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ABSTRACT

A

A lattice ordered:group s a group (G,+) with a lattice

order = 4that‘i§ dompatible with the group operation., In Chapter 1
. \ : o (

we develop tﬁ¢ basic properties of lattice ordered groups and include.

a discussion.of £-subgroups (subgroups which are also sublattices) and

of ordered permutation groups. | )

-

Thé_sécond chapter is devoted to lattices of subgroups of

A

i

Conrad, showing that the lattiée of £-subgroups of a lattice
ordered group, G , is distributive if and only if G islisomorpﬁic Cs
to a subgroup of the additive rationals.

a | A
In Chapter 3 we consider several examples of varieties

: 3 ) - '
B © 3 o 1attice"ordered**t;roups*and**see*hOW*they*-are’" related in the lattice

}_ of varieties 6fvl$ttice ordered groups. We also describe a ~ . T,
. generalization of the wreathrpfbéuct, the twisted'wreath product,
| showing.that t?e_twisted~w;eath product of a latgipe oidered g;oup
. by a togal%y.ordered-grpup.may be lattice ofdéred. We cogclﬁde by -
looking at a specific‘example‘df a Ewisted wreath_product ané see'how )
‘this is related to a‘staﬁdard wreath product.’
® . . -
R ———— .

(iii)
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" INTRODUCTION

’l o The fundamental results‘of the theory of lattice ordered | - /

' groups were flrst presented by Blrkhoff IZ] He'described many of the
bas1c properties of the elements of’ lattlce ordered groups, ShOWlng,
for example, thgt any lattlce ordered group 1s a dlstrlbutlve,lattlce;‘

In Chapter 1 we begln by outllnlng the elementary propertles

> -

of lattlce ordered groups, many .of whlch,are due to Blrkhoff tWe

.. also consider - z-subg;oups,,,that is, those,,,subgroubs which are sub- =

lattices. Finally ordered permutation groups are described, An

4

important example of a lattice ordered perﬁutation group is the

group; A(X), of all order preserving'permutations of a totally

L]

ordered set, X . The last result of this,chapter,.HollandFs

) representatlon theoram! 1s an 1mportant tool 1n the study of lattlce ,

>

ordered groups, and is an analogue of,Cayley's theorem ln group theory.

Holland's representation theorem establishes that every lattice

I

ordered group is 1somorph1c to an . 8-subgroup of the" group of all : “ .

fenn

, order preserving permutatioAs of a totally ordered set. ,

rI_n the second chapter we are conoerned with lattices&of
. subgroups. It is uell‘known that the lattice of convex 8—subgroups
A - lattice ordered"groupﬁ;sﬁiistrrbutrve and-‘we- COﬁSi&erﬂihﬁS& 1%36&**\*"*
IR 3e dlgroupslforewhICh4thEeiatttceeofeaiimg-sﬂbgreuPs4is—distributive#k———\———
The main result'of thls section answers a'questlon posed by Conrad 14]:

a,

'» we show that the lattlce of’&-subgroups of a lattlce ordered group G o

¥

is distributive 1f and only if G is 1somorph1c to a subgroup of: €E§



the additive rationals. Finally we pursue the question with an

~ important generalization of lattice ordéreddgroups, Riesz - groups.’
These are groups,which, although not lattice ordered, satisfy~an
. 1nterpolatlon property, and we show that the la;tlce of convex

dlrected subgroups of a Riesz group is dlstrlbutlve.

" For aﬁy type of abstract algebra, a variety is an eguationally -
rdefihed class of such‘algebras. Thejexrensive work on varieties of'o
, groups, muoh of which is deseribed by H. Neunfann Il4],cprompted an

1nterest in the study of lattice ordered group varieties. The early -

,works rhrthrs”area are malnly concerned w1th spec1f1c latt1ce ordered;
group uarieties., For example,'Weinberg [19] showed that the abe;ian'
variety, A, rs-the smallest proper.variety oflattioe ordered groups.
Wolfensteinr[20] showed that the normal valued latt;oe ordered groups
form a variety,_.N',iwhich was later found by Holland [10], to be the

~ largest proper lattice orde féE éiéﬁp?éii;t{: - Martinez [13] undertook
a morevcompreheusive study of varieties of lattice ordered groups,

_desoribing‘an sociative multiplication of lattice ordered group

varieties, and?determined that the set, L , of all lath"} ordered

»

group varieties forms a lattice. ordered semigroup under 'Tﬂ-
multiplication, the partial order being set incluSion. More recently,

Glass, Holland and Mccleary [7]1 have. extended thlS work. " One of

the1r main results shows that the powers of the abellan varlety, A,
£

N . . .

gegerath the normal valued variety,:N .

In Chapter 3 we'consider‘several‘examples of 1attice ordered

group varieties and see how they are placed in the lattice of all lattice
- e .

~



LL o T . ‘.' 3.

ordered‘group varieties. As in group theory, wreath products prov1de

‘a useful tool in‘the study of yarietieS’and these are desqribed.

However iattrce ordered grOuo theory considers only wreath éroduots‘

v > . .

of lattice ordered permutatlon groups. We alSO'consider a generalization
of the wreath product the . tW1sted wreath product and show that the
.twisted wreath productrof a lattlce ordered group by a totelly
ordered'group”mey,beilettice ordered.rrFiueiiy,we loo& at Our;e£3ﬁplei;'
of a twisted wreath product which is isomofbhic to G(mn) an Evsubgroup

of Z Wr 2 flrst descrlbed by Martinez [12], and later by Scrimyer [17]

who used lattlce ordered groups of thls klnd to prov1de an 1nf1n1te

number of covers of the abelian variety, A .

\
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- B CHAPTER 1 SN
¢=groups ..
- - ~ In this chapter we intfodgce and outline some of the basic
properties of partially ordered groups, and mope'pérticularly;"lattice ‘K e

~ordered groups. Many- results are dﬁoted'without proof. - Along with &

more detailed discussion, these proofs may be found in Conrad [4], _ P
Fuchs [5] and Bigard, Keimel and Wolfemstein (1. . .

In group'theory‘it is,conventiOnalvto‘use'multiplicatiVe
notatio;\}or the binary operation of non-commutative groups and

additivé-notation for commutative groups. ~The development .of 8égroup‘

theory has tended to use additive notation more extensively, howéver;
; 3, -
‘the close ties to group theory make the use of multiplicative notation & .. -

. desireable in some situations. In’this thesis both notations are used . -
for £-groups and-it should be noted that additive notation does not

imply commutativity.

Some knowledge of group theory and lattiée theory is assumed.
Information on these topics may be found in Schenkman [16] and .

Birkhoff [3] respectively.

Section 1. Basic Results.

and in particular a lattice ordered group. From our definition we



-
5

.
Loe

‘“‘5@\.

-are then,able to*develop some of fhe“ba51c properfles “of lattice ordered

S 4

*——~———groups—wh:chrwrii*be*used*iﬁ‘later sections.,

A partlally ordéered group (po group) is a. group rld +)  with"

a partial order’ S that is compatlble with the group operation;

..

#that is, for all a, b, %, ¥ €G. E 7

: {”;, = ':;g, _a<b implies x +,a,+,¥ $—x,+rb!§Ly .

“

If the pdrtlal order is a 1att1ce order, then G 1is called a 1attice .

ffffff Agordered:greup' 1£-group}— =If-the" partlaI;ordér*rswa’totai'order “then

G is called a totally ordered group (o-group) .

‘ ‘ » . R +
We shall denote the positive cone'of G by G :

3

=:{g €c| gz o} ..

L] — . SUS NS EEEEHEE SIS 4

e , : ) ‘ ‘ + .
Proposition 1.1.1. . If "G is a po-group, then G 1is a normal sub-

semigroup that-contains O but no other element and its inverse.

-
-

Conversely if P is such a subsemigroup and if we define a < b

t . R B
" LY

A po-group G is directediif,'fqriarl' a, b €aG _there o

praqjded b-a€¢P , then = is a partial order for G and"-Pv%aG .

R

-

Proposition 1.1.2. Forya po~group G , the followihg are equivaleht:



x_/ -
| »’ - ..
,,,,,, — - - S - — e e —— e — - i. — T S
'(71) G is dlrected. .
(2) Foreach a €6, G={y-z]|y >a and z > a}.
- :}- [ . ‘ . . . o
- (3) G 'generates G . i S . .
S o v L , . - ' =
(4) For each g € G there is an upper bound for g and O . .
We now establish some elementary properties of' ‘E-groups_.
For a,b Ej an B—group we denote by aVvb (aAb) the
. - least upper bound (greatest lower bound) of a and b .
. - ».
Propos:.t:.on 1.1.3. For a, b, x, y € G, an B—Qroup
x+‘(avb)§+y-l-{x+5+y)V(2+bfy)~ p
and
3 _ .
T x+ (aAb) +y=(x+aty) A (x +b ¥ y) . S
Proof. 'Since a Vb Xab we ﬁa_ve
, ‘ : .
- V"x+x—'(aVb) +y2x+apty, x+b+y
. {r!\ N .
and thus f\\s R
e _ I _ o
- x+(avh) +y2(x+a+y) V‘(x+.b+.y),.
'Assumethatforsome z€G6 C T



zzZ(x+a+y)lVx+b+ y)»

-

Then - | . z=x t'é +y and z2x+b+ y,

o
- hence ‘ -X + 2=y > é,b- -
J
- 1 /
andso = -x+z-y=aVb N o
whencé z>x+ (avb)l+y. ‘
Thus we have
x+ (avb) +y=(x+a+y)V (x+ b + y) ..

S e S —

 The dual may be proved similarly.

Proposition 1.1.4. = If G is an &Lgroup and a,b € G, then
X

-(a VD) =-aA-b ; . .

~and dually.

Proof. Since a vb = a,bi we have -(a V b) < -a,-b .

Thus '—(a Y b):f'—a A =b .

If z €G and z fEma-A-=b ,then- =z2-2Z-a,b .~ . - o s

Thus -z > aVhb



.
_ - Sl - _ . _ _ . __ S _ . _ S B ,,,,,L,,
and z=<-(avb) .
K .
Hence -(a-vvb) is the greatesﬁlldwer bound of -a and -b . The
. dual result may be proved similarly.
Proposition 1.1.5. A po-group G is an f-group if and only if, for
all ‘g € G, gV 0 exists. \
Prbof. -If G is an £-group, then it is clear that gVvoé€cgGg for
all g €G . *
”‘ConvexseI?* 1§;:g VO “exists in G, for all g €G ,”'”””*”Wii?*:‘
‘than for all a,b €6 oo o " ,
[(a~-b) V O] + =4 V b~ ’
and . _ e e _ U _
;,af.

Proposition 1.1.6. Let G be an,Z-gtou@. Then; for each positive

integer.

Proof.

1nteger

n, naz0 implies a=>0.

We first use induction to show that for each positive

“

n ’

n(a A 0)'= na A (n-1)a A ....A a A'O .[ﬁ\\ ] i

The result holds for n =1 . Assume the result is true for n-1. Then

£

B



g mem e e mm el e e f© e Cif b el

‘n@aAo0) = (n-1)(a A 0)+ (aA O) I

[(n-1) (a A 0) + al A [(n-1)(a A 0) + O]

T v A S - ‘ (by Propositioﬁ 1.1.3)

[2

= [((n—l)aAEn-Z)éA.;.AaAO)+a] A ﬂ(n—l)aA(n—Z)aA..:AaAOJ .

~

= [naA(nleéA;..AZaAa] A [(h-l)aA(neZa)A...AaAO]
S T —ma A GDaA . Aan0 . B
B ) - ,J ’ . s ®
Vs o : . ' ' 0
Now; if na 270, then 'na A‘O = 0 and we have
T -n(a A0) =na A (n-Da.A ... AaAo o # : , .
. ) . T
= (n-1)a A ... AaAD i
= (n—l)(a'A 0 . .
Thus a A O = 0. and heyce' a=o0.
~ Corollary 1.1.7. An f-group is torsion free. , -
_Proof. et g €G ‘and n € N . If ng=0, then ng=0 L

ﬁamiﬁéﬂ&'Hm@@rﬁ”q?ﬂthqu#9>@°ﬂﬁmﬁby

induction ng >0 . Thus ng = O implies g =0 ."
s



Proposition 1.1.8. For an #2-group G , and a, b, c € G if

aVe=bVec and aAc=bAc, then a =Db . Consequently G is

" a distributive lattice.
‘Proof. Since aVc=a- (aAc +c’, we have
a=(aVvec -c+ (aAc)
= (bVc -c+ (bAc) . RN .
{1_ b . ., .
‘ . .
g Thus G does not contain a sublattice of the form
©or x
®
~ ;and hence G is a distributive lattice. T
For.elemenfé ra and b belonging o an ¢-group G , if
a A'b = 0 we say that ~a and b are disjoint or orthogonal. We note t

I3

that disjoint elements commute, for if a A b = 0 , we have

"

[y



5 . - llf
- y a+b=a=-(aAb) +b : )
(\?-a+(~aV—b)+b )
v ‘ 3
. 3 =Ab V a -
‘;( \’ : »
T o =aVbh .
=b+ (-b VvV -a) +a
=b =~ (b Aa) +a : -
=b + a..::)
We define the positive part of a, a , tobe a Vv 0, and
- the negative part of a, a , tobe -aV 0°. :
. 4 © . . N a
-~ .Proposition 1.1.9.  For an f-group -G--and an element .a belonging .. .
" + - L+ - ) . . ' ‘
- to G, a Aa =0, a=a =-a and this the unique representation
of a as the difference of disjoint elements. k \
Proof. For an element a of an #&-group G we have o T
‘ a+a =a+ (-a VVO) <0va=al | :
' ' . ¥ + - ’
and hence . a=a =~a .
.~ _._Also _ -
+ - RS s |
a Aa = (ata) ANa = (and) + a =-tan0} - (aA0) =0 .

Suppose ~a = x - y where x\A ye= 0 .



= ((x-y) A 0)

-((x)\y) -y)

Proposition 1.1.10. An E-gi’oup G s . an O-group if and only if,

‘ » | : oo
a>0 and b >0 impliess a Ab >0 . . -

Proof. If G.is an o-group, then a A b = min {a,b} > 0 .

Con{rersely, suppose the condition holds and consider g € G , g#0 .,

By Proposition 1.1.9,

B B S TR P B IR

+ - - + -
. g=9g -g w@and g Ag =0 i
- ’ + - - i ' - “
and hence either g =0 or g,=0 . Thus either g=-g <0 or :
+ ' N
g=g >0 . Therefore G is an o-group.
S - N . | ~
The absolute value ©f an element & € G , denoted by la|
- oot T T 77"’} Tt o T o mE e e T ""7\:7""’ CTTTT T T T T T o T e B
is defined to be.a V -a . -
Proposition 1.1.11.  For G an. £-group and a,b € G , we have
(1) Jal =0
&



‘ 13,
(2)  Jatb| = |a] +7]b] + |a] o R S S
o f

 proof. . . .

(1) lal = a v-a, andthuq |al > a, -a .

So : .Z'al >a-a=0,

hénce by Proposition 1.1. 6 |a| 20 . . | ) C::};"/
(2) a+b = |al+ |p| + |a] . |

~ - o

also, -la| - |b] - |a| <-lal g lol < 2
Cand 8o -’fa+b)' < {a] 4'1b‘fﬁ+ Fafl .

Theréfore) lafbl,ﬁr(a+b) V ~(a+b) = 'él + Ipl + |al.

Section 2. Homomorphisms, Isomorphisms and Subétoups.

Space does nét allow the inclusion bf all prqcifé. Having
ldescribe»d' sc;me of the basic concepts of £-groups in detail, we wm\
" now c;iscuss;, without proof, some i;r;portant'results.from the next |
. level of development of ‘the theory. However the inclusion of proofs
will resume whenb closer to the jfocus of the vthes_i45. Detéils of the -

following results, which are concerned with honiomx'phisms,

“isomorp h’.,i:sms*’and*”subA grdups;’of’ $¥=groups, may be found- infchra&*'ﬂ?rj and — I

~ —vBigard et al 1 1.
A subgr@«/‘ls of anKB-grbupb G is said to'be an £-subgroup -
: - - t

"of G if S 1is a sublattice of G . From Proposition 1.1.5 it Y




14.

L4

follows~th5trws~'iS'an'8=subgroup'of"'G “if“andwonly’if;“”S‘V'O’E'S’“"”’”

e **f@fﬂéﬂh s €5 . We note ‘that S may be an £=group with respect to

the induced partial order, but not an 2-subgroup of G .

t s , . -

Proposition 1.2.1. Let T be an isomorphism from an f{-group A into

¢ . an f-group B .'_If n' preserves A or V , then AT is an‘£-subgroup

A

of B and both T 'and ﬂ—l preservé <, A and 'V .
, , - . ,

~Such a maé is called an $-isomorphism.

5

A homomorphism 7T of an é-group A into an f-group B is

called an £-homomorphism if 7 preserves A and v .

Proposition 1.2.2. Fér‘an isomorphiSm T of an f-group A into an
o0 : L . ¥

8=groﬁp B , the following are equivalent : .

(1) 1 1is an f-isomorphism , | -

(2) xANy=0 implies xT A yT = 0 for all x,y € A

-

L3y @V O)T=am v o ‘foralla €A L

We turn our as;ehtibn to subgroups. A subgroup S of a
"po-group G is said to be convex if, for. a,b € S, g € G azg=bhb

implies g € s .

-

Proposition 1.2.3. For an £-subgroup S of an £f-group G , the

folygwing are éqﬁivalent.

(1) S 1is a convex £-subgroup.

- (2) | The set of right‘cosets'of S forms a distributive lattice under
therrder given by: S + x =8 +y if there exi s €8 such

that s ¥+ x =y and, for this order, (S+x) AV(S+y) =8 % (xAY) &
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(3) If g€G, s E S and ;lgjw§7(s| ., then g € s .
A normai convex-&—Subgroup;is called an f-ideal.
Corollary 1.2.4. "If H ’is.an f-ideal of G , then the right cosets
‘of H -form an £-group. \/\;.%
Proposition 1.2.5. Let T be an E—homomorphlsm from an 2 group G '
into an group H . Then Xkerm 1s an 8—1dea1 of G and G/kerw
is Lﬁg‘ ;agrphicto Gn .
A convex {f-subgroup M of an £L-group G is calledmregpiar*”f'”ﬂv*”

if M .is'maximal with fespe;t to qof containing some ‘g € G and in
this case M is called a value of g .
A convex B-subgroﬁp P of an Z—groﬁp; G is called prime if,
for, A,B ponvex'ﬂ—subgroups'of. G, P 2_A N B implies either —P é_A
,QF,,?AE.BWs:,1hewgqn¢epﬁm9£ué:p;imewsybg;oup is:iﬁpgrtantminwthe,&éxiousﬁiww,W,,;

ways used to represent Z;grdups.

Proposition 1.2.6. For a convex-ﬂ-subgroup M of an £-group G ,
following are\equivaieht

(1) M is regular.

(20 McM =n{clMmcc,c convex L-subgroupof G}
A £ : |

-

' (3) M is meet 1rreduc1ble 1n the collectlon of convex. - Subgroups of G.

If Mis normal,,each of'the.ébove is equivalent to

(4) G/M is an O-group with a convex s group that covers théﬂw~‘//“\¥

identity M in G/M,"

r

Proposition 1.2.7. For an £-group G and a convex {-subgroup P of

G , the following are‘equivalent



LA , »f:;>. S

(1) P is prime.

‘16,

(2) If A, B are convex £-subgroups of G and P C A, P C B then
: ' ' B R
PCcANB. . | ‘

# ) S . "\r\a/

LI

(3) If a,b € G\P then a A b € G\P . . . - .

(4) The lattice of right cosets of P is totally ordered.

~

If P is normal each of the above is equivalent to

(5) G/P is an o-group.

It follows from Proposition 1.2.6 and 1.2.7 that each regular

subg¥oup i# prime. -’ )

Section 3. Ordered Permutation Groups.

=~

In this section ;::;%troducevordered permutation groups and
.will discuss Holland's Representation Theorem, one of the fundamental
tools uéed in examining #-groups. The importance of ordered permutation
"groups will be seen agéin in Chapéer 3, where we cdnsider ordered wreath
products of ordered permutation groups and their role in the étudy of
varietié; of Z-groﬁps. An exténsive treatment of ordered permutationv

groups may be found in‘Glass’[Gl.' =

‘ ‘As we are dealing with permutation groups, we change. from
additive to multiplicative notation.

—— JE S Y S —

An ordered permutation grouo (G,) is a permutation group G

acting on a totally ordered set .Q such that

(1) for allo,B €Q o < B8 if and only if ag < Bg‘ for

*

all g € G,
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and - (2) {g €cGlag=0a .for all a € Q} = {1}, where 1 is the

. . 4
identity element 6f 6 ., ‘ X

The group (G,£) 1is a po~group, where the partial\order < on G . is
given by: - ' , } ‘ : L
for g,h € é} g<h if and only if ag < oh for all o € Q. .

If this partialsgrder>qn‘ G 1is a lattice order, (G,Q) is called a ‘

lattice ordered permutation grougﬂ(ﬂ—permutationvgroup), In this

b

case, for all g,h € G and all o €Q
a(g vh) =og Vah and dually.

An example of an’f-permutation group is the group A(2) of all orden

preserving permutations of a totally ordered set { .

‘The lgétvmaiﬁ~regultﬂof~this~§£apter;~H011and’SW'“v”“*"*”'"':”
-répresentation theorem, is an analogue of-Cayley;s theorem in group
t qry. Hollénd [9] devéloped his result bx means of sé&eral 1§mmas
d we ;ill outline the main ideas used;
For each 1 # g € G , there exists a regular (and therefore y

prime) convex 8—subgroup‘ P(g) of G which is a value of g . Then

"G/P(g), the set of right cosets of P(g) in G ; is totally ordered

in the partial order given by: '~

P(g)x < P(q)y if there exists z € P(g) such that "zx =y .

~ We denote the group of order preserving automorphisms ‘of G/P(g) by

a(c/p(g)). o , .



~

= éagh g € H induces an automorphism of U G/PYg) as follow

 Now the mapping. ‘0(g) : G > A(G/R(g)) definéd by

x a(g) = B(x,P(q)) ,

where  B(x,P(g)) € A(G/P(g)) is given by

(P(g)y) B(x,2(g)) "= P(g)yx ,

is an {-homomorphism of G onto a trapéiti&e”&—subgroup B(qg) of
A(G/P(g)).

. _Holland's main embedding theorem stétés that G is
‘ Q

—8—isomorphic to a subdirect sum of the £-groups {B(g) ] g € G} .
Further than this, we may totally order the set | U G/P(g).. We
. ' g€aG ‘ '

- first order the collection - { G/P(fg‘:i | g- € G} jn any way. ~Then for —

x,y € UG/P(g) let x<y if"x,y‘E G/P(g) ~and x <y as elements
g€G - e ‘ '

of G/P(g), or if x € G/P(g) and y € &P(h) where -G/P(g) < G/P(h).

. If H- is the direct sum of the {-groups {A(G/P(g)bl g'E_G} , then .

-

) g€G

K

where x € G/P(g) and ﬂg‘ is the gthbéomﬁonen of @& . . .
. N 4 N V .v N )
From this we have the following proposition.



b

- — - O T

- proposition 1.3.1.. If G is an 4-group, G is &-isomorphic to an

— , : — : v : _ — :
£-subgroup of the é-group o;,bréer preserving autpmorphisms of a T

totally oraéréd set.

=
-
a4

S

) N
.

.
w ' >
¥




- CHAPTER 2~

- . . . .

Certain Létt;pes.of Subgroups.

In this chapter we will be concerned with lattices of

-, subgroups. We begin by CQDV,VS,‘id,e,I-',ingA the lattice of convex £-subgroups

=

LR the secénd section, we will drop, the requirement that our ,group is

-

dlrected canvex subgroups of ‘a partially ordered group form ‘a

dlstrlbutlve lattlce.. N

w

. s

| Sectlon 1. Lattlces of L-Subgroups.

'In this section we shéli show that the lattice of convex ‘

e . . :

£-subgroups of an £-group is distributive and shall determine those

£-groups for which the lattice of all £-subgroups is distributive
. ‘ . - N N ) ‘> .

~ The next result, the Riesz decom'positioh_'prop’erty, ‘is

important in the :cori%ideration of the lattice of convex 8-subgroi;ps

- of an Z-groupand {:}ie latt;. cé of BA;subgrouprs 7 of an 8—grpu§. Later, ‘ in

=~ ——'ff—:—iatﬂc& e}:dereépand w::ilﬁteek a,trelrcmmstances Jemder which the = == s s

Proposition 2.1.1. (Conrad [4]). Let G be an £-group and

.0 < a, bL/,' .++sb_€G such that a=Sb + e b_., thén there exist

aee + c . where 0 = c. =< b,

.o .,‘“’,C € G such ‘that ™= = c . 2re 0 <c¢. <b,
R i i-

R ”l.”' _rrtt T , lr,,i
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Prodf.  We use induction on n .
If . 0<a<b +b, ,let 'c. =aAb =20 and c, =
- Tt R S 3 B S €1 2
Then, 0=a = c, + <, )
and = = - +
0 <, c, *+a
. :
= (-a V,—bl?,f,a
= - + .
0V (-b, +a)
o 7 o <b, .

Thus the result is true when n = 2 .,

for all positivé'integefs less than n .

"Aésume the result holds

pet a,—bl, cees bn >0 and a < bl'+:... +b . .
~ Then
and hence, by the induction hypothesi €G-
A3 J -
and 0<d=b_+
’Again, by the induction hypothesis; 0=<4d=s bl,+ ci. + bn—l implies

" that thererg§;sf' Fl"fffénfl

-

€ G such that

*

SR



N ,
- L , d=c;_+ .o +cn-:-l 7 7
| | and 0 = cy <b f?r i=1,...,n"1.
Thus v;éhave .. ) ‘

~where . : 0”&}6—7”5”?0. - for-- i== '1%,*;. s DR R T

We shall denote the collection of all convex 8-subgfoups'of
_an £-group G , by C(G) .

"Pr0positibn 2.1.2. (Conrad [4]). Let G be an £-group, then C(G) is

' :a""compl'eté’ dai S’tfibilfi ve sublattice of the lattice of ‘all subgroups of  ~

G, and for A, By € Ce), (A € 0,

S

A A (Vv B>\) = V(A A B>\) .

Proof. ' We first show that if {By | A € A} € C(), then
[UBX] € C(G). By Pfoposition.l.2;3- it is sufficient to show that for
rg N € G N r 7bl""t v '7'bh '7"€7 7LJBX77’ T 7‘|' g’l’irf;.i'l’bjii+7' 4 :' 7'7'i7+' bﬁl o 7*inplieS'*4g'*'€ 7[“%17' e

- wow, g' =gl = b+ e+ b |

n

L T N N (I G SRRRIE Y

-\\& - _ - . (by Ptoposition 1.1.11). o a

7
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such that

where.‘ ‘ O,‘S‘qgl = ]b

Ibn_ll, ey

< |bf|.

o
A

= 9op-1

Since each B)\ € C(a), 9; € UB}\ for i=1,...,2n-1 , and hence »
CERCMUB;Y L T T T T T T s e e e S
g € WB T .
 similarly g € '[UB}‘] and so g = g+ - g € [UB)\] .
. - &

tus we have that [UB ] € C(G) .
\ B . N

A
Clearly' ﬂB)\ € C(G) and therefore \t(G) is a complete subla{tt.ice of :
the lattice of all subgroups of G .

We must now show that P

Clearly | A A (V Bi) ERTE.W) B)) . f’ﬂ\\>

Let a € A A (V Bx)'_a >0 .

Then a = b, + ...+ bn where bi EUBA for i =1,...,n.

1 :
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As above, i . s "
a = + ...+ C here 0 = c.€ UB, .
€1 ° F Copg WhETE D= A , K,
"Now L= =, = ... = +a - - ee. =Cco . S a,
r % T TG 177 %py T T ’

‘1+1’

“and sihce 0= ci =< , and . A € C(G), we have'-,ci €A .
Thus a can BX)] = V(A A BA)v'agd so 3 A (VBA);E_V(A A BX) .

2 S

o Conrad [4] has posed the question: when is the lattice of .

8-§Pbgrcups of an f-group distributive? In answexingﬂthié,question,

‘we will use the.following results from'group,theory. e
N . T . . .

- N ) ' \‘,\7 ' - . Ay
We first note that a group is said to be locally cyclic if

% each of its finiteiy generated subgroups is cyclic.

Proposition 2.1.3. (Hall [8], Théorem,l9.2.l)». The lattice of sub-

groups of a group .G is distributive if and only if G is 1ocaliy

cyclic.

S

‘ Propbsition 2.1.4. (Schenkman [16]}, Theorem II.2.k). "A group G is

locally cyclic if and only ifiip is isomorphié té a subgroup of a
homomorphic¢ image of the additive rationals, (Q,+). Moreover, if ,G
is torsion free, then G 1is isomorphic to a subgroup of the additive -

. rationals.

If A and B are f-groups, then A + B will denote the

cardinal sum of A and B ,)that is, the direct sum of A and B with

order given by

@+m*={@p [az0 ama bzo}. * -

3
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Lemma 2.1.5. The lattice Qf £-subgroups of 2 +,2 is not distributive.

" Proof. Consider the following subg:oups of 2+ 2.

.22 =v{(a,2a)'| a € 2} ,
) zZy = {(a,3a)lea,€ z} , , 7
ZS = {(ar5_a)'| a € Z} . ,V '
) z, ’is an 8-subgrogp of Z+ Z since g o i
| y ‘ (a,2a)" a < 0
(a,2a) A°(0,0) =
7 (0,0)‘ azo
% .

belongs to Z, .

and Z_ are ¢-subgroups of 2 + Z . In fact these

Slm;larly Z3 5

‘subgroups are totally ofdered.
Now , ?2 n Zy = 2 ﬂ Zg = Zg A 22_? {(050)},‘

[}

and, 12, U 2;) = (2, U] = (25U z,] =2+2 . 2

¢

Thus we have the following sublattice of the lattice of all £-subgroups ‘

“of 242 & . — ' o ‘ g




I

and we see that the lattice of f-<subgroups of 2 + Z is not

distributive. ‘ ) o

L

PropoSition 2.1.6. The lattice of £-subgroups of‘anQZ—éroup, G, is

distributive if and only if G 'is_isomorphic to a subgrbup of the

P J.

additive rationals.

Proof. We consider two cases.
(i) G is totally ordered. | | .

Then eVery subgroup of G is an fZ-subgroup, and thus the
lattice of £-subgroups of G is distributive if and only if G is -

iocally cyclic, that is, if and only if G is isomorphic to a sub-

group of the additive rationals (by Propositions.2.1.3‘and 2.1.4).

v

(ii) @G is notAtotally?6rdered. i

There'exiét a,b €G" with aAb=0 (by Propositional 1.1.10)

.
= the subgroup generated by the élements a and b ,

[a,b] = [a] + [b]l =2 +'z‘.'

Further, [a,b] is !ﬁpg—subgroup of G . Thus the lattice of

f-subgroups of G contains a sublattice which is not distributiwve

(Lemma 2.1.5). -Hence the lattice of #-subgroups of G -is-not - ..




- Section 2. Lattices of Convex Directed Subgroups.. - . ‘ T 1

l ’ .
We now proceed in a different direction by relaxing the
.ow

assumption that our groups are lattice ordered. * We shall consider
the circumstances under which the directed convex subgroups of a

partially didered group form a distributive lattice.

A pértiéllonrdered group (G,f)r is a Rieszrgroup'if, fpr

any elements a, b, c,‘d €G with»‘a,b,E c,d , there exists an
element x € G such that a,b < x' < ¢,d .

Clearly f-groups are Riesz groups. )

Proposition 2.2.1. (Birkhoff [2]). A partially*ordefed group is a

Riesz group if and only if it has the R%esz decomposition property.

>

-25925. Let G be a Riesz groupiand le£ a, b, x € G Such‘that
0sx=< a+b .. o R
Then 0,x-b < x,a and since G isya Riesz group, there exists
s €G ‘§qch;that 0,x-b < s = x,a .
Let t é»%s+x . Then t =20 and s+t = x < s+b whéncé 0=t = b .
Thus given a, b, x € ¢t with 0 = x = atb there exist s and t
in G such that x=s+t and O<s<a , 0<t=<h .

An easy induction argument then'yields the full Riesz decomposition

rproperty (seefProﬁoéitionWZ.l1i14quw e B

 Conversely let” G be a po-groups with the Riesz

~decomposition property ‘and let 0,x = y,z . _ - ‘ ,



Then o 0 < x ¥ (=x+2) =y + (-x+z) _‘ o o -

0<z=<vy+ (~x+tz) //—‘i ' o '
- . . B 2y ; )

and by the Riesz deéomposition property, there‘exist_ s and t in G
such tha?//6~$ s=y ,0=t=-xtz and =z =‘s+t‘. o ok
Then x < x+t T z-= s+t and hence x < s, and also s < z .

Thus we have 0,x < s < y,z and therefore G is a Riesz groppi

Lo
' Proposiéion 2.2.2. Let (G,<) be a Riesz‘group and (C(G) be
the set of-.all cqnvék directed subgroups of G . Then C(G) is S
a disfributivé sublattice of the lattice of all subgfoups of G,; o
Proof. Let H and K € C(G).
>Clearly HN K is convex. 2 )
let a,b € HNK . Since H  and K are directed, there exist . | .
h€H,k €K such that  h > a,b , k > a,b .
Now, G 1is a Riesz‘group and so theréuééisférrﬁ Créjugﬁéhvgﬁé£77”"1ﬂrirr7HNW7”W
. . | \ ¢
a,b < x<hk . - » F
. . ’ . R L/“:
However x € H1 K since both H 'and K are convex.
‘ i ‘. » ( i
' Therefore H 1 K is directed.
Thus HN K € C(G). . - ' ‘ .
We now showthat [H U K] € C(G). ’

° Iet: - h '€7 {H7’U K]7"7 "ﬂle’n"fi*h Tt T mTmTrTe ;7”" T T T TTm T T ’;7 Tt

h=h. + ... +h where h, € Hor h, € K for i=1l,...,n .
1 - n i i 2



u' a ’ . - * | i ) . 29.

&MfM'hiEHﬂK4fﬁél“&gmfyx H beaupmrhmﬁimbm»ﬁ

‘ hi, _and 0 in H UK; ;iuc,h ,a.n: uppex:,bgundjxistiasjlqthf}l;and

-

K are'dirécted;
Then, - k/zh,0 o for i=1,....n
s k. + ...+k >h 4 ... +h , O
o 1 n
= k1 + ... +k €'[HUK] ié‘an upper bound for h and O
N . . , i :

= [HUK] is directed.
Now let g €G ,h € [HUK] such that 0<g<h .

Let 'h = hl + 2. + hn for some "hi € HUK i=1,...,n.

Again let ki 'be an upper bound in H U K for 'h£~ and O .

Thus we have . , " o ’ N
A

0=g<h=h +...+h =k

~e
¥

By the Riesz decompositionvproperty there exist cy €G,i=1,.0.,n,

such- that.

mmﬁﬁmwammximmmgwi%ff&r"ﬁr'f=iﬁ;qﬁ,w*9m"

b

. N . a - )
. g ) AN

and thus g.€ [HUK] , and [H U K] is convex.

Therefore [H U K] € C(q) ]
—~ N
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-~

. ) » . ] o
Wgrnowrhavewthat— C(e) is a sublattice of the 1attice,ofWallisgbr,<,‘,:,,

groups of - G . It remains to show tha,t the’ distributive laws hold S
. - M ) L .
in C(G), that is, for A, B, C € C(G)
. AA(BVC =(ADV(AAC . 3
“Clearly AN [BUCI2T[(ANB U(GANOQCIL . : ,
o ' i ' 7 '
BUcCl, a>o0.
Then a= b, + oo + b for some b, €B yc,i=1,...,n.
Now, let i =1,...,n, let ey € BU C be an upper bound for
/b. and 0O ., - B
> l -
Thus,a:b +...+b EC—' +-.-+C . -1/ - .x\'
: 1 1 n 1 » n . ) ‘ ; ;
‘ B _ .
Then by 'the Riesz decomposition property,
‘ » Ao’» = . : b
I . o \ N B B ) B .
=d + ...
a dl 4 dn
where 0 < di S,Ci for  i =1,...,n , and by convexity di €eBUC.
~ Also, we have-
<3 = ®d, 4 ee. = A ~ad - ...-4d,,, =< )
0= q '==d 4 +a-d - d;,, S a
‘ x,
and so di € A since VA is convex . - N ‘ ' .
Hence d, € (AN B) U (AN C)

and thus a € [(ANB) U (AN )l

-
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Therefore AN [B U.c] S;[(A ﬂ‘B)_U‘(Afhﬁcl] , B ,ﬂ,ﬁﬂ,im;ﬁ,,

and we have

AA(BVC =(AAB V(AAQ .

=9

Fihally we con51d9r compatlble tlght Riesz groups. Such

groups are Riesz . groups and thus the convex dlrected subgroups will

BN - T
form a distributive laEETBQQ_JyzG;ver‘we are able tO'tha;nra '

stronger result linking this lattice to a sublattice of the lattice

-+

of convex £-subgroups of an associated $-group. -

A partially ordered group, (G,S), is a tight Riesz group
if for’anyAelements a, b, c € G with a < c and b < ¢ , there

exists an element d € G such that ;

a’kd@<pb and a<d¥<e. o

*The order, = , is then called a tight Ries%»order.'(/

An element g € (G,<) is said ﬂé be pseudopositive if g 3 0 but
~ ) V ' o .

a>0 implies a+ g >0.

An element g € (G,f) is said»fo be EseudoZero if both g and -g

are pseudopositive; —— - o o o T

Aff'46%4%——h354n04pseud@zerasfwe—w1ll—Wf1tef g;>4}—4xy4Mﬁn}44}$L£L—————4——————47

or g .is pseudopositive. (G;Q) is a partially oxrdered group’ and\

we say £ 1is the associated order.
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jGiven an f-growp (G) and 3 dont Rifsz growp (G,%) without .
pseudozeros, if \<77 is & assoc:Lated order for =, then. = ' is said e

to be a conpatible ,tiglﬁ: -Riesz order ‘for (G,{) ’ and (G,=) 1is

called a compatible tight Riesz group.

Lemma 2.2.3. i.et ‘(G‘,‘O be an Z—group with ‘c'ompa‘tible tjr.gh,t‘v Riesz

€

order - < . Let H ;é {O} be a convex - dlrected subgroup of (G,=),

. th§n \ convex -subgroup of (:G,\{) L 7 7'_ o

Proof. Let ’a,‘b G.H, x € G with a § x< b

. If a=b", then x = a £ 5. - o P
If a#b, 'sinoé (H,<) is directed, we may assume a <b . Then, _
- (b-a) <axxb<b + (b-a)
) , \
- —_ orr,f _ _ e _ » —_ _ _ _ R _ [T - S
. Y : ) . . e .
~ 2a~b < 'x < 2b~a . o v
> ) ' et e V . Ea'::
Since Hf is convex with respect to 5 r X €H and so H ié convex®
with respect to . /Q_m ’ , : e ™™
‘Now let y be an upper bownd in (H,S) for a and b .- ‘
R ¢ ‘
_ _ [ _ ,7 ) i R . ;f{ ———— \7\3
Yy >a,b ) 7 .
~ =2 y % a'b :
= yravb2ab . e
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;?is a V,b_ﬁjﬂ , since (H,4) is convex. ; o
 .‘Therefore, (H,§) is a convex £-subgroup of (G, ) ," o N R
' We shall denote by (,\(»6‘,‘%) the lattice of convex &-sub—
groups o‘f (G,4), and bf C(G,S) the set of convex directed
subgroups of (G,<). :
Proposition 2.2.4. C(G,3) is a sublattice of C((G,Y) "an*a's'o is
distributive. = . : S
Proof. By lemma 2.2.2, C(G,<) < C(G,5) L\ ‘
Let H,K € C(G,3) .
. ‘ . ) . ,/'\ -
It is clear that H Nl K is convex..
ILet. a,b € HN K ,'then since H and K are -directed, there exist
i . . N . - .
r,G‘H,ﬂs € K such that
o e S S S
T . ¥ >a,b s > a,b .
, - . - , ~
Since (G,= is a tight Riesz group, there exists .x € G such that
F ~ . \\
hra,b‘< x <r,s .
. % |
Now, a < x <r and (H,S) convex implies x € H .
Similarly, b'<x <s , and (X,S) convex implies x € K .
~~  Thus we have x € Hfl K with x > a,b and Hencéfﬁﬁiﬁ K is directed
and H Il X € C(G,Q .
- . . ) ’;/
We must now show that the join of H and K in the lattice o

+ C(G,) 1is equal to'the join of H and K. in the lattice C(G,§ .
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%Jét_’l.rhe;the;smmst convex directed subgroup of (G,=) containing
H and . K . ]
' Let L, be ‘the smallest convex £¢~subgroup of (G,-\<‘-) containing <
H and K .?
. - »‘ e = . B i . N ) .
We w:.shrto show Ll L2 . Clearly, Ll 2 L2 .
) et T={g€c|lg>0L. -~ o ]
~Weclaimﬁ§ﬂ:‘c.'#¢. 3
 Let a€H, a#0. If a>0, then a€HNT.. If a<o0,
e "'”%E:f:FFﬁqIF’:.';'TEEl’a* ’aﬁ; = %afréﬁﬁcc’mpa’ parable; then; “since ~H T
is directed, there exists b € H such that b = a,0 . Since
‘a$0,b>0 and thus b € HN T . 1In all'cases HNT#P .
Now, L22H and so LéﬂT#ﬂ. _f.,
Let t €L, N T and let a,b € I"z . Then,
t+ (avb) >avbapab
R *
that is t + (a V b) >>b and thus L, lS ‘directed with respect;
to = ﬂ : ,
L2 is convex with Vespect to < , and since < is a refinement
of =, L, nu.ist.also be ‘convex with respéct_ to =.
i S ) o i & o ' A o
Thus L2 € C(G,<) and since L2 > H,K , we must have L, 2 L. .
. - _— & RS
Thus Ll =L, as required.
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Varieties of I~Groups and Wreath Products

d .

"In this Chapter we present several examples of varieties of

El

lattice'ordered'grouPS'and'di5cuSS'where they are placed in'the‘lattice
of £-group varieties. Wreath products are 1mportant 1n the study of

fvarletles of E-groups and these are also descrlbed, together w1th a

:generallsatlon, “the twisted wreath product.

Section 1. Varieties of £-groups.
- s

vaariety of f-groups or f-variety is a class of £-groups

3

’Eclosed under'taklng’ﬂ =subgroups; - &-homomorphIC'Images*and'cardlnal
products. Equlvalently an 8-var1ety is the class of all B-groups for
which a given set GpossTEIy\infinite) of equations, Which may involve
both group and lattlce jperatlons, are laws. |

| Some examples of well known B—group-varletles are as

,followe:.

Example 3.1.1. The triviallvariety, E , consists of all'those B—groups

-w1th one’ element.v The law deflnlng thls varlety is: X=YyV .

Clearly this variety containsrone element, the trivial £-group {1}.

 Example 3.1.2. At the other exfreme, we have the variety L con-

i
M

_sisting of all f#-groups. This variety has as its defining law: x



Example 3.1.3.

d

 The abelian variety A is the variety consisting
4 PR - = :

XY =YX .

~law given by: (x A’(y—lx—l v vVil=1 .

the yariety for which the defining léw is: xnyn =¥y'x .

of all abelian f-groups. The law definihg'this variety is: ; ,
. o @
Example 3.1.4. An £-group is said to be representable if it is a

subdirect product of totally ordered grpups} The - collection of all

representable EFgrdups‘is alvariety, denoted by R .with defining

. ' ‘ - A <’j’ o
This result may be found in Conrad [4]. Theorem 1.8. We note that ' o

-this- i-s:the;ﬁ;rs{';ﬂﬁtQeur:—exanp];es,—:f&&;which the lattice operations- oo .o

I

~

appear in the defining law.

Example 3.1.5. - Let G be an Z-group. A convex £-subgroup M of G

is called a value of g €G if M is maximal with respect to not = (/—5,

COhtaining g . Further, M is called a normal valﬁe if

A S S

Mau. =nN{c €C@ | Mmcct.
#

Ap B-group_ G is called a normal valued f-group if each value M in

G 1is a normal value. Wolfenstein [18] has shown that the class
of all normal valued ¢-groups’ forms a variety N which has as its

defining law: (x V 1)(y V 1) < (y V 1)2(x % l)2 . .

' Example 3.1.6. Let n be a positive integer. Then L(n) denotes

S ———— e R B

nn

. We'use L to denote the set of all £-group varieties.
. . . . / : .
We may then consider L as a partially ordered set, the partial

'order being inclusion, that is ' S

7



N 37 .._'
U=V 4if andonly if UclV .
This partial ordei' becomes a lattice order if we definé, for
| ’ - . * ‘ 1 - P .
-{Ui | ie1}cL, '
AV, = NV ' \ ‘
ier & jer *t
and-
”V”Uﬂ’éﬁ’ﬁ“TUjE*ifT"sz‘v;'”fbi’ail iery . T

ier v ier |

These definitions make L a complete lattice since

[ N o ‘ ) e,

-var {G; | i €1} =n{U €L | G; €U for all i €I} .

l‘ We may define a multiplication of &-groﬁp ‘varieties as
follows: for U and V € L , an Z-group G belongs to UV if and
‘only if G contains an £f-ideal H such that H € U ana o/m €V .
It can be shown that L is closed under this multiplication .

and that the multiplication is associative. Thus we have that L is
~a semigroup. ~Further than this L -isa lattice ordered semigroup e

o ‘wii':h an identity, namely E j



‘It is of inte

varieties are placed in the lattice L .

Proposition 3.1.7.  (Martinezj[12]). The normal valued variety, N,

is idempotent. - : g

g

Propoéition 3.1.8. (Weinberg [17]). The abelian variety, A , is
_ : s s ) ;

the smallest proper £{-variety.

Prggpsition 3.1.9.  (Holland [2]). The normal valued va?iety, N,

is the unique ldrgest proper lﬂ—variety.

The last two results mark one of the differences between
the lattice of varieties of f-groups and that of groups. A »TE

connection between the.SmalléSt proper f-variety, A , and the largest

proper <{-variety, N , is givén by the following~theorém.

. ,

”Propbsition13.;i¥Q,- (Glass, Holland and Mccieary [6]).

. . | ’ . T T T T T T e e e T - — —
N= v A", -

n=1
This result has the following two corollaries. _

Coroilagy‘B.l.ll. "If V is'aﬁy properb f-variety, then the powers

»
of V generate N .
Corollary 3.1.12. The only idempotent f-varieties are £ , N and L.
" Martinez [11] and Scrimger [15] have pz éfﬁéﬁffﬁgfﬁﬂgm‘ﬁ ng
properties concerning thmgtizm\.\l\\‘ e




Then (W,2) is an order preserving permutafion group, the a&tion of

W on Q being given by, for all (a,8) €  'and all (§,h) €W .

39.
(ii) For each positive intégerr ncizﬁL(n)'ﬂ R=4A.
(1ii) 5574;ﬁ éﬁam7n77;£éw;ei;£1§éi&:biiiéwpositieé%integers, then
- oL NLm =A.
Sérimger also introduced a new class of f-varieties
{S (n) J‘nyé N} such that for each n é N ,S() ¢ L(n . These
f-varieties will be diScusseG1in a later section.
g . v
Section 2. Standard Wreath Product. :
In £-group theory, as in group theory, the wreéihiﬁréaﬁéﬁiwrr o
< is of much use in the study of -varieties. We will describe the
construction of the standard wreath product of ordered permutation
groups. For a moré general construction of wreath products of
ordered permutation groups see Holland and McCleary [10].
- Let (G,T) and (H,A) be order preserving permutatidﬁ” - B
" groups. B : ')
Let =T xA; then { is totaily,ordered with respecf to the
order given by, for all‘(al'Bl)' (aZfBZ) €Q ,
- . .
(Gl,Bl) > (az,BZ) if and only if
. ‘
S _ ,
BBy om B =By and 82 o
o Nowlet We={(5m | heH, §eAoal.
' ) ’ . o - A- N . [



8GR = (@) .8, —

¢

and‘multiplication being given by, for all‘(a,h), (£,k) €W,

j ! (q,h) (£,k) = (c,hk)
ﬁhere : ¢c: A>gG isagiven,by -
S(B) = g(BYE(BR) . v

(w,$2) is then an ordéred permutation group with respect to the usual
‘ordering of order preserving permutations. .Further if (G,I) and

(H,A) are.lattice ordered, then so is (W,Q).

. (W,0) is called the standard wreath product of (G,I') and

(H,A). and is denoted‘by_(G,F)Wr(H,Aj; the subgroup of (W,Q) con-

- sisting of those-(g,h) such that —g(B) # 1 for only finitely many - . . . ' ..

B € A is called the restricfed wreath product of (G,I') and (H,A) and.
. . . . i ﬂ . . :
is denoted by (G,I) wr(H,A) .

_' We note that the wreath product (G,T)Wr(H,A) is

independent  of the totally Ordéred set ' on which G acts.

As previously~mehtioned the standard wreath product is

important‘in the study of £-varjeties. 1In particular‘we have the

following results) which have‘group theoretic analogues and which'

may be found in Glass, Holland and McClea<X/[6].

¥
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Lemma 3.2.1. Let * (G,I'}) and (H,A)'”bé’Z-pérﬁhtati6n3gfoﬁ§§. 'Tﬁen”""L

L ¢

ELVEE{(G7T7WEZH;KYT'=‘Elvng(CfPTWfTﬁ}KT??WW'uJWW*;ﬁmﬁW*?'*“A

Lemma 3.2.2. Let (G,I') be an f-permutation grbup'in the f-variety

-

u and let (1, M) 'be a transitive 8—permﬁtation group in the f-variety
v . Then (G1F)Wr(H,A) belongs to theyﬂ—variety uv ..
Ve may define Wwr'(G) inductively by
n, . . n=-1,

Wr (G) = (Wr “(G))WrG .

Now let (Z,Z) be the regular'representatidn of the‘iiéegers~and
’ . : : ) “4 ) . N

- (R,R) the regular representation Of‘théfreéls.-'Aﬁ”eaéy‘induction'

argument yields

<
.

Lemma 3.2.3. Wr'(2) € A" and Wwr'(R) G(A'n for .all positive

_integers n . , . b\\\f
We say that a collection {(Gi,QiL |Ai € 1} of
f-permutation groups mimics an £-variety V if the following two
conditions are satisfied:
- {1 Gi € Uj for all i € I ;
(ii) for any transitive £-permutation group (H,A) with H € UV,
for any "A €A , any finite set of words {wp(x)} and any sub-

‘stitution x +h ‘in (H,0), there exist elements i €1 ; o € Qi

HEN

and a substitution x > g in G, such that Xwp(h) < Awg(h) if

and only if awp(qg) < awg(g).

Y s

With this definition Glass, Holland and McCleary [6] proved

" the following results on product varieties.




\ . B ) 42.
Pmposit’ion' 3.2:4.°% 1f U = 8-?var{'(Ui';Pi) |1 €1} and - -
o B e T R U evan P T ~ Le1 s egt = UV
{(VG-j’Qj) I 3 € J} mimics V', then BAY&{_(ui'ri)wr(Gj'Qj)I.:"GI'J, J} ' V.
. proposition 3.2.5. f-var(wr'z) = A"  for each positive integer n .
Section 3. More f-varieties. -
/, We Qi,ll noKv‘consider a class of L-group wﬁrarieties generated
by certain £-subgroups of Z Wr 2 .
For each positive integer n , let L
Gn) = {(F,k) | K €2, F: 2+ 2, F(i) = F(3) ~if i = j (mod n)}
CZWr2. ’
G(n) 1is an £-subgroup of 2 Wr 2 . This may easily be verifieci if we
note that the binary operation in-Z Wr Z is given by, ‘for:
,,,,,, e ———_—_—,—, it
! (F,k), '(Grz) € ZWr 2,
(FXr + (G,8) = (F + G°, Kk + &)
’ where Gk(z)_ =Gk + z) forall z €2 . ’ o i

3 ) : ~ .
The inyerse of (F,k) 1is (-F k,-k) and the identity

[y

elemer,it of Z Wr 2 is (0,0), where O(z) =0 for all z € Z .

— - It-is-clear that-if —(F,k),(G,£)-€ G(n), then - —

(F,k) +A(-G-E,-8)

(F,k) - (G,2)

4 7 . “ , = (F—G-8+k,k-8) . I ,,,‘i,,,l,, ~ .. \,) I
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Now suppose i = j (mod n),. we have

C - ) = B - e(i-tek)

F(3) = G(3-8+k)

(r-c-0%) (5) .

1l

' ﬁhus;(F,k) - (G,%) € G(n) and hence G(n) is a subgréup of - ZWr Z .

To check t;at G(n) 1is an Zfsubgroﬁp of ZWr Z , we obsefve that

for (F,k) € G(n), we have in Z Wr 2

(F,k) vV (0,0) = (H,h) - where '
(0,00 © k<0

(H,h) "

I

e

\%

o
s

(F k)

A o (7K10) N kfo

-

,where K(i)'= F(z) vO for all z € 2 ;

and we see that (H,h) € G(nli. . - T

For each positive integer n , we define the Scrimger variety,
S(n) , to be the £-variety generated by G(n) . The £-varieties S(n),
. 51 € N , play an important role in the lattice of varieties of Z-groups.

T We 7g.IV'e SO]IE"ba'Si'C' P'.L'Operti_E'S ~ofthes e"vari’eti es Whi’c}fmybe ~found——————

LS

—in Scrimger {15} and Smith {161 — R
Proposition 3.3.1. For each positive integer n, S(n) € L(n), and if

n is not prime the containment is proper. ' " |
x ) :



o

[

44,

- Proposition 3.3.2. If m and n are relatively prime, then

. 2.8(n) N.S(m) = L(n) 1 L(m)

§Pr“op"osition 3.3.3. For any prime p, S(p) covers A in the

_lattice of £-varieties; that is, no f-variety lies strictly between

R

Section 4. Twisted Wreath Products of Groups.

S(p) and A .

>

In tﬁis section we will consider the twisted wreath product,
*a gene'rali'sa’éfcﬁ of the wreath prod"" act, due to B.H. ‘Neumann [13}.
The construction will use a group B , a subgroup S of

B, and transversal T of S in B , & second group A" and a

homomorphism o of S into Q)\\e group of automorphisms of A .

factorised in the form

b=st, s €S, t€rT , (1)

L

Denote by T the mapping of B onto T that maps each

element b. of B to its coset 'represe_ntativé temT.

Thus bT'= t where t and b are as in (1) .

Further, denote by ¢ the mapping of B onto S that maps each’

AL

Given B, S and T as above, every b € B may befniquelg/‘f

e
N’.\ .

b € B to its representative s €S .

‘Thus b0=s where s and b are as in (1).
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We have the following identities where Ky €B e T
T T T
(x'y) = (xy)
3.4.1 .
c _ 0,T.0 )
(xy) = x (xy) .
Right multiplication by elements of B permutes the right -
cosets of S transitively, thus we can consider B ‘acting as a
transitive permutation group on the transversal T by putting for
_b€B,t €T ' . - S
] R
. , '
‘Then for all b,b' € B~ and all t €T,
_ . e o I S
b (b)b L
énd
tl_? t where 1 is the unit element of B .
- ' '

- =

Given a group A and a homomorphism o : S + Aut A, by aS

we will mean the image of a € A under the aﬁtomorphism: a(s),

where s € S . We then have, for all-a,a' € A -and-all-s,s' €S fm-ffi:4

S + -
(aa') = aa'"




then for all t €T ,

i — - e — — ,46. S,
~ . ¥
We now proceed with the construction of the tw15ted
ﬁreath product. V
We form the_'carfesian pwgr' F = aT ; this consirs.ts of all
functions f on T to A',°with componentwise multiplication. ' Thus
. N B .‘4 . . . . . ) . -
flf.z = f3 meansr fl('t.sz(t) = f3(t): for all t € T, .
"Those functions f* whose support, {t e | £x(t) # 1} , is finite,
form the direct power F¥ contained in F .
e : Wewi;}l :nerxtf&fiﬂe'*m a];'ltll' 10m mIPllism —::B;—***,Q,f - B i:nt‘o’"th'e'*:f:;:‘::::::; s
‘groupéf-:u;‘ﬁbrphlsms of F. Agaln the notation will be 51mp11f1ed o
by denotlng t_he image of £ € F under the automorphlsm B(b) by fb ~
For all f§€ F , all b € B we defines fb '€ F by '
| ‘b, . b s(b,t) S ' ¢
£ (t) =f(t)s for all- t € T - :
et e e 4 T — . ,,,,,;, e _
where ‘ s(b,t) = ((tb)Q . . ‘ S
We must now verify that
. L v :
(1) the mapping f -+ f  is an automorphism of F and
(2) B is an a‘ngihommorphism, ‘ » R
that is, for all b,b' & B
B(bb').= B(b")B(b) . }
.
(1) the mapping B(b) . ﬁhi’ch maps 1:
let £ =g°



3 i - - i
- b L
£(E) = gbu:) - |
J,:.(tb)s(b t) _ g(tb)s(b,t_:) S ' i‘v
= f(t ) = g(t )‘ since a(s(,t)) is an automorphism.

| Thus, since {t l t € T}

» £(t)

=T , we have for all t E T,

2}

Vs,

g(t) i
and so 'f-\--gr'and B(b) is 1 -1 . )
- if) B(p)__is onto: _ o T
. T . : 7 ) o . \ }
Given f € F , let g € F be given by
ok bt -1 -
g(t) f(t ysierts ) for all t €T . v
_Then g>(t)- = g(t@ i - |
| ' 1 5'1 1 - "
N =,[f‘((tbjb st ) ]/s’(b,t)
i T o= EF(t) ‘for all t € T .
Thus gb = £ and so the mapping B8(b) 'is onto. .
(iii) B (b is a homoiuorphismr )
Let £,f' € F , then for all t € T 77777 i
g9 = (££ (tb))s(b't) ~
- f(tb)s‘b 1) g0 (D)5,



R This holds for each f € F and hence

. l;/,, I e L >‘,,4:, N ,,,;,,, . ,', — S S — — = — - ,} .
: | = PP
| SEeb
S B(b) :is‘v an axv;tomorphism and ('1)_ 1s pro—ved.A
(2). The map B ié a:aﬂ antihomn'(a‘rphiSm:“
For all t 6 L -we have | . : )
— ,tpb () = £(¢ b@s(bb' t)
SR - . and o (fll b__ f;g—;%f S(letj);:{:!:,‘:i e .'—,{—;;;,::.—,:;iz, e e e
' ' R - NPT
- (f(tbb )s(b 't _))s‘(b,t)
b (s, ) s (b))
= £(t ) T et
> C ‘ |
However, feqalling identities 3.4.1, we have \
s S, B -
s(bb',t) = [(tbb') ] °
= 1 % () 1 %17t
: = 10 o1 1 e %17t
R = s, s b,b) . 3
- ‘\/’nzxs for a11t€T, .- - \ | 0’
- - w» o . ' : )
: 2 = (292w
A
~ andso ,n,,f,,;f,l,)' = (2HP . N
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B(bb') = B(b')B(b) L -
, } »
- and we see that B is an antihomomorphism.'

-

In this way we have B - acting as a grbup of automorphisms

of F and can now form #he group P whose elements are pairs (£,b)

where f € F and b € B . Multiplication in . P isfdefined by

B - - b - } B
(fl'bi)‘£2'b2) = (£, £, 'blbz) .

We must now verify that<this gives rise to a gtohp.

(i) It is clear that P is closed ‘under multiplication.
(1i)  Multiplication is associative:
Let ,(fl'bl) r - (f2 lb2) r - (f3,b3) €EP . 'I‘hen

b

“ | v ‘:‘ z— l .
[(£)by) (£,D)) 1(£5,b3) = (£, 7,bb,) (£3,b5)
T b, bb, N
1712
= (5)f, "£3 7 "/bybyiby)
. b, b, b
e e 1 2,71
= (5,5, "(£5 ) ",bb,by)
b, b

1
) "4byboby) '

]
~~
=
) L)
it
N
Hh
w

. wa;,

, : L b.
. : N - 2 - .
- v~ffffff,'~*~77—>—477—f~<f-—f——~f—jm;zW(i%[fbj)ﬁ(fgif3~m—fhﬁga3JWff~ff~—f
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— 'tv»eleﬁggt (i}ll fwhére 1 is the function
defined by 1(t)\s 1 for all t € T . : - s
‘Let (£,b) € P , then ‘
(T,1) (£;b) = (1f1,1b)
= (f,b) , A
- ¢
= (£,b) (1,1) . B )
- ~ oo
’;W"(iﬁf"Eéﬁh?éféﬁéﬁf"ffib?jfdf*“?*:hanan:inverseiwnamely<{iiam)”;w1b¢11;ffi,;f::j,"
-1 . -1 -1
e T e = (g HP B b7
=1
= (P
-1
= @T® ,u
,,,,,, — . , S — 77/7 — — — — _ N — —_ — ) PR — —_— S — S— — S — — —— —
\ = (1,1 ,
'~ and similarly - _ o I K

. -1 .
gD (EHP ph

(1,1 .

‘The group P is called the unrestricted twisted wreath

__product of A by B and will be demoted by TWr(A,B,S,a). Our

_construction depended upon the choice of a trénsversal T of S in

. o i » &
‘B , but this dependence is only apparent.

" ihe restricted twisted wreath product , P* , is the subgroup . -

of P oonsisting of those (f,b) such that £ € F* and is denoted

]

L w1

O T PN WY
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twr(A,B,S,0) .  We can see that TWr(A,B,S,0) and twr(A,B,S,0) are

<

N

ordered group,

rif the same if the index ofj S in B is finite or if A is the trivial

3 L4

group.

The standard wreath product of A' by B (unrestricted and
restric¢ted) is obtained as a special case of tﬁe twisted wreath'produCt

of A »by B when S is taken to be the trivial group.

Section'5. Ordering the Twisted Wreath Product.

In this section we return our attention to the theory of

£-groups and show that the twisted wreath producf of an ¢-group by an

RIS
l

O0-group may @e lattice ordered.

\"\/

Proposition 3.5.1. Let A be a lattice ordered group, B a totally

'S a subgroup of B and a a homomorphiém from S

. into the group”of f-automorphisms of A .  T™r(A,B,S,a) can be

iattiﬁg qrdered-

Proof. Let T lbe'altransversal of S in B .

Define an ordering on TWr(A;B,S,a).‘by ‘ . o {(
(F,x) = (G,!f) ek > 8 oi k = £ and F(t) > G(t) fo;:' a 11 t €T,

It is clear that > is a partial order.

Let (F,k),(G,%) .6"'I‘Wr(A,B,S,OL) with (F,k) = (G,).
i . i :

Let (xr?‘)r '(YI‘Y) € TWr(A,B,S,a) .
We claim  (X,%) (F,k) (Y8) > (X,%) (G, 8) (Y,y). “~

&
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4

—_— = —_—— 7’— — —— e — - ——— = ‘V L )
ordered group.

From this it will follow that (TWr(a,B,S,o), =) is a partially},,v'

We note that:

(X,%) (F,6) (£,9) = (Y ,xky)  and

Il

(X,x) (G,%) (Y,y)

Il

(6%, xty) .
Now (F,k) = (G,f) implies either

(i) k> ¢ or |

© tii) k =£¢ and F(t) 2 G(ti for all t €T .

(i) If k > £ , then B is totally ordered implies

. xkf > yké

and so (X,%) (F,k) (Y,y) = (X,%) (G, 8) (Y,y) .

f

Viiiyﬂii%? k =% and f(gifz G(t) for all t € T then

xky = xfy
and. B e S U TR e
'ﬁ - . ! " -
X xb $
= X(B)F ()Y (t)
= X(BF((t0 Ha v ()
) I R -X €. 5 -3
S > xwete Ha v
’ s(x,t) - -
(since A is an f-group and ag(x £) is an 8-automorphism of a)
R o .. ONA gL R, o Ll



|-

Thus in this case we also have ¢

(X,%) (F,K) (Y,9) 2 (X, (G,8) (Y,y)

as required. . . o . \\

We have that (TWr(A B S a), 2) is a po-group. -Furtggyr L

—

than this it is an £-group for we can see that for all

(F,k) € ™r(A,B,S,0)

(F,k) v (1,1) = {(Fk) - k>1,

Section 6. An Example.

¢ - o i

*

" We have seen in sections 2 and 3 that the standard wreath

product has an important place in the study of £-group varieties.

- --Bearing this in mind it-is of ’intérésf"’ﬁ”c’dﬁéiaé r specific examples

of twxsted/wreath'products***ﬂé‘shaiifiiiugtrate the tneory of

sections 4 and 5 by ‘describing adewisted wreath product of z" 5
[ 8 . .
By z and’WllI’show Ehaf’our example is Z—lsomorphlc to a subgrou§AWW77%hj

G{mn) of Z Wr Z whlch generates the Scrimger variety S(mn) .



Example 3.6.1.  We w1ll con51der TWr(Z 12, mZ a)r where

0. mZ > Aut(zn) is defined by: for all r € 2

. (mr)o = o

¥

where o, € Aut(Z ) is given by, for all (al,...,ah) € z°

-
(all""an)ar = (a_’oo.'a__)
: l-r . n-r
where . l-r = i-r (mod n)

. Thus the homomorphism G maps an element mr of mZ +to an

: . . . 7 . / . . . _
automorphism ar of 2" where o rotates the coordinates of elements

of Zn“ r positions to the right.

~

We will take {O,...,m—l} to be the transversal, T, of

mZ in*2z .
The elements of TWr(Zn,Z,mZ,a)- are pairs (f,b) where
g€ ,pEz. . - ,
| - ' ‘,ﬁsing additive notation, addition in’ TWr(Zn,Z,mZ,a) is
‘given by

. - - b

1 .
(f ',b ) + (leb ) j“f +52177,P4+b ) . ',,i, L

’ . \

= —and we can easily verify that if b = mr + s , where
. : - ! | '

LY

s_G»{O;...,m—l}, then for all t € {o0,...,



. o -
: | £1(t+s) 1o t < mes
. SO -r e
£ =< )
£[(t+s) '1a t > m-s
‘= (r+l) - ° .
S : -
We note that . )
- , ‘
Ct+s t+s < m-1 -
(t4s) | = <
t+s-m t4s > m-1 ;
/-’_ .
| P . b, B,
"also if bl =z b2 mod mn then f =~ =f = .,

. N ' » . . o
It may be clearer' to use an alternative representation for

_the elements of TWf(Zn,Z,mZ,a) . We cah write the elements in the

following form

i b : 1.
«~Jﬁ (aO‘,l'.... ,aol‘ )' (alllynoglal’n) F ses ; (a l,l'..."aln-l,n)
’
-~ _J
S . Lt \ n
where b € Z , and for 1i € {O,,..,m—l}', (ai,l’ff"ai,n)_e z - \
With this notatidn addition in ™r(z",Z,mZ,0) is given by
: S o )
! b —T c 7
+
(2 veveva Vyeeert@ o oaveeva - Wka a9y @ ~
0,1’ ! O,n)' - s ( m-1,1" 'am—l,n) (dO,l' 'dOyn)' '(dnhl,l"°"dm—1J9



,‘th?n,l?Y,fﬂf‘YL".'fgg{jjgﬁilmfflfygnliif"(y(n:llntllL;LZYnm))

- where, for 0-<i <m-1— and 0= 3j <n~1,

- .
T 5% - - - Tt T 757_'_6 # 7
. . . Co/ .
) ) + ®oea e ) * e e + ‘eeow
v 1%%,1%%,14x7 27 20,0M % e 7 Cnso1, 1%, 1
. - N - a - . -
) + - " e | o LN N ]
am-s-l',n dm—l,n+r)'(am—s,l+dm,l+r+l' 'am—s,n+dm,n+r+l)' !
- ' o o+ ‘--- ‘ ) .
' (anrl,l dm-l+s,1-¥r+l' -'am—l,n+dm—l+s,n+r+l) _
= ) N -‘ —;)/ | ‘ ’ ‘_
where b =mr +s with .s € {0,...,m1} and the arithmetic of the _ )
subscripts is done modulo m for the first subscript and modulo n
for the second. : -
‘ With this notation the 'twisting' affect of the homomorphism @ in
‘TWr(Zn,z,mZ,u) can readily be seen.
 Proposition 3.6.2.  r(zZ’,z,m2,0) is ¢-isomorphic to Glmn) . _—
Proof. Define a mapping Y : G(m) ~ TWr(Zn,Z,mz,a)- by, for all
(F,kX) € G(mn)
(F,k)y = (F_,k)
, Y
_{¢a where, if F = (xlf"f'xmn) | ;' P
i
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B W*ti_ewv_Y—iﬁfﬁw:ér’ﬂﬁéﬁtﬁtwiM’ o -
We now -show that Y is a‘homomorphism.
¢ Let (F,k), (G,8) € G(m) . 9
‘Then - [(F,k) + (G, 8) 1Y =A(F+Gk,k+8)y
= ((F+Gk)Y,k-l-q8)
=="F +(c" k+8
( Y ( )Y ),
and *(F,K)Y ¥ (G B)Y = (F k) + (G, .8) )
k
= (F +(G Jk+2) . ;
| ( Y ( Y) ) -
. i '3 ) v
. ces i e () 2 ek \
It is sufficient to show that ( )Y = (GY) . :
- - - ’i N 'WLetf Ai‘ o 7@’ ;_7”' e (’xi To®  de 'fx}:rfi"' ':"i 3 7xnin-i}‘7 B R Tt T Tt T T ‘7
k L N
G . - ‘(yl.l.. ..,’yi’.. --’ym)
(G]() = ((Zv,.. ‘..’z‘-"-o “o.’z ))
Y 1 mn
. G'Y = ((al’-. c‘o’ai’.. ..,am))
¢ k _ ‘
(G) - ((blroa -o,bilc. --,bn-]n)) -
‘Y . . — — —_—
- —We wishtoshow that for I =i =<m, 2z, =b, . b
‘ ) i i

-Without loss of generality we may assume 1<k<m .

Let kK =pm+gq 0<gq=<ml.

4



'fLetf¥i~=frnw+is~+fifiwhere O0=r=ml, 0=s=Z=mn-1 ., 0 -

T

Theri we hafe ~

., = Z_-
i rnt+s+l

N .
. ) .
‘k ) . . - . N
1 . ]
. ) . ‘= ¥

sm+r+l

=

j . . xsm+‘r+1+k

% . :
smtr+l+pm+q

where arithmetic on the subscripts is done.%odulo‘ m .

A -
=

Now bi = b and hence is in the rth n-tuple of '(GY)k. ‘But

m+s+1 -
’ o.-1
., ) +
this .is just GY[(r+k)T][(r k)] .
o L R S S B}
N T T
We have _ (r+k) = (pmtg+r)
. = (g+r) T . ,
| .  :"/‘ |
g+r | q+r <Qm
=4 ' e
' q;f—m gtr 2 m .
N . \
"Also o S B B I




59,
~ Thus the rth n-tu le 'o-f (G )k isygiven by I
b T 772 F e (e _ * i o
G (g+r)a 7 gtr < m
Y -p
‘G, (gq+r-m)a - g+r 2 m _ : o : B
Y - (pt+1) : : -
N

= ..; N ) +7 < N

(@(qer)n+1?* 3 (qrr)ntn%p AR

a, . e : +r>m
} (a(q+r—m) n+l’ ’Ma,(rq+r-m) n+n) a—-{(p:*l) d r m _
- (a . —‘-—'-‘,.__,a‘ . — q+r<m

(g+r)n+l+p. (g+r) n+n+p) o o
. ———— s . - > v . ) ‘ e .
(a(q+r—m) n+l+p” " 'a(q+r-m) n+n+p) E R S , - ' \
‘where 1 <pt Sn and pH = p+i (mod n)
From this, and récalling that 0 < p=n:; 0= q =m1l 'and
0 < s < n-1, we can see that o
.7
by =bms s+l
= a ' s
{(g¥r)n + s+li+p -
- a(qﬂ-r—m)*n' + s+l+p+l - - T
* 2



| < | | | o 60, |
- .i-_r(&:&)'n +if(s+p)+l \'ﬁiﬁ'ﬁ:i N :
' ' +r < +
Z(q+r)n + (s+p-n)+l arr = m ., stp D
a’(q+r-m)n + (s+p+l)+1 atrzm, siprl <n
| I ' ' b» +r.Z m . + Z n
%(q+r—m)n + (s+p+l-n)+1 - arr. » StPHlZ n
= : ‘ +r <‘m s+p < n
T(g+p)m + qirel o T e SRR
I & - LS -
X S — o . + < ! s+ > .
X (s+p-n)m + g+r+l ) ’ e s m, Stp=n
¢ ‘ ' . +r > m s+p+l < n
,,’,‘,(_yp—fl),m,,f,gtrfmﬂ . A=l SR . -
o - +r > +p+l =
.. x,(s+p+l—n)m + g+r-mt+l . - T ar =m, S¥p 7 n
=X ‘ : _ ' oo .
(s+p)m + g+r+l. o S _ o o
=, , as required. .
1 . (Y . :
We now have that 'Y is an isomorphism, it remains to show that Yy is
an 8-i§omorphism. " We must show that for all (F,k) ,’.(G,&) € G(mn)
N 7 ° .

LEX A (GO = [FXY] A 1GHY] , -



hence

»(c;,s.) . q Ex

| (FAG,x)
,‘\ .

((c. By

- (FY(\GY) k)

L=

7 LEX) A Gy = 4 (FRY 8
A : . k(F/\G,'k)Y £ =k )
= (8 L <k T o
oo T B T - - T T ;;‘77 IR )\ 777777 ’ T T
- (E k). £ <k L :
. ‘ FAG) _, =¥ .
| A9y k)-_; |
Also. - [(F,k)Y] A [(G,£)Y] = (E_.k). A (G_,£) B / CN
- \127 ‘ Y Y ya - ™~ -
N B - 777‘77777 T o a = '5 o 8 < vaii . ‘ -
(6,8 / N\
F_,k £>k
(Y ) |
L S o




. , o o . 62.
L(FAG_ = F_AG -
- N A
/- - N
' . - Let » F = E(fl"....lfm,r])a‘ a.n.d G = (gl,..;,gm)
o A = F Y] ’ ..’4 . - N » - oo o .'
] 'ﬂ@?,@”ng;}gﬁf 'mg'fmﬂrpnﬂ”mm”
where y for 0=i=ml and/’C-Qn,:le n-—l-,'
- Yinti+l T MMM a0, Imeie o
;’L/Ai FY = ‘((ﬁ’v.‘."‘xn)’b...’(x(m,—‘l)n"'l'..-"ﬁmn))
and * 6Y>= ((yl’ ".'\”.y'n) et (y(m-l)h+l'ff"ymn)) . i
where,  for 0= i < m-1 ane' 0=<3j<n-l1
~— . x =f, . . and y =g
in+j+l Jm+i+l in+j+1 Jm+i+l °
. : Clearly F_YA G‘Y = ((zl,...',Zn')‘,.'..'(Z'(m_l)p+lr .'.‘.,%fl)) <«

where for 1<i=<mn, 2z =mnix-y.}. .
) i i el By
j -
; Thus for 0 <i <ml1" and 0<9 <n-1,
1"7 -



B R

="Mmin L

N
]
Py

- L' 2 1 . - . :
n+j+l intj+l” “in+j+l’ , - -

=

v

‘and so (FAG._=F_ AG, , as réquired . . - :
FA Gy = By A Gy ras requl |

- : :
» = 1
_———— - A e e e e
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