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- 4 ABSTRACT

A brief history of Ramsey's Theorem and related problems is

» given. A Ramsey Theorem is proved to the effect that any r-colouring
of the t-spaces of any sufficiently large vecto} space must result in
some k—space‘with all of %ts t-spaces coloured the same. Spéces can
be affine or vector subspaces of a vector space. The theorem is aléo

shown to bé true where vector space is_replaced with projective space,

The proof uses the Hales=-Jewett Theorem'which is proved for the case

"<,
-

<. t = 3 ; the proof of the general case follows the same lines. Finally,
‘K parameter systems are defined and the above Ramsey Theorem is proved

A,

‘to be true where parameter system replaces vector space. S

(iii)
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INTRODUCTION

The purpose of this thesis is to'give a clear detailed

proof of Ramsey's Pheorem for spaces. Our main source is J. Spencer's

~.

"Ramsey's Theorem for Spaces" [7]. ]

/

We begin with a history}of thekproblém. This is’ followed

in Chapter 2 by a proof of the Hales-Jewett Theorem for the éase

r = 3 , Chapters 3 and 4 consist of definitions, lemmas and

corollaries which are used in the main proof. _In the final chapter; —

Chapter 6, we define parameter systems“an& modify the proof given

’
in Chapter 5 to show that parameter sys‘t; are Ramsey.



CHAPTER 1

; ' . - = HISTORY OF THE PROBLEM

In 1927, B.L. van der Waerden proved the following theorem . .
for arithmétic progressioygs.

there exists an-

Theorem 1l.1. 'AGiyen integers t and r ,

integer N(f,r) such that if n 2 N(t,r) and the non—negative'integers

-

< n, i.e. 'O,Fl,2,.'..,r;—l are arbitrarily'r-coloured, then there must

exist a monochromatic .arithmetic progression of length t . (By the

length of an arithmetic progression is meant simply the number of

terms in the progression.) o R -

.

In its essence, van der WaerdéhfsAtheorem turns out to be a
specialvcase of a result dealing not with~in£é§e;s but rather with

finite sequences formed from a-finite set. This was first discovered

. by Hales and Jewett. Before stating”fﬂgir basic result, we will define
the concept-of a (combinatorial) line. A fuller definition will‘Bef

found at the beginning of Chapter 2 (page 8)'.

4

Let A =k{al,a2,...,at}. A line in A" consists of t n-tuples,

(xll'xl2""'xln) R 7 o

(

- : - Xg1r¥agt e 1 ¥gy)

.
.
L

(Rgr¥pgreerXy)



1i . o 1

where each column

a

, 1=<1=n is a constant or is . .

-

o s

ti 3

- Hales and Jewett's basic result which was proved in.1963 now

. follows [4].

i " Theorem 1.2 (Hales and Jewett) . For all finite sets A  and

i )
gositive integeis r, there exists N(A,r) such that for n = N(A,r), in

!

. o n . ’ Lo
any r—-colouring of A there is a monochromatic line.

Theorem 1.2 is a special case of Rémsey“s Theorem'for‘vector

spaces, (see Corallary 3.1). Ramsey's Theorem (Theorem l.é below) was

).

proved by F.R. Ramsey in 1930. In the early 1960's, Rota'conjecturedf

1

that Raﬁsey's Theorem would still hold if set was replaced with vector

K] . -
space, This is Theorem 1.4 (below). A
R n - o Ll <

Theorem 1.3. ILet t, k, r be’positive integers. Then’therg

i's a number N = N(t, k,.¥) depending only oh t, ¥ and r with the

® 5

_foilowing property: If S is a set with at least N élements and if

4

the 't element subsets of S are divided into r classes in any

way, then there «is some subset of S consisting of k;elements with all

of its t element subsets belonging to a single cléés.
L . & .

g ' . ‘ ) d'.’ P
“-Theo;em 1.4 (Ramsey's Theorem for vector.subspaces.) Let

¥, t, ¢ ‘be non-negative integers and"'F a‘fieldﬂbf qb elements.

' - : 7 . 3 ‘ . .
Then there is a number N = N(q, r,:k,st) dependin only on g, r, k'
.. [ L

and t- with the following property: If V is a{vgétor space over F

of dfmension at least N , and if all the t-dimensiénal vector sub-

spaces of V are divided into z éiaSses in,any"Way, thery there is

2 -

K
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H‘.[:.

«

some khdimenéional4yect6r sﬁBspace.with all of its t—dimenéidnalﬁ
vector éubspaces.in a single class. :

If we repiaée tﬂé.pbtion Qflvector subspace with that of
affine subspace we obtaianaﬁséy}s Theorem forAaffine‘subspaces'which
we Qill call Thegxem l.4(§)» 'By an qffiné'subspace»wé mean a trans-
1ate,9f4ayveétor subspéce{ ‘A more formal definition of an affine sub-
space wiiirbe,given at the beginning of éhépter 3. Theorem 1.4(a)
will be brovéd in detail in this pape?'aﬁa Theorem ;14 is an immediate
corollary of Theorem 1.4(a).=It-is al;é péséible-to replace "vector" by
“p:ojectiveﬁ‘im Théoreﬁ 1.4 gi?iﬁg Raméey‘sHTheérém for érojective spaces
which we will cal} Theorem l;4(b);3We W}ll vefer to Theorems 1;4, 1.4(a)

‘

and 1.4(b}.
Now;ye’are goingvfo desqribe the history of,progress\o?‘Theorem
1.4. 'In~l967, B. Rothschilékghgwegbthe'equivalence between the affine and
projective veﬁsions of Ramseyis Théorem and used this equivaience to prove
the case for t'= 1, and for‘q'f\-‘E 2, 3 and 4 [2]. Before this, Kleitman -

provéqsghe special case of Theorem 1.4 (a), for't = 1 and g =2 [6].

LY

In 1968,1R. Graham used the Hales-Jewett Theorem” (Theorem '

1.2) to prove Raméeyis Theorem for spaces for the case k = 1 and

for ail q f61. Again, in 1971, R. Graham and‘B.'Rothschild,used‘

n-parameters sets to prové the case t = 2';;egﬂafrf & © O [3]1. A

year later, invl972,4Graham, Leeb and Rothschild uéed-céﬁegoiy theory

N

to prove the theérem for all t [2] . In 1979, J. Spencer published

an outline of a more stream-lined proof of Ramsey's Theorem for
> . S ,
A

3

"
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. spaces [7i. In Chapters 4 and 5 we will give this proof in deta%l.

AY

Simultaneously, with Spencer's proof B. Voigt published another short

proof of the theorem [el.

Conjecture on possible density versions of Rota's conjecture.

We return to Van der Waér@en’s Theofem. A simple infinite version
-of van der Waerden's Thepfem states that if w=4aUB where‘Q = {0,1,...}
theh either A o% B contains an iﬁfinite arithmetic progression. Szemmeredi
proﬁed'a dénsity versioﬂ of the above theoremﬂ(Theérem 1.5 below)ﬁhhich

can be used to determine whether the arithmetic progression lies in A or B.

Theorem 1.5. - Given k and € > 0 , there exists n such

‘that if B C {1,2,...,n} with {Bl > en , then B  contains an

arithmetic progressiop of .length k .

THis was proved for k = 3 by Roth in 1950 [1] and for

kJ= 4 by Szemmeredi in=l972 [1}]. Finally, .it was proved for all f%

L
by Szemmeredi in 1975 {[1}. ) ' -
Since the Hales-Jewett Theorem implies van der Waerden's
Theorem, it is natural to ask if the density form of the Hales~Jewitt
Theorem holds. The density version of  the Hales-Jewitt Theorem is
: ¢
the following conjecture:- :

7

‘ . . n
Given € > 0 and .t, there exists n such that if B C A
(where IAI = t) and IB]> €|An| then B -contains a combinatorial

line.

ﬁ'
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This has been observed to be true for t = 2 but is still
unknown for values of t > 2 [1]l. We will state an eéasier result

for t = 3 but first we will define the concept of an affine line.

"Let F be a finite field and |F|»= g . Let V be a
vector space over F ‘and let x = (xl,xz,...,xn), §_= (yl,yz,..i,yn)4€ V.
Then L =y + {ax: a € F} is an affine line. We observe that °

cormbinatorial lines are affine lines but that not all affine lines are

combinatorial lines. We now offer the following theorem for vector spaces,

s

This has just been proved by T.C. Brown and J.P. Buhler f11.

Theorem 1.6. Let F = {0,1,2} , i.e. F is the 3 element

4

field. Then given € > 0, there exists n such that if B E_Fn,

IB] > ¢ 3" then B contains ah affine line.

This is a special case of a general density version conjecture
which naturally arises from Ramsey's Theorem for spaces. First,

we will restate Ramsey's Theorem for vector subspaces.

For k = 0, we define

3

[:]== {K € v : d@dim(K) = k)} ' where -dim is the dimension.

Using this definition, Ramsey's Theorem for vector subspaces is: -

Let %k, t, ¥ be non~negative integers and F the field e
of g elements. Then there is a number N = N(g, r, k, t) depending
only on g, r, k and t with the following property: If V is

. vy .
a vector space over F of dimension at least N and,l:kJ is divided

~

. . . v
into r classes in any way, then there is a vector subspace W E[:k] such

w -
that [F:] is contained in a single class.



The density version of Ramsey's Theorem for vector subspaces/
would be :-‘ T -
Iet kX and t be non—negative integérs and E" Vthe field
of . g elements. Let ¢ ‘>)0 be given and let B bé a collection of

- , v
t vector subspaces of V such that. 'BI > € ][ ]] Then the union

Vv
of the elements of B , denoted UB , is such that U B ﬂ[k] o ..



CHAPTER 2

ol

THE HALES-JEWETT THEOREM

The Hales~Jewett Theorem for any number of colours r
was stated in Chapter 1 (Théérem 1.2, p. 3). Two corollaries of
this Theorem (Corollaries 3.1 and 3.2) are used in the proof of
Ram§ey's Theorem for spaces. Before we prove'the theorem, we

will discuss the concept of a combinatorial line.

For a fixed finite set, A& = {a,,a

1 2,...,at}, we would like

to form some kind of a structure from thé n-tuples al analogous
to n-dimensional vector spaces over a finite field. ‘Of cpurée, A
is not assumed to be endowed with any special algebraic gtructure so
that the linear equations in the coordinates we caﬁ write for deter-
mining analogs of vector subspaces are very limited. 1In fact they

are just:-

(2) X, = constant .

- . . . . . . . N
We use these equations to define a combinatorial line in A . 1In

future, we shall use the term "line" for combinatorial 1ine.[nﬁ2§11,2,...,n}



Hnd I € [n] is a non-emoty set of coordinates. Let L = {(xl,xz,.;.,x };
_ — n

X, = X, for all i, i* € I and X = bj €A for j §I}. Then L

. . . . n . .
is a combinatorial line in A~ . Since I + ¢ , L consists of t

1

distinct hgtuples and these will be of the form:

n
.

;e Al

a xl xl b cee xl

t ﬁ a - Xx. X. b X,

1 1 1

b
\ a xt xt xt

(Note that if A does happen to be a finite field, then what
has just been defined is an ordinary affine line. However, an affine

line need not be a combinatorial line.) ‘ .

We will now illustrate this'cgncept with a simple~example.
Let A ={1,2,3,4,5} = [5] and n =2 . We are géing to describe
"lines" in A2 . It can easily be seen that a line in A2 ,wil} consist
of 5 2-tuples. I C [2] so |I]| =1 or 2 . For - ]1] = 1, we have
the lines {(1,a), (2,a), (3,a), (4}53, (5,a) } (which can be displayed

1l,a

. 2 . o
conveniently as A } where a 1is any fixed value between 1 and 5.



Thus,

create another five lines of the form

10

5
the five different values for a create five lines. We can
a,l
) a,?2

, where a again takes on

a,>5

o ‘ v fixed value between 1 and 5.

121
122
123

lines

r

1
If |I| = 2, we have the single line 2
_ 3,

4

5

14

U b w D

14

These 11 lines are illustrated in Figure 2.1.

5 . . . . .
A K
4 . . . A/jij// .
. Pa s
3 . ."/-/. .
1l .
2 . ;/ ./// . . .
. .

Figure 2.1

Now suppose A = {1,2,3} and n is 7. Then abbreviating the line

3111 in a7 by 12* 3 * * 1, it is clear that the
3221
3331

in a’ correspond to 7-tuples on the symbols {1, 2, 3, *} in



11

whicﬁ at least one * appears, so the-total number of lines is 47>- 37 .
.. . » n.n ., . _.m
Thus, 'in general if ‘IAI = k , there are exactly (k+l1l) -k lines in A" .

Using this terminology, we state the Hales-Jewett Theorem.

-
Theorem 2.1 (Hales-Jewett). For all finite sets A and

posiéive integers r , there exis%s N(A,r) such_that for n = N(A,r),
in any f-colouring of An/ there is armanoghromatic line.r

The notatioﬁal difficulties iﬁ the proof of the Hales—Jéﬁett
Theorem are more difficult than the proof itSelfthhgxéfore in the in-
<duction step of the proof of this theorem,.-we will/use r = 3 rather thanw

the general case.

The Hales-Jewett number, HJ(t,r), is the least positive

integer, N such that if n > N and the set - {al,az,..,,at}n is

r coloured then A" contains a monochromatic line. For example, let
\B>§;ial,a2} then HJ(2,3) is the least positive integer such that if
n > HJ(2,3) and A" is coloured with 3 colours, then An contains a

monochromatic line. The Hales-Jewett Theorem states that such numbers

exist.

Proof of the Hales-Jewett Theorem . Let
a={a,ay,...,a.} then |al = t . We prove the Theorem by induction
on |A .

For t = 1, the result is immediate since al then consists
of simply 1 point and this point is a line in A" (from the definition
. . . . . n

of combinatorial line). Then it follows that any r-colouring of A

gives a monochromatic line.



can think of A"

12

We assume that the theorem holds for all values of IAI <t

"and all r but only illustrate it with r = 3 .

Let N, = HI(t-1, 3)
N
N 3
N2 = HI(t-1, 3 )
tN3+N2
NL,= HJ(t-1, 3 )
and n=N_+ N, + N .

where t = 2, This means that for k < t and for all values of r ,

‘we are assuming the existence of HJ(k,r). We now prove for this t

n o~ . )
Let X : A - [3] Dbe a colouring of a” with 3 colours. We

£ N_+N N -
372 1
as A X A and a € A"

(xl,xz,...,xN3+N

2
7 . ‘ n , . , tl)
colouring ¥ of A to induce a colouring ¥ of
P (1)
defining ¥ as follows:-
(1) - 1) - -
X T y) = x( )(yl)
iff
_ . _ N, +N
[x(x x y) = y(x x yl) for all x € A

colouring induces.

) and § = (yl,yz,.;.;le) . We can use}the

as (x x ;) where

A 1 by

2,

This defines the colouring implicitly by defining the partition- the
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-
We cén‘think of each § as the "tail" of an n-tuple.
Attached to this "tail" are many different "heads”, x . (See diagram,

Figure 2.2j. » !

Figure 2.2

, A
’N3+N ’
Each "head" is a N3+N2—tuple in A _ where the underlying set A

N gHN, _ %
has order t . Then there are t ‘different "heads" , x 1in
N3+N2
A . X 1s a colouring which uses three colours and the number

g N_+N ,
of different ways of colouring the t 2 "heads" with three colours
N,+N
t 372 (1) N

is 3 . Thus, ¥ is a colouring of A 1 which requires
Lt . (1) «
3 colours. Each of the colours used in ¥ . can be viewed

N +N2
as a function f: A - [3].

Let B = {al,az,...,at_l} .
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. L
(1) Ny |
‘Then ¥ is also a colouring of B ~ . From the induction
hypothesis and the definition of Nl , there is a x(l) monochromatic
B
Nl ;
line Ll in B ., We will call this 1line Xl(il), 1= ilf t-1 .

“Figure 2.3 shows this line in diagramatic form.

X, (1)
-
> h

- . . | (t—l)
> i
g
. —r ~ ~— 7
N3+N2 Nl

If to each of these (t-1) 'Nl—tuples we attach the same

head Xx , then the resulting (t-1) Nl—tuples have the same Y-colour.

o . P 3

N_+N

Next we focus on the "heads", a €a 32 . We can think of
N_+N N N N_+N
372 - - -
A as A 3« A 2 and a € A 32 as (x x y) where

X = (x reserX ) and § = (y,s,-+-,Y.. ). Again using the colouring 'x
1 N3 1 N2 .

N
of a" ‘we can induce a colouring x(z) of A 2 by defining
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2) = 2
‘ (2) 7 = X( )

iff
- - - - : - N,
[x(x x y x Xl(l)) = x(x % Yy X Xl(l)) for all x in A ]
'(2)' Ny | —tN3
X is a colouring of A which uses 3 colours; each colour
N3

corresponds to a function £ : A ~ - [3]. Note that since

L. ( X (i), 1 =i, = t-1) is monochromatic, we could have used X

1 1 1 1 l(11)
for any i, € [t-1] in place of X, (1) in the definition of X(f)
17/ 1 .
@ ") (2)
We can restrict ¥ to B and find a ¥ monochromatic line
,N Al

L2 in B 2'. We call this line X2(i2), l'f'i2 < t-1. Figure 2.4

illustrates L. .

2
1 ;::::::::;::-'Xz(l) xl(l)
N - - t-l
Xz(t—l) xl(l)
- « ) _J\ v
. , ~ - ]
N N, Ny

3
Figure 2.4

. If to each of the (t-1) N2+Nl—tuples X2(12) X Xl(ll),
. N N
'1, iz < t-1 we attach the same "head" x € A 3 , then the
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resulting (t-1) n~-tuples have the same colour. Note that by

onstruction the x-colour of any of the '(t-l)2 points

. . - C e el
xl,...,xNB) X X2(12) X Xl(ll), 1= i. i, = t-1 depepds only on ?he

)

choice of (x,,...,%X_) and not on the particular values of il and

1 N3
i, . Furthermore, suppose X (i) = (...,c...,a. ,...) where c is
2 272 i, A
a constant and consider X2(t) = (Q..c...at...). X2(t) has the same

"constant components" c as X2(i2), 1= i2 = t-1 , but has at for

[

its “"variable components". The coldur as;I;hed to -

-
(xl,.zznyB) X X2(t) X Xl(ll) by x does not depend on the. choice
of il € [t-1]. This follows from the fact that the Xl(il), 1= il.i t-1,
D _ A I
form a monochromatic line in B andvgzsj the, definition of
(D Ny
X . If two Nl-tuples say Xl(j) ‘gnd Xl(k)i;in A have been

N_+N

) then if x €3 °

assigned the same colour by Y , X X Xl(j) and
X X Xl(k) must have been assigned the same colour by ¥

-

N

 Finally, we use ¥ to induce a x(3) colouring of A'3
(3) - - k - . :
by x (x) = x(x x X2(l) x Xl(l)). From the induction hypothesis we
. ' {3) I\\3‘3 V ‘
can find a monochromatic ¥ line L. in B 7 which we call

3

] < 3 < Fo
X3(13), 1= i, = t-1. .

We now examine the set of n-~tuples defined by

L3 v 3 < 0 » . < -
X3(l ) % X2(12) X Xl(ll), 1= ipr g, iy = t-1 .

\



Ly

line in A T therf  x4X,(t) ><'VX2(t)t><;X (il))

5 VT-, .
A . | 17
© ‘," |
From the definitions of. i(l), X(2)’ X(3) and the lines,
a have : - py
Ll' L2. an ‘L3 ‘we avei— . ‘
. h ey X
. . . - s C. s o _.'\' . e y
o X)) X X (1) X X’l(ll)); = x(Xy(E5) % ,;X27(12)_ x X 11)
v‘ 7. ‘ «4 )
_ g
= X(X3(l3) x X2(l) x* X (1)) 4= X(X3pl) X_X2(1) x Xl(lﬁ7,,

v

for 1 = ii, i2, i3 < t-1. The first éqﬁalrty is from the definition
of x(l) and the fact that ,Ll"is-a ménochfbmaéié?iine with réspect
* (1) , T o
to ¥ . The second and third equalities follow from the definitions

' : Ty
of x(z? “and L2, X(3%> and 'L3 respectieely. This giﬁ%éﬁus (t-i)3
:_ - C s i . . '<.v. . "<l_,.‘;' s
n-tuples | Xy(1g) X Xy(i) x X (1)), 1=y, 1y 150.= o1y sl assigned

,l’l
S S

(-

.the same colour by ¥ . Further since L is a x'° 'fﬁonochtdmatic

N.

It

. N % N
- XXy () xz(Fﬁ X X (1)

s

1

< 4 < fa A . ; ) =,
for 1 =4S t-1 . Also x(x3(t).x xsz) x X (1)) =y

~

x(x3 1

[
a

(1)

. s $ s e v (2 e :
Again, this follows from the definition of ¥ ’ Ll;,X(-? anq L2 o
* . * S v T ;
" .We now consider the following -6 lines _Li;;‘l =i =6, 1in An.
- § . . !
, N o : b
ux3(1) x x2(1) X xi(l) o >§3(1) x x‘z(l)-g,xl(‘}? ) B
. . ¢ * . ’ - .V :
b = : : by = * .
X (8) x X, (1) x % (1) o Xg(8) X X (%) * X (B
. L : N

(£) x X (1) x X (1)) = X(¥, () f'xzfgz) x X (1)), R t-1.



X (1) x X, (1) x X, (1) . EGE) X K1) x X ()
Ly = S S S
. X (8)x X (1) x X (8) - X3(8) X X, (B x X (1)
Xy (8) X X (1) x x, (1) X (t) % X (t) x X, (1)
* . ." ’ ‘. :* . B ' - ‘.9.
bs = S T
K E) X X (8) X X)L o x3‘(t) X‘Xz(t) x X, (8),

" For each Ei , 1 =1 =6, the previous discussipn established
that its first (t-1) n-tuples are x-monochromatic. All we must now
o . o
show is that for at least one Li , the last n-tuple is the same-

i

'cqloﬁr as the previous (t-1) n-tuples. To establish this, we now
consider the following four n-tuples: . .

s
»? -

X3(l) x Xz(l)

x

Xl:(l)

pod

x3(t) x Xz(l)

- X

Xl(l)
X (1) x X, (t) % Xl(l)

Y X3(t) X Xz(t) % Xl(t)v

Since the ¥-colouring uses only three colours, at least two of the

above n-tuples have the same colour{ whichever two they aré, they:

are exactly the first and last n-tuples in one of the six lines,
[

® +



say. the line L - Then L is a x-monochromatic line as desired

and this establishes;that HI(t,3) < NgiN2+Nl .

1

From the proof we' can derive that HJ(2 3) £ 3 (since HJ(1l,r) =1

for all values of r). On the other hand if A= {O 1} then

A2

10 + 3 does not give a monochromatic line. (This is illustrated in

Figure 2.5). Then HJ(2,3) > 2 giving HJ(2,3) = 3 .
1 L L A2 coloured with 3 coloursi
0 e o Note that {01,10} is not a
0.. 1 © combinatorial line.

g

¢

Figure 2.5

Lo - 33 33+ 33
The upper bound for HJ(3,3) is 3 + 3 + 3 which is

N

considerably larger than HJ(2,3)! This bound is obtained in the

following way. We use the fact that HJ(l,r) =1 for all values of

»

Then HJ(3 3) £ N3+N +Nl

where N

Ny o= J(2,3) =3
N_ = HJ(2,37 )
2
3+ N ~
Nl = HJ(2,33 2)

N ' =< eeot
ow for all .r , HJI(2,r) NN N,

19

= {00,01,16,11} and the 3—colouring’given by 00 ~» 1, llf+ 2, 01 » 3,

r .
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where Nr = HJ(l,r) =1 »
N
2 T
N = HJ(1,r ) =1
r-1 .
+1 +...F
Nr wr-l N2 .
Nl = HJ(1,r o ) =1

Hence HJ(2,r) = r which gives the following values for

-~
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CHAPTER 3

SOME COROLLARIES OF THE HALES-JEWETT THEOREM

The first corollary is a special case of Ramsey's Theorem for
affine subspaées (Theorem 1.4(a),p.3). First, we will give some definitions

and then state Ramsey's Theorem for affine subspaces.

S

F is an arbitrary, but fixed finite_field. Functions
defined in this section are dependent oﬂ ‘F in addition to the written
‘vaiiables. Next we define an affine subspace. If V .-is a vector space,
v €V and W is a vector subspace of V then the set W + v is an

‘raffine subspace of V whose dimension is the dimension of W . For

example, let F be a finite field, lFl =g and V an n-dimensional
_4%1 vector space over F . If A2 is any 2-dimensional affine subspace
of V then A2 =W+ v where W is a 2-dimensional vector subspace
L=

of V and v € V . We can write W = {ay + Bz; o, B € F, y, z €V,

y and 2z are linearly independent}. Then &A_ = {ay + Bz + v; a, B € F}.

2
Addition and scalar multiplication are dégined as usual. We note that
an affine subspace is not closed under addition and scalar multiplication.
4Throughout this chapter and follow;ng chapters, an affine subspacg will
fregquently be referred to simply as a suﬁspace or space.

Dim(T) is the dimension of a space T . If T =W + v where

W 1is a vector subspace, then dim(T) is defined to be dim(W). T is

called a t-space if 4Aim(T) = t.
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Let V be an n-space; V may be a vector subspace or an

affine subspace. We define for t = O

{T ¢ v; dim(T) = t} ,

i.e. is all the t-spaces in V .

The points of V are its O-spaces.

We now state Ramsey's Theorem for affine subspaces which was

referred to in Chapter 1 as Theorem 1l.4(a).

Theorem 1.4(a). (Ramsey's Theorem for affine subspaces). Let

k, t, r be non-negative integers and F a field of g elements. Then
there is-a number N = N(gq, r, k, t) depending only on g, r, k and t
with the following property: If V 1is a vector space over F of
dimension at least N énd if all the t-dimensional affine subspaces
of V are divided into r classes, then there is some k-dimensional
affine subspace with all of its t-dimensional affine subspaces in a
single class.

-Dividing the t-spaces of V into r classes is equiva}ent to
colouring them using r col;urs. We restate Theorem 1.4(a) in these

terms.

Theorem l.4(a)l. Let k, t, r be non~negative integers

and F a field of g elements. Then there is a number
N = N(g, r, k, t) depending only on g, r, k and t with the following

property: If V 1is a vector space over F of dimension at least N
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and ¥ is an r-colouring of the t-dimensional affine subspaces of V ,
then there exists a k-dimensional affine subspace W C V such that
all the t-dimensional affine subspaces T C W are the same colour.

Corollary 3.1 is the case t = 0 and we shall use the Hales-
Jewe£t Theorem ;ovprove Corollary 3.1. First, we shall repeat the
definition of the Hales-Jewett number and restate the Hales-Jewett
Theorem in terms of the Hales-Jewett number.

The Hales—JewEtt'number, n = HJ(k, r) 1is the least number, n

. . . o n
such that if A is a set, |A| =k and ¥ is any r-colouring of A
then A" contains a monochromatic line.

Hales-Jewett Theorem. For all positive integers, k, r ,

there exists n = HJ(k, r) with the following property. Let |A| =k

. n . .
and ¥ be an r-colouring of A" . Then there exists a monochromatic

. n
line L. C A .

\

Corollary 3.1. For positive integers, r, k, and F a

field of g elements there exists a number n = N(g, r, k) with the
following property. Let V be an n-dimensional vector space ovef F
and let ¥ be an r-colouring of theﬂpoints of V . Then there exists
a k~dimensional affine subspace, W such thét all the points of W

are the same colour.

k
Proof. Let n = km where m = HJ(’F] : T).
. . . n
We identify V with F .
n k, m - . .
Let ¢ : F ~ (F)) denote the natural bijection given by
grouping the coordinates of x € ¥ into disjoint sets of k coordinates

each.
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- n —-—
Then, for x € F, x = (xl,xz,...,xn)

w(X) = w(xl'x2'°"'xn) f “xlrxzr-o-lxk)l

‘(xk+l""’x2k)""’

(x(m—l)k+l”“’xmk))'

Let ¥ : o> fr] ke any r-colouring of "F' . Then X

. - k !
induces the r-colouring Y 1 : (F )m > [r].

By the definition of m, (i.e., the Héles-JeWEtt Theorem) , there,
is a Xw—l monochromatic line L C (Fk)m. Then the set wdl(L) cF is
a ¥ monochromatig set in F° . We claim that w_l(L) is an affine
k-space in V . The proof is conceptionally easy.but notationally
difficult so we illustrate by an example.

Iet k=2 and m= 3 .

In (F2)3, the set

- 2
L = {(XIY)I (2I5)7 (XIY); (XIY) €F }

is a combinatorial line which corresponds to the affine plane
-1 6
w (L) = {(XIYI 2151 X:Y); X,y € F} cCF .

+
Corollary 3.2. Let m = HJ(IF!u l,r) and let x be an

r-colouring of the ordered (u+l)-tuples (;O";";u)’ X, € Fm. Then

there exist parallel combinatorial -lines Lo,...,Lu C Fm so that

{(20,...,§ ); X, € L.} is monochromatic.
u i i

Proof. Consider the natural biiection

m, u+l u+l,m
-

b : (F) (F )



- - - no L = = = ut+l
that sends (xo,...,xu), X, € F, into (yl,[..,ym), yj €F

N < 3 < g =
J, 0<i=<u and yj (xoj,... g’

1<3<nm.
¢ in fact regroups and reorders a (u+l)-m-tuple in the

m, u+l

following way. Let x € (F) , then

X )

(xul"'_ i

X

),(xll,..., lm),...,

X = (xOl'xOZ""'XOm

(u+l) -m-tuple

We can write x as follows:-

. -+ 2 u+l

-
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We have actually written x as a (u+tl) x m matrix and

$(x) is the transpose of x formed by interchanging the rows and

columns of x .

+ .
Let ¥ : (Fm)u 1 > [r] be an r-colouring of (Fm)u+l .

Then ¥ induces an r-colouring x¢-l of ‘(Fu+l)m .

From the definition of m, (i.e., the Hales-Jewett Theorem),
. . . . ut+l . m . . ’ .
there is a combipatorial line L C (F ) which is monochromatic.

Then ¢—1(L) is also monochromatic.

Now we must show that

_l _
¢ (L) = Ly ¥ +e- X Lu

. m o . .
where the Li CF are parallel combinatorial lines.

Once again, as in Corollary 3.1, because of difficult

notation we illustrate with an example.

Let u = }C&m = 3 and
- p

L= {(x,y), (2,5, (x,9)); Ax,y) € F'} .
Then' ¢ (L) = {((x,2,%), (v,5¥)); x,y € F}

={y,5,y); vy € F} and L. is

So L., = {(x,2,x); x € F} and L 0

0] 1

parallel to Ll .

: ¢—1(L) = Ly ¥ Ly where the L, are parallel combinatorial lines.
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Corollary 3.3. (Gallai's Theorem). Let k and r be

positive integers and let x be any r-colouring of [UJ]2 . Then

2

[w]2 contains a monochroﬁatic affine copy of [k]~, that is a

a

monochromatie set {a[k]2 + bl .

Proof. let A = {00,01,...,0k-1,10,11,...,1k-1,..,k-1 k=1} =

k1™ .

et p : W >aU0a”ua UaU...Uua™U ... be

3

defined as follows:-

- 2. _
for x € [w]” , x = (ala2 e an, b1b2 ces bn) where ala2 cee @y and

‘blb2 . bn are base k representations possibly

with a; = O,Ietc.)

p(x) = (a bl' a

1 b2,...,anbn) aibi € A4 .

2

L 2 .
Then any r-colouring, x of [w] induces an r-colouring,

X¢ of AU A2 U...ua™....

1]

For y € Am, y ‘(al bl,...,ambm)

eeo @& , bbb, ...Db) .

-1
and X T (y) = X(ala2 n 122 n

2

Now let m = HJ(k®,r)., then from the Hales-Jewett Theorem,

T

m . - 1 . . .:';
A contains a ¢ monochromatic line, L ; >



a0, 8182, k-1 k-1, ...,‘Ylyé} k-I k-1

a

and ¢_1(L) is a ¥ monochromatic set in [w] .

¢ (L) = \
- . ‘,/

-1 ... k-1, - -
alslk 1 Yy 1 a282 k-1 ... sz,l

Poo= {(alsl X ees Y% a282y ... Yzy); 0= x,vy < k-1}.

Setting b = (a1820..;Y10, a2820 . Y20) and a = 001l...01 in base k

. - 2 | - : :
representation then ¢ l(L) = {afk]®” + b} is a monochromatic set of

the required form.

For claﬁity, we illustrate this cqnecept with an example.

Let k = 3, A = {00,01,02,10,11,12,20,21,22} and for n = 13, consider

e

the line L given as follows:
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12 12 12 01 00 00 02~ 01 00 00 22 21 -00
12 12 12 01 01 01 02 01 01 00 22 21 01
12 12 12 01 02 02 02 01 02 00 22 21 02
12 12 12 01 10 10 02 01 10 00 22 21 10
L=12 12 12 01 11 11 02 o0l ALl 00 22 21 11
12 12 12 o0l 12 12 02 ol | 12 00 22 21 12
12 12 12 01 20 20 02 01 20 00 22 21 20
12 12 12 01 21 21 02 01 21. 00 22 21 21

12 12 12 01 22 22 02 01 22 00 22 21 22

= {(l2,12,12,01,xy,xy,02,01,xy,00,22f21,xy): 0 < x,y = 2}.

If L is “x¢_l monochromatic, then the set, S = {(1110xx00x022x,
2221yy21y021y); O <.x,y < 2} -is x monochromatic. :
- ' : 8 .7 .4
Let b = (1110000000220,2221002100210), a= (3 +3 + 3 + 1)
and for n = 13, a = 0000110010001 in base 3 . Then a(l,1) =

(0000110010001,0000110010001) and S = (a{2]® + B).

This corollary generalizes to:

Let k,r and m be positive integers and letA ¥ be any
r-colouring of‘[@]m. Then [w]m contains a X monochromatic set;
{aix1™ + b} .

Corollary 3.4. Let S be a finite commutative semigroup

and define
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nS ={s+s +s + ... +.s{ s € S},
- )

Then there exists a positive integer, n ‘and x € S such that nS + X

is a singleton.
Proof. Let S ='{51’Sz'53""’sr)' then |S|,= r and let
m = HJ(x,r).

” m -
: i “e ey = ves T -
Let ¥ : S —+ S be defined by X(xl, xm) X, t X, + | X

- . . . . m
Then since ISI =r , X 1s-an r~colouring of S

and so from the definition of m , there exists a ¥ monochromatic

. m s ’ ‘ .
line, L €8 . L consists of 'r m-tuples, the columns of which are

s

. 1 (

either constant or of the form . . ‘For example, ' -
s
r -

s s S S s s is a line in s™ If L has n

11 % n R 3 line .
S s S 5 s cee s o ° b . .

1 r r. T r ! 3 . .

.

"moving columns” and m-n “constant columns" and has-colour s € S ,

let™ x be the sum of the m-n constants appearing in the constant

columns. Then nS + x = {s}.
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CHAPTER 4 - . A BRI
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DEFINITIONS AND TEMMAS REQUIRED IN THE PROOF . oy

OF RAMSEY'S THEOREM FOR AFFINE SUBSPACESz

In Chapter 5, we shall prove Ramsey's Theorem for affine.
Subspaces (Theorem 1l.4(a)). Ramséy's Theorem fo¥r vector subspaces
(Theorem 1.4) and Ramsey's Theorem for projective spaces (Theorem

l,4(b)) will be immediate corollaries of Ramsey's Thedrem for affine

subspaces. In this chépter, we wiil give somé definitions an&A
explanations éf notétibn used as Well as.some ;emmas which are gecéésary
to the proof of Theorert il%ia). : -

T At the;beginning bf Cba?ter 3, we géve the definitioﬁ of an

affine subspace and noted thét anfaffine subépace is not closedfunder

addition and scalar multiplication. We emphasize this point. ,To
the reader, the.lemmas in this chapter may appéér to be Bas%p:facts

of linear algebra but they'aréibasicvfacts for vector subspaces not
affine subspaces. '
i L . » §

Also at the beginning;of Chapter 3, we gave definitiodns

of dim(T) - and [Z.}-. We are now going to define a projection.‘
. T x . - ‘ ‘ . ¥
" In order to do this, we will fir$t define a direct sum. If U and -V
. 2 . Lo .

2 - . : '1‘ . E] 2
are vector spaces (over the same.field, F), their direct sum is the

v -

veStor space: W (déndted'by U & V) whose elements are all the



ordered pairs (§,§)~ with x in U and %; in V with linear

P

operations defined by:-

al(xl,yl) + az(xz,yz) = (alxl + azxz, alyl + azyz)

o ,a2 € F, §1,§2

1 € U and Yyr¥, €V .

Ilet V be adirect sumof M and N, V=M®N . We

identify M ® {0} ¢ V with M and {0} ® N € V 'with N . Then every

z in V may be written uniquely in the form z = % + y with =x in

¥

M and ; in N . The projection on M along N is the transformation,
E defined by Ez = x where 2z = x + ;, x €M, ; € N. We illustrate
with an example. Let V be a (utl)-dimensional vector space and let

x € v, X = (% e v X ), then (xl,...,x

u+l) = (x l---rxulo) +

1'° u+l 1

(0,...,0,x )  where (xl,...,xu,O) €M, a u-dimensional vector

u+t+l

subspace of V and (O""'O’xu+l) € N, a 1-dimensional vector sub-
space of V . Let p be the projection on M along N , then

P(X,,004,%

) = (xll':ﬂlxulo)’

1 u+l

The next concept is important in understanding the proof
of Ramsey's Theorem for affine subspaces. Let V be an n*dimehsional

vector space and {5.}u be a set of (ut+l) linearly independent
i 0 , . vJF\

) /
vectors in V with (u+l) <n . Let X. be the smallest affine

subspace containing {§i}3 . Then we say that {§ifg generate X .

Lemma 4.1 shows that dim(X) = u and that X = W + §0 where ' W is the
vector subspace generated by {§£-§O}$ . /in Corollary 4.1(b), we prove

/
/
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o
-

u

that X also consists of all linear combinations of the set {1-/,}O
, , i

where the sum of the coefficients is 1 .
Next we prove three wery useful lemmas.

Lemma 4.1. Let V be an, n-dimensional vector space and
>

let {§i}3 be a set of (u+l) linearly independent vectors ih V

with (ut+l) < n . Then the smallest affine subspace, X , containing

~

{§i}g has dimension u . We say that {§i}; generate X .
"ﬁ o

Proof. Let Y be any affine subspace which contains

- u — A ) ) . ; -
{yi}o , Say Y =W + ¢ where W' is a u-dimensional vector subspace
t N

of V. Let X be the intersection of all such Y . We show that

= +y W
X=W Yo where 1

0
and thus that dim(X) = u..

0 is the vector subspace generated by {§i - ;O}u

Set X' = (W+ ¢) - Yo Then X' is an affine subspace of

V which contains 0 and is therefore a vector subspace, Further X'

3,
=

ins (v, - v,}}
contains yi - yo 1 e

Let W, be the vector subspace generated by {§i - yo}; .

Then Wo € X', and WO + §O c X'+ §O = Y . Then WO + §O is in every

affine subspace, Y which contains {§i}8 . Thus W, o+ §O C X, the

interséction of all such Y . Since {y.}- + §O , then -~

C W
i°0 -

0 /’
c + v = l + v . i . “
X WO Yo and thus X WO yo \ \

~

Corollary 4.1(a). Let V be an n-dimensional vector spacg‘

and {§i}g- a set of (uwtl) linearly independent vectors in V (withu
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<

(utl) < n). If X is the affine subspace generated by {§i}g and

X =W+ c where W is a vector subspace then W is unique.

Proof, Suppose that X =W+ ¢ and X =U + b, where W
and U are vector subépaces in V . We show that W=U . Let
w € W, then wW+tc €Xx=0U +'5', thus w+ c=1u+ b for some u € U.\

Then, we have w=u +b - c .

Since W is a vector subspace, O € W and O + ¢ € W + ¢ =

-

U+ b . Therefore, c € U+b so c=u*+b .for some u* €U .

It follows that w=u+ b - (u* + b)

it

= (u=-u*) €U .
Therefore, W C U .

Similarly, we can show that U CW and thus W =U .

Corollary 4.1(b). Let V be an n-dimensional vector space

and X a u-dimensional affihe subspacé in V . Let {§i}3 be a set
of (u+l) 1linearly independent vectors in X . Then {§i}g generate X

and a vector v 1is in X if and only if v

u
z c.§. where ¢, € F
o i i

T

(thé underlying field), 0 =i =u and. Z c, =1.

Proof. Set W =X - §O . Then W is an affine subspdce of
V which contains 0 and is therefpre a vector subspace. Since

dim(X) = u , dim(W) = u and it follows that {§i - §O}T generate W o.

Thus X is generated by {§i}g .



"Let v € X , then ; =w + §O where w € W and since

'
L

{§i - 50}; form a basis for W , we can write

_ u _ _ _ u u _
v =1 di(yl - yo) + Y, = Z‘diyi + (1 ~ I dl)yO .
1 1 . 1
Therefore v =% c.y,* where ¢, =4d., 1 =1 =u and
o i1 i i ‘
u u u u
ey = (1 -2 d,) then L c; = Id +(1-~12 di) =1.
1 0 1 1
R u
let x =% c,y. and L ¢, = 1 . Then we can write
i*i i - ‘
0 0
_ u B _ u _ _ u _ _ u _
= - = - + (Z .
x =L cly; —yp) + (Zeyy+cgyy =2cly; =y + (2c)y,
1 - 1 1 0
> u >
Since I c¢c. =1,
o I

S0 X €W+ §O =X .

Lemma 4.2. Let V 'be an (u+m)-dimensional vector space over

a finite field F. Let L ,...,Lu be parallel lines in V, with Li - Ai where

0

LS éi F' 0 < i <u, éo = 0, and e, = (0,...,1,..:,0) where the 'l' is in

the ‘ith position. Then {Li}g generate a (u+l)-affine subspace, B, in4V .

u+m

Proof., We identify v with F .
‘ m -
i = 1 = *
Consider LO, LO c AO 00...0 x F . SO'lf LO aO + L

u

where L* 1is a line through the origin, then L* C 00...0 x F
g gin, . ;

u
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and 50 € AO . Also, since {Li}g are parallel lines we have

L. =a, +L* 0<ic=<u, L* € 3, andaiGAik,OSiE_u.

Since a_ €A , 1t follows that 5. ~-a. €A, ,0=1i=nu.
0 0 i 0 i .

. R 7 —_[ - -—
Writing a, = a, -~ a, , we have
i i 0

N

where 5; 3 Ai ,0<i<u and a. = 0.

Let B be the affine subspace generated by {Li}g i.e.,

B is the smallest subspace containing the {L:1} and let V be the

i'0
vector subspace generated by {L;}g . Then B =V + 50 . Now
Lé = 50 + L* and 56 =0 , thus Lg = L*¥ , a line through the origin
and L* CA_ . Let 2 # 6, Z e« L*, Z = 00...0 E where f ¢ Fm and
N O L*—\/—"J
u

£ #0 . Then V is spanned by 7+ éé , £+ 51,...,2 +'53 and

5 =iqu ' : by s = =

{2 + ai}o is a linearly independent set. For if & ci(B + ai) =0

: 0
then looking at the first u coordinates we get C] =€y = eee =C_ =

and this 4mplies that ¢y = 0.

Thus dim(V)

u+l

dim(V) = u+l.

and dim(B)
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ILemma 4.3. Let V be an n-dimensional vector space,

‘L a combinatorial line in V and X a vector not in L . Let X
be the affine subspace genefatea by L andr ;l. Then dim(X) = 2.
Also, suppose that the first u coordiﬁatés‘of X and each vector
in L ére the same, say (xl,...,xu) then the first u coordinates

of each vector in X are (xl}...,x ).
u

*

©

Proof. Let X=W+c, W a vector subspace.
Then W contains a translate of L , i.e., a line through the origin
and a translate of x which is not on the transktate of L . Thus W

contains two linearly independent vectors and has dimension .2 .

Then dim(X) = dim(W) = 2.
let L =L* +v where L* CW and is a line through the origin. Then

0 €L* and v € L. Since each vector in L begins with (xl,...,xu),

the first u coordinates of v are (xl,...,xu). Then the first

u coordinates of each vector in L* are (0,0,...,0). Further since
. - — -

u
X has »(xl,xz,...,xu) _for its first u coordinates, the translate

of x in W must have (0,0,...,0) for its.first u coordinates.
. A A Ak —

u

Thus every vector in W has (0,0,...,0) for its first u coordinates.
— N

u R

It then follows that every vector in X has (xl,x2,...,xu) for its

first u coordinates.
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CHAPTER 5

, RAMSEY 'S THEOREM FOR SPACES

In this Chapter, we are‘going to prove Ramsey's Theorem for
affine subspacés*(Theorem l.4(a)). Ramsey's Theorem for vector sub-
spaces and Raméey's Theorem for projective spaces are immediate
corollaries of Theorem 1.4(a). We again state Ramsey's Theorem for - o
affine subspaces in the form which we called Theorem l.4(a)l. We will

now call it Theorem 5.1. -

Theoxrem 5.1. (Ramsey'g Theorem for affine subspaces). Let

k, r, t be non-negative integers and ¥ a field of g elements. Then
there is a number N = N{(g, ¥, k, ﬁ) depending only on g, ¥, kK and

t with the following property: Tf V' is a vector space over F of
dimension at least N and bx 1s an r-colouring of the t-dimensional w
affine subspaces of 'V , then there exists a k-dimensional affine
Subspace' W C V such that all the t-dimensional affine subspaces

T C W are the same colour.

. . |
We restate Theorem 5.1 in formal terms, Let dim(V) = n and X :{F1+-[r].

. = . W
Then there exists W-E{;] such that ¥ 1is constant on [t] .

Y

The proof of Theorem 5.1 uses the Hales-Jewett Theorem which
was proved for the special case of r = 3 in Chapter 2. As was
stated at the end of Chapter 2, the proof for the general case follows

the same 1ines as the case r = 3. The definitions and lemmas of



=

~ Chapter 4 are also necessary to the proof. Before proving Theorem 5.1
ﬁe give some further. definitions and prove a vital lemma.

Iet x be a colouring of [z] ; X is thus a colouring-of
the t dimensional affine subspaces of V . Let B € [;Zl]o Let

p : B+F' be a surjective projection. If T € [i]‘ then pIT : T > F

is either bijective or it is not. In the former case, p(T) € [i:] and

u
T is called transversal. In the latter case, p(T) € [i_;],

T = p—l(p(T))’.and T is called vertical, (Intuitively, p defines a
vertical direction).
We now define the term "special". This definition is

essential to the entire prbof.

A space B ¢ [uZ{] is special (with respect to a colouring,

; (/.I
. . . ’ B
X and a projection, p) 1if whenever Tl’ T2 € £ |’ are transversals and

p(T.) = p(T.,) then x(T.) = x(T.). That is, B is special if the
1 2 1 2

colour of a transversal t-space in B 1is determined by its projection.
We now prove the following lemma which is central to the °

proof of Theorem 5.1.

Lemma 5.1. et t, u, r be non-negative integers and F

a field of g elements. Then there exists a number m = M(g, t, u, 1)

m

. i , u+ .
such that for any r-colouring of the t-spaces of F there exists .

a special (u+l)-space, B .
utm u . .
Iet p : F > F be the natural projection given

by taking the first u coordinates. Then there exists B

which is special with respect to p (technically : plB) .



.40

)

Proof. Let v.= v(t, u) be the number of t-spaces. of. - )

\' u+l

a u-space and c=r , Let m= HJ(IF] /C); then‘ m 1is such that . . ...

u+l

. , | ) m : o L
if -8 is a set of cardinal IFI and S is coloured with..c~- .-~

b

m . . .
colours then § contains a monochromatic line.

u+m x
Let X be an r-colouring of & ’ - >
u+m
x |5 > .
t X e
+ > D + '
Let p : FO'" 5 F7 be the natural projection of F' onto

Fg giveh by taking the first u coordinates.

pefine Eo' él, <ssr @ €F by € =0 and

e, = (0,e0es1,...,0) whexre the '1l' is in the ith position,

. - . . - u
l1=i=Z=nu, Then the ei , 1 =1i<u, are the basis vectors of F

- ] -1 - + .
and eo is the zero vector. Set Ai =p l(ei) c Y m' 0 <i=u. In

. . - m
order to see more clearly what Ai looks like, consider m € F then

e,m € Ai . Thus Ai is just a copy of F" and consists of all vectors

- R . .
"starting" with e, - 1

<

Let (Xy,.-..%X)) be a (utl)-tuple, §i €EFt ,0<ic<wu.

Set §. =e.,x, € A., 0<i=<u, (i.e., we place e. to the left of
i ii i » 1 .

§i forming a u+m-tuple §i which is in Ai.) Technically, ' ‘is

defined by §i € Ai and pl(§i) = ;i' 0 <i=u, where /pl is the

. . + m . . s
natural projection of po onto F given by taking the last m coordinates.
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- : fThé “{§i}g are a set of (u+l) lihéq;lfgindépéﬁdent}véchfg .

B I PR ST S
~tor a-set of u’ linearly independent vectors and thé.zero.vector. To ~

segvth%s;iIé?:fZ;;iyiif Q;;chen_,(cl,.;.;gﬁv'xl) = 0 . Thus c; = 0o ,-
L . 'Fm : e - N ~

L
1 Eis g wﬁicﬁ‘impiies that o =Q" Stf“§b = 0 . In"the latter case,

o . PLLes M <0 T 7 : e

’ . . .

o

. ' - . . g+ Caw s
generate a vector subspace, "X € FY -, of dimension u , -
- - - - :A‘“,‘ N ’7@7 - EEEESE

We note that a vector subspace is simply an affine space which contains .o

the” zero vector. In the former case, from Lemma 4.1, the {§i};“generéte

. u+ V - : )
a unigue u-space X C F ™. Let X=w+ Y, where W dis a u -

dimensional vector subspace generated by {§i - §O}T . Then
P(X) =p() +p(y)) = pW. Since p(y, -y) =&, 1=i=u, then

p(W) contains a basis for F and it follows that p X is onto. .

UI'

. . 1 u o, - .
Since IXI =,[F plx is one to one, Thus p % ¢ X->F is bijective

(i.e., X "tfansverses" Fu). 8
: So_u L
Let Tl""'Tv denote the t~spaces of F in some pre-

assigned order. Let Si be the unique t-space in X such that

p(Si) =T, 1<i<v. Wewill use the expression X 1is generated

by a (u+l)-tuple (EO,..u,Eu)vkwhere ;i € , 0<i=u.

In fact, X is generated by (ebxo,...,euxu) where

- - - +m - - i v .
e.x, =y, €A, C Fu r . =0 and e, , 1 =1 = u, are the basis
1 i i o - i

. 0 .
vectors for F .. We are going to use the r-colouring ¥ of .the

(1)

. ) .
t~spaces of Fu m to induce a c—colouring X of the (u+l)-tuples
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1. - = omuwdl = ==
of (F,m)u+l . Let .x, x'" € (F )u ' x>f‘(xo,...,xu) and
“fifw=ff§6,.;.,§&) and let X aﬁd X? be the unique u-spaces
generated by X and. x' ‘regspectively. Thus X is generated by
- = ju e er sl “ - =, u v PV
{eixi}o and X' is generated by {eixi}o . {Si}1 and {Si}l. are
% . - -
the t-spaces of X and X' respe;i:t:?}; For each i, 1 =i=v,
we have p(Si) =T, = p(Si). We define the c-colouring x(l) as
followsi
(L, = = R ) =
X [(xo,-..,xu)] =X [(xo,-.-.xu)]
if and only if,
[X(S)) 1 X(S,) vuuesX (8T = [X(S]),X(85) runurXx(83)] . oo

3 - / " L ] + o
That is, two ‘(u+l)-tuples in (Fm)u 1 are coloured the same.

(1)

by X if and only if the u-spaces generated<by‘them are coloured

identically by ¥x (identifying undef the projection, p ).

We are now going to apply Corollary 3.2 of the Hales-Jewett

m (1)
X

' N ‘ +
Theorem [p. 24] to F . Since m =_HJ(1F|u l,c) and is a

c-colouring of the ordered (u+l)-tuples (; ,...,Eu), ;i € EF y 051 =,

) . . . . ' m
then there exist parallel combinatorial lines Lé,...,L& cCF such that

((Xyeee,x); %x. €L'} is (1) monochromatic. A full description of
0 u i i X



~ R - ) . - h s : «
these lines is given in Appendix A at the end of ' Chapter 6. Since
|F| = q , then each line L; »0=1i < u consists of g m-tuples

7

and ‘is of the form:

;

ai"'xl'f'bi'°'x1

- - » L! = <.a.-;.x.°.'.b....x:; A ; ‘.r - oo “"H‘
i 3j i - '

Q. e0eX o..b...ux
1 q i

where ai’bi are fixed elements in -F and x,, 1= 3j=qg, runs

through all the elements of " F .
. s o |
To each m-tuple in Li, 0=1i=u, we are going to attach

a "head“, éi €F , 0=1=u forming parallel combinatorial lines,

u-+m
Li' 0=4i=<u in F .
(— /\,

e.a..v.*x__-..b....x

idi 1 i 1

L, = < a.a....x....b....x.

e i i3 j i

Eiai,,.x ...bi...x

oo ¢, J

u-tuple m~tuple € o

u
[EF 2

hd

+
(utm) -tuple € o

From Lemma 4.2, the {Li}g generate a (u+l)-space,, B which

we will now show is special with respect to the r~-colouring, X and the

projection p B which we shall denote by p .
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. =
.
~

In Appendix B , we illustrate the preeeding
discussion with a simple example.

- B \ .
Let T € [t] be a transverse space. Then for some 7j ,

v

l1=3=v, p(M = Tj where Tj' is a t-space in F' . We extend T
to a transverse u-space, X € B in the following way. Choose

x € F'- Tj (= p(T)) and x is linearly independent from Tj . Choose

§ € p_l(i) and add to T forming T* = (T+§Y, a transverse (t+l)-affine

space. Continue in this way until we have a transVegse u-space X .

N

We now want to show that X is generated by {éiEi}g where

éiQi € Li , 0<i=<u. To accomplish this it suffices to show that for

each i, 0 =i =u, XN Li = e.x. . For then X 1is a u-space containing

the set of (u+l) linearly independent vectors, and from Corollary 4.1(b)

~

X 1is generated by {éiii}g . Since X 1is a transverse space ,

u . . . . : .-
Ply ¢ X~>F is bijective, thus foreach i , 0 =i =u, X contains
u

. - - m :
one and only one element of the form eixi, X, €F . Now p:B~>F

is surjective and since dim(B) = u+l, the dimension of the null space

of p=1. It follows then that for a t-space T C B, p(T) is either
a t-space in F° or a,(t-l)—space'in F© . Now each Li,'O =i=nu is

a l-space in B and p(Li) = éi', a O-space in Fo . Suppose for some

i, 00=.i £ u., that there is another element in X and therefore in B

of the form éiE, z € F° , which does not belong to »Li . Then from-

Lemma 4.3 [Li + eiz] is a 2-space and all the vectors in [Li + éiE]

-
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- - - - S v
begin with e, .+~ Thus plIL, + e,z,] = e, a O-space:in F but we
: i : i TiTi i , .
have already shown that if dim(T) = 2, then” @im(p(T)) =2 or 1 .

Therefore;, it follows thét‘any element in X of the form éigi' also
) N g J

belongs‘to Li , 0= is u and. (XN Li) = Eigi . Then X is

generated w{gi;i}g . It follows that T is contained ih the u-space

X generated by {§i}g . (where §i = giii , 0<1i=<u." Hence x(T) is:

(1)

[(io,...,;u)]. Since ¥ is constant on

(1)

»

the jth coordinate of ¥

these (io,...,iu), X (T) does depend only on j as requifed and thus B

[

is :special-.with respect to the r-colouring % and the projection, p .

Before proceeding with the proof of the main theorem, we prove

’
s

the following short lemma which is used in the proof.

Lemma 5.2. Let V be an n—dimensiohal vector spéce (nvé=u+m)\

i

and p : V> F be the natural projection given by taking'thé first
u coordinates. Let B be a (u+l) affine subspace of V such that

Plg : B > F ' is'a surjective projection. Then for each (t-1) -space,
- ’ 'w*
T C Fu, pll(T) is a t-space and hence is the unique vertical t-space I

in B which projects onto T .

¢

Proof. Let N be the null space of p . Set Nﬁ =N B.

NB consists of all vectors x.€ B with px) = (0,...,0) € o
: e
. " n

. oo, . L ) '
Since p : B> F is-onto, it follows that Ng #¢ . Let

/.
- - -k . . .
c E'NB , then ¢ = (O,...,Q,c ). Since B is a (u+l) affine ‘space,
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'

we can write B = W + c where W is a (u+l) vector spbspace.
. 3

3‘ i i v

il
'_l

We now show that dim(NB) ey is'a (u+m) vector with ., -
G ’
. .t - ~ qu#
'L* in the i h position and '0''s everywhere else. Then {ei}$ "
I

are the basis vectors for' V . Since p projects W onto Fu., there

is a basis of W of the form ({e.}? ana f = Ds...,0, v )}. Then
. \ 1 1 v L———\/—-—/’

m
u €F.

NA W=Ff , a subspace of dimension 1 . Then NB = (NNl W) + ¢

and thus dim(N_.) = 1 . We can write N_.= {;; X = (0,0,...,0,%x.),
B B - i

.u

X, €F ,1=1i=<gqg} . (We note that {;i}? is a 1-dimensional

. . m
affine space in F .) ) 3

-

Let T C FY and dim(T) = t-1. Let (ByrenerB) = B e,
then (Bi""’Bu';i ) €B, 1=1i=gq. Thus each point in T ‘is
erm

a l-space in B . It follows that. dim(pIB—l(T)) =%k .

Hence, p-l(T) is the unique vertical t-space in - B

o~

which projects onte T ,
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We are now readyfto prove Ramsey's Theorem for affine sub-
spaces, Theorem 5.1. In order to do so, we first restate it in an
equivalent form more suitable for an inductive proof.

Theorem 5.11. ILet t, r, kl, esey kr ‘be non-negative

' 4
integers and F .a field of g " elements. Then there is a number

N = N{g, r, t, kl}'..., kr) depending only on q, r, t, kl’ ey kr

~with the following property: If V 1is a vector space over F of

“ dimension at least N and ¥ : £ - [r], then for some i, 1=1i=r,

there exisfs W € #Y such that for all T ¢ [z] , X(T) =1 .,
i

(That is, there is a ki—space with all of its t-spaces coloured i).

Before proving Theorem 5.11 , we establish the equivalence

between Theorems. 5.1 and 5.1l .

. 1 .
First we assume that Theorem 5.1 is true and set

k. =k, = 4«00 = kr = k then Theorem 5.1l states:-

>

Let t, r, k be non-negative integers and F a field of g
elements. Then there is a number N = N(g, r, t, k) depending only’
on q, r, t and k with the following property: If V is a vector

' . , A
space over F of dimension at least N and ¥ : [t] -+ [r], then

there exists a k-space W C V such that all fhe t-spaces T .of W

14

are the same colour.

Thus Theorem 5.1l implies Theorem 5.1.

Now we assume that Theorem 5.1 is true. Let t, r, kl' ceey kr

be given and set k = max{ki}.- Then from Theorem 5.1, there is a

-
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k-space W such that all the t-spaces T C W are the same colour,'say

. . ' . ’ w
colour i where 1 =1i=r. Then we can write that for all T 6[}:],

x(T) =i ., Since k = max{ki}, we can choose any: ki-épace W,
_ Wi‘
inside W and/pust still have that for all T € el r x(T) =1 .
{,« N - -

Thus TheoremiS.l implies Theorem 5.1l and we have established the

equivalence between Theorem 5.1 and 5.1l . We now proceed with the

¥

proof of Theorem 5.11=

Proof of Theorem 5.11. The proof is by double induction - first

on ti(for all kl,...,kr) and then onA(k ""kr)' For all t and ki = t, this

ll
is trivially true.

For t = 0, Theorem 5.1l is simply Corollary 3.1 of the Haleé—

2

Jewett Theorem and was proved in Chapter 3. We now state it in the

. 1
same form as Theorem 5.1 :

-

et r, k k , be positive integers and F a field

17 oeeer ko
. T .
of g elements. Then there is a number N = N{(¢, r, kl,'..., kr)

r

depending only on d, r, kl’

ey kr with the following property: R
If V is a vector space over F } of dimension at least N

v " . .
and ¥ : [O +~ [r] then for some i, 1 = i = r there exists

N
| il

k., 0

W € v such that for all T € [W] s X (T
i

(We note that in this case of the theorem k and r are
positive integers whereas in the general case t, k and r were
non-negative integers. This arises fyrom the fact that r = 0 or

k = 0 give rise to trivial situations.)

o
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'We now assume the existence of N for t' < t (all

s
o

t t '
ceey kr) and for t and all (kl r eaeeys kr )ﬁ{ (kl{‘.‘.’ﬁk') -

klr k2’ r
£ £ - : t
For (k, , «e., k) to be less than (k,, ..., k), at least one k.
1 r 1 , r i
‘is less than the corresponding ki, 1 S i=r, and for j # i,
k,t =< k. .
J J

Let s = max{N(q, r, t, kl;',.., ki—l, ...,,kr); 1<i=r}

and u = N(g, r, t-1, s). u 1is such that if V is a u-dimensional
vector spacu over F (wifh |F| = g) and X an r-colouring of the
(t=-1l)y-spaces of V , then there exists an s-space W such that all
the (t-1)-spaces T C W are the same colour. Let m = M(g, t, u, r)

"and let n = u+m. We shall now show that n has the desired property.

. . . . . +m
We identify the n-dimensional vector space V with Fo . Let
u+m ’ ’ N R x
.- +m : i
X ot [ﬁ J -+ [r] be arbitrary and let p : Eu + F' be the natural

projection given by taking the first u coordinates. By the definition
of m , there exists a (utl)-space B which is special with respect to
the colouring X and the projection p B Henceforth, p refers to

the projection with domain B .

(1)

We use X to induce an r-colouring Y of the (t-1)-spaces

- u
F - . .
of F' . Let T € [t—l] , then from Lemma 5.2, p,.l(T) C B 1is the unique
vertical t-space which projects onto T . Then we can define x(l) as

follows:-

(= yp tm) .
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(That is a (t-1)-space, T C F" is coloured by the colour of the

=

. -1 . . .
vertical t-space, p "~ (T) € B which projects onto it.)

By the definition of u (i.e., induction on t), there exists
A Fu ] : (1) ‘ i ‘
X € s which is monochromatic under , that is all the (t-1)~

spaces of the s-space X are of the same colour. We will call this
colour 1. Then from Lemma 5.2, p—l(x) is an (s+l)-space in B .
. . . -1 - .
Since B 1is special and p (X) ¢ B , then p l(X) is also

special., Further, since all the (t-1)-spaces of X are coloured 1 by

(1) (1)
X

then from the definition of ¥ , all the vertical t-spaces of

p (X) are coloured 1 by ¥ . o

We now use the r-colouring ¥ to induce an r-colouring

2
X( )

1

(2)

X of the t-spaces of X . is defined as followé:

- e -1
(2) _ , X p (X . _
X (T) = X(Tl) where T € [t] and Tl € { c with p(Tl) =T,

As already.shown, p-l(x) is an (s+l)-space while X is an‘s—spaée

so that pl -1 : p_l(X) * X 1is not a one to one projection. So
p " (X) '
there are many Tl with p(Tl) = T ; however, all such Tl have the
. “lo . . (2)
same colour since p ~(X) is special. (That is, the colouring ¥ is

. . -1
produced by projecting the colour of the transverse t-spaces Tl Cp (X)
down onto the t-spaces of X .)

Now s was chosen such that s > N(q, r, t, k_,..., kr) and

1

from the induction- hypothesis on (k ceey kr)' there exists W, C X

1’ 1

so that either
. . _ 1} . (2)
(i) dlm(Wl) = kl-l and £ | is coloured 1 under ¥

or
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(ii) 2=j=r, dim(Wl) = kj and S"i; coloured j under ;x(2) .
: _ k.,
In case (ii) suppose that Wl is generated by {wi}OJ> where

veer W, , 0),

w, = (w,
1’ iu

S < i < 7 o =
i 417 Tt wiu)' 0=1i= kj . Set W (wi
- k 3 ’ N -
0=1i=%k., . Then {w;}oj generate a transverse kj—space Wep (X)
so that p(W) = W. o (That is we can lift W, "te W .) Then [vv] is

1 1 t

coloured j under ¥ . (This comes automatically frdm‘thé definition

of x(2).)

Case (i) is the most important case since it is the moment of

- -1 .
induction. We set W =p l(Wl)o From Lemma 5.2, p (Wl% is a

(kl-l) + 1 =lkl—space in B, Let T be a t-space»of W. Then T

is either a transverse space or a vertical space. If T 1is a transverse

i W
X(2) ;] . If T is a vertical

sbace, x(T) = (p(T)) =1 as p(T) € [

s i -1 . -
space, it 1s a vertical t-space of p " (X) and all the vertical t-spaces

of p-l(X) are colourgd_l‘. (This comes from the definition of x(l)

and the induction on t .) Hence x(T) = 1

This completes the proof of Theorem 5.1. To review: inside
an arbitrary n-dimensional vector space, we find a special (u+l)-space,
B . Inside B , we find a (s+l)-space p_l(X) which is special and

such that all of its vertical t~spaces are coloured 1. Inside p-l(x),

we find (in case (1) a ((kl -1 +1) = kl—space, W all of whose

W} is coloured 1 ., We

transverse t-spaces are coloured 1 . Then [t

will now outline the preceding proof in diagramatic form. In each
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TN

diagram, r = 3, (i.e., we use these colours) and represent transverse

©

spaces by horizontal lines and vertical spaces by vertical lines. With

_each diagram, we give a brief written description.

T
k -8 T

o P >

4

ﬂd
Tl RSN SR "
B F
- Fu+m
Figure 5.1

. . - . o +
In Figure 5.1, X 1s a 3-colouring of the t-spaces of e

and B is special with respect to x and the natural projection

u+m . .
p: F + F" . This means, for example, that p(Tl

) = p(T,) = p(Tg) = T.
Note that although the t-spaces of F"  are coloured in Figure 1 , they

are not actually coloured by 'Y . We have coloured them in order to

illustrate the concept “"special”.

T, T2 Tg To
A - — P(Tl)
: P ke — | p(Tp)
! - | o(Tp)
C 1| «= 1 p(T9)
b L .
. .B



Figure 5.2 illustrates how the 3-colouring X(

from x .

of the vertical t-space, T

(1

1

which projects onto it.

os]

Figure 5.3

| p %V/ .
o X

Fu

1)
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is formed

X ) assigns to each (t-1)-space, T C Fo , the y-colour

Figure 5.3 shows the monochromatic s-space X C P . From the

definition

(t-1) -spaces coloured the same colour (i.e., orange) by X

the definition of ¥

of u,

Fu

(1)

r

contains a s-space X which has all of its

it follows that p-lﬂx)

(1)

. From

which has all of its vertical t—spacés coloured orange by X .

F———

Tl—3

~Sapmn—

T4—

T eommm——

T 2-5_1
p—

L (x)

Figure 5.4

2

”

is a (s+l)—spécepin— B

)
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Figure 5.4 illustrates the 3-colouring X(Z) . Since p-l(x) CB

and B 1is special with respect to x and p, then p_l(x) is also
special. This means that the x-colour of transverse t-spaces

T,, T, € X is the same if p(Tl) = p(T2) . We can then use ¥ to define

1'-"2

the 3-colouring x(z) of the t-spaces of X,. For example,

p(Tl) = p(T3) =T C X 1is coloured green and p(T2) = p(T4) = T' is

coloured blue by x(2) .

Figure 5.5(i)

Figure 5.5(i) illustrates case (i). W, is a (kl - 1l)-space in X

(2)

1

and all the t-spaces of Wl are coloured orangeAby’ X . We now

.consider p.l(wl) = W which is a vertical kl—space in B . From-

(2)

the definition of ¥ , all the transverse t-spaces of W are coloured

orange. If T 1is any vertical t-spaces in w, then T 1is also a vertical

‘t-space in p'xgx) and all the vertical t—spacés in “p—l(X) are coloured

t

orange. ' _

\
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WO— ! )-i W1

—_— - F —_ )

= N -
p_l(X) .

" Figure 5.5(ii)

Figure 5.5(ii) illustrates case (ii). Wl is a k2—5paée in X

with all of its t-spaces coloured green (colour 2). Then as already

explained we can find a transverse k

,-space , W in p_l(x) and thus

in B such that p(W) = Wl . Then if T 1is a t-space in W ,
' . . 2 e e
p(T) ¢ Wl and p(T) 1is coloured green by x( ) . From the definition
- (2 . -
of x( ) , T must also be coloured green. Thus W is a kz-space in B

such that [‘:] is monochromatic.

— B

Corollary 5.1. (Ramséy's'Theorem for projective spaces).

Theorem 5.1 holds.where "space" refers to projective space.

Corollary 5.2. ‘ (Ramsey's Theorem for vector subspaces).

Theorem 5,1 holds where "space" refers to vector subspace.
First, we explain the canonical association between vector
(t+l) -space and projective t-spaces. Because of this canonical

association, the above corollaries are equivalent. Then we will prove

Corollary 5.2, The proof is very short.



_ Let V be an (n+1) -dimensional vector space over a field F
of ¢ elements. We will denote the points (vectors) of V by the

reveerX ), X, €EF, 1i=1 < ntl. For a point of the

(n+1)-tuples (xl,x2 TSt

projective space, P , we take the set consisting of a non-zero point\
v in V and all nonzero scalar multiples of v . This construction

gives

n+l
3——q_l'l = qn+qn-l+...+q+l points .
Fo¥ a line, L, in P iet ;l = (xl,xz,...,xn+l) and
32 = (yl,yz,...,y, D Vhere ;l' ;2 dare linearly independent non-zero
points in V . Then L = {(a\_zl + LGZ) = (axl + byl, ax, + by2, cear
axn+l + byn+l); a, b €F, aand b are not bqtﬁ equalfto zero.)

5 | . .
There are g -1 possible choices for the part (a, b); but

since we identify scalar multiples, there are (qz—l)/(q—l) = g+l points

on~a line and hence by the pfinciple of duality for projective spaces,
each point has g+l liqes intersecting at it. Briefly, a poinf in P
is a line in' V and a line in P is a plane in V . F higher
dimensional subspaces a u-space in P is a utl-space in ‘V'. Thus an
n-dimensional projective space P 1is equivalent to an (n+l)-dimensional

vector space V , and hence Corollaries 5.1 and 5.2 are equivalent.

proof of Corollary 5.2. Let ¥ be a r-colouring of the

t-dimensional vector subspaces of V , X : [Z.]* [r]. We induce

S .
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(1)

an r-colouring ¥ of the affine t-spaces of V as follows. Let A

be an affine t-space in v, then’ for some unique vector t-space

T and vector ¢ in V, A =T+ c . Then colour A with the

same colour as -y c¢olours T .

3

V@ = xm .

From Theorem 5.1, there exists an affine k-space B such

(1)

that all of the affine t-spaces in B are coloured red by ¥ .

Now B =X + d where X is vector k-space in V and d a vector

in v . If T is any vector t-space in X , then T + d 1is an affine

t-space in B and is coloured red by 'x(l) . Then from the defipition

of x(l) , T 1is coloured red by x . Thus all the vector t-spéces in

X are coloured red by x and Corollary 5.2 is proved.
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CHAPTER 6 -—

PARAMETER SYSTEMS'AND'THE'RAMSEYJTHEOREMSV

Since Ramsey's Theorem (Theorem 1.3} appeared, there has been
interest in finding generalizations, applications and analogues. It is
this interest which motivated the work of this chapter. In Chapter 5,
we proved Ramsey's Theorem for spaces using the Hales—Jewett Theorem.
We can uyse the ideas in this proof to prove another analogue, Ramsey's
Theorem for parameter systems. Before we define parameter systems, we
will give an informal description of the n-parameter sets of Graham-
Rothschild [3]. These n-parameter sets are generalizedAby parametér
systems. vIn [3], R.L. Graham and B.L. Rothschild proved Ramsey‘s.
Theorem for n-parameter sets; among the immediate corollaries of this
theorem are Ramsey's Theorem for spaces for the special cases t =0
and 1 and Ramsey's Theorem itself. Other corollaries are listed in
Appendix C.

It will be seen that in general the affine subspaces of a
vector space do not correspond to parameterysubsetsrwhgreas affine
subspaces are an exémple of a parameter systeﬁ. The édvantage, then,
gf parameter systems is that_they include both h-paraﬁeter sgts and the
affine spaces of a vethr space,’

n-parameter sets, Basically, just as an n-dimensional vector space, V

as a set consists of all qn n-tuples of elements from a field F where

&

. . n _
lF] = ¢, so an n-parameter set essentially consists of all t n-tuples



" (0,2,4,1,3), (0,3,1,4,2), (0,4,3,2,1)}.
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of elements of a set A with  t-elements, A = {al,...,at}. Any affine
line, L (i.e., a 1-dimensional affine space) of V is a set of the
form, L =y + {fx, £ € F} where x,y €V and x # 0 . I consists

of g n-tuples which can be'writtén in a column as I -;

() prger¥py) ' : N \

(x21,...,x2n)

(qu,...,an)'

where for each i , 1 <i <n, either X,, = X_. = .a. = X .., or else
. ‘ Sli 2i gl

xli';"’xqiv is a permutation of the elements vfl,...,fq constituting

F . The permutations obtainable in this way constitute a subset K of

all the d. possible'permﬁtations of £

1f°"’f . K will consist of

the g-1 permutations of the form fafi; o € F} for each non-zero
1 H

£, in F . For example, if |F| =5 then X ={(0,1,2,3,4),

A

In a similar way, then,‘we define a l-pérameter subset of a® s
(the n-tuples of A) as any set of t n-tuples whichrcén be-listed
o

’(ali""’aln)' ‘ -
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such'that for each i, 1 =<1i=n, either a,, =a_, = ... =a,.€ B C A,
. x 11 2i SR o5 1 -
or else ali,...,a . 1s one of a certain set KH of permutations of

t1

Ayreeeray (the set of permutations considered is defined by a

permutation group H acting on A .)

The general idea for k-parameter subsets can be illustrated

‘by considering the case k =,2 . For k > 2 , only certain special

2

'k—dimensional affine subspaces correspond to k-parameter subsets, If“\

B, is.any 2-dimensional affine subspace of V then
B, = {§‘+~a§ + Rz ; 0, B € F} where x = (xl,...,xn), § = (yl,...fyn)
ang z = (zl,,..,zn) are in V and §, z are linearly independent.

Addition  and scalar multiplication are defined as usual. We will

a

now examine a specific example. This will enable us to de?;ribe the

special affine subspaces in which we are interested. Let 'F = {0,1,2}

and n =4 . Consider the ﬁollowing 2-dimensional affine subspaces

in the 4-dimensional vector space V .

P_—

2

(1) {(,1,1,1) + o(1,0,0,0) + (0,1,0,0); o, B € F}

B

2

(2) ,./ —~ .
and B, = {(1,1,2%1) + a(030,1,1) + B(1,2,2,0); o, B € FI .

« : ,>‘
N
We observe that in Bz(l), §(l) = (1,0,0,0), Eéj) = (0,1,0,0)

1 1

and yi( )Zi( ) =0 for 1 =1i=<4 whereas in Bz(z) » we have

H

§(2) (2) (2) , (2)

3 # 0 . Further,

= (0,0,1,1), z'“’ = (1,2,2,0) and vy
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~

=(2) - =(2)

although we have several choices for y °° and z °°, we always find -

that for all choices there is a value of i , 1 <=1 =4 for which

2 2 . . . .
yi( )Zi( ) # 0 . We are interested in affine subspaces which have the

property exhibited by Bz(;); i.e., affine subspaces

B2 = {x + a§ + Bz ; o,B € F} and yiéi =0, 1<i=<n. 1In such cases, -

4

we can partition the n coordinates into,three disjoint sets: the

coordinates i where z, = 0 but Y; # 0 , those where- zi‘# 0 but-

y, = 0 and those where zi'= v, = 0 . We will call these sets,

~

S., S. and S. respectively and let S, = {i ,....,in 1,

1’ 72 0 1 1

1
Sy = A3 reeerd ¥ asy=Depeiak b.oIf Vo= (Vo,eeesVy) € By
v 2 : 0
then there are only g possibilities for (vi peeniVy )., g
: 1 n
. 1
possibilities for (v, ,...,v., ) and one possibility for (Vk ;...,Vk )
1 ]nz . 1 nO

Hence B, can be formed precisely by listing the q values for each of

s and S and the one value from S0 , g times and then selecting one

1 2

value from each of the lists in all ng possible ways:

S, s

0 A 51 S,

(X yeeerX ) (yy, reeer¥yy ) (215 reeerZ )
1 n0 111 / l n2

(X, revey ) (Y reeesy ) (Z . yeeerz . )

xkl Xgno . qll qln q]l Qan
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The possibl lumns . yeeey¥Y i ), 1= 8= - ves .
possible columns (yllz, ,yqlg), 1 t = ) and i;ljm, ,ijm),

1=m E<n2* are jusfﬁthe same as the set K of permutations in the
l-dimensional case which was discussed previously.
]

~ Returning to our example, Bz(l) = {(1,1,1,1) + &(1,0,0,0)

+8(0,1,0,00; o,8 € F}, we have s = {3,4}, s, = {1} andas, = {2}.

our three lists are: - | 5
SO Sl S2
, (1L (0 (0)
(1,1 (D (1)
1Ly @ @

From this we can find the 32 elements of B29J‘which are

3

{0011,0111,1011,1100,0211,2011,1211,2111,2211}.

2-parameter sets are described in azgimilar way. For a set A
i, ° . '/ . .
and a subset KH of the permytations of ‘A , we form a 2-parameter

n R C . .
subset A as follows: First partition the set {1,...,n} into

three disjoint subsets SO'Sl'S2 with Sl and 52 non-empty. Then

write three lists

SQ Sl _ 52

(2,¢0.,b) (%, 000,x") (z,...,z')

(a,...,b) (Vreoa,y!) (Wyeue,w")
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™

~,

such thét the columns under S1 and 82 “are in KH . All t2 eléments
of the 2-parameter subset are obtained by taking one row from each list.
To obtain k-parameter subsets, we do the same thing\with

partitions into k+1 subsets SO,...,Sk.‘ For k z 2, we have seeq(thqt

these correspond to special affine subspaces of an n-dimensional vector

space over a field 'F .

'Now>we are going to defihe parameter systems. These
generalize the k-parameter sets of Graham-Rothschild which haQe just
been described; All the affine subspaces of a vector space alSo form
a parameter system whereas only certain special affine suﬁspaces
. correspond to k-parameter sets.

Let A be a finite set and F = U Fi’ where Fi is a
’ i=1

family of functions £ ’: at > a . If A is a finite field, then Fi

is the family of affine linear functions f such that
i :
,...,xi) =c+ L a.x. where c, aj €A, 1 =<3j=<1i . We fix
j=1

f(xl

A and F throughout. A subset 8§ C A" is called a t-space if there
exists J = {jl,...,jt} C [n] and for i ¥ J , functions £, €‘Ft

" so that

S = {(xseeerx )i x | i(le,...,xjt), i€ g7
b
To see clearly-what S 1looks like we will examine the twé
2-dimensional affine subspaces B (1) and B2(2? already described.

2
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w
1

() _{(1,1,1,1) + a(1,0,0,0)' + 8(0,1,0,0); o, B € F}

w
)
[

= {(1,1,1,1) + a0(0,0,1,1) + B(1,2,2,0); &, B € F}

and F = {0,1,2}.

2 2
' g N
For B (1{4* = {1,2}, f. =1+ T Ox., £, =1+ X 0x. and
2.7 3 i’ T4 . 3
L ; j:l - j=
a
: (1 - ’ 2
- Cry - ’ N = + Z -
we can write B2 as {(xl,xz,x3,x4), xl,x2‘€ F, X4 1 1 Oxj ’
5 .
X, =1+ ;Z 0x.}.
J:
For B (2) J = {3,4}, f.(x_,x,) =1+ 2%, +x,, £ (x_,x,)
2 S R 1! 37 Fgr F2¥3r%y
=1+ x_ + 2x, . Bv(2) = {(x # X.,X )1 X.,x, €F, x, =1+ 2x_+x
3 4 2 177377377477 3f74 M ‘ 3 4’
x2 =1 + x3 + 2x4}.

We call J a basis for S . J is not unigue with respect

N . - ‘ 2
to § . 1In the above example, J = {2,3} is also a basis fo; B2( )

i = = = ( = + .
w1th X, fl(x2,x3) 2 + 2x2 and X, f4(x2,x3) 1 +’2x2 XB

However, if Jl and J2 are Both bases for S8 then |J1| = |J2| =t

“and we call t the dimension of S and write dim(S) = t . . The singleton

subsets of.- A" are called O-spaces.
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For any distinct jl”'“'jt € [n], we define

n t . ) )
*> A by P. (,xllonolxn) = (x.‘ gove e X, ),'

P. . , .
Jpdgee I I It

. A
Jidgm-rdy

As order will be uﬁimportant, we write P for* pj
‘ 1

. . r
32...jtv

3

J =/(jl'°"’jt}' We call p : at - A# a projection if p =‘pJ for

n . ‘ ot ot
some J . If S CA , we write p; ¢ s - AIJl for the restriction

p: .
Ilg. N
" We say that (A,F) is Ramsey if for §114t 20, r, k there

exists n = n(t,r,k) with the following propert&. If VvV is anrh—space
and the t-spaces of V are r-coloured the;e exists a k-space W all- -

of whose t-spaces are the same colour. ot i : .-

-

"We call (A,;F) a parameter system if it satisfies .the

following six axioms. -

(Ai) Constants: For all *a € A and for all m , the constant

' . .. . . ! .
function f(xl,...,xm) =a 1is in Fm . - {A generalization (Al) is

-=

given at the end of the chapter,)

(A)) Identity: El contains the identity function f£(x) = x .

(Aé)_ Extension: If f E‘Fu and . p : A" >~ a% is a projection then
¢

f =fp€F . (B.g., If £ €F,  then £'€F

3 where f'(x,y,z) =

f(x,z).)
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&

(p,) Composition: If f_,...,f. €F , £ €F_ then f£' € F  where
4 1 s u s u :

f (xl,...,xu) ='f(fl(xl""’xu)"'fs(xlf°"'xu))'
3|

5 is

(A_) 'Basis: If s c¢c An, dim-'(S)‘= t, J C [n] and pJ‘g S +A.I

bijective then J is a basis for S .
(AG) Projection: 1f s c A" is a subspace and J € [n] then pJ(S)
. 4]

is a subspace of A" ',

Theorem 6.1l. Parameter systems are Ramsey.

of course axioms (Al) - (A6) have been chosen so that
 Theorem 6.lbwill hald. Before proving Theorem 6.1, we will gériye
soﬁe‘elementary‘corollaries of (Aljj— (AG) . Let -S be a t—spaée(
in A" and I cC [n]l. - We say that I 1is a spanning set for S if
theﬁprojection Py :-S > A|II is iﬁjective and thatl I . is independert

(for S) if the projection p; : S~ AlIl is surjective. From (AS)'

I is a basis iff it is independent and a spanning set. 3

{a)) If I is a spanning set for S there exists a basis J € I .

7
Proof. By (AG)’UPI(S) is a subspace of AII|. Since I is a

. : Il - R . . .
spanning set, then p; : s AI-I is an-injective projection and pI(S)
. ‘s A . . y t
must be a t-space. Then there is a bijective projection p : pI(S) > A .
From this it follows that ppI.:_S >at is bijective and PP = Py

for some J CI . By (AS)’ J 1is a basis for S .

(A8) If I is independent for S , there exists a basis J 2 I .

yg,_.
A
—
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‘Proof, Let J be a maximal independent set, J 2 I . By this we

J| . e
mean that EJ : S > A! l is surjective whereas for any u , u f J and

|a]+1 | 3]

J U {u} ¢ [nl, Py {y} 'S A is not surjective..If p_ : § > A

is not bijective then it is not injecﬁfﬁi and we can find x, y € S
1
\ .
with p.(x) = pj(y) for j €J but p (x) #p (y) for some u fJ -

la]|+1

Let J* = J U {u} then Py ¢ S~>aA has an image with more than

: J . . .
]Al Il elements., From (A6), the image pJ*(S), is a space, thus-it

must be all of A'Jl+l, contradicting the maximality of J . Thus

Py : s > A! ‘ is bijective and J 1is a basis for S .

¢

(Ag). If I is a basis for S , the map j is a bijection such

that it and its inverse preserve subspaces and their dimensions.

Proof, p; is bijective by definition and sends spaces into spades

by (A6). If U 'is a subspace of lAlll we may by (A4), express

1 . .
Py "(U) as a subspace of S . In both cases dimension is preserved

as cardinality is.

(Ag) says, essentially, that all n-spaces (A, F) fixed are isomorphic.

We have established that n-parameter systems have properties
which parallel those of the affine subspaces of a vector space.
To prove Theorem 6.1, we follow that same lines as that of

-Fheorem 5.1. 'Suppose dim(B) = u+l and p : B_+:Au is a surjective
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projection. Let T € B, dim(T) =t. Then p : T > Au is either

bijective or it is not. If it is, we call T transverse. (relative

to p) and T has a basis I.¢ [ul. If it is not, we call T

vertical (relative to p). In the latter casé, as p(T) is a space and

the inverse image of— x €aY unaérr PIT (i.e., p_lkx)) has at most IA‘
points (since p_l(x) € B ahd dim(B) = u+l) then p(T) must be

(t-1) -space, PIT is an lAl—totl function and T = p_l(P(T’). Now

. 1e£u x’ be a colouring of the t-spaces of B . We call B speéial

(relative to X, p) if wherever T T2 C B , both transverse t-spaces

1:
with p(Tl) = p(T2) then X(Tl) = X(T2). -

Lemma 6.1. Let t,u,r be non-negative integers and (A, F)

a parameter system. Then there exists a number m = M(t,u,r) (dependent

on (A, F) of course) such that for any r-colouring ¥ of the t-spaces of

+ . . .
A"™  there exists a (u+l)-space B special relative to ¥ - and the

. . u+m . .
projection- p : A - A‘u onto the first u coordinates.

Proof. Let v be the number of t-spaces in a u-space. We prove
Lemma 6.1 for m = HJ(lFul,rv). Let T ¢ A", dim(T) = t,

£ ,...,f €F"

. u+m
1 n . We define (T,fl,..,,fm) CA by

(T,fl,...,fm) = {(Xlr---yxurylr---rym)F (xlr--orxu) €T, yl

= £, (X yeeesX )}
1 L u

1

Let J be a basis for T , then T = {(x ,...,xu);

1

X, = .i[xj,...,xjm), k f J} where kaG Ft . It follows from (A4)
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that there are functions fi € Ft such that (T,fl,,..,fm) =

); x. = fikx. recesX. )y iAE J} and thus J

| {(Xl""’*u’xu+l""’Xu+m - 3 3,

is also a basis for (T,fl,...,fm) so it is a transverse t-space in

u+ . . “u+m
Au m. Conversely, let T' be a transverse t-space in Au . From

e —

the definition of a transverse t-space, the projection p : '+ a"
~is bijective and thus it follows from the definition of a spanning set

that [u] is a spanning set for T' . Then by (A7), T' has a basis

JC [ul. Let x €T’ ' X = (xl,...,xu,yl,...,ym). Since T' has a

basis J < [u], all y, may be written as functions £, of the basis

variables, i.e., y. = f, (%, ,...,%, ). By (A)), we can extend £,
v i i3, I .3 1

to fi' such that y, = fi(xl,...,xu) so T.= (T,fll,...,fmk). (In

general, " will not have a unique expression in this form.)

Now, the critical step, we induce a colouring
m v
X* (Fu) + [r']

4

setting X*(£, ...,£) = X*(£], ...,f ') iff for all TC at,

',.;.,fmr)). To see clearly

£y =x(z,f

dim(T) = t, X((T,f1 EETYE

1

what is happening in this induced colouring we will consider thé

following simple case. letu=3, m=2, t =0, LAI =2, r = 2, Then
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v , the number of points in A3 is '8 , X 1is a 2-colouring of the

points of 2372 and we use it to 1nduce<§ 28-colour1ng, X* of (F3) .

" Fpr all - x € A3 , X = kxl,xz,x3) and f € F3, f(x) € A. Let

fl,f2,f3,f4 € F3 , then (xl,xz,x3(fl(x),f2(x)i and

+2

f2(x);f3(xY) € A3 . Then Xx* colours (fl,fz) the same

(xl,xz,x3,

,, . 2, ) _
as (f3,f4) 1n;;(F3) iff x(xl,xz,x3,fl(x),f2(x)) =

x(xl,xz,x3,f3(x),f4(x)) for all x in A3 . Since there are 8

. . 3 U . 5 . .
points in A~ and. X 1is a 2-colouring of A" , then X* requires
at the most 28 colours. {In general, we may consider (fl'""’fm) as

. s ' + . . .
representing a lifting from a¥ to al m! inverse to the projection p .

Two liftings are coloured the same iff the images of A% are coloured
identically - identifying the images under p .)

From the definition of m (i.e., the Hales-Jewett Theorem)

. ) ) ) m . L
there is a monochromatic "line" in (Fu) . This line is of the form:-

fll'f12"°"flm

£ se..0f

fsl’ s2 sm

where each column ‘fli , ¥ =1, mis a constant or is fl , S = ]F |
-
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. , u
where lFul = ]AIIA | For convenience, we will renumber so that this

monochromatic "line" in (Fu)m varies in the first r(>0) coordinates

with constants fi , r<i=m. That is, for all T C Au , dim(T) = t,v
- i . m
x((® £, £ ""’f’fr+1""’fm))
is independent of £ € Fu . Now set
= . - < 5 < - ’ »
B {(Xl,---fxuryl,--uym): yi _Yl, 2=1icz= r, Yl fi(xll---lxu? ’
r =i =< m}.
[ -
B is the desired space. Its basis is the first u+l coordinates.
Iet T * be a transverse t—épace of B ; 'with p(T{)y: T . .Then we
’ g — . 7
may express T = (T,gl,...,gm) for some “g, € Fu . Since T CB,
| | , B

4 4
we can also express T = (T,g1,...,gl,fr+l,...,fm)ilso x(T') depends
\ only on T .

From this point on the proof of Theorem 6.1 follows
practically word for word (changiﬁg, F to A) that of Theorem\S.l.
{We note that in Corollary 3.1 the set w-l(L) is a k~space in Al .
In case (ii), the lifting of W, to W is accomplished by setting
W= (Wl,f) for arbitrary f.) We omit the details.,

The follo&ing result given in [ 3], somewhat strengthens

Theorem 6.1. Let ¢ #¥ ¢ € A and replace (Aﬁ by
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&2

1
F iff CEC.A
m

i , (o
(A)) Constants: The constant function f(xl"""xm) = ¢ 1is in

We call-;(A,F,c), éatisfyingr.(Ai~,A —A6) 1a parameter

system with restricted coefficients. The_’O-spaces of A" are the

N

points’x € ¢ . . T : - ' -
Theorem 6.23.. Parameter systems with reétr@cted coefficients
are Ramsey. ,_ . N

QOutline of Proof. Let an element 0 € C be specified. In A" , wWe
4

call spaces in (A, F) “spaces" and spaces in (A,F,c) "restricted

spaces. If S “is a t-Space we define Rest(S), the restriction of S

L

;to be that restricted t-space given by changing all coerdinates which

are equal to a f C. to the.constant 0 . Now we assume that t=a0,

1

r, k, n satisfy the Ramsey property for (A, F) and consider-an

-

. , . n . .
r-colouring of the restricted t-spaces of A" . We induce a colouring

of éll t-spaces, giving . S the colour of "Rest(S) . By Theorém_6.1,

there exists a k~space W all of whose t-spaces have the same inddced;{

colour. Wl = Rest(W) is a restricted k-space all of whose restricted

t-spaces have the same colour.

v

¥

e

.

‘When A is a finite field, F the 'set of all linear functions ~~

(without constant term) and c = {O}}aTﬁeorem 6.2 gives Ramsey's Theorem "

for vector spaces. . i

Theorem 6.3. n-parameter sets are Ramsey.

Proof. This follows automatically from TheoremA6.2 since an n-pafémete:'

I oo R il . .
set is parameter system, (A} F) where F = U Fi where. Fi is.a -
- ‘ i=1 Tt

-faqily'of constant fﬁnétions T :at >a . i;e.} f ¢ Fi' f(#l,;..,xi)

= 4 €.Aa. Appendix C. lists several corollaries of Theorem 6.3.
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Having produced two examples'of,pérametgirsystems, it is
3 ) R L0 . . ¢ \ . AN

natural to wonder  if there are any more., This may prove a fruitful

area of research for further analogues of Ramsey's Theorem although

it should be noted that axioms (Al-AG) require (&, F) to have quite

; A . t . P
a lot of structure. , o ‘
‘ "
* Ll
N ; %
. )
&
; 5
“ “
5
Y
b
y o
> g; -
\ »
N
. 7
| ak {
B3
° 11
. ‘ .
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Appendix A

In this appendix, we take a closer look at the parallel
. .
combinatorial lines LO',Ll';...,Lu' in” Fm . Let IFI =q , the a

combinatorial line in Fm consists of g m-tuples and will be of the

form:-

a7

where ai’bi ess are fixed elements in F and xj, j =1, g runs

through the elements of F . Li' has n (1 £ n = m) "moving" columns
and (m~-n) "constant" columns. As shown above, the "moving" columns all
move in unison-through the elements of F ..
' . - a ) 1
If Fk is parallel to Li , .then Lk has the same n
"moving" columns as Lif and Lk' has (m-n) Yconstant" columns, at

least one of which will differ from the corresponding "constant" column

of Li| . For example, suppose Li' is.given as above, then:-~
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columns

=
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. . . -
o - + . .
. ., . .

k k J

further that the "a" and "b" columns are the only constant

in Lk' and ~Li‘ , then either a, # a,_ or bk # bi {(or both) .

k
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- ~Appendix B

Let F =2, = {0,1,2}, u=1, m=2. Let LO' = {(x,1); x € F}
and Ll' = {(y,2); y € F}. Figure B.1l illustrates these lines.

270 ¢—— 0 Ll'

1 s ® L
° 2

“
0 .
0 ik
.
Figure B.1
. 7= Fl = {0,1,2} and so EO = (0) and él = (1). Then we
®

have Ly = {(0,x,1); x € F} and L, = {(1,y,2); v € F}. We observe fhat_
. Sy

LO\ and Ll' are lines in 2~dimensional space whereas LO and Ll are

lines in 3-dimensional space. Figure'B.Z shows, the linesLO and le in

1

3 i . . .
F . It can be seen that LO and Ll are vertical lines in F
L <
1 ’ .-
[
, % ) r )
Z Figure B.2
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To obtain B, the 2-space generated by L0 and L, we

find L, , the line through the origin of which LO and Ll are

translates. L, = {(0,0,0), (0,1,0), (0,2,0)} and L, =1L, + (0,0,1),

1

L, =L, + (1,0,2).. Next we choose any two vectors §i' §i € Li’ i=0,1

say (0,0,l)ﬁ and (1,0,2) and use them to generate the l-space
Y = {(Olgll) I. (1,0,2), (210;0)} = v0v+>(rololl) or VO + (1,0,2) where

v, = {(0,0,00, (1,0,1), (2,0,2)}. Then B =1, + Y= {(0,0,1), (0,1,1),

(01211)1 (1,0,2), (lrlrz)r (11212)1 (2,0,0), (21112)5 (2,212)}. ‘ »
J ~ , - N . .
B = V2 + (0,0,l) where ‘V2 = {(0,0,0> ’ (01110) ’ (701210) ’ clloll) ’

(1,1,1), (1,2,1), (2,0,2), (2,1,2), (2,2,2)}, a 2-dimensional vector

space. Figure B.3 illustrates B. We observe that in the Figure, B -

appears to be 3-dimensional; however by definition dim(B) = dim(V2) = 2,

L

—
[ RPN TIETORN pet——
L
[uer}

Figure B.3

J
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B consists of the lfnes‘ L

07 Li‘ and L2 . We observe that

Li, i =0,2 are vertical spaces of B and that any transverse l-sgpace
T in B would contain a vector from each Li ;1 =0,2, Since T is
"a l-space, i.e., a l-dimensional affine space it is generated by two

vectors. In fact, T can be generated by any two of the three vectors

. - 41 ~
of T . Thus, it follows that T is generated by {yi}o Y € L, .

O

=
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‘Appendix € .

" Corollaries of Theorem 6.3.

Corollary 6.1, Given integers £ and r , there exists an

integer N(£,r) such that if A is a finite set with lAl z N(£,r) and

the subsets of A are r-coloured, then there exist ¢ disjoint non-

« J '
empty subsets Al""’A8 of A such that all 2 -1 unions
Ua, ¢#J3¢c {1,2,...,2} have one colour.
j€J
Corollary 6.2. Given positive integers ¢ and r , there

exists an integer N(£,r) such that if n > N(£,r) and the positive

integers = n afé r~coloured then there exist ¢ -integers al,...,ag
2

such that all the sums {E €,a;5 € = 0 or 1, not all'Ei = 0} have
1

one colour.

Corollary 6.3. Given integers <£,r, there exists an integer

N(f,r) such that if G is any group with |G! > N(2,r) and if the

elements of G are r—coloured; then there exist £ elements

al,...,a8 in G such that all the products ai,...,ai have one
- 3
colour for all j = 1 and all choices of distinct il,...,ij in

“

{1,2,...,23.

Corollary 6.4. Let L = Li(xl,...,xm), 1=<i=<h, be a systenm

of homogeneous linear equations with real coefficients with the property,
that for each 3 , 1 = j < m, there exists a solution (El,...,em) tof
- ' ',/ '

the system L[ with e, = 0 or 1 and Ej = 1. ‘Then given an intgéer
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2.

A -

'r there exists an integer N(r) such that if n > N(r) and the

positive integers < n are r-coloured, then L -can be solved with

integers having one colour.
et C = {(x.,.0.,x); X, =0 or 1} be the set of 2"
n 1 n 1 o

vertices of a unit n-cube in R . Let us call a subset Qk E_Cn a

k-subspace of Cn if IQkI = Zk and Qk is contained in some
k-dimensional euclidean subspace of R" .

‘Corollary 6.5. Given integers k,%,r, there exists an

integer N(k,£,r) such that if n = N(k,2,r) and the k-subspaces -

of Cn are r-coloured, then there exists an ¢-subspace of Cnﬁ all

of whose k-subspaces have one colour.

van der Waerden's Theorem (Theorem 1.1), and Ramsey's

Theorem (Theorem 1.3) can also be proved as corollaries of Theorem 6.3.
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