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ABSTRACT

ﬂ \The Cox partial likelihood teéhnique is
éxplored in a iérge sample setting. For a variety df
pérametrizationé\of the‘proportional hazard rate model,
consistency énd ;symptqtic normality of the Maximum
Partiél Likélihood‘estimégors are»ptoifd. The covariates -
are takeﬂ‘to%be randomAand observationé are censorea éng
the right. Previous!assumptiOns.On the dist;ibutién.of
the covariates are/rgla#ed. An extensioﬁ to the case of

\

non-random covariates i% considered.

'RESUME

Les proprietes asymptotigques de i'estimapeur
obteqﬁ en maximisant la fonction de vraisemblanceﬁpartielle
Qe Cox sont etudiees. Sa convergence‘gt éa normaiite.
asymptotique sont prouvees pour diverses parametrjisations
du modele. Les covariates sont assumees aleatcires.
Les hypotheses sar leur distribﬁtion faites dans les

. articleé parus a ce jouf sont supprimees. Enfin le cas

ou les covariates sont des constantes, non-qleatoires

est exploree. . : ST

(1ii)
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Introductiono

'In a carcinogenic experiment, the cancer-inducing

‘properties of a substance (for example’a new food additive)
have_to be evaluated; This subetance/iSlinjectedvihto mice

in differentzaoses._aThe tlmes of«appearanoe of a tumor;are,
recorded. - Some‘mice might die befofewdeveloping cancer; Ih
cancer research a hew drug 1is found,‘butiite effectiveness
seems to dependon several covarlates; .for example the age;of
the'patient,\its'sex, its blood count at the beginnlng of the
‘experimeht,.etc.g. Then an experiment is designedxand_the
‘tlmes of death, for example are recorded Sooe oatients might
decide to leave the experlment'before the end. Some miqht
\'fdie of cauSes other than.cancer.f fhese\t%o-examoles are
cehsored éﬁrvlhaladata: - some subjects are Withdfawn from» Lo
the experlment for causes other than those of 1nterest ) ‘ﬁ

A useful tool‘to analyse survival data -is the

~hazard rate. It.gives the "intensity of risk" of failure
lat any time t, given that the individual has.not'failed'brior
to t. More-formally'thelhazard fate at time 't among subjects

with covarlate Z is deflned as:

}\“ ) ;:&;41'( \:+AUT>\: 1]
© Ab=o AC .
where T is the time of failure of the subject (tlme at which™ -7

thg mouse develops a tumor, tlme at which the individual dieg,,
Z in our examples would be’'the dose of substance, the age of

the patient, etc... A model commonly accepted is the



proportional hazard rate model in which the hazard rate
can be factored into one term depending on t and one
term depending on the covariate.

Cox (1972) assumes a partly parametrized

L

proportionalghazérd rate model acéording,to:
’A(t,z\; Ro(k\ \'\(%,'z_) -

Whérevnk$£\ is an unspecified function of t and where

2

-
;¥&$ni3 is uspally”e However in cqrcinogenic experiments,
where gnly small doses are considered, k(‘LZ) is commonly a

polynomial in the dose Z. Then Cox introduces the partial

N -
likelihood function. At a time t, the risk set R(t) at
that time is the set of all subjects still -in the experiment.

Let us consider a failure time ti. Given the fact that one

subjectlfailed at that time and given R(ti), the conditional
probability that subject j failed is &\(9325\ ,
o LT 4 (e
, 2 )
_ _‘ ve Rk Yb' K\
Simply multiplying these terms gives Cox's partialelikeli-

hoddﬂ This functionris not really a iikelihoodifunctién
since the factor related to the interﬁéls between two
"failure times is ignored. NSZ is it a conditibnal“m{w
“marginal likelihobd exc;pt in special cases. .
Thérefore the cla§sical‘results og th ;symptopics
of maximum like}ihood estimates cannot be uSeq;\/CQf (1972) *
) . T »

gave a rather informal justification of the consistency apd

-

asymptotic normality. Since then no fully satisfying 7



' 'paper has been published. Tsiatis® (1978) proves consistency
and asymptotic normality,for'bounded real-valued covariates-
drawn from a continuous population. In?hisoargumenty’the"

experiment is stopped at some prespecified time Tf. Liu and

Crowley ( to %ppear ) assume their covariates to be drawn .

'”from a finite set of possible values. Their’argument is
conditional on the observed values of the covariates. =
Our first chapter¥Will be a literature survey on
gthe-hazard rate-models with covariates. It will give dﬁlan

idea on how to analyze our two examples of surVival data.

3

The folloWing chapter Wlll give some more preCise formulation_

—

of the model assumptions and notations used thereafter. We

shall then prove cons1stency and asymptotic normality for

%

'ovector—valued covariates drawn from a continuous population.
{»The proof of the conSistency in the exponential case
LL\: e -?”A will need no assumption on the boundedness“
of:thegoovariatesf only on their moments. Furthermore;we
}will not'asSune that the experiment is stopped after the -
:prespeCified time.. |

e,

In the case of other parametrizations of h(?ih
it Wlll be proved that the maXimum partial 1ikelihood

'equation has a cons1stent ‘root when ‘the experiment is

;://

stopped'at some prespeCified time.
. The asymptotic normality will be proved forevector*'

valued covariates not bounded but with some further assump—

tions on the function h and its first, second and third -



.
order-derivatives. A

Then an extension of our arguments to the case

- where-the covariates are give constants is considered. — ——
. : " \ N
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Literature survey on hazard rate models with covariates

- .
—

) 2

-ﬁfizTﬂé énal?sis of .time to dccﬁrrendé or "faiiﬁferi
. data" is of considerable inteﬁest‘fér medical experiments.
The gxowing importance_of medical reseafch has triégered
g n@ﬁerouspépérs On;%pecialized meﬁhods to analyze this
kind ofudaté.-.ThéfélasSic;i nééion of hazard fgnction>is
) arfbbi commonlf us;d. The hazard”fuﬂctipn >\Qc/i\'§ives
tﬁe “fisk" of failu:e at any time §f1a subject having
covariates 2, given that the subject has not failed piior
to t. In‘his piéneering paper in 1972, Cox assumed (az-We
do in the following chapters) that the hazard function qouid
be féctorized in onéxterm dépending on t<aﬁd one term
depending on Z and a paramete‘r\a acc‘:qrding toé |

AL )2 AN (g 2) o
More precisely, Cox specified. 9&(513: @ ~as do the majority'

o . ,

of papers. Another fruitful partia1f§ﬁﬁéfametric model was
introduced by Prentic§fand Kalbflei§ch (1979):

AT 2) = ,\0(\:@}31) ¢ o &
The covariates then act multiplicatively on the éime of
failure itself. A prospective type of sampling is usually
considered. A populatioa—of~subﬁeetswisfgivenmat'somef
specified origin of time measureﬁenf and followed forward
to observe their respective times of failure. Kalbfleisch

nd Prentice (1979) investigated the case of retrospectivel

studies in which subjects are selected on the basis of



their time of fa&ilure after. which one "looks back" to
‘ascertain the corresponding covariétes*values or covariates

"functions.

I) Analysis of the models:

There are several approaches to the analysis of the
above models. The mostnaturaiaohe is to parametrize them
completelyj by using for ekample a two—parameter Weibull
i'egr‘ession model for model (1) with Aok\l\ = o\ t\(Ak\e\d
Other paraﬁétric special cases of (2) include the log-normal,
the log-logistic and the generalized gamma regression
models (e.g. Farewell and Prentice 1977). Then s;gndard
methods such as animum likelihood can be used. 7

Therotﬁéfuappréachfto deal withkmOdei (l)kis the
technigue considered ;n the following chapters: ‘Cox's”

partial likelihood method.

1I) Cox's partial llkellhOOd technique:

Cox's technlque is a partlaiﬂgarametrlzatlon of
model (1) where ‘Agkk\ is allowed to be arbitrary. The main
interest is in the regfession parameters: lfor example we
want to know if the substance studied induces tumors. Cox's
likelihood function is then introduced and the vecggr of
‘estimates of the regression paramters is thg maximum of this-
likeiihood function. Cox (1972) gave a rather informal
“Justification to thig likelihood funcﬁion. In 1975 he

considered it in more detail under the term partial likelihood.

Kalbfleisch and Prentice (1973) showed that in the absence



of censoring, Cox's likelihood is precisely the likelihood
based on the marglnal distribution of the ranks of the
failure times. A group 1nvar1an¢e argument showed the rank
- vector to be "partially" sufficient, in the sense of Barnard
(1963), for P in the "absence of knowledge" of P\o . Their
group invarianqe'argument breaks down with censored data.

In this case~th%§ showed only that it is the likelihood"

e

P : 7 .
/ cOrresponding to the marginal probability of the set of

possible\gpéeflyiné rénk vectors consistent with the observéd
;data. There are‘norclassical results on this "likelihood".

No tied failure times are assumed in the aBove models. Unfort—
unately the data“will then be recorded with ties. ﬂIf the
number of ties is‘small,Lan ad hoc modification of the above
procéedures is satisfactory’(Cox.l972,’Kaibfleisch and Prentice
l979); Otherwise it is preferable to use a discreté failure
time model. Kalbfleisch and Prentice (1973) showed that
groupng the cdntinuous model (1) givesié discrete model wiﬁh
'@Thpiéﬂgroperites.: Cox (l9721\introdu&edéa generalized

partial likelihood»futhion,g

g
]

JIII) Asymptotidé:

Two main papers, stilltunpublished, deal with
consistency and asymptotic normality of the estimator
obtained by using Cox's techhique. These are Tsiatis'; (1978)
and Liu*Cfowley's (to appear) but nei@ber of them can be

considered as fully satisfactory. Liu and Crowley consider
a discrete approach to the problem: their covariates take

values in a finite set of possible values.



Their argument is conditional on the observed values
of the covariates. :This is an interesting step towards:
proving consistency and asymptotic normality when the
covariates afe not assumed to be drawn from a popuiation
but are given constants. The main drawback'is that they

consider a finite set of possible values and their argument

, A
A

A

seems to be difficult to extend to an infinite set of

possible values. Tsiatis considers as we do a continuoUus
approach. ‘He assumes that the real-valued covariates are
bounded ‘and that the experiment is stopped at a prespecified

=

"time. We remcwe both these.assumptlohs and consider
]

2
/f

vector-valued covariates..
Coxfs technique is asymptotically fﬁliy efficient
only in'special citcumstances. However, the amount of
information lost in any specific data;_with the \Ao function
reStrictéd, is usually small. Many have tried“to‘give some
more formal basis to that argument. Kalbfleisch (1974)
assumesnthat there is no oansoring; that the covariate
vector has dimension 1 and does not depend on time. He
then shows that’ihe Cox likelihood estimator has full
’eff1CLency w1th respect to the M.L.E. relative to any
parametr}.c modei in (1)Yof the form A \k AQ%K \with
gx(t) known and ;\ scale parameter to be estimatad if
the tpue value F is equal to 0. He then derives the approxi-
,mate,egptessum1 Wx?&-? Vuk&)} for the asymptotic

relative efficiency. valid near %:(). The dependance of



efficiency,on the regreséion parameter is a situation
unfamiliar to ordinary linear regréssiQn. In an important
paper, Efron (1977) attacks the problemyfromkan interesting B
viewpoint. Taking the covariate fqncﬁfgns and censoring . ,f
" times fo be fiked, he derives expreséions for the finite \gwg
“sample information matricés andfgives conditions for Corfs a e
method td be asymptoticaily fully efficient; In his para-
metrization he introdUées a'ﬁotional‘ﬁavérage hazard if all
items are on test”. 1In his formﬁlation,‘the underlying
hazard function may depénd on the regression coefficients
as well as the nuisance parameters. He then discusses the
relative efficiency in the th—sample problem and gives
vsomé'simulation results in this case.

This thesis provides a rigorous foﬁndation
for some of the efficiency calculations. |

An attractive feature of inference based on
éox's likelihood is the'robustness implied by the
arbitrariness in the P& function. Steve Samuels,in a
.1977 unpublished doctoral dissertation at the University
OE7Washingtdh has examined the robustness of %> more

formally.

IV) Other parametrizations of the hazard

rate—Parametrizations of k(ﬁlzi
s

| “ In the preéeding sections we factorized the
hazard rate A(k,z\ according to >\(\-,1\=>\“"\\‘\(\5,7-\ . The

most common parametrization for k(v/z\ is the exponential



10
model. Feigl and Zelen.(1965) treated. the case AJ&\:B

constant, and pfoposed several forms for h, notably the

\ 7 _ o

*\\In carc1nogen;sg£
: !

A%

exponentlal model and \’\(": 1\ —‘—*}1—

testlng, scientists are interested in the relationship

between the dose of a potential cancer inducing substance
: ; |

injected into an ‘animal and the time at 'which that animal

i v

develops cancer. In this fléld many workers stipulate the
Weibull form AJ&\ sk( in which w is usually
taken as known and hence without loss of generality taken
to be 0. Ehgtley and Slelken (1977) introduced a poly-
nomial form fOr A accordlng to (‘c\:i\'_’» Er yxfwﬂqk

F§>0 and some standardlzatlon rules. The model fgfm»of h
. the dose dependent \W&$UZ} has been o% particulaf concern,
‘as thssiﬁterest is usuaily in small doses (see Mantel and Bryan
(1961) bvand it is,infthis.d$§§ range‘that'monitbring data is
difficult, particularly if the spontaneous rate 1is zero. The
multiphase models}of Armitage and ﬁéll (1961) aﬁd Armitage
(1974) spec1fy L{ 'f\ as a polynomlal of the dose level»
Z of the form \-\(\5 7_\_ C H \*-\6 z\ : ) 11;1 which |
all ‘K are strictly positive. Peto (1974) adopts a more
general model of the form \W(sz A, XL , *.>0

In thls the31s Cox's technlque is sﬁudied,with

more general parametrization of h such as those mentioned

here.

[id

Hartley and Sielken (1975b) dropped the polynomial

form and stipulated oﬁiy that ¥{?ﬂ5 is a smooth positive



convex function (unpublished paper). As in this case
&(Q is parametrized, their téchnique is a partly
parametric one similar to Cox's.

V) Survivor function estimation:

Sufprisingly little attention has been given -
to thé estimation of the survival function and its standard
error. The underlying survivor function F{hz\:P§T2kuil‘

: e, )\
can be written F(h,1\= AL ¥ - where

ﬁ;“\: ex?(- fr\o(u.\ Au\: e_i?(_ _/\_o(\g\\ | o

At any specified P a non-parametric maximum likelihood

estimation can be carried out (Kalbfleisch and Prentice

1973) to give an estimator of EA&\ - /Bresléw and Crowley
(1974) consider 'a continuous case, wﬁere there are no tiés
among_observationsz Using likelihood arguments, they

introduce an empirical integrated -hazard function'according
N ‘
N\ (\C,‘s\: 2
el [i& X p [sr]
Le> Jeqr(kn 3

They then establish that if the true value of % is O

the raﬁaom function J?T'{!RﬂAE\—_AﬁiEf& ' converges to a

to -

mean. zero Gaussian process, _Aw(k\ being the true
integrated hazard function. Tsiatis has extended that
: Iy
. A A L . : .
regult to _Aw(k,v} where P is Cox's partial likelihood

estimate again under rather severe restrictions such as
bounded covariates.
We have not studied the problem of extending

this result to the more general setting of this thesis.

11
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Chapfer 1: Model, Assumptions, Notation

..
~

In this chapter we shall give a précise mathema-
“tical fofmu}étionxof thevmodél and’iptroducc the notation-c
and‘assumptiohs needei later on. In the;éxamp}es givenliﬁ‘
the iﬁtroductioﬂ; the/available datarwere the covariates

for each %ucject, the timc a£ which each subject left the

experiment, the reason why it left and the size of the - -
’ i

population. Let us introduce ‘the following notationt

let Zi be the vector.of observed covariates
for subject i;
- let Yi be the time of disappearance of subject
i from the'experiment.v |
- we define an indicator variable g; £o A
indicate for which reason the subject i
left the experiment according to gL:C)
if subject i was ccnsored, SL=1 otherwise.
- let N be'the size of the population at
the start of the experiment.

- let Po be the true value of the regression

— parameter.

Distribution of the random variables:

Let us assume that £ér each subject i we have
“two underlying random variables: Ti, the true underlying»f
survival time, and Si time of censor;ng The observed

variable Yi is just the minimum of szgnd Si. T and S will



be aseUmed”indepen&eﬁt given’tﬂe vector of covariate Z.

This is nd% a mild assumption. . For exampie, in a medical
experiment; a persoh cured (very late\time‘of_death) may
ieave—the experiment early. It seems very hard to remove

this assumption as a censoriﬂg depeedent on the time of

~death couid grossly mislead the statistician by concealing

all the 1nformat10n relative to some values of the covarlates.
To solve our problem, we shall take a contlnuous k

IS

approach. 'The“covarlate‘vectors w1ll be assumed to be of

~

L1

‘dimension P and to’beﬁdfgan from a’continpous population.
It is our ceﬁviction that the'method we.usejin the fqllowinge
chapter can be extended to the case where the covariates
are given constants drawn from an infini;e population
of possible wvalues.

Let us introduce the notation: C”(\C\Z\: P%‘ZE\Y—‘}

‘GOA{B is an unknownlfunction of t. § does not necessarily

have ‘a conditional hazard fuanction. We have the freedom
°to“ellow.eensoring in groups, even to assume that, at a-
certaiﬁ time Tf, eVeryone still in the experimenf is
censored; For-technicaiJreasons; we shall assume that
there "is only e finite~number of mass-points in the density
of S given Z. |

The model for the ‘hazard rate:

We -shall gssume that thé}random’variable T has a

C ¥
conditional hazard rate 7\(t;£? . We shall assume a

commonly accepted form of the hazard rate ( £\ A E\k ? 3 )

o



=

i - . 7“/ 14

I
) [ . . . - T~ s . . B
A

wHere (k} depends only on t and is otherW1se unspec1f1ed

1
Te,

nd ¥(?23 depends on a parameter ? and the covarlatei'

i~

v ctor Z. P is the parameter of 1nterest and has d1mens1on

~

p.+ This model is called the propOrtlonal hazard rate e

model singé the ratlo of ‘the hazard rates of two subjects

q

depends on the covarlates and not on time. Follofapg
Cox (1972) we shall use a partlal parametrlzatlon of .A t?ﬁ

>\(E) is assumed unknown and W1thout ‘any constraint.

- On the other hand Il(? ‘;s assumed to’ be a kngwn funot;on .
of b and Z. Usually h(% is assumed to be € . AR
In the follOW1ng we shall assume only that h([s is?"
such that h((»_, B\ﬂ (\s 7_\ (K \, are ' -

monotone functlons of P for eachZ and each 1. " This assumption -

is satisfied for all the parametrlzatlons mentioned in -'<°ﬂ

L0

? : : ) P

the literature survey. = e .

Assumptions on‘the-momEnts of h(p ;:Z):

-

Tsiatls (1978) assumed that. the covariates are §
bounded. Instead we shall make assumptlons only on the

Moo

moments of h(F> ) and -
E{}\?rz X ex1sts for r= -3,-2,-1,1,2,3"

and for every,%n. In what follows “there is actually some

freedom of choice in which moments,of'h are assumed to

exist. For instance we could assume [\\(? 1\‘_X<°°

for each and ~\(V . (See page 38.)

[ [l and EK \°“ \\ | extst for

op

JPRR

everer .
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«

" that EK .X ex;sts for every %

w Stralghtforward computatlons yleld that:

@

‘Although it would be-desirable to do'so it

Err,seemS~diffiCult to eliminate the assumptions about inverse’
s ' o ( ' '

P - . % s - .
. \‘f, E P . . v =
- . S R . o - -

moments of h - e ' o e

Obv1ously in, the exponentlal case it is suff1c1ent

g

Cla551cal results

Let \?(kh be the den51ty<of T given Z. _We know

\

ETE

\-v{nha\z}" S

@ f

‘L\ h( 7_)>\ (&) u\:( f A(\A\h vo,z\éu\ o

Q; S The condltlonal probablllty of surviving until =~
E\ - .
~¢1me t w1thout belng censored glven that Z= Z iss:. . .
= \
- “ \ 6(& -7_\ QXY j A b‘\ \‘\(Y»o 7_\ &X
Lo~ ” §
,:, e&' . i
4 ~
.
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¢ . ‘In thlS

‘Chapter 2:. Consistency

.

chapter weéipall prove;the éonSistency

of the estlmate obtalned by méximizing €ox' s> part1a1

likelihood functlon. More prec1sely we’ shall prove the

following theorem: .

{ ‘ - ~

x

In the_exponential case, Cox's partial
likel;hood has‘enly ohe local maximum

and this maximum converges ih probability
to the true~valﬁe48f the pafaﬁeterf

In the general case- where h(%, Z) is

such that h({}VZ) and 'BPH P Z)

(K = l,.i.p) are me?Qtone functlons

of Pl for each Z énd each 1, 1f thetc
time of censorlng is hounded by a =
fiﬁite'timehTf,'and if:this time Tf

is -such that P[‘] -W’-.] >0 , then

there is a root of the MaximumECOXfS<
partial likelihood equatioh (a local .
maximumaof Cox(eflikelihoed ﬁuncti;i) '

that is consistent in probability.



ﬁ Let us. cons¢der

o , ® )

A The log of Cox's partlal llkellhood is:

- 17

LOQS\. gg Log h(p - 23@[2 AT ‘m}

*‘\

RN

[

N 12)

}.cb.,ms\ 14 to*s“w»\é%“bﬁ f—“"““ 2\1

\\n'

Q) (@" and log Lc have the same shape Studylng the, S

‘maxima of @(\5\ is equlvalent to studylng the maxima -

-

of lOg Lc.  From now on we w:.ll\}s,tudy; (bu((s) 1nstead Of
Iog Le. . | ) & (
N q),(?)ls a sum of dependa% random varlables

Let . fN (t) --5_1(\/,)t) h( > 1,\ - o - BY the

N j=1

- strong law of large numbers, for flxed t, fu(t) converges

to _ F(t) ED‘\(‘) 7.\ 1(\l> t\] ) .sWeo'.wjrll prove ‘that

then be dlSt/lnjAlShed. 4 . .

g |

we can replace £, (T1) by f (Ti)' in d\au(‘s) . d) (YA)

is then a sum O&l i. d random Jarlables We then shall :
apply the strong law. of larqe numbers to prove that Q)(Yn\
coqn{;er;es point-wise to ;\\\C‘Efqn Q(\;)

‘W.e shall then study the - function (b([’\ . We‘

shall prove fm\)tant results

is an extremum of q)(?)

@(\3}  is concave on a small
Vo8

nelghbourhood of the true value ‘s .

The_ exponential c¢ase and the general case w1ll
~

R di]

®

2
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In the exponential case,'we shall prove

is;Concave,on_the whole domain OfnP . Then ﬁ%(§\.has

ionly one local maximum %N . In.a neighhourhood V of

\ooncave functions.- We shall prove (lemma 7) this implies ‘ M

'con51stency of ?

-know anythlng about the shape of (bu in V we shall

the true, value ?‘ , (b (‘o\ " and (b(\ﬁ\ are two ‘continuous

that the location of ‘the max1mum of . (b ~in V converges
to the lgcation Zr the maximum of ¢>‘ ,that is ?o

“Tb %3 has only dne 15cal maximum. This implies the

A - .
2Ty

~ In the general case, we w1ll have to reduce

#

our study to the nelghbourhood V- of" ? * As we don t

need to prove the un1form convergenCé-of~“dk to (b T

"in V. We will then prove that (bN §has a local max1mhm

- N kY } .
in"V and that this local maximum converges to ?Q’“ To e

o

S}ove th@funiform-convergence;we shall prove that the ‘ T

.sequence iS»equicontinuous.‘ In order to do sb, we shall

have to ‘assume that the censorlng tlme, S, for an individual

is bounded by a Qiespec1f1ed tlme Tf This assumption

/

is peeded moré for mathematical reasons than real statlstlcal

el .

e

~ones. ° Anyway it is a mild one, since most surv1val

, Studies are ended after some prespeclfled tlme TE,

i s
et N L TR



A) Lemmas:

The four follow1ng lemmas are malnly computations

, needed,later on. First let us introduce the following nota-
‘La'ﬂ -

tions: Let k(z,t) be a function of z and t: ™~
Ez,t(k(z,t)) means expectatlon of k(z t) where the

summatfon is’ done over z and t.

Et(k(z, t))1EEans conditional expectatlon of k(z,t) given z. |

The proofs of these lemmas are given in the appendlx

e

S ‘E@\’LH '-m “(vu-f-\',e%v{‘ f A9 W po,v.\éu}%\mk
BT - T I

- Lemma 2: | | Le‘: %( EQ\’\(KM.) \K\Pw | o
= %\W\ - Ez}&‘(%ﬂh (é&?-J 39(\0 N@,z} A\x) G(w\i\] e

EB \MS%\X (Loq% t) Gl 1\} \ W

EX‘S\ j A&’i\\'\ 3 7.\ EXPJR‘L\Q\‘ .,z\Au) JE\SA\:



Lemma 5: Let {dw% a sequence of real numbers converging

pll)

Proof: Flrst let us give some definitions. Let D be the

to 0, let h(Bz) be a known function of P and z.

e suP%

converges to 0 in probability., for F fixed.

Y\.)'

space of functions on EO,*-OO( that are right continuous
'and have left-hand limits. Let us define the Skorokhbd
topolqu on D. Let be the U-field generated ky the
open sets of D. Let-x and y be 2 functions of D. Wé want
to define a distance'd(x,y). The idea is that we cannot
measure time with perféct accuracy anYmore than we can
positicn. |

Definition: LetJ\. denote the class of S£rictly increasing,

continuous mappings of ‘:O, * 00( onto itself. If P\ e N

then P\(O\:O and P\(MD) =+00 . Then set d(x,y) =Inf &
: EES

where ‘

s:p\?‘(‘:\‘t\ N:

€ (IneA]
)( ‘ s:p\*(t)“j(?\m)\ N3

| e
Let us considef the random process Zn(t) =
r[_ 2020 (pz) - el h(w-\]l
The random proce;ss Zn is an application from (.Q. ‘B P»
where (L is the sample space, to D. Then for w belonging

Uail, Z. (w is an élement cf D. The random proccess
N

Zn induces a probability measure E, on W&) according

to: Pn(P‘): E\(Zn(‘-ﬂ)e R\ | where A is a

20.



measurable subset of D.

We shall prove that the sequence {Z.-¥ of
random processes converges in distribution to a, Gau551an ’
process Z which has mean 0. By deflnltlon thlS means
that the distribution Pn of the Zn converge weakly to the
distribﬁtion of P of Z: P\-. "—==>P . From Billingsley (1968),
we have‘to}prove that the finite dimensional distriburions
of Zn(t) are aSYmprotioally”multivariate normal with
mean zero and that the sequence of distributions of Zn(t)
is tight

Step’l:- A simple applicetion of the multivariate

central theorem ylelds that the f1n1te
dlmen51onal dis¥ributions of Zn(t)

are asymptot;ca ly distributed as a

| multivariate normal with mean Zerc.
Step 2: The sequence {F%} is tight, From
"Billingsley (1968) p, 128, it suffices
to show that:
| (zal0) 20 (2a()- 2200 SALGE ‘:m]

wiere F(E)zPLY<E] | ogk 4t ¢k,

The proofmis given in the appendix. Therefore we have:

P =—> P

Now let us prove it implies that
Sup (a, { {-:-\ 2 A0y 9 W 2)- B 029 \\(WM
£ )=t

converges to 0 in probability.

21



Let us give firsf;spme further results and
definitions: | |
- let us define the ‘supremum norm
waccordihg to; for x belonging to D:
6 )= Sup| 0

- Result: (Billingsley) convergence to

a continuous limit (such as Z(w))

in.a. is equivalent to convergence
in the Skorokhod metric. Therefore,
if A is the subset of D such that
A= [xed;66d>E), |

Pl Zu()€ R)—>P(Z() € A)
Similarly |

Ry (S Zo () € Ag)— Pla 1&»\4@
The sequence of real numbers
Y= Planzla)en,)
converges ‘to 0. We then have proved
the result: 4
Sug ant [ :ﬁ (Y, 2 h(p,z) - EPLY 3Y) \n(wm

converges to 0 in probability}

22
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Lemma 6: Let us consider the iqﬁ{d random variables
. o v
lLog h( ‘5 ,zj){ . We have: ‘:\S‘?& \-03\'\(?:7-5\\ converges

w7

almost surely to 0 when N ——*+w\with"p large. Later on
- ,
we shall need to know "how fast" the maximum over the

whole population of

log h(F ,Zs)l goes to +°0 . This
lemma gives us .an upper bound. ﬂ
Proof:

Note: Borel-Cantelli lemma: given events An; n=1,2,...,

if £ PAn<w then P{An i.o)}:z0 (to ke read "An's occur
{

infinitely'often").

!

First by using the Borel—Cantelli lemma we shall prove

that for any t

(32'“\>£ L 0:0?

‘ "ﬂ
log h(p ,zn) being the value of 1log h(p ,2z) for
g P

the Nth subject. We shall then prove it yields that

Moo | Loahlp, ;)|
3= | >§_ Lo =0
NVB'\/F
'S ) %
Let us introduce the following notaticn: xj= |log h(P,zj4

and f‘\ V\omX Let An be the even£ X“ >E
y=UN \.\Vr-w

Let us prove 2 PAn {=0

" The Tchebitcheff inequality y:;elds P[Y >f-] X E[y ‘l

CELa) |
Then P[x\‘/r‘/?>£:} N EE‘%' (/provided ‘E(X") exists.
, M .
EU“}
Thenr i PR € g \\) %

23



To have convergence of £ PAn it is sufficient that

ﬁ TS , for eﬁample K = 3+§, where S is
v S

an arbitrary small number. As ‘

\Loc3 \\(\37-)\ \

the ex1stence of E[\\pg(?zﬂael _is implied by
-(‘s+£\'}

b

the existence of E[h VI ] ' and E{;H P2
' Therefore there is convergence of £ PAn. (Recall our

Yy

assumption in‘chapter 1) The Borel-Cantelli lemma

implies then that o )
‘ P-[ Yr-) /p>& - O]

Let us prove by contradlctlon this implies:

" o
Pl Doy, Y€ L.o]-o

Let us assume there exists a sequence {Mnt} such
that _jﬁi_.>i

'Y\y3 ~Yp
Consider first wm, €N  such that

Y\\\ E_ ) , ’ -
Vﬁ—\/? > v

Al
= ST
If X“U) é E— \(\\\) then ‘Y\\'\m-\>/ E “(\) >E(“h)- )
L.y
n is not the first n such that Mn 2Ejn3 F.

it is a contradiction. Then
X*nm > “\\)

3 v such that M"“h) 55\{')3 v

L)

_\_

@«\em\&“ et

L.

ool

As V\w\,\)é £ (\‘\ )3 I it implies {X'\XL -
\ =4 Ty

LoL
are such that X; £ ¢C @\*3‘3 °

24



, ‘/3- ‘/P ”r . . / .
But ; M“V>E(h\  implies there is Ny such that
"f\(n < ““-3 \( T .
L=\
: ‘3P And so on...
- We can build in this way a sequence’ {XWY)B such that

W“‘\L,) XY;‘;[ >E

This yields a contradiction with the earlier result:

, N
“‘/&*Y? >E’ - 0] '

JECAICA DA L L <e - N

Since 1 was arbitrarily chosen this gives:

Then

ﬂqx\\pak(31)\

s:\,N

YRR
,“/3 /




Lemma 7:

R.T. Rockafellér (lQ70)_prOved that if‘ghefCOnﬁinuous
functions Fn are convex on an open;setvs, if they*c;nQerge
‘pointwiée to'a,functiOn F dh a subéet D‘dense4in_S, then

the functions Fn convérge uniformly tolf on any compact

-. set included in S. S ‘ .

'As this result is not widely knéwn,iwe have

included in the appendix a proof of the ﬁollowingfsimpler
result: if the continuous functions Fn are convex on an
open set's, if they converge pointwise to a function F

on S, then the locationi.of the maximum of Fn converges

to the locatiog?of the maximum of F.

26
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,../ -, v - 0 7

1 o -

B . ¢N(P\ vconvergesw point—wise to QD(Y:\) when N—>x

-

We know that: ] | o |
‘5\_.. £ S Lo’é\\(\»z \_, zi% \_O%Y:‘ 13\)

Let us first consider the first term

é. S \.”Qn)\'\(\’»,?-\,\

eV

“The terms S \Jxﬂkkvz\} are i.i.d random variabres.
Therefore we can apply the strong law of large numbers
* to prove that %.;.& LO%V\vzf\ converges to
L=y t

E\'_% \_o%\'\ \s,zﬂ °
whlch has been computed‘in lemma 1.
o e
Now let us*consider

v -
- i % \-03{ é—\ Y\}T) h ?Is\‘l .-
That term is a. sum of dependant random Varlables, we want

tb replace if by a sum of i.i.d random varlables More

precisely, let £, (w\: L 5— \(‘IPW\ \'\("“:7-5\
and let %& )= EY_\\(‘sz\ \W wﬂ
25 \‘“‘x,%"m s T

L3
N

et % S leg )

A \
N L=t

‘ A N ’ . .
Let us prove -that «; converges point-wlise to o,

(i.e. au"qu converges to 0 pointWise as function
of v ) The proof ef this,conver§ence is an essential
part of this chapter on Consistency;' This proof follows.
Then we can apply the strong law of large numbers to -

oy to prov“e that o, converges point-wise to E[%\.OO)RKT\

“which has been computed in Lemma 3.

27



S o : A ‘
. Proof of tﬁe convergence of o to oy :

;fRemembeg“fhat we‘useqithe notation {(Ph:Eiﬂﬂkt\h(v1Y}

. o N - ) . . .v»*" . .
- As we’ allowed mass-points in the density of the censoring

tipe, f.,(t) is only assumed tJ be left-continuous. But we

sh?ll assume there is only a finite number of discontinuities:

aﬁker a certain time £{t) is continuous. Let us give
- * :
o = \«\ ~ 5
Qanfggample of the function f(t). Consiaer a gﬁdical
expériment,*where'sex and age are among the covariates.

Xt aaspécified time T, all the women, for‘example,va

”@s

‘are withdrawn from the experiment, at T, all the men

over 40 years are withdrawn. 1In this example f(t) would

' have thg”éféph (Gl):,/ -

-0 T\\ rT 7t %

2

’ ' A .
In order to prove the convergence of o, to «, , we shall
have to consider different cases depending on the shape
of f£(t)y. * / | : | o

Case Ap There is a time w™f  such that

(VE>TY ()0
- The experiment is stopped at a certain
specified time Tf. We shali have to
consider two different subcases: |

-



Subcase Al: f(t) is(contiﬁuous_éz Tf which
e : ' . N
L B B : yields £(Tf) = 0

t \ . ;

" T T, Te

@

Subcase A2: f(t) is not;continuous at Tf,(ﬁ?XﬁO

- ‘bl

. N //
14
~—— -
. "\ﬁ -
) N t .
Ed

T T 'ﬁ
At Tf we stop the experiménff eiﬁiy subjeét nqt withdrawn’
is censored. This Subcase AZ is-the only case studiéd*
by Tsiatis (1978). It is the most commonly endountered 

situation.

Case B: (vo){{t)>o

1

A

'y L

'\ N ) ~
)
T 0T

It is in this case that the proof of the convergence of

ey

f<%

T

&“ to o, is the most difficult. To prove the consistency

in this case is interesting first for theoretical reasons.

- If we stqQp an experiment at Tf, we obtain by Coxis technique
' . ,\ > . ‘ . " o s

an estimate By - But we didn't consider what is happening

A%
after Tf. The theoretical estimate ?m obtained by

29
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- establish consistency in this case B.

- .
- N\

observing the experiment till+ © is the estimate usiag' -

#ﬁl the information uséful for Cox's technique. It ﬁbukd

belﬁui£e~w;£risome if A:»fi\yvas not consistent. ~Furthermores
. if tﬁe asymptot@¢M§€§Foximat;Qns»gE? t; be applied in . i
situ;lioné where the experiménﬁ ends witﬁ\tﬁe\death or.;
| . N ] L
“failure of virtggily 51% the subjects,~thén we wiil not 7\N\( 
have confidence in the approximafions uhless we cam ‘L&

T —
5

&

30
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¢
(

S Caee A there is a time Tf such that (\JJ(>T;\ {'(t\=o

,t < N
S - - . : . 'S . -
= . i - L@ -

—* . - Subcase Al: f(Tf) = 0

Let. us prove that'this—subcase»Al can be treated‘aa\a

case B by changing the tlme axie For example let usxhhange
. . R ) - \?L

X in k; according to s v - " the range of

v is then [b fx(' h ) - _ . ﬁ

The order of tlmés\of death is unchanged - As Cox's
llkellhood uses only the order of.tlme of death, Cox's
“1ikelihood is .unchanged.

« Let us prove that the structure of the model is not

ehanged; Awe Still~have a proportional haiard rate model.
Let us eompute the hazard rate - (t \ efa€he}
;subject with covarlate z at time &

- Remember the’ den81ty of t glven z is:

(0= A8V hp z\ ex\;ja\u\mw;(\u

We“have | R Y b this glves ak= dt ¥
. v L \ (t+~\ |
N . T |

Then™ den81ty of t given z is: . .2

Vi e
\\ H T- \ 9, a¢jkbqwﬁﬂau
| (k;f\ s l |
x ‘ Te- i_ . ‘_Qf§:I~
tt\ PKE (k&\f \:\)A\L] _Aa\da{—\—e.l\) /A (W) i o,}\du

Therefore



A(‘Q 1\ L). ,' we have - ‘ k,' | / ;

\-F(\) ‘
RE AR \ e, )
\‘u__‘\

‘We still have a~proportienal hazard rate model with the .

same parametrization h.

1 Su,bca‘se A2: ¥(T;\>0 |

»ﬁe wantte»proVe‘that ,4: -ﬁmﬁﬁLog ‘Qﬁ\'_COnverges in
probability to ‘*N‘i‘218~L°%4(“\
| .A, f”} (S A l | ‘
We have: '&“’— O(N} ﬁ N 2_ \Loc5+ QTL\ : ﬁ)
Sl = 7w )
k h )
We‘ now t at \_o 1('('\'\ {N(TL\-{:(T\_‘_R('(' (T\ ({ )
| HT\ $(m) £(w) |
R (x) means a functlon of x of smalle; order than x.
“fT\ {( \ (ﬂA . | as.f(t).ls a;decreasiﬁg
.functlon of t, and G-E,$T¥' '
: Adm)- () Hm h\
. Therefore 4YT\ S ff&\

But lemma*S 3ad the Skg}okhod cogetructlon ylelds that’

SUP\ ( \ {Gﬁx o converges to 0 almost sgrely.
JTherefore k 7}}{ | -
oy [ S
¥

- This pyoves the convergence inhprobabilitycmﬁrvnato

‘\':-r
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) s L L , - o
| .~ Case B 1) é |
o ” N
Remember e é-_‘% \_o (ﬁ Ay = ‘if’.‘& \.03{(
The di’f'ficn%ty here comes from the fact that when T, —>+©,
£( T-\--so , 0(5{\'\'&\ '

sare go:.ng to dJ.VJ.de e( and

To overcome that dlfflculty, we%
; “+\o

} ™
), in two terms: 0(..- 0“*' \Dn o,

with

%8 \'o%{ (T\ Tték\ "3..-—-, g\.ooj‘( (T\ T)‘C“\

s
51’

v
\

ot 25, Loy B 1A

N ~ )
‘_ L2 { lon flmY (Tt
N i ‘E‘ = )

We are going to céose the sequence t\\ going fast enough

N N s

to 4+ " sO that B and \o converges to 0, and slow enough

"

e

N
so that Q; converges to O, . In this casg~ B, the the,orem

will be proved in 3 steés.

=3 : B
. - T, k4 - ) : i - : i
. ‘hﬁa - s
S . 3 . -

< A ’ ;
Step 1: BN_'__;;.O for a sultable sequence ﬁ’\]

Step 2: BN-_‘_\_._, O - for any &k\}‘ such that Ty—se

Step 3: 4 —9O, point wise ;n B for the - .

=

‘/,f | sequence {tv\x (step 1)

s ) : 2

t
.

We have to point out that the convergénce of O.to o, is

quite straightforward when Cw is fixed:™*it “is nothing
- else than the case A2. |
Step 1: Let {T\ set of tlmea of deathsc

such that X-\ . Let us assume first that t“(SvPT:
: ' N

Then there are {Th} such that Tu> tn

33
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We are going to find a lower-bound and al

upper- bound for % (&. -

% W)L £ smHpa)

N N )=t o
: | | 2
- Let Thb;\ be the number of individuals in the experiment
such that YJ P -« Obviously \ $"“(TK\ £ “""(kh\
Then

S’ 7-5\ (TK) ( x Min hip,2;)
5'\’ which gives {N(TK\Z .Bz\‘NN P
: !
We have found a common lower-bound. Now let us find_a

common upper-bound.

Let £ given. There exists aﬁcompact‘.KVi depending on

‘5 such that EY_\\(\’:A\\L’L#:K%}%% as EK\'\(?,zﬂ exists.
f{w)- & 5__\,\(\/9‘\'\(\ hlp2y) (zi€¥po)+ §\J:§ i)y 2 )1 i K )

.We can prove that the 2nd term is bounded by &€ as:

“—‘(YQ‘}\M?Z;\ Wz JEKp) €y “-“(\’%\ {Zi ¢ Kp.e )
G | L2 - Efiap Ll

| \V N>“°(Y\\ i‘- f:‘. h(p,2)\(zi ¢ Kpe) <E

- i‘% VYT \\_(\a,'z.;\ \(z€ KW_) é E\Q&LEJ\‘;\(\&,Z\
;% , Now h
(VR e m CRiR)<s *-E_,";;E‘; pa)

R

5 From the bounds of f, &TK) , we shall deduce



bounds on AB

LQCS{N\W\ \'\(3,2\1 \_O%N \.O%f K\(\_o%“€_+\\ax\\ 1\]

k= N f\
Remember =\ L S \.53{- [T\ (T »k“\ })

Consider Y\(t“),the number of individuals such that 8=\ an

T>k’“ . . Then:

( Log | Hin \«(?,u]-}o%q,\*it“\ (B8 < R\t“\(' Loae +hox W ,,)D

v 2€ %3

Remember we want to prove that \3 \‘( \-___,o

for a séquenCe{ ““’ It is sufficient to choose &‘t

such that log N M(‘(“\___,D ' and \_OQ)Y.V\\“ \—\(\;l 5}1\_—5\_’0
,,N - , N

In the reﬁéinder of the’ theorem it will be shown we need

to choose the sequence &t“\ such that Vw @\\2“\-‘—’*’-\—00

Let us chooée {h“\ such that K-‘-(t“\:\.oc“)ﬂ . This is

possible as there is a finite number of discontinuities

and We are in the case \Vt\ {(k\>0
Logn
(ta)= & hp 1 (yy )= =

We need two more steps to prove that N('(“\ converges

to 0 almost surely.

* \ V . PR
Step 1l(a): \_o ({\ o-s- o 1in probability

Stép 1(b): "‘ \_0:5{“\\'\ \'\(\57.3\}!'\(\‘; o.s.

&

in probabl ity

‘Step 1l(a):

Let I'\\t“\ be the number of 1nd1v1duals such

that Y3 Cn - V\ N\\k\\\

35



When N goes to +o ,_‘l\_\t_wl converges to E[\ > &)
But E(\(y>t E[_\n(‘sz\ \w(pz} \(y>t~ﬂ ‘lsh_ ]
' Remember HOlder's inequality: E\xy\ {e \x\ Byl
where T-+ L=

[} ;
et brt=6 , s= €’/5 Then we obtain

EE Y>tnﬂ< E{h | F_[ h(‘mjls y>m]

" oo e e ]

Let us apply again Holder's inequality: ¥= 5/h ,5=5

R (] € Bl ym;] E[\r\ z)]

Then:

. Therefore:

F_x‘ y>‘cﬁ<€[\\ Sx EY_\‘\ 7_)] E[\" 7_)\(\/>\c‘§

We assumed that E{_\'\ 7_3 ) and E‘_\\ Z\ﬁ\-l existed.

- Therefore if «c¢= E[\n(\'s A} 1/6 E\-_\\(v 1\..\-3 ¢ |
E{\\(V,"L\ \(\/> tu\] \_o

we have: | (Logvxq3

ANCRIM RN

Therefore log n E‘-_\(\{Zt\,\ﬂ converges to 0.

Leamma 5 yields that : 7 7 7
' SupLogn {9 _ eTi(y» w1} | =0 in provabitiey
Therefore log n M(Y) _ 50 But 'N*(‘(-“\AV\\\(\\ *

h Cdl

Therefore we proved step (la): r\(t“\ | _,0 in probability
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The assumptlons‘we made on the moments of h(P'z\
(E(h(?z\q] EY_\\(‘& 7.) X EY_h(‘s 7_\ l) are only a compromise
| between the assumptions needed in this step l(a) and

those needed in lemma (6) where é‘ .Y:‘l; /' )K Has to
converge. By using different values of r and s in
‘Holder's'inequalities, we could obtain different necessary
- values of the order of moments assumed converging. It

- must be pointed out that in the exponential case, this

problem is of no importance as all moments exist if we

simply assuni‘e E\-_sz] for ail ‘5 o

Stép l(b)- We want to prove that

converges to 0. We have

\\O(ﬂ_‘*‘“ \\(\5’ ;“ ( V\ux \\.ots\'\(? 7.5)\

\.OO)K_V\ in \\

We know P‘\(t\\\ \“\\k“\

Therefore

Q ( \\.ous Min \'\ ‘5 7_5\“ th\ ( “Ql\\-o‘%k(‘ﬁ,is\\ M \ih\

\\T\ \-\\'\ n

-~

But

(\‘\.ux\\.oc)\'\ .2 X__\_\ { V\nx. \\.03\\(\3 13\\{EY\ > t\,\}\- SU\)\V\(W EY_\ Y)wﬂ“
Re‘:member E\l\ W> k\\} ¢cl 3 |
Therefore MGX\\.ocspr_i\\ , ‘/3 /f 0_

°3“

5" N

e Lesplpa)| i) ¢ S

5-\N

lemma 6 proved “O‘x\\":’%\"k‘nﬁ\ -l; /p converges to 0.
o

Moreover from lemma 6:
Su Max \\.o:s\\(\\,'l.s\\ Aw "l(:\ - EV_\\\/)\NS.“ —>0
W? s:\,N _‘_:_____ ] ~M

Then step 1(b) is proved. Step 1l(a) and 1l(b) vyield that:

b (L) ——=o

.37



. step 2: By—»0

Reﬁ/;niberh b, =- zS L03&(T\ m>ta) We' can apply
the S.L.L.N. to prove b, converges to EES\QO)Q (%) \\")‘Ch“
for tn fixed. But E[S\mﬂ&&ﬂ exists. Then when
- y— EYiS\_’%{(‘Q\uyﬁ\“ converges to 0.
Thus b, —> "

Step 3: a,—>a, ; point wise in p
Remember

Bt £ Silog &T\\vm\ ; ot £ 5 Log T (R 5

Therefore

| ¢4 & o e

| £ (%)
We know that: : :
\\.0(5 by :, {N Ti\‘ { Ti\ * R( &‘\Ti\' ‘G(Ts\)
t(w) (%) =)
R (x) means a function of x of smaller order than x.
(€ b) £m) > 4 N | |
therefore : (T\ £ T\ {u\“\“’ﬂ'\'}.\
LS T B B (W
Y
But “kn\- Logn
then { (T\- {ka\
UARLAL) SR CU Y1 R
£ ’ el fix)
But lemma 5 yields: S:\D a, in \ﬂ. \\.\-4\‘:\\ — 30 .in

 probability provided that o,—»0 . Let € be fixed.

Then: | | |
('.\NAWN)NQ\ L(TL\\“F(TL\ {€ . It yields .,("\";\“G(Tl\ 3
£k ()
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xf(ﬂ
Lo
Y

Then <lE

A
Then \CM— QN\ é-%— £ N
’ A
We have proved step 3: Qy converges to Q, . Therefore,

A .
steps 1,2,3, imply that X, converges to «, in case. B.

We then have prdved
) (\?\——-ég \_mﬁ’ﬁ?z V- = £8 \_0(3{ él(YPT)\—‘(G z*ﬂ Z |
converges point w1se in probablllty to \\:}

)=, [ Logh(p, =) efslal]- . [Log £1) G

with

] E\Kh(‘&, 2) 3_(7, > Wﬁ= Ez\}\({s' 1\ G(w\ﬂ exp ‘f%o(“\ \‘\(‘XI 7_\ A“‘X

In the next two paragraphs we shall study the function
¢X?\. As we don't knbw the shape of h(?,, Z2), we will
only be‘ablé to prove some results in the neighbourhood
of Fg‘, namely:

(i) o 1s an extremum of Q(?\ , and

(ii) &i?) is concave in a neighbourhood

V of ?
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C b is an extremum of ‘b({’b\
Vo , | l

We shall prove Q_B_dl):O
ST

Let {; the ith coordinate of . Let us prove Q}Cb\

| !
( {Eig (@‘5;? 3?0}§ Ek,-L C(‘c\l\ Q \
BY ?" ‘ \'\(‘so,ﬂ ‘(&\)

Remember: ~-density of t given z is:

A (k\)k ol e_xP [ﬁ(\x\\'\(%, Au\ R\

- density of z is %(7-5 A'Z_
B is a double integral in t and z. .By using

Fubini's theorem, we can express it as:

kv &'}i 3 x40 R .

j'\ch\ \ ogi Ife [[ z\ ex? jA (W\\‘\ le\‘\u> G(k \7-) X("—\ &i&
| ft)

t-0 Z:-o0 L e
The term inside the brackets is nothlng else than f(t).

t k=40
Then ‘\ UQ( ( ) A\:
, o g

t-o -

Now let us eogsider A-E, E{g\{& X\Y‘
L

Remember we proved in lemma 1 that:

=
/—\
—
9
-~
—
L



=

E+-o‘

E‘:S fh () \1(\3,,7.\ exp f?\ [u\\q(\i 1\!&\&)@0‘\75 dt’

We can express as before A in a double integral in t and z:
b=y 7.-+.n

(\:;5 \¥\[ X(B\n\ exp- Jr\ (YR oz\o\u\\c\\c\z\)ﬁ <\1]A\t
But ttl;: term inside brackets is (}{(k\B Thus
a- S
‘A— gand SO (BQ?) .
AR ™

%0, is .an extremum of Q(\B\

- As yet we do not know if it is a maximum or minimum nor

do we };now if it is the only extremum of (b(‘s\ .

41
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D Concavity of Q‘((&\ in a neighbourhood V([‘:o\ - of Pe
} | lb ' . | | ¢
We assumed that )__L was continuous. Therefore to prove
dp X
_—+hat _there is a neighbourhood V \‘:\ of Ys, , on which

Q)(‘s\ is concave, it is sufficient to prove that (‘.L_@_.\
is a positive deflnlte matrix at ? ‘s . -

Let us conS1der Bﬁ

) ?.3 Px

R AREEHAN

-E C:(‘t\?-\ vh eXp- ?\ &u.\ \'\(‘5. 7\ A“} c,k‘c.\‘t}l
[ \\c\ E\s 3\3& {

;Ez b g Y__\_\‘: fexs- J .\,\u\\\(‘s.,l\au\ il sz%\_%.i.e&\z\ c.x?-i: A A&

Y
Let
3 (\“ B, - Gt iy | 0
# 3?“6‘5 . | . -%
We shall prove \é&. \)15 a positive definite matrix in ‘
gl

two‘ steps. In the first step we shall prove Q,K-B.,u.
" In the secondxstep we shall prove [D‘-,:} Y.B.‘“l is a
-positgve-definite matrix under a mild assumption on the

. set of zYs.

First step: Az G
We shall use arguments similar to C. C;x is a double

integral in t and z that can be expressed as:

!
.
\\\ ];



k’silo

t | 1 |
t\.ik\\;_z 3 u‘, j ?s,(u\\\(?,,z\ém.c,\\:\z\} Eil\‘\(?g;l\ex?{ a,(u\\«&?.;\ dut - C,U:\l\]

But if we remember that £ (t t ‘_\'\(?o,l\G(k 7-\ exp- ’?\,\u\\'\(\h,'z.\ésj

t24e0
AM E| R (exp- [ALIBpd "\g@\z\ 3k
j \\EiBv {".‘( P- J :l

k0
Remember that

elsle): ja“\‘“ (R ] Mu\\«(w\‘;u\c,\\\z\ax

’ =0
Therefore
b ) E--Mo

" e[“‘ f SEYEC z\(ex?y N4 ﬂf"“’
kzo >

}? B"K

By inverting the order of the integrals Aik can be trans-

" formed into Cik.

Aik = Cik

‘Second srep (Dik) - (Bik) is a definite positive matrix.

By similar arguments as before, we can express B- D as:
t=+e0

!., ; &(\ﬂ M’ ] [uane Ad ““\‘\3 I“t%\él\\\:‘? e’fv M«A}

R - j ML) S \xc

Let us call M(t) the term in large brackets. In the

appendix A5 it will be shown that M(t) can be expreseed a

as a double integral: |

- 43
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A | L X T2 4od ')\\ » .
M(\Z\:J - - S_P(?'Q _ .—(‘5' \ A‘a(\tzx\
' A \'\(\5,1\ i \'\(‘51\ |
Therefore B - D = ,‘ \ ’
k=40
J AL m&
£y
k=0 .
- obviously B-D is poéitive. S vaa\

- let us prove B-Dvis definite:é

2 (o) B | |
V(z,x)= 22 Red l?_(i}_ - - L
Let \ \—\(\s,v.\ \n(‘»,x\ | ,

Let X be a_vector.

x'(B-P)x=0 @(M\Vz\x v vx-O@quvz\ VX0
| Wh (oo S
(vzuwxxnxs“ Sy
\\(?,1\ | \”\gv,x\

Let us take x such that , ‘ o , ’ | -
| | A (px)=0 o
m.}c - .

N\

\
» [ " ' \\
This implies

de)?%;(kEQS)(sz

: If'there'was such an X, it would mean we didn't need

so many dimensions for the éarameter . _

. 7 'z ) .

For example if %,‘z\:'e.P ) QV'Z\ %‘(—B(‘hl\X: O means
; o / ’ ! F

pa =0 : ‘ .
Qéz)f%_"XK » i.e. the z's are in a hy::?é%ane.
L . ‘



A covariate can be expressed as a linear combination
of the others. Then we have no reason to consider this
covariate; we don't hee8-as many-dimensions for the

parameter V . We shall assume there‘}s\no such X.

Then B-D is positive definite. Therefore -

LS

L ] '
BQ 1s a positive definite matrix

Qq

" Hence there is a compact nelghbourhood \Y ?‘\ of,vo,

which @(‘5\ is strictly concave.

, | o ‘
E Exponentiai"éase: \'\((5,7.\:& ,
o3 -
. ; o B
We are now considering the special case \WKVIN:Q. .
This case is the ‘most used model, the one used’ by Cox
’1n his orlglnal paper Let us, prove that in thls case,

Q§Qﬁ is cdncave~everywhere.- 'For obvious reasons

d&(?\ has the same congavity'as,the followind_functionl

N % N g f ‘“'S L ﬁiéhix L s‘ﬂl
Q. ):é‘ VB2 £ %oy fea, e

~

@ us study é‘b ‘ | * .

. /
“ P2y
Lyt N e )X é_z. )]
ko2 S’L ;et\ é. & \ X \3‘“ £e SARCY J fs ;

1T (= R EQ
Y., , JERL 'ﬁ\ ' - ’)

. , M o\
V 3 , ko)
Let £ : d "Bz Z ( )
= & Aeali-z) IS ) a0 B R ’ “—az, ,

csé? .) ek" )E& 1’ <

.B¢ é_g E\ - B, B-} )
dob \

my
p .

-
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- definite.  Let us cons1der

Let Ti be a time of death. leen the-risk set Rl, the
. QP -

conditional probabiliéy that sub]ect k\dled is
£

3GR

. We can define the conditional

| R | pz, |
expectlon of z glven Rl as: E\: X 5%5-\ 2, (Z e‘”’ ) 3

T oq & . Loowe
similarly B Y_?-?— 0\} “A; | . o |
Therefore ; o A- B R ‘EY_ZZ Ql E(‘L\O‘XEXZ Ql

is the variance-covariance matrix of z given Ri.

t ‘l . . . _-,I‘ “ P " . | ) .
S . [ﬂ;-Bg B‘X « : o - ;
But - ,3-—@-2'-": .i'\ S" A | ' ++Therefore ’
LN ’ S .
_ﬁktbu ' ( St

,1s a positive matrix.
B E . : . o Lo

Let us prove‘thét under a mild assumption ,-\Sdbg is

%

t

"1 -F\_ 2- E{l G\X\ 7. E{l QkD 1 B

| C0n51der K’ a vector

¥ Y=0 &> E[x(z eFe 1) (2 a@ K}}\s &K -0

- E[(x’(z_‘ E\l\RKX\\ (RK1= 0 é—.—}LVz.GRKS \K'(Z - E[z\&x}):o‘ |
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It means all the z belonging to Rk are in a hyperplane.

‘ | % | (N
'Thenas—}d)“ 4 3 O

is a sum of matrices Mk, -

3¢ o 3y

- ) . . ~

definite unless each of these Mk is not definite. That

can happen only if all the z's at t=0 are in a hyperplane.

As werére_lpoking‘fOr the asymptotic properites of ¢h ,

2

provided thatsthe domain of definition of z is not a
hypgrplane (as in.the discussion on the concavity of ¢ ,
| ¢ , \ ~ -

it would mean that ‘:,has-too ﬁany dimensions) for a
. IR A
_samplg¢§i%eflarge enough, the-matrix W, (Mk at t=0) is
definite.. | . | o ses™

Ll

A<

3
»
oL
2z

Therefore - is positive~deffnite.

o]

This proves that:

¢Q is strlctly concave on the whole domaln of B
i

Then QN has only one maximum ‘5“ As we can t J.nfer
s i -
,anythlng>about the shape of Q& in the general case, it

s ] " | |
might be interesting to study some other particular models.

- |

For example, for a particular model, if d) has only one
local maxxmum—and if: ¢) 1s concave in the nelghbourhood

of the true Value, the proof of the consistency is

™ P >

similar to the ﬁfoof of the consistency in the exponen-

tial case.

, ' {
Let us go back to this exponential case: we
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have proved that Q)(?) is concave on a compact neighbourhood
'V of its maximum ?o (indeeder in this case Q is convex on
1a111§ ), that { Q%(%\‘ is a sequence of functions
convé:ging point-wise.in probability to (b(¥>) and concave'
on V. | |

To apply Lemma 7 we need to know @N(‘s,w\—> Q(‘;,w\
for all F ‘in some countable dense set and\gor 511' w o
except for a set NCLL with RY_NX-QO .\T‘ The point is
that N must not depend,on P - "
We now eréue that %N——e&?o in probability
by contradiction. If }“ does not converge to ¥w in
probability, there is a subseqﬁeECe n' such that |
R{\%‘,\: -\&\?E} >§>0 : for some fixed €,$>0..
Since ﬁ%(%ﬁf;?f———A; ¢i?\ in probability for each % ,>
it is possible te choose a subsequence n" of n' 5ggﬁpznat
dp“.,(v\-——__) ‘b(?\ ‘for all \5 witih rational coordinates
(the set of such?: is a countable dense set) and for all
cn'except for a set NC<LL , independent of ? ,.with
Pr(N)=Q. For this snb—subsequence Rockafellar'é theorem
provesLtnat ‘dhg——9~Q uniformly on compacts. ‘Hence
%h,,v—e? almost surely. Then P[ \'('a“ - \s,,\ >E‘X———> 0
which contradicts the selection of n" as a subsequence of n'.

Therefore:

A
?h is consistent in probability.



F General Caseﬁ

As we can prove very little about the shape of Q&(Y\ in

the general case, we shall use another tack. We shall

S
.

prove that the Sequence' { GL(EB\ . is equioontinuous
in a neighbourhood of ?,; This will yield the uniform
convergence of §, to § . That will give us an "idea"
‘aoout the shape Jf ¢k when N géts large. For reasons
\mathematical more than statistical, we shall assume that
the time of censoring is bounded by'a certain finite
time Tf. This assumption is mild since most-su;vival

- studies are ended after some prespecified time. We shall

assume moreover that that time Tf is such that P\‘_YZT;:X>O .

Fl Equioontinuity of {de(%ﬁ}~ on a neighbourhood
, .

v ( ?0) of the true value %Q.
We will need the following classical result:

Theorem: If E is a compact metric space and fn and equi-
continuous sequence of real valued'functions of E converging
pointwise for x€E in a countable dense subset of E to a
continuous function f then fn— £ uniformly on E. We claim
that { ¢L(€% \ is an equicontinuous sequence on a

‘compact neighbourhood of ?o.

PAETTNTAREIIIN ST B

Lz
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Let 9 and\s be in a nelghbourhood of ?

O év(y\»fgs ) W) w1§:iﬂ* Laying betw

’ ? and ?2.

- it is sufficient to proVeK?M& \ is bounded in V(}o).
d

~

is bounded for ? close

.
R

|

Let us prove that
enough to ?Q | o
o - L N2y
}_@“_’:L_Ni, & \‘}\“ (\Y,‘l‘):\ l\“— .é g( yek. of ) | >
A\ . ( £ hlpa \\

'First consider the 2nd term B

(‘5 %)

L
‘_2_% “a% >¢
N-

leQ %(92;\

We prove B is bounded in 2 steps:

1st step: J—
N | }’F’

enough in a centain'V(%;). R,

To. prove the equlcontlnulty of -(bu\ o

‘1&\ ( ,Zg\, bounded for N large

.50
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> 2nd lstep: \( \ bounded f;Jr N large enough
| - ‘
LI \n\@—i, A
sek
in a certain V{( \3,, ). 4

First step: We shall assume‘s is in hypercube H of

center‘s such that (Vk) \\Bk ?K\ | . We shall
use the hypotheses we made on “\ : \h 1s a monotone
}?K \?*

function of ‘5& for any& . (P Xth coordinate of (5 ).

(?17'3\ }k (? 7))

)GR

N 3€ R )‘3

The parameter V has p dimensions.

~

+

_\_‘_ (‘5,25\ | ‘

)‘s‘,

N J
g—\i‘(Yiis}"'

g%i(‘*,zs\) is a function of‘s : let ?"F”'"’P"\"'?V"’Pf

[aY)
| F
be fixed. We then have a monotone functioh of \3,\ . Its .
. . q 3 . . q L
maximum in ‘;-E \31-& is either at \5. -t , or at
‘5:+£ . Therefore the maxiffum of B\'\ " in H is on

RIS

one of the vertlces ‘B,iﬁg €, S\,- being a vector such

~ Iad

s L9
that S,,,- pll . There are 2° different vectors %
corresponding‘to the Z vertices of the hypercube~. Let |
J\.‘, be that set of vectors %\. .

Then obviously:
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[B\‘ (YW] sem F\‘ (PMZQ}

Then |
, N L (< “ ¥ (?.\.&‘g,za)
SGA* L
Then k
ey émll i
Therefore: o |

)

S €A, {‘Fg‘ IE\'{;(E'*%%Zs\I

For each Sr , F°+ vt 1is a fixed vector,so we can apply
o~ ~N . - B

~

\‘

the Strong Law of Large Numbers. Therefore.there exists
Nr such that:
N
b ,(?ﬁ &,,i, 7_3’
2’

¥ (pe 7, ;+ om 1
J 3}_[\3&3&’5 ge&{}vn l

But there exi'sts only a finite number of Nr, then by

L
N &:\

_t'aking. N> N\:‘XN»- , we vhave: -

\ . . h ( +& v.
» gfej\_ {NH N [Vgc ;) }({z_i giJ\E\,[U} ‘{° g,

b
We! éssurred that E[ ﬁs(?'l\“~ exists for all\;

We therefore have proved that for N§>“qu.N¥rand for

? in the hypefcube H

v
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: ' ' ) ?‘ : X&{ S j\
- BN 2\pst e, €,
_\_.‘4_'}_\1(\5,1;\) is bgunded by !3\."9.&\*'&‘;\ Y\\}e\ ¥ )\\
N ER; , v
¥ é(s_ |
y
2nd step \ . . 1is bounded.
|
2 I -
v ‘;%Ra (\5.7-3\
Let

2
| N jeR{ E
We assumed T; 4T so <> ) 2_\(\/3>,T¢\\\(?,1)\
: N 3=t |
. N ) -
Let us prove that for N large enough .\ L\\(\h)'\',\\'\(?.lé\
N )®

has '‘a lower bouﬁd.

P[?.EK}>0 . . ‘
C>,‘ Z—\WQT“S (z; eK\\\(\szJ

We could now apply the Strong Law of Large Numbers, but

Let us consider a compact K, such that

o N 5} \\ Tr-\\(? £¥) \\K\B,z\ |
' - would be close tb
E[\(zem (YO M?’Z\l | ,

for N depending onp .
We have to overcome this difficulty:

L 2&‘\ \h TF\\ z eK‘)\-\ \-.7_5\-

wyexhip L il \BM\N\M\X

LA
N:
ISGK\

a
[N

Then there 1is N(‘?.) depending on Pe such that:
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(o nea)

3‘; 32__\ W‘lg),Tc\ \\1Se\<,\\x(‘$o,13\ -F_K'\ (zex) \{\{2'\’:\ \\L\%o,?—)l $ £,

We can‘ make the 2nd term

% \WJ)TF\X\'\(?.,‘L; -kk?ﬂ-s&l

iz
'LgEVn

- small compared to & , since:

Mz

_ \(‘IjéT;\{h(\&.,zs‘\—\\\? 7.5\} ?K%\(‘s 2)- \\(‘; zﬂ K £ Wz ev.\\\\m\‘%

1
N =

€K \

K <

L 2-‘“ >T$\ 2 EK\ is flose to( [KZEK‘\\{\I}T‘\X

N )=

for NDON,

And S:t X\r\(\x \ \\K‘n\}g '\\\s-\so\\féh
~~ Th@h for p such that \\?-vo\@1@>Nl
—‘;‘2-‘\(‘13 T\:\[\'\(\&o,ls\‘\f\(\i,ljﬂ (&, ‘. o

' (zex) (Y2 "p.,2)
€4 € . (4 .X

Let ‘'~

Then for N» Su?{N2 N(\\)\ , for‘s such that
\\?-F\\("(z: g z,\) E‘_&ZGK) (ﬁ')Tt\h(‘l 'LYX

N)G‘k
- Hence:
i ) 4 }MKe1§
o “e’“’-\k - g "I \V ( M I _\N_;‘. # for suitable M
ék\f‘(\‘ 23

T



Therefore: B is bounded for a neighbourhood V((&»\ oﬁ e -
o | ‘ W (0,25 e
Now let us consider the term A //i"{-‘-g §Q ? ‘
| \\(?1;\
As before - '
al ¢ L2 | .zal; h(pa)f ¢ {\“(V*SH\
\\ \\ “L\ (? \F%% | \Y\s ) SGJL\- v ~o

- We have assumed too tilriat h(‘h ,2) 1s monotone in ‘s‘_ , for

z fixed, for any 1.

Then (35 E./\.\ ¢ ____L______
\'\(\‘» 20\ \"(E"* ~\-SJ' 2“')
- Therefore | 4_. }\‘ - I
PR ‘:'_zﬁ ” (g2
N is h(v‘z\ S*E_I\;‘. N i=v | \'\(Eo E‘_E,i\
. There exi-sts Ny o suc;'h that for (&h, S“;\ |
v e I *S %
.!‘3:: % “ \5 t \, © “is bounded by

\\ (?.* eri_) Zi

JolBrie
| \n(\s,+ gni, z)
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u \h( S \
— B+ €2 LY
But [ SIIBF % K ) ; S“ ?+S£2), E 1
L
\'\(Yao*-gnE,z\J h(‘wg(lij?.\
- ~ ’V‘ - . = o ] ~ j
| | h o 3
Then . g ”BP (?f*’g*-E;‘L) exists. 5
] \w(\:;-gqs,v_)J
Therefore, as there is a finite number of ( Sh / gn )
it yields that (A)l is bounded. X
Therefore: ' ———wl '1 is bounded fdr ? close

~

enough to P>. ‘/}

.

Let us.recall what we proved in the generql case:
- P (? ) converges point~-wise in probability
to a given function d)(%). | |
-~ The sequence {¢%(%)§ is equicontinuous
on a compact neighbourhood Kl of the true
value ?o - | | |
- YQ is a maximum of ¢ (?).
- 0 (?) is concave on a compact K2:
Let K be the intersection of K1 and K2. An argument similar
to the one used on page 49 (but using equicontinuity in
place of Rockafellar's theorem)‘proves,that.Q& has a local

maximum on K which converges to the true value in probability.



We therefore have proved:

)
“Law
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P
a

The Maximum Partial Likelihood equation has a root .that is

o~

~consistent in.probability.

In the case of sevéral rooté, further work might extend .
some results of the classical M.L.E. theory to the Cox
partial likelihood technique. Fér example, we couldf
examine the changé in the sign of 'ng ffom positive

to negative and seaféhing theinterjgls in which these
changes occur,. to locaéé, evalhate and‘éompare the maxima.
V.D. Barnett (1966)Hdiscusses a systematic method of doing
this, using the "Mé£hod of‘fa;Se positions”. Another
method (Le Cam) could be to find a consistent estimator
%g preferably\easy to compute, then find either a neafby
. local maximum of Cox‘s likelihood or to do a one-step
Newton Raphson from.%u towards the maximum partial likeli-
hood estimate. iZﬁgzéur£her study might show that as in'
the case of the} xﬁmum llkellhOOd estimate, this new
‘estlmator gs asymptotically mlnimuﬁ varlance unbiased

#

(i.e. fully efficient) when'% has one dimension.

f
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Chapter 3: Asymptotic Normality S

* -

LetP be the vector of para:mete'rs of J'giterest and rPo.\the

true value of‘égis parameter.

‘equation.

exists

tO

v

w

Let ﬁs“nbe a 'consistent root- of the partial 11‘kellhood

4 o~
Cox's likelihood is pro=

~

L]

In this chapter we shall assume that there

such thdt the times of censoring are bounded

N

by a certlain time Tf, ‘that

W
that —-—

\B‘*

=3

(pe)

$hoo 3w
R TR

P[J’?1?1j70 ‘:)<and'

are monotone functions

€

in ‘3r for z fixed and for any r. °This last‘assumption 

is verified for the‘éxponentlal model and more generally

for any fqnctlon h such that h(‘s z)— g(? z) where g(x)

For example, hg? 'i)=(l+? z) , h(F.,z)=l+? A verify this

assumption.
ptig .

& (-

We shall prove that the random vector

po)

'1s a*ﬁunctlon such that g(x), g (x), g (x) are monotone.

>

N

L 4

is asymptotlcalli distribhted as a

multivariate normal random var

variance-covariance matrix V.

e With mean zero and

An approach quite 51m11ar

to the one used in classical M.L.E. theory will be used{'

)

Taylor's expansion gives us:

"

/
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B o o

Py L
o\ By y

"Where? 1J.eS between\! and \3.# As A?‘ 1sv a rOOtOf the f

partial likelihood equatlon, we have (Mb‘n) \ = 0.

o T
Hence we have. e_§\?' H? ‘5\ r&%‘_ \_j_b_’)

v
. kS

s f
N
\ . BN j \)

, : : «
As 1n the‘M,L’E theory, we shall prové 1n a flrst step

tHat {*’{ \Nb ) - is asymptotlcally dlStrlb ted as,
» Y o D
- D s , v
a multivariate normal random variable. ‘'In a second 5
v _ | @ -‘-b‘ \ ((( o (
step, we shall prove that LY, has the same~1imiq
L 0 V\Q }. | . 4 . ' '
. R
- l (A A
L ¥ ,
as™\ - B(k and 'that th term converges to a. flnlte
limit? Unfortunateiy these/ferms are9not averages of |
i.i.d random variables. o N ’ ‘
A HFi.’C_'S.t Step: Cy= r{\ \¢Q  is a'syhptotically
'~

dlstrlbuted as a multlvarlate nQrmal rande varlable,.

Let us 1ntroduce some notatlon (follow1ng‘f51atx§)

Bt L1y a\ u n) el e[wc\wx
f\z V\S:\
W%ere"ffs-the tiﬁe of disappearance of sub?ect hav;ng

o -
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\covarlate Zj . L

£(0)< ;\\_ 2 (\/J;,\C\Hsn(?mz_\\ ) e(\c\;‘z[\(yzk\hk\u;ﬂ
d&\::{.\ Afyye 9l E\%\(yn\}
: Q(t) is the probablllty of surv1v1ng untll tlme t without

«wb%gng censored and eventually dylng before belng censored so

Q10)<f 1. In the chapter on con51stency, it was proved that

[ () Bé?‘w KS e&&:\\x

,‘Therefore,‘en can bE‘ertten as:

(Mol S O (p ) [gszml
| ‘[““i‘h(?.ﬂ ?%\ : \‘(\“"\ BP \k £

'. % £ﬂ&\
;x | j \« L" Kkg\

/' =y

Let us flrst con51der

@; ‘;:”,F“:F& gsz&\}_\_ “zSLQLL
“_ (AQ\ EzUc\l

gy | N & ALY
We hdre g
O A e FO

Slm‘rblarly g E(\:\ J( AQ\ Ez k\ ‘ B .. | f
e, ARG A

Hence we are*thrnkrng of‘Q as- the cumniaflve distrrﬁﬁfxon

\
functlon of a 51gned flnlte measure.

. T»here%'fore F“ T \r\:\_ -~ (—A Q\ t2 (‘C\ - (.. Aa\ﬁ(})
* | | £ (k) g (k)
' ' \ ,EO:TF—\ ol '



3 .
Then Cn can be expressed as:

e {“:‘ &? ,1\2; (P Lﬂq =) ® _ﬁg(?vﬂ
u j(_s\ay £, __/( 18) Ealt

ey | am e -
| ;3 S A | o
The term f (*-'AQ\ E_Z(a ( AQ) Ez (1 is similar?\‘:}
Yo 1 \E F} B ;\{0 'TF-_S .

to an expre551on of the form ab-gﬁi? e é,b are two
theoretical functions and a,% the—eﬁpiricalvcorrespond—
ing functions. A classical approach is‘to Write |

ab-3b = a(b—%) + b(a-8) + (A-a) (b-b). In our case (a-3)

(b-b) will be a quantity of order ! _ ', therefore
- S

hnegligible “} and the terms (a-3), (b—%) will be asymp- ;-

-

totically normal variables. More formally it will be
shown in the appendix that Cm can be expressed as:
Cn = Cln + C2n + C3n + C4n + C5n + Cén + Rln + R2n + R3n

. 4
+R4n where

| R m:l
C\“_r\“ ﬁ\r\(?o'lW?(? - E MY‘*) )Y?

Cl‘ﬂ T = r 0\ Q(O)X 2(0)

£(°

CS“ :‘&::KE%’Q\ éil
| t
y JBF{)
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Cn = (= (a\-Q\EZAE 5 Cc;“:[(t\(ez"gz) dQ
o) Doy
C, (g"i\ £, AQ
EL
LoNe]
R

o [FlEt e[ nE)s
" el ¢ | | / fo) te |

Ry = = r(e e>;zA<Q Q) R rflaelem
E°T¥} o ) (- . [bTE} e

We shall prove‘that Cn is asymptotiqally distributed

as a multivariate normal random variable in two steps:

First step: Dn= Clo+.eennnn. " +Cé6n is asymptotically
distributed as a multivariate normal random
variable with covariance matrix ¥ and mean 0.

2nd_ step: Rln,R2n,R3n,R4n go to 6 in probability.

First step: Let us consider‘the sum S of the random

terms in Dn. : .
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5 :(VT{\ z 5 (&, \ &9 E200) | & €2 &¢ .

:
Y iz h(?"’l\év‘ E(O\ “ [O,TFXEL
[QAEL-\-' E"—\/EEIAQ\
¢t
(o) ICAI Loy |

Rewriting this we have:

- r{ :{_._._ 5\‘(‘;1\-%{& E‘L(O\ -\ 2_& M\Agl

W izl k(‘!,ﬂ})‘&q o) M 4 €
| 0,%]
LL26 s,_ S iyizhdes ) Z _"(V ,1.\/gLV)AQ
M ia MY V EU:),
[u,‘ra : [o, T
- ;‘-\fl \'\(F,‘L;) ._SLT \(7;5,“ °\€\
[or] |

Therefore S is a sum of independant, identically distributed

random vectors. é
Then S is asymptotlcally distributed as a M.V.N (0, 4 )

T

2nd step: Rln, R2n, R3n, R4n, go to 0 in probability:-

- In the following we shall consider only the kth coordinate
of Rin, (k =1, ...p).

1) Let us consider R2n:
{-‘&, Ez“@-f) <§Q
‘:D TF‘& /g T

When N goes toiod , £ (Tf) converges to £ (Tf). | We assumed

that £(T£)>0 - Let £ be given such that 0<E&<€(T¢)

A
Then there exists N, such that for any WNDN, ,Efﬂ%}ih}'ﬁ\



Sup m -6 - Sup VR0l

) (ew)c)

Rn ¢

&

Since for any t such that t ¢ Tf we have

My e 2y AW

Lemma 5 proved that

Sop WA, - £, () . S W (B EU:\\

go to 0O in probability.
Therefore

R2n goes to 0 in probablllty

2) A similar argumgnt shows that R4n goes to 0

=

\1n probablllty.

[3) Consider Rln = [ K[gl—-iz_\‘\ A(I(\)‘Q\

S - [_B'TF-X A?-A .
As in lemma 5, let Zn(t) = W[Ez\‘t\ -'EZ(E“ ~and let 7(t)
be - the Gaussian process iimit of Zn(t).
Therefore’ :
»R\Y\zj “(k\ &QQ Q\

) |
f Kk\ 21 38 Q\J 2 (% &s)c\(a-a\ifj 2 4(8-0)
2 g &

o fo ) oW
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o~

. . ° ‘ ] . ) }\,/
Since we have proved the weak convergence of

- 2Zn(t) to Z(t) for F fixed, it is possible (Skorokhod (1956) )
to construct processes Xn (t,ua,Fo) and x(t,cu,Po), .
possibly on a new probability space, such that the fiﬁitei
dimensional distributiens ofan(t,w 'Y"’) and Zn(t,w ,‘5, ),
of Z(t,w P°) and X(t,w ?o) are the same, such that-

Xn (t, c,u,‘s‘) ‘and X(t,w ,‘s,) belong to'D for every w in a
‘subspace _().(‘3 depending on Y, such that pl0, (‘s ﬂ 1

and such that Xn (t, cu,{so) converges to X(t,w ,?,) for

——

every w in .Q,( Is, ) .

o

Let

s

A [ 20-20 y(a-q)

T
[O,Tr:\
B m €-t  4(q-Q)
.Bﬁﬁﬂ t E
_’/a
Cf =z @ Q)
| LME V . /
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Therefore Zn(t,w) converges almost surely to Z(t,w) with
the Skorakhod topology in D, (after the Skorokhod construction).
Billiﬂgsley (1968)‘shows that the éonvergence to a continudus
limit, as Z(t) is, in the Skorokhod topology is equivélent
to uniform convergence. Therefore if (O(Zn Z)—- Su?(Zn Z),»

@_(Zn,z) converges to 0. As before there ex1sts N\‘such
that, for any N> N, g(ﬂ:\? e(T, T\~ €,

First term:

g_‘/ | 2“(/?—2(\:\ &(.Q_Q\

&@\7&62

[o e
10T\

Al ¢ ﬁ_(zﬂ,z\ [
( €(%)-€.)

A
Tome) Lo "

Therefore |A\ converges to 0

\_/

‘. Second term: R= Z(@\ E_L/L_A(Q-Q\

-

ot .

By the same arguments as before:

9 66 | (1

‘ Q-Q
(%) ( €(%)- 5\_\

el ¢

EO,TF-\
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- But as before

Cory) .
Lemma 5 yields that (g, £\ converges to 0 in
probabillty.
Therefore B converges to 0 in probabi}ityi
: A
Third term: C = [ & A(Q-Q\
€

o,y
=

Consider a subsetilo of the underlying probability space
‘such that:
1) PLo)=t

ii) for cw€ ), , 2 is uniformiy continuous

in (0, Tf)

Choose a partition (depending onw) of [0 ’ Tfilinto

1s X, ] E g { such that‘

w20 z(y) L
ie?IK E(‘C\ - E(EK) <£ (QL - A.

K,is fixed given &

Kointer

Then:



But we have the inequalities:

S | ' | R
Aty j 4(8- 9 - z j > (%- i((i";‘l)é(aﬂ\ ¢ n
= E(tm\\ : e € K | ./
| - E

o Tl A ) a)- 4(s)- Q(i\)}
S

gl(#\
o M (2L 208G ) u(4-a)
} +K£=; / ke:?r‘(ﬂ ( & E,('.g““\
{ £, ' |

The second term is bounded by 2€ .

The first term can be rewrltten as:

z{%\\ AR EIFGE ezg\“ ol me

+££((ﬁ [QKO\ Q 0\}

R

- Therefore the first term is bounded by

(k0e £ (& a)s (2 91 (8,0)
Hence |c| is bounded by:

28 + (‘i.-\\ﬁ*-ﬁef(%, o\lef(a Q
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A R
Lemma 5 implies that @r(CQ,Q ) converges to 0 when N
goes to +c0 . As £ was arbitrary,fthis implies C
converges to 0 in probability. Therefore:

Rln«goes‘fo 0 in probability

4) R3n goes to 0 in probability by the same s
arguments as before.

We therefore have proved that:

J_.K;“ BKS is asymptotically distributed

as a multlvarlate normal random varlable.

. ™ L \
i . f A \ } @V\
B Second Step: Consider M=~ —— .,
3

~

)
L ]

_ A '
P lies between F“ and ?,a We shall prove
that M converges to a finite limit in two steps:
A ' » :
First step: N, =- ~X¢) | converges in

" ;(%
probablllty to a flnlte limit WM,.

- Second step:

T
, !
The sequence {~ \ RLN
N 25?1_

is equicontinuous in a neighbourhood
of F

It will therefore imply that M converges to M,



. ) i A
"First Step: convergence of M,

A
M, is equal to:

' h (P.,?) };—:\;(‘5»1&)
(s, %) h{p.,2:) \‘
: | k! .
R LY O ) g—(rofz»\J

‘ ig ;belaé\s_ | LV\ jGRL ?

e b
i—éq Lh(?«ﬂ-ﬂ | | \,em (?.,z.ﬂ 1

A N
F\o:.-‘;r?:_\g

b

-

N =t

An application of strong law of large numbers gives that

the first term converges almost surely to
PRRIY 2 8%1(
g S

| R k(‘a.,z)

Now let us consider the second term.

ﬁ/‘

We clalm that

ALz § _:l. (Ys 2T “(?"/2*
Az= £ o |
N = ‘E 54: ( WS}TL) \-.( \331.15\ | converges to:

B RN
My E[§ E[\(Y?&\z_@(ywzﬂ in
Ei(y) k) \-\(\3.,1)‘1

Let us introduce some’ further notatlon:

prébability.
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A " \}\\ ' T YA,
L 21008 ) 206 Y (o)
. ! } v
AL 2 &(T:) ¢
5 N g ()
‘Therefore - {3
fé ~RA=x L ;_'. gu E"(Tk\ - EL(TL]\ .
< N Lzt g(_‘.i\ » ¢ (T'L\.

¢

Let us first Prove the following lemma:

Lefnma: a= S\)?{g_&\:’:\. ﬁ&k converges in probability
ee) ey o .

to 0.

» We have —E&_\_ - E?—“\ :\ etot\'&(\:\*_ EAE\ E“\-?[\(\

4CI £ (k) ey b ey

A

As we have seen in the\ precedting pages, for n large

énough, g(k\ >/ EQT;\-E.\

Therefore
D¢ Slaegm| st sl
(E(Ts\‘i.\ .EQT\:\(E(T&\—E\\) o

Lemma 5 yields that 55\1?\@1(‘(\-,-22(&\\ and
: ' = > .
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Suf\gu\-.‘i(ﬂ\ | cdnverges in probability to ©.
t , ! =

Therefore a _converges in probability to 0.

We (h_a\;e th‘en‘ . \\II\A- \\ (.:_\.ugy | " | ¥

EiN

o ’ ' “
The stroﬁq law of large numbers yields that QL.Z_S;\
\A Rt}
converges élmost surely to E(g)

Therefore A,converges to A id probability.

Another application of the strong law of large numbers

éives us fhat A converges to M;.

N

| A
‘Now let us consider ,(\3 AW ;_ S E"-&T‘\ Vs
n N .

I

M
—~——
-
“/

l~.

Let qsrprdé; that has the same limit as B =1 O .
f]m.."‘ :, ) . ) N 'L‘:\ & (TL\

CBeer 2G[EM e [ G, L)
N‘. L=t Q (T}\ ‘(-.(T:,\ .' g ('.\1\ < (TL\
N |
Therefore - b

oo |- 49 25

By arguments similar to those of the preceding paragiaph,

= 4t o
) ,r'J =

S
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1t can be proved that 50‘)\87-“\ E"(’c\ \ converges to - o

zm ey

‘O ahd L ig E (T) € (T\ convercjeS‘to a,fi-ni-re
' Vizip %(T‘L\ i(‘r\ 3 ‘ .

limit. Therefore B and B have the same limit. The ‘strong

law of large numbers,yields that B converges almost suredy
“'Q )

to E[gg}i\.j\_ - | . L ‘ ; .

(bt

Therefore M converges in probabllltv to:

Fa oo ¥h (s
IR A [k M

+E

M= E AU |
"L ey MQ.J.\ | ey h&wxl
B~ I I
E( ()D\:\\‘\(p., )]
, X . :
2nd step: J-L \9_91“_4 . ' are equicontinuous functions
N ‘6?2
of r in a nelghbourhood . In order to demonetrate
e

~
this we prove that %Q. is bounded in a neighbourhood

o o - S
1 ‘ . )

?“7§fA



o

N

38,

First let us compute A =

f/’ S i;‘(? 3\ ‘2’ _' ; R}\i (\3 'Lﬂli JERL ? (‘3 13\]
A £ W€ OF e xe »
£ Wem) Ve \q(‘5 \3

w )&Q

‘tInuthe chapter on;c0nsistenc' we prove there was a nelgh—
bourhood of ‘sﬁ in whicr:‘,\’é}\% large enough, — 4 //

\
2 ﬁ(‘\w({s,zﬁ

- was’ bOunded for each risk set Ri by a constant m.

In this chapter on Asymptoilc Normallty, we assumed V

that \\\ (\57_\ 5\1 1\ y\n
¥ 5;3 g2y
were monotonée functlonsln.%‘for z fixed for any 1.
- We therefore can prove by arguments slmllar to those
we used to prove thet | { &&(?5\ " was an equicoﬁtinuous

sequence for n large enough, that

S

G| Bz\v | s
l;fi; g.%_(\%» J\ I é—& é? 3‘3(% )\ gl A"R é?‘B‘S BP‘\

JE

~are

. / :
bounded in a nelghbourhood of This then implies that

S
3

1s bounded 1n a nelghbouxhood of ?..,

[



¥,

Therefore~the*éequ¢hce '(mﬁ S—— is‘an eqqicontinuousi;
sequence. : 2 N
| C¥B T erees tor
. ThlS proves that the matrix M =~ converges to:
‘ L\‘ BE: ' 2
- Yk 3 ? L o 3
/(' é?(? \'\?91\.—"*‘ |
Com=E S o |
( oL b ey |

(. Qiponp s 0 [‘yw“* ﬂ
| E[ (pq \\(\w_ﬂ

-+t

L

C Covariance structure:

The variagg;—covariance-matrix‘ of \ \Bk) ’is the
_— ,' . . | '}KB Y

varlance—covarlance matrlx *_ Of the random vector X

where

B U S
+S[ cufy 5 “\“‘——(% ?-U_Li“‘% ‘ o

\ gi_ g! (Ymaﬁ

&k
Bﬂﬂ T g . |
e[ Blode



But: g, .,‘Js— ) Aez.._
l x V(y9%) f &7’ ) /\(1)\:\ ‘cz\‘

e\ [oive] Lorme |
ey ENONEEAC
(A )
N \”
Therefore o , |
x=S b -4+S£i(y_)-\\c V[ €2 (yyde
\-\(‘50,7.\ }\3 "’ E()’) ‘kl Eo___i:- Y )
‘e
(‘s.. 2\f \(y>ﬂ AQ
el ' ’

4Pro§ided that M 1is regular, the vafiance—covariance
| matrix V of F(gsn \5\ is then:
TR
A consist\ent estlmator E>\feaM ie given by (—\‘.: }Lm)ﬁ .
. , P“

L
p ' ) ' ~

- In the exponential case where z has only one dimension,

.Tsiatis (1978) showed that Var X = Mo

G b (€ Sp) el ’(p ay

In this case ‘r:\( (3\\"'?"\ converges in distribution

to a normal random variable with mean 0 and variance

ﬁ \Vm(z\@.\.‘c\\- -AQ\{ E{‘Le \(7'>'c\1 E[ze?ﬁf(\\p&l |

26



equal to j (AQ\\(@,_(Z Q&\‘\ . As a cons:.stg?c
Chry O : :

eStimatér\\/f)that variance is avallable, the constructlon
of confidence intervals is straightforward. Unfortunately
in our multiparameter general case some further work is

\ﬁeeded’to find a consistent estimatbr of #_.
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Chapter 4: ' Extension and Problems:

In the first part of the chaéter, we shall
outline the’ proof of the asymptotic normallty when the
covariates are g;ven constants. In the second part a
problem encountered during the simulation studies will
be discussed. |
2; . . Part A: Consistency of Cox's estimate when

the covariates are given constants.
In this case our argumentsrwill'beiconditional on the
covariates. zl, z2, ...zn are g%ﬁén constants. . Let ué
introduce the notationr Ei(f(t,z)) = E(f(t ,z)|2i). For
reasons of simplicity, we shall only consider the-exponen—

tial case. Hence the,Cox likelihood can be written:

- ¥

d)(?\ z -“_‘.:é\g \.03[ é_\(\/‘)‘ﬂ'\e 51

N i=

Recall Kolmogorov's proposition: if the r.v.'s Xn are
‘ ) \ :
independant, then | ';\'{ £ Nar X, <~ il
_ s.
entails (LX“ -2 EX\) ——>0
N

Hence if - - T\F AR 5_ ‘(Y! §/T)fz$ ~— —  —, fn(T) converges-
. 3-\
- ~ y _ 02

almost surely to ’ ‘FN (T\:_‘.. £ E E(Y}T) e ] a

O 3

where the index j means expectation conditional on zj.
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By ‘a metﬁod similar to the one used in chapter 2) we
. ’ ) v N . 5
hope to prove that we can replace fn(Ti) by £n(Ti) in

Cb (P) ‘under some assumptions. More precisely if |
* P27\
- f_ = T\e -}
%(VM-‘; :4:_.\ E. Y_& \37.1 - fig Lo B \(Y) ) l

'¢N((5) - Qbu\(?) converges a.s. to O. The "”’” |

-

~ A w » : ‘37' ' ;
random variables X = é_-‘ SI\(\/?TL\Q. , are
; . (= o

independent but depend on n. prerlly if:

] ELY_S\, Liw, Li Lo %ﬂ 2 E)Y_\(yﬂ‘ Xﬂ

o . , B I
@(‘s) - ¢w (?V)‘ will converge a.s. to O‘7 The notation

used is the same as in the preceding chapters. Therefore

<b (‘5) -9 (% ) will converge a.s. to 0. -
A) The true value[% is a maximum of &g(p ) : ”/
- \

T -

/

J » (ad
This paragraph is an actual proof o (?ﬁgg)

R |
. when p “is of dimension 1. This proof can easily be,wwe,ww

il
o

extended to the case where F is a vector.

| g‘.’rzlﬁ& z E..E %*w-‘ Y_(\pﬂzt \
LSS e
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For reasons similar to the ones in chapter 2:
k=4

o Y\g ;\.éESY_\(Y)TL\IE l ‘:“ =/}‘°(\c\a Y_\(pt\ze J Y‘pk }e\‘é
A Z_\EsY} W?‘Q\ﬁ (_“_ ‘)L—\ E\\}(\p,&\e X)

ez 4ol

EY_S / Ak\\s\fe \(y>h\1&‘c

cl

\:-_A-ao . . , | ' |
Hence: (B_g‘g“)? - / Ao (& %Ehze‘,.\(y}\:\\b&\? o

k=0 L -~
b ¥

- j A L2 sl z«a‘“ﬂ(‘—iaﬁky‘zt)é‘j) A
n o=
o (x£e Y\W* l)

Therefore K:bé\ = 0. The true value is a local

e

maximum of &k‘.

B)  Concavity of Cox's likelihood:

The same arguments as when the covariates are i.i.d

%ives that: S

w
'\éQM - £ S;(Variance—Covariance matrix¥ of z given Ri)

S

Therefore q& ~is concave everywhere

L=\




C) Consistency of Cox's estimates

OQur lemma 8 does not apply.here as the function ‘3\\(? )
depends on n. Nevertheless‘it is not too hard to modify
this lemma to prove that point wise convergence.ef
(¢k-'&% ) to 0 implies uniform convergence on compacts
for @n,(ﬂbﬂ concave. If $“ is asymptotically strictly
concave it will be p0531ble to prove that ?u converges

to the true value ?o in probablllty

Part B: Infinite Cox estimate of

In this shorf,chapter we would like to emphaéize the
dependance of the efficiency of the estimate on the variance
of tﬂe covariéiee. A problem we encountered frequently
in our simulation studiegmaas that the estimate was
infinite, especially when the variance of the covariate
Z was large; | |

For simplicity let us consider the eXponential
case without/censoring and the parameéerrhaving dimensioﬁ 1.
‘Let Z(i) be the covariate ofgthe ith dying subject.

The Cox likelihood is built up by muitiplying terms of

- B (R '
the form = - I -
£ & ? 4
KE R;__f : ‘ ‘
.

" The derivative{of the log of this term is:
: g

(’zk R M V !
L3 \2 '
K ‘é&k\(z“ K) *
P2k

Z 4
I HATE LN

AN
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Therefore if we have the brderihg

Z(1)> 2(2) eeevnen.> Z(n)
Cox's likelihood is monotone and the éstimate is infinite.
The greater the difference between Zi = Z(k) and Zj = Z(i); is,“‘
the most probable it islthat k { i. Therefore if the
variance of z is‘sﬁal% the probability of the troublesome
ordering happening is low, but if the variance is large
this probability becomésrélose to 1, (at'leastrfor ?%tj ).
Our simulation studies confirmed this heuristic argument.
This gives an interesting insight on the result of Kalbfleisch

(1974) mentioned on page 8. He shows that an approximate

expression of the efficiency of the estimate is 4&?
t ‘ :
QI?{"F’V“rhSX valid nearp = 0. The efficiency
depends on Var (2). , | /
— :

;
iy
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APPENDIX

l: Proof of lemma 1

A

- meanwhile
. \ , \‘~

A

HISEE EJ_,EY.%\i'Gl . but F_D\i,“: lteslat]

ana P[ts)ne] < G} -

RGN

2: Proof of lemma 2

E‘_\ (et A} W) ﬂ P&os[“\m ta)> w\ ] .

t and s are independant given z. Therefore

?Knm\t 5\ SW —% P{b W zl P[s>w {l ({w (u? J?\\\\\n 7_\3\“
en (%kw) _ EZE\\( %_Q G( \(QI\;.! AW ?-,ZXA\LH

3: Proof of lemma 3

E{& \03 %\t\x 3 Y‘&\.oc}\% UJBRIAR \o%\{)\xy\t 1]}
- E{%\Dﬁ%\] S

h meanwhile Es{% t,%:‘PK_&»?\'—\\(,Z}:GK\C\%\ . Hence: |

16 Loa QW) Eur[loatty k=)

| %( \) E‘_\\Q? 7_3 \(\/ >w1 F_Eh \»z\ E(\ \Mwn kh\na\—iﬂ |
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A 4: Proof of 1emma 4

4

e
=

————

WV'EKQ\KY7W ?XT<S‘f>w\ﬁ( - " ; T
1_"*3’ \/=‘"\\“(T53 T when T¢S GS(\ Mres, “W\ﬂ '. T

Meanwhile | }, | - ﬁ,;g' o ‘f\ : g‘j‘m -
PYT(ST>W’ {X- K‘Pikks “E)W }k\& C -

‘Hence: ' |
EK% \ \1 JA (8 \n( ? )G\‘c\z\ ex? J \ \u)\\ )

A 5: Proof of

' nzA Eg L | ..\D_ , ,Z\ }\ﬂ 1\ ‘ ‘
V\\\‘\‘- j j [ EYEQ - &? } é‘\.)k‘( z—x\
\\(yg,z\ \'\\\5 *) |

.

A=-0 A

We have V\\\i\: R\\\(\'P‘A&\ where :

| | . % B
A - [npexp- fa,,ku\ W) 8] et € R.% G_\%\_’t)\ex?i ja,\u\\a(\a,;\ﬂ
- ° | T
" \ g
A L)z §) ¥hn 2| exp- | Al 2\
A0): a\}_%s(\\\ ?53.,\\\\(\&,3 }

Recall ‘FM is the density of z.

Let al{ x\ &u? g}\,\u\\'\(%‘, x\A\ gl

Hence: —~
n



"grf R\k‘t\_J J E‘é;f% 0\‘( ) \s, su&'t\ Ax&‘-}.

~_ Let C\\w‘tlx\ o\kl‘ \Q\ki \'\L‘x \AIA% u ;

Q\\\ can be written. as 9\\\{\ \(“ +X \\C\ where\

«\\\J ' ! m\ awa
: - Jrx \”(\} -“-\% ﬁ .

Xz 30 \\ .
\4(‘: f / IR Avk?.x\

' But l\\c\ can be written as:
' 2 400 X=+e0

Kl(k\:j ]{N@)\ A\)k 1’3 - /,\\>

| 220 AT . {
he A\ Y\k‘z\) " : e

W 4oy R \

“WJﬂ\ﬁﬁW

AI~0  Fxx

Slmllarly it can be proved that.

N [ j

M a) B Pkl . |
T ) gg(f’ v \;2(\" 1—(“ ) \"\\ \1) |
\\(‘3-,1-) \\(‘h 1\ \\\e.. t)

eLin



A 6: Proof of o , ., o i;‘
e (2020 (200200 ¢ [l sl
where ‘

t\ ly<El  ana  ogt ghgy, .

Let P‘: "C\—F and 9, = - \.\ \:&‘C\ it yleldsF\‘C\ \:(\C \? ?z

. As F is monotone, 64? \)2 [P \)

k\ Z\QL\ {—‘;-%{ ,1—,\&&\;;%\ ~\\15>/ﬂ_)EB Y7 ) \\\IM\ ( j‘}
S R RS (4 I

~ Consider

e npa (e T D) - €[y et ) hlpal)
/7 ‘\”LL-:\"(‘\I-L‘:\ \ Wié D‘; “1[\:' 'E{\ w € ‘Y_\'.,\'.! 3&&?,75&

Therefore z“k\c\ pA \‘L\ 9___: ) Z“\‘(\ “k\(\ m‘LU

It yields that:

1

e o el

- The random vectors KU“_ U, XTare independant and

. E.{\J\L =0 . It can be proved that

n, iU \’& '\'\E‘_\) \)lﬂ\\t\ \\E‘\l EK\)}%(\\ \E{U U\
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et I-\WLCU‘ W) ana Ty gmg

v L_\-\« \51\1: ED‘(\" Z\I‘X_X [\n ?7_\ \n(yn.\l‘ \}t +E[\w(\a 1\I}I \

. h—
1 ,
Recall Holder's 1nequa11ty E\X\f\ E\X\ E \ where

L _\ Here ]_et r= 3/2. and S= 3 Then

} ﬁh(\s Ar) ¢ E[:-f" EY_\'\(\& \}‘3
oot T 1ec 9‘:'{{1\' and c.:s\\\(\s,q\x, then
Eih AT {apl | ‘
E[M‘.z\‘r] SN
F{u \)\4 ¢! ?i‘/ !/’ 3 \+c\\> E{ E(\n(\s,ﬂil\{flﬂ
wclp, E{:: {\\&\u\ E{hw,v.mn |

N

E[I I-} Pt ?L | |
 TT,-T, ‘
- T (Wpa)- E[t,.\wk\sz\'kﬂﬂﬁhf\n\‘: -glT Wﬂﬁﬂ -
¢ E[h(\n\ﬂicz i

Hence .
| P

1yt |
EE\J\ U;l é w ?\ Pt m being a suitable constant
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;Slmllarly | . ,
EY\JI E‘.\)X c-3 P:ﬁ 13  m being a sqltable |
' constant
RACINE F.Uhlyn\: E[h(v.z\ﬂ) \“(P T, EY\""\’!"\T‘)SS

Thereﬁore

o F—Iu ux qm‘, f&E{h\? qu ! \,/= 13

E{(in (t) ;2\.(&‘\)1‘(1\\’&\'2\“&&\)"X ¢ el \;;X\.EK\,:‘X E‘,\) erefo U:XL
Hence for a suitable constant c4

& znu\ SOICAEAC K“ F)- ‘MT

A 7: Proof of lemma 7: //. .
Firgistep: for N large en;ugﬁ,‘( Qh(p\ )

- have a common lower~bound on a hypercube

included'in the compact K.

Let us consider a hypercube C included in K:
»

C*H“ fieer all 4

where 1s the kth coordlnate of .- Deflne the hull

c_ of C : {P &VK",' ?)\? b? \

Let Se be the set of extreme points ofE . Se has 4
. } /-n./‘J e

elements. Let € be fixed. For each»po@nt xi belonging



to Se @NL)K\; N>NL\ \@(x-\#b(ﬁ“(& - . Then for
N>N,=SU‘>NL' ' , for each p01nt xi of S,,L (b" (x1)

 ”has a lower bound m 1ndependant of xi.

.Now let us consider y € (xi, x3j) yhere xi and xj are

twd extreme p01nts. Let A be the set of all such p01nts

Ye ¢u~(x) is concave on the line (xi, xXj). Therefore
N\x\nmc{ R, 0l 2
- For each p01nt Y of A, (b,\()l\ . ’

Consider x €C , § is on line joining yk,. point: of A,
‘to yl, another p01ntf?f A, ‘¢X{,'1S concave on the line
(vk, yl). Therefore | “(x\>1'“{l\¢n(\.3“\ Qn(\tﬂ\]
| For each point x.of(:, ﬁk{{\\/ . )

Now cohsider X€C% x is on line joining z; GE to

Z € C . then by ;:he reasons as: béfore, o |

e@.&x\ is lower-bounded by m for ¥MNo

As d&is.cdncavé“on c, ®, has one ‘local maximum_onlcféhw
(maybe on the froﬁtier). We shall prove iw converges

~ X bl\ R N
to “% . Then for N large enough, Xy . is inside C, Xy

is not on the frontier C . It yields that iu is the 1ocal
maximum of *b,, not only on C but on K. We shall then
have proved that ¢N(\3\ " has a maximum inside K and that

that maximum- canverges to ?r. g e o e e = D e

2nd step: 1.,' converges to (s. :

Let us‘prové'it bYNCOntradlctlon: let us ‘assume that -
A . ' )
X, does not converge to \Bo .

Let § be fixed.



v N

;I‘l';ere@ls a subsequence ‘?{ S\(kf\] 's"u,,ch &N'\ \\S‘N"'X’°\_\>E

Let us define yn’ such that

{%.n,xwg\ Ay
w U yeepdee

: C 1sa compact Then the sequence {“6“\] has an accumula-

o

tlon p01nt in the compact C Let us defipe a subsequence
>

{\é“& of l\\a“ such that “})m. .converges to \g
..’As Vz is a local max1mum of¢ Cb{v,\)th\\a\

(b(\’%\ Q\)(\g\*g S @ (\8\ converges to «(\Ao\

an& d} (P\ converges o) &)\\5\ , we have

- ) o s @K\B\ .S.’._ | Q (\0 @(\50 Y
&3‘*'“5(\*“?‘3\ o “
S | (b(‘,_ .[%_. @ ("\ ¢ &gl {\j

\\J N (b K\b\ @N(\\\ . as )LN is maximum of @u concave
and u&,\ _R ‘Lﬂi-\\ “\\5 Then ' |

;et A= \A \uk \\ \ L We can choose d2 such that

P\CC , o8 QJ\J) \&“h\x,,\\ . ‘Let A\, €A such that
u“"%o = v (\k \k\\ | with V“E ‘P\* .
4,

\ “\‘\Bo““ &z'- k’n‘\\{so-}-&“\\n | ' then ‘J“: :
R ¥ \)n _ L '
" \3” \+ \,)“‘ \+\» o o s

V B‘u"t: - V"B"e{““)\é“}

then from the concav1ty ‘of @N :
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e N EAERET E_me\&»&\  ”
Bl ¢ cbw&w{m\ & \ﬂ

Q( 3¢ C\W\‘f V“ >

But V“-———>*m ; we then have a contradiction as \QMKQ\\

is bounded by m Then;

A |
z“ Xy converges U34E°

-

A8 Decompositioh of Cn (page 62)

ee

e

Hence: , ‘ ff
‘ R:f h A(Q Q}kfg'zﬁiz (Q Q\+/€z<€ £) e Q\ -

- b T‘a T %)

+7 Q. &
B
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Now:

]:‘;&A(“\ L &- Q\I JQQ‘ Et

[eme)

Ee) '-QTF] X §;
as ‘ Q(—\-F\: Q[TF =0 | .
Moreover

J A 7._-_/&@51... (Ez‘fz\ c\Q+ Ez[-ﬁ'la‘ iqQ

| % } :
Eolél - by te
where

uT;X [0 aT?,} .

L—D X 3 ‘-_B A ) [°;Tr.!

e IEZ[E 83 dQ-= €z[‘&—§h@ .+ ‘ez[s-ﬂ'a@
- €€ B e

o e} loTe} A

€—el AQ:j Am (&, z\s (€-¢) Ao
" |

13

It therefore implies: . ¥

o

Cn = CGu v cr.“-\-C*svs *'clm ¥ C':Tn* Cen + Ry, ‘”’RU\‘\'.R“\*'Q’W\

__ & [(o\ Q(o\] [ (&__Q\Agl \Q’ é\gl de
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