of P

2 4 4

w: and (m-1,n-3) (m-1,n-2) constitutes a

p!" and P! using the edges Wy 5

34 4

hamiltonian x,y-path in G. However, if w_ =(0,n-1), then we partition

1

V(G) into two subsets H5={(r,s)105r$m—l, OSsin—Z} and H6=V(G)—H . By

5

-path P_ in <H5>. Consider

2 5

the hamiltonian. path in(lﬂ6> defined as P6:(0,n—l)(m—l,n—l)(m-2,n—l)..
.(1,n-1). A hamiltonian x,y—path can now be constructed by concatenat-

ing the paths P5 and P6 using the edge WiW,. This completes the

constructions of all the hamiltonian x,y-paths for the case where -

x=(0,n-1) and y=(h,n-1). It remains to assume that x=(0,0) and y#(h,k)

"with n2 4. Let the end vertices of the white edge be’in the form

- i, <b. < <b_ £1. Let
wl (al'bl) apd v, (a2,b2). Suppose thatﬁO bl 1 and O b2 1. Let

V(G) be partitioned into two subsets Hl={(r,s)|0$r£m—l,0£s$l} and

H2=V(G)—Hl. It is clear in this case that the white edge W, is in
' Y

(Hl).*If y=(h,k)é]32, then by Lemma 3.2.1 there exists a hamiltonian

) g '
(h,k), (m-1,2)-path P2 in‘<H2>. By Lemma 3.2.8, there exists a hamilt-

onian (O,b),(m—l,l)—path P, in <Hl>. The concatenation of P, and P

1 1 2

using the edge (m-1,1) (m-1,2)constitutes a hamiltonian x,y-path in G.

»

Suppose-thét y EHl. Since (Hl> contains meL as a spanning subgraph,

2
it is clear from-a previous comment that (H1> is hamiltohian—eennect—

ed. Then, there exists a hamiltonian x,y-path in <HI) which can be

extended to become a hamiltonian x,y-path in G by including H2. We now
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consider the situation when WlﬁHl and W2€ H2 (that is, Ofblfl and -

b222). If y€H2, then by Lemmég3.2.57or by: the comment preceeding
. - { .

Theorem 3.2.9, there exists a hamiltonian x,wi—path Pirin <Hl>

and a hamiltonian wb,y—patthé in <H2>. A hamiltonian x,y-path in

G can bé‘produced by concatenating Pi and Pé using the white edge

Ww _ IfyéH then we- further partition Hl into two subsets

12 1’

i

= - =H_ - = £ v+< m= €z &
Hll {(0,0),(O,l)% and le Hl H1l {(r,s)ll-r-m l,O-s-l}. Suppose

that Wl=(0,l). It is clear there exists a hamiltonian

12 in

Wé;(m—2,2)—path Pg in« H2> and a hamiltonian (m-2,1) ,y-path P

<H12>. ‘Let P11=(O,O)(O,1) which is a hamiltonain path of length 1

in Hll . A hamiltonian x,y-path in G can be constructed. by

concatenating the paths Pll’ P12 and P2 using the edges leQ and

{(m~2,2) {(m-2,1). Suppose that wlile. By Lemma 3.2.1, there
' }

L}

exists a hamiltonian (O,2),w§-path Pé" in (H2) and by the comment

preceeding Theorem 3.2.9, there exists a hamiltonian w,,y-path

1

L ] 1 "
P12 in (le). Let PJ, be the same path of length 1 as the above.

"

We construct a hamiltonian x,y-path in G by concatenating P

11’
PI& and Pg' using the edges (0,1) (0,2) and wlwg. It remains to
assume that wl,WQEHZ (that is, b122 and bé22). Let g be an even

.
integer such that 0$¢gé¢m-2 and such the vertex (qg,2) is colored
black and is distinct from y=(h,k). By the induction hypothesis, -
there exists a hamiltonian (h,k),(g,2)-path P2 in'<H2>. By Lemma

-3.2.1, there exists a hamiltonian (0,0), (g,1l)-path Pl in<Hl>. The

concatenation of the paths P, and P2 using the edge (g,2) (g,1)

1

constitutes a hamiltonian x,y-path in G.

This completes the constructions of all the hamiltonian
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X:y-paths in G in case l.a. It rémains to,investigatevthe case
’wheée jrk. 7 ' .

‘Case b: jék+(1*+i)>k; Let V(G) be partitioned.into'two subsets
Hf{(r,s)l,oﬁrSm—l,jsssn—l}and H2={(r,s)[oSrSm—.l,osssj-lj. It is "

clear that 2%j¢n-2,x€H. and y€H, . Suppose ‘that w wEH, and let

1 1

q be an even integer such that g>0 and (q,j) is a black vertex in

_ Hl' By the induction hypothesis, there exists a hamiltonian

(0,3),(g,3) -path P, in< Hy > It is clear that (g,j-1) is a white

‘vertéx in H2 and by either the comment preceeding;fheorem 3.2.9

»

>

or by Lemma 3.2.5, there exists a hamiltonian {(g,j-1),(h,k)-path

Pl in'<Hi>. The concatenation of the paths Pl and P2 using the

edge (g,j-1) {g,j) results in a hamiltonian x,y-path in G. A

similar construction will account for the existence of a

hamiltonian x,y-path in G in the case where wl,w2€H2. It remains

to assume that WleHl and w26H2. By Lemma 3.2.5 or by the comment

preceeding Theorem 3.2.9, there exists a hamiltonian

x,wl-pat‘h P! in<H,;> and a hamiltonian w,,y-path P} in'<H2>; The

« concatenation of Pi and Pé using the white edge W, constitutes
a hamiltonian x,y-path in G.

This complétes the proof of the theorem. | »

In the following section, the results obtained so far on the
hamiltonian properties of'graphs isomorphic to L xL , C xL. or C xC
m n  m n m n
will be applied to give a characterization of the hamiltonian-
i ' . ]
connectedness of a Cayley graph of an abelian group. For consistency

. .
of notations, a graph isomorphic to meL2 will be written as meC2

-

without loss of generality.
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Section 3.3 The hamiltonian-connected of a Cayley graph of an abelian

group. -
. s A . B .
Theorem 3.3.1 Let A be an abelian group of order |A| 2 3 and S

be- a symbol for A such that <8)>>=A. Then the Cayley graph
C(S,A) contains an underlying spanning subgraph isomorphic to

either C or meCn for some integers m and m satisfying

fat )
Ia]l =nm,n22 and m*2. Furthermore, C(S,A) is hamiltonian.
Proof: Let A be an abelian group and S bé a geherating set for A
which satisfies the hypothesis of the theorem. Without loss of
generality, there exists a minimal generating set S* for A suéh
that S*€S. We proceed by induction on IS*I.'

If |S*|=l, then C(S*,n) is an underiying subgraph of C(S,A)

. : 14

isomorphic to Cl Clearly, C(S,A) is hamiltonian. Suppose

Aj

?hat for some positive integer k21, thé theorem ha§ been proven
for each value for |s*| satisfying lﬁ}s*lfk. We now consider the
case where [Sf]=k+l. Let ﬁ bé an arbitrary generator in S* of
order 0(h). It is clear that the Subgréup F:(S*—{h}) is a prbper
subgroup in A. Furthermore, the Caylef graph C(S*-{h},A) consists

of O{h) many disjqint copies of connected subgraphs {BO'Bl"'TBd(hj—ﬁ;

J

such that for each je{o,l{..f,O(h)-l}, the coset.h”F uniquely

represents the set of all vertices of the copy Bj. It is clear

. iy
that for each jé{O,l,...,O(h)—l}, the mapping f:h F-»h’ I

defined by’ f(v)=hv is a graph isomerphism from Bj to~Bj+l

is obtained by'gégkbiOn module 0O(h). LeE?nglFl and m=0(h). By

, where j+l

the induction hypothesis, there exists a hamiltonian cycle of

length n in B. Without loss of generality, let the vertices of
é P

[ T

bt
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" this hamiltomian cycle be labelled {VO,Vl,...,Vn_l}. Then for

,,

each jE{O,l,...,m—lg, a corresponding hamiltonian cycle in Bj will

be in the form fj(vo),fj(vl),,..,fj(vn ) such that fjcvi) and

-1

fj(vi+l) are adjacent on the cycle for each i satisfying 0¢i¢n-1.
E 3 .

Since A is an abelian group,

- 4 . . o '
£ l(Vi)=hj lVi=(hJVi)h=(fj(Vi))h. This implies that the vertex.

fj(vi) on the hamiltonian cycle in Bj is adjacent to the vertex
. + <+ ’
g+

This constitutes an

(V.) on the hamiltonian cycle in B, .
i j+1

underlying subgraph G in C(S*,A) %somorphic to meCn such that ﬁzz
and m22 (see Figure 3.4). If either of n or m 1is an odd integer,
then by Lemma 3.2.7, G'is hamiltonian-connected which impliea G
is hamiltonian. If bofh n and m are even integers, then G |

contains a hamiltonian cycle in the form

2 2 2
)ooo (V) (V) (hV,) ... (hV o
hm-2 m-2

Vn—2)(h Vn—l)

(VO)(vl)...(vn_l)(hvn_l)(hvn )

-2
3 3 3 4 4

(h'V__ ) (V). . (h°V ) (hV)) (W) ..
N T T )...(hm'lvol;g?’2v0>...(hlvo>(vo>.

n-1 n-2 n-2

=

( See Figure 3.5 ). This completes the proof of the theorem. =




V ‘ﬁ ‘ " N - . hm—lv

figure 3.5

Theorem 3.3.2 Let A be an abelian group of. order JA|23 and S Be
a'symbol for A. Supéose thgi <S»=A and that there exists a .
generator hesksuch that <{h}> ié a proper subgroup in A. Then
C(S,A) ié hamiltonian—cgnnéc;éd if qnd only if C(S,Al isqqot
bipartite.. 4

_P_rﬂ: If C(s,a) is bipartite, thén it is é‘leafr that C(S,A) is
not hémiltonian—connec;ed. To establish the converse, ye éssume'
that C(S,A) is not bipartite.‘ Let m ge the order of the subgroup
<{h}>. since( {h} >is a ,proéér ‘subgroup in A, m<|A} Let n be
the integér‘which satisfies |A|=mn24. It is clear that C(S,A)‘
contains an ?ndeflying épanning‘subgraph>G isomorphic tb‘CQQCn. If
either of m.or n is an odd integer, then |A|=mn26 and G contains a
spanniné'subgraph which, by Lemma 3.2.7, is hamiltonian-connected.
It ramains to assume that both m and n are eveniintegers~for‘the

remainder of the proof. B

. Let the vertices of G=meCn be colored in the same way as .in
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the previous sections. Let B and W represent fhe set of all Black

vertices and the sét of all white vertiéee'in G, ;respectively. .It‘g
is clear that |B|=|W|. Since C(S,A) is not bipartite, tﬁere
exists either a black edge or a white edge in C(S,A). Suppose

that C(S,A) contains a black edge b.b ;.et k€s such that b k-b

L1720

and define a bijection f:A-A by f(x}ka for each x in A. Since

(b )-b

,» £(B)$W and this implies

at f£(B)4W. This implies that

there exist two white vertices “&,“Ee “such that f(vﬁ)=uﬁk=m5.

Hence, is a whiEe edge in C(s,A). Therefore, C(S,A)"

l "2

contalns at least one black edge and one whlte edge By

Theorem 3.2.9, C(S,A) is hamiltonian-connected. ' m

Theorem 3.3.3 Let A be an abelian group and S be a symbol for

A such that for each h€g,K{h}>=A and that there exist two distinct’
- : ’ -1 )

generators r and s in $§ such that r#s . Then C(S,A) is

hamiltonian—connected if and only if lalis odd.

Proof:i Let A be an abelian: group and S be a symbol for A which
satlsfles the: hypotheses of the theorem. Since A is cyclic, there

is no loss of generalifty %n a§sum1ng?that A;Zn, where n=1al, and
iy E 5 2

Z is the addition cyclic droup whose elements are members of the

set-{O,l,...,n?l}u% Furthermore, we can assume that 1€S and each

generator in S is.an gqg inﬁeger in Zn. If n is even, then it is
clear that by coloring each vertex x of C(S,A) black or white

depending on whether x is even or odd,'respectively, no two vertices

of the same color are adjacent. Namely, C(S,A) 4s bipartite and by
Theorem 3,3.27C(S{A):is not Hamiltonian—connecﬁedi
. . =

To establish the converse, we assume thef n is an odd integer.

T



This figure assumes k and £ to be 0odd as an example.

re 3.6

o fi
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g—

~

~ Since |S|>l, there exists an integer kE{Q,l,,..,F%} such that
’ 2

k#l and gcd(k,n)=1. Let % and r be the unique integers such that
n=fk+r with O<r<k. It is_clear that C(S,A) contains a spanning
subgraph in the fdrm as illustrated in Figure 3.6.. Since C(S,A)
is vertex-transitive, in order to Show that C(S,A) is hamiltonian-
connected it Euffices to construct a hamiltonian (n-1,x)-path in
C(s,A) for each kE&qu...,n-2}. Let V(C(S,A)) be labelled by the

following subsets (see figure 3.6):

'v={0,1,..., k-1}, -
- I={r-1,k+(r-1),2k+(r-1),...,n-1},
J={ik+j|i=0,1,...,%,3=0,1,...,r-2}, and

O={0k,Qk+1,...,n-1}=V(S,A) -H.

Since H is isomorphic to L, XL let the vertices be colored

2k’
the usual way by colors black and wﬁite such that the vertex 0
‘is always colored black. For each vertex in Q, £k+j is colored blaék
';% and only if (-1)k+j is célored white, for each j€{0,1,...,r-1},
and vice-versa, (see Figﬁre 3.6).

.. There are three cases to be considered.:

Case 1 k is even. Since k is even, the vertices (2-1)k and
Qk-i are colored Qifferently. Let x be én arbitrary vertex in H
and y be either (f-1)k or k-1 suéh that y is colored differently
from x. By Lemma 3.2.1, there exists a hamiltonian ¥,y-path P in
<H>. Let P'=(n-1) (n-2)...(Qk+1) (k), which is arhamiltonian
n—l,ngpath in< Q> Since k is adjacent to both (2-1)k and |

2k-1, ik is adjacent to y. The concatenation of P and P' using

the edge (Rk)y is a hamiltonian n—l,i’path in C(S,A). Observe

\
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that this construction accounts for each hamiltonian (n-1,x)-path,

2

for each xE{O,l,-.-,[QJ}. Let x be an arbitrary integer in the
Set{ [ ]+l [E]+2,-..,n—2}. Consider the graph automorphism
2 2

f:A A defined by f(z)=(n-2)-z. It is clear that f(n-1l)=n-1l. For

—

g

each xG{O,l,...,[E]}, let the vertices of a hamiltonian n-1,x-path
2

in C(S,A) be labelled as P*:V _V ...V_ such thattv _=n-1 and
n-1 n-2 0 n-1

V=X, It is clear that f(v -l) =n-1-and f£(V Q{Fﬁk ..,n—2}. Then

the hamiltonian path £(P*) . f(V _l)f(Vn_z)...f(VO) is necessarily

a path which has n-1 as the initial vertex and a terminal vertex

in the set {[§]+l,...,n—2}. Mapping each of the (n-1,x)-paths
2 .

obtained in the previous construction with £ will account for all

the hamiltonian (n~1,x)-path in C(S,A), for each

zei[ ] H+z,,..,n 2}.

Case 2 Both k and { are odd integers. Under this assumption, the
&ertices 0,k-1,(¢-1)k,9k-1 and n-1 a;e all of color black and the
vertex 2k is colored white. Let x bé an arbitrary black vertex in
H. Let y be either (2-1)k or 2k-1 such that y#x. By Lemma 3.2.2,
there exists a hamiltonian y,x-path P in €<H>. Let ‘
P'=(n-1) (n-2)...(Rk+1) (k). A hamiltonian (n-1,x)-path can be
constructed by concatenating P and P' gsing the edge (Rk)y.)'

Suppose that x is a black vertex in Q. Since Qk is a white

vertex, by Lemma 3.2.1, there exists a hamiltonian &k,x-path P
. o«

in <J> and a hamiltonian (%k-1),(n-1-k)-path P'**“in <H-J2:" “The
T, T e

concatenation of P",P""" and the edge (n- 1)(n—lfk)'using the “edge

. Ty ~

(8k-1) (g¢k) constltutes .a hamiltonian A-1 ,¥-path in C(S,A). This

accounts for all the hamiltonian n-1,x-paths for all black
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terminal vertices x in C(S,A). Let f be the same graph automorphism
defined in case 1. Since n is an odd integer, for each x which
is colored black in C(S;AS, £(x) is a white vertex in c(s,p). For
each hamiltonian n—lix-path P* in C(S,a), f(P*) défined in a manner
‘as illustrated in case 1 is a hamiltonian n—i,f(x):path in CfS,A).
This accounts for &all the hamiltonian péths which have n-1 as the
initial vertex and a white vertex as a terminal vertex.
Case 3 k is odd and Q@ is even. Under this assumption, the‘vertices
O,k—l;.ﬂk ana n-1 are all colored black while (£-1)k and Rk-1 are
coléred white. Let x be an arbitrary black vértex in H. Then, by
Lemma 3.2.1 there exists a hamiltonian (Q—l)k,x—pathiP' in {<H).
Let P'=(n-1) (n-2)...Rk+1) (Qk). ‘The concatena?ion of P and P'
using the edge ((Q-i)k)ﬁgk) constitutes a hamiltonian n-1,x-path
in C(S,A). If x is a black vertex in Q then by Lemma 3.2.2 there
exists a hamiltoniaﬁ%n—l,x—path P" in <IvJ>. Since [a- (193 )|
is even, P" can be'extéﬁaed ﬁo a hamiltonian n-1,x-path in C(S,A)
by including CA-(IvJ)>. This accounts for all the hamiltonian
n-1,x-path where x is a black vertex in CkS,A) distinct from n-1.
For any white vertexrx in C(S,4), a hamiltonian n-1,x-path can be
obtained by‘using the graph automorphism f£f in the manner
discribed in Case 2.

This completes the proof of the theofem. B
Using all the results obtained so far, a characterization on |

the hamiltonian-connected of a cayley graph of an abelian group can

now be given.
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Theorem 3.3.4 Let A be an abelian group and S be a symbol for A

,suCH that <S?>=A. Then the Cayley graph C(S,A) is hamiltonian-
Eonnected if and only if C(S,A) is neither a cycle of length la]|
nor bipartite.

Proof: The necessity of the theorem is obvious. To establish the

L

=

sufficiency, we assume that C(S,A) is neither isomorphic to CIAI

- : .
nor is bipartite. It is .clear that there exist at least two

-1 .
distinct generators,hl,h €S such that hlaf-‘h2 . Suppose that for

2
all h€s, {{h}>=A. Then it is clear that |A] is odd and by
Theorem 3.3.3, the Cayley graph C(S,A) is hamiltonian;connected.
Otherwise, if there exists h'€S such that the { {h't > is a proper
subgraplyr in A, then by Theorem 3.3§2, CkS,A) is hamiltonian-

connected. This completes the proof of the theorem. ]

Since a graph is bipartite if and only if all its cycles areé even,

Theorem 3,3.4 can be rephrased as follows.

Theorem 3.3.4a Let A be an abelian group and S be a symbol for A

such that ¢(S»=A. Then the Cayley graph C(S,A) is hamiltonian-

connected if and only if C(S,A) is not isomorphic to ClAl-and

contains an odd cycle.

Theorem 3.3.4b Let A be an abelian group and S be-a syﬁbol for A
such that{sS>=A. Then, the\Cayley graph C(S,A) is hamiltonian-

\\

connected if and only if iésiﬁifis not isomorphic to ClAI and there

exists a segquence of integgYé {Pl,P .,an and a sequence of

oo

— . Pl
2,...,hn} in S such that hl h

Py

P
...h =e¢ and the sum
2 m

generators{ hl,h

+P _+...+ i dd.
P1P2 th is o
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CHAPTER 4

ON SOME SPECIAL CLASSES OF HAMILTONIAN-CONNECTED GRAPHS

In Chapter 2, several necessary and sufficient conditions for a
graph to be hamiltonian—connécted have been examined. In this chapter,

it will be shown that the implications of some of those conditions go

beyond that of assuring a graph to be hamiltonian-connected. Sometimes

with additional constraints, some of those sufficient conditibns for
a graph to be hamiltonian-connected also guarantee a graph to be

PLD-maximal, among other interesting properties. The intention of the

chapter is to study these extended implications.

Section 4.1 A generalization of a result of Oystein Ore ‘ -

In the beginning of chapter 2, a cbndition reiated to the sums of
the degrees of pair§ of nonadjacent vertices‘has been shown to be
sufficient for a graph to be hamiltonian-connected. This sufficient
condition has been shown by Faudreé and Schélp [22] to be much stronger
as Theorem 4.1.6 below igdicates.

Before presenting Theorem,4.l.6, several preliminary definitions

are needed. All graphs considered in this chapter: are undirected and

have no multiple edges or loops.
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Definition 4.1.1 Let G=(V(G) ,E(G)) be a graph. Suppose that the

number of vertices and the number of edges of G are respectively
n=|V(G)| and m=|E(GH . Then, G is called an (n,m)-graph. 1In

particulér, n is _called the order of G and m is called the gize

4

of G.

' Definition 4.1.2 Let G=(V(G),E(G)) be an (n,m) graph. Let & (G)=
min{degG(u)+degG(v)|For each u,vevV(G) such that u#v}, and

Z(G)=min{degG(u)+degG(vH For each u,veVv(G) such that uV¢E(G)k.

Definition 4.1.3 ’iet G=(V(G);E(G)) be an (n,m)-graph. Let i be
a positive intéger which satisfies 1$i¢n-1. Pi is séid to hold in
G if and only if for any arbitrar; pair of distinct vertices
u,vev(ag), Pi(uQQ) holds in G.

In light of Definifions 4.1.2 through 4.1.4, Theérem 2.1.1 can

be restated as follows in Theorem 2.1.la.

Theorem 2.1.la [40] Let G=(V(G),E(G)) be an (n,m)-graph. If

If &(G)2n+1, then P__. holds in G.

Definition 4.1.5 Let G be an (n,m)-graph. G is said to satisfy

Ore's condition (OC) if and only if o(G)2n+l. R.J. Faudree and
R.H. Schelp in [22] have shown, as in Theorem 4.1.6, that the

implication of a graph satisfying OC is much stronger than

-

Theorem 2.1.1a.

Theorem 4.1.6 [22] Let G=(V(GY,E(G)) be an (n,m)-graph such that

n24., If G satisfies 0OC, then Pi holds in G for each i satisfying
4¢i<n-1. .

Due to the complexity of the proof of Theorem 4.1.6, the proof will

be postponed until after several important lemmas have been introduced.
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Lemma 4.1.7 Let G=(V(G),E(G)) be an (n,m)-graph which satisfies
OC. Then for each pair of nonadjacent vextices u,ve€V(G), there

exist v_,v €V(G) such that for each i, 1¢€isf3, uv, vvieE(G).

1’2V

2°°3

Proof: Let x,y€V(G) be a pair of nonadjacent vertices in G.
Since ;fG)§n+l, n25. Let N(u)={k€V(G)|xﬁ€E(G)} and N(v) be,
respectively, the neighbohrhoods of u and v. It is clear théﬁﬁ
N(u)eN(v)eV(G)-{u,v} and |N(uf+IN(v)] =¢(G)2n+1. By'the
principle of inclusion-exclusion, |N(WAN(v)|=|N(u)]+]|N(v)| -
|N(u)uN(v)|23 and the result follows. 7 _ ' n
For the remainder of the chapter, N(u) will always be used to

denote the neighbourhood of a vertex ueV(G) as defined in Lemma 4.1.7.

Lemma 4.1.8 Let G=(V(G) ,E(G))be an (n,m)—graph which satisfies
OC.and let u,vev(G) be two arbitrary verticesrin G. if uv¢E (G) or
degG(u)+degG(v)2n+2( then P2(u,v) and P3(u,v) hold in G.
Proof: Let G=(V(G),E(G)) be an (n,m)-graph which satisfies OC and
the hypotheses of t?e lemma. ;t is clear that either G=K4 or
n®5, If G=K4, theh the resulé follows trivially. It remains to
consider the case where n5. |
Let-u,veV(G) be two arbitrary vertices in G. By Lemma
4.1.10, uv¢E(G) implies that [N(u)nN(v}|23. If uvéE(G), then-
degG(u)+degG(v)2n+2 which implies that [N(u)aN(v)|22. Hence,
Pz(u,v) holds in G. In order to show that P3(u,v) holds in G,
there are two cases to be considered.
Case 1 N(u)—{v}zN(v)—(u}.
According to the hypotheses of the lemma, it is clear that

IN(u) -{v}=|N(v)-{u}/>n >2. 1In such a case, let N=N(u)-{vi=N(v)-{u}.
>
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If there exists a pair of vertices x,y€N such that xy€¢E(G), then
obviously P3(u,v) holds in G. Suppose that no adjacent pair of.
vertices exists in N. Then, for each x¢N, degG(x)Sn—l—(INl—l)SE,

/ 2

Since [N »2, there exist yl,y26N such that?éegG(yl)+degG(y2)£n.

This contradicts the fact that G satisfies oC.

Case 2 N(u)-{v}#N(v)-{u}.

Without loss of generality, let x€N(u)-{v} such that x¢N(v)-{u}. .
ByJLemma 4.1.7, there exists w#u and weN(x)aN(v). It follows

that uxwv is a u,v-path of length 3. 1In both casest3(u,v) holds -
and this complete;s ﬁhe proof. A ]
The following theorem brings us one step closer to completing the’

proof of Theorem 4.1.6 which is our major result in this section.

Theorem 4.1.9 [22] Let G=(V(G) ,E(G)) be an (n,m)-graph which

satisfies OC. Then, for each i satisfying n¢ig¢n-1, Pi holds in G.
2

Proof: Let G be an (n,m)-graph which satisfies the hypotheses of

the theorem, For each n¢4, ;%G)Zn+l implies that G:Kn and the

result follows trivially. It remains to consider the cases where

n25,
. Suppose the contrary and assume that there exists u,veV(G) and
» > | &
» .
an integer i satisfying ng¢i¢n-1 such that Pi(u,v) fails to hold.

2
Since G satisfies OC, by Theorem 2.1.1, Pn_l(u,v) holds. Let the

vertices of G be labelled in such a way that

p:u=xyX X .. =v is a hamiltonian u,v-path in G.

%3 .Xn_i+l...Xi...Xn_an

Let X=X 41 and y=xi. if uxEE(G), then uxn—i+lxn—i+2"'

X =vis a
n
u,wpath of length i which is impossible. Similarly, if yv §E(E),

then u=xlx2x3...xiv is a u,v-path of length i which is impossible.
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Hence, ux4E(G) and uv¢E(G). Since G satisfies QC,

deg, (u) +degG(x)25’(G)2n+l and deg(y)+deg (v)2&(G)2n+1
Let j be an integer which satisfies n-i-1¢j<¢n-1. 1If uxjeE(G) and

€ .- fe X = i V-
xxj+l E(G), then uxjxj_l x xj+lxj+2 x sV is au,v path of

length i which is impossible. This implies that the pairs of
vertices {x,xj+l} and {u,xj} cannot be simultaneously adjacent in
G. In a similar fashion, suppose that k is a positive integer

which satisfies 2¢k%i. If vx €E(G) and yx, €E(G), then
u=xlx2.,.xk_lyxi;lxi_z...xkv=xn is au,v-path of length i which
again is a contradiction. Hence, the pai; of vertices {v,xk} and

{y,xk_l}‘cannot be simultaneously adjacent.

. , . . ' o .
Let r and s be the numbers o vertlces in {xl'XZ' 'Xn—i+l}

to which u and x are respectively nonadjacent. Similarly, let

r' and s' be the number of vertices in {x,,x, 7, e X}
i’ i+l i+2 n

to which v and y are respectively nonadjacent. According to the
discussion in the previous paragraph, it follows that for each

vertex in {x ,xn l} to which u is adjacent, there

. X " «oe
n-i+l’"n-i+2’

exXists a vertex in{x ..,xn}'to which x is not

. x ]
n-i+2, n-i+3’
adjacent. Suppose that there exist { vertices in

. X . cem to which wi dj it i lear that
{Xn—1+l’ nei+a ’xn—l} o whic is adjacent, it is clea a

degG(u)Sr+Q+l and degG(x)S s+ ((i-1)-0). Hence, n+lS;(G)SdegG(u)+
degG(v)S r+s+l. Similarly, n-i+l r'+s'.

Since i»n, i2n-i+l. Suppose that there exists j satisfying
2

2%9Sn-i+1 such that uijE(G) and yX o _.€E(G). Then

2-7

3% . vis au,v-path of length i which is

Y 942 Y 2= 0435

impossible. Hence, for each j, 2¢jsn-i+l, uxfE(G) implies that
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yxn+2_j$E(G). Similarly, if there exists k satisfying isksn-1.

»

X,V

such that ukaV(G) a?d XX n-i4+2° "%

n_kEE(G),~then ux2x3...xn_kxx

is a u,v-path of length i. It follows that for each k satisfying
itksn-1 i- i
i n-1, uxkeE(G) implies that XX 1

r*s ((n-i+1)<1)-s, s'$ ((n-i+1)-1)-r and

¢E(G). Hence, it is clear that
‘r'+s'52(n—i+l)-2—(r+s)$2(n—i+l)—2—(n—i+l)=n5i—l. This contradicts
the inequality r’+s‘anfi+l introduced in the previous paragraph.
Thié implies that the assumption that there existstah i satisfying
ggisn—l for which Pi(u,v) fails for some u,veévV(G) is a false
assumption. This completes the proof. ‘ | l-

In order to prove Theorem 4.1.9, one more Lemma is required.

Lemma 4.1.10 Let G=(V(G),E(G)) be an (n,m)-graph which satisfies

OC. TIf there exists a path P:u=x.X_X X.X

1Xp¥ge Xy i+l=v,,then at least

one of the following four conditions holds.
(1) Pi+l(u,v) holds in G,
(ii) - the subgraph G'=C{V(G)-V(P))satisfies OC, where

V(P)={xl,x ' X,

PIRREALO PO .

¢

(iii) there exist wl,w26V(G) distinct from u,v such that the
= S
subgraph G"=<V(G¢Z{wlw2}> satﬂéfies oC, or

-(iv) 1i=2 and P, (u,v) holds in G.

4

Proof: As in the proof of Theorem 4.1.12, the cases where n$4 will
result in,G=Kn and the theorem follows trivially. Hence, we
consider only the cases where nz5.

If i»n, then Pi+ (u,v) holds according to Theorem 4.1.12.
2 :
We assume that i¢n. If there exists y€V(G)-V(P) such that for some

2 ]

1

B
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j satisfying 1€j<i; yijE(G)_and yxj+l€E(G), then u xlxz.,.xjyx:J+l

Xj+2';'xi+l=y is a u,v-path of length i+l. So P£+l(u,v) ho}ds and

condition (i) is satisfied. We assume that no such a vertex y
exists in G for the remainder of the proof. ' . 5y

If the subgraph G'={V(G) ~V(P)?=K , then it is’ clear

n-(i+1)
‘that Pi+l(u,v) holds since i<n and G is®2-connected. Let

2 ‘ |
wi,wzeV(G') be nonadjacent vertices. Since G satisfies .OC,

degG(wl)+degG(w2)2n+li Let degG.(wi) denote the degrees of W, in

G', for i=1,2. Hence, deg_,(w,)+deg , (w,)2n+l-i-1 =|v(enH| +1,

1 2

unless it is the case that i is even and w_x.,w.X.€E(G), for each

1737273

1

j=l;3,5,...,i—l,i+l. ' ‘

If this latter case is not enco{mtered, then ;(G')ZIV(G')I +1.
This implies that G' satisfies OC and condition (ii) of this lemma
is satisfied. Therefore; it remains fo investigate the case that

i is even and for each j=l,3,5,...,i+l,wlxj,w2xj€E(G) distinct

from u and v such that'zwl;zwzeE(G). In such a case, uw , ZW, v is a

u,v=-path of.length 4 and P4(u,v) holds in G. This implies that
condition (iv) of the lemma is satisfied. Thus,rwe assume that

)+aegé,(w )2n+1l-(i+2)=n-(i+1)=|v(G")] , there

s s .
iz4. Since degG,(w 5

1

exists w€V(G')—f§l,w2_\such that wwi,wwzéE(G). Let

G"=<V(G)—{w,wl}). If w and w, are adjacent to no common vertex in

1

G, then for each pair of nonadjacent vertices y,z€V(G"),

degG"(Y)+deg (z)idegG(Y)+degG(z)—22n+l—2=(n_2)+1=]V(G")I+1.

G"

It remains to consider the case where there exists x€V(G) such that

xwl,xQeE(G). If xEV(G'),\then uWIXWw215x6:..V is a u,v-path of

length i+1. This means (i) is éatisfied. If x€V(P), then x=xj for
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some odd-value, of j since no two adjacent pair-of vertices can be- -

'simultaneously adjacefit to w. Without loss of generality, 323 can

<

be»assumed. In such a case' ux_...X, W wWw_ X.X, ...X. is a
; ! 2 =271 27§79+1° 7 Ti-

£

u,v-path of length i+l.  This again means Pi(ujv) holds G 'and
ﬁhis completes the proof bfvthe lemma. ' : l .

Equipped with the information introduced in.this cﬁapter so far,

one can now proceed to construct the proof of the main theorem of

this section. -

» .

Proof of Theorem 4.1.6 By Theorem 4.1.9, the résult holds for

v @

all nf&7. It remains only to. consider the cases where n38.

-

Suppose the coﬁtrary and let G=(VKG),E(G)) 5e aﬂ (n,m) ~graph
where n is the least number of'vertices on wh%éh a graph.G fails
to satisfy the theorem. SThqre exist u,VGV(G) and an integer: j
which satisfies 4¢9¢n-1 such that éj(u,v) fails»to hold in G. By

Lemma 4.1.8, either Pl(u,v) br'Pz(u;v) holds ih’G; If’P4(u;v)””'

holds in G, then let i be the greatest integer, such that for each

2

k satisfying 4%kg$i, Pk(ﬁ,v) holds in G and P (u,v) fails to hold

k+1
in G. Otherwise, let i be the greatest integer satisfying i<4

2
=v and apply

such that pi(u;v) holds in G. It is clear that i<[n] in both cases.

Choose a u,v-path of length i P:u=xlx2...xi_lxixi4l

Lemma 4.l.lqgéccordingly. It is clear by the choice of i that,
b i ‘ 3 . .
conditions (i) and (iv) cannot hold in G. Suppose that coridition

(iii) of Lemma 4.1.10 holds in G and let wl,w2€V(G) be distinct

from u and v. By the choice of G, in the subgfaph "=V (G) -

{wl,w2}>, Pk(u,v) is satisfied for each k satisfying 4%k€n-3. Note
that n28 and n¢n-3 as_gffésult. This, however, implies that
2 ' -
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Pk(u,v) holds in G, for each k satisfying 4%¢k¢n-1, which contradicts

=

the choice of G. .
We may assume thé£ only chdition (ii) of Lemma 4.l.lQ
holds in G fof the remainder of the proof;
Let G'=<V(G)t‘*\;(P)>. By'Lemma 4.1.10, G' satisfies OC. Define
N' (u)={xev(c") | xu¢E(G)} and N'(v)={yev(c")|yveE(G)}. |
There are tbree cases to be examined.

Case 1 There gxiSts x€N'(u) and yeN'(v) such that x#y. Note tﬁat
|V(G") | =n-(i+1)24. 1If IV(G')|=4, then G' satisfying OC implieé
that G'=K4; Hence, IV(F')IZS is assuﬁed for the femainder of the
proof. By the choice of G, [V(G’)|<]V(G)| and this imélies that for
each k satisfying 4¢k<|v(G")]| -1, Pk(x,y) holds in G'. Together with
the edges ux,vy in G, PQ(u,v) holds in G fér each g satisfying
69 §v(G')} +1. Since |V(G")| +1yn, Pﬂ(u,v) holds in G for each
satisfying 6£0<n-1. Suppose thai either xy¢E(G) or one of T ?;
degG,(x)=(nfl)—(i+l) and degG,(y)=(h¥l);(i+l) holds. Since
degG,(x)Z3 gnd degG,(y)ZB, by Theorem 4.1.8, P2(x,y) and P3(x,y)
hold in G'. This implies that P,(u,v) and ps(u,v)’ hold
in G and this implies that Pﬂ holds iﬁ G for each Q satisfying
4¢45n-1 and which contradicts the choice of G. Hence, it remains
Ito assume that no vertex in N'(u)uN'(v) has degree
(n=1) - (i+1)=n~i-2 and each vertex in N'(u) is édjacent to every
vertex in N'(v). B

| Let wéV(G') such that wx#E(G'Y%; By Lemma 4.1.7, there
exXists w'€V(G') such that xw'€E(G') and ww'ég(G'). Since
wéN'(v) , again by Lemma 4.1,7, there exists a vertex y'€V(G)

-

such that vy'€E(G), wy'€E(G) and y¢{u,x,w'}. ‘Then, uxw'wy'v is a
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‘u,v—path of length 5 and this implies P5(u,v) holds in G.

If thete exi%ts a vertex weV(G) such that uw€E(G) and YWEE (G) ,
then by Lemma 4.1.10, there exist two distincf vertices a;b§V(G)
such that ua,wa,vb,waE(G). Thenf uawbv cons£1tutes‘a ﬁ,v—path of
length 4 in G which is impossible. This implies that
N'(u)VN'(§)=V(é'). Since none of x and y has degrée (n-1)-(i+1),
neither N'(u)SN'(v) not N'(v)EN'(u) hoids.> Hencd%!i*N'(v).and
y%N‘(u).A If there exists a’verte* z€N'(u) such that zx€¢E(G'), then
uxz?v is a u,v-path of length 4 and P4(u,v)'holds in G whiéh is
impossible. This implies that no two vertices in N'(u) are
adjacent. Similarly, no two vergices in N'(v) are adjacent.

Hence, N'(u)nN'(v)=¢, It follows that degG,(u)=[N'(v)l and
degG,(v)=]N‘(qH . Without loss of generality,'we assume that
IN'(u)|SlN;(V)I. If |[N'(v)]22, then for each pair of distinct
vertices yl,yzeN'(v),

deg, (y) +deg, (v,)=2|N' (W] € [N' ()| +]N" ()] £{v(c")| which is a
contradiction. If N'(v)={y}, then degG,(y)=n—i—2 which again is a
contradiction.

What has been proven so far is that if there exiét distinct

vertices xéN'(u) and y€N'(v), then P, (u,v) holds in G for each Q

4 2
satisfying 4¢ysn-1. This contradicts the choice of G. Hence,
" Case 1 cannot occur in G. | “ i

Case 2 N'(u)=N'(v)={x}or N'(u)#¥¢and N(v)=¢.

Let x€N'(u) such that x is adjécent to every other Qertex in

V(G'), in which case degG,(x)=(n—l)—(i+l)=n—i—2. Let y€V(G') be

an arbitrary vertex in G' distikct from x. Since G' satisfies
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oc, degG,(y)23. By Lemma 4.1.8, P2(x,y) and P3(x,y) hold in G'.
If deg G,(x)'<n—i--2, then there exists a vertex ve€V(G') |
distinct from x such that xy(E(G'). Lemma 4.1.8 agaip implies
that P2(x,y) and P3(x,y) hold ip G'. -Since 'V(G')(<|VtG)l,
P#(x,y) holds in G' for each k satisfyiﬁg 2¢kSIv(G") | -1. Since
N;(v%=¢cnrN'(v)=N'(u)é¢y vy*E(G). By Lemma 4.1.7, there exists a
vertex wéV (G) - (V(G')u {u}t)such that VWGE(G)/andvyweE(G). It
follows that for each k satisfying 55k£lV(G')l+2, Pk(u,v) holds
'in G. Note that |V(G'f|+2>gf By choosing y such that xy€E(G'),

: 2

uxywv is a u,v-path of length 4. Hence, P4(u,v) holds inAG.V

If G §a£isfies the hypothesis of this second case, then Pk(u,v)

| holds for eacﬁckvsatisfying 4£k£n—l. 'This contradicts the
hypothesis that Pi+l(u}ﬁ) fails to hold. Hencéj Case 2 cannot
occur in G,

Case 3 N'(u)=N'(v)=9¢.

Let x,y€V(G'). If xy¢E(G), then by Lemma 4.1.8, P2(X,Y) and
P3(x,y) hold in G'. Since {V(G") <|VK%;L, Pk(u,v) holds in G fér
each k satisfying 4<ksn-1. Siﬁce ux¢E(G) and Vy¢E(G), by

Lehma 4.1.7,Athere exist two distinct vertices é,béV(G)—(V(G')—
{u,v}) such that ua,xa,vb,yb€E(G). It is clear that’Pk(u,v) holds.
in G for each k satisfying 6Sk£|V(G'5f+3.m Note'that‘E‘IV(G'” +3

2
If x,y are chosen in such a way that xy€E(G), then uaxybv is
- ,
a u,v-path of length 5. Choosing xiy a%&ows P46u,v) to hold in G.
N oy ¥ 4 : )
Once again Pk(u,v)'hofﬁs in G E%r each k satisfying 4¢k¢n-1. 1In

each of the threée cases above, we have shown that G'={V(G)-V(P))

satisfies OC and Pi(u,v) holds in G for &ach Q.satisﬁying/4§2£n-l.
3

v
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Therefore, the originaiﬁéésumption of Pi+l(u,v) having failed to

hold in G must be invalid and this completes the proof. n

Section 4.2 Path length distribution (PLD) and PLD-maximal graphs

In Section 4.1, we have examined how OC goes much beyond being a
- sufficient condition for a graph to be hamiltonian-connected. In this
, » o
‘second section, the concept of path length distribution (PLD) of an
(n,m)réraph will be introduced. Several necessary and sufficient
conditions for an (n,m)-graph to be PLﬁ—maximal will be examined.

Let G=(V(G) ,E(G))be an (n,m)-graph. Let [V(G)]2 denote the set
of all two-element subsets of V(G). For each k satisfying 1<¢k¢n-1,
define

Ské {fu, v} € [V‘(G)] 2|Pk(u,v)‘ holds in G}

2

o n-1
and so~[v(G)J —]glsk- , .

i}ﬂg¢%§3 Definition 4.2.1° Let'G=(V(G),E(G)) be an (n,m)-graph. The path

////// length distribution (PLD)',of G is the sequence of non-negative
/ o ' -

integers ('SO"[Sll’lszl""'lsnv2l’lsn—il)'
It is clear that lSO|=O if and onlyqif‘G is connected;

m=|E(G)'=lSlJ so that [Sl|=n(n—l) if and only if G=Kn. Also, for all
— .
-k, |8, |¢n(n-1) . )
Tk s —
, 2
For the sake of completeness, the definition of a PLD-meximal

. graph will be introduced again in light of Definition 4.2.1.

Definition 4.2.2 Let G=(V(G),E(G)) be an (n,m)-graph.

Then, G is said to be PLD-maximal if and only if the elements

in the PLD of G satisfy ISO[=O andlsll=n(n—l) for each 4,
2
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25 2¢n-1.
The first sufficient éondition for a graph to be PLD-maximal is

related to the topological parameter 'connectivity'.

Theorem 4.2.3 [22] Let G=(V(G),E(G)) be an (n,m)-graph which

is [2_+i]—connected. Then, G is PLD-maximal. Furthermore, the
connictivity condition in this theorem connot be reduced.
Proof: Since G is[jgfl]—connected, 3“”2[2}1]- Therefore,

5 i
;%G)ZG(G)22[Efﬂ2rHJ.which implies that G iatisfies OC. By
theorem 4.1.2, Py holds in G for each A satisfyipg 4<4¢n-1. For
any two érbitrary distinct &ertices u,vev(G), degG(u’+degG(v)2
¢(G)2n+l. Hence, there-exists XE&V(G) such‘that XueE (G) and
xveE(G) which implies that P2holds in G. it remains to show that
P3 holds in G. | |

Suppose the contrary and let u,véV(G) such that P3(u,v) fails
in G. Define
a={xeV(G)| xu€E(G) -and xv¢E(G)}.
B={XEV(G)lxu;E(G) and xvéE(G)}.
C={XEV(GH xu¢E(G) and xvéE(Gf}.*

D={xEV(GN ku*E(G) and xv#E(G)}.

In order for P3(u,v) not to hold in G, the following two conditions
must hold.

(1) For any al,a2€A, alasz(G)

(2) For each a€A and x€BuC, ax*E(G).
If A=¢, then the subgraphs {V(G)~(Bv{v})> and

{V(G)~(Cv{u})> must be disconnected. Since G is [Ef%]jconnected,
2
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| Bl +12[n+1] and |Cl+l_>_[£+l] . Hence, lBlz [EJ and lCIZ[_rl] ‘This
S 2 , 2 ‘ 2
implies that nZ|B|+[CI+222[?T2 which is impossible. Therefore,
2 : '
“IAl21. sSince Conditions (1) and (2) above hold, it follows_that

the subgraph{v(G)-(Dw{u,v})> is disconnected. This implies that

ID[Z[E]—I and n2|A|+|D|+22]A[+([E]—1)+2, Hence [g]ﬂAl. Similarly,
2 ) L2 .
, the subgraphs {V(G)-(AvBu{v}) > and KV (G)-(AvCv{u}) > are discon-

nected and it follows that ”3IZ[HJ"‘A‘ and ICIE[n]—IAl.

2 2

Combining the inequalitiés developed so far yields
““&é. >'
n=|v(G)|=rA|+|B|+lcl+|Dl+2a|A|+2([g_—|A|)+ n1-1+2=3[n]-(A}+1
' 2 72 . 2
which implies [A|>[n]. This together with |A[§[§l/ gives ]A\=[21.
2 ’ 2 2
Hence, n=|A|+|B|+IC|+IDI+22[£}+IBJ+fCl+[E]—l+2. This implies
_ 5 13
that |B|='Cl= 0 and it follows that G is at most [EJ—connected,
: ' 2

which contradicts the hypotheses on G. 'Therefore, the original

assumption that P3 fails is false and this completes the proof. M

The sharpness of the theorem will be discussed following

Corollary 4.2.9. 7 - .

In Theéfem 4.2.4 and Theorgm 4.2.5 below, two sufficient conditions
- for a>graph to be PLD-maximal will ge introduced. These two theorems
are in similar spirit to Theorem 2.1.1.

-

Theorem 4.2.4 [22] Let G be an (n,m)-graph with n22 and.

EKG)E[gp—l}. Then, G is PLD-maximal. Furthermore, the degree
2 - , r,

condition in this theorem cannot be reduced.

Proof: For nt4, G satisfying the condition of the theorem implies
that G:Kn,and the result follows trivially. It remains to

consider the cases where n25.

For n35, G satisfies OC and by Theorem 4.1.6 again, Pi holds i”
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in G for each i satisfying 4%i¢n-1. ‘Furthermoré, by Lemma 4.1.8,

2(u,vL and 23(u,6)

for any pair of nonadjacent vertices u,vev(G), P
holds in G. To complete the proof of the theorem,’it suffices to
show that for aﬁy pair of adjacent vertices u,vev(G), P2(u,v) and
P3(u,v) hold in G.

Suppose the contrary and let u,Ve&(G) be two vertices such
that uve€E(G) and P2(u,v) fails in G. Define

A={X€V(G)|xu€E(G) and x#v}.

B= (X€V(G) | xve€E(G) and x#u}.

N

C={er(G)|xu¢E(G)-and xvéE(G)}.
Since Ié(u,v) fails to hold in G, the sets A,B and C are mutually

disjoint. Since G satisfies 0OC, §(G)23. Hence, |Al21 and-

IBl21. Let a€¢A and b€B. Clearly,

degG(a)+degG(v)S(n—2)+IB|+l+(n—l)+|B|and
degG(b)+degG(u)ﬁ(n—2)+lAl+1=(n—l)+|Al.

Sinte av¢E(G) and budE(G) S

[gn—;}s 7(G)$deg  (a) +deg , (v)$ (n-1)+|Bl and

2 .
[gp—l]iéxG)SdegG(b)+degG(u)S(n—l)+|A[.
2 ‘ .
Combining these last two inequalities, we obtain 3n—352[§p—152n—2+
iy 5 o
“lal+1Bl.

Hence, n21+]al+ Bl 2+|al+|B}| £ |V(G)] =n whi¢h is a contradiction.
Therefore, the assumptioen that P2(u,v) fails in G is false and

this implies that P, holds in G.

We now suppose that P_ fails in G and let u,vé€V(G) be two

3

vertices such that uv€E(G) and P3(u,v) fails in G. Let
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A={er(G)|quE(G) and xv#E(G) and x#v}.
B={er(G)lxu¢E(G) and xvéE(G) and x#u},
C={er(GH xuéE (G) and quE(G)}.

D= {x€V(G)| xu¢E(G) and .xv§E(G)}.

It is cleéf thatithe sets A,B,C and D are mutually disjoint
which implies that n=lV(G)[=|A|+|B|+|C|+|D|+2.'
In order that P3(u,v) fails to hold in G, the following three
conditions must hold.

(1) For each a€A and for each'xéBuC,Tax¢E1G).

(2) For.eaqh béB‘angifor each y€AvC, by¢E(G) .

(3) For each c_,c

€ ' .
1 c, clcziE(G)

2

Clearly, degG(u)S|C|+|Al+l and
degG(v)$|C|+lB|+l.
For anylgéA and beB degG(a)ﬁlAl}[Dfand
; degG(b)s|B|+1Dl.
Note that av*E(G) and bu§E(G). If either A# ¢ or B#¢$, then
n;lfé(G)S|A|+|Bl+|C|+1D|+l=n—l which is a céntradiction. Hence,

A=B=¢ and it follows,that;QEICH|D|+2. Therefore, 2n-21Cl=2]|D}+4.

-

Since degG(u)Z3 and degG(v5§3, iclz2. Let cl,cz€C. It is clear

DI + <Ipl+2. H
that clc2$]3U9vand degG(cl)_H)! 2 and degG(c2)'|D| 2 ence,

[%p—l]ﬁ?(G)SdegG(cl)+degG(c2)$2|DI+4=2n—2lCI. For any x€D,
degG(x)ﬁn—3 and xv¢E(G). This implies that \
[§p-JJgE%G)sdegG(§)+degG(x)s |c|+1+(n;3)=n+|c{—2. ‘Combining the
‘list two inequalities in the appropriate manner, we have

9n-9s6[§g_-1]&4(n+lcl-2)+2(zn-zlcl)=8n—3, which implies that ngl
2 5 A .

R,
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and this contradicts‘thecchoice of n=1v(G)25. Thus, the .

original assumption of P_(u,v) having failed to hold in G is

3
false and it follows that P3holds-in G. Hence, G is PLD-maximal.
The example which shows that the conditions in this theorem

are sharp will be illustratéd following Corollary 4.2.9.

Theorem 4.2.5 [25] Let G=(V(G),E(G)) be an (n,m)-graph'such‘that

(1) o(G)2n+l and when n is odd, in addition to (1)

(2) @(G)2n+2 is satisfied. Then, G iiéLD—maxiﬁ%l.

Furthermore, éénditions (1) and (é) afe sharp. Three preliminafy
lemmas’ are required before the proof of Theorem 4.2.5 is to be

presented.

Lemma 4.2.6 Let G=(V(G),E(G)) be an {(n,m)-graph with n25.

N

Let v_,v_.eV(G) be two nonadjacent vertices‘in G such that for ény

172

x,yéV(G)—{vl,vz}, degG(x)+degG(y)2n+2. Then, G'=<V(G)—{vl,v2})‘

~ -~

is hamiltonian. .
Proof: It is clear for each pair of vertices x,v6V{(G*) such that.

‘xy§E(G') , degG,(X)+degG,(y)Zn+_2—4=|V(G')I . Hence, @(G")2|Vv(G")]

which implies that G' is hamiltonian. - »

Lemﬁa 4.2.7 Let GQ(V(G),E(G)) be an (n,m)-graph with a cycle

of length s, 3%s&n-2. Let v_,Vv

1

C;)&XX
. 2

%1 €V(6) =V (C) and

2‘i.xs—lx0
let degC(vi)=|{x€V(C)vaiEE(G)}I for i=1 and 2. If

degC(vl)+degC(v2)Ss+l, then for each Q satisfying 2¢¢s+1,

PR(Vl’vz) holds in G. —

Proof: It is sufficient to show that for each R satisfying 2%RQ&s+l,

there exists xi;ijV(C) with i-j=f-2(mod s) such that

lei,v2xj&E(G). Suppose the contrary. For each iE{O,l,;..,s—l}
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such that xiEC and xileE(G), there exisdts a unique jG{O,l,...,s—l}

satisfying i-j=Q-2(mods ) and v2xj¢E(G). This implies that

degc(vl)Ss-degC(vz) which is a contradiction. Hence, there exist

xi,ijV(C)‘such~that i-9=0-2(mod s) and v xi,vzijE(G).'Without

1
loss of generality, let i<j in which case vixixi+l.,.xjv2 is
a vl,vz—path of length { and this completes the proof. |

Lemma 4.2.8 Let G=(V(G),E(G)) be a (2k,m)-graph with k22 such

_ that there exists a vertex u€v(G) with degG(x)akvfor all
x€V(G) ~{u}. Then, either G is hamiltonian or {V(G)-{u}? is
hamiltonian.

Proof: Let G=(V(G),E(G)) be a (2k,m) -graph with k22 which satisfies

the conditions of the theorem. 1If G is hamiltonian, then the
proof is complete. Thus we assume that G is not hamiltonian and

establish that G'={V(G)-{u}) is™hamiltonian. Let BpiXyXy.. X X

be a cyclié arrangement of the vertices in G such that the number

of pairs of vertices of the form Xer X, g with 12i<$2k-1, which

satisfy xixi+l€E(G) is maximum. We next establish that for any i,

€3<O . ] ; ] = = .
1€i<2k-1, xixi+l$E(G) implies that either xi u or xi+l u. . Suppose

the contrary and let xixi+1§E(G) for some i, lSiSZk-i, such that -«

neither xi=u nor xi+l=u.< Without loss of generality, i=1 is

assumed. Then, for each j satisfying 3<£§¢2k-1, if xlijE(G), then

x2xj+£$$(G); for otherwise, A2:xlxjxj—lxj—2"'X2xj+lxj+2"'¥2k—lxl

is a cyclic arrangement of the vertices of G for which the number

of pairs of contiguous pairs of vertices which are adjacent is

-

greater than “that of the original arrangement A This, however

1-

2
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implies that degG(xl)f2k~l—degG(x2), which contradicts the

assumption that neither xl=u nor x2=u. Hence, there are at most

two pairs of contigueous vertices of the form{xi,xi+l} which are

nonadjacent, with each nonadjacéncy involving the wvertex u. With-
out loss of generality, it can now be assumed that

l xlx2x3x4 XX 1S a cyclic arrangement of the vertices of

G with at most {xl,u} and {u,xz} being the nonadjacent pairs,

where x2=u. If xlng(G)( then xlx3x4 X2k—2x2k—lxl is a

hamiltonian cycle in G'=4v(G)-{u}> and the proof is complete.

Thus, X, % *E(G is assumed.. Note that A X XX, e Xy 0%, 1S also

an arrangement of vertices in G' which has the maximum number of
~adjacent contigueous pairs. Without loss of generality, let
uxl¢E(G). Similarly for each j satisfying 4$§$2k-1, xixjéE(G)

implies that X_ X, £$E(G). Then, either degG(xl)£2k—l—degG(x3) or

3 7+

deéd(xl)szk—2-degG(x3) depending on Whether ux3€E(G) or u§3$E(G)

respectively. 1In either case, one of X)X has degreée strictly

3

less than k. Thié cOhtrdHicts the choice of u#¥x, and u#x3. Thus,
X, 3GE( ) and C: xlx3x4 Xy 1% Is a hamiltonian cycle in
G'={V(G) -{u}? which completes the proof. . ' |

We are now ready to prove Theorem§4.2.5.

Broof of Theorem 4.2.5 Let G=(V(G) ,E(G)) be an (n;m)—gfaph which

sétisfies»the hypotheses of Theorem 4.2.5. The re%ult is obviqus

for the case wheyé nsd. We assgme that n25. |
Suppése that both conditions (1) and (2) are satisfied: Let

vl,v2€V(G) be- two arbitrary vertices in G. . Then, for any pair of
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nonadjacént vertices x,yGV(G)-{vl,vz}, degG(x)+degG(y)2;%G)Zn+2.
By Lemma 4.2.6, G'=<V(G)—{vl,v2}>is hamiltonian. Let

CiX. X, ...X be a hamiltonian cycle in G'. Clearly,

1%2 7 %h20%1
degc(vl)+degc(v2)2oWG)-22n+l—2=(n—2)+l=|V(C)l+l. By Lemma 4.2.7,

,v..) holds in G. Hence, Gbis

.v > K3 < < -
for each R satisfying 2£¢¢n-1, PR'(Vl 5 , )

PLD-maximal.

It remains to show that for the case where n=2k, k23, condition
(1) alone is.sufficient to ensure that G is'PLD—maximal: Note that
if for each u€v(G), dégG(u)2k+l, pheﬁ (G)2«(G)2n+2. The
argument in the first pért of the proof then shows that G is
PLD-maximal. Thus, it remains to consider‘the case where' there
exists a vertex u€v(G) such that degG(u)Sk. Thefe’are two subcases

to be examimed.

Case 1 Suppose there exists a vertex ueV(G) such that degG(u)=k.

Note that~;(G)Za%G)Zn+l. By Theorem Q.i.l, Pnfl holds in G. Let o

el

v€V(G)~{u} be a vertex such that degG(v)+degG(u)Zf(G52n+l=ék+l.
Hence,’degG(v)2k+l. "Therefore, for any x,ve€V(G)-{u,v} and for
any fixed vev(G)-{u}, degG(x)+degG(yYZ2k+2=n+2. By“Lemma 4.2.6,

the indﬁCed subgraph G'=(V(G)-{u,v}) contains a hamiltonian cycle

C Clearly, degC(u)+degC(v)2¢(G)—22n+1—2=|V(CH +1..

:xlx2f"%2k-2xl'
It follows from Lemma 4.2.7 that for all  satisfying 2£}<n-1,

Pl(u,v) holds in G. "

. - . »-
Now consider an arbitrary pair of distinct vertices x,ye€v-{u}
and let G"={V(G)-{x,y}>. Note that for any vertex z€V(G")-{u},

degG(z)+degG(u)ZUTG)22k+l. ﬁence, degG(;)2k+l and this implies

that degG(z)ék—l=tV(G“)]. By Lemma 4.2.8, either the subgraph G"
' 2

»
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G" has a hamiltonian cycle or G" has a eycle of length [v(c™)] -1

passing through every vertex in V(G") except the vertex u. If
4 : s

V(G") has a hamiltonian cycle C':uy .Y u, then

277" n=-2

deg, (x)+deg,, (v)2 ¢"(G) -222k+1-2=1V(C')| +1. By Lemma 4.2.8,

Pﬂ(x,y) hold for* each { satisfying 24¢§42k-1. Next we consider

the case where there exists a cycle C":yly2 in

Yox-3Y1

¢

V(G')-fu}. Since degG(x)+degG(u)!d(G)22k+l, it follows that
degG(x)zk+l. Similarly, degG(y)Zk+1. Therefore,
degG(x)+degG(y)22k+2 and it follows that

deg "(x)+deg o (y)22k+2- 4—(2k 3)+1={V(GM)| +1. By Lemma 4 2.7, for
each Qieatiefying 2¢0¢2k-2, Pﬂ(x,y) holds in G. 1In either of the

\

. cahes abeve, it has been proven that\PQ(X,Y) holds for'eaeh 1,
280¢2k-2. - Together with the fact that P ne1 holds in G, it

follows that- G is PLD—maXLmal

[}

Case 2 Suppose there exists u€V(G) such that deg (u)¢k-1.
Agaln, c%G)’d(G) n+2. whlch 1mp11es that b n~1 hold in G. Let

G'=<V(G)—{u}>. For eny two vertices x,yev(G'),
degG(x);degG(u)Zw(G)z2k+l.‘ Hence, degGQX)Zk+2. Similarly,
degG(y5£k+é. Therefore,

. degbl(x)+degG,(X)fdegG(x)+degG(y)—222k+2=(2kf1)+3=|V(G:)|+3.
v&his.implies that ;(G')ZW(G'7Z|V(G'H-+3>IV(G')|+2. Hence, for
each R‘satiefying 2£942k-2, Pi(x,y) hoids in G. Now consider any"
. ’ - PO
vertex z¢V(G'). Since degG(z)+de§¢fu)2c%G)zn+l, there exists
wev(G') S§Z;k§hat zwu is a z,u-path of length 2 there exists a

z,w-path ak:z...w of length 2 in G'. A z,u-path in G of length

" 2+1 can thén be obtained by concatenating the path gﬂ with the
/
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edge uw. Thus for each % satisfying 2£Q£2k¥2, Bl(z,u) holds in G.

Together with the fact that P holds in G, it follows that G is

arl
® 2 o

PLD-naximal and this completes the proof. [ ]
The example that shows the sharpness of the conditions in

Theorem 4.2.5 will be given after~the following obvious corxollary to

Theorem 4.2.5.

‘ Corollary 4.2.9 Let G=(V(&),E(G)) be an (n,m)graph such that
S(G)zgigﬁ " Then, G is PLD~-maximal. Moreover, the condition of this
coggzggry is sharp.i
Proof: Clearly, for any X,VEV(G), degé(x)+degG(x)+degG(y)228(G)Zn;2.
Hence, F(G)2 C(G)2n+2. By,Theorem 4.2.5, G is PLD-maximal. The
following examples will show that the condition given in this
corollary is sharp. kfj‘ | | n

Examples to show the sharpﬁess of the coﬁditions ianheorems 4.2.3

and 4.2.5 and Corollary 4.2.9, respectively, are as follows.

Definition 1.2.10 Let Gl=(V(Gl),E(Gl)) and_G2=?V(G2),E(G2)) be any

two (n_,m

11

%—grgph and (nz,mz)—graphs, respectlv%lz. Now GluG2 is

+ \ - . . —
the (nl n2, mi+m2) graph with the set of vertlces V(GlUGz)

1 2
)=V(Gl)uV(G2) and

V{(G.)v .
( l) V(Gz) and‘the set of edges E{QIUGZ

)=E(G1)VE(G2? and G_+G_:is

the (nl+n2,q)—graph with set of vertices V(G1+G2

the set of edges E(G1+G2

)=E(G1)UE(G2)U{xy|fof all x(V(Gl) and for

all yev(G;) . Clearly,q =ml+m2+n1n2.

s
‘-

0

Definition 4.2.11 Let m;n,k be any three positive integers.

An - . 7 13 : + .
(m,n,k) -graph Gm is defined by Gm n 'k (KmuKk) Kn

’ 4

,n, k



,
%

Ile
Then, » {
deg(x)=m+n-1 for each x€V(Km),

. deg(x)=m+k  for each xev(in),

and deg(x)=k+n-1 for each xEV(Kk).

{11 |

-
figure 4.1
It is clear that Gm n ok satisfies OC as long as m+k2n+l and n23.
Feir .
I i i t d shown-in
n particular, we con51der he graphs Gm,n,l an Gm,n,2

Figure 4.2 below. :

N

K
m

\”T fﬂ/ \\Mf
Y | | / ) \

/

m,n,l m,n,2

e 4.2

For any VGV(E ) and u¢X_, of G , it is clear that P_(u,v) fails to
n 1 mgn,2 2

hold. Let x,vé€V(K,) of G . It is clear that P_(x,y) fails to hold
2 m,n,2 3
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in G .. Thus, for any m,n 21, neither G nor G is
m,n;2 v ’ m,n,l m,n,2

i

- PLD-maximal. However, if we choose m and n such that m2n 23 and

m+tl2Zn 23 for G ., and G respectively, then both of them

m,n,l m,n,2’

satisfy OC and are not PLD-maximal. This shows that the lower
.bound in Theorem 4.1.6 cannot be fﬁrther reduced.
To show that the condition in theorem 4.2.3 is sharp, simply

consider G for any n24 and it can be eaeily shown

that the ‘graph 1 ] [ ][—]-cbnnected.while p_ fails to hold.

3

_ >
Next, let Gl gN 1,8-1,2 7 fot each N 2 3,

2
G2 GN 1,N,2 , for each N2 3,

, R '
. and G3 GN+l N-1,1 ' for each N -6( respectively.

Gl has n=2N vertices with r(Gl)=n=2N and is not PLD-maximal.

This establishes the sharpness of the condition in Theorem 4.2.5 for
the case where the number of vertices n is even. For the case where n
is odd, we examine G2 and G3 in a similar manner. It is clear that

|V(Gé)|=2N+l andtE%G2)=°%é2)=IV(G2)]+l. Thus G, satisfies Condition (1)

and fails to satisfy Condition (2) of Theorem 4.2.5 and Pj fails to

hold in G2. We next observe that IV(G3)|=2N+1 with.¢1G3)=|V(G3)| and
3(G3)=|V(G3)l+3. Hence, G3 satisfies Condition (2) aed fails to satisfy
Condition (1) in Theoreﬁ 4.2.5 while P2 fails in G3. The sharpness of
the conditions in Theorem 4.2.5 is now established beth for the cases
when the size of the setjof vertices is odd or even..

Moreover, observe that SKG1)=%|V(G1)| and (G2)=%(IV(G2)|+1)- This

establishes the sharpness of the condition in Corollary 4.2.9.

" Finally, to establish the sharpness of the conditions in
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Theorem 4.2.4, we conslder the graph G—~n—2]ﬁd'+Kn—[n—2]—f4u} 2

for each n%4.

, figure 4.3

It can easily be shown that ;KG)=[§272] and P2(u,V) fails to hold
2 .
in G. Hence, the condition in Theorem 4.2.4 is best possible,

With the examples illustrated thus far in this section, it 1is

clear that in addition to having a graph G satisfy 0OC, additional

~

¢onstraints must be imposed before the graph G can become PLD—maximql;
This 1is entirely consistent with the results in Theorems 4.2.3 and
a.2.4.

'As another corollary to Theorem 4:2.5, we establish a sufficient
cbndition for a graph to be PLD—maxi;%l that is related to the number

of edges in a graph.

Corollary 4.2.12 Let G be an (n,m)-graph such that

mz.g(n)(n-l)—(n;4), then G is PLD-maximal. Furthermore, ﬁhe#\v///
condition)in the theorem is shaip.

Proof:; Let G be an (n,m) -graph constructed by removing at mosf-q
edges from the complete graph on n vertices Kn, qsp—4. Lét

&
> u,v € V(G) be arbitrary vertices in G. Then, it is clear that
&



. o , ’ 119

.

degG(u)+degG(v)Z (ﬁ—l)#(n—l)-(jn—4)+l)=n+l.AAs a matter of fact,

degG(u)+a?gG(v)=n+l only‘if uv € E(G) and all the eéges removed are
incident with either u or v or uv itself is removed. Otherwise,
degG(u)+degG(v) 2n+2. Therfore, ¢/(G)2 n+l. A similar argument
clearly shows that for any nonadjacent vertices u,v €V(G),
degG(g)+degG(v) 2 n+2. Hence, ¢(G) 2 n+l and ?(G) 2 n+2. Bi/ Theorem
4.2.5, G is PLD—maxim%l.

To show fhat the cbndition ofﬂthe theorem is best possible,
consider the graph G consisting of the set of vertices

+

V(G)={u,vl,v ""Vn—l} and the set of edges

o
E(G)={uvl,uvn_l}u{vivj|l$i<j£n¥l}. Since d?gq(%)=2, G defined in
such a manner is not hamiltonian-connected andlE(G)| =%n(n-1)-(n-3)
Hence, G is not VPLD—maximal and this completes the proof. ’ -_
A counting argument analogous to the proof of Theorem 4.2.5 will

produce the followiné necéssary conditions for a graph to be

PLD-maximal.

Theorem 4.2.13 [25]Let G=(V(G),E(G)) be an (n,m)-graph with n 2 4.

If both P2 and Pn«_ hold in G, then m2 2(n-1). Furthermore,

-1
m=2(n-1) if and only if G is isomorphic to the wheel graph Wn on

n vertices.

Proof: The details of this proof can be found in [25]

& figure 4.4
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. _
As a corollary to Theorem 4.2.13, we have established a necessary

condition for an (n,m)-~graph to be PLD-maximal in terms of a
lower bound for m.

Corollary 4.1.:14 [25] Let G=(V(G) ,E(G)) be an (n,m)-graph. If G is

PLD-maximal, then m=|E(G)[22(n-1) and m=2(n-1) if and only if G=Wn
‘More on‘path length distribution will be discussed in Section 4.4.

Section 4.3 Panconnécted graphs

The objecti&e of this section is to present a survey of results

that relate the powers of a connected graph, Path Length Distribution

(PLD) of a graph and panconnectedness. In the attempt to make this
secfion self-contained, the concept of panconnecfedness will be
introduced again. Some of the results related to the power of a graph
briefly mentioned in Theorems 1.2.34 and 1.2.35 will be introduced once
more in a ngical order in th}s section with respect to the concept of

the Path Length Distribution (PLD) of a graph. Proofs which are

representative of the typq; of arguménts used in analvsing these types
of problems will be presented in detail for two theorems by Y. Alavi
and J.E. Williamson. .
‘ . e e ) th

Recall that in Definition 1.2.33, the m  power of a graph
m m ,.m . . . .
G =(V(G),E(G)) has been formally defined. As mentioned in the
discussion of Theorem 1.2.34, Herbert Fleischner [26] earlier in 1971
produced a significant result relating the power of a graph to its

hamiltonianicity. He proved that the square of a 2-connected graph is

always hamiltonian.
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Definition 4.3.1 Let G=(V(G),E(G)) be an (n,m)-graph. If for

each vertex veV(G) (edge e€E(G)), there exists a cycle Cn of

length f , for each i_satisfying>35£5n, such that VEV(CQ)

(eEE(CQ)), then the graph G is said to be vertex-pancyclic

[

(edge-pancyclic) .

In 1971, J.A. Bondy asked if the square G° of a graph G being
hamiltonian‘implies that vertex pancyclic;

Arthur M. Hobbs [29] gave an affirmative answer to Bondy's
qdestion for the classés of 2-connected graphs and connected bridgeless
DT—graph if and only iff each edge ‘is incident to a vertex of degree 2).

Bondy also introduced the concept of edgé—pancyclicity as defined in

\y

"

Definition 4.3.1. The concept of edge-pancyclicty is closely related

to the concept of panconnectedness as we now indicate. As in definition

1.2.33, for any (n,m)-graph G=(V(G) ,E(G)) and for any x,y€V(G),

dG(x,y) denotes the distance between the vertices x and y in G.

Definition 4.3.2 " Let G=(V(G),E(G)) be an (n,m)—graph: Suppoée
that for each x,yevV(G), ngg,y) holds in G‘for ali’i satisfying
dG(k,y)Si§n—l. Then G is said to 5e é»panconnected graph.
It is clear that if a graph is panconnected, then it is neéessarily
edge pancyclig. These two concepts, however, ére not eguivalent as
thé graph in Figure 4.5 indicates. By inspection, it can be easily
shown that the graph is edgefpanéyclic. However, there exist no
x,y-paths in of length 5,6, or 7=|V(G)| -1, when dG(x,y)=2. Hence, G

is not panconnected.
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y a K/
figure 4.5

Later in 1971, G. Chartrand, A. H4bbs, H. Jung, S. Kapour and
Nash-Williams géve the following generalization of the result of
Fleischner [26] as stated in Theorem 1.2.34.

Theorém 4.3.3 [10] Let G=(V(G),E(G)) be a 2—connected.(n,ﬁ)—graph.

: L2 2
Then, P holds in G , that is, G is hamiltonian-connected.

n-1

Earlier in the same year. Fleischner [ 27) established another

result relating the power of a graph to a hamilténian property.

Theorem 4.3.4 [27] Let G be a connected bridgeless DT-graph.
) | .
Then, G 1is hamiltonian-connected. -

Furthermore, Karaganis [30] and Sekania [41] earlier had

established,theVfollowing result.

Théorem 4.3.5 t3l!43] If G=(V(G) ,E(G)) is a connected (n,m)~-
graph, then G3 is hamiltonian-connected. |
Being the power of a graph, however, is much stronger a condition
than merely being sufficient‘to‘ensure that a graph is hamiltonian-
connected. 1In a paper by Y. Alavi and J.E. williamson [3],.the follow-
“ .

ing two results have been established.

3,
Theorem 4.3.6 If G is a connected graph, then G 1is panconnected.

. . . 2,
Theorem 4.3.7 If G is hamiltonian graph, then G 1is panconnected.
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Clearly, the result of Karaganis [31land Sekanina [43]' in
Theorem 4.3.5 is merely a corollary to Theorem 4.3.6.
In 1973, R.J. Faudree and R.H, Sche;p [23] establighed the
following much stronger result to which Theorems 4.3.32 4.3.4 and

4,3.7 are all corollaries.

Théorem 4.3.8 [23] 1f G is either a bridgeless DT—éraph or a

2vcénnected gfaph, thean2 is 'a panconnected graph.

Later in 1975, Fleischner [28] established the fact that in the
square of a conne;ted graph G, panconnectedness and hamiltonian;
connectednesé are équivalent concepts as stated férmally in the
following theorem.

-«

Theorem 4.3.9 [28] Let G be a connected graph. Then, Gzlis

hamil?onian-connected if and only if 62 is panconnected.

To cqmplete the section, the proofs Qf‘Theorems 4,3.6 and 4.3.7
will be given to illustrate the types ofvarguments used in developing
results of a similar nature. The proof of Theorem 4.3.7 given at the
end of this section will not employ directly the fact that Theorem 4.3.7
is a corollary to Theorem 4.3.8. It is an independent proof.

Proof of Theorem 4.3.6 Let G=(V(G) ,E(G)) be a connected (n,m)-

graph. ' We proceed by induction on n. Note that fbr ns4, G%=Kn
and the result follows immediately. Now, suppose that the
theorem has been established for eagh value n—l,n—2,...:4,3,2,l,
for some n25. Let u,vé€V(G) be any two distinct vertices in G.
Let T=(V(T) ,E(T)) be a spanning tree in C such that dG(u,v)=
dT(u,v). The choice of such a tree is always possible. Note

that dG3(u,v)=dT3(u,v). Hence, it is sufficient to justify that
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i

for each { satisfying dG3(u,v)=dT3(u;v)5Q$n—l, there exists a

u,v—péth of length @ in T3. )

There are two cases to be examined according to whether
uv€E (T) or uv*E(T).

Case 1 Suppose that uvéE(T). Let Tl=(V(Tl),E(Tl)) and

T2=(V(T2),E(T2)) be the two components‘of the subgraph

T—uv=(E(T)—{uv}> subh that uEV(Tl) and v€V(T2). Furthermore,

let IV(Tl)l=nl and lV(T2)|=n2. First suppose that either nl=l or

n_=1. Without loss of generality, let n

5 =1 and n2=n-l.

1
Let v'EV(T2) be such that VV'EE(T2). By the induction
hypothesis, ﬁhere exists in Tg a V'Y'_path.Qk of length g, for.
each § satisfying lSQSn2—1=n—2. Since uv'€E(T3), for each Q ,
concatenéte the u,v'-path Qﬁ with the edge uv' to obtain a u,v-path
of length Q'=f+1 in T3 with 2£Q'¢n-1. Clearly, the edge uv is
the u,v-path of length l=dT3(u,v) and this accounts for the
case where nl=l and n2=n—l.

Next, suppose thét nl>l and né>l. Let u‘€V(Tl) and
v'EV(Tz) be such that uu'EE(Tl) and vv'eE(Tz), respectively.
Since dT(u',v')=3. u'v'EE(TB). By the induction hypothesis,

3 3
T,, T. are panconnected. It follows that for each Rl'QZ

17 72

satisfying liﬁlin -1 and 1522$n2—l; there exists a u,u'-path Q,

-k
of length 22. For each

1

3 .
in Tl of length Al and a v,v'~path QQ
2

pair of such integers 11,22 , concatenate the edge u'v' and the

) 3
paths QR and Ql to obtain a u,v-path in T of length,Q=£l+ﬁ2+l.
1 2
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>351Snvl. Since uv'e€ E(T3), uv'v is a u,v—path of length

T =(V(Tl) SE(T

125

This accounts for each u,v-path of length £, satisfying

. Clearly,
The edge uv is a u,v-path of length 2 and the result follows.

Case 2 Now suppose that uvé E(T). Let U'be the unique u,v-path

in T and let wé‘V(U) be such that uw€ E(T). Similar to Case. 1, let

)) and T.=(V(T,),E(T,)) be the two components of the

1 1 2 2 2

subgraph T-uw=<E (T) - {uw} >, sUcn that LlevlTl) and w ¢ V(Tz). Again,

let'nl=]V(Tl)|.and n2=|V(T2ﬂ. Suppose that either nl=l or n2=l.,

Without loss of generality; n.=1 and n_=n-1 is.assumed. By the

1 2

. . . 3
induction hypothesis, T

5 is panconnected. Thus for each 12 satisf-

ying dT3(w,v)#dT%(w,v)S.£2$ n2—l=n—2, there exists a w,v—p;th Qﬂ
in T; of length 22. For each 22, concatenaté the edge uw to the
w,v-path Ql to obtain a u,v-path of length £ with 1=d_ 3(w v)eR<
n-1. Let |U(w,v)| denote the length of the subpath of: the u,v- path
U connecting the vertices w and v. If |U( w;v)hEO(mod 3), then

d (u,v)=l+dT3(w,v). It follows in this case that every -u,v-path

73
.3 , ‘
in T of length { for each { satisfying dT3(u,v)5UQ£ n-1 has been

T accounted for. If |U(w,v)IZ0(mod 3), then dT3(u,v)=dT3(w,v).

However, by the definition nf dT3(u,v), there exists a u,v-path in
T3 of length dT3(u,v). Every u,v-path in T3 of the Teqﬁired length
has now been accounted for.

Assume that nl> 1 and n2> 1. Let u'e V(Tl) such than uu' €

E(Tl). By the induction hypothesis, both Ti and T; are panconnect- .

ed. It follows that for each 21 satisfying 1 3115 nl—l,there exists

in Ti a u,u'-path QQ of length,ll. Similarly, for each Qz
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satisfying dT3(w,v)=dT3(w,v)$QéSﬁ2—l, there exists a w,v-path QQ

) 2 : . 2
of length 12 in T;‘ Since dT(u',w)=2, wu'eE(TB). For each Ql and
12, a u,v-path of length'2=,yﬁﬂ2+l can be obtained by concatenatiﬁg

the Paths QRl and Q , with the edge wu'. This accounts for every
u,v-path of length £ such that Zde3(WrV)$2$n’l- Again; if
'U(w,vﬂzO(mod 3), then dT3(u,V)=l+dT3(w,v). This inequality allows
all g,v—paths in T3’of length X for every Q satisfying
l+dT3(u,v)£Q$n—l to be gccounted for. Since theré always exists
a u,v-path in 3 of length dT3(u,V); every u,v-path of desired
length has now been acéounted for. Next, ass&me that
|U(w,v)|#£0(mod 3) which implies-that dT3(u,V)=dT3(w,v). Under
this condition, a u,v-path of length l+dT3(u,V) can be obtained by
concatenating’a w,v—péth of length dT3(w,v) in TS with the edge
uw. All the u,v-paths of dgsired length have now been accounted
for and tﬁis completes the proof of the theorem. | bl
In chaptér 1, an example constructed by P. Undergrouna [46f
cléarly suggests that there exist'infinitely many graphs_whose
square is not hamiltonian. This 1is consistent‘with the‘fact that
vonly when additional constréints aré imposed on a graph G can G2 have
properties like hamiltonian-connecte@ness or panconnectedness as \M
demonstrated by many of the theorems stated earlier in this section.
In what follows, a proof of\Theorem 4.3.7 will be given in detail to

illustrate a constructive argument used to show that the square of a

hamiltonian graph is panconnected.
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Proof of Theorem 4.3.7 Let G=(V(G),E(G)) be a hamiltoniah‘(n,m);
graph and let u,v€éV(G) be two arbitrary verticeé in V(G). Sinée

G is hamiltonian, there exists a hamiltonién cycle

C:xlXZ"'xnxl', Without loss of genérality, let X,=u and

Xk=v for some k satisfying'2£k£n. Choose a shortést u,v-path Q¢ in
‘G, By'definition, the length of the path Q is dG(u,v). Observe
that in the graph G2, the subgraph < V(Q) > induced by the vertice’s /
ole contains a 4,v-path Q? which has p edges iﬁ which p is the
least positive integer satisfying 2p2dG(u,v) and with at most one
éxception} all the edtes which constituté the path Q' are in
E(G2)—E(G). In fact no edge in Q' is an edge in G if and only if
dG(u,V)fO(mod 2). A path Q' chosen in such a manner is necessarily

a shortest u,v—péth in GZ.: Itsfollows that p=d62(u,v).

-

To complete the proofkéﬁgthe theorem, we proceed to construct*®

a u,v-path QR

There are three cases to be éxamined in the following.

of length § iﬁféz for each Q satisfying dG2(u,2)£Q5n-l.

Case 1 Construction of 9& fo%leach X satisfying dGz(u,v)sﬂsdG(u,v).
Let B=(V(B) ,E(B)) be the su{p,g;;éﬁah in G2 defined by V(B)=V(Q)

. o
and E(B)=E(Q)VE(Q'). Since both Q,Q' are subgraphs of B, it is
clear that there exists a u,v-path of length dG2(u,v) and a
u,v-path gf length dG(u,v) in B. Next, consider any u,v-path Q
of length L ;n B such that_dGz(u,v)£Q<dG(u,v). By the choice of
Q , there exists an edge xyeE(QR) such that syeE(Q')-E(Q). Then,
there exists wev(B) such that xw,wy€E(Q) and wQﬁp,v}. Then, a

u,v-path of length f£+1 in B can be obtained by simply replacing

§f+l
the edge xy in 92 by the x,y-path xwy. The process can be
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repeated until a u,v-path of length @ has been obtained for each
satisfying dGz(q(f3 ﬂ<d (u,v). This accounts for all the
u,v-paths of lengths required for case 1.

Recall that u=xi and V=X, . We proceed to the second case.

Case 2 Construction of Ql for each L satiSfying dG(u,v)SQEk—l.

Note that-the portion C' u—xlxzx3 - X FV of the cycle C is a

u,v;path of length k-1. If dG(u,v)=k—l, then this sécond case
is complete. Hence, we assume that'dG(u,v)<k—l.

As theru(v—path Q is traversed frdm u=x, to V=X, let xi be
the first vertex encountered on Q such that xj is the next

vertex on Q and xj#xi+l' Note that 1%i¢k. Let m be the least

positive integer such that xmeV(Q) and m2i+l. Since V=X, is the

terminal vertex of 9, mt¢k, by the choice of Q being a shortest
u,v-path in G, it is clear that m2i+2. Now, observe that

X. X €E(G) and x.X, .€E(G). It follows that x.X. EE(GZ).
i7 i i+l . j i+l

Therefore, a u,v;path QL,Of length L=l+dG(u,v) can be obtained by

l . R . —
replacing the edge.kixj in E(Q) by the Xi’xj path Xixi+lxj of

length 2. .
*

Observe that for each index t sati!iging i+1lstem-2,

2
€ € .
Xt—lxt E(G) and xtxt A E(G) Therefore, xt~lxt+l E(G)

A u,v-path QL+1 of length L+1=2+dG(u,v) can now be obtained by

by the x -path x.x

replacing the edge xixl +1 1 1 i i+2xi+l'

In a similar manner, a u,v-path @ of length L+2=3+dG(u,v)

+2

~is obtained by replac1ng the edge x. in Q by the

+l i+2 L+1

x x -path x. _X. _X. . This process can be repeated
142" %5417F 14271435541 b P
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recursively to construct a sequence of u,v-paths such that each

member of the sequence is.of length one greater than the preceeding

member until all the vertices on C between X, and X have been

used. The last member of this sequegce of paths, QL+(m—i—l)' must
b f f : P X, . .
pe of the formor, i1y PirXie0%i4a Fiv2s¥i425+1 14251
X X P when m-i-1 is odd ;na s—m_i -1, and O :
Ti+2s-37TTTIALTT 50 2 T L+ (m-i-1) °
)

S SIS ' X, . ceeX, o,P] i-1 i

P ®i0%i4a xl+25§ ¥2s-1%1+25-3%i+25-5"""Fi+1 j,when LT 1S

even and s=m ., where Pi and Pj,are X ,xi—subpathé of 0 and

1
xj,xk—subpaths of Q, réspectively.

Now, for egch successive vertex.xé of Q such that 1l¢g<¢k, and

the next vertex encountered on Q is not x the same process

q+l'
discussed so far in this case can be repeated to obtain a

sequehce of u,v-paths 6f consecutive lengths, until every vertex

between Xy and x on C has been exhausted. This accounts for all

: k
}\_ihe u,v-paths of the required lengths for Case 2.

Case 3 Construction of Q’Q for each { satisfying k$¢{¢n-1 .

Note that D X 1%’ the portion of C between u=x

k-1 *1%2%3"" 1
= ".. - - i €
and v=x , is a u,v gat? of length k-1l. Since X 1% E(G) and
, : 2 -
xkxk+l€E(G), it follows that xk_lxk+l€E(G ). A u,v-path D_ of

length k can now be obtained by replacing the edge xk—lxk by the

of length

X k_l,xk—path xk-lxk+lxk' Similarly, a u,v-path Dk+l

k+1 can be obtained from Lk by._simply repl§c1ng the edge xkxk+l in

-pat . Thi i ted
Dk by the Xk+l’xk path xk+lxk+2xk his process is repeate

recurkively until a seqguence of u,v-paths D ;oD

k 'Pr+1Prao n-17""

is obtained byiexhausting all the vertices in C between xk and xn.
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The accounts for all the u,v-paths of the desired length and this

completes the proof of the theorem. : R

Section 4.4 Some useful examples on path length distributions

[

In Section 4.2, several sufficient conditions for a graph to be
PLD-maxinal héve been examined in detail. However, many questions
concerning the path length distribution of a graph and PLD-maximal
graphs fémainéd unexplored. In light of Theorems 4.2.12 and 4.2.13, a

question one would naturally ask would be the following.

Question 4.4.1 Does the path length distribution of a graph -
determine the graph up to isomorphism?
The answer to this question is 'no', as the following

two theorems in [25] indicate.

Theorem 4.4.2 [25] For each pair of positive integers {n,m}such

that 2n-1¢m¢%n(n-1)-2, there exists at least two non-isomorphic
PLD-maximal (n,m)-graphs.

~ Theorem 4.4.2 implies that for the»same restricfiéh on a pair of

integers {n,m},‘there exists at least two non-isomorphic (n,m)-grapg

with thé samerpath length distribution.

*

Theorem 4.4.2 [25]1 For all n29, there exist non-isomorphic trees

with the same PLD. Moreover, for each N21, there exist N

ES

mutually non—;gomorphic trees with the same PLD.
- :

cea ;X is a
7 r n_l)

Since every path in a tree is unique, if (xo,x1

seguence of positive integers which represents the path length

distribution of a tree on n vertices, then x =0, x =n-1 and

0 2
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n ' '
Z::xi=%n(n—l). It is easy to show by direct calculations that there
i=2 .

exist no non-isomorphic trees on nf8 vertices with the same path

e

’lgngth distributibn.

Clearly; some graphs are determined uniqﬁely by their PLD. For
exaﬁple,‘the complete graph Kn on n vertices. The complete graph
Kn—e‘with an edge deleted and the wheel graph~wn.are the only graphs on

"n vertices which have their second terms x, in their corresponding PLD

A

1

E
-

:g; equal to %n(n-1), %n(n-1) -1 and 2(n-1), respectively. Furthermore, a
Pl dor ’ 4
path Q on n vertices is the only tree which has diameter n-1 and

n . .

satisfies x0=0, xlﬁﬁfl and X l>O in its PLD. Triwvially, one can -
i

verify that for nf5; a‘graph.on n vertices is determined uniquely up

K4
B

to isomorphism by it§ PLD. The discussions up to this point inevitably

leave thé following difficult guestion oper®.

Question 4.4.4 Characterize the class of all connected graphs

which are determined uniquely up to isomorphismﬁﬁy their PLD's.

For a full answar-to.beAgivenbto this question, great insight into

~~ the problem would be required. A more specific question which is
F .
equally fundamental is the following. '

T,
-

Question 4.4.5 Give a characterization of the class of all

PLD-maximal graphs and panconnected graphs.

<

An even more basic question is the following.

Question 4.4.6 Which sequences of nonnegative integers

(0,x

l'x2""'xn-l) represent the path length distribution of a

connected graph on n vertices?

In light of Theorems 4.1.6,4.3.3, 4.3.4 and especially Theorems
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4.3.8 and 4.3.9} R.J. Faudree and R.H. Schelp were lead to proposeﬁthe
following conjecture.

Conjecture 4.4.7 [23] Let G be a hamiltonian-connected (n,m)-graph.

.~ Then for each i satisfying n¢i¢n-1, P, holds in G.

A countef—example to this cinjecture was found in a paper published'
in 1978 by Carsten Thomassen [437] in which he has established that
there e#ist infinitely many exceptions to this conjecture. ATheAdetails
of the construction of these sophisticated counter—examples will be

presented in the remaining part of this section.

Counterexamples to Conjecture 4.4.7 A series of orems relevant

1l

to the construction of these counter-examples are required due
to the complexity of the construction. We begin with a careful
investigation of the dodecahedron graph.-

Dodecahedron Graph For the remainder of this section, D will denote

the dodecahedron graph. As shown in Figure 4.6, D is hamiltonian.
It is also well known that D is edge-transitive and distance
transitive (that is, for any pairs {x,y},{x',y'} of vertices in

V (D), there exists an automorpﬁisnﬂWEAul(D) such that K(x)=xf and

A hamiltonian cycle in D

figure 4.6

x
&
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'%)(x,y)=3 | dD(x,y)=4\r ‘>dD(x,y)=5

figure 4.7

dD(xO,y)=2 dD(xo,y)f3 d(x,,y)=4
figure 4.8
K(y)=y' if and only if dD(x,y)=dD(x',y'). Moreover, D is a union

of its hamiltonian cycles. D, however, has no cycle of length

-
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'V(D)l—l=l9 and D is not hamiltonian{connected.“ This latter

%

fact is a consequence of the following theorem. .

Theorem 4.4.8 [44] Let G=(V(G),E(G)) be a 2—coﬂnected planar
(n,m) ~graph such that each cvcle which constitutes the boundary of
a redion has a number of edges congrﬁent.to 2 wmodulo 3. Then, the
followiﬁg conditions are satisfied.

(l) élhas no. cycle of length n-~1.

(2) If uvw is a uﬁﬁ;path of lEngthr2 that is on the boﬁndary

of g region, then Pn_i(u,w) fails to hold'in.G.

Proof Let G=(V(G),E(G)) be a 2—connected planar (n,m)~§raph
which satisfies the boundary length condition of the theorem and
let vevV(G) be an arbitrary vertek in G. Then, the subgraph
' G'=<V(G)—{v}> contains exactly one region R which has a number
of edges on the boundary of R congruent td 0 modulo 3. Using
Grinberg's equaﬁion (see Th;orem 1.2.10), it is clear that
5&(1—2)(¢3?¢?)#0. ‘Hence, G' is not hamiltonién. Since v is an
= i1
arbitrary vertex in G, it follows that there exists no cycle of
length n-1 invG.

Let uvw be a u,w-path of length 2 that is on the boundary
of a region. Then, the graph G"=Gu{u w}, defined by V(G")=V(G)
and ?(G")=E(G)U{u w}, has exactly one region’RO bounded by a
number of edges congruent to Q modulo 3 and one regibn Rl bounded
by a number of edge congruent to 1 modulo 3.

By Grinberg'é equation, éi (i—2)(¢i—¢;)=0 can be satisfied -

i=1

only if both regions Ro and Rl lie on the same side of every

hamiltonian cycle C in G". This implies that there exists no
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hamiltonian cycle in G" which cbntaiﬁs the edge uw. Therefore,‘
Pn._l(u,w)' fails to hold in G and this comple.tes the prbof. N ]
Other relevantiproperties ?oncerning the graph‘D are reflected in

Figures 4.7 and 4.8. We first give the following theoreﬁ.

Theorem 4.4.9 [44] Let {x,y} be two arbitrary vertices in D.

Then, there exists a hamiltoniaq xX,y*path in D if and only if
dD(x,y)#z, If dD(xfy)=l, then there is a hamiltoniah x;y—path.
'EEQQE. Shown in Figure 4.7 are three hamiltonian x,y-paths

for some vertices x,y€éV(D) with dD(x,y)=3,4 éna 5, respectively.
Since D is distance transitive, it follows that for any two
vertices x',y'EV(D).such that 3SdD(x';y')$5, there exists a
hamiltonian'367y'—path in D. Also, there is a hamiltonian
x,y-path if dD(x,y)=l. Conversely, ifvx,yQV(D) andldD(x,y)=2, then
by Theorem.4.4.8, there efiéts no hamiltonian x,y—path in -

D and the result follows. _ n

Th '4,4.10 {44] .
—- corenm L Let erV(D) be an arbitrary vertex in D.

For anyrvertex.er(D) such that ZSdD(xO,y)£4, Df=(V(D)‘{Y} >

has a hamiltonian path connecting’two neighbours xl,x2 of XO

nor X_ is a neighbour of y.

such that neither X, 5

Proof Shown in Figure 4.8 are three hamiltonian x‘,x2—paths in

1

D'=<V(D)-{y}), where dD(xO,y)=2,3 and 4, respectively. Now

o~
. &
xl,x2 are two neighbours of-xO such that neither X, nor‘x2 is a

neighbour of y in D. Since D is distance transitive, the result
follows immediately. [ ]

Using theorems 4.4.9 and 4.4.10, the following useful result
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A

can now be established.

'

Théorem 4.4.11 Let xOEV%D) be any vertex in D and let

N(x0)={xl,x2,x3} be the set of neighbours of.x0 in'p. Let
u,vev(D) be any two vertices in D such that at least one“df u,v
does not beloﬁg to N(xo).- Then, by‘adding at most one edge
bétween two vertices in N(xo), a hamiltonian u,v—path can be
obtainéd.

Proof: Let u,vev(D) be two vertices in V(D) which satisfy the
hypotheses of the theorem. If dG(u,v)>2, then by'Theorem 4.4.9,.
there exists a hamiltonian-u,v—path in D and the result follows
immediately. Thus, we assume that d(u,v)=2. Without loss of
generality, 2£dD(u,xo')§?is assumed. By Theo;em 4.4.10, a cycle

C which contains all vertices in D except u can be obtained by

X, between two vertices in N(xo).

adding at most one edge X)X,

Let w be a eommon neighbour of u and v. Since each vertex in
D has degree 3, the edge wv is necessarily on C. A hamiltonian

u,v-path which contains the edge x can be obtained by replacing

1%2
the edge wv by the edge wu. The theorem now follows. [
Next, we proceéd to define a class of graphs called generalized

dodecahedron graphs which wili be used to construct our counter-

examples to Conjecture 4.4.7. |
{ |

GENERALIZED DODECAHEDRON GRAPHS

' For each positive integer k23 construct two concentric cycles of

length 3k: *
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Cl;xlylzlx2y2z2...xkykzkxl and C2;ulvlwlu2v2w2...ukvkwkul. For

1

-each i, 1%i%k, the edges yiui and ziwi:are then connected between

C, and C_. on ertices X
a 5 ipm ew Vv ice

1 are introduced such that for each i,

0’ Vo

18i<k, x

0 is joined to X and vO is joined to vi. The redsulting graph

is the generalized dodecahedron graph Dk' It is clear that P3 is

]

isomorphic to the dodechedron graph D itself. Shown in Figure 4.9 is

the generalized dodechahedron graph D4a

v

The graph D4

figure 4.9

rFurthermore, the graph D, as shown.in Figure 4.9 contains an

4

xl,x4—path QO which contains all vertices of D4 except Xy and X, By

adding the edge x2x4\to the path Q, a hamiltonian X -path is

17%2

to the path Q

7
obtained. Similarly, adding the edge xlx2

will resuit in a hamiltonian
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x2,x4—path. By the symmetry of D4, for-any two neighbours x,y of

XO' a hamiltonian x,y-path can be obtained by joining two neighbours

of xo,xi,xj such that at least one of xi and xj is not in {x,y}. These

facts can now be used to produce the following more general result.

Theorem 4.4.12 [44] Let k24.. If x and y are any two vertices of

; Dk’ then by adding at most dhe edge joining two neighbours of

‘

. xo, a hamiitonian x,y~path in Dk is obtained.
Proof: Suppose the contrary and let k,k24, be the smallest.

positive integer such that D, contains two neighbours { x,y} of

k

X, which fail to satisfy the conclusion of the theorem. Clearly,

' there exists i, with 1€i<k, such that neither x nor y is in the
‘. sgt {Xi,yi,zi,ui,vi,wi,xi+l}/unless k=4 and {x,y}C{gl,xz,x3,x4}.
- . This létte;’case, however, has previously been accounted for in

a discussion associated with Figure 4.9. Without loss of
generality, it is assumed for the remainder of the proof that

,xl}and

for k>4, neither X nor vy is in the set”{xk,ykak,uk,vk,wk

and for k=4, at least one of x and y is not in {Qi¢x25§3,x4}.

Form a new g#aph by deleting from'D, the vertices xk,yk,zktﬁﬁ7vk,wk

k

and adding the edges zk_lxirand w The resulting graph is

k-1"1"

necessarily isomorphic .to the graph D and will be referred to

k-1

as such. By the choice of k or:by Theorem 4.4.11 if k=4, a

hamiltonian x,y-path P can be obtained in Dk—l by adding an edge

xixj (i€9) between two neighbours xi and xj of xo. We now proceed

to transform the path P into a hamiltonian x,y-path in D, by adding

[}

an edge'betwgtn-two neighbours of X, and thereby obtaining the

k

w
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desired contradiction. There are several cases to be considered.

Case 1 Suppose that the path P contains the edges z) 1% and

A hamiltonian Xx,y=-path in Dk

afk—lul' can be obtained 51@ply by‘

and w u., by-the paths

rep%ac1ng the edges Z 1% k-1"1

zk«lxkykzkxl and wk—lukvkwkul’ respectlvely.v |
Case 2 Suppose that the path P contains the edge Zk—lxl but not

‘the edge w A hamiltonian x,y-path in Dk in this case can

k-1"1"

by the path

be obtained by replacing the edge zk_lxl

B R e A 4 e N |
Case 3 Suppose that the path P contains the edge xoxl but not

the edge =z If the edge w is contained in P, then

k-1%1" k-1"1
replace the edges x x, and w and

0*1 k=1"1 by the paths xoxky

k*k*1

wk—lukvkwkul’ respectively, and obtéln an x,y-path ln,Dk accordingly.

Otherwise, if the edge W 1Y is not in P, then replace the edge

xoxl by the path xoxkykukvkwkzkxl to obtain a hamlltqnlan

x,y-path in Dk.

s’

¥
nor X, . x. 1s 1n P.

Case 4 Finally, suppose that neither Zk-lxl 0¥1 .

Since X, cannot be an end vertex of the x,y-path P in D i=1I1.

k-1’

The edges xixj and wk—lul can now be replaqed by the paths

and w u v, w u respectively, iﬁ w is in P, to

¥, k-1"% k" k1"

15k k™ k-1"1

obtain a hamiltonian ¥,y-path in the graph Dku{xkxj}. If the

x. by the path

is not in P, then replace the edge %y 5

edge wk—lul

xlzkwkvkukykxkxj to obtain a hamiltonian x,y-path in Dkuixkxj}.
The result now follows from this contradiction. [ |

We are now equipped to construct a class of counter examples to
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conjecture 4.4.7 as indicated in Theorem 4.4.13 below.

For each k24, let Dk* denote the graph obtained from Dk by

-introducing one new vertex xo* such thatfxo* is adjacent to every

neighbour of xo and to xO itself. Figure 4.10 iilustrates the graph'D4*.

Theorem 4.4.13 [44] For each k24, Dk* is a hamiltonian-connected

graph which has no x *-path of length lV(Dk*)I—Z.

0’ %o

Proof: The fact that Dk* is hamiltonian-connected is an immediate

consequence of Theorem 4.4.12. Observe that for each xo,xo*—path

of length 22 in Dk*, a cycle of length g in D, can be obtained

by contracting the edge xoxo*. However, by Theorem 4.4.8,

<

there exists no cycle of length'lV(Dk)l;l=JV(Dk*ﬂ -2 and the

result follows immediately. v » n

The graph D4*

figure 4.10
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Theorem 4;4.13 has demonstrated that there exists an infinite
number ofvhamiltonianwconnecfed (n,m)~graphs each of which contains an
edge that is ﬁot contained in any cycle of length n-1. ‘This constitutes
an infinite set of counter-examples to Conjecture 4.4.7. We conclude

>

this section by mentioning a few open questions concerning the path

%
‘length distribution of a graph.

Question 4.4.14 Does there exist a hamiltonian-connected

(n,m)~graph which fails to satisfy thfor each 2 satisfying

3¢0¢n-27?

Question 4.4.15 To be more general, one can ask for which

integers £, 3%¢n-2, there exist a hamiltonian connected graph G

on n vertices such that PR fails to hold in G? ’

Question 4.4.16 - Does there exist a hamiltonian-connected (n,m) -

graph G such that no cycle of length n-1 is in G?
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APPENDIX

NOTATION

The Cayley Graph of a group U
with respect to symbol S.

The order of a group, graph or set.

If S is a subset of a group, then this
notation denotes the subgroup generated
by S. If S is a subset of the vertex
set of a graph, then this notation
represents ‘the subgraph induced by S.
The addition cyclic group modulo n.
Connéctivity.

Independence Nunmber.

Minimum degree

The toughness of a graph G.



10.

11.

143

BIBLIOGRAPHY

Alspach, B. "Hamiltonian cycles in Verteerran51t1ve Graphs
of order 2p". Proc. Penth S~E Conf. ComPinatorics,
Graph Theory and Computing (1981) pp. 131 -~ 139.

Alspach, B. " On Point—SymmetricrTournaments".Canadian
Mathematics Bulletin Volume 13 (1970) pp. 317 - 323.

_Alavi, Y. and Williameon,~J.E. "Panconnected Graphs".

Studia Scientiarum Mathicarum Hungarica Volume 10 (1975)
pp. 19 - 22. ' -~ B -

'Bollobas, B. and ﬁ%bbs, A.M. "Hamiltonian Cycles in Regular

Graphs'. Advances in Graph Theory North Holland, Amsterdam
(1978) .

. R L]
Bondy, J.A. and Murty, U.S.R. "Graph Theory with Applications",

Elsevier North Holland, Inc. (1976).

Bondy, J.A. "Properties of Graphs with constraints on Degrees",

Studia Scientiafum Mathicarum Hungarica _Volume 4 (1969)
pp. 473 - 475. _ ’

Bondy; J.A. and Chvatal, V. "A Method in Graph Theory".
Discrete Mathematics Volume 15 (1976) pp. 111 - 135.

-Behzad, M. and Charfrand -G. "Introduction to the Theory of

Graphs"., Boston, Allyn and Bacon (1971).

" Chartrand, G., Gould, R.J. and Polimeni, A.D. "A Noteé on

Locally-Connected and Hamiltonian-Connected Graphs”,.
Israel Journal of Mathematics Volume 33, Number 1 (1979)

- pp. 5 - 8.

bhartrand, G., Hobbs, A.M., Jung, H.A., Kapoor, S.F. and

Nash-Williams, St.J.A. "Note- The Square of a Block is
Hamiltonian-Connected", Journal of Combintorial Theory (B)
Volume 16 (1974) pp. 290 - 292.

‘Chartrand, G., Kapoor, S.F. and Lick, D.R. "n-Hamiltonian

Graphs', Journal of Combinatorial Theory Volume 9 (1970)
pp.308 - 312.

.

7



12.

13,

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

144

-

Chartrand, G. and Pippert, R.E. "Locally-Connected Graphs",
Casopis Pest Mat. Volume 99 (1974) pp.158 - 163.

Chvatal, V. "On Hamiltonian Idéals";Journal of Combinatorial
Theory (B) Volume 12 (1972) pp. 163 - 168.

Chvatal, V. "Tough Graphs and Hamiltonian Circuits”,
Discrete Mathematics Volume 5 (1973) pp. 215 - 228.

Chvatal, V. and Erdos, P. "A Note on Hamiltonian Circuits”,
Digcrete Mathematics Volume 2 (1972) pp. 111 °- 113.

Caok, S.A. "The Complexity of Theorem Proving Procedures”.
Proc. Third Ann. ACM Symposium on Theory of Computing (1970)
pp. 151 - 158. :

Dirac, G.A. "Some Theorems On Abstract Graphs".
Proc. London Math. Soc. Volume 2 (1952) pp. 69 - 81.

v 2 .
. Dirac, G.A. "Generalisation du Theoreme de Menger",

C. R. Acad.Sci. Paris 250 Volume 26 (1960) pp. 4252 - 4253,

Elpas, B. and Turner, J. "Graphs with Circulant Adjacency
Matrices",Journal of Combinatorjal Theory °‘Volume 9 (1970)
pp. 297 - 307. ' %

i -
Erdos, P. and Hobbs, A.M. "Hamiltonian Cycles in Regular
Graphs of Moderate Degree" Journal of Combinatorial Theory (B)
Volume 23 (1977) pp. 139 - 142.

Erdos, P. and Hobbs, A.M. "A Class of Hamiltonian Regular
Graphs", Journal of Graph Theory Volume 2 (1978) pp. 129 - 137.

Faudree, R.J. and Schelp, R.H. "Path Connected Graphs".
Acta Mathematica Academiae Scientiarum Hungaricae
Tomus. 25 ( 3-4 ) (1974) pp= 3313.- 319. N

Faudreé,:R.J; and Schelp, R.H. "The Square of a Block is |,
Strongly Path Connected". Journal of Combinatorial Theory (B)
Volume 20 (1976) pp. 47 - 61. '

Faudree, R.J. and Schelp, R.H. "Varioﬁvaength Paths in Graphs'.
Theory and Applications of Graphs (Edited by Alavi, Y. and
Lick, ‘D.R.) Springer Verlag, Berlin (1978) pp. 160 - 173.

Faudree, R.J., Rouseau, C.C. and Schelp, R.H.
"Theory of Path Length Distribution I".
Discrete Mathematics Volume 6 (1973) pp. 35 - 52.

I



269

27,

28.

29.

30.

31.

32.

35.

36.-

37.

38.

145

Fleischner, H. "The Square of Every Two-Connected Graph
is Hamiltonian".,Journal of Combinatorial Theory (B) Volume 16
(1974) pp. 29 - 34.

Fleischner, H. "On Spanning Subgraphs of a Connected
Bridgeless Graphs and their applications to DT-Graphs",
Journal of Combinatorial Theory(B) Volume 16 (1974)

pp. 17 - 28. : .

Fleischner, H. "In the Square of Graphs, Hamiltonicity and
Pancyclicity, Hamiltonian-Connectedness and Panconnectedness
are equivalent concepts".Monatschefte fur Mathematik

Volume 82 (1976) pp. 125 - 149.

Hobbs, A.M;."The Square of a Block is Vertex Pancyclic".
Journal of Combinatorial THeory (B) Volume 20 (1976) pp.l - 4.

Jackson, B. "Hamiltonian Cycles in Regular 2~Connected Graphs"
~Journal of Combinatorial Theory(B) Volume 29 Number 1 (1980)

pp. 27 -~ 46.

Karaganis, J.J. "On the Cube of a Graph" Canadian Mathematlcal
Bulletin Volume 11 (1969) pp. 295 - 296.

Karp, R.M. "Reducibility among Combinatorial Problems"”
Miller, R.E. and Thatcher, J.W. Eds., Complexity of Computer
Computations, Plenum Press, New York (1972) pp. 85 - 104.

Las Vergnas,M. Ph.D. Theeis, University of Paris "(1972).
Lick, D.R. "A sufficient Condition on Hamiltonian—
Connectedness". Journal of Combinatorial Theory Volume 8

(1970) pp. 444 -~ 445.

Lick, D.R. "n-Hamiltonian-Connected Graphs". Duke Mathematical
Journal Volume 37 Number 2 (1970) pp. 387 - 392.

Molluzzo, J.C. "Toughness, Hamiltonian-Connected Graphs and

- n-Hamiltonieity". Annals New York Academy of Science (1979)

pp. 402 - 404.

Moon, J.W. "On a Problem of Ore".Math Gaz. Volume 49 (1965)
pp- 40 - 41.

Oberly, D.J. and Sumner, D.P. "Every Connected, Locally-
Connected Nontrivial Graph with no induced Claw is Hamiltonianﬂ
Journal of Graph Theory Volume 3 (1979) pp. 351 - 356.



39.

40.°

41.

42,

43.

44,

45,

48,

49,

50.

51.

‘ ' 146

Ore, 0. "A Note on ‘Hamiltonian Circuits".Amer. Math. Monthly
Volume 67 (1960) p. 55.

Ore, O. "Hamilton Connected Graphs".J. Math. Pures. Appl.
Volume 42 (1963) pp. 21 - 27.

Posa, L. "A Theorem Conerning Hamilton Lines",Magyar Tud. Akad.
Mat. Kutato Int. Kozl Volume 7 (1962) pp. 225 - 226,

Quimpb, N.F. and Chen, C.C. " On. Strongly Hamiltonian Abelian
Group Graphs'., Proc. Eighth Austral. Comb. Conf., Lecture i
Notes in Mathematics, Springer-Verlag, Berlin (1981)

to appear.

Sekanina, M. "On an Ordering of the Set of Vertices of a
Connected Graph".Publ. Fac. Sci. Univ. Brno Volume 412 (1960)
pp. 137 - 142, »

. Thomassen, C. "Counterexamples to Faudree and Schelp's.

Conjecture on Hamiltonian-Connected Graphs".Journal of
Graph Theory Volume 2 (1978) pp. 341 - 347.

Turner, J. "Point Symmetric Graphs with a Prime Number of
Points". Journal of Combinatorial Theory Volume 3 (1967)
pp. 136 - 145, '

Underground, P. "On Graphs with Hamiltonian Squares".
Discrete Mathematics Volume 21 (1978) p. 323.

White A.T. "Graphs, Groups and Surfaces".Mathematical Studies
8, North Holland Publishing Company, Amsterdam (1973).
Whitney, H. "A Theorem on Graphs" Ann. Math. Volume 32

(1931) pp. 378 - 390.

Williams,Nash C.St.J.A. "Edge Disjoint Hamiltonian Circuits
in Graphs with Vertices of Large Valency". Studies in
Pure Mathematics, Academic Press, London (1971) pp. 157 - 183.

Williams,Nash C.St.J.A. "Valency Sequences which forces
Graphs to be Hamiltonian Circuits".Interim Report,
University of Waterloo Research Report (1969).

Woodall, D.R. "The Binding Number of a Graph and Its
Anderson Number".Journal of Combinatorial Theory (B)
Volume 15 (1973 pp. 225 - 255.



52.

&

Woodall, D.R. "A Sufficient Condition For Hamiltonian
Circuits".Journal of Combinatorial Theory(B) Volume 25
(1978) pp. 184 -~ 186.

147





