Motioncl Unary
of Caned

Crenta

Pamanam IM
Om menoricit

5ne mengurint
man or anthongoim dr l'muTtut \qquad Mary E Huss
 THE LATTICES OF SUBGROUP'S AND VARIETIES
\qquad OF LATTICE ORDERED GROUPS
unverviuwneant SIMON ELASER UNIVERSITY \qquad

 \qquad 1981 \qquad me of surivisonnow ov ourc true de THise: PRof.N.R. REILLY
 CAMADA to micrefive this aneis and to iend or sell copien
 the film.

 onrovent is Apr 81 \qquad anmorman: \qquad
 \qquad
\square
\qquad

Nationai Library of Canada Collections Dexelopment Branch

Canadian Theses on Microfiche Serwice

Btiotheque nationale du Canada
Direction du developpement des collections
Service des theses canadiennes sur microfiche

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original. thesis submitted for microfitming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials fjournal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la these soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'ụniversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylboraphiées à l'aide d'un ruban usé ou si l'université nous ${ }^{\text {z }}$ fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas micröfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse. .

THIS DISSERTATION
HAS BEEN MICROFILMED EXACTLY AS RECEIVED

THE LATTICES OF SUBGPOUPS AND VARIETIES OF LATTICE ORDERED GROUPS
by

Mary Elizabeth Huss
B. Sc. ${ }^{\text {University of Nottingham, } 1975}$

A THESIS SUBMITRED IN PARTIAL FULFILLMENT OF

THE REOXIEGAEATS FOR THE DEGREE OF

MASTER OF SCIENCE
in the Department
of

Mathenatics

(C) Mary Elizabeth Fuss, 1981
 SIMCA FRASER UNIVERSITY

March 1981

All rights reserved. This thesis may not be reproduced in wole or in part, by photocopy or other means, without permission of the author.

Mane:

Degree:

Title of Thesis: The lattices of sebgroups and varieties of Latétice ordered groups.

Examining Comittee:

Chairman: G.A.C. Graham

\qquad

- Date Approved: March 30, 1981

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis or dissertation (the title of which is show below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of f ny other university, or other educational institution, on its own behalf or for one of tets users. I further agree that permission for multiple copying of this thesis for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Title of Thesis/Dissertation:
THE LATTICES OF SUBSQONS AND. VARIETIES OF LATTICE ORDERED GROUPS
\qquad
\qquad

Author:

A lattice ordered group is a group ($G,+$) with a lattice order \leq that is compatible with the group operation. In Chapter 1 we develop the basic properties of lattice ordered groups and include a discussion of ℓ-subgroups (subgroups which are also sublattices) and of ordered permatation groups.

The second chapter is devoted to lattices of subgroups of lattice ordered groups. In particular we-answer a question posed by Conrad, showing that the lattice of ℓ-subgroups of a lattice ordered group, G, is distributive if and only if G is isomorphic to a subgroup of the additive rationals.

1
In Chapter 3 we consider several examples of varieties of lattice ordered groups and see how they are related in the lattice of varieties of lattice ordered groups. We also describe a" generalization of the wreath product, the twisted wreath product, showing that the twisted wreath product of a lattice ordered group by a totally ordered group may be lattice ordered. We conclude by looking at a specific example of a twisted wreath product and see how this is related to a standard wreath product.

ACKNOWLEDGEMENTS

I would like to thank Dr. N.R. Reilly for his encouragement and guidance during the preparation of this thesis. I would also like to thank Mrs. Sylvia Holmes for the excellent typing.

n
5

(iv)
Approval. (ii)
Abstract. (iii)
Acknowl edgement (iv)
Table of contents (v) Introduction. 1
Chapter 1. $\quad \ell$-Groups 4

1. Basic Results
ఉ 4
2. Homomorphisms, Isomorphishs and Subgroups. 13
3. Ordered Permutation Groups 16
Chapter 2. Certain Lattices of Subgroups 20
4. Lattices of ℓ-Subgroups. 20
5. Lattices of Convex Directed Subgroups 27
Chapter 3. Varieties of ℓ-Groups and Wreath Products 35
6. Varieties of ℓ-Groups 35
7. Stàndard Wreath Products 39
8. More ℓ-Varieties 42
9. . Twisted Wreath Products of Groups 44
10. Ordering the Twisted Wreath Product 51
11. An Example 53
Bibliography 64

INTRODUCTION

The fundamental results of the theory of lattice ordered groups were first presented by Birkhoff [2]. : He described many of the \cdot basic properties of the elements of slattice ordered groups, showing, for example, that any lattice ordered group is a distributive lattice.

In Chapter 1 we begin by outlining the elementary properties of láttice ordered groups, many of which are due to Birkhoff. We also consider ℓ-subgroups, that is, those subgroups which are sublattices. Finally ordered permutation groups are described. An important example of a lattice ordered permutation group is the group; $A(X)$, of all order preserving permutations of a totally ordered set, X. The last result of this chapter, Holland's representation theorem is an important tool in the study of lattice ordered groups, and is an analogue of Cayley's theorem in group theory. Holland's representation theorem establishes that every lattice ordered group is isomorphic to an ℓ-subgroup of the group of all order preserving permutations of a totally ordered set.

In the second chapter we are concerned with lattices of subgroups. It is well known that the lattice of convex ℓ-subgroups of a lattice ordered group is dhstributive and we-consider those-lattice ordered groups for which the lattice of all b-subgroups is distributive. The main result of this section answers a question posed by Conrad [4]: we show that the lattice of ℓ-subgroups of a lattice ordered group G is distributive if and only if G is isomorphic to a subgroup of
the additive rationals. Finally we pursue the question with an important generalization of lattice ordered groups, Riesz groups. These are groups which, although not lattice ordered, satisfy an interpolation property, and we show that the lattice of convex directed subgroups of a Riesz group is distributive.

For any type of abstract algebra, a variety is an equationally defined class of such algebras. The extensive work on varieties of groups, much of which is described by H. Neumann [14], prompted an interest in the study of lattice ordered group varieties. The early works in this area are mainly concerned with specific lattice ordered group varieties. For example, Weinberg [19] showed that the abelian variety, A; is the smallest proper variety of lattice ordered groups. Wolfenstein [20] showed that the normal valued lattice ordered groups form a variety, N, which was later found by Holland [10], to be the largest proper lattice ordered group variety. Martinez [l3] undertook a more comprehensive study of varieties of lattice ordered groups, describing an apsociative multiplication of lattice drdered group varieties, andetermined that the set, L, of all lattice ordered group varieties forms a lattice ordered semigroup under thia multiplication, the partial order being set inclusion. More recently, Glass, Holland, and McCleary [7] have extended this work. One of their main results shows that the powers of the abelian variety, A^{\cdot}, S
generate the normal valued variety, N.

In Chapter 3 we consider several examples of lattice ordered group varieties and see how they are placed in the lattice of all lattice
ordered group varieties. As in group theory, wreath products provide a useful tool in the study of varieties and these are described. However lattice ordered group theory considers only wreath products of lattice ordered permutation groups. We also consider a generalization of the wreath product, the twisted wreath product and show that the twisted wreath product of a lattice ordered group by a totally ordered group may be lattice ordered. Finally we look at our example of a twisted wreath product which is isomorphic to $G(m n)$ an $\hat{\ell}$-subgroup of Z Fr z first described by Martinez [12], and later by Stringer [17] who used lattice ordered groups of this kind to provide an infinite number of covers of the abelian variety, A.

In this chapter we introduce and outline some of the basic properties of partially ordered groups, and more particularly, lattice ordered groups. Many results are quoted without proof. Along with a more detailed discussion, these proofs may be found in Conrad [4], Fuchs [5] and Bigard, Keimel and Wolfenstein [1].

In group theory it is conventional to use multiplicative notation for the binary operation of non-comutative groups and additive notation for commutative groups. The development of ℓ-group theory has tended to use additive notation more extensively, however, the close ties to group theory make the use of multiplicative notation desireable in some situations. In this thesis both notations are used for ℓ-groups and it should be noted that additive notation does not imply commutativity.

Some knowledge of group theory and lattice theory is assumed. Information on these topics may be found in Schenkman [16] and Birkhoff [3] respectively.

Section 1. Basic Results.

We begin with the definition of a partially ordered group and in particular a lattice ordered group. From our definition we
are then able to develop some of the basic properties of lattice ordered groups which will be used in later sections.

A partially ordered group (po-group) is a group (G,+) with a partial order \leq that is compatible with the group operation; that is, for all $a, b, x ; y \in G$

$$
\mathrm{a} \leq \mathrm{b} \quad \text { implies } \quad \mathrm{x}+\mathrm{a}+\mathrm{y} \leq \mathrm{x}+\mathrm{b} \mathrm{y}
$$

If the partial order is a lattice order, then G is called a lattice ordered group (ℓ-group). If the partial order is a total order then . G is called a totally ordered group (o-group).

We shall denote the positive cone of G by G^{+}:

$$
\mathrm{G}^{+}=\{g \in \mathrm{G} \mid \mathrm{g} \geq 0\}
$$

proposition 1.1.1. If ${ }^{\prime}$ G is a po-group, then G^{+}is a normal subsemigroup that contains 0 but no other element and its inverse: Conversely if P is such a subsemigroup and if we define $a \leq b$. prodded $b-a \in P$, then \leq is a partial order for G and P. zt^{+}.

A po-group G is directed if, far all $a, b \in G$ there exists $x \in G$ such that

$$
x \geq a \quad \text { and } \quad x \geq b
$$

Proposition 1.1.2. For a po-group G, the following are equivalent:
(1) G is directed.
(2) For each $a \in G^{\prime}, G=\{y-z \mid Y \geq a$ and $z \geq a\}$.
(3) G^{+}generates G .
(4) For each $g \in G$ there is an upper bound for g and 0 .

We now establish some elementary properties of ℓ-groups.

For $a, b \in G$ an ℓ-group we denote by $a \vee b(a \wedge b)$ the least upper bound (greatest lower bound) of a and b.

Proposition 1.1.3. For $a, b, x, y \in G$, an ℓ-group

$$
x+(a \vee b)+y=(x+a+y) \vee(x+b+y)
$$

and

$$
x+(a \wedge b)+y=(x+a+y) A(x+b+y)
$$

Proof. Since $a \vee b \geq a, b$ we have
and thus

$$
\quad x+(a \vee b)+y \geq x+a_{p}+y ; x+b+y
$$

a thus

$$
x+(a \vee b)+y \geq(x+a+y) \vee(x+b+y)
$$

$$
z \geq(x+a+y) \vee(x+b+y)
$$

Then

$$
z \geq x+a+y \text { and } z \geq x+b+y
$$

hence

$$
-x+z-y \geq a b
$$

and so

$$
-x+z-y \geq a \vee b
$$

whence

$$
z \geq x+(a \vee b)+y \ldots
$$

Thus we have

$$
x+(a \vee b)+y=(x+a+y) \vee(x+b+y)
$$

The dual may be proved similarly.

Proposition 1.1.4. If G is an ℓ-group and $a, b \in G$, then

$$
-(a \vee b)=-a \wedge-b
$$

and dually.

Proof. Since $a \vee b \geq a, b$; we have $-(a \vee b) \leq-a,-b$.
Thus $\quad-(a \vee b) \leq-a \wedge-b$.
If $z \in G$ and $z \leq-a-\wedge-b$ then $-z \geq a ; b$.

Thus $\quad-z \geq a \vee b$
and $z \leq-(a \vee b)$.

Hence - (a. $\vee \mathrm{b})$ is the greatest lower bound of -a and -b . The dual result may be proved similarly.

Proposition 1.1.5. A po-group G is an ℓ-group if and only if, for all $g \in G, g \vee 0$ exists.

Proof. If G is an ℓ-group, then it is clear that $g V O \in G$ for all $g \in G$.

Conversely, if $g \vee \sigma$ exists in G, for all $g \in G$,
thàn for $a l l a, b \in G$

$$
[(a-b) \vee 0]+b=a \vee b
$$

and

$$
a \wedge b=-(-a \vee-b)
$$

Proposition 1.1:6. Let G be an ℓ-group. Then, for each positive integer. $n, n \geq 0$ implies $a \geq 0$.

Proof. We first use induction to show that for each positive integer n,

$$
n(a \wedge 0)=n a \wedge(n-1) a \wedge \ldots \wedge a \wedge 0!
$$

The result holds for $n=1$. Assume the result is true for $n-1$. Then

$$
n(a \wedge 0)=(n-1)(a \wedge 0)+(a \wedge 0)
$$

$$
=[(n-1)(a \wedge \sigma)+a] \wedge[(n-1)(a \wedge 0)+0]
$$

(by Proposition 1.1.3)

$$
\begin{aligned}
& =[((n-1) a \wedge(n-2) a \wedge \ldots \wedge a \wedge 0)+a] \wedge[(n-1) a \wedge(n-2) a \wedge \ldots \wedge a \wedge 0] \\
& =[n a \wedge(n-1 \downarrow a \wedge \ldots \wedge 2 a \wedge a] \wedge[(n-1) a \wedge(n-2 a) \wedge \ldots \wedge a \wedge 0]
\end{aligned}
$$

$$
=n a \wedge(n-1) a \wedge \ldots \wedge a \wedge 0 .
$$

Now, if na ≥ 0, then na $\wedge 0=0$ and we have

```
n(a\wedge0)=na\wedge(n-1)a\wedge\ldots^ .. (a^0
```

$$
=(n-1) a \quad \wedge \ldots \wedge a \wedge 0
$$

$$
=(n-1)(a \wedge 0)
$$

Thus $a \wedge 0=0$ and hence $a \geq 0$.

Corollary 1.1.7. An ℓ-group is torsion free.

Proof. Let $g \in G$ and $n \in N$. If $n g=0$, then $n g \geq 0$ and so $g \geq 0$: However if $g>0$, then $g+g>g>0$ and by induction $n g>0$. Thus $n g=0$ implies $g=0 .:$

Proposition 1.1.8. For an ℓ-group G, and $a, b, c \in G$ if
$a \vee c=b \dot{\vee} c$ and $a \wedge c=b \wedge c$, then $a=b$. Consequently G is a distributive lattice.

Proof. Since $a \vee c=a-(a \wedge c)+c$, we have

$$
a=(a \vee c)-c+(a \wedge c)
$$

$=(b \vee c)-c+(b \wedge c)$

$$
\begin{array}{r}
4 \\
=b .
\end{array}
$$

Thus G does not contain a sublattice of the form

and hence G is a distributive lattice.
For elements and b belonging to an ℓ-group G, if
$a \wedge b=0$ we say that and b are disjoint or orthogonal. We note that disjoint elements commute, for if $a \wedge \vec{b}={ }^{\prime} 0$, we have

J

$$
a+b=a-(a \wedge b)+b
$$

$$
\int a+(-a \vee-b)+b
$$

$$
=b \vee a
$$

$$
=a \vee b
$$

$$
=b+(-b \vee-a)+a
$$

$$
=b-(b \wedge a)+a
$$

$$
=b+a
$$

We define the positive part of a, a^{+}, , to be $a \vee 0$, and the negative part of a, a^{-}, to be -a $\vee 0$.

Proposition 1.1.9. For an ℓ-group G and an element a-belonging to $G, a^{+} \wedge a^{-}=0, a=a^{+}-a^{-}$and this the unique representation of a as the difference of disjoint elements.

Proof. For an element a of an ℓ-group G we have

$$
a+a^{-}=a+(-a \vee 0)=0 \vee a=a^{+}
$$

and hence

$$
a^{+}=a^{+}-a^{-}
$$

Also

$$
a^{+} \wedge a^{-}=\left(a+a^{-}\right) \wedge a^{-}=(a \wedge 0)+a^{-}=-(a \wedge 0)-(a \wedge 0)=0
$$

Suppose $a=\mathbf{x}-\mathbf{y}$ where $\mathbf{x} \wedge \mathbf{y}^{c}=0$.

$$
\bar{a}=-a \vee 0
$$

$$
=-(a \wedge 0)
$$

$$
=-((x-\dot{y}) \wedge 0)
$$

$$
=-((x \wedge y)-y)
$$

$$
x=a+{ }^{+} y=a+a^{-}=a^{+}
$$

Proposition 1.1.10. An ℓ-group G is an o-group if and only if, $a>0$ and $b>0$ implies $a \wedge b>0$.

Proof. If G is an 0 -group, then $a \wedge b=\min \{a, b\}>0$.
Conversely, suppose the condition holds and consider $g \in G, g \neq 0 \ldots$ By Proposition 1.1.9,

$$
g=g^{+}-g^{-} \text {and } g^{+} \wedge g^{-}=0
$$

and hence either $g^{+}=0$ or $g^{-}=0$. Thus either $g=-g^{-}<0$ or $g=\mathrm{g}^{+}>0$. Therefore G is an o-group.

The absolute value of an element $a \in G$, denoted by $|a|$ is defined to be - a V-a .

Proposition 1.1.11. For G an ℓ-group and $a, b \in G$, we have
(1) $|a| \geq 0$.
(2) $\quad|a+b| \leq|a|+|b|+|a|$.

Proof.

(1) $|a|=a \quad v-a$, and thus $|a| \geq a,-a$.

So

$$
2|a| \geq a-a=0
$$

hence by Proposition 1.1.6 $\quad|a| \geq 0$.
(2) $a+b \leq|a|+|b|+|a|$:

Also, $\quad-|a|-|b|-|a| \leq-|a|-|b| \leq a+b$
and so $-(a+b) \leq|a|+|b|+|a|$.
Therefore; $|a+b|=(a+b) v-(a+b) \leq|a|+|b|+|a|$.

Section 2. Homomorphisms, Isomorphisms and Subgroups.

Space does not allow the inclusion of all proofs. Having described some of the basic concepts of ℓ-groups in detail, we will now discuss, without proof, some important results from the next level of development of the theory. However the inclusion of proofs will resume when closer to the focus of the thesis. Details of the . following results, which are concerned with homomorphisms,
isomorphịisms and subgroups of ℓ-groups, may be found in Conrad [4] and
Bigard et al [I]
A subgrogh/S of an ℓ-group G is said to be an ℓ-subgroup
of G if S is a sublattice of G. From Proposition 1.1.5 it
follows that S is an ℓ-subgroup of G if and only if, $s v o \in s$ for each $s \in S$. We note that s may be an ℓ-group with respect to the induced partial order, but not an ℓ-subgroup of G.

Proposition 1.2.1. Let π be an isomorphism from an ℓ-group A into : an ℓ-group B. If π preserves \wedge or v, then $A \pi$ is an ℓ-subgroup of B and both π and π^{-1} preserve \leq, \wedge and \vee.

Such a map is called an h-isomorphism.

A homomorphism π of an ℓ-group A into an ℓ-group B is called an ℓ-homomorphism if π preserves \wedge and \vee. Proposition 1.2.2. For an isomorphisị π of an ℓ-group A into an ℓ-group B, the following are equivalent
(1) π is an ℓ-isomorphism
(2) $x \wedge y=0$ implies $x \pi \wedge y \pi=0$ for all $x, y \in A$
(3) $(a \vee 0) \pi=a \pi \vee 0$ for allaधA.

We turn our attention to subgroups. A subgroup S of a po-group G is said to be convex if, for $a, b \in S, g \in G \quad a \leq g \leq b$ implies $g \in S$.

Proposition 1.2.3. For an ℓ-subgroup S of an ℓ-group G, the following are equivalent.
(1) S is a convex ℓ-subgroup.
(2). The set of right cosets of S forms a distributive lattice under the order given by: $S+x \leq g+y$ if therer exists $s \in S$ such that $s+x \leq y$ and, for this order, $(S+x) \wedge(S+y) \stackrel{0}{=} S+(x \wedge y)$.
(3) If $g \in G, s \in S$ and $|g| \leq|s|$, then $g \in S$.

A normal convex ℓ-subgroup is called an ℓ-ideal.

Corollary 1.2.4. If H is an ℓ-ideal of G, then the right cosets of H form an ℓ-group.

Proposition 1.2.5. Let π be an ℓ-homomorphism from an f-group G into an ℓ-group H. Then kert is an ℓ-ideal of G and $G / k e r \pi$ is ℓ-isomorphic to $\mathrm{G} \pi$.

A convex ℓ-subgroup M of an k-group G is called regular if M is maximal with respect to not containing some $g \in G$ and in this case M is called a value of g.

A convex ℓ-subgroup P of an ℓ-group G is called prime if, for, A, B convex ℓ-subgroups of $G, P \supseteq A \cap B$ implies either $-P \geq A$ or $p \cdot \mathrm{~B}$ - The concept of a prime subgroup is important in the various ways used to represent ℓ-groups.

Proposition 1.2.6. For a convex ℓ-subgroup M of an ℓ-group G, the following are equivalent
(1) M is regular.
(2) $\underset{\neq M^{*}}{M \subset \cap\{C \mid M \subset C, C} \neq$ convex ℓ-subgroup of $\left.G\right\}$.
(3) M is meet irreducible in the collection of convex. ℓ-subgroups of G.

If M is normal, each of the above is equivalent to
(4) G / M is an 0 -group with a convex subgroup that covers the
identity M in G / M Proposition 1.2.7. For an ℓ-group G and a convex ℓ-subgroup P of G , the following are equivalent
(1) P is prime.
(2) If A, B are convex ℓ-subgroups of G and $P \subset A, P \subset B$ then

```
PCA\capB.
        #
```

(3) If $a, b \in G \backslash P$ then $a \wedge b \in G P$:
(4) The lattice of right cosets of P is totally ordered.

If P is normal each of the above is equivalent to
(5) G / P is an o-group.

It follows from Proposition 1.2.6 and 1.2.7 that each regular (subgroup if prime.

Section 3. Ordered Permutation Groups.

In this section we Introduce ordered permutation groups and will discuss Holland's Representation Theorem, one of the fundamental tools used in examining ℓ-groups. The importance of ordered permutation groups will be seen again in Chapter 3, where we consider ordered wreath products of ordered permutation groups and their role in the study of varieties of ℓ-groups. An extensive treatment of ordered permutation groups may be found in Glass [6];

As we are dealing with permutation groups, we change from additive to multiplicátive notation.

An ordered permutation group (G, Ω) is a permutation group G acting on a totally ordered set Ω such that
(1) for all $\alpha, \beta \in \Omega \quad \alpha<\beta$ if and only if $\alpha g<\beta g_{4}$ for all $g \in G$.
and (2) $\{g \in G \mid \alpha G=\alpha$ for all $\alpha \in \Omega\}=\{1\}$, where 1 is the
identity element of G.

The group ($G, \boxed{\sim}$) is a po-group, where the partial order \leq on G is given by:
for $g, h \in G, g \leq h$ if and only if $\alpha g \leq \alpha$ for all $\alpha \in \Omega$. If this partial Order on G is a lattice order, (G, Ω) is called a lattice ordered permutation group (ℓ-permutation group). In this case, for all $\mathrm{g}, \mathrm{h} \in \mathrm{G}$ and all $\alpha \in \Omega$

$$
\alpha(g \vee \dot{h})=\alpha g \vee \alpha h \quad \text { and dually. }
$$

An example of an ℓ-permutation group is the group $A(\Omega)$ of all ordex preserving permutations of a totally ordered set Ω.

The last-main result of this chapter, Holland's

- representation theorem, is an analogue of Cayley's theorem in group
theory. Holland [9] developed his result bp means of several lemmas and we will outline the main ideas used.

For each $l \neq g \in G$, there exists a regular (and therefore prime) convex ℓ-subgroup, $\mathrm{P}(\mathrm{g})$ of G which is a value of g . Then $\mathrm{G} / \mathrm{P}(\mathrm{g})$, the set of right costs of $\mathrm{P}(\mathrm{g})$ in G , is totally ordered in the partial order given by:

$$
P(g) x \leq P(g) y \text { if there exists } z \in P(g) \text { such that } z x \leq y .
$$

We denote the group of order preserving automorphisms" of ${ }^{\circ} / \mathrm{P}(\mathrm{g})$ by A (G/P ('g)).

Now the mapping. $\alpha(g): G \rightarrow A(G / B(g))$ defined by

$$
\mathbf{x} \alpha(g)=\beta(x, p(g)),
$$

where

$$
\beta(x, P(g)) \in A(G / P(g)) \text { is given by }
$$

$$
(P(g) y) B(x, P(g))=P(g) y x,
$$

is an ℓ-homomorphism of G onto a transitive ℓ-subgroup $B(g)$ of A (G/P (g)).

Holland's main embedding theorem states that G is ℓ-isomorphic to a subdirect sum of the ℓ-groups $\{B(g) \mid g \in G\}$. Further than this, we may totally order the set $\underset{G \in G}{U} G / P(g)$. We first order the collection $\{G / P(\bar{g}) \mid g \in G\}$ in any way. Then for
$x, y \in \underset{G \in G}{U G / P}(g)$ let $x<y$ if "x,y $\in G / P(g)$ and $x<y$ as elements of $G / P(g)$, or if $x \in G / P(g)$ and $y \in G / P(h)$ where $G / P(g)<G / P(h)$. If H, is the direct sum of the ℓ-groups $\{A\}(G / P(g) \mid g \in G\}$, then each $\varnothing \in \mathrm{H}$ induces an automorphism of $\mathrm{UG/P}(\mathrm{~g})$ as follows

where $x \in G / P(g)$ and \emptyset_{g} is the g th component of \varnothing.
From this we have the following proposition.

Proposition 1.3.1. If G is an ℓ-group, G is ℓ-isomorphic to an ℓ-subgroup of the ℓ-group of Grder preserving automorphisms of a totally ordered set.

CHAPTER 2

Certain Lattices of Subigroups.

In this chapter we will be concerned with lattices of subgroups. We begin by considering the lattice of convex ℓ-subgroups of an ℓ-group and the lattice of ℓ-subgroups of an ℓ-group. Later, in the second section, we will drop the requirement that our group is lattice ordered and will look at circumstances under which the directed convex subgroups of a partially ordered group form al distributive lattice.

Section 1. Lattices of I-Subgroups.
In this section we shali show that the lattice of convex ℓ-subgroups of an ℓ-group is distributive and shall determine those ℓ-groups for which the lattice of all ℓ-subgroups is distributive

The next result, the Riesz decomposition property, is important in the consideration of the lattice of convex ℓ-subgroups of an ℓ-group.

Proposition 2.1.1. (Conrad [4]). Let G be an ℓ-group and $0 \leq a, b_{1} \ldots, b_{n} \in G$ such that, $a \leq b_{1}+\ldots+b_{n}$, then there exist $c_{1}, \ldots, c_{n} \in G$ such that $\sigma_{1}+c_{1}+\ldots+c_{n}$ where $0 \leq c_{i} \leq b_{i}$ for $i=1, \ldots, n$.

Proof. We use induction on n.
If $0 \leq a \leq b_{1}+b_{2}$, let $c_{1}=a \wedge b_{1} \geq 0$ and $c_{2}=-c_{1}+a \geq 0$.
Then,

$$
0 \leq a=c_{1}+c_{2}
$$

and

$$
\begin{aligned}
0 \leq c_{2} & =-c_{1}+a \\
\therefore & =-\left(a \wedge b_{1}\right)+a \\
& =\left(-a \vee-b_{1}\right)+a \\
& =0 \vee\left(-b_{1}+a\right)
\end{aligned}
$$

$$
\leq \mathrm{b}_{2}
$$

Thus the result is true when $n=2$. Assume the result holds for all positive integers less than n.

Let $\quad a, b_{1}, \ldots, b_{n} \geq 0$ and $a \leq b_{1}+\ldots+b_{n}$.
Then

$$
a \leq\left(b_{1}+\ldots+b_{n-1}\right)+b_{n}
$$

and hence, by the induction hypothesis f there exist $d,{ }_{n} \in G$
and

Again, by the induction hypothesis, $0 \leq d \leq b_{1}+\ldots+b_{n-1}$ implies that there exist $c_{1}, \ldots, c_{n-1} \in G$ such that 4

$$
d=c_{1}+\ldots+c_{n-1}
$$

and

$$
0 \leq c_{i} \leq b_{i} \quad \text { for } \quad i=1, \ldots, n-1
$$

Thus we have

$$
a=c_{1}+\cdots+c_{n}
$$

where

$$
0 \leq c_{i} \leq b_{i} \quad \text { for } i=1, \ldots, n^{n}
$$

We shall denote the collection of all convex ℓ-subgroups of an ℓ-group G, by $C(G)$.

Proposition 2.1.2. (Conrad [4]). Let G be an ℓ-group, then $C(G)$ is a complete distributive sublattice of the lattice of all subgroups of G, and for. $A, B_{\lambda} \in \mathcal{C}(G),(\lambda \in \Lambda)$,

$$
A \wedge\left(\vee B_{\lambda}\right)=\vee\left(A \wedge B_{\lambda}\right)
$$

Proof. We first show that if $\left\{\mathrm{B}_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq \mathcal{C}(G)$, then
$\left[U_{\lambda}\right] \in C(G)$. By Proposition 1.2.3 it is sufficient to show that for

$$
\left.\right|^{g} \in G, b_{1}, \ldots, b_{n} \in U_{\lambda},|g| \leq\left|b_{1}+\cdots+b_{n}\right| \text { implies } g \in\left[U_{B_{\lambda}}\right]
$$

$$
\mid \text { Now, } g^{+} \leq|g| \leq\left|b_{1}+\ldots+b_{n}\right|
$$

$$
\leq\left|b_{1}\right|+\ldots+\left|b_{n-1}\right|+\left|b_{-n}\right|+\left|b_{n-1}\right|+\ldots+\left|b_{1}\right|
$$

By the Riesz decomposition property, there exist $g_{1}, \ldots, g_{2 n-1} \in\left[U B{ }_{\lambda}\right]$ such that

$$
g^{+}=g_{1}+\ldots+g_{2 n-1}
$$

where

$$
\begin{aligned}
& 0 \leq g_{1} \leq\left|b_{1}\right| \\
& 0 \leq g_{2} \leq\left|b_{2}\right|, \cdots \\
& 0 \leq g_{n} \leq\left|b_{n}\right| \\
& 0 \leq g_{n+1}\left|b_{n-1}\right| \\
& 0 \leq g_{2 n-1} \leq\left|b_{1}\right|
\end{aligned}
$$

Since each $B_{\lambda} \in \mathcal{C}(G), g_{i} \in U_{\lambda}$ for $i=1, \ldots, 2 n-1$, and hence $\mathrm{g}^{+} \in\left[\mathrm{UB}_{\lambda}^{-}\right]$
Similarly $g^{-} \in\left[U B_{\lambda}\right]$ and so $g=g^{+}-g^{-} \in\left[U B_{\lambda}\right]$.
Thus we have that $\left[{ }^{\left[U B_{\lambda}\right]} \in \mathcal{C}(G)\right.$.
Clearly $\cap_{B_{\lambda}} \in \mathcal{C}(G)$ and therefore $\mathcal{C}(G)$ is a complete sublattice of the lattice of all subgroups of G.

We must now show that .

$$
\mathcal{A} \wedge\left(\vee B_{\lambda}\right)=v\left(A \dot{\wedge} B_{\lambda}\right)
$$

Clearly

$$
A \wedge\left(V B_{\lambda}\right) \supseteq V\left(A \wedge B_{\lambda}\right)
$$

Let $a \in A \wedge\left(\vee \dot{B}_{\lambda}\right), a \geq 0$.
Then $a=b_{1}+\ldots+b_{n}$ where $b_{i} \in U B_{\lambda}$ for $i=1, \ldots, n$.

As above,

$$
a=c_{1}+\ldots+c_{2 n-1} \text { where } 0 \leq c_{i} \in U B_{\lambda}
$$

Now, $\quad c_{i}=-c_{i-1}-\ldots-c_{1}+a-c_{2 n-1}-\ldots-c_{i+1} \leq a$
and since $0 \leq c_{i} \leq a$, and $A \in C(G)$, we have $c_{i} \in A$.

Thus $a \in\left[\cup\left(A \cap B_{\lambda}\right)\right]=V\left(A \wedge B_{\lambda}\right)$ and so $A \wedge\left(V B_{\lambda}\right) \subseteq \vee\left(A \wedge B_{\lambda}\right)$.

Conrad [4] has posed the question: when is the lattice of ℓ-subgroups of an ℓ-group distributive? In answering this question, we will use the.following results from group theory.

We first note that a group is said to be locally cyclic if Q each of its finitely generated subgroups is cyclic.

Proposition 2.1.3. (Hall [8], Theorem,19.2.1). The lattice of subgroups of a group G is distributive if and only if G is locally cyclic.

Proposition 2.1.4. (Schenkman [16], Theorem II.2.k). A group G is locally cyclic if and only if it is isomorphic to a subgroup of a homomorphic image of the additive rationals, $(Q,+)$. Moreover, if \dot{G} is torsion free, then G is isomorphic to a subgroup of the additive rationals.

If A and B are ℓ-groups, then $A+B$ will denote the cardinal sum of A and B that is, the direct sum of A and B with order given by

$$
(A+B)^{+}=\{(a ; b) \quad \mid a \geq 0 \quad \text { and } b \geq 0\}
$$

Lemma 2.1.5. The lattice pf ℓ-subgroups of $Z+Z$ is not distributive. Proof. Consider the following subgroups of $Z+Z$.

$$
\begin{aligned}
& z_{2}=\{(a, 2 a) \mid a \in z\} \\
& z_{3}=\{(a, 3 a) \mid a \in z\}
\end{aligned}
$$

\cdots

$$
z_{5}=\{(a, 5 a) \mid a \in z\}
$$

z_{2} is an ℓ-subgroup of $\mathrm{z}+\mathrm{z}$ since

$$
(a, 2 a) \wedge(0,0)= \begin{cases}(a, 2 a) & a<0 \\ & \vdots \\ (0,0) & a \geq 0\end{cases}
$$

belongs to Z_{2}.

Similarly Z_{3} and Z_{5} are ℓ-subgroups of $Z+Z$. In fact these, subgroups are totally ordered.

Now, $\quad z_{2} \cap z_{3}=z_{3} \cap z_{5}=z_{5} \cap z_{2}=\{(0,0)\}$
and, $\left[\mathrm{z}_{2} \cup \mathrm{Z}_{3}\right]=\left[\begin{array}{lll}\mathrm{z}_{3} & \cup \mathrm{z}_{5}\end{array}\right]=\left[\begin{array}{lll}\mathrm{z}_{5} & \cup \mathrm{z}_{2}\end{array}\right]=\mathrm{z}+\mathrm{z}$.

Thus we have the following sublattice of the lattice of all ℓ-subgroups

$$
\text { of } z+z: \quad z+z
$$

and we see that the lattice of $\ell+$ subgroups of $z+z$ is not distributive.

Proposition 2.1.6. The lattice of ℓ-subgroups of an ℓ-group, G, is distributive if and only if G is isomorphic to a subgroup of the additive rationals.

Proof. We consider two cases.
(i) G is totally ordered.

Then every subgroup of G is an ℓ-subgroup, and thus the lattice of ℓ-subgroups of G is distributive if and only if G is locally cyclic, that is, if and only if G is isomorphic to a subgroup of the additive rationals (by Propositions 2.1.3 and 2.1.4).
(ii) G is not totally ordered.

There exist $a, b \in G^{+}$with $a \wedge b=0$ (by Propositional 1.1.10)
$\Rightarrow \quad a+b=b+a$
\Rightarrow the subgroup generated by the elements a and b,

$$
[a, b]=[a]+[b] \cong z+z
$$

Further, [a,b] is es $^{\ell}$-subgroup of G. Thus the lattice of ℓ-subgroups of G contains a sublattice which is not distributive (Lema- 2.1.5). Hence the lattice of ℓ-subgroups of G is not distributive. \qquad

Section 2. Lattices of Convex Directed Subgroups.

We now proceed in a different direction by relaxing the assumption that our groups are lattice ordered. 'We shall consider the circumstances under which the directed convex subgroups of a partially ordered group form a distributive lattice.

A partially ordered group (G, \leq) is a Riesz group if, for any elements $a, b, c, d \in G$ with $a, b \leq c, d$, there exists an element $x \in G$ such that ${ }^{\prime} a, b \leq x \leq c, d$. Clearly ℓ-groups are Riesz groups.

Proposition 2.2.1. (Birkhoff [2]). A partially ordered group is a Riesz group if and only if it has the Riesz decomposition property. Proof. Let G be a Riesz group and let $a, b, x \in G^{+}$such that $0 \leq x \leq a+b$.

Then $0, x-b \leq x, a$ and since, G is a Riesz group, there exists $s \in G$ such that $0, x-b \leq s \leq x, a$.

Let $t=-s+x$. Then $t \geq 0$ and $s+t=x \leq s+b$ whence $0 \leq t \leq b$. Thus given $a, b ; x \in G^{+}$with $0 \leq x \leq a+b$ there exist s and t in G such that $x=s+t$ and $0 \leq s \leq a, 0 \leq t \leq b$.

An easy induction argument then yields the full Riesz decomposition property (see Proposition 2.1.1.).

Conversely let G be a po-groups with the Riesz decomposition property and let $0, \mathrm{x} \leq \mathrm{y}, \mathrm{z}$.

Then

$$
\begin{aligned}
& 0 \leq x+(-x+z) \leq y+(-x+z) \\
& 0 \leq z \leq y+(-x+z)
\end{aligned}
$$

and by the Riesz decomposition property, there exist s and t in G such that $0 \leq s \leq y, 0 \leq t \leq-x+z$ and $z=s+t$. Then $x \leq x+t \leq z=s+t$ and hence $x \leq s$, and also $s \leq z$. Thus we have $0, x \leq s \leq y, z$ and therefore G is a Riesz group. Proposition 2.2.2. Let (G, \leq) be a Riesz group and $C(G)$ be the set of all convex directed subgroups of G. Then $C(G)$ is. a distributive sublattice of the lattice of all subgroups of G. Proof. Let H and $K \in C(G)$.

Clearly $H \cap \mathrm{~K}$ is convex.
Let $a, b \in H \cap K$: Since H : and K are directed, there exist $h \in H, k \in K$ such that $h \geq a, b, k \geq a, b$.

Now, G is a Riesz group and so there exists $x \in G$ such that
$\mathrm{a}, \mathrm{b} \leq \mathrm{x} \leq \mathrm{h}, \mathrm{k}$.
However $x \in H \cap K$ since both H and K are convex. Therefore $\mathrm{H} \cap \mathrm{K}$ is directed.

Thus $H \cap K \in \mathcal{C}(G)$.
We now show that $[H \cup K] \in C(G)$.
Let $h \in[H \cup K]$, then

$$
h=h_{1}+\ldots+h_{n} \text { where } h_{i} \in H \text { or } h_{i} \in K \text { for } i=1, \ldots, n
$$

Now for $h_{i} \in H \cap K,(i=1, \ldots, n)$, let k_{i} be an upper bound for h_{i} and 0 in $H \cup K$; such an upper bound exists as both H and K are directed.

Then,
$k_{i} \geq h_{i} ; 0$ for $i=1, \ldots, n$
$\Rightarrow k_{1}+\ldots+k_{n} \geq h_{1}+\ldots+h_{n}, 0$
$\Rightarrow k_{1}+\ldots+k_{n} \in[H \cup K]$ is an upper bound for h and 0 $\Rightarrow \quad[\mathrm{H} \cup \mathrm{K}]$ is directed.

Now let $g \in G, h \in[H \cup K]$ such that $0 \leq g \leq h$.

Let $h=h_{1}+h_{n}$ for some $h_{i} \in H \cup K \quad i=1, \ldots, n$.
Again let k_{i} be an upper bound in $H_{0} U K$ for h_{i} and 0 . Thus we have

$$
0 \leq g \leq h=h_{1}+\ldots+h_{n} \leq k_{1}+\ldots+k_{n} .
$$

By the Riesz decomposition property there exist $c_{i} \in G, i=1, \ldots, n$, such that

$$
g=c_{1}+\ldots+c_{n} \text { and } 0 \leq c_{i} \leq{\underset{i}{ } i} \text { for } i=1, \ldots, n
$$

Now H, K convex implies $c_{i} \in H \forall K$ for $i=1, \ldots, n$,
and thus $g, \in[H \cup K]$, and $[H \cup K]$ is convex.
Therefore $[H \cup K] \in C(G)$.

We now have that $\mathcal{C}(G)$ is a sublattice of the lattice of all subgroups of G. It remains to show that the distributive laws hold in $C(G)$, that is, for $A, B, C \in \mathcal{C}(G)$

$$
A \wedge(B \vee C)=(A \wedge b) \vee(A \wedge C)
$$

Clearly $A \cap[B \cup C] \geq[(A \cap B) \cup(A \cap C)] \cdot \square$ Let $a[\in A \cap[B \cup C], a>0$.
Then $a=b_{1}+\ldots+b_{n} \quad$ for some $b_{i} \in B \bigcup C, i=1, \ldots, n$.
Now, let $i=1, \ldots, n$, let $c_{i} \in B U C$ be an upper bound for
b_{i} and $0 \ldots$
Thus $a=b_{1}+\ldots+b_{n} \leq c_{1}+\ldots+c_{n}$.
Then by the Riesz decomposition property,

$$
a=d_{1}+\ldots+d_{n}
$$

where $0 \leq d_{i} \leq c_{i}$ for $i=1, \ldots, n$, and by convexity $d_{i} \in B \cup C$. Also, we have.

$$
0 \leq d_{i}=-d_{i-1}=\ldots-d_{1}+a-d_{n}-\ldots-d_{i+1} \leq a
$$

and so $d_{i} \in A$ since A is convex .
Hence $d_{i} \in(A \cap B) U(A \cap C)$
and thus $a \in[(\bar{A} \cap B) \cup(A \cap C)]$.

Therefore

```
A`\cap[B\cup\cupC] C[[A\cap泊U(A\capC)]
```

and we have

$$
A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C)
$$

Finally we consider compatible tight Riesz groups. Such groups are Riesz groups and thus the convex directed subgroups will form a distributive lattice. However we are able to obtain a stronger result linking this lattice to a sublattice of the lattice of convex ℓ-subgroups of an associated ℓ-group.

A partially ordered group, (G, \leq), is a tight Riesz group if for any elements $a, b, c \in G$ with $a<c$ and $b<c$, there exists an element $d \in G$ such that

$$
a<d<b \quad \text { and } \quad a<d<c .
$$

The order, \leq, is then called a tight Riesz order.
An element $g \in(G, \leq)$ is said to be pseudopositive if $g \neq 0$ but $a>0$ implies $a+g>0$.

An element $g \in(G, \leq)$ is said to be pseudozero if both g and $-g$ are pseudopositive.

If (G, \leq) has no pseudozeros we will write $-g>0$ to mean $g>0$ or g is pseudopositive. (G, N) is a partially ordered group and we say \leqslant is the associated order.

7 Given an ℓ-group (G, \leqslant) and ajtight Rifsz group (G, \leq) without pseudozeros, if \leqslant is the associated order for \leq, then \leq is said to be a compatible tight Riesz order for (G, \leqslant), and (G, \leq) is called a compatible tight Riesz group.

Lemma 2.2.3. Let $(G, 3)$ be an ℓ-group with compatible tight Riesz order \leq. Let $H \neq\{0\}$ be a convex directed subgroup of (G, \leq), then H is convex k-subgroup of ($G, ~ 人$).
Proof. Let $\dot{a}, b \in H, x \in G$ with $a \leqslant x \leqslant b$.
If $a=b$, then $x=a \in H$.

If $a \neq b$, since (H, \leq) is directed, we may assume $a<b$. Then,

$$
a-(b-a)<a \leqslant x \leqslant b<b+(b-a)
$$

or

$$
2 \mathrm{a}-\mathrm{b}<\mathrm{x}<2 \mathrm{~b}-\mathrm{a} .
$$

Since H^{p} is convex with respect to $\leq, x \in H$ and so H is convex ${ }^{2}$ with respect to . S us

Now let y be an upper bound in (H, \leq for a and b.
$y \geqslant a, b$
$\Rightarrow \quad y \geqslant a, b$
$\Rightarrow \quad y \geqslant a \vee b \geqslant a, b$

Thus a vb frg^{4}, since $(H, ३)$ is convex.
Therefore, ($\mathrm{H}, \boldsymbol{\aleph}$) is a convex ℓ-subgroup of (G,) :
We shall denote by crest i the lattice of convex ℓ-subgroups of $(G\}$,$) , and by \mathcal{C}(G, \leq)$ the set of convex directed subgroups of (G, \leq).

2
Proposition 2.2.4. $\mathcal{C}(G, \leq)$ is a sublattice of $\mathcal{C}(G, \leqslant)$ and so is distributive.

Proof. By lemma 2.2.2,C(G, \leq) $\subseteq C(G\}$,

Let $H, K \in \mathcal{C}(G, \leq)$.

It is clear that $\mathrm{H} \cap \mathrm{K}$ is convex.
Let $a, b \in H \cap K$, then since H and K are directed, there exist $r \in H, \sim s \in K$ such that

Since (G, \leq) is a tight Riesz group, there exists $x \in G$ such that a, $<x<r, s$.
\$
Now, $a<x<r$ and (H, \leq) convex implies $x \in H$.
Similarly, $\mathrm{b}^{\prime}<\mathrm{x}<\mathrm{s}$, and $(\mathrm{K}, \leq$) convex implies $\mathrm{x} \in \mathrm{K}$.
Thus we have $x \in H \cap K$ with $x>a, b$ and hence $H \cap K$ is directed
and $H \cap K \in C(G, \leqslant)$.
We must now show that the join of H and K, in the lattice
$\mathcal{C}(G, \leq)$ is equal to the join of H and K in the lattice $\mathcal{C}(G, \leqslant)$.

Let L_{1} be the smallest convex directed subgroup of (G, \leq) containing H and K .

Let I_{2} be the smallest convex ℓ-subgroup of (G, \leqslant) containing H and K .

We wish to show $\mathrm{L}_{1}=\mathrm{L}_{2}$. Clearly, $\mathrm{L}_{1} \supseteq \mathrm{~L}_{2}$.
Let $\mathbf{T}^{g}=\{g \in G \mid g>0\}$.
We claim ${ }^{\circ} \cap T \neq \varnothing$.
Let $a \in H, a \neq 0$. If 'a>0, then $a \in H \cap T$., If $a<0$, then $-a \in H \cap T$. If a and 0 are incomparable, then, since H is directed; there exists $b \in H$ such that $b \geq a, 0$. Since a $\ddagger 0, b>0$ and thus $b \in H \cap T$. In all cases $H \cap T \neq \varnothing$. Now, $\quad L_{2} \supseteq H$ and so $L_{2} \cap T \neq \emptyset$.

Let $t \in L_{2} \cap T$ and let $a, b \in L_{2}$. Then

$$
t+(a \vee b)>a \vee b \stackrel{\rightharpoonup}{r} a, b
$$

that is $t+(a \vee b)>a) b$ and thus L_{2} is directed with respect to \geq
I_{2} is convex with respect to \leqslant, and since \leqslant is a refinement
of \leq, I_{2} mustralso be convex with respect to \leq.
Thus $L_{2} \in C(G, \leq)$ and since $L_{2} \supseteq H_{1} K$, we must have $L_{2} \supseteq L_{1}$.
Thus $L_{1}=L_{2}$ as required.

CHAPTER 3

1
 Varieties of I-Groups and Wreath Products

In this Chapter we present several examples of varieties of lattice ordered groups and discuss where they are placed in the lattice of ℓ-group varieties. Wreath products are important in the study of varieties of ℓ-groups and these are also described, together with a generalisation, the twisted wreath product.

Section 1. Varieties of ℓ-groups.

A variety of ℓ-groups or ℓ-variety is a class of ℓ-groups closed under taking $\ell=$ subgroups \boldsymbol{r}-homomorphic images and cardinal products. Equivalently an ℓ-variety is the class of all ℓ-groups for which a given set (possibly infinite) of equations, which may involve both group and lattice qperations, are laws.

Some examples of well known ℓ-group varieties are as. follows:

Example 3.1.1. The trivial variety, E, consists of all those ℓ-groups with one element. The law defining this variety is: $\mathrm{x}=\mathrm{y}$.

Clearly this variety contains one element, the trivial ℓ-group \{1\}.
Example 3.1.2. At the other extreme, we have the variety L consisting of all ℓ-groups. This variety has as its defining law: $\mathbf{x}=\mathbf{x}$.

Example 3.1.3. The abelian variety A is the variety consisting of all abelian ℓ-groups. The law defining this variety is: $\mathrm{xy}=\mathrm{y} \mathbf{x}$.

Example 3.1.4. An ℓ-group is said to be representable if it is a subdirect product of totally ordered groups. The collection of all representable ℓ-groups is a variety, denoted by R. with defining law given by: $\left(x \wedge \wedge^{\circ}\left(y^{-1} x^{-1} y\right)\right) \vee 1=1$.

This result may be found in Conrad [4]. Theorem 1.8. We note that this is the first of our examples for which the lattice operations appear in the defining law.

Example 3.1.5. Let G be an ℓ-group. A convex ℓ-subgroup M of G is called a value of $g \in G$ if M is maximal with respect to not containing g. Further, M is called a normal value if

$$
M \triangleleft M^{*}=\cap\{C \in C(G) \quad \mid M \subset C\}
$$

An ℓ-group G is called a normal valued ℓ-group if each value M in G is a normal value. Wolfenstein [18] has shown that the class of all normal valued ℓ-groups forms a variety N which has as its defining law: $(x \vee 1)(y \vee 1) \leq(y \vee 1)^{2}(x \vee 1)^{2}$.

Example 3.1.6. Let n be a positive integer. Then $L(n)$ denotes the variety for which the defining law is: $x^{n} y^{n}=y^{n} x^{n}$.

We use L to denote the set of all ℓ, group varieties.
We may then consider I as a partially ordered set, the partial
order being inclusion, that is

$$
U \leq V \quad \text { if and only if } U \subseteq V .
$$

This partial order becomes a lattice order if we define, for $\left\{U_{i} \mid i \in I\right\} \subseteq L$,

$$
\hat{i \in I}^{V_{i}}=\bigcap_{i \in I} V_{i}
$$

and

$$
v_{i \notin I} V_{i}=\cap_{i \in I}\left\{U \in L \mid U \geq V_{i} \text { for all } i \in I\right\}
$$

These definitions make L a complete lattice since L contains both a largest element (L) and a smallest element (E). In a similar manner for a collection of ℓ-gropius, $\left\{G_{i} \mid i \in I\right\}$, we define the ℓ-variety generated by $\left\{G_{i} \mid i \in I\right\}$ by

$$
\ell-\operatorname{var}\left\{G_{i} \mid i \in I\right\}=\cap\left\{U \in L \mid G_{i} \in U \text { for all } i \in I\right\}
$$

We may define a multiplication of ℓ-group varieties as follows: for U and $V \in L$, an ℓ-group G belongs to $U V$ if and only if G contains an ℓ-ideal H such that $H \in U$ and $G / H \in V$.

It can be shown that L is closed under this multiplication and that the multiplication is associative. Thus we have that L is a semi group. Further than this, - -is a lattice ordered semi group with an identity, namely E.

It is of interest to see where our examples of ℓ-group varieties are placed in the lattice L.

Proposition 3.1.7. (Martinez [12]). The normal valued variety, N. is idempotent.

Proposition 3.1.8. (Weinberg [17]). The abelian variety, A, is the smallest proper ℓ-variety.

Proposition 3.1.9. (Holland [9]). The normal valued variety, N, is the unique largest proper ℓ-variety.

The last two results mark one of the differences between the lattice of varieties of ℓ-groups and that of groups. A connection between the smallest proper ℓ-variety, A, and the largest proper ℓ-variety, N, is given by the following theorem. Proposition 3.1.10. (Glass, Holland and McCleary [6]). $N=\sum_{n=1}^{\infty} A^{n}$.

This result has the following two corollaries.

Corollary 3.1.11. If V is any proper ℓ-variety, then the powers of V generate N.

Corollary 3.1.12. The only idempotent ℓ-varieties are $E . N$ and L.

Martinez [11] and Scrimger [15] have proved the following properties concerning the ℓ-varieties $L(n)$. Proposition 3.1.13. (i) $L(n) \subseteq L(m)$ if and only if n divides m.
(ii) For each positive integer n ", $L(n) \cap R=A$.
(iii) If m and n are relatively prime positive integers, then $L(\mathrm{n}) \cap L(\mathrm{~m})=A$.

Scrimger also introduced a new class of ℓ-varieties $\{S(n) \mid n \in N\}$ such that for each $n \dot{\xi} N, S(n) \subset L(n)$. These ℓ-varieties will be discussed in a later section.

Section 2. Standard Wreath Product.

In ℓ-group theory, as in group theory, the wreath product is of much use in the study of varieties. We will describe the construction of the standard wreath product of ordered permutation groups. For a more general construction of wreath products of ordered permutation groups see Holland and McCleary [10].

Let (G, Γ) and (H, A) be order preserving permutation groups.

Let $\Omega=\Gamma \times \Lambda$; then Ω is totally ordered with respect to the order given by, for all $\left(\alpha_{1}, \beta_{1}\right),\left(\dot{\alpha}_{2}, \beta_{2}\right) \in \Omega$,

$$
\left(\alpha_{1}, \beta_{1}\right) \geq\left(\alpha_{2}, \beta_{2}\right) \text { if and only if }
$$

$$
\beta_{1}>\beta_{2} \text { or } \beta_{1}=\beta_{2} \text { and } \alpha_{1} \geq \alpha_{2}
$$

Now let $W=\{(\hat{g}, h) \mid h \in H, \hat{g}: \Lambda \rightarrow G\}$.

Then (W, Ω) is an order preserving permutation group, the action of W on Ω being given by, for all $(\alpha, \beta) \in \Omega$ and all $(\hat{g}, \mathrm{~h}) \in \mathrm{W}$
and multiplication being given by, for all $(\hat{g}, h),(\hat{f}, k) \in W$

$$
(\hat{g}, h)(\hat{f}, k)=(\hat{c}, h k)
$$

where

$$
\begin{aligned}
& \hat{c}: \Lambda \rightarrow G \text { is given by } \\
& \hat{c}(\beta)=\hat{g}(\beta) \hat{f}(\beta h) .
\end{aligned}
$$

(W, Ω) is then an ordered permutation group with respect to the usual ordering of order preserving permutations. Further if (G, Γ) and (H, Λ) are lattice ordered, then so is (W, Ω).
(W, Ω) is called the standard wreath product of (G, Γ) and (H, Λ) and is denoted by (G, Γ) $\mathrm{Wr}(H, \Lambda)$; the subgroup of (W, Ω) consisting of those (\hat{g}, h) such that $\hat{g}(\beta) \neq 1$ for only finitely many $\beta \in \Lambda$ is called the restricted wreath product of (G, Γ) and (H, Λ) and is denoted by $(G, \Gamma) w r(H, \Lambda)$.

We note that the wreath product $(G, \Gamma) W r(H, \Lambda)$ is independent of the totally ordered set Γ on which G acts.

As previously mentioned the standard wreath product is important in the study of ℓ-varieties. In particular we have the following results, which have group theoretic analogues and which may be found in Glass, Holland and McCleafy [6].

Lemma 3.2.1. Let: (G, Γ) and (H, Λ) be ℓ-permutation groups. Then $\ell-\operatorname{var}\{(G, \Gamma) \operatorname{Wr}(H, \Lambda)\}=\ell-\operatorname{var}\{(G, \Gamma) \operatorname{wr}(H, \Lambda)\}$.

Lemma 3.2.2. Let (G, Γ) be an ℓ-permutation group in the ℓ-variety U and let (H, N) be a transitive ℓ-permutation group in the ℓ-variety U. Then $(G, \Gamma) W r(H, \Lambda)$ belongs to the ℓ-variety $U V$. We may define $\mathrm{Wr}^{\mathrm{n}}(\mathrm{G})$ inductively by

$$
W r^{n}(G)=\left(W r^{n-1}(G)\right) W r G .
$$

Now let (Z, Z) be the regular representation of the integers and (R, R) the regular representation of the reals. An easy induction argument yields

Lemma 3.2.3. $W r^{n}(Z) \in A^{n}$ and $W r^{n}(R) \in A^{n}$ for all positive integers n.

We say that a collection $\left\{\left(G_{i}, \Omega_{i}\right), i \in I\right\}$ of
ℓ-permutation groups mimics an ℓ-variety V if the following two conditions are satisfied:
(i) $G_{i} \in U$ for all $i \in I$;
(ii) for any transitive ℓ-permutation group (H, Λ) with $H \in V$, for any " $\lambda \in \Lambda$, any finite set of words $\{w p(x)\}$ and any substitution $x \rightarrow h$ in (H, Λ), there exist elements $i \in I, \alpha \in \Omega_{i}$ and a substitution $x \rightarrow g$ in G_{i} such that $\lambda w p(h)<\lambda w q(h)$ if and only if $\alpha w p(g)<\alpha w q(g)$.

With this definition Glass, Holland and McCleary [6] proved the following results on product varieties.

Proposition 3.2.4. If $U=\ell-\operatorname{var}\left\{\left(U_{i}, \Gamma_{i}\right) \mid i \in I\right\}$ and $\left\{\left(G_{j}, \Omega_{j}\right) \mid j \in J\right\}$ mimics V, then ℓ - $\operatorname{par}\left\{\left(U_{i}, \Gamma_{i}\right) \operatorname{wr}\left(G_{j}, \Omega_{j}\right) \mid i \in I, j \in J\right\}=u V$.
Exposition 3.2.5: $\quad \ell-\operatorname{var}\left(w^{n} z\right)=A^{n}$ for each positive integer n.

Section 3. More ℓ-varieties.

We will now consider a class of ℓ-group varieties generated by certain ℓ-subgroups of Z Wr Z .

For each positive integer n, let

$$
\begin{aligned}
G(n) & =\{(F, k) \mid K \in Z, F: Z \rightarrow Z, F(i)=F(j) \text { if } i \equiv j(\bmod n)\} \\
& \subseteq Z W r Z .
\end{aligned}
$$

$\mathrm{G}(\mathrm{n})$ is an ℓ-subgroup of z er z . This may easily be verified if we note that the binary operation $\mathrm{in}-\mathrm{Z} \mathrm{Wr} \mathrm{Z}$ is given by, for (F, K) , ($\mathrm{G}, \mathrm{\ell}$) $\in \mathrm{Z}$ Wry Z ,

$$
\left(F^{2}, k\right)+(G, \ell)=\left(F+G^{k}, k+\ell\right)
$$

where $G^{k}(z)=G(k+z)$ for all $z \in z$. The inverse of (F, k) is $\left(-\mathrm{F}^{-\mathrm{k}},-\mathrm{k}\right)$ and the identity element of z Nr z is $(\overline{0}, 0)$, where $\bar{o}(z)=0$ for all $z \in z$.

It -is clear that -if $(F, k),(G, \ell) \in G(n)$, then

$$
\begin{aligned}
(F, k)-(G, \ell) & =(F, k)+\left(-G^{-\ell},-\ell\right) \\
& =\left(F-G^{-\ell+k}, k-\ell\right) .
\end{aligned}
$$

Now suppose $i \equiv j(\bmod n)$, we have

$$
\begin{aligned}
\left(F-G^{-\ell+k}\right)(i) & =F(i)-G(i-\ell+k) \\
& =F(j)-G(j-\ell+k) \\
& =\left(F-G^{-\ell+k}\right)(j) .
\end{aligned}
$$

Thus $(F, k)-(G, \ell) \in G(n)$ and hence $G(n)$ is a subgroup of Z Wr Z . To check that $G(n)$ is an ℓ-subgroup of $Z \mathrm{Wr} \mathrm{Z}$, we observe that for (F, k) $\in G(n)$, we have in $Z \mathrm{Wr} Z$

$$
(F, k) \vee(\overline{0}, 0)=(H, h) \quad \text { where }
$$

$$
\begin{array}{ll}
(\bar{O}, 0) & k<0 \\
(F, h)= & k>0 \\
(K, O) & k=0
\end{array}
$$

. Where $K(z)=F(z) \vee 0$ for all $z \in Z$;
and we see that. $(H, h) \in G(n)$.

For each positive integer n, we define the Scrimger variety, $S(n)$, to be the ℓ-variety generated by $G(n)$. The ℓ-varieties $S(n)$, $\mathcal{Y}^{n} \in \mathrm{~N}$, play an important role in the lattice of varieties of ℓ-groups. We give some basic properties of these varieties which may be found in Scrimger [15] and Smith [16].

Proposition 3.3.1. For each positive integer $n, S(n) \subseteq L(n)^{\prime}$, and if n, is not prime the containment is proper.

Proposition 3.3.2. If ${ }^{\prime} m$ and n are relatively prime, then
$S(n) \cap S(m)=L(n) \cap L(m)=A$.

5 Proposition 3.3.3. For any prime $p, S(p)$ covers A in the lattice of ℓ-varieties; that is, no ℓ-variety lies strictly between $S(p)$ and A.

Section 4. Twisted Wreath Products of Groups.

In this section we will consider the twisted wreath product, ${ }^{2+}$ a generalisation of the wreath product, due to B.H. Neman [13].

The construction will use a group B, a subgroup S of B, and transversal T of S in B, a second group A and a homomorphism α of S into the group of automorphisms of A.

Given B, S and T as above, every $b \in B$ may be uniquely
factorised in the form

$$
\begin{equation*}
b=s t, s \in s, t \in T \tag{1}
\end{equation*}
$$

Denote by τ the mapping of B onto T that maps each element b of B to its coset representative $t \in T$.

Thus $b^{\tau}=t$ where t and b are as in (1).

Further, denote by σ the mapping of B onto S that maps each $b \in B$ to its representative $s \in S$.

Thus $b^{\sigma}=s$ where s and b are as in (1).

- We have the following identities where $x, y \in B$

$$
\begin{aligned}
& \left(x^{\tau} y\right)^{\tau}=(x y)^{\tau} \\
& (x y)^{\sigma}=x^{\sigma}\left(x^{\tau} y\right)^{\sigma}
\end{aligned}
$$

Right multiplication by elements of B permutes the right cosets of S transitively, thus we can consider B acting as a transitive permutation group on the transversal T by putting for $b \in B, t \in T$

$$
t^{b}=(t b)^{\tau} .
$$

Then for all $b, b^{\prime} \in B=$ and all $t \in T$,

$$
t^{\mathrm{bb}}=\left(t^{\mathrm{b}}\right)^{\mathrm{b}^{\prime}}
$$

and

$$
t^{l}=t \quad \text { where } 1 \text { is the unit element of } B .
$$

Given a group A and a homomorphism $\alpha: S \rightarrow$ Aut A, by a^{s}
we will mean the image of $a \in A$ under the automorphism $\alpha(s)$, where $s \in s$. We then have, for all $a, a^{\prime} \in A$ and all $s, s^{\prime} \in S$

$$
\begin{aligned}
\left(a a^{\prime}\right)^{s} & =a^{s} a^{s} \\
a^{\left(s s^{\prime}\right)} & =\left(a^{s}\right)^{\prime} \\
a^{1} & =a
\end{aligned}
$$

We now proceed with the construction of the twisted
wreath product.
We form the cartesian power $F=A^{T}$; this consists of all functions f on T to A, with componentwise multiplication. Thus $f_{1} f_{2}=f_{3}$ means $f_{1}(t) f_{2}(t)=f_{3}(t)$ for all $t \in T$.

Those functions f^{*} whose support, $\{t \in T \mid f *(t) \neq 1\}$, is finite, form the direct power F^{*} contained in F^{\prime}.

We will next define an antihommorphism β of B into the group of automorphisms of F. Again the notation will be simplified by denoting the image of $f \in F$ under the automorphism $\beta(b)$ by f^{b}. For all $f \in \mathcal{F}$, all $b \in B$ we define $\dot{f}^{-b} \in F$ by

$$
f^{b}(t)=f\left(t^{b}\right) s(b, t) \quad \text { for all } t \in T
$$

where

$$
s(b, t)=((t b))^{-1} .
$$

We must now verify that
(1) the mapping $f \rightarrow f^{b}$ is an automorphism of F and
(2) β is an antihomomorphism,
that is, for all $b, b^{\prime} \in B$

$$
\beta\left(b b^{\prime}\right)=\beta\left(b^{\prime}\right) \beta(b) .
$$

(1).
(i) the mapping $\beta(b)$ which maps f let $f^{b}=g^{b}$
then for all $t \in T$,

$$
f^{b}(t)=g^{b}(t)
$$

$$
\Rightarrow f\left(t^{b}\right)^{s(b, t)}=g\left(t^{b}\right)^{s(b, t)}
$$

$$
v
$$

$$
\Rightarrow f\left(t^{b}\right)=g\left(t^{b}\right) \text { since } \alpha(s(b, t)) \text { is an automorphism. }
$$

Thus, since $\left\{t^{b} \mid t \in T\right\}=T$, we have for all $t \in T$,

$$
\because \quad f(t)=g(t)
$$

and so $f=g$ and $\beta(b)$ is $1-1$.
(ii) β (b) is onto:

$$
\begin{aligned}
& \text { Given } f \in F, \text { let } g \in F \text { be given by } \\
& g(t)=f\left(t^{b^{-1}}\right) s\left(b, t^{b^{-1}}\right)^{-1} \quad \text { for all } t \in T .
\end{aligned}
$$

$$
\begin{aligned}
\left(\int \quad\right. & =f^{b}(t) f^{b}(t) \\
\therefore & =f^{b} f^{\prime}(t)
\end{aligned}
$$

Thus $\beta(b)$ is an automorphism and (1) is proved.
(2) The map β is ant antihomomorphism:

For all $t \in T$ we have

$$
f^{b b^{\prime}}(t)=f\left(t^{b b} s\left(b b^{\prime}, t\right)\right.
$$

- and

$$
\begin{aligned}
\left(f^{b^{\prime}}\right)^{b}(t) & =f^{b^{\prime}}\left(t^{b}\right)^{s(b, t)} \\
& =\left(f\left(t^{b b^{\prime}}\right) s\left(b^{\prime}, t^{b}\right), s(b, t)\right. \\
& =f\left(t^{b b^{\prime}}\right)\left(s\left(b^{\prime}, t^{b}\right) s(b, t)\right)
\end{aligned}
$$

However, recalling identities 3.4.1, we have

$$
\begin{aligned}
s\left(b b^{\prime}, t\right) & =\left[\left(t b b^{\prime}\right)^{\sigma}\right]^{-1} \\
& =\left[(t b)^{\sigma}\left((t b)^{T_{b}}\right)^{\sigma}\right]^{-1} \\
& =\left[\left((t b)^{\tau} b^{\prime}\right)^{\sigma_{1}}\right]^{-1}\left[(t b)^{\sigma}\right]^{-1} \\
& =s\left(b^{\prime}, t^{b}\right) s(b, t)
\end{aligned}
$$

Thus for all $t \in T$,

$$
f^{b b^{\gamma}}(t)=\left(f^{b^{\prime}}\right)^{b}(t)
$$

and so

$$
f^{b b^{\prime}}=\left(f^{b}\right)^{b}
$$

This holds for each $f \in F$ and hence

$$
\beta\left(b b^{\prime}\right)=\beta\left(b^{\prime}\right) \beta(b)
$$

and we see that β is an antihomomorphism.

In this way we have B acting as a group of automorphisms of F and can now form the group P whose elements are pairs (f, b) where $f \in F$ and $b \in B$. Multiplication in P is defined by

$$
\left(f_{1}, b_{1}\right)\left(f_{2}, b_{2}\right)=\left(f_{1} f_{2}^{b_{1}}, b_{1} b_{2}\right)
$$

We must now verify that this gives rise to a group.
(i) It is clear that P is closed under multiplication.
(ii) Multiplication is associative:

Let $\left(f_{1}, b_{1}\right),\left(f_{2}, b_{2}\right),\left(f_{3}, b_{3}\right) \in P$. Then

$$
\left[\left(f_{1}, b_{1}\right)\left(f_{2}, b_{2}\right)\right]\left(f_{3}, b_{3}\right)=\left(f_{1} f_{2}^{b_{1}}, b_{1} b_{2}\right)\left(f_{3}, b_{3}\right)
$$

$$
=\left(f_{1} f_{2}{ }_{l_{f}}{ }_{3} l_{1}^{b_{2}}, b_{1} b_{2}, b_{3}\right)
$$

$$
=\left(f_{1} f_{2} b_{1} f_{3} b_{2} b_{1}{ }_{\left., b_{1} b_{2} b_{3}\right)}\right.
$$

$$
=\left(f_{1}\left(f_{2} f_{3}^{b_{2}}\right)^{b_{1}},_{b_{1} b_{2} b_{3}}\right)
$$

$$
=\left(f_{1}, b_{1}\right)\left(f_{2} f_{3}, b_{2} b_{3}\right)
$$

$$
=\left(f_{1}, b_{1}\right)\left[\left(f_{2}, b_{2}\right)\left(f_{3}, b_{3}\right)\right]
$$

(iii) P has identity element $(\overline{1}, 1)$ where \bar{I} is the function defined by $\bar{l}(t)=1$ for all $t \in T$.

Let $(f, b) \in P$, then

$$
\begin{aligned}
(\overline{1}, 1)(f, b) & =(\overline{\mathrm{I}} \mathrm{l}, \mathrm{lb}) \\
& =(f, b) \\
& =\left(\mathrm{f}_{\mathrm{l}}^{\mathrm{b}}, \mathrm{bl}\right) \\
& =(\mathrm{f}, \mathrm{~b})(\overline{1}, 1)
\end{aligned}
$$

(iv) Each element (f, b) of P has an inverse, namely $\left(\left(f^{-1}\right)^{b^{-1}}, b^{-1}\right)$:

$$
\begin{aligned}
\left(\left(f^{-1}, b^{-1}, b^{-1}\right)(f, b)\right. & =\left(\left(f^{-1}\right)^{b^{-1}} b^{b^{-1}}, b^{-1} b\right) \\
& =\left(\left(f^{-1} f\right)^{b^{-1}}, 1\right) \\
& =\left(\bar{I}^{-1}, 1\right)
\end{aligned}
$$

$$
=(\overline{1}, 1),
$$

and similarly

$$
(f, b)\left(\left(f^{-1}\right)^{-1}, b^{-1}\right)=(\overline{1}, 1)
$$

The group P is called the unrestricted twisted wreath product of A by B and will be denoted by $\operatorname{TWr}(A, B, S, \alpha)$. Our construction depended upon the choice of a transversal T of S in B ; but this dependence is only apparent. The restricted twisted wreath product, p^{*}, is the subgroup of P consisting of those (f, b) such that $f \in F *$ and is denoted
$\operatorname{twr}(A, B, S, \alpha)$. We. can see that $\operatorname{TWr}(A, B, S, \alpha)$ and $\operatorname{twr}(A, B, S, \alpha)$ are the same if the index of S in B is finite or if A is the trivial group.

The standard wreath product of A by B (unrestricted and restricted) is obtained as a special case of the twisted wreath product of A by B when S is taken to be the trivial group.

Section 5. Ordering the Twisted Wreath Product.

In this section we return our attention to the theory of
ℓ-groups and show that the twisted wreath product of an ℓ-group by an 0-group may be lattice ordered.

Proposition 3.5.1. Let A be a lattice ordered group, B a totally ordered group, S a subgroup of B and α a homomorphism from s into the group of ℓ-automorphisms of $A \cdots \operatorname{TWr}(A, B, S, \alpha)$ can be lattice ordered.

Proof. Let T be a transversal of S in B.
Define an ordering on $\operatorname{TWr}(A, B, S, \alpha)$ by
$(F, k) \geq(G, \ell) \Leftrightarrow k>\ell$ or $k=\ell$ and $F(t) \geq G(t)$ for all $t \in T$.

It is clear that \geq is a partial order.

Let $(F, k),(G, f) \in \operatorname{TWr}(A, B, S, \alpha)$ with $(F, k) \geq(G, \ell)$.
Let $(X, X),(Y, y) \in \operatorname{TWr}(A, B, S, \alpha)$.

We claim $(x, x)(F, k)(Y, Y) *(x, x)(G, \ell)(Y, y)$.

From this it will follow that ($\operatorname{IWr}(A, B, S, \alpha), \geq$) is a partially ordered group.

We note that

$$
\begin{aligned}
& (X, x)(F, k)(Y, y)=\left(X F^{X} Y^{x k}, x k y\right) \text { and } \\
& (X, x)(G, \ell)(Y, Y)=\left(X G^{X} Y^{x \ell}, X \ell Y\right) .
\end{aligned}
$$

Now $(F, k) \geq(G, \ell)$ implies either

$$
\text { (i) } k>\ell \quad \text { or }
$$

(ii) $k=\ell$ and $F(t) \geq G(t)$ for all $t \in T$.
(i) If $k>\ell$, then B is totally ordered implies $\mathrm{xk} \ell>\mathrm{yk} \ell$
and so

$$
(X, X)(F, k)(Y, Y) \geq(X, X)(G, \ell)(Y, Y)
$$

(ii) If $k=\ell$ and $F(t) \geq G(t)$ for all $t \in T$ then

$$
\mathrm{xky}=\mathrm{x} \ell \mathrm{y}
$$

and. $\quad \mathrm{XF}^{\mathrm{X}} \mathrm{Xk}^{\mathrm{K}}(\mathrm{t})=\mathrm{XF}^{\mathbf{X}} \mathrm{X}^{\ell}(\mathrm{t})$

$$
\begin{aligned}
& =X(t) F^{X}(t) Y^{x \ell}(t) \\
& =X(t) F\left((t x)^{\tau}\right) \alpha_{S(x, t)} Y^{X \ell}(t) \\
& \geq X(t) G\left((t x)^{\tau}\right) \alpha_{S(x, t)} Y^{x \ell}(t)
\end{aligned}
$$

(since A is an ℓ-group and $\alpha_{s(x, t)}$ is an ℓ-automorphism of A)

$$
\begin{aligned}
& =X(t) G^{x}(t) Y^{x \ell}(t) \\
& =X G^{x} Y^{x \ell}(t) \cdot
\end{aligned}
$$

Thus in this case we also have

$$
(X, x)(F, k)(Y, y) \geq(X, x)(G, \ell)(Y, y)
$$

as required.

We have that ($\operatorname{TWr}(A, B, S, \alpha), \geq$) is a po-group. Further than this it is an ℓ-group for we can see that for all $(F, K) \in \operatorname{TWr}(A, B, S, \alpha)$

$$
(F, k) \vee(\overline{1}, 1)= \begin{cases}(\overline{1}, 1) & k<1 \\ (F, k) & k>1, \\ (F \vee \overline{1}, 1) & k=1\end{cases}
$$

Section 6. An Example.

We have seen in sections 2 and 3 that the standard wreath product has an important place in the study of ℓ-group varieties. Bearing this in mind it is of interest to consider specific examples of twisted wreath products. We shall illustrate the theory of sections 4 and 5 by describing atwisted wreath product of $z^{\text {n }}$ by Z, and will show that our example is ℓ-isomorphic to a subgroup $G(\mathrm{mn})$ of $\mathrm{ZWr} Z$ which generates the Scrimger variety $S(\mathrm{mn})$.

Example 3.6.1. We will consider $\operatorname{TWr}\left(z^{n}, z, m Z, \alpha\right)$ where
$\alpha: m Z \rightarrow \operatorname{Aut}\left(Z^{n}\right)$ is defined by, for all $r \in Z$

$$
(m r) \alpha=\alpha_{r}
$$

where $\alpha_{x} \in \operatorname{Aut}\left(z^{n}\right)$ is given by, for all $\left(a_{1}, \ldots, a_{n}\right) \in z^{n}$

$$
\left(a_{1}, \ldots, a_{n}\right) \alpha_{r}=\left(a_{1-r}, \ldots, a^{2}\right)
$$

where, $\quad 1-r \equiv \overline{i-r} \quad(\bmod n)$
and

$$
I \leq \overline{i-r} \leq n .
$$

Thus the homomorphism α maps an element $m r$ of $m Z$ to an automorphism α_{r} of z^{n} where α_{r} rotates the coordinates of elements of $z^{n} \quad r$ positions to the right.

We will take $\{0, \ldots, m-1\}$ to be the transversal, T, of \rightarrow mR in * Z.

The elements of $\operatorname{TWr}\left(z^{n}, z, m Z, \alpha\right)$ are pairs (f, b) where $f \in\left(z^{n}\right)^{T}, b \in z$.

Using additive notation, addition in $\operatorname{TWr}\left(Z^{n}, z, m Z, \alpha\right)$ is given by

$$
\left(f_{1}, b_{1}\right)+\left(f_{2}, b_{2}\right)=\left(f_{1}+f_{2} b_{1}, b_{1}+b_{2}\right)
$$

- and we can easily verify that if $b=m r+s$, where $s \in\{0, \ldots, m-1\}$, then for all $t \in\{0, \ldots, m m$

$$
f^{b}(t)=\left\{\begin{array}{cl}
f\left[(t+s)^{\tau}\right] \alpha-r & t<m-s \\
\sum_{f\left[(t+s)^{\tau}\right] \alpha-(r+1)} & t \geq m-s
\end{array}\right.
$$

We note that

$$
(t+s)^{\tau}= \begin{cases}t+s & t+s \leq m-1 \\ t+s-m & t+s>m-1\end{cases}
$$

also if $b_{1} \equiv b_{2}$ mod $m n$ then $f^{b_{1}}=f^{b_{2}}$.

It may be clearer to use an alternative representation for the elements of $\operatorname{TWr}\left(z^{n}, z, m Z, \alpha\right)$. We can write the elements in the following form
$\left[\begin{array}{c}\left.{ }^{n}{ }^{b}\right|_{\left(a_{0,1}, \ldots, a_{0, n}\right),}\left(a_{1,1}, \ldots, a_{1, n}\right), \ldots,\left(a_{m-1,1}, \ldots, a_{m-1, n}\right)\end{array}\right]$

where $b \in z$, and for $i \in\{0, \ldots, m-1\},\left(a_{i, 1}, \ldots, a_{i, n}\right) \in z^{n}$.
With this notation addition in $\operatorname{TWr}\left(\mathrm{z}^{\mathrm{n}}, \mathrm{z}, \mathrm{mZ}, \alpha\right)$ is given by

where $b=m r+s$ with $s \in\{0, \ldots, m-1\}$ and the arithmetic of the subscripts is done modulo m for the first subscript and modulo n for the second.

With this notation the 'twisting' affect of the homomorphism α in $\operatorname{TWr}\left(z^{n}, z, m Z, \alpha\right)$ can readily be seen.

Proposition 3.6.2. $\operatorname{TWr}\left(\mathrm{z}^{n}, \mathrm{z}, \mathrm{mZ}, \alpha\right)$ is ℓ-isomorphic to $G(\mathrm{mn})$. Proof. Define a mapping $\gamma: G(m n) \rightarrow \operatorname{TWr}\left(z^{n}, z, m Z, \alpha\right)$ by, for all $(F, k) \in G(m n)$

$$
(F, k) \gamma=\left(F_{\gamma}, k\right)
$$

where, if $\quad F=\left(x_{1}, \ldots, x_{m n}\right)$
then $F_{\gamma}=\left(\left(y_{1}, \ldots, y_{n}\right),\left(y_{n+1} \gamma_{n, ~} y_{2 n}\right), \ldots\left(y_{(n-1) n+1} \ldots, y_{m}\right)\right)$
where, for $0 \leq i \leq m-1$, and $0 \leq j \leq n-1$,

$$
y_{i n+j+1}=x_{j m+i+1}
$$

Clearly γ is one to one and onto.

We now show that γ is a homomorphism.

Let $(F, k),(G, \ell) \in G(m n)$.

Then

$$
\begin{aligned}
{[(F, k)+(G, \ell)] \gamma } & =\left(F+G^{k}, k+\ell\right) \gamma \\
& =\left(\left(F+G^{k}\right)_{\gamma}, k+\ell\right) \\
& =\left(F_{\gamma}+\left(G^{k}\right)_{\gamma}, k+\ell\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(F, k) \gamma+(G, \ell) \gamma & =\left(F_{\gamma}, k\right)+\left(G_{\gamma}, \ell\right) \\
& =\left(F_{\gamma}+\left(G_{\gamma}\right)^{k}, k+\ell\right) .
\end{aligned}
$$

It is sufficient to show that $\left(G^{k}\right)_{\gamma}=\left(G_{\gamma}\right)^{k}$.

Let

$$
\begin{aligned}
& G=\left(x_{1}, \ldots, x_{i}, \cdots \cdots x_{m n}\right) \\
& G^{k} \quad=\left(\begin{array}{llll}
y_{1}
\end{array}, \ldots y_{i} \ldots \quad \ldots, y_{\min }\right) \\
& \left(G^{k}\right)_{\gamma}=\left(\left(z_{1}, \ldots \ldots, z_{i}, \ldots \cdots, z_{m n}\right)\right) \\
& G_{\gamma} \quad=\left(\left(a_{1}, \ldots \ldots, a_{i}, \ldots \ldots, a_{m}\right)\right) \\
& \left(G_{\gamma}\right)^{k}=\left(\left(b_{1}, \ldots \ldots, b_{i} \cdots \cdots, b_{\dot{\min }}\right)\right) .
\end{aligned}
$$

We wish to show that for $1 \leq i \leq m, z_{i}=b_{i}$.
Without loss of generality we may assume $1 \leq k \leq m n$.

Let

$$
\mathrm{k}=\mathrm{pm}+\mathrm{q} \quad 0 \leq \mathrm{q} \leq \mathrm{m}-1
$$

Let $i=r n+s+1$ where $0 \leq r \leq m-1, \quad 0 \leq s \leq n-1$.

Then we hate

$$
z_{i}=z_{r n+s+1}
$$

$$
=y_{s m+r+1}
$$

$$
\mathcal{L}
$$

$$
=x_{s m+r+1+k}
$$

$$
=x_{\mathrm{s} m+\mathrm{r}}+1+\mathrm{pm}+\mathrm{q}
$$

where arithmetic on the subscripts is done modulo mn .
(Now $b_{i}=b_{r n+s+1}$ and hence is in the eth n-tuple of $\left(G_{\gamma}\right)^{k}$. But this is just $G_{\gamma}\left[(r+k)^{\tau}\right]^{\left[(r+k)^{\sigma}\right]^{-1}}$.

We have

$$
\begin{aligned}
(r+k)^{\tau} & =(\mathrm{pm}+\mathrm{q}+\mathrm{r})^{\tau} \\
& =(\mathrm{q}+\mathrm{r})^{\tau} \\
& = \begin{cases}q+r & q+r<m \\
q+r-m & q+r \geq m\end{cases}
\end{aligned}
$$

Also

$$
\left[(\mathrm{r}+\mathrm{k})^{\sigma}\right]^{-1}= \begin{cases}-\mathrm{pm} & q+r<m \\ -(p+1) m & q+r \geq m\end{cases}
$$

Thus the fth n-tuple of $\left(G_{\gamma}\right)^{k}$ is given by
where $1 \leq \overline{p+i} \leq n$ and $\overline{p+i} \equiv p+i(\bmod n)$.

From this, and recalling that $0 \leq p \leq n, 0 \leq q \leq m-1$ and $0 \leq s \leq n-1$, we can see that

$$
b_{i}=b_{r n}+s+l
$$

$$
=a(q+r) n+\overline{s+1+p}
$$

$$
{ }^{a}(q+r-m) n+\overline{s+1+p+1}
$$

$$
\begin{aligned}
& G_{\gamma}(q+r) \alpha-p \quad q+r<m \\
& { }^{\prime} G_{\gamma}(q+r-m) \alpha_{-(p+1)} \quad q+r \geq m \\
& =\left(a_{(q+r) n+1} \cdots, a_{(q+r) n+n}\right)^{\alpha}-p \quad q+r<m \\
& \text { I }\left(a_{(q+r-m) n+1} \cdots, a(q+r-m) n+n\right)^{\alpha}-(p+1) \\
& \mathrm{q}+\mathrm{r} \geq \mathrm{m} \\
& =(a(q+r) n+\overline{1+p}, \ldots, a(q+r) n+\overline{n+p}) \\
& q+r<m \\
& \left.{ }^{\left(a_{(q+r-m}\right) n+\overline{1+p}, \ldots, a}(q+r-m) n+\overline{n+p}\right) \quad q+r \geq m
\end{aligned}
$$

$$
a_{(q+r-m) n}+(s+p+1)+1
$$

$$
\frac{9}{}(q+r-m) n+(s+p+1-n)+1
$$

$$
\mathrm{q}+\mathrm{r} \geq \mathrm{m}, \quad \mathrm{~s}+\mathrm{p}+1 \geq \mathrm{n}
$$

$$
=x_{(s+p) m+q+r+1}
$$

$$
\alpha
$$

$$
\mathrm{q}+\mathrm{r}<\mathrm{m}, \quad \mathrm{~s}+\mathrm{p}<\mathrm{n}
$$

$$
x_{(s+p-n) m}+q+r+1
$$

$$
\mathrm{q}+\mathrm{r}<\mathrm{m}, \quad \mathrm{~s}+\mathrm{p} \geq \mathrm{n}
$$

$$
x_{(s+p+1) m}+q+r-m+1
$$

\qquad
\qquad

$$
\mathrm{q}+\mathrm{r} \geq \mathrm{m}, \quad \mathrm{~s}+\mathrm{p}+1<\mathrm{n}
$$

$$
x(s+p+1-n) m+q+r-m+1 \quad \quad q+r \geq m, s+p+1 \geq n
$$

$$
=x_{(s+p) m}+q+r+1
$$

$$
=\dot{z}_{i} \quad \text { as required }
$$

$$
\begin{aligned}
& =a_{(q+r) n+(s+p)+1} \quad\{+r<m, s+p<n \\
& { }^{a}(q+r) n+(s+p-n)+1
\end{aligned}
$$

We now have that γ is an isomorphism, it remains to show that γ is an ℓ-isomorphism. We must show that for all $(F, k),(G, \ell) \in G(m n)$

$$
[(F, k) \wedge(G, \ell)] \gamma=[(F, k) \gamma] \wedge[(G, \ell) \gamma] \text {. }
$$

hence

$$
\begin{aligned}
\text { ne } & {[(F, k) \wedge(G, \ell)] \gamma= \begin{cases}(G, \ell) \gamma & \ell<k \\
(F, k) \gamma & \ell>k \\
(F \wedge G, k) \gamma & \ell=k\end{cases} } \\
& = \begin{cases}\left(G_{\gamma}, \ell\right) & \ell<k \\
(F, k) & \ell<k \\
((F \wedge G), k) & \ell=k\end{cases}
\end{aligned}
$$

Also $\cdot[(F, k) \gamma] \wedge[(G, \ell) \gamma]=\left(F_{\gamma}, k\right) \wedge\left(G_{\gamma}, \ell\right)$

- V

$$
=\left(G_{\gamma}, \ell\right)
$$

$$
\ell<k
$$

$$
\begin{array}{ll}
\left(F_{\gamma}, k\right) & \ell>k \\
\left.\left(F_{\gamma} \wedge G_{\gamma}\right), k\right) & \ell=k
\end{array}
$$

Thas it is sufficient to show

$$
(F \wedge G)_{\gamma}=F_{\gamma} \wedge G_{\gamma}
$$

Let $\quad F=\left(f_{1}, \ldots, f_{m n}\right)$ and $G=\left(g_{1}, \ldots, g_{\text {fnn }}\right)$

Then $(F \wedge G)_{\gamma}=\left(\left(h_{1}, \ldots, h_{n}\right), \ldots,\left(h_{\left.\left.(m-1))_{n+1} \ldots, h_{m n}\right)\right)}\right)\right.$
where; for $0 \leq i \leq m-1$ and $0 \leq j \leq n-1$,

$$
h_{i n+j+1}=m i n\left\{f_{j m+i+1}, g_{j m+i+1}\right\}
$$

A1so $F_{\gamma}=\left(\left(x_{1}, \ldots, x_{n}\right), \ldots,\left(x_{(m-1) n+1} \cdots, x_{m n}\right)\right)$

$$
\text { and } \hat{G}_{\gamma}=\left(\left(y_{1}, \ldots, y_{n}\right), \ldots,\left(y_{(m-1) n+1} \cdots, y_{m n}\right)\right)
$$

where, for $0 \leq i \leq m-1$ and $0 \leq j \leq n-1$
$\underbrace{}_{i n+j+1}=f_{j m+i+1}$ and $y_{i n+j+1}=g_{j m+i+1}$
Clearly $F_{\gamma} \wedge G_{\gamma}=\left(\left(z_{1}, \ldots, z_{n}\right), \ldots \not\left(z_{(m-1) n+1}, \ldots, z_{m n}\right)\right)$
where for $1 \leq i \leq \operatorname{mn}, \quad z_{i}=\min \left\{x_{i} ; y_{i}\right\}$.

Thus for $0 \leq i \leq m-1 \quad$ and $0 \leq j \leq n-1$,

$$
\begin{aligned}
z_{i n+j+1} & =\min \left\{x_{i n+j+1}, y_{i n+j+1}\right\} \\
& =\min \left\{f_{j m+i+1}, g_{j m+i+1}\right\} \\
& =h_{i n+j+1}
\end{aligned}
$$

and so $(F \wedge G)_{\gamma}=F_{\gamma} \wedge G_{\gamma}$, as required.

BIBLIOGRAPHY

[1] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Mathematics 608, SpringerVerlag, 1977.
[2] G. Birkoff, Lattice-ordered groups, Ann. of Math. 43 (1942), 298-331.
[3] G. Birkhoff, Lattice theory, 3rd edition, Amer: Math. Soc: ©oll. Publ. 25, New York (1968).
[4] P.Fe-eonrad, Lattice-ordered grofps, Lecture Notes, Tulane
[5] L. Fuchs; Partially ordered algebraic systems, Addison-Wesley, (1963).
[6] A.M.W. Glass, Ordered permutation groups, Bowling Green State University (1976).
[7] A.M.W. Glass, W.C. Holland, and S.H. McCleary, The structure of ℓ-group varieties, Algebra U iversalis 10, (1980), 1-20.
[8] M. Hall: The theory of groups, MacM Ilan (1959).
[9] W.C. Holland, The lattice ordered group of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399-408.
[10] W.C. Holland, The largest proper variety of lattice ordered groups, Proc. Amèr. Math. Soc. 57 (1976), 25-28.
[11] W.C. Holland and S.H. McCleary, Wreath products of ordered -permutation groups, Pacific Math. J. 31 (1969), 703-716.
[12] J. Martinez, Free products in varieties of lattice ordered groups, Czech. Math. J. 22 (1972), 535-55'3.
[13]-J.-Martinez, Varieties of lattice-opdeded groups, Math. Zeitchr., 137 (1974), 265-284.
[14] B.H. Neuman, Twisted wreath products of groups, Arch. Math. 14, (1963), 1-6.
[15]-H. Neuman, Varieties of groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 37, Springer-Verlag, New York, 1967.
[16] E. Schenkman, Group theory, D. Van Nostrand Co., Princeton, 1965.
[17] E.B. Scrimger, A large class of small varieties of lattice ordered groups, Proc. Amer. Math. Soc., 51 (1975), 301-306.
[18] J.E. Smith, The lattice of ℓ-group varieties, Ph.D. thesis, Bowling Green State University, 1976.
[19] E.C. Weinberg, Free lattice ordered abelian groups II, Math. Ann. 159 (1965), 217-222.
[20] S. Wolfenstein, Valeurs normales dans un groupe réticulé, Atti Accad. Naz. Lincei, 44 (1968), 337-342.

