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ABSTRACT

‘A group T of homeomorphisms of a topological space X is said

to act discontinuously on X (or to be a discontinuous group of X)
’ F)

if for any two points x and y of X there are neighbourhoods»vxvof b
and Yy of y such that there are only finitely many elements Y of T
for which Y(Vx) and Vy\intersect. .

In Chapter 1 we discuss discontinuous groups I' ingeneral
: P> :

.and later restrict our. attention to~discontinuous groups acting

on a surface S. The local action of T on S is closely related to

groups of isometries of the unit disc. Among the most important

- of the many examples of discontinuous groups are (a) finite homeo-

morphism groups (b) discontinusus groups of Mébius transformations

(c) translations, reflected translations, contractions and reflected

'confractionsvof the euclidean plane.

In Chapter 2 we show thatvforwahy d;chntipuous grqup T of a
surface S there is a f—iﬁVariant triangulation of S. For this con-
istruction knowledge of the local action of the group-is of basic

importance .
In Chapter 3 we introduce: the notions of abstract pSTyQSdron,

isomorphism between polyhedra, boundaries, one and two-sidedness

of cycles and 2-infinite paths as a combinatorial description of /

a topological polyhedron introduced in Chaptervl and as a means of
investigating discontinuousfgroups. "It is shown that a two-sided
path or cycle partitions a polyhedron into two parts. One-sidedness

of paths in planar polyhedra can be characterized in terms of Sepa—

(iid)



ratiqn by a cyclei Moreover, it is shown that isomorphisms preserve’
boundaries and the separation properties of cycles and paths.

In Chapter 4 the concepts developeé in Chapter 3 are applied to
investigate grouﬁs T of automorphisms of polyhedra. 1In theyfirst |
section we investigate the set of fixed vertices and edges of T,
especially if the polyhedron is planar. The second deals with the
twotypesof dutomorphisms of infinite order of a planar polyhedron,
yet the methods used also apply to orientation pfeserving'automor—
phisms of fiAite order. If Clis/pf type 1, then there is an a—invaf-
iant, pairwise disjoint collection fCi |ie€Z}of B-invariant (B =a or
B :az) 2-infinite and two—sided paths partitioning the polyhedron.

If & is of type 2, then there is a disjoint and @-invariant collection
{Ci | i €Z} of "concentric" cycles on which o acts transitively.

Thus, if amis of 'type 1, it can appropriately be described as a
tygnslation or reflected translation and if it is of type 2, as a

\

' 1
contraction or reflected contraction. The finite order orientation

—

preserving automorphisms. can be appropriately fiamed rotations (see-
/
Theorems 4.1.14 and 4.2.20). In the third section we state some

known theorems about groups/F of automorphisms of special planar in-

finite polyhedra for which there is a finite set of béundaries re-
presenting each T'-orbit.

In Chapter 5 weestablish the link between the topological
and algebraic con;;pts of polyhedron;%nd discontinuous groups and
the combinatorial concept of polyhedron and automophism éroups.

4

There is a 1-1 correspondence (up to topological equivalencej-between

- (iv)
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discontinuous homeomorphism groups acting on surfaces and groups‘of
automorphisms og abstract polyhedra. This allows us to étudy (in Chap-
ter 4) algebraic ‘and other properties of discontinuous groups‘witﬁout
referring -to the undeflying topologicél space. In fact, theSe Eroperties
only depend on the combinatorial perertieE of the surface. We finally
topolbgicallyhcharacterize (that is, give a picture of)_origntation
preserving elements of finite order and elements of infinite grder in
discontinuous homeomorphism groups of planar ‘surfaces by showing that
they‘are topologically eduivalent to certain types df elementary map-
pings of the sphere or euclidean plane. We also characterize diécon~,
tinuous homeomorphism groups I' of the euclidean plane Qith bompact
fundameﬁtal domain(that is, for which there is a compact set whose
I'-images, cover the plané), by showing that they are topologically
equivalent to groups of isometries of the euclidean or non—eucli@ean

plane.
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CHAPTER 1. DISCONT&NUOUS HOMEOMORPHISM GROUPS
s ; //

A family (Ailie I) of subsets éf a topological space k”fg/;ocally
finite if every point of X has a neighbourhood which meets Ai for oply ,
finitely many i e I. Based on this concept it is natural to define
"discontinuity" of the action of a group on the sbacg:XQ A group T
acting on X is said to act discontinuously on X if any two points
x and y of X have,neighbourhoodé Vx‘and Vy such that Y(Vx) and Vy are
disjoint except for finitely many ¥y el'. This concept of discontinuity
generalizes the concept of finite groups T and the concept of discon-
tEEiityvfor Moebius transformations (see Section 3, Example 1.3.4)
which Has been studied extensively (see [111, [171, [24], etc.).

Section 1 of this chapter contains an overall introduction to this

\ i

thesis and in Section 2 we\givé some of the basic definitions used

throughout Chapter 1 and 2. In Section .3 we give some examples of
discontinuous groups, mostly restricted to discontinuous homeomorph;sm
groups acting on surfaces. In Section 4 we investigate the basic
properties of local finiteness and of X-graphs frequently useqwin
later sections. |

In Section 5 we study general properti?s of discontinuous groups
on arbitrary spaces. Any group ' acting on the topological space X’
may be assigned a topology expressing the fact that with "little:
modification" of veT the'valuegjof Y will be displaced oniy a "little

bit". We show that with the topology usually considered any discon-

tinuous homeomorphism group acting on a locally compact Hausdorff space



has the discrete topology (see THeorem 1.5.1). This fact is very
useful when working with groups which parameterized, for example,
groups of Moebius transformations. In Proposition 1.5.2 we show that
a discontinuous group T of isometries of a metric space X is character-
ized by the property that for any x ¢ X the family ({Y(x)}ly’ef) is
locally finite. This shows that groups of isometries of the euclidean
plane or non-euclidean plane which are discontinuous in the usual way
are discontinuous in the sensé defined by us. Another observation
about discontinuous groups is that the size of a group depends on
the size of the space, that is, the size of the smallest cover by
compact sets. Thus in particular every discontinuous group f of a
compact space is finite and if the space has_a countable cover by

BRSNS
bounded sets, T' is countable. Another nice prépenty of didéontinuity
is its topological invariance and the fact that any restricéion of
the group to invariant subspaces is again discontinuous. Moreover,
subgroups of discontinuous groups are discontinuous.

In Sécﬁion 6 we finally discuss the local action of discontinuous
groups of surfaces. Here the most important observation is Theofem
1.6.3 which says that given any discontinuous homeomorphism group T
acting on the surface S-i?d any x ¢ S, x has a neighbourhood base con-
sisting of discs (homeomofbhic images of the unit disc in Rz):with the
property that y(V) and V are disjdint for all vy in T which are not
in the stabilize? of V. Thus to understand the local action we have to

consider finite homeomorphism groups acting on discs and we know these

groups very well (see Theorem 1.6.4).
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§1. INTRODUCTION

.Q This thesis was motivated on the one hand by tﬁe problem (posed
to me by Dr. W. Imrich) of describing homeomorphism groups 6f infinite
order of the euclidean plane E which induce automorphlsms of infinite
order on a plane graph whose vertex-set and edge set are locally
finite in E. On the other hand, it was motivated by a paper [3] of
Babai, Imrich and Lovasz on finite homeomqrphism groups of the 2-sphere;
in connection with some investigations of automorphisms of a finite
planar graph. It is well known that any finite 3-connected planar
graph G can be embedded into the 2-sphere 82 in sucﬁ a way that all
automorphigﬁs ?f G are induced by congruences of 82 (see [3, p. 62,
Corollaryl). Thus the finite groups of congruences of 82 (which are
well understood) are used to ”visualize"<the action of automorphiém
groups'gf finife plana » 3-connected graphs. Vice versa, given any
finite.homeomorphism group I of Sz, there is a 3-connected finite
graph embédded in 82 which is invariant under the action of T (see [3,
Corollary, p. 671). This fact is used in [3] to prove that T is

2

topologically equivalent to a group of congruences of S”. The

construction of the above mentioned graph [3, p. 671 is possible

by the following property of T': For any two points Xx and y of S = 82
there are ''small" neighbourhoods VX and VY such that Y(Vx) and Vy
meet for only finitely many‘y'erh Let this proﬁerty define the

discontinuity of a group of bijections of a topological space.

Discontinuity thus seems to be an important notion for the following



reasons. Firstly, it is of purely topologicai nature; seqondly, it -
generalizes)the well known and thoroughly investigated notion of
discontinuity (as defined by Ford [11]) for Moebius transformations,
as shown in Example 1.3.4; thirdly, there is topologically no distinc-
tion between ?ertain éiscontinuous groups of Moebius transformations
and discontin&bus homeomorphism groups of the euclidean plane (see
Theoreﬁ 5.4.1) and these groups therefore are isdmorphic and_can
explic;£1y be described in terms of generators aﬁd relations (see
Theofem 4.3.5). |
We shall restrict our attention almost exclusively to discon-
tinuous homeomorphism groups I of planar surfaces S. We try to
"visualize' the action of
(1) elements of T of infinite order (see Theorem 5.3.1),
(2) orientation preserving elements of T of finite order
(see Theorem 5.3.1) and
(3) T, if T acts on the euclidean plane E and has compact
fundamental domain, that is, there is. a bounded set, all

of whose images cover E. (See Theorem 5.4.1)

The ‘most important step towards this goal is the Triangulati%gf
Theorem:L 1f T is a discontinuous homeoﬁorphism group acting on a
surface S then there is a triangulation of S, called a 3-polyhedron,
which is in&ariant under T. ‘

This makes it possible to discard any topology from the study

of discontinuous groups and instead deal with automorphism groups

of abstract polyhedra.
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§2. DEFINITIONS  AND NOTATION™

. )

We shall use here the terminoiog}'of topology commonly used in any
standard text, for example, byAWillard [271. However we shall give a
few definitions which will be used frequently throughout and are not in
common usage.

A topoZogicaZ space shall be denoted by (X,T), where X is the
underlying set and T is the topology.‘ The notatioﬁ for a metric space
will be (X,d), Qhere.X is the underlying set and d is the metric.

When not necessary we shall not mention the topology T (respectively,
metric d) and simply refer to X as the topological space (respectively,
metric space). |

We shall write A for the closure of A,‘Ao for the inte;ior of A
and fr(A) for the frontier of A. The r-dise about x, {Zede(z,x)<r},
shall be depoted by Vx,r' A subset A of the topological space X is .
bounded if A is compact. rX is locally compact if every point in X
has a neighbourhood base consisting of bounded (or compact) sets.

A collection {AilieI} of subsets of X is locally finite if every xeX
has a neighbourhood meeting only finitely many Ai's. A family (AilieI)
of subsets of X is zocally finite if for eachgxeX there is a neighbour-
hood U of x such that {ieIIAinU t ¢} is finite. A subset Z of X is
locally finite if {{z}|zeZ} is locally finite. Two subsets A and B of
X are compatible if AnB is locally finite and the two families (Ailieli
and (BjijeJ) of subsets of X are compatible if Ay is compatible with Bj
for any iel and any jeJ. (AilieI) is compatible if (AilieI) is com-

patible with (AilieI).
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6.

-,

A subspdce D of X is called aﬁ n-disc- (an open n-dise) in X if it
is homeomorphic toﬁtﬁé‘blosed (open) unit disc in R". (By the closed

unit disc in R™ we mean {xeRnle|51} and by the open unit disc in R" we

mean {xeRnllxl<1}.) Its boundary is denoted as 3D. A simple closed

curve in X is a subspace homeomorphic to the unit circle. An gre in X

is a subspace homeomorphic to the closed unit interval [0,1].

- Similarly, we define an open (half’open) are in X to be a‘subspacé

homeomorphic to (0,1) ([0,1)). Whenever it is desirable,to indicate

] for an arc

the egg points of an arc we shall use the notation ey
- X . ’

respectively, e or e

with énd oints xvan& 'aj ‘ B
p 4 '(x’y) °(X,)’:| [X,}’)

for e[x’y]—{x,x}, respectively, e[x,y]—{X} or e[x’y]_{y}. ;Sometlmes
we shall denote the set of end points {x,y} of ®lx.y] by de.
I f ....... 7 ) > - -
e[X,Y1] ? ’e[x,yn]’ where nz1, are arcs in X then
u{e[x, .311515n} is called a(n) (n;)géar in X if e(x:yi]ne(xiyj] - ?,

for i ¥ j and 1<i,j<n.

An n—manffbld Mis a coﬁnqcted Hausd;rff space in which every point

i .

has an open neighbourhood whicﬂqis an open n-disc. Every n-manifold is
logally compact and each of its points has a neighbourhood base con-
sisting of n-discs. If M is second countable then by Urysohn's
metrization theorem [27] M is metrizable. A surface is a second
éountablé 2-manifold. The letter S without subscripts shall be used'
exclusively to denote a surface. We note that each point of a surféce
S has a neighbourhood base consisting of discs. A surface is planar

if it is homepmorphic to an open subset of the unit sphere s%=
A

{xeRsllx[ = 1}. We shall not prove either of the next two results

e



about surfaces. A complete classification of all surfaces has been

given'by I. Richards [23].

[

THEOREM 1.2.1. Every surface S is homeomorphic to a surface
formed from a sphere O by first removing a closed totally disconmnected
set X from O , then removing the interiors of a finite or infinite

sequence Dl’ D2,.

.« Of nonoverlapping dises in 0-X, and finally
suttably identifying the boundaries of these discs in pairs. It

may be necessary to identify the boundary of one disc with itself

to produce an odd '"crosscap”. The sequence Dys Dy "approaches X'
in the sense that, for any open set U in O containing X , all but a

finite wumber of the Di's are contained in U.

Another interesting theorem [20] about surfaces is now stated.

THEOREM 1.2.2. Every noncompact surfage is homeomorphic

to a subset of R3.

A graph G is a triple (V,E,i), where V and E are disjoint sets
and i is a mapping from E into [V]z, where [V]2 denotes the set of
all subsets of V with two elements. Thé set V is called the vertex-
set of G, also denoted by V(G), and E is the edge-set of G, denoted by

1
E(G). The mapping i describes the incidence between vertices and



and edges. We shall use the graph theoreticalrterminology.of standard
texts in graph theory, such as, Bondy and Murty L 51, Behzad, Chartrand
and Lesniak-Foster [ 4] or Harary [13]. However, we shall give a few

definitions which are not in common usage.

&

Let X be a Hz#ésdorff space and G = (V,E,i) be a graph.
G is called an X -graph, if -
(1) VeX,
(2) E is a collection of arcs in X,
(3) i{e) = de for all eeE,
(4) (eg-i(e))n(e,-ile))) = 0, if'el, e,cE and e } eé,
(5) u{e-i(e)leeE}nV = ¢, and

(6) VUE is locally finite in X.

U{eieEE}UV is called the point set of G and will be denoted ps(G).
Note ihat every object in VUE is closed in X, since X is a Hausdorff
space. We shall be concerned most of the time with the case where

X = S is a surface. Each component of S-ps(G) is called a domain or
region of G (in S) and its closure is called a face of G. Let F(S,6)
be the collection of all faces of G. The subgraph of G whose point set
is the (topological) boundary of the region C is called the boundary of
the face C. A face F of G is a polygon if F is\a disc and its bound-
ary is a cycle in G; its edges and vertices are th; edges and vertices
of the polygon. An n-gon is a polygon with n edges. A 3-gon shall be
called a triangle.

An S-graph G is a triangulation of S if

(1) every face of G is a triangle and



9.'c

(2) any two faces have empty intersection or exactly one common ‘
vertex or one common edge.
According to Radé [22] a 2-manifold can be triangulated if ;ﬁd only if
it is a surface.

A (topological) polyhedron is a pair (S,G) consisting of a surface
S. and an S-graph G such that

(1) G is connected and

(2) every face of G is a polygon.
fhe vertices, edges and faces of (5,G) are the vertices, edges and faces
of G in S. If G triangulates S, then (S,G) is a (topological) 3-moly-
hedron or triangular polyhedron. We say (S,G) is orientable if ;?;s_
orientable (for a definition of orientability of a surface see [11]),
and planar if S is planar.

Two familie; (GilieI) and (HjijeJ) of X-graphs are compatible if
(ps(Gi)!ieI) and’(ps(HfljeJ) are compatible. (Giliel) is compapible
if (ps(GQIieI) is compatible., Similarly, we define compatibility for
collections of X-graphs. We shall show in Proposition 1.4.10 that for
any locally finite and compatible collection {GilieI} of X—gfaphs
a union V{GilieI} can be defined uniquely.

Let G = (V,E,i1) be an X-graph-and U be a locally finiteiset in X.
We shall call the X-graph H = (V',E',i') the subdivision of G by U

if V' = Vuu, E' is the collection of arcs er in ps(G) such that

x,y]
e-dec ps(G)-V', decV' and i'(e) = 3e for all ecE'. For further
explanation see Proposition 1.4.9.

If T is a group of bijections of a set X (where the group oper-

ation is composition of mappings), we say T acts on X. We shall denote

’/—"’\)
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the identity mapping on X by 1. The point xeX is a fized point of yel
if y(x) = X. We lot FY denote the set of all fixed points of‘Y; FF
denote U{Fy'Yer—{l}}, and FK = {yel'|y(X) = K} .is called the stabilézer
of K. Let AK =u{§(K)|6cA} , where Ac T, K<X. If YcX and y(Y) = ¥
for‘all Yel' then TlY = {YIYlYeT}. |

Let A = TA;]ieI} be a collection of subsets of X and let T act on' X.
We say that A is T-imvariant if for each iel and yel |, y(Ai)s A.

We éay‘A, B cX are T-equivalent or equivalent modulo T if y(A) = B -
for some yel.

Let G = (V,E,i) be an X-graph and T be a group of homeomorphisms
actingvon X. gF say G is f—invarianf, if

(1) V is TI'-invariant and

(2) E is I'-invariant.

'If G = (V,E,i) is an X-graph and y:X+Y is a homeomorphism, then
v(G) shall be‘the Y-graph with V(y(G)) = y(V), E(y(G)) = {y(e)]eeE}
and iy(é)(y(e)) = y(iG(e)), for ecE; see Proposition A1, |
It follows that G is [-invariant if and only if y(G) = G for all yeT.
The collection G = {GiiieI} of X;graphs is called F-iﬁvarianf if for
every yel and iel, y(Gi)eG.

If ¢:Sl+52 is a homeomorphism.of the surfaces S1 and 82, then we
shall call ¢ a homeomorphism of the polyhedrons (Si,Gl) and (SZ,GZ) and
write ¢:(S,,6,) >(5,,G,) in case $(G,) = G,. TIf (S;, 6)) = (5,,6,) =
(S,G) then ¢ is called a homeomorphism of (S,G). If T is a group of

homeomorphisms of the polyhedron-(S;G) then we shall say that (S,G)

is T-invariant.
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Let Gi be Xijgraphs; 1<i<2, and let ;:X1+X2 be a homeomorphism’

2 Then Y induces an isomorphism Y:G1—>G2 given by

Y(x) = Y(x) for all XEV(Gi)UE(Gl) and ¥ is called the induced iso-

morphism. Noté that if T is a group of homeomorphisms of the topological
space X leaving the X-graph G invariant, then the homo morphism
@:f+Aut(G) assigning to each §ef the induced automorphism ?(;)eAut(G)
is called the canonical homomorphism from T into Aut (G). We call @(F)
the induced group of automorphisms.

Let T, act on the topological space X;, 1<i<2. Then I'y and T,
are called topolpgically equivalent if there is a homeomorphism ¢:X1+X2
such that'rz - ¢F1¢—1 = {¢Y¢-1,Y€F1}.

» v

Given a group I acting on the topological space X, we say [' acts
discontinuously on X if for any x,ye X there are neighbourhoods U of x
and V of y such thaf {yeT|y(U)nV = ¢} is finite. We shall call T a
discontinuous group on X. We see withouf difficulty-that subgroups of

discontinuous groups are discontinuous.
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§3. SOME EXAMPLES OF DISCONTINUOUS GROUPS

We recall that by Proposition 1.5.7 it suffices to study dis-
continuous groups on one Specimeﬁ of each class of homeomorphic spaces.
Q

We shall restrict ourselves exclusively to examples of discontinuous

groups acting on surfaces.

EXAMPLE 1.3.1. Every -finite group acting on a topological space
is discontinuous, and conVerseiy, by Proposition 1.5.3 any disconf
tinuous group acting on a compact space 'is finite. Thu§ for compact
spaces the diséontiﬁuous groups are exactly the finite groups.

The finite groups_of hoﬁeomorphisms of the sphere (and therefore
as well the euclidean plane) are topologically well characterized by

the following theorem [ 3 ].

THEOREM 1.3.2. Each finite group of homeomorphisms of the sphere
is topologically equivalent to a finite group of congruences (that is,‘
igsometries) of the sphere. That is, to a subgroup-of the group of

congruences of a regular polyhedron or a regular prism.

This was found by Kerékjarté [15] in 1919. He in turn pointed out
that this.also follows from a result of Brower [ 6] .

We are not aware of what is known if anything about finite homéo-
morphism groups of compact nonplanar surfaces, for example, the torus

or the projective plane.
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| EXAMPLE 1.3.3. For eacﬂ real number § let Ps 1 5%> 5% be the
?otation of the sphere 82 given by pé(xl,xz;xs) = (ylfyz,ys) where
Y1 and‘y2 are the real, respectively imaginary, part of ('le;rixz)e'i
and Xg < Y3 for all (xl,xz,xs) eSz. ,Moreover,‘let a ;‘(1,0) and
s = 1/2 and let x = (xl;—xz) for every x = (xl,xz) ER?. We define
the homeomorphisms T,T,0,0 of R by setting T(X) = x+a, T(x) = X +a,
o(x) = sx and 5(x) = sx. The mappings 7,7.0 and O are ;alled
translafi&n,_gleitreflection; contraction and reflected contraction,
respectively. Let M = {0.,0,T.T}. |

| We note that Pg has finite order if an& only if Gvis a rational
multiple of m. 1In fact, if Ps has infinite order, then A5:<pa>
doesn't act discontinuously on any paeinvariant subspacé of 52 since
the A-orbit of any point x ESZ is dense on the circle of 82 containing
it. | | / |

We shall now give four Simple but impdrtént examples of discon-

tinuous groups.  It-is easy to see that the;gréups <t> and‘<}> act
discontinuously-oﬁ‘Rzlwhereas the groups <o> and <o> don'%‘since the
origin is a fixed point for 0 and 0. Yet <OlS> and <5|S> s where
S = Rz-g{(0,0)}, act aiscontinﬁgusly on‘S. The mappings T,7T,0,0
wefen?t_éﬁésen as random exaﬁples but they turn out to be.the-only
types of elements of infinite order in any discontinuous homeomorphism
group of a pianar surface S as will be shown in Theorem 5,3;1.

Similarly, pé is the only type of orientation preserving elements

of finite order as is well known if S is the sphere 82 (see [.7 ] and

—

L1611 ). - RN
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EXAMPLE 1.3.4. Let us be given a group I' of Mobius transformations,
that is, mappings Y:z > (az +b)/(cz +d) of the extended complex plane
C =Cu{=}. (See [11], [18] and [24].) The group I' is called properly
discontingous by Ford [11,p. 35] if there is a point'ioéia and a

neighbourhood U ¢f Z, such that all elements of I', except the identity

rmany Y € '. A non-limit point is called an ordinary point.

is a well known fact that the set. O of ordinary points of T

a I'-invariant oﬁen set in 6 whose boundary consists of the set L of
limit pointé of T'. A fundamental region R of T' is an open subset of O
no two of whose points are I'-equivalent (or equivalently, Y(R) n§(R) = ¢
if y #48) and so that any neighbourhood of any point on the Boundary Qf R
contains points from outside R which are T-equivalent to éoints of R
(see [11, p. 37]1). A description of a fundamental region R of a properly
diséontinuous group -T' is given in [11, p. 44 ]. From the discussion of
the boundary of R [11, p. 4717, it follows that T acts discéntinuously

in O in the sense defined in this thesis. 1In order to get some féeling
for what O looks like we note that the images of- the région R under T
form a set of regions which extend into the neighbourhood of every point
in C (see [11, Theorem 6, p. 44]1). More precisely, any compact set A :
not containing limit points of the group T is "covered" by a finite
huﬁber of theée regions (images of R) which fit together without

lacunae ([11, Theorem 8, p. 46]1). Moreover, within any neighbourhood

of a2 limit point of the group, there are an infinite number of images
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J%f R [ 11, Theorem 9, p. 461. It is noted here that the construction
of R and the proof.of its properties cannot be accomplished with purely
topological means but uses analytical methods.

The complex analyticai theory of discontinuous groupé of Mobius
transformations is too voluminous to be described here -in a few words
and we therefore refer to [11], [17] and [24 Jfor reference. Moreover,
it is beyond the scope‘of our purely topological study.

For réasons of Theorem 5.4.1 we shall now consider a special case
of discontinuous groups of Mobius tramsformations. It is well known
that the most general conformal mappings of C which fix the open unit
disc D, = {z €C | |z| <1} can be written as z -+ (az +b)/(bz +a) and
z + (az +b)/(bz +a), where aé;—bE = 1. The first is orientation pre-
serving, the second orientation reversing. Moreover, (see [24,

p. 16 £f1) D0 can be given a metric that induces a geometry which is
known as the Poincar€ model of plane.non-euclidean geometry. Moreover,
the-set of isometries witﬁ resﬁ;ct to this metric turns out to be
precisely the mappings mentioned above, restricted to D,-

Let us denote DO with this metric aé NE. 1In [24; p. 301 a group r

of isometries éf NE is defined as acting discontinuously on NE if

for any x eNE the family (Y(x) IY'EP) is (in our terminology) locally
finite in NE. Thus by Proposition 1.5.2 such groups act discontinuously
on NE inithe way we have defined.

Similarly, a group ' of isometries of the euclidean plane E is
usually said to act discontinuously on E [24] if (y(x) Iy'eP) is locally
finite in E for all x €E and thus by Proposition 1.5.2 is discontinuous

in our sense.
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8§4. SOME PRELIMINARY OBSERVATIONS ABOUT X-GRAPHS

The proofs of the Propositions 1.4.1 up to 1.4.4 are straightfor-

ward and are therefore omitted.

PROPOSITION 1.4.1. Let ¢:X>Y be a homeomorphism between the
topological spaces X and Y . The family (AilieI) of subsets of X

is locally finite in Xif and only if (¢(Ai)lieI) is locally finite in Y.

Proposition 1.4.1 gives the justification for the definition of

Y(G), where G is an X—graph and vy is a homeomorphism of X.

PROPOSITION 1.4.2. Let X and Y be topological spaces and let
f:X>Y be a mapping. Moreover, let {AilieI} be a locally finite
collection of closed subsets of X so that U{Ailiel} = X. Then

f s contimuous if and only if fIA 18 continuous for every i el.
i

PROPOSITION 1.4.3. Let X bg a topological space and Y be a
subspace of X . |
(1) If the family (A, liel) is locally finite in X , then
, (AinYIieI) 18 locally finite in Y .
(2) If Y is closed in X and (AilieI)his ZocaZZy‘finite inyY,

then (Ai[ieI) 18 locally finite in X .
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PROPOSITION 1.4.4. Given a topological space X and a locally

finite family (AilieI) of closed subsets of X, then U{AilieI} 18 closed.

COROLLARY 1.4.5. (Given an X-graph G = (V,E,i), then ps(G)

18 closed in X.

Proof. Now ps(G) = u{elecE}uV and VUE is a locally finite collec-
tion of closed subsets of X. This follows because X is Hausdorff so
that every compact subset is closed in X. 1In particular, every edge

of G is closed in X. Thus by Proposition 1.4.4 ps(G) is closed in X. [J

PROPOSITION 1.4.6. Let X be a locally éompact space. The
family (Ailiél)'of subsets of X is locally finite if and only if

{ieIlAinB $ ¢} is finite for every bounded subset B of X .

Proof. To prove necessity, assume (AilieI) is locally finite
in X and let B be a bounded subset of X. Then C = c1(B) is compact;
thus it has-a covering by finitely many (open) sets each of which meets
Ai for only finitely many iel. Thus {ieIIBnAi + ¢} is finite.
To prove sufficiency observe that at each point of X the bounded

neighbourhoods form a neighbourhood base. O

The Propositions 1.4.1, 1.4.3, 1.,4.4 and 1.4.6 also hold for

collections {AilieI}.
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COROLLARY 1.4.7. Every S-graph is countable and each one of its

vertices has finite degree.

Proof. This immediately follows from Theorem 2.1.1 and Proposition

1.4.6. O

The next Proposition expresses the natural relationship between

connectedness in X-graphs and arcwise connectedness of their point sets.

PROPOSITION 1.4.8. Let G be an X-graph. Then H is a component of

G if and only if ps(H) is an (arc)component of ps(G).

- Proof. Every arc in ps(G) joining fwo vertices of G is the point
sef of a path in G joining the saﬁe two vertices. Thus fof s, te V(G)u
E(G) , s and t belgng to the same component of G if and only if there
is a path or cjcle containing them, and thelatter is the case if and
only if there is an arc or simple closed curve in ps(G) which contains
them. Thus s and t belong to the same component of G if and only if
they are in the same arccomponent of ps(G). Thus H is a component

of G if and only if ps(H) is an arccomponent of ps(G).

The following proposition gives a local, picture of an S-graph.

Henceforth, whenever we use the word disc it shall refer to a 2-disc.
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PROPOSITION 1.4.9. Given an S-grqgﬁ G and a point veps(G),
there is a dise D such that veD® and either Dnps(G) = {v} or Dnps(G)

18 an n-star Y = e[ ]U... Ue[

1 v,xn]

‘ ;fb‘X:{xr""'xn}ciﬂtUI)‘ Thus at each vertex Vv the edges incident to v

v.x with {xl} .{.,xnler(D) and
are arranged in cyelical order in exactly two opposite ways which we

shall refer to as the rotations at v induced by S.

Proof. Each point of S has a disc shaped neighbourhood and thus we

may refer to [21, p.169-1741, O

In the next proposition we shall explain the notion of a sub-
division of an X-graph. Let G = (V,E,i) be an X-graph and U be a .
1 1 ' = ' = ) =
locally finite subset of X. Let V' = VuU, E {e[x’y]Cps(G)le(x’y)nV‘ g

and x,yeV'} and i'(e) = de for ecE'.

PROPOSITION 1.4.10. H = (V',E',i') is an X-graph.

7

Proof. Clearly V' is locally finite. We observe that if eecE', then
ecacE. For any aeE, anV' is finite by Proposition 1.4.6. Thus the
number of arcs of E' in a is finite. Hence E' is locally finite since
E is locally finite. All other conditions which make (V',E',i') an

X-graph are easily verified. O

We call H the subdivision of G by U. In the next proposition we

shall explain the notion of union of X-graphs. Let G = {Gj|jeJ} be a
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locally finite and compatible collection of X-graphs. Let W =
ulps(6;)13e3}, 2 = U{ps(G;)nps(6;)]1,3ed and i § 3}, V = u{V(6;)|jeT}vz

and E = {e ce €y {E(Gj)ljeJ}, e(u,v)nV = ¢ and u,veVl}.

[u,v]'e[u,V]

PROPOSITION 1.4.11. [ILet T be a group of homeomorphiéms acting
diséontinuously on X and let G = {Gj = (Vj,Ej,ij)ljeJ} be a loecally
finite, compatible and T-imvariant collection of X-graphs. Then there
18 a T-invariant X-graph G with V(G) =V, E(G) = E, ps(G) = W and iG(e)=

de for ecE, where V,E and W are as defined above.

Proof. 1t suffices to prove the following five stétements.
(1) V is locally fiwite ,

(2) U{VjquljeJ} is locally finite ,

(3) E 'is locally finite,

(4) vufe|ecEluV = W, and

(5) For all Yvel and e€E, y(e)eE and y(V) = V..

Proof of (1). Let xeX be given.- Since {GjljeJ} is locally finite,
there is a neighbourhood O of x such that J_ = {jeles(Gj)no 1 #is

finite. Now L{lejeJo}is locally finite so that there is a neighbour-

hood Q<0 of x such that U{lejéJ}“Q = U{Vj|j€Jokﬂlis finite. Thus,

U{Vj]JEJ} is locally finite. Now U{ps(Gi)ﬂps(Gj)li,jeJo and i ¥ j} is
locally finite and hence for some neighbourhood Q'<0 of x, zZnQ' =
L%ps(Gi)ﬂps(Gj)li,jGJo andli + j}NQ' is finite. Hence Z is locally

finite so that V is locally finite.
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Proof of (2). Let x, O, Jo be as in (1). For IcJ let XI =
u{V.uE.]jeI}.»Now X.., is locally finite for every jeJ. Thus X. is
i3 {j} , Jo

locally finite and there is a neighbourhood Q<0 of x such that

{xeX |xnQ 3 P} = {xeX |xnQ 3 #} is finite. Hence X. is locally finite.
J Jo J

Proof of (3). We observe that if a,ecA =LJ{Ej[j€J} then jecV and
enacy and ane is finite. Let xeX. We shall éhow that there is a
neighbourhood O of x such that C = {ceE|cn0 4 g} is finite. A is locally
finite and thus for some neighbourhood O of x, €1s---,€ are all the
elemeﬁté of A which meet 0. Now V is locally finite so that U{einVllsigﬂ
is finite. Then C is a subcollection of the collection of arcs into
which V partitions u{eﬂlsisn}. Thus C is finite.

So far we know that VUE is locally finite and (V,E,i) is an S-graph.
It is easy to see that (4) is satisfied.

Proof of (5). First let us show that y(V) =V for YEF.' Let VQV.

If veV5 then‘y(@eY(V(Gj)) = V(Y(Gj))CV, since Y(Gj)eG. If veps(Gi)nps(Gy
for 1+ j, then y(v)ey(ps(6;)nps(G,)). = ps(¥(G;))nps (¥ (G;))<V.

Thus y(V)<V for all yel'. It follows that y(V) = V for all yeT.

Let e€E. Then for some jeJ we havé eCaeEj. Thus y(e)Cy(a)eE(y(Gj)),
decV and (e-3e)nV = @. Thus 3(y(e))<V and (y(e)-3(y(e)))nV = B.

Hence y(e)eE. 0O

We shall call the graph G the wunion of the collection G = {Gj]jEJ}
and denote it by V{Gj]jeJ}. Obviously this union operation is asso-

ciative and commutative.
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§5. SOME GENERAL OBSERVATIONS ABOUT DISCONTINUOUS GROUPS

GiQen a topological spacé X and a group T acting on X it is pos-
sible to assign a topology to I' which expresses ghe’fact tﬁat with
""little modifications" of y € T the the values of Y will be displaced
only "a little bit'". One topolog;-T which is fr%quentlf considered
for this purpose has as a subbase the collection of sets
S={{y el | y(X) < U} | X is compact and U is open in X}. It is

clear that with this topology T the subgroups of T have the induced

7
W

or subspace topology. The reason for this topology to be considered
is that for certain spaces I' of Moebius transformations (with
topology T) this topology is identical with the natural topology
associated with the parameters of T [28, p.}42]_

We shall now give a theorem describing the topology T as defined
above for discontinuous homeomorphism groups acting on a locally

compact Hausdorff space.

THEOREM 1.5.1. Let T be a discontinuous homeomorphism group
acting on a locally compact Hausdorff space X. Then
(1) for every Y € T there is a finite set A € Swith vy € A and

(g) if X - FF ¥ @, then 1 is the discrete topology on T.

Proof of (1). Lety ¢ T and x€¢ X and let U be a bounded open
set with y(x) e U. Theny e A = {8 ¢ T | 6(x)‘e U} € S, and A is

finite by Proposition 1.5.4 which will be proved shortly.
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Proof of (2). Let x ; X - FP; let vy € T and U be an open bounded
set containing Y(x). Then {8 ¢ P‘ll §(x) € U} is finite, and since
X ¢ FT and X.is Hausdorff, there exists a bounded open set V such
that A = {§ e T | 6(x) € V} = {y}. Thus {y} € S and therefore

T 5 {{y} | YeT} so that T is the discrete topology. O

Theorem 1.5.1 tells us that we cannot learn much about discontin-

uous homeomorphism groubs from the topology T. Thus we shall forget
about T and develop other methods to study these groups. In the follow-

ing-we shall give two more characterizations of discontinuous groups.

»

PROPOSITION 1.5.2. A group T of isometries of a metric space X
acts discontinuously on X <f and only if for each x e X the family

Uy} | ¥ € T) is locally finite.

Proof. “To prove the necessity assume that I' acts discontinuously

on X. Let x,z € X. Then there exist discs Vx T
)

and V
z

>

A={y el | YOV, )V $pand A ={y eT | vy(x) ¢ VZ’S}‘are

finite. Since z was arbitrary, we have that {y(x)} | vy e I} is
locally finite. '

For sufficiency, assume that for each x € X the family ({y(x)} l
Y e ') is locally finite. Let x,z € X. There is a disc VZ r such

>

that A = {yel | Y(X) € v, r} is finite. Now choose s with 0 < 2s <

s

d(z,T(x) - {z}), where d(A,B) = inf {d(a,b) | a € A, b € B}. Then

{y eT ] V, 0 Y, ) 1 g} = {y e T | Y(x) = z} c A and hence is

such that both -
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finite. (In the last equality we used the fact that T is a group of

isometries). Thus I' is discontinuous. [

PROPOSITION 1.5.3. Let T be a group of bijections acting on
a topological space X. Then:
(1) If T acts discontinuously, then for any two nonempty bounded
sets J,K c¢ X the set A.= {y eT | Xn y(@) % 8} is finite;
(2) If X is locally compact and for any two noﬁempty bounded "
sets J,K c X the set A = {y e T | Kn y(J) % B} is finite,

then T acts discontinuously.

Proof of (1). Assume I' acts discontinuously. Let J,K be bounded,
nonempty subsets of X. Without loss of generality we may assume that
J and K are compact. Fix x € J. Then for all z € K there are open
neighbourhoods Vz of x and'Uz of z such that {y € T | Y(VZ) n U% 9}
is finite. Now {Uzl z € K}is an open cover of K and because K is

compact there are z :,zn € K such that u{U, | 1 <is<n} > K.

1777 i

Also W = n {Vz_l 1<i<n} is an open neighbourhood of x and Ax =
i

{yer | y(W) nK$plel{yel | y(W)nufu, | 1<i<n} $4}c
1

u{yel | Y(VZi) n UZi £+ ¢§}. Thus A, is finite. Hence for each

x € J there is an open neighbourhood WX of x such that Ax is finite.

Since J is compact, there are points X,,...,X_ e J such that
] P 1 m

U{Wx.llsiSm} > J Now A ={yel | Y(O) n K% g} c{yel ]|
1

Y(U{'Wx.llsism} nK # Q}CU{AX,Ilsism}. Thus A is finite.
i i
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Proof of (2). Since X is locally compact, at each'point of X
the bounded neighbourhoods form a neighbourhood base. Thus from the

assumptions. in (2) it follows immediately that T is discontinuous. O

PROPOSITION 1.5.4. LetT be a group of bijeétions acting discon-
tinuously on the topological space X and let K be bounded inX. Then
(1) A ={y el | there is an x ¢ K with Y(x) = x} is finite,
(8) for every xeX the set {y el | Y(x) € X} is finite, and
(3) card(T(x)) <card(T) < kb, for ail Xxe X, where b is the
cardinality of a cover of X by bounded sets and k is some

finite cardinal.

Proof of (1). If y eI, xeK and y(x) = x, then Kny(K) % 9.
Thus A c{yel | Kn Y(K) $# #}, and the latter set is finite by
Proposition 1.5.3. i

Proof of (2). Let xeX and A ={y el | y(x) e K}. For any
Seh we have £6"L c {y eT | Kn y(K)  #}and thus card(88™}) =
card(A) is finite.

Proof of (3). Now card(T'(x)) < card(T) as shown by the mapping
Y >Y(x) which is from T onto T'(x). Let {Bi| i €I} be a cover of X
by bounded sets with card(I) = b. Then card(T) = card({yeT |
Y(x) eX}) = card(u{{y el | Y(x) eB.}|ie I))<ab, if b=a, and
< kb, where a is the smallest infinite cardinal and k is some finite

cardinal, if b<a. [
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COROLLARY 1.5.5. If T is a group of bijections acting discon-
vtinuously on a surface S, then T is finite if S is compact and

countable 1f S 1s not compact.

" Proof. By Theorem2.1.1 every noncompact surface has a countable

cover by bounded sets, and Proposition 1.5.4 establishes the result. [

COROLLARY 1.5.6. If T is group of bijections acting discon-

tinuously on a locally compact space X then the family (FY [yeT)

——
[

18 ZocaZZy finite.
Proof. This follows from Proposition 1.5.4. ]

The following three propositions are an immediate consequence

of the definitions.

PROPOSITION 1.5.7. Let Fi be groups ‘acting on the topological
spaces X;, 1<i<2. If Ty and T, are topologically equivalent,

then Fl 18 discontinuous 1f and only if F2 18 discontinuous.

PROPOSITION 1.5.8. If T acts discontinuously on the topological
space X, and Y cX is I'-invariant, then FIY,acts discontinuously on

the subspace Y of X.



27.

PROPOSITION 1.5.9. FEvery subgroup of a_digcontinuous group 18

discontinuous.
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, ‘
§6. THE LOCAL, ACTION OF DISCONTINUOUS HOMEOMORPHISM GROUPS

I3

The following .lemma is a simple consequence of Kerékjartd's
Theorem ($ee [21, p.1681). ‘We derive from it Lemma 1.6.2 which is
essential in the proof of the next theorem and of Theorem 2.1.1.

A Jordan domain is an open, connected subset of the sphere 52 whose

&

frontier is a simple closed curve. Thus the clpsure of a Jordan

domain is a disc znd its frontier is the frontier of the disc.

*
13

LEMMA 1.6.1. If any two of nz 2 simple closed curves Jiseendy

s

onthe sphere 82 have at least two common points then the components

bf'_Sz‘A“(Jl_u... uJ_) are Jordan dontains.

LEMMA 1.6.2. Let S be g surface and x €S and let T be a finite

group of homeomorphisms of Sowhich fixes x. If U,VcS are discs sugh
U -1 . . }‘1\ . ° N . Pt
that x eV and T(V)'cU , then the component of U -T(3V) which con-

tains x 1 a T-imvariant Jordan domain having a T-invariant frontier.

B

Proof. We note that x e y(V)° for all yeT. We claim that
‘ .
Then 'y§V) ¢'E(V) or vice versa. This implies that T is infinitg,

a contradiction. By Lemma 1.6.1 the domain containing x is a Jordan
- 2 . *

domain, and it is I'-invariant For I fixes x. Moreover, its frontier -

is T-invariant and contained in T'(3V). O . °

<] i NN
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THEOREM 1.6.3. Let T be a discontinuous homeomorphism group
acting on a surface S and let x €S. Then x has a neighbo@)rhood base

consisting of discs V with the property that YWY nV = @ for YeTl - I‘V.

Proof. The point x has a neighbourhood base consisting of discs
as first observed in§ 1. Let U be a disc with x eU°., The set
A={y el | Uny(@) % #}is finite. Using the Hausdorff p:;dlserty
and the continuity of vy, YeA , we can find a disc neighbourhood W of x
such that Yy (W) nW = @ for vy el -.Fx/ and v (W) cu’ for v e T'x. Since

' is finite, by Lemma 1.6.2 there is a Tx—invariant disc neighbour-

hood V of x. Moreover, VcWctf and Y(\?TV =@ for yeT —I'v. 0

A

The following theorem follows by a result of Kerékjartd [16]

and Eilenberg [ 71. For a proof we refer to [ 31].

THEOREM 1.6.4. Given a finite homeomorphism group T acting on
the dise D, then there is a homeomorphism M, of D, onto the unit dise
D ={x eR’ | |x]| <1} such that uzI'u;l 18 a group of congruences of D.
Given a homeomorphism ulof the boundary BDl of D, onto the boundary 3D
of D such that ulfuil is a group of congruences of 9D , then u, can

be chosen so that y, I u

o, '1
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COROLLARY 1.6.5. Let f'i be finite homeomorphism groups acting
on the discs Di » 1<i<2. Suppose there-is a homeomorphism
_ . 5 S .
W, :3D; +3D, s0 that ul(PllaDl)ul 'PZIBDZ’ then there is a homeomor-
phism u,: I »D, such that

~

(1) ualap =y @nd  (2) T t= T,

Proof. In view of Theorem 1.6.4 there are homeomorphisms
Ky D 37 D and )\i: oD i* 3D, 1<i<2, such that the following con-
ditions are met:

<ix<2,

1) Ay = Kilaoi’ 1

(2) Apuy =2y
(3) Ay (T YN =0, (T, ] XL, and

1t 1%, "1 2+2'9D,7"2
(4) k. Tkl = Ai are groups of congruences of D, 1<i<2,.
By (3) it follows that AIIBD = A2|8D and thus Al = Az.

~

g S, RS | =1 . -1
Thus we have KlrlKl -|<21‘2|<2 or I‘2 = K, |<11"1|<1 Ky o Taking By =Ky Ky
a1y A
we have UZIBDI = )\2 Al—ul and 1‘2—1121“1112 .0

COROLLARY 1.6.6. Let us be given two dises Dy and D, and finite

homeomorphism groups Al and Az acting on SDI , respectively, 3D2—.
) ~ . ) _ -1
If there is a 'homeomorphzsm My aol—> BDzso that Az -ulAl}Jl R
then there are finite homeomorphism groups T 1 and 1‘2 acting on Dl .
respectively , D, and a homeomorphism \ X D1—>D2 such that u 2|3D1= My
-1 ‘ _ . - '
Wl =T, and Fi‘ani‘ Ai,, 1<ic<2.

>
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Proof. Each Ai can easily be extended to a homeomorphism group Fi

acting on Di' ~The corollary now follows from Corollary 1.6.5. O

COROLLARY 1.6.7. If T 2s a finite homeomorphism gfoup acting on
the disc D1 then T either s ﬁ eyelie group of orientatfon preserving
homeomorphisms topologically equivalent to rotations of D or a dihedral
.group with a cyeclic sﬁbgroup Fo of orientation preserving elements of ‘
I' and [I‘:Fo|= 2. The orientation reversing elements of T are topolo-

gieally equivalent to reflections of D.
Proof. For a proof of this corollary we refer to [3 ,p.64]. [

We shall call the orientation preserving elements of I rotations
and the orientation reversing ones reflections. If I contains rotations

then let R, be their common fixed point.

r

COROLLARY 1.6.8. Let two discs Dys D, and a homeomorphism
¢:[)1+ D2 be givenf If v 18 a rotation of‘D1 with fized point x,
then ¢y¢—1 is a rotation of D2 with fixed point ¢(x). If vy is a
reflection of D1 with 1 as the arts of reflection, then ¢y¢—1 i8 a

reflection of 02 with axris ¢(1). JL,

Proof. This corollary immediately follows from Corollary 1.6.7. 0O °
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NOTE 1.6.9. We observe that if P= <y> in Corollary 1.6.7 consists
only of orientation preserving elements, then FF is either empty
(in case T={1 }) or aAsingleton. If T is dihedral and is génerated
by the rotation pand the reflection ¢, where p is of order n21, then

0.1 n-1 n-1
r=<p:p:'°'sp 5 0,00,..4, P o

>. Let 1 be the axis of g ; then
0'(2) is the axis for p'o, 0<i<n-1. If n>1, then p (Z) np’ (2) =. {x},
fori=2j, 0<i,j<n-1, and x is the fixed point of p. Thus FF

in this case is an n-star, if n is even and a 2n-star if n is odd.

The local action of a discontinuous homeomorphism group nearby

a point x of a surface S is summarized in the following corollary.

COROLLARY 1.6.10. Let T be a discontinuous homeomorphism
group acting on a surface S and let x €S and V be a dise neighbourhood
such that Y(V) = V for all yeT,. Then Fxlv is topologically equiv-

alent to a group af congruences of the unit disc.
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B

CHAPTER 2 . THE CONSTRUCTION OF A T-INVARIANT TRIANGULATION

In this chapter we shall prove the existence of a [-invariant
triangulation for every surface S and every discontinuous homeo-
morphism group I' acting on S; There are two possible ways of proving
this result. The first way is as follows. We consider the quotient
space S' = S/F of S modulo I'. Using Theorems 1.6.3 and 1.6.4, we
show that S' is a surface (possibly with boundaries). Now we suitably
triangulate S' by using a triangulation theorem for surfaces with
boundaries and then 1ift up the triangulation to S with the help of
the canonical projection H:S-fS/r. However, since we realized tﬁis‘way
only later .we have choosen to give our original proof. Its structure -
is essentially the samevas that of the proof of Rado's Theorem given
in [ 1]. The only new feature is the action of I'; The Theorems 1.6.3
and 1.6.4 which describe the local action of discontinuous homeo-
morphism groups are of basic importance for this proof.

. The proof is in three parts. In Theorem 2.1.1 we prove the
exi;tence of coverings of S by discs having desirable properties.
In Theorem 2.2.1 we improve those coverings by some additional
properties. Lemma 2.3.1 is a triangulation lemma which makes it

possible to triangulate any given T-invariant polyhedron (S,G).
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§1. THE PROOF OF THEOREM 2.1.1

THEOREM 2.1.1. Given a surface S with a metric d for its topology
and a group T of homeomorphisms acting discontinuously on S, then there
are finite or infinite sequences (Xn) and (Yn) of disecs with the
following properties:

)

(.'{) XnCYn for every n ;

(2) uX = 8§;

(3) (Yn) 18 locally finite;

(4) For all n we have T, =T and for YeTI -T, we have

, X, Y '
YO Y = 8
(5) (Xn) and (Yn) are T-invariant; and
(6) If S is compact, then for some given positive real number a

we have diam (Yn) <a for all n.

Proof. Given an arbitrary positive number b, by Theorem 1.6.3
theré is a collection {Dilie I} of discs in S such that Bo= {D;[ ie I}

is a base for S, diam(Di) <b for all i €I, and for all y €T “I‘D we
- i

have Di Oy(Di) = @. - S also-has a countable base. Therefore S has a
countable base Bl = {Bil i eN} such that for every B, there is some disc

DcS with diam(D) <b, Bic D, and y(D) nD .= # for yeT - Ty

LEMMA 2.1.2. Given an open subset 0 of S contained in the disc
D cS, there is a countable collection Uy of dises sueh that

(a) UiCO,
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(b) 0= uu‘i’, and

(c) G(Ui)nUi=¢for Gel“D-l“ .

Proof of Lemma 2.1.2. Let O =I‘D|D so that O is a finite group of
homeomorphisms of D. Hence there is a homeomorphism (b:D—+DO = {x eR2 |
Ix] <1} such that A =¢@¢"1 is a group of congruences of Do' We note
| that 0 <D’ and therefore ¢(0) < {x eR2 | Ix] <1} D, and FA are sepa-
rable spaces so that D0 contains a countable subset A with R, cA, A

A
dense in DO and Ar1FA dense in FA.' We can choose discs in DO with
rational radius and center in A to obtain a countable collection {Vi}
satisfying
(a') V,c6(0),
b  $(0) =uv; , and

(c*) V né(V) $ for all i and all §eA - Av

Thus, U ; < q>;kV-T/are discs in O satisfying (a), (b) and (c).
E e .
LEMMA 2.1.3. There are countable sequences (Un)nesN and (Vn)n oN

of dises in S such that
(a) B2 :{U;| n ¢ N} and B3 = {V:1’| n ¢N} are bases for S,
(b) every opén set 0cS 1<s the union of sets U; where
Uncv;cvnco,

v CZ/?:Z/dfOP YEF‘FV » Y(vn) ﬂvn""'ﬂ,and
n n. n
(d) diam(V_) <b for all neN.
. n N

(e) for all n , FU =T

Proof of Lemma 2.1.3. By Lemma 2.1.2, for every Bie B1 there is
e |
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a countable sequence (Uij} of discs such that B, = Q{U;J[ all j},
, Uijc Bi 'and Y(Uij)n Uij = f for vyel - I‘Uij. Similarly, for each U‘ij
there is a countable sequence (Uijk) of discs with Uij = yfU ijkl all k1},

u..

1jkc Uij and Y(Uijk)n Uijk =@ for vyeT -FU . We observe tha‘t

, ijk

dlamaijk), ‘sdlam(UiJ) <b for all i, j, k. Now we rearrange ?he Ule s »
- ' - 3 = X - %
in a sequence (Un) and set Vn = Uij if Un Uijk' The sequences (Un) £
and (V'n) satisfy (a), (b) and (d). We note that for all n, UnC VI'1°; 3

T c T YNy' = E ‘ - ‘ = —‘ .o
uo v Y(V2) Vo P fo? YeT T'VI,1 and Y(Un)n U p for ye T I‘Un

1 = = !
Let n be given. If I"Un 1"VT'1 » then set \J']_l Vn. If I‘Unz r

then let Yo (Un) = Un s Yl(Un),... ,Ym(Un) be all the (pairwise disjoint)

V"'
n

imagés of u, in \_/1'1° under the action of I',,. We choose m+1 pairwise
n
disjoint discs D ,...,D  such that y.(U ) cDScD. cV'°. Then
o} m j n j j n
U CYYTI'(D.‘) cV'® for all yeT and 0<j<m. T, is finite so that
n J J n _ Un _Vn

by Lemma 1.6.2 there is a FU -invariant disc D such that Y)j V) <
0

.(°)cD,cyr® <35<m. r =7
YJ(D)C 3 Vn for 0<j<m. Thus Un D

yer —T'D. Define v =D. Thus‘(Un) and "(V'nJ satisfy (a), (b), (c)

and Y(D)nD = ¢ for

and (d) as well és properties (1), (2) and (4).
We shall go on to construct séquences which also satisfy (3), (5)
. . N
and (6). Define the sequence (n,) of integers as follows.

We define n, = 1 and n,, k>1, to be the least integer such that

k’
) c I‘(U°1u.. .UU;’1 ). We observe that such an integé_-r n
-1 —

1"(U1u...UUn )

k

always exists since UIU"‘UUn is compact and (U.‘:’.L) is an open cover
' k-1 o

of 8. By Corollary 1.5.5 T is countable. Let (Yi) be an enumeration

A
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LEMMA 2.1.4. If n<n_ for some k , then PUu...vU ) =5
k-1

a?’ld the S'equences (Yi(Uj))ij and (Yi(vj))i j ) 1 Sjvs 2 properzy

n
k-1
labeled - ; -

relabeled as (Xn) and (Yn) such that Yh yi(xj) 1f.xn yi(Uj),

satisfy (1)-(5).

L]

Prooff Assume m<n . Then F(Ulu ...uUn ) < F(U;U "'UUn e

k-1 k-1
P(Ulu ...uU ). Now U,y...yU is compact and hence closed in S.
M1 1 M1

" The family (Y(Ulu ...uUn )] Yel) is a locally finite family of closed

k-1

sets. Thus P(Ulu "’UUn ) is closed in S, but it is also open in S
k-1 ‘

and hence equal to S since S is connected. The remainder of the lemma
is an obvious consequence of the choices of (Xn) and (Yn). g

LEMMA 2.1.5. If S is compact, then n n o4 for some k and (Yn)

kS
ean be choosen to satisfy (6).

Proof of Lemma 2.1.5. If S is compact, then for some 7 we have
U;u... U Uz = S so that P(Ulu "'UUZ)C P(Uiu ...UUZ) = S. Therefére
nng. for all k. It follows that nk Snk—l for some k. éurthermore,

I is finite. Each yeT is uniformly continuous and hence there is a
po;itive number ¢ such that for all y'éf, d(y(x),y(y)j <a if d(x,y) <c.
Let us choose b so that b <c in which case diam(Vn) <c for all n.

Then diam(yi(Vh)) <a for all i and n. This proves that Yn can be

choosen to satisfy (6).
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We shall now consider the case that (nk) is strictly increasing
which implies that S is not compact. We put A~1 = A0 = @ and Ak =

° ° _ . ! -
UIU T Unk » for k>1. Then Ak = Ulu AT Unk. We observe that A‘k
is compact and U{A_kl k>0}=S. By definition I‘(.l-\k) < T(AL,{)-

Given k 20, we write Fk = I‘(A.k+1) - T‘(Ak) = T'(Ak+1 -I'(Ak)). The set
Fk.is closed and [-invariant while T(Ak+2) —T(Ak_l) = I'(Ak+2 -P(Ak_l))

is open, T- 1nvar1ant and contains 1'-‘k Moreover, since Fk = P(;‘k+1

I'(Ak))cI'(Ak+1 -Ak), we have Fk F " I‘(Ak+1 Ak) 'U{Y(Ak o1 Ak) anl
YET}=Ufﬂaﬁl—Herﬂm)]YEP}=TH%H1-N9nFQ.
Now (Ak+1 ~A.k) an is compact so that there is a finite subsequence

(U ) of (U ) such that U Z kZ I'(Ak+2) -I'(Ak 1) and v UkZ

Fk n(Ak+1 -A'k)" Thus the sequence (Yi(UkZ))i,Z covers Fk and

Vi W) €Y Vi) €3 V) < Ty ) -T R ) O

LEMMA 2.1.6. The sequences (Y;(Up;))g x 7 and (Yi(Vyg)dg g 7 »
properly relabeled as (X ) and (Y) such that Y = Y;(Vi7) 2f - .-
X = YiCUkZ), satisfy (1)-(6).

n

Proof of Lemma 2.1.6., The only conditions whose truth is not
immediately obvious are (2) and (3). To show (2) we observe that
= A - > . A > =
ulF, | k=0} TR, ) - T(AY) | x20} = {T(A) | k= 0}

Thus (Y u covers S. Next we shall show that (Yi(VkZ)) is

k2'1,k,1
locally finite. Assume 0<m<k-3 and Yr,YSs '\  Then Yr(vm ) e
3
r - re ;
(App) TR ;) and Y (V, ) <T(A ) -T(A ;). Let xeS.



39.

Then xechI‘(Ak+2) -I‘(Ak_l) = Tk for soTne k. The s§t Tk is open and
doesn't meet Yi(vml) whenever m <k-3 or m>k+3. The family (yl(VmZ)')i Y
k-3 <m<k+3, is locally finite. Thus x has a neighbourhood in,Tk which

meets Yi(vml) for only finitely many i, m and 7. Hence, (‘Y:.L (le))i,m,z

is locally finite. [J ' N
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§2. THE PROOF OF THEOREM 2.2.1

THEOREM 2.2.1. Given a group T of homeomorphisms acting discon-
tinuously on a surface S,' then there 18 a countable collection D
of dises with the following properties:

(1) uv{D’|DeD} = S;

(2) D is locally finite; | ,

(3) If Dl’DZ eD, Dlz D2, then D1¢‘02;

(4) If Dl’DZ eD, D1 2D_, then 3D1¢ Dz;

2’
(5) {30 | D €D} Zs compatible;

(6) u{3D | D €D} is compatible with Frs
(7) D is T-invariant; and

(8) "For DeD and YeI'-I'D, Yy(D)nD = .

.

Proof. Let (Xn)n GJ\apd (Yn) be the sequences of discs of

ned

Theorem 2.1.1. We can choose a subséquence (Xn ) of (Xn)n.GJ such
i
that Xn and Xn are not T'-equivalent if i #j, and each Xm is T-equi-
i j .
valent to Xn for some i. We shall now construct collections Di of
i

discs as follows.
Let DO =‘{Y(Yn ) | yeT}. Suppose k20 and locally finite and
1 ;
I-invariant collections Do"'°’Dk of discs have been constructed

so that Yn , 1 2k+1, is met by at most finitely many of the discs
1

in DoU"'UDk' Then Dk+1 is constructed as follows. By [ 1, 46 D,E]

1 such that X c D; cY and éDl meets F =
Mg+1 Mye1

u{aD [De;DOU;..uDk} in at most finitely many points. We know

there is a disc D



41.

r =T = A is finite and A(SDl)qu is then finite too because

F is P-invariant. By Lemma 1.6.2 there is a A-invariant disc D so that

X e D°cY and 3D nF cA(3D,) nF. Thus 3D is compatible with F.
k+1 My+1 '

We define D, 4 = {y(D) | y eT}. We observe that Dyt is T-invar-
iant, locally finite and {3D | D EDk+1} is itself compatible as well as
compatible with {3D | D eDou ...UDk}. Further, for yeTl -T) and De Dk+1

y(D) nD = @. By construction, Yn , L2k+2, meets y(Yn )} for at most

A k+1
finitely many y ¢[' and we have DcY . It follows that Yn meets
Tp+1 A
at most finitely many sets in Dk+1'
We claim that the collection D' = U{Di | i >0} of discs satisfies the

" requirements (1), (2), (5), (6), (7) and (8). To prove (1) recall that
U{Xn | all n} = S. Given n, X_ is T-equivalent to X for some j and

thus by construction, there is some D eDj with Xn cD* éYn . ‘Hence

0 ] j
X € uly(@ )] ye I} u{p D €D} Tt follows that s = U{D [D<D'}.

To prove (2) we observe that by our construction of D' there is‘a'
mapping ¢ from J onto D' with XnC d)(n)OC Yn for all ne€J. (J is the

index set of the sequence'(Xn) Since (Yn) is locally finite,

n EJ)'

D' is locally finite.

For (S) , assume D, D, D €Dy, i <j, and D% D,. If i<j, then by

2 1 2

construction 8D2 is compatible with 301. If i = j, then D.aD, = §

and thus they are compatible. The latter observation also shows

that (8) is obvious.

To establish (6) let D eD'. If x eFr nD, then x EFFD by (8). Thus
FF neD = FrDan oD is finite. Hence 3D is compatible with Fg and thus
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\ S ’ ’
by (2), u{aD [De.D}‘ is compatible with F_. Clearly p' is I-invariant

r
since Di is T-invariant for‘all i.fhus Erovinév(7).

Let us now partially order D'rby inclusioﬁi D' agd with it the order
defined on D' are I-invariant, that is; ch 62 if and‘énly if y(D1)<:y(D2)
for all yeT'. D' is locally finité so that every chain in p' is finite.
Thus thg collection D of maximallelementsvof D' is nonempty and satis-
fies all properties except possibly (4).
1,D£€[), Dli D2’ then D1UD2 =S

and S is homeomorphic to the spHere SZ. Thus in this case we only

We observeathat if ach DZ,‘for D

have to show that D can be choosen to satisfy (4); According to
Proposition 1.5,7 we may assume that S = SZ. We endow S2 with the
euclidean metric of R3. Thus if a in Theorem 2.1.1 is small enough
and diam(D) <a for all D €D, then there are no two discs in D which

cover S. Hence D satisfies (4). 0O
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§3. THE PROOF OF. LEMMA 2.3.1

Let (S,Gj be a polyhedron each of whose faces is a polygon.
A polyhedron (S,H) is called a barycentric subdivision of (S,Gj if
it is obtained from (S,G) by the following two steps: | !
(1) Each edge of G is subdivided into two edges thus yielding
the polyhedron (S,G'); and
(2) There is a subdivision of each n-gon face of (Szﬁ') into

n triangles by n arcs joining a point v €F° withMhe n

vertices of the face whenever n 22.

’

We note that the barycentric subdivision (S,H) is a triangular
polyhedron. Before proving the lemma about the existence of a I'-in-
variant barycentric subdivision, we briefly discuss finite homeomor-

phism groups of arcs.:
We note that if T is a finite homeomorphism group of an arc

e= e, yvy then either T' = {1} or ' = <y> ; where Y is of order 2,

interchanges u and v and has exactly one fixed point x ee(u V)
2

The proof of this statement is straightforward and will be omitted.

LEMMA 2.3.1. Let T be a discontinuous homeomorphism

qroupNof the polyhedron (S,G). Then there is a T-invariant
barycentric subdivision (S,H) of (S,G) with the following =

/
i

(1) Fp < ps(H); and ' i

I4
£
LY

properties:

&

(2) If Y(x)=x for xeEMH)UF(S,H) and YeT , then le/= llx-
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. Proof. -In order to obtain a barycentric subdivision we first
subdivide the edges of G in an appropriate way to be described below.

We note that Fe is finite if e ¢ B{(G) and according to the above obser-

vation Fel e either consists of the identity mapping only or Fel R

<y>, where y is a homeomorphism of e of order 2 which has a unique
fixed point w ee —iG(e). Let EoczE(G) consist of exactly one edge
from each I'-orbit and let W' =‘{we] ecE}, where w_ce -ig(e) and
Y(we) = W for all y'eFe. Let W=T(W'). Then W is I'-invariant,
every edge e € E(G) contains exactlzw?ne point W of W and Y(we) =W,
for Y’ere. Thus the subdivision é'j;f G by W provides the first step

‘ ,)

of a barycentric subdivision. We also note that v(e) = e implies

‘He= ﬂefmreeEm')amiyerg

Let Fe F(S,6') = F and let V(F) = FnV(G'). The group Ty | is

topologically equivalent to a group of congruences of the unit disc.

Thus in view of the previous remark it follows that V(F) DFI,ﬂ oF
F

and F.nF°®cF

r r Let FOC F consist of exactly one face from each

PlE

T-orbit. Then there is a collection Kb = {KF| F €F0 } of S-graphs
dividing the faces F eFo into triapgles and satisfying the following
properties:
(a) ps(KF) = e[V,VIJU'.JJe[V,V 7 is a star, where {vl,...,vn} =
V(F);

(b) V(KF) Av, vy ”"Vn}DFFn 9F ;
‘F

(¢) F°> ps(KF) -V(F)> FI‘ nF°; and

(d) KF is FF-invariant.
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We now define K = {Kg| F e F} as follows.

For F ¢ F we shall define KF = y(KFo) where Fo€ Fo and yeT with y(Fo) = F.
. . . . -1

Then KF is well-defined as F = Y(Fo) = G(Fo) implies that y °§ eFF .

(o]
Hence v '6(Ky ) = Ky and Y(Kz ) = (K ).
0 [o] (o] (o]

There are some immediate consequences of the construction of G'
and K. We have that K is a locally finife, compatible and T'-invariant
collection of S-graphs each of which satisfies (a)-(d).
Also, K = U{KF.]F € F} is a I'-invariant S-graph and K is compatible
with G' as ps(K)n ps(G') ; V(G'). It follows that (S,H), where H - KuG',
is a T-invariant barycentric subdivision of (S,G). We have E(H) =
E(G') vE(K) and Y(e) = e implies‘y]é :I'e for all YeT and e ¢ E(H).
Moreover, since pS(H)::FF it follows that Fn Fp = g for every F e F(S,H)

and therefore Y|. = 1|_ for every Yel_. O
F F F
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§4. THE PROOF OF THE TRIANGULATION THEOREM

THEOREM 2.4.1. Given a group T of homeomorphisms acting discon-
tinuously on the surface S , there is a I'-imvariant triangular poly-
hedron (S,G) satisfying the following two propertiés:

(1) ps(G)> F and

P';
(2) If Y(x) = x for YeT and x €E(G) uF(5,6), then Y| = 1|,

(where 1 is the identity mapping on S).

Proof. As a first step we choose a collection D of discs as in
Theorem 2.2.1 and construct a I'-invariant graph H with ps(H) =
u{oD | DeD}. Let DO‘ZD consist of exactly one representative from each
I'-equivalence class of D. For each De:DO we choose a finite set VD with

= Y > -
FrD naD CVDCBD s I‘D(VD) VD and card (VD) 3. Let HD be the S-graph
with vertex-set VD and point set oD so that-HD is TD-invariant.

For D €D define Hy = Y(H, ) where D.€D_ and YeT with Y(D) = D.
1

HD is well defined since Y(Dl) = 6(@11 =D implies Y_IG €TD and
1

hence Y_IG(HD ) = HD or Y(HD ) = S(HD ). The following observations
1 1 1

1
(2) and (b) are immediate consequences of the definition of HD.
(a) H= {HD ID eD} is a compatible, locally finite and
[-invariant collection of S-graphs; and

(b) H = u{K IKieH} is a I'-invariant S-graph with ps(H) =

VU{SD [DeD} and V(H) >Fp nps(H).

We claim that the graph H is connected. It suffices to prove

that ps(H) is arcwise connected. Suppose ps(H) is not arcwise con-
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nected. Then there is an arc er V]<:S such that e(u,v)n ps(H) = 9,

3

~where u and v are in distinct components of ps(H). Now S ¥~U{D°| DeD}

so that there are discs D, D DéesD with ueD®, u,eaD1 and v eaDé.

1,

" Since 9D c ps(H) we have e[u-v](:D and vedD or veD®°. 1In any case,

 éD n_8D2 + # since either v e dD nBD2 or v'eD° and 8D2¢ D. We have
aD nGD1 * g since78D1¢ D. Therefore u and v belong to the same com-
vppnent’of ps(vawhich is a contradiction of our assumption.

- We claim that every face of His a polygon. Let F be a face og
H in S. Then there is some disc DeD with FcD. Consider the sub-
g;aph K o%*H contained in D and let L be the cycle in K whose point set
‘is‘aD. We shall show that K is 2-connected. This implies that every
fage of H within D is a polygon. Given any vertex v e V(K) -V(L),
there is\a path P inxK‘containing v and joining two distinct vertices .
of L. Thus the removal of any point of V(K)-—V(L) results in a con-
nected graph. Thus K is 2-connected.

An application of Lemma 2.3.1 to the polyhedron (S,H) completes

the proof. O
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CHAPTER 3. ABSTRACT POLYHEDRA

By Theorem 2.4.1 it is possible to substitute the study of dis-
continuous groups on surfaces by the study of groups of automorphisms
of abstract polyhedra. The notion of a topologiecal polyhedron‘will
be replacéd by an equivalent notion (see Theorems 5.1.1 and 5.1.3)

Qf an abstract polyhedron. An abstract polyhedron shall consist of a
locally finite (possibly infinite) graph and a boundary tour scheme, -
which in the theory of graph embeddings is commonly called a generalized
embedding scheme [ 251, [26]. Moreover, instead of homeomorphism between
topological polyhedra we shall be talking about isomorphisms of abstract
polyhedra (see Theorem 5.2.2). (If one is concerned with embeddings

of graphs the problem is to determine when two embedding schemes pro-
duce the same embedding.) The question of when two abstract polyhedra
are isomorphic or when a polyhedron is orientable can easily be answered
- by looking at their boundary tour schemes (see Propositions 3.1.3 and
3.1.4 and Corollary 3.1.8). In view of Theorem 2.4.1 we may restrict
our attention mostly to automorphisms of abstract 3-polyhedra, that is,,
pquhedra all of whose boundaries are triangles.

We define one-sidedness and two-sidedness of cycles and 2-infinite
ﬁaths. Thus a two-sided cycle or patﬂ C partitions an abstrac£ poly-
hedron into two parts whose intersection is C. Isomorphisms naturally
‘preserve boundaries as well as the properties of one- and two-sidedness
and also the sides. A 3—polyﬁedron is defined to be planar if all of

its cycles are two-sided. We shall see in Theorem 5.1.6 that abstract
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planar 3-polyhedra are exactly the 3 -polyhedra which correspond to’
planar topological 3-polyhedra. One- and two-sided 2-infinite paths
shall be important tools in the study of automorphisms of infinite

order in planar polyhedra (Chapter 4).
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§1. AUTOMORPHISMS OF ABSTRACT POLYHEDRA

LetrG be a connected and locally finite graph (locglly finité for
graphs means that every vertex has finite degree) withgut mﬁltiple
edges. We shall write H <K if H is a subgraph of K, H BK for the
subgraph induced by V(H)n V(K) and EV(G) shall denote the set of ,
edges of G incident to v. We shall write dG(x,y); respectively,
dG(K,L) to denote the distance in G between the vertices x and y of
G, respectively, the subgraphs K and L of G; A two way infinite
(abbreviated as 2-infinite) path is a connected, infinite graph which
is regular of degree 2.7 A one way infinite (abbreviated as 1-infinite)
path is a connected, infinite graph with maximum degree 2 and minimum
degree 1. If H ié a path or cycle in G and u,ve V(H), then H(u,v)
shall denote a path on H joining u and v. If there is no unique
such path it shall be clear from the context which one is meant.

A rotation system P for G is a set {PV Iv eV(G)}‘where PV is a
cyclic permutation of’EV(G). Altﬁgagﬁighe permutations PV and P;l
are identical as mappings in case 1 SIEV(G)I <2, we shall consider -
them as distinct objects. If'{el,...,en} E,(G) and n 23‘then we

shall write (el,...,en) CPV if Psl(el) = e, P§2(e2) = eg s
S :
p M1 -

v (en_l) en, where_el,..

€t "'+€n¥IS<IEv(G)I' We call (el,;..,en) the induced cyclical

-»€ 4 are positive integers and

arrangement on {el,...,en}.
. A boundary tour scheme for G is a pair (P,A) consisting of a

rotation system P and a mapping A: E(G)—»—Z2 ={1,-1}. The triple
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(G,P,1) is called an (abstract) polyhedron. We shall write (G,P)
instead of (G;P,A) if A(e) =1 for all ecE(G). For any finite sub-
‘Agraph H of G we define A(H) = NI{A(e) ]e eE(H)}; where the product
is defiﬁed to be 1 if E(H)’= ﬂ; We say H is A-trivial if X(H) =1
(see [25, p.481).
Given two polyhedra (G,P,\) and (H,Q,u) and an isomorphism
¢ : G+H, we shall say that ¢ is an isomorphism from (G,P,)) to (H,Q,ﬁj
and,write ¢':(G;P,A)-+(H,Q,u) in case '
(1 ¢Pu¢71 é{Qg(u)l S ezz} for all ueV(G) and
(2) if e€E(G), ig(e) = {u,v} and ¢Pu¢'1 ~ ngu), ¢pJ(e)¢‘1 -
Q5 imply €= Su(d(e)). | |
(We shall adopt the convention of denoting the mapping of the edges
induced by an automorphism by the same~symbol.)
An automorphism of (G,P,A) is an isomorphism of (G,P,)) onto itself.
We use Aut (G,P,\) to denote the set of all automorphisms of (G,P,X).
The dgtomorpﬁism & ¢Aut (G,P) is called orientation preserving if
aﬁua-l = pa(u) for some (or equivalently, for ail) u eV(G), and
orientation reversing otherwise. The polyhedron (G,P,)) is orientable

—

- , ‘
if the identity isomorphism 1:G +G is an isomorphism frqm (G,P,A)

to (G,Q).

The proofs of the following two statements are easy exercises

N

and therefore omitted.

PROPOSITION 3.1.1. If ¢ : (G,P,A) +(H,Q,g) and Y f(H,Q,u)—*(K,R,v)
are isomorphisms, then ¢—1: (H,Q.u) ~ (G,P,A) andrw°¢f (G,P,X) > (K,R, V)

are isomorphisms,
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n
N

COROLLARY 3.1.2. The set Aut (G,P,A) of all automorphisms of

(G,P,X) form a group with composition of mappings as group operation.

PROPOSITION 3.1.3.' Let the polyhedra (G,P,\) and (H,Q,u) and an
isomorphism‘ ¢,::G +H be given. Let ¢(G,P,)) denote the polyhedron
(H,6P6 ™ ,v) where ¢Pp~L = & PV.¢"1 veV(@)} and W¢(e)) = A(e) for
QZZ ecE(G). Then ¢1is an isomorphism from (G,P,A) to (H,Q,u)
if and only if the identity isomorphism 1:H->H is an isomorphism of

$(G,P,0) and (H,Q1) -

Procof. We prove thislproposition by means of diagrams. Full

arrows denote given isomorphisms and dotted arrows are for implied

isomorphisms.
-9 '- ¢
(G:P:)‘) "‘——*CP(G,P,}\) : (G,P,)\)————}Cb(’G,p,}\)
- / | PN A
\\4 ' /
(H,Q,U) ' (H,Q,U)

The next statement gives a simple criterion for determining

whether the identity 1:G-+G is an isomorphism between the p‘olyhedra'

(G,P,A) and (H,Q,1).
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PROPOSITION 3.1.4. The identity isomorphism 1: G-+ G ig an iso-
morphism of the polyhedra (G,P,\) and (H,Q,u) if and only if

(1) P € {QS | 6 eZ’Z} for all ueV(G) and

(2) for all eeE(G), A(e) # u(e) if and only if exactly one

element of i.(e) belongs to U = {veV(G) | P, = Q;l}.

Proof. First we prove the "only if'" part. If 1: (G,P,A) » (G,Q,ﬂ)
is an isomorphism of the polyhedra then by definition Pu e{ QS']G € ZZ}

for all ueV(G). Now let ecE(G) and i;(e) = {u,v}. It follows that

5 .
qu(e) = Pi(e) if P, = Q, We conclude that A(e) # u(e) if and only

if either u €U or v €U but not both hold.

"We now prove the "if" part. Assume (1) and (2) hold and lef
P p

e €E(G), i,(e) = {u,v}. By (1), Py ® Qﬁ and P (€) . Q:, e,6eZ,, and by

Vv
(2) it immediately follows that € =&ufe). Thus 1: (G,P,A) >(H,Q,1)

- is an isomorphism. [J

COROLLARY 3.1.5. If 1: (G,P,\) »(G,Q,n) <s an isomorphism, then in

every cycle C of G the number of edges e with A(e) % u(e) is even.

Proof. Let C be a cycle and E' = {ee E(C)| A(e) # u(e)} and
E" = E(C) -E'. The endpoints of an edge in E" both belong to U or
both don't belong,fo U, and exactly one endpoint of an edge in E'
belongs to U. Thus alternating "blocks" in C of vertices of U and

V(G) -U are separated by edges in E'. It follows that |[E*] is even. O
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The following statement is an immediate consequence of Corollary

3.1.5. and definitions.

COROLLARY 3.1.6. If (G,P,)\) is orientable, then every cycle in G

18 A-trivial.

COROLLARY 3.1.7. ' If every cycle of the polyhedron (G,P,A) is

A~trivial, then (C,P,A) 18 orientable.

Proof. Fix ueV(G). For arbitrary v eV(G) define Qv = PV if
there is a A-trivial path from u to v and QV = P;l if there is a path
from u to v which is not A-trivial. Then Q = {Qv lvev(G)} is well-
defined as-every cycle of (G,P,A) is A-trivial. Moreover, if iG(e) =
{vl,vé} it follows fhat A(e) = -1 if and only if exactly one of vy T Vv,
‘belongs to {weV(G) |Pw = Q;l}. Thus t: (G,P,A) > (G,Q) is an isomorphism

and (G,P,\) is therefore orientable. [

Corollaries 3.1.6 and 3.1.7 imply the following criterion for

orientability of polyhedra. (See also [25, Theorem-51.)

COROLLARY 3.1.8. (G,P,\) is orientable if and only if every

eyele of (G,P,)\) is A-trivial.

COROLLARY 3.1.9. If ¢ : (G,P,A)~> (H,Q,n) <s an isomorphism and C

is a A-trivial cycle in G, then $(C) is p-trivial.
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Proof. By Proposition 3.1.3 we have the following diagram.

(GJP:A)———"d)(G:p:)‘)

AN

(H,Q,u)

Clearly, C is a A-trivial cycle in (G;P,\) if and oﬁly if A(C) is
ﬁ-trivial in $(G,P,A). Thus it suffices to prove the corollary in the
case where G = H and ¢ = 1: Let C be a A-trivial cycle. 1In view of
Corollary 3.1.5, C has an even number of edges e with A(e) *_ﬁ(e).

It follows that |{e e E(C) | u(e) = -1 and A(e) = 1}| and ]{éeﬁE(C)]
u(e) =1 and A(e) = -1}] have the same parity. We conclude that

|{e e E(C) | u(e) = -1}| and [{eeE(C) | A(e) = -1}| are of the same

parity, and therefore ¢(C) is ﬁ—trivial. O

The following corollary immediately follows from the Corollaries

3.1.8 and 3.1.9,

/
J

COROLLARY 3.1.10. If (G,P,A) and (H,Q,u) are isombrphie and

L
(G,P,)) is orientable, then (H,Q,u) is orieunfable.
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§2. BOUNDARIES OF POLYHEDRA

For any graph G the term arec shail denote an edge with a specific
chgice~of orientation. We shali write e for an arc corresponding to an
edge e ¢ E(G) and by (or occasionally Z") for the’reversé of Z; which is
the arc whose orientation is opposite to that of e. LEt E(G); respec-
tively EV(G); denote the set of arcs of G, respectively, the set of
arcs of G términating at v. Let (G,P,A) be a polyhedron, 1ethv be
the permutation of EV(G) induced by Pv in the obvious way and let
A(e) - A(e) for all ecE(G). We define a permutation P* of E(G) XZZ

' *, > E;\(—é) > - > '
as follows. We put P7((e,eg)) = KRV (e)) ,er(e)), for e« EV(G) and

Ee:ZZ. This definition agrees with the one given in (s, p.141.
An inspection: of the orbits of P*,reveals that they occur in pairs,

€ )...) is an orbit then

. . > > -
that is, if (...(el,sl)(ez,sz)...(en, 1

s © A 1so is bit, [25, L 1]
(...(en,-en)...(e2,—€2)(e1,-€1)...) a sgrls an orbit, , Lemma .
The subgraphs of G naturally induced by the orbits of P* are called
the boundaries 6f the polyhedron (G,P,\).

» Let (Z,é) e E(G) x22, where e has initial vertex u, and let
¢ :(GfP,A)->(H,Q,u) be an isomorphism. We put ¢(;,5) = (¢(Z),e)
where € is chosen such that ¢P3¢~1 = Q¢%u)' It naturally follows
from the definition of isomorphism and boundaries that isomorphisms

preserve boundaries.

~7
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I3 PROPOSITION 3.2:1. If ¢ 3(G,P,\) »(H,Q,u) is an isomorphism,

} then (...(gi,gi) (gif1’€i+1)" .) is an orbit of P*if and only if

_ . * o,
('~'¢(gi, Ei) ¢(gi+1’ €i+1)“~~) 7:5' .an orbit Of Q - F!OI’QOU@I‘, A ]

| follows that B is a boundary of (G,P,\) if and only if ¢(B) is ’

18 a boundary of (H,Q,ﬂ).

Proof. The second claim is a trivial consequence of the first

. : * >
claim. In order to prove the first one we note that P*(e,é) =

SA ()

@, @Ra@) md CedLe = (@S 6@, med)

- >
assuming that e has inital vertex u and terminal vertex v. Given

T8 = (00 | ¢ A@)
that ¢(e,8) = (¢(e),€) we conclude that Q:?if(e)) = (e)¢ 1

* > * > > .
Thus ¢ (P (e,8)) = Q (¢(e,8)) for (e,d) € E(G) ><22, and by applying
B , _ * _
the same considerations to ¢ 1 it follows that P (¢ 1(;,6)) =

0710732, 8) for (3,8) € E(m) *2,. 0O

In view of Theorem 2.4.1 we shall be concerned exclusively with
polyhedra all of whose boundaries are triangles. We shall call them

3-polyhedra or triangular polyhedra.

PROPOSITION 3.2.2. The boundaries of a 3-polyhedron (G,P,\)

are A-trivial,

Proof. Let H be the boundary induced by the orbit (...(31,81)

€j_+ “
= e,

v.(ei?l) i
i

> > . -
(ez,ez)(es,es)...) as shown in Figure 3.2.1. Then P
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and E-i)‘(éi) = €410 where 1 <i <3 and %o = '53 and ‘64 = '51. Thus

AEIAEIAE,) = 1.

(2]

figure 3.2.1

PROPOSITION 3.2.3. If (G,P,\) is a 3-polyhedron, then G is
3-connected. 7

Proof. Now,el,e eEV(G) belong to the same boundary of (G,P,A)

2

. .3 _ '
if and only if Pv(el) = e for some 6 622. Thus the set {vl,...,vn}

2°
of all vertices adjacent to v is contained in an n-cycle of G.
Consequently, if u and v are adjacent’and U = {ul,...;um} are all
vertices of G distinct from u and v but adjacent to u or V; then U
induces a connected subgraph .nt:G. It follows that the omission of

two (adjacent or non-adjacent) vertices never disconnects G, that is,

G is 3-connected. 0O

_4,NQ£§,5.2.4. (a) Thé edges eyse, eEV(G) belong fo the same
boundary of the 3-polyhedron (G,P,)) if and only if Pj(el) = e, for
some & eZz, as fdllows from the definition of the boundaries.

(b) Any edge qf G belongs to exactly two distinct boundaries, and

any two distinct boundaries are disjoint or share exactly one vertex

or share exactly two vertices and the edge joining them.

g
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(c) If'{al,az,e}and {el,ez,e} are the edge sets of two distinct

boundaries as in Figure 3.2.2, then (el,é,»al)e PS implies (az,e, ez) c

poA(e).
v

figure 3.2.2
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§3. ONE-§&DEDNESS AND TWO-SIDEDNESS OF CYCLES AND 2-INFINITE PATHS

.

Suppose H = (vo,el,v ,V =v0) is a A-trivial cycle

e e ,V
1° n-1"n’n

or H = (""Vi—l’ei’vi"") is a 2-infinite path in the 3-polyhedron
(G,P,\). Let ueV(H). We define relations w,w €E(G) x{0,1,-1} as
follows:

(1) If ecE(H) or iG(e)IWV(H) = @ , then let (e,O)eswrwwu while

if efiEu(G), then let (e,0) €W 3 and

(2) Ifv eiG(e) nV(H) and e ¢ E(H), then let (e,€) ew, and (e,€) €cw

k
’ €6k
if u = v, in case (ek’e’ek+1)(:ka with 6k = A(H(vo,vk)),
where € 622, 0<k <n-1, €y = and H(vo,vk) = (vo,el,vl,...,vk)

if H is a cycle.

We define -w as the relation for which (e,€) ¢ -w if and only if
(e,;e) cw. We define -0, in a similar fashion. If K is a subgraph of G,
then w(K) is the set of all € €{0,1,-1} with (e,e) ew for some ee E(K).

wu(K) is defined similarly.

NOTE 3.3.1. w_is a function with domain E(G) and range {0,1,-1}.
If i (e) nV(H) = § or ecE(H) and iG(é) = {u,v}, then w_(e) = (o) =
w(e) = 0. if e § E(H) but iG(e)11V(H) # @, then w(e) = U{wx(e) lx.eic(e)}.
We emphasiie that the definitions gf w and w, depend on the parficular

labelling of the vertices and edges of H.

PROPOSITION 3.3.2. If H is a A-trivial cyele or a 2-infinite path

of the S—poiyhedfon (G,P,A) and w; and'wz.are derived as described above,

1 2 1

then either w, =w, 0r ®w, = -mz - for all ueV(H).
u u u u .
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%

\

. Proof. We shall restrict the proof to the case where H is a cycle

as the other case is similar. We claim that if H = (vo,el,...,en,\.rn =v.vo)

and H = (u_,f;,...,f ,u =u) with uiévn—i’ for 0<i<n-1, and if the

and Wy s respectively, then W, = -0y for every

derived relations are w
- u u

1
ue V(H). To prove thlS claim let eeE(G) -E(H) and u-= Ve SU g € 1G(e)
H is A-trivi ll so that K(H(vo,vk)) =8 = A(H(uo,un~k)). We conclude
-8e . de
k,e,fn X+ 1) c ka if and only if (ek,e,ek . 1) c ka .

Thus (e,€) Wy if and only if (e,-e)ewz .
“u u

that (£

Next we claim that if H = (v ,€ a8 SV =V } and H= (u s 1,

1’

K for 0<i<n-1 and fixed k, 0<k<n-1,

and if the derived relations are wy and Wy s then either w; =W, foxj all
u u
U,

I ,u =u) w1th u. =v.
n’n o i i

ueV(H) or wy ='-u;zv for all ueV(H), depending on the value of X(H(vo,vk)).

 To prove the claim we note that )\(H(vo,v 14 k)) = )\(H(uo,uz)) x.)\(H(vo,vk))
since H is A-trivial. Moreover, (ez.*_'k,e,ez +k+ 1) = (f7,e,f7 1)

for 1<7<n. Thus if )\(H(vo,vk)) =1, then W, = W, and otherwise
‘ ’ u u

u u
These two claims establish the proof of the proposition as we can
get all labelings from a particular one by suitable "rotations" and

"reflections". [

~ We shall reserve the letter w to denote these relations derived
from cycles or 2-infinite paths. All propertles of w ever used hold
for w if and only 1f they hold for -w. Thus we never need to specify

which w we use. For example w(K) 3{ 1,1} if and only if -w(X) :{ 1,1}..
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PROPOSITION 3.3.3. ILet H be a A-trivial cycle or a 2-infinite
path with associated relatzon w and let ue 1 (a) nV(H), Ve 1 (b) nV(H)
andabeE(G)—E(H) |
(a) If 1'1=v‘, azb, E (H) {el,e }, then w0, (a) zw (b) if and only zf
(a,el,b,ez) cP ' for § 022, and the Zatter holds 7,f and only if
(el’b,’eZ)C?S aﬂd (e ,a ez)cPGforcSeZ | |
(b) Ifu=zvand H(u,v)=(u=u 0’1" ..,en,un—v) 18 a path joining
uand v in H and e eE (H) - {el}, feE (H) - {en}, then o (a) =

w, (®) if and only if (e,a,e;) <PS and (e, b, 6) CPSA(H(u,v)),.

Proof. This immediately follows from the definition of w, O

If H is a cycle or 2-infinite path in the 3-polyhedron (G,P,A),
then it is called one-sided if, in case it is a cycle, H is not A-trivial,

or there is a walk W= (u ,a \.,um) such that

170
(1) u,u eV(H) and ukéV(H) for 1<k<m-1 and
(2) w(EW))>{-1,1}, where w is derived from H, or equivalently,

(EW) =w, (EW).

Yo , Un
If H is not one-sided then it is said to be two-sided. We noteA that by
definition, if H is two-sided and eJ:E(H) but iG (e)nV(H) =9, for xeiG(e)
w(e) =wx(e). The reason for calling a cycle or 2-infinite path two—'sided

is given in the following theorem.
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THEOREM 3.3.4. If Hgls a two-sided cycle or 2-£nﬁn£té path in
the 3-polyhedron (G,P,)), then there is a unique decomposition of G into

vH,=G, H, nH,=H and

connected subgraphs H 1 " H,

and H2 such that H

1 1 2

w(Hl) = w(Hy) -

Proof. Given ie {1,2},. 1et Hi be the _s,'ubgraph of G induced by
the walks W in G for which V(W) nV(H) = # and w(E(W)) c{0,(-1)'}. 1t is
obvious that H1 U H2 =G, Hc H1 n H2
We need to verify that V(Hl) nV(HZ) =V (H) and E(Hl) n E(HZ) =E(H).

and Hi is connected for 1<1i<2.

Assume to the contrary that v eV(Hl) n‘V(HZ) -V(H). Then there are

shortest paths P1 in H1 and P2 in H2 joining v with H. Now P1 uP2

contains a walk W which has only its endvertices in H yet p(E(W)) > {-1,1}
which is absurd since H is two-sided. Thus V(Hl) nV(Hz) =V(H). If

i, (e) nV(Hl) -V(Hz) zf or 1G(¢) nV(HZ) -V(Hl) z@, then clearly

ee (E(H,) - E(Hy)) v (E(H;) - E(H,)) =E. If i (e) cV(H) and e ¢ E(H),

then w(e) =1 or w(e) =-1. Hence ecE.. It follows that Hl nH2 =H. 0O

We shall call Hy and H2 the sides of H in (G,P,X). If Kis a

subgraph of G which is not in H, or in HZ’ then we shall say that H

1
separates K. Similarly, we say that H separates the subgraphs K and L

of G if K<H; and L& H2 or vice versa.
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LEMMA 3.3.5. Let ¢ :(G,P,1)~ (H,Q,u) be an isomorphism of the

3~polyhedra, let L = (u =V € "eniﬂn =v) be a path in G and let

Lo
. Ev
a,ecE (G) -{e;}, bjfecE (6) < {e }. If (e,a,e)) cpg and (e_,b,£) e

néA(L) ' e ' neu (¢ (L))
P, » then (¢(e),4(a),0(ey)) cQ¢(u) and (Cb(en),_¢(b),¢(f)) <Q s

for some ¢ € 22'

Proof. We prove thevproposition by induction on the length 7 of L.
For 7=0 and 7=1 it follows immediately from the fact that ¢ is an
isomorphism. Assume Z =k + 1 and assume the statement is true for all
paths of length less than or equal to k. Let L= (Vo’el" "‘Vk+1)
be a pat}I of length k+1 as shown in Figure 3.3.1.and iet ce Evl(G) -

E(L). We apply the induction hypothesis to the subpaths L(VO,VI)

2
el,c,b, and f. This shows that the lemma holds for L,a,b. [

and the edges e,a,c,e,; and to the subpath L(vl,vk+ 1) and the' edges

~/

figure 3.3.1

THEOREM 3.3.6. Let ¢ : (G,P,\) =+ (H,Q,u) be an isomorphism of
the 3-polyhedra. If C is a two-sided cycle or 2-infinite path in G ,
then ¢(C) is two-sided. Moreover, if C' and C" are the sides of C

in (G,P,A) , then ¢(C') and ¢$(C") are the sides of ¢(C) in (H,Q,u).
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Proof. We sha}l provide a proof for the case that C ‘is a cycle
as the other case is. similar.- Let. C= (vys€ys---s€ V=V ) and (C) =
(¢(vo),¢(e1),. ..,¢(vn) =¢(vo)) and ‘let,w anci ® be the relations derived
from C and ¢$(C). By Corollary 3.17.8 $(C) is ‘u‘-trivial.

As a direct consequence of Lemma 3.3.5, if e,f ¢ E(G) - E(C) and

xei(e) nV(C), yei (£)nV(C), then w (e) =wy(f) if and only if

md)(x) (9 (e)) =E¢(y) (‘i’(g).' Thus it follows that ¢(C) is two-sided if

and only if C is and that ¢(C') and ¢(C'") are the sides of ¢(C) in

H,Qu). 0O

The proof of the following Coi‘ollary is implied by the proof of

Theorem 3.3.6.

4 v

COROLLARY 3.3.7. Let C be a two-sided cycle or a two-sided
2~-infinite path in the 3-polyhedron (G,P) and let a be Aut (G,P) - {1}
satisfy

(1) a(C) =¢,

(2) If C=/(. ’Vi-l’ei’vi’ ...) 18 a 2-infimlté path, then

a(vi)=vi‘+kfor all iel and some ke, and

(3) IfC=(v =vo) ig8-a cyele, fhen a(vi) =Viak

0?10 8y 1oV
for some k¢ Zn and all i e Zn'
Then a is orientation reversing i1f and only if o interchanges the sides

of C.
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/ THEOREM 3.3.8. Let L , respectively M, be a two-sided cycle
or 2-infinite path with sides L' and LV ; respectively M' and M", in
tﬁé 3-polyhedron (G,P,A). If LcM', then McL' or McL" while if
L#M and L cM' and Mc.L' s then for any v eV(L) nV(M) we have

E,(M") cE (L') and M"<L'.

Proof. We shall prdve the first statement by a contrapositive
argument. Let L = (""Viél’ei’vi"")’ M= (""ui-l’ai’ui"") and
assume M ¥L' and M¢L"., Without loss of generality we may assume L is
labeled so that it contains a subpath M(uo,uj) of M such that the edges

a_y and aj-Pl belong to different sides of L but not to L. We may also

assume that u, =v, for 0<i<j so that the edges e_q and ej_'_1 of L are

not contained in M. Let ® and w be the relations associated with the

labelings of L and M, respectively. In view of Proposition 3.3.3 we

"::ﬁ{mi‘"fﬂ ~
# i i #
see that wuo(a_l) wuj(aj‘+1) if and only if wuo(e_l) wu.(ej +1).

It follows that e , and ej are on different sides of M, that is,

1 +1

L ¢M' and L ¢M".

To prove the second assertion we assume L(:M;, McL' and Mz L.
Let veV(L) nVM). If EV(M“) =EV(M),$then obvioﬁsly EV(M")<:EQ(L').
If e EEV(M")-EV(M), then e and L aré on distinct sides of M. Hence

if EV(L) =EV(M) we immediately see that EV(M") CEV(L'). On the other

hand, if EV(L) EV(M), then we choose a subpath M(u,v) cL such that

~ there is some edge a.eEu(L) -Eu(M). Now e and a are on different sides

of M and thus it follows as above that Eu(M) and e and thgrefore e and

M are in L'. It follbws that EV(M")czEVLL') for all veV(L) nV(M)



and therefore M"cL!, O

Let L,M,L',M' be as in Theorem 3.3.8 and assume that L c¢M' and

.McL'. If KcL'nM', then we say K lies between L and M.

THEOREM 3.3.9. Let H be a finite 2-comnected subgraph of the
3—p02yhedr3n (G,P,A) and assune that every cycle in H is two-sided.
Moreover, assume KcG , K ¢H, and K is not separated by any cycle of H.

Then there is a cycle CcH such that K and H are on different sides of C.

Proof. We may assume K# @ since K¢H. If C is a cycle in H let
FC denote the side of C containing EJ We choose a cycle C in H mini-
 mizing k = [(E(F.) - E(C)) nE(H)| and claim k = 0.
Assume k >0. Because H is 2-connected there is a path R in FCf1H with
u,v € V(C) such that R contains no vertices of C other than u and v.
Now u and v partition C into two paths which form together with R the
two cycles C1 and C2. Let Fi denote the side of Ci which doesn't con-

tain C. Then F1L1F2==FC and either F1 or Fé contains K. Moreover,
[(E(Fi) -E(C.)) nE(H)|<k, whieh contradicts the choice of k. Thus

k =0 and both FC¢\H = C and K(ZFC hold.. [

The following three statements are concerned with the relation
between two-sided cycles or paths and boundaries. Their proofs are.

straightforward and therefore omitted. .
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PROPOSITION 3.3.10. If H Zs a boundary of the 3-polyhedron (G,P,A),

then H is two-sided and the sides of H in (G,P,X) are H and G.

COROLLARY 3.3.11. If B is a boundary of the 3-polyhedron (G,P,A)
and H 18 a two-sided cycle or 2-infinite path, then B is contained

in one side of H.

COROLLARY 3.3.12. If H Zs a two-sided cycle or 2—£nfinite path
of the 3-polyhedron (G,P,X) and e € E(H), then the two distinet bound-

aries containing e lie an distinct sides of H.

If every cycle in the 3-polyhedron (G,P,A) is two-sided then we
shall call the polyhedron planar. We shall justify the use of the term
planar in Theorem 5.1.6. The following theorem gives a criterion.of
"one-sidedness' for 2-infinite paths in planar 3-polyhedra which is

close to but more readily applicable than the definition.

THEOREM 3.3.13. The 2-infinite path R of the pldﬁé;’QQbothedron
(G,P,)\) is one-sided if and only if there is a cycle CcG and 1-infinite

subpaths Rl and R2 of R which are on different sides of C.

Proof. To prove the "only ifm part assume R-is one-sided. Then

' =@ ,... ' v L ¢VQR) if 1<ism-
there is a path Q (uo, ,um) with u U € (R), ulk (R) 1 igsm-1

and w(Q) »{-1,1} where w is a relation associated with R. If/g is
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the cycle QuR(u ,u ) and @ is associated with C; then W(R) » (-1,1}
by Proposition 3.3.3, and therefore the two 1-infinite subpaths of
Rg-R(ué,um) are on different sides df C: r

For the "if'' part assume that R has 1—infinite subpaths on dif-
ferent sides of the cycle C, We choose u,V'erR)r1V(C) such thaf
' V(R)41V(C)<:V(R(u;v)) and denote the 1-infinite subpaths of R on
different si&es of C and ending in u; respectively v, by Ru; respec-
tively Rv' The graph H==C\JR(u,ﬁ) clearly is 2-connected. By Theorem
3.3.9 there is a cycle C' in H sﬁch that Ru’ respectively RVlJH, is
on the side Fl’ respectively F2, of C'. ;f u=v, then Ru and RV are
on distinct sides of C' so that w(C') 2{-1,1} and R is one-sided (see
Figure 3.3.2 ). |

If u#v, consider the subgraph K of C' obtained by omitting all

edges of E=E(R) nE(C') and all vertices incident with two edges of E.

Let L ..,L be the maximal subpaths of K containing exactly two

1°° k

vertices of R, let this be the cyclic order in which they are en-

countered on C' and let ueV(L If u,eV(Ll), then we have the

k)'

situation depicted in Figure 3.3.3. Since Eu(R) is not on one side

of C', 56{-1,1}nwu(L1) implies that -Sew (L If u¢V(L,) and

Q-

L1 is separated from u by a subpath of RnC' (as depicted in Figure'

3.3.4) and if § e{-l,l}rwww(Ll), then -§ euh(Lk) because Ru and Rw
are on different sides of C'. Thus we conclude that § a{—l,l}!ﬁm(Ll)

implies -6 e w(L Now let 1<i<k-1. If xeV(L) nV(L, , ) - {u)

k)'

as depicted in Figure 3.3.5, then mx(L;TEx%x(Li-+1) b?cause Ex(R) is

in one side of C'. If L, is separated from L., by a subpath of R
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. . 6 =V - 7 3 . )
~as in Figure 3.3.6, then lux(Li) wy(Li+1) since Ex(R)’ R(x,y) and

Ey(R) ‘are on the same side of Ct,

We conclude that w(Li) ${-1,1} implies w(Li) - {0} cw(Li

y

+1)

Q 1<si<k-1, and §e{-1,1} nw(Ll) implies -8 eééﬁig. Therefore,

w(L;) >{-1,1} for some i, that is, R is one-sided by definition. 0O

=(C!
Rw ’
Lk i, ,', c
S S ‘3’4_L_
S 1
s ’ Ru
. e figure 3.3.4
3
—D
L X

...........

oL

‘ o ‘ ' , figure 3.3.6

Li+1
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We say that the 1l-infinite paths Q1 and Qé of a graph G are
cofinal if for every finite subset UcV(G) some component of G-U
contains 1-infinite subpaths of Q1 and QZ‘ The 2-infinite ﬁaths
Q1 and Qé are cofinallin G if there‘are disjoint 1l-infinite subpaths

t -~ 1" 3 .|. .' 1" V " 3 3
i and Qi of Qi such that the pairs Ql’ Q2 and 1 ’QZ are coflngl in G.
COROLLARY 3.3.14. If (G,P,}) is a planar 3-pothedron each of

whose cycles has a finite side, then every 2-infinite path is two-sided.

M 4

COROLLARY 3.3.15. If (G,P,)\) Zs a planar 3-polyhedron and Q
18 a 2—¢%finite path in G which has disjoint, cofinal I1-infinite

/

subpathe Q) and Q) then Q is two-sided.

< COROLLARY 3.3.16. Given two cofinal 2-infinite paths H and H,
in the pZanaﬁfS-pothedron»(G,P,A), then'Hl 18 one-sided if and only

if HZ 18 one-sided .

N
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§4. THE BARYCENTRIC SUBDIVISION OF A 3-POLYHEDRON (G,P,A).

Let us be given a 3—p61yﬁedron (G,P;X); In Chapter 2; §3 we
introduced the notion of barycentric subdivision of a 3-polyhedron
($,G). We shall now discuss the corresponding combinatorial concept.
The first order (or simply) barycentric subdivision (E,?,i) of
(G,P,A) is a 3-polyhedron derived from (G,P,A) as follows.
(1) Every édge of G is subdivided by a new vertex into two edges.
(2) For each boundary B of (G,P,A) there is 'a new vertex.vB and
six new edges joining vy to the six vertices VisessVg of the
‘subdivided boundary B' (as illustrated in Figure 3.4.1).
We shall denote the resulting graph'a.

(3)'»The rotatioh system‘E‘é {6; | v eVEE)} for G is such that

| Pvcl3V for every v e E(G); ~Pcs(a.) =a. for V=g, 1<ix<é6
and sbme 8 eZZ and finally P6 ﬁbi.-i) =a.i 56 (a.) =b. for
1 <i <6 and suitable & eZZ wh;re a, sb; are asllllustrated
in Figu;e 3.4,1.

(4) We choose A :Ef&)-*Zz'in order to obtain the bodnda;ies

(ai’bi’ai-ri) for 1 31.26,

It is easily seen that X(E) = A(e) for every e ¢ E(G), wheié e is
™

~

the path in G resulting from subd1v1d1ng e. Thusd a cycle or 2- 1nf1n1te

_path C in G 1s two-sided -in - (G, P ,A) if and only 1f the subd1v1ded cycle
or path C is two-sided in (E ; :) Moreover, it is easily seen that we
get the sides C( 1) of C from the sides C( ) of C by subd1v1d1ng each

boundary B<:C( 1) as illustrated in Flgure 3.4.1. It is easy to see
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that there is a canonical monomorphism Z:Aut(G;P,K)->Aut(E;$,X)
assigning to each automorphism Y’eAut(G,P,K) the automorphism Z(y) =

Y € Aut (G,P,X) which is defined by Y(v) = y(v) for all v eV(G) and

;(VB) = Vg if y(B) = B', where B and B' are any boundaries of (G,P,A).
Let us be given a discontinuous homeomorphism group of the 3-polyhedron
(8,G) with the boundary tour scheme (P,A}, let (S,E) be the barycentric
subdivision éonstrucféd in Chapter 2; 53 and let (ﬁ,X) be as constructed

above. Suppose ¢ and  are the canonical monomorphisms from I' into -
L

—

Aut (G,P,A), respectively, Aut(a,s,i) then @ = & °od. -

—

The n-th order barycentric subdivision of the 3;poT§ﬁédron

-
-

(G,P,A) is the 3-polyhedron (E,?,X) obtaineg/by/ﬁ successive applications

of a (first order) barycentric subdiyiéfgh to (G,P,A).
,/

///44
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CHAPTER 4. AUTOMORPHISMS~ OF PLANAR 3-POLYHEDRA

—

e

7

///Tﬁe}e are simple examples of infinite trees which show that in

general the automorphism group of a locally finite cbnpectedagraph

G may be uncountable. In fact, Halin [12, Theorem 6] shows thétb

Aut (G) is ﬁncountable if and only if for every finite FcG there is an

automorphism ¢ éAut(G) - {1} such that ¢(v) = V<fb£ all v gV(F%,ﬁThenk
7/

1

in particular, for each finite subgraph thefe are infinitely{many
automorphisms fixing it. Yet this cannot occur in the automo;bhism
group of a 3-polyhedron, in fact, of an arbitréry polyhedron, due to
the structure imposed by the boundary tour scheme. It follows from
Proposition 4.1.2 that any vertex can be fixed by only a finite number
of elements in Aut(G,P,A). Thus Aut(G,P,A) is countable since V(G)

is countable.

In section 1 of this-chapter we discuss the fixed vertices and
fixed edges of Aut(G,P,A). Amohg other things we show that the sub-
graph induced by the fixed edges of an automorphism is regular of
degree 2 and th§t an orientation preserving automorphism of finite
order of a planar 3-polyhedron contains at moét two fixed vertices.

In section 2 we discuss‘automorphisms of infinite order and
orientation preserving automorphisms éf finite order of .a plaﬁar.
3-§olyhedron (G,P). We distinguish exactly two types of autemorphisms.
of infinite order. The first type could appropriately be described

as translations and reflected translations and the second type as

contractions and reflected contractions. An object o of type one is
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3

distinguished from an obJect B of type two by the. ex1stence of an
"o 1nvarlant 2- 1nf1n1te and two- 51ded path We shall show that 1f a
is of type one there is a countable d15301nt collectlon of a- 1nvarlant

two-sided paths (see Theorem 4.2, 17) On the other hand Af B is of

type 2, then there 1s a countable collection of d15301nt and "concentrlc" )

cycles on which B acts transltlvely (see‘Theorem 4;2.9) - The f1n1te
order orientetion preserving eutomdrphiSms can be approprlately named
rotations (see Theorems'4.1.14 and 4.2.20). | |

In Section’S we restrict'our attention'to auiomorphisms of a
spec1al kind of planar 3- polyhedra (G, P), namely 1nf1n1te polyhedra, K
in which every cycle has one f1n1te side.  Such polyhedra can a]so be
considered as simplicial complexes induced by their boundaries, and are
!therefore "Ebene Netze', as defined by Zieschang (see [28, p.55]).
The algebraic structure of anf subgroup ' of Aut(G,P) with compact
'fundamentai donain (that is, groups for which there is a finrte maximal
collectlon of boundarles of (G,P) which are not F equlvalent) can be
determined by first obtalnlng a canonlcal fundamental domaln (see
Theorem 4.5.4) and then using it' to derive a set of generators and
defining relations for T (see Theorem 4.5.5). The canonlcal fundamental

_domains‘alsO are essential for the proof of Theorem 5.5.1.
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§1. FIXED VERTICES AND EDGES OF A SUBGROUP T OF AUT(G,P,))

In the following we l,\hshalll make a few simple observations rabout' the
‘set of fixed vertices and edges .ef‘ a subgroup T of the automorphism group
of a 3-polyhedron (GA,E_,)\-). If H is ;a graph aﬁd A is a subgroup of
Aut (H); respectiveiy Y eaAut(H); then we shall call x eV (H) uE(Hj a
: fixed vertex or a fimed edge o‘f A, re.spectively vy, if §(x) =x. for
“some § eA-{1} , respéctive'ly Y(X)’_" X.

Assumptioné 4.1.1, vTﬂroughout this section we shall assume that
- (G,P,}) is a 3-polyhedron and I' is-a subgroup of Autﬂ(G,P,)\) meeting the
following dconditioné: . | o

(1) If yel fixes the edge e, then it also fixes the vertices

\;\‘; .
BN .
X,

@ 1 yef: fixes a boundary B of (G,P,A), then y=1. \\(/

incident to e; and

‘These assugptions ére made in view of Theorem 2.4.1 and Corollary 4.1.34

N

el

PROPOSITION 4.1.2. Let vy ¢ Aut(G,P,A) and let y(v) =v and y(e) =e

2

for sonie v eV‘(G) and all e eEch)' _Th'eri‘y’ -1,

'P'I;oof, In o;‘der t‘o show that y(u) =u for all ue¢V(G) we first prove
‘that 1f ub;and w‘age adjacent, y(u) =u and y(e) =e for all e eEu(G), then
"Y(w):w and y(e) =e for all.ve eEw(G).‘ To see this let iG(e) = {u,w} and
let {e,el,ez} be the edges of a boundary so that ueiG(eI]. Now Y

fixes u,e, and e and therefore also €y Thus y fixes w and the edges

1

N €,,e éEw(G). It follows that YPWY_’ = Pw, and therefore y(e) =e for all

e e_‘Ew(G‘). The conclusion follows by induction on the distance from v. 0
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COROLLARY 4.1.3. If Y ecAut(G,P,A) fixes v and e eEV(G) and 1f

-1
Y2,V =Ry, then Y= 1.

COROLLARY 4.1.4. If yeAut(G,P,A) fixes ecE(G) and ue iG(e),

then Yz =1,

Proof. We have YPuY—l = Pfl , where ue iG (e) and € ¢ 22 so that
YZPUY_Z = Pu. By Corollary 4.1.3, Y2= 1. 0O

COROLLARY 4.1.5. If o e€Aut(G,P,X) has infinite order, then <o>

has no fixed vertex or edge.

For yeT - {1} we shall define SY as the subgraph of G induced

by all edges which are fixed by ¥..

PROPOSITION 4.1.6. If SY:tﬁ-, then it is a regular subgraph of

G of degree 2.

. . -1_ -1 .
Proof. Let e eE(SY) and uelG(eo). Then -YPuY -Pu since Y #1.

Hence, if Pu= (eo,el,...,en_ 1), then Y(e'i) =e for 1<i<n-1.

By Assumption 4.1.1,(2) Y does not fix any boundary of (G,P,A).

Therefore n is even and Y(en/zj =€ /0 B}
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PROPOSITION 4.1.7. If 5 and S, have a common edge, then Y, =Y,.

1 T2
‘ . S R
Proof. Let eec E(SY:L) n E(SYn) and v e 1G(e). Then YinYi = PV
| , -1 _
so that YIYZPV(YIYZ) L c PV and Ylyz(e) = e. By Corollary 4.1.3,
YiY, = 1 and thus Y] <Y, by Corollary 4.1.4. [ ,‘4/

 COROLLARY 4.1.8. If v,§eT -{1},y 26, EV(SY) = {bl,bz} and

- ,€
E,(Ss) = {al,az}, then (a,b b,)<P_, where € 622.

1°%°
PROPOSITION 4.1.9. If C is either a two-sided cycle or a 2-infinite

two~sided path and C is contained in SY , then SY = C.

Proof. Let veV(C). Then YPVY_1 = P;l and therefore Y changes the

sides of C. Thus SY = C since every vertex in SY is fixed by v. 00

For the rest of this section let (G,P,A) be orientable and A(e) =1

for all ee E(G). Let VA’ respectively Vg , denote the set of fixed

vertices of the subgroup A c Aut (G), respectively § ¢ Aut(G) - {1}.

LEMMA 4.1.10. Let vye I'-{1} and VEVY. If Y is orientation

reversing, then ve V(SY).

: -1 -1 .
Proof. Let PV = (ao,...an_l). We have YPVY = Pv , Since

Y is orientation reversing. Thus if Y(ao) =3, then Y(ai) =2 _j
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for 0€i<n-1, where the indices are calculated modulo n. No boundary

is fixed by vy so that for some j we have Y(aj) = aj, that is V'eV(SY). O

COROLLARY 4.1,11. Let Y eT - {1} and szﬂ. Then Yy is orientation

reversing if and only if SY::ﬂ.

Proof. The “only if" part follows from Lemma 4;1.10 and the "if"

part follows from Corollary 4.1.3 and Proposition 4.1.6. O

COROLLARY 4\.”1».12. Let yeT -{n}. If sYz g, then V(Sy) = v<Y> .

Proof. By Corollary ﬂil.4'¥ has order 2. Hence V<Y> = VY.
Clearly we have V(SY)<iV<Y; but, on the other hand by Lemma 4.1.10 we

have'V<Y><:V(SY). O

- Thelfollowing lem@g,éhali'be used frequently throughout the rest

of Chapter 4. For Lemma 4.1.13 we shall make the following assumptlons
Let H 1<ic<2, be a cycle or a singleton vertex of the planar ;Hyljg
hedron (G,P) and assume that V(Hl)r1V(H2) = . Let H be the subgraph of

G between H, and H. which is defined to be H! nH!, where Hi is the side

1 2 T , 172
of Hi containing HS-—i’ if Hl and H2 are cycles, or the side of Hi con-
" taining HS-—i if Hi is a cycle and HS -3 a vertex, or G if HI aﬁd H2

are both vertices, Let P be a shortest path joining any vertex K

V(Hl) with any vertex v sV(Hz).

2

x
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LEMMA 4.1.13. Let Hl’HZ JH and P._be as descibed above. Let

a €T - {1} be an orientation preserving automorvhism of finite order -

~such that a(H;) = H;, for 1<1<2, Then Hz = H- (Hj vHyu {a;(P) |

0<is<laf -1}) is not connected and has no ol {nvariant component,
for 1<i<|al -1, where |ol Zs the order of a. <0> acts transitive

on the set of components-of Has.

Proof. Suppose the statement is not true. Then we choose H,

and H2 to be vertex disjoint. and of minimum distance apart so that

Hi’ 1<i<2, is fixed by some orientation preserving automorphism

a el ={1} but such that t}&re is some al-invariant component in HS
with 1<i<|a]-1. In view of Assumptions 4.1.1 there is no fixed
edge of <a> in G.

We claim that if x €V(H UH,UP) is a fixed vertex of <a> , then

2

X e\.’(H1 UHZ). Moreover, if x eV(Hi) then Hi consists of x alone.
To prove this claim suppose x € V(P) -V(H1 UHZ) is a fixed vertex
of a" 21. Without loss of generality we may assume there is no other

fixed vertex of <a>,on the path P1 = ny joining x with y eV(Hz.].

Now x and H2 are of shorter distance than Hl and H2 and are both fixed

by a”. Let us define H* and H* for H* = {x},H,,P.,0" similar to H
3 1 2’1

and H for Hl’HZ’P ®. It follows that H* > H, H’g is not connected and

no component of H* ?fs\,a/»-smvanant for 1<i< |0Ln| -1. But this
contradicts the fact that H is a 1—1nvar1ant and a subgraph of H3

Now assume that x eV(Hi),-is a fixed vertex of o and assume Hi is

a cycle. Since a” doesn't interchange the sides of Hi it follows that

’

a” is the identity which is a contradiction. This proves the claim.
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Now consider the g-invariant subgraph K generated by Hl; H2 and p,
It is .easy to see thatrK is 2-connected. Let e be an edge of HS' By
Theorem 3.3.9 there is a cycle C in K separating K from e and it Ais‘ easy
to see that C=H, and Csz. Let C" be the side of C containing e and
C' the side containing K. Thus C = Hl(u,ai(u)) UHZ (V;di(V)) u PUOL%(P)’
for some ai #1, where u and v are the endpoints of P on H1 and HJ.

Since a fixes H, and is orientation preserving it follows that a (C'") c

C*' for all diz 1. it-is’ easy to see that o acts transitive on the set

kil

of components of HS' g

THEOREM 4.1.14. TLet (G,P) be planar and let y T ={1} be of

finite order and orientation preserving. Then VoS Veps and IVYI <2.

Proof. As a first step, we shall prove that VY = V<Y> and IVYI €2

in case VYzﬂ. It is» clearly the case that VY CV<Y> .  Now suppose

ueV, and v is a vertex in V<Y> -{u} nearest to u. Let Q be a shortest

Y
path joining u and v. It follows that V(Yk1 Q) nV(YkJ (Q) = {u,v}

and E(Ykl(Q)) ﬂE(YkJ (Q)) = # whenever Yk1 iYkJ and v eV k. In order
to show that v eV, consider the graph H_ =v {YkJ (Q 1jell. It is
2-connected and by Lemma 4.1.13 none of the components of G -Hk is

Yk-invariant. ‘We note that Y(v) eV_j - {ulcVv__  -{u} . Hence
Yr <y>

Y(v) eV(Hk) and by choice of v, y(v) = v, that is, v EVy.
By Lemma 4.1.13 none of the components of G —H1 is Yl—invariant, where

p. Thus V, ={u,v} = v_.

i . .
Y o= l_and it follows that V(G -Hl) nV< > Y

o
This concludes the first step.
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In fhe second step we shall show that V<Y> = @ if VY = @.
Assume VY § but V zﬁ Then let i be the least positive integer so
‘that V’eVYi for some v. Then i=>2 since VY - ﬂ: From the first part
it follows that i <2 since v,y(v),...,yi _l(v) are distinct members

of VYi. Hence i = 2 and {v,y(v)} = VY2 = V<Y2><:V<Y> . We claim

that V =V . Suppose W =V z B, Cleariy <y> has

<y2> T ey <y> <Y2>

even order since <y2> # <Y>-' Then there is a smallest odd positive
integer j, ?55 s'y!;-l, where |y| is the order of Y, so that Y (u) =
u for'uggvyj. We have u)Y(u),...,Yj (u) are fixed by Y In yiew
of the first part there are distinct integers k,7, where 0<k<l<j-1

1-

so that Yk(u) = YZ(u), that is, vy~ k(u) =uand 1<7-k<j-1. Now

7 -k is odd as u ¢V but -k <j, a contradiction to the choice

<y2>
of j; Thue we have proved that V<Y> = V<Y2>'

Since G is 3-connected, K = G -V<Y> is connected (see Proposition
1 3.2.3). By Theorem 4.2. 12 K contains a y- 1nvariant cycle C which

~

contains no fixed vertex or fixed edge of <Y>. We shall now show
that Y interchanges the sides of C and therefore is orientation re-
versing by Corollary 3.3.7 which contradicts our original assumption

~about Y and thus 1mp11es that V =0. Suppose v_and Y(v) are on

_ <y> <;\
the same side, say C', of C. Without loss ofkgenerality we may assume
v is nearef to C and join v to C by a shortest path Q.

), R @) nE P @) = 8 in case

Then V(YZi(Q))fWV(YZjCQ))

Y?%‘zyzj. By Lemma 4.1.13 no component of ‘H = C' -(U{YZJfQ) | jeZ 1)
is Yg;invnriant;' Hence Y (V) ¢V(H)[ It follows that Y(v) = v, that is,

V'eyY whichigs a contrediction. O
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COROLLARY 4.1.15. Let (G,P) be planar and let Y,6¢T - {1},

where 8§=Y. Then }V(SY) nV(SS)! <2.

 Proof. LetU = V(S) nV(Sg). I£ U $ §, then UcV y, ¥8=1 and
v8§ is of finite order. Moreover, since y§ is orientation preserving

it follows from Theorem 4.1.14 thét lul < [VytS( <2. 0

N
NS
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§2. AUTOMORPHISMS OF INFINITE ORDER .

- The speéial case of the following Lemma when o has infinite order

is due to Halin [12,p.268].

- LEMMA 4;2.1; Let G be a comnected and locally finite graph and
assume that <o> , deAut (G) , has no fixed ve:teo: or fizxed edge in G.
Then there are n, n=1, pairpise disjoint grqphs Ho,...;Hn__1 so that

(1) a(Hi) = Hi'ﬁl for all iel (whqre the indices are chosen
by using»préper modulo arithmetic) and

\{2) H; s a eyele i} o has finite order and a 2-infinite path

otherwise.

Proof. We select a vertex u € V{G) which minimizes f(x) =

. {
min {dG(ai(x},aj(x)j,Iai'#aj} . We know ﬁ(u) >0 as <o has no fixed
vertex. Since a acts transitively on'{di(u) | i eZ}, for some n>0
there is a path L of length f(u) joining u and dn(u) = v. We claim
that ifiai roj, then ai(L) and aj(L) have no common edge and meet éach
other at most in terminal ﬁertices. Tb pfove this we suppose
X eV(ai(L))fWV(aj(L)) -ai{u,v}; Then'{x,ai"j(X}}<:V(di(L)) —ai{u,v}.
Siﬁce <a>‘has no fixed vertex, x:tai"j(x) so that f(x) <f(u) which is
a con£radiction. VIf Gi(Lj and‘aj(L) had a common edge e, then they
would eithér have a commén non terminal véftex or <d>-wou1d have a

o

\v{fixed edgé e both of which are impossible.

The terminal vertices of ak(L) are dk(u) and ak'+n(u). Hence,
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e

if oF 20X and VX (1) nVZ 1)) 28, then of <X T or oF gF T,
in view of thé fact that <d> has no fixed vertex. It follows that
H, = U{ai +nZ(L) A Z}; 0<i {n, ‘are n pairwise disjoint cycles if
a has finite order or 2-infinite paths if o has infinite Qrder;

Obviously a(Hi) ='H []

i+1’ ,

-

CCROLLARY 4.2.2. Let G be a 2-infinite path and deAut (G) be of

infinite order. Then ‘

(1) there is a positive integer d such t’hat d = f(x) = dG (x;&(){)) |
for all x eV(G) ( where f(x) is as defined at the beginning
of the proof of Lemma 4.2.1)" and ‘(

(2) G =v{cElm),at " 1)) 2 €2} for all x €V(G).

COROLLARY 4.2.3. Iet G and o be as in Lemma 4.2.1 If o has

order 2, then there is an @ -invariant cycle in G.

‘Proof. This follows from the proof of Lemma 4.2.1.-in the way each

H1 is defined. O

THEOREM 4.2.4. Let (G,P) be a planar 3-polyhedron, let a eAut(G,P)
be of infinite order and let K be an a-imvariant connected subgraph of G.

If Ho" . .«,Hn are n pairwise disjoint, two-sided, 2-infinite paths in K

-1
such that {H.) = Hi+1 j‘ozj 0<i<n-1, where Ho = Hn’ then n<2,

o

5
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Proof. There is some H with the property that one of its sides in

1Y

{(G,P) contains H
lection Ho’ ‘.. ,l% -1 each Hi has this property.: JAssume n>3. We

~ouH 1' and since g acts transitively on the col-

choose Hk and Hj such that dK(Hk,Hj) is minimum. Let‘Hm;é}[}( or Hj .

As Hi is o '-invariant for 0<i<n - 1 and Hm doesn't meet any shortest
path in K betﬁeen Hk and Hj it follows from Lemma 4.2.12 that Hm is not
between H and Hj; - Thus either H and HJ are on different sides of

Hk or Hm and Hk are on d‘ifferg;ﬁt sides of Hj both of which are contra-

dictions. O - o

LEMMA 4.2.5. Let‘.(G,P,’)‘ be a pianaf- ?;—polyhedron and T cAut(G,P) -
| bé c'zq subgroup satisfying Asswmptions 4.1.1. Let aeT - {1} be orientation ~
preserving and let K be an o-imvariant conmected subgraph of G con- —
taining no fixed vertex of <o> and with tké property that ‘the subgraph

of G between two cycles of K belongs to K. If Ho""’Hn _q1 are pair-

wise disjoint cyecles in K such that a'(Hi) = H ;1 for 0<is<n-1, where

H =H, and if a =21, then n<2. :
7»
P

Proof.  We claim that each Hi has the property that HOU,. ..U Hn -1

," is on) one side of =Hi' . Suppose Hi’Hj and Hk are distinct and I-Ii and Hk |

are on distinct sides of H.. Let Hi be the side of Hi which contains

R

It

) j-i k-1 = 1€ j-iHl
Hj and Hk We note that o (Hi) Hj and o ,'(Hi) Hk , o (.i)‘

is contained in Hi or ock (H,{) is contained in Hi" then o has infinite

order. If on the other hand al” 1(H'i) and ok

ak N 1r(Hi) contains ol ~ 1(‘Hi) so that ak

) 1(H!) contain H., then.
- i i

) (H;) contains H}. Thus o has’ )

’
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infinite order. If o has infinite order, then hy Corollary 4.1.5 there

’ o s k . : L . T g
are no finite o -invariant subgraphs for all k=0. This contradicts-our

assumption that c-;n(Ho,)' = -Ho and esta‘t;lishes the claim.
' We‘ now ‘claim that n <'2¢' To prove thlS letd = d ( Z) =

min {d (H H ) [i=] } and lét L be a path of length d joining H and HZ

in K. We note that Q U{H - (HkUHZ) ] 0<i <n -1} 11es between Hk and

Hy, and V(Q) nV(vla MLy | j ez}] §. We recall that o (#;) = B for
n

0<i<n-1and that ¢ =1.. Let M be the o —1nvar1ant subgraph con-
‘_taining Hk,Hi- and L and let H be the s'ubgraph of G between Hk and HZ
By Lemma 4.1.12 no component of H-M is an-invariant, contradicting

the ‘fact thatrH.1 lies between Hk and HZ and is connected and an-in‘—

variant. 0O

PROPOSITION 4.2.6. Let G be a connected and locally finite graph
_and let © € kut(G) be of infinite order such that <0> has no fixzed
verteéx in G. If Hy and H, are 03(-~invariant 2-infinite paths, where

k=0, then they are ¢ofinal.

)

Proof. Let L be a shortest path Jomlng a vertex u. e V(H ) with

1

a vertex u, € V(H B L consists of a smgle vertex if V(H )n V(H )iﬂ.

Slnce <a> has no fixed vertices, o (L) and OLJ (L) are disjoint when-
ever i#j -and thus any f1n1te set of vertlces is met by only finitely
"many of them. Thus any 1-infinite subpath of H1 c'ontfaiqing' [ Zk(ul) |

120} is cofinal to any 1-infinite subpath of H containing'{a Zk(u2)|

2

7>20} The same holds for the 1-infinite subpaths of H1 and H2 con-

i

J
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taining {aZk(ul)l 140}, Ilespectiy/ely,' {aZk(uzj | 2¢0}. Therfore Hy

and H2 are cofinal., [
o ,

-

PROPOSITION 4.2.7. Let (G,P) be a planar 3polyhedron and o cput(G,P)’ .
be ‘of‘ infinite order.ﬁ If f‘o_zj- sdine ﬁon-_zero integer k tHere is an |
dk-invariant,- twk;—sifded 2-72nf‘71n72te path in G,' then every an-invaria'nt;
n ::0,» 2-infinite path is two-sided. | p .
' ) ;/”

Proof. We‘note that ai(x) zaj(x) if i 2J aﬁd x¢ V(G). Let H1 be
an ak—inQariant; two-sided 2-infinite path and Vl-,lz be an oM-invariant

2-infinite péth.‘ Now H1 and H2 are‘ cxnk—invariqnt_ and thus cofinal.-in G

by Proposition 4.2.6.. Hence by Corollary 3.3.16 they are-both two-sided. (

LEMMA 4.2.8.  Let (G,P) bé ;z planar 3-polyhedron and let o eAut (G,P) -

be of inf?fnite order. If for every ke Z - {0} thereis no ak—invariant,
2-infinite and two-sided patﬁ, then there is a cycle Bc G with sides B'
and B" which has th.e property that for ebery finite suégragh L of G there
i8 aq positive integer i so that'u{aj SIBE -io} 18 contained in some .
component of B" -L and U{aj (B) | j zio} i8 contained in some component

of B'-L .

* Proof. By LCemma 4.2.1 and Proposit_ic;n 4.2.7 there is a positivé
integer n and pairwise disjoint 2-infinite, one-sided cofinal paths

where 0 <i<n-1 anti H0=H .

H,...,H »

o n-1
Because Ho is one-sided, by Theorem 3.3.13 there is a cycle B ip G

so that oz(H.l) = I-ii +1°

!f

o



" and B"-L contains the l-infinite path Ho(a'-Jvo(v),of T ®),...) = Hy

89.

with sides B' and B" so that if L is a finite subgraph of G containing
N ' ' 3 et m B
B, then B' -L contains the 1-infinite path Ho(a o(v),a ° v);... )= H

...Jo -1

‘where v eV(HO) and j'o >0. Let K be a finite connected subgraph of G

n

cd'ntairiiﬁg B and {v,a(v) , S0 1(\/)}. Since o has infinite ,ordef, by

FS

Corollary 4.1.5 there is an iozjo such.that a" (K) nL = # for |il Zio.
Then {a'(K) |121}uH! and u{a™(K) |is -ic}d HY are connected subgraphs
of B' - L, respectively B"-L, and contain’ U{dlv(B) [i2 io} , respectively

u{cx?(B) | i-s-i'o}. O ‘

THEOREM 4.2.9. Let (G,P) be a planar 3-polyhedron, let & eAut(G,P)
be of infinite order and assume that for every k e Z- {0} there is no
2-infinite, two-sided ak—invariant path. Then for suitable k >0 the

k-th order barycentric subdivision (E , E)\ of (G,P) contains a p'airzf)ise

disjoint collection {Ci} i € 7} of cycles with the following properties:

(1) <f i <j <k then CJ. separates C, and ék s and

(2) a(C,) =C;,, forall icl.

Proof. By Lemma 432.8 there is a cycle Bc G with the sides B' and

B" which has the property that for every finite subgraph L of G there

is a positive integer io such that u{c? (B) Ij s—io} is contained in some
component of B" -L and u{a? §:)) lj Zio} is contained in some component

of B'-1L.

-

We now claim that o’ (B) $B" for every positive integer j. To prove
the claim let L = B and io~bé chosen accordihgly. Now suppbse that
NS . ® X ’ ‘

o’ (B) ¢B" for some j.>0. Then o’ (B") o (B) for i s-i_+j. It follows

h

!
o



~ that. dj (B") c B" énd therefc;re'c,.ij (B) cB" for 'evei'))r positive integer m
whAi,chA is a cont{;’@diction':: This proves the claim.

Now consider I = {i> O‘“]ai (B) ¢B'}. By the preceding claim,
|V(di(B)) nV(B)| 2 for every i éI..‘ By Corollary 4-.1:5 I is finite.
Moreover, K = u{di (B) | ieI}uB is a ‘finite 2-connected subgraph of G.
-In view of the choice of B and of Theorem 3.3.9 there is a cycle CcK
and an integer k.o with the. Rrope’rty thaf C As:apvzirateé_"K"fﬂ)m di (B) for
i éko. Let C' and C'" be the sides of C and as'sume‘ that K is cénta_inec\iK
in C' .gnd ai (B) «C" for i Sko. This impli;s that B' c(C"',

We now claim that a(C') <cC'. To prove this we riote that C <
" ulod (B) [0 <i <n} for some n, ol (B) <K if 1T and al(B) cB' if i30
and i ¢I. - Hence U{di (€ |i=0}ec U_{ai (B) |i=0}e C' and moi,'eover.
liJ{Of.i(C) I'j sko -n} cC". It follows that q(C!) <C' since otherwise
'a(C‘)"DC",D U{OLi (C) | j S”ko - no}, that is, C'> 'u{aj‘(C) | 3 skov- n - 1}
thch is impossible. This proveé the second claim.

We now claim that for some non-negative integer n, the n-th order
barycentric subdivision (6,5) of " (G,P) contains a cyc.ie H with thér
properties

(1') H and a(H) are edge disjoint,

(2") () is in one side of H, and

(3') oa(H') cH' where H' is the side of H containing a(H). -
~ To prove this take C,C' and C" from above and assume C and a(C) are
nof edge disjoint. Then we shall detach C and a(°C) at their common
edges as shallﬂ\ be dégcribed n\ow. Define an order relation < on E(C)

by defining y <x if dl(x) = y for some i >20. It is clear that this

s
i
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relation is reflexive and transitive., By Corollary 4.1,5 it follows

that it is_&hti-symmetric. For each maximal e € E(C) define m to be
# -, :

pE— i . 3 T .
the largest” iagégér i for which a'(e) €E(C). Let E* = {e ¢ E(C) | ¢ is

s

‘maximal and m, > 1 }and let m = maX{me +1 }eeE*},

For e.¢E* let iG(e) = {ue;ve} and let Be be the boundary in C"
which contains e; ~Without loss of generality we may assume that Be )
and C, respectively Be ?nd,E*, have at most one coffimon edge: If not
we subdivide (G,P) barycentrically to obtain this property. (See
Chapter 3, 545. Lgt:(ﬁ,ﬁ) be the m-th order baiycentriclsubdivision'
of (G,P). For each subgrapth of G let E-denoée its subdivision in G.
Mofeover, let Fe denote fhe side of ﬁe not contéining V(G). It is easy’
to see (by.induction on the order of the subdivision) that'for every e €E*
there are at least k‘= me:l paths P?; 0<ic<k-1, with‘the following
propérties: _

e . . 3 . .
F ich u 3
(a) Pi is a path in o thQP joins u_ and V.3

(b) V(P‘;) n‘V.(P;.e)- {ue,ve}«-‘?flor i#3; ' :

() V(P;) nV(ﬁg) {ﬁe,ve} ; and ,

(d) i<j if and only if Rz CR§,,where R:‘is‘the side of e u;:'

which doesn't contain Fe.

We note that ai(Be) cC" whenever di(e)‘eE(C) for some e €¢E* and i 20
or else C" Cai(C") €C', which is impossible. Fof eéch‘e‘eE* and i, where
0<i<m_, we substitute the subpath a’ (&) of € by o' (p9) if and only if
ai(e) €E(C), (for an illustration of the case m, = 2, E* = {e} see the
Figures 4.2.1 and 4.2.2 ) and it is easily seeﬁ that the resulting cycie

H has the property that H and a(H) are edge disjoint and a(H) is not
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séparated by H. Moreover, if H' is the side of H containing a(H),

then a(H') cH'.

e l ) Otz(e)

- . figure 4.2.2

ey

-1 N
We now claim that for some nonnegative integer n the n-th order

barycentric subdivision (G',P') of (G,P) contains a cycle H so that
(1) H and o (H) are vertex disjoint, and
(2'") o(H') <H' where H'.is the side of H containing a(H),
By the third claim we may assume that the cycle C and a(C) of (G,P)
constructed originally are edgé disjoint. Let C' and C" be thé sides
of C and assﬁme a(C')cC'. IfC and a(C) are not vertex disjoint, we
shall detach their common vertices as described below. We define a
paftialpofder on V(C) similar to the one defined on E(C) in the third
claim. Let V* consist of all minimal Verfibesvof V(é) wﬂich aré con-
tained in some chain of length at 1eastvtwo. Thus for any ;qsv*,
a(v) eC'-C. Let (G',P') be the first order barycentric subdivision

of (G,P). We denote the resulting subdivision  of C,C' and C" again
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by C,C' and C". Let veV* and let NV be the set of vertices in C"
.. - B, '
adjacent to v. It is easily seen that NV induces a path L which meets

C in its endpoints u,w only. Moreover, V(G(leJa(L))ITV(L) = @ since

a(v) eC' -C. Thus by substituting the path Cu V.ow with L we obtain a

» . 27

which doesn't separate a(Hl) and satisfies (2!") and H1 and

B

1

a(Hl) have fewer common vertices than C and a(C). By repeating this

cycle H

separation procedure a finite number of times we‘%inally obtain the
desired cycle H. We define Ci = al(H) for i e Z. It is immediately

obvious that the collection'{Ci'li‘éZ } satisfies (1) and (2). O

NOTE 4.2.10. Let (G,P) be a planar 3-polyhedron and let o eAut (G,P)
be of infinite 6rder. Assume there is a collection of cycleS’{Ci]‘i ell
with the properties (1) and (2)'of Theorem 4.2.9. ’It is easy to see
that for suitab{e‘m thé m-th order barycentric subdivision (E,sﬁ'of%\/
(G,P) cdhtains disjoint paths Li meeting E; and 6; [6; is the indﬁced - é}
subdivision of Ci]‘bnly at vy and d(vij fof 1<i<2. Now let H, be the .
smallest a-invariant subgraph cqnta{ning Eo’Ll and L2. (See Figure
4u273)- Let T = <d>;‘ It is easy to see-thapr_satisfies Assumptions

1
5.2.10,(1),(2) and (3). Morebver,fHAcan be drawn in the plane punctured

~

through the origin O to yield an isomorphic Fz—invafiant (R2-4{0})—graph

t

- a(l2) j[ : ;,LZ v,

figure 4.2.3
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r~ - .
H2 (where F2 = <0> , respectively <o0> depending if @ is orientation pre-

- serving or orientation reversing, and 0,0 are the mappings defined on

p. 13 ) such that conditions (4) and (5) of Lemma 5.2.12 are satisfied.
These observations are 6f basic importance in the proof of Theorem

5.3.1.

CCROLLARY 4.2.11. Iet (G,P) and a be as in Theorem 4.2.9.
Then for suitable k 20 the k-th order barycentriec subdivision G,P)

containstvza-invariant; one-gided 2-infinite path.

LEMMA 4.2.12. [Let (G,P) be a planar 3—p01yhedron.and a € Aut (G,P)

be of infinite order. Let H, and H2 be disjoint o-invariant, 2-infinite

1

‘and two-sided paths and let H be the subgﬁgph of G between Hy and H,.

If P is a shortest path joining any vy eV(Hl): with any v, eV(Hz)
then no component of Ho=H- (ular (P) | ie Z}UHllJHZ) is al-invariant .

for any i e Z-1{0}.

Proof. Let C be the cycle Hl(vl,a(vl))tJHz(vz,q(vz))ijP;Ja(P).

H1 and H2 are two-sided and by Theorem 3.3.13 they are not separated

by C. Moreover, by Proposition 4.2.6_H1‘and H2 are cofinal. Hence
they are on the same side of C, say in C'. Let C" be the other side -
of C. We conclude the proof by noting that al(C”) cC' for every

ieZ-{0}and -U{ai(C")|i€Z}=H. ‘D’ ‘ ‘ )
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~

THEOREM 4.2.13. Let (G,P) be a planar 3-polyhedron and let

ael -{1}c Aut(G,P) where T satisfies Assumptions 4.1.1. If a hasy‘
finite order then let o be orientation preserving. Mbreover,ras§umgv
K is a connected, a-invariant subgraph of G with the propérty that the
subgraph bf'G'between aﬁy tﬁo cyeles or any two two-sided 2-infinite
'vpatﬁs belo;gs to K. If a has infinite order and K‘céntainé an ak—in—
varianf k =0), ZQinfinite two-sided patﬁ, then it has dﬁ\@;invariant
one. If o has finite order anﬁ there are no fired vertices of_<ﬁ> in

K , then K contains an o-invariant cycle.

Proof. Con;idering the two cases simultanequsly we assume that K
doesn't have an a-invariant 2-infinite'path in case o has infinite érder
and has no o-invariant cycle if a iékof finite order. ‘Bnyemma 4.2.1,
Theorem 4.2.4 and Lemma.4.2.5, there are two_disjoint subgraphs Ho and

Hy of K satisfying the following conditions:

(1) D= dK(HG;Hl) is minimum among all pairs satisfying (2),(3)
and (4) below;

(2) d(HO) = H, and a(Hl) = Hé;

1

(3) Ho and H1 are disjoint 2-infinite paths if o has infinite

order; and

2

4) Ho and H, are disjoint cycles if o has finite order and azz 1.

1
. 2 : . . . '

We note that in case @” =1 the construction in Lemma 4.2.1 yields an

d—invariant cycle; also see Corollary 4.2.3. Therefore we can assume

az #z1in (4). Let H be the graph between Ho and Hl' H is connected

and a-invariant-and Hc K. Let L be a path.of length D joining u’in Ho
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1
that we choose'Ho;H1 and L such that'dL is minimum,
We claim that if we let A = u{d (Eu(HO) u EV(HI))[ ieZ }, then H-A

with v in H, and put dL = |Eu(H)l‘+|E§(H)|. We. additionally require

contains an a-invariant connected subgfﬁﬁﬁT\\zn order to prove this

claim we consider the subgraph M of:H!induced by E(H) - A and show that

it is connected and a-invariant. Clearly it is o-invariant as H and A
are. Let BH denote the set of all boundaries of "(G,P) contained in H.
Let U,éV(HO) UV(Hl)-consist of all vertices w for which Ew(Hi) <A and

H
W, eV(M) and Q be a path in H joining them. Any -vertex w of U ﬂV(Q)

Then UnV(M) = g. Let

El

1

and its incident edges of A can be replaced by.an edge of M in the

H

cideﬁt to a vertex of U canlbe-replacedvby the other two edges,lsay e

boundarny € B, containing w and any edge e of A in .Q which is ngtgiﬁ-
1
1 éontaining e. ;Moreover el,e ¢A. Thus

wl.and w, can be joined by a path in M. Thatis; M is connected and

‘this establishes the claim.

%,
v

tively, but by Lemmat4 2.1 and Theorem 4.2.4 it contains subgraphs H'
and Hi satlsfylng propertles (2) (3) and (4) Now H' 1,H and H1 are
az-lnvarlant. '‘By Lemma 4.2.11, respectively, Lemma 4. 1 13 1t'follpw5‘
that V(iH!)‘nV(Ot, (L)) 28 for 0<i<1and jel. - Thus by ‘choice of D we
may assume that o’ (u) eV(H') and a (V) eV(H') for all J eZ. Agéin by
the above lemmas it follows that H' separates‘f (L) and E (H ). Thus
Hé separates Ho and Hlf 1

subgraph of G between H' and‘H' it follows thatfH'EQKr1H, (EH)u - .
o 1 -7 770 \5%5 uo

M does not contain an a—invafihnt 2—infinite path or cycle, respec-.

Slmllarly H! separates H ‘and Hl’ If H' is the

-4

s

-
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Ev(Hl))erfH’) = ¢ and E_(H") CE¥(H) for x ¢ {u,v}.  Thus’]EufH')| +
I'EV(H‘)I <d_ which is a contradiction. Th<us. the claim of the theorem
is true. 0 | I |

LEMMA 4.2.14. TLet (G,P) be a planar 3¥polyhedron and let
o € Au;c (G,P) be orientation preserving anci of infinite order. Let
H bé a 2-infinite, two-sided o~invariant path and H' be either one

of the.sid’es of H in '(G',P) . Then V(H") —V(H) 0.

BN

IS

Proof. First we note that H'=zH since H is not a boundary and
that a(H') = H' since & is orientation préservin\g. We claim that if
e ¢E(H') and i (e) = {x,y}cV(H), then d (X,)’) <d (X,a(x)) = d. To prove

this we first note that by Corollary 4. 2 2, d=d (z. ¢(z)) for all
z €V(H). Now assume to the contrary that d (x y) >d (x a(x)). Then
"e tE(H) and wé may assume without loss of gen'erality that a(x) e V(H(x,y))-
{x,y}, a@y) _éV(H(x,'y)). Thus the edge @(e) is on both sides of the
cycle C formed by H(x,y) and e, but a(e) is not on C which is a contra-

) , {
diction and proves the claim.

We now claim there is ra vertex u eV(Hﬁ')' -'V(I.{) and vertices x,y €V(H)
adjacent to u §uch that dH(x,y) de’(v,w) %f'or every ec E(H') with
iG(‘?)V: {v,w} cV(H). We now prove this claim, If there is no edge
e eE(H'") - E(H) such that iG (e)c V(H), then any edge e ¢E(H) is contained
in a boundary B one of whose vefticeg belongé to V:(H') - V(H) and: lour"

claim is satisfied trivially. On the other hand, if there is such an

edge we pick one for which d, (x,y) is maximum where {x,y} = ig(e).
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Now we consider the cycle K induced by H(x,y) ahd the edge e. The
edge e is contained in a boundary BcH!' on the same side of C as H.
One vertex of B is not in V(H) by maximality of dH(x,y) and hence it

is in V(H') -V(H). O

LEMMA 4.2.15. If (G,P),0, H and H' are as in Lemma 4.2.14, then

~ : :
H = H' - H contains an o-invariant component.

Proof. For each component K ofnﬁ let VK denote the set of vertices
on H which are adjacent in H to some vertex of K. We claim that if

N , _
there is some component K of H and vertices u,v eVK with dH(u,v) >

dH(u,a(u)), then K_is o-invariant. To prove %his claim assume u,v eVK
and dH(u,v) >dH(u,u(u)). Moreover, we may assume that g (u) eH(g,ﬁ) -
{u,v}faﬁd G(V) ¢H(u,v). There are &ertices n',v'e V(K) adjacent to u
# 4 EN . : N

and v, respectively, and a path L joining u' ané v! in>K." Let C be the.
cycle ﬁonsisting of L, H(u,v)%gd edges €, and e, joinin; u to u' aﬁq vl
‘to v', respectively. Now,a(eu) and.a(ev) are on distinct sides_of C
and thus the path o (L) joining ¢ (u') to q(v') meets L; Hence.q (K) meets
K so that a(K) ¥;K‘and the claim is proved. £ |

It now suffices to show thét there is some component K of H and

vertices u,v eV, with dH(u,v):>dH(u;a(u)); Suppose theré¢ is no such

K
component. Then let K be a component of H for which the H-diameter
d of Vi in H, defined by d = max {dy(u,v) |u,veVy }.is maximum. We

pick u,veV_ with d = dH(u,v). By the second claim in Lemma 4.2.14,

X
uzv. Let M be the subgraph of H' consisting of all cycles CcH' for
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which CnH = H(u,v). Since M is 2—conﬁected, it follows from Theorem
3.3.9 that there is a cycle C containing H(u,v) and separating M and H.‘
From the second claim in Lemma 4.2.14; it follows that there is a vertex
u' e V(C) - V(H(u,v)) adjacént tou wﬁere e is thé edge joining u and'u'.
Let B be the boundary containing e on the same side of C as H and let
weV(B) - {u,v}. We know w éV(H) -V(H(u,v)) by the choice_ of u and v.
Hence‘B*:ﬁ but B#C. On the otﬁer hand, B and H are on the same side

of C which contradicts the fact that C separates H and M. {1

COROLLARY 4.2.16. If (G,P), %, H and H' are as in Lemma 4.2.14,

then H contains an O-invariant 2-infinite path.

Proof. This follows immediately from Lemma 4.2.1 and Theorem

4.2.13, [

—

THEOREM 4.2.17. Let (G,P) be a planar 3-polyhedron, -let
a € Aut (G,P) be of infinite order and assume that there 1s an og-in-
variant, 2-infinite and two-sided paﬁh.A Théh‘?here 18 a‘collecféon
{H; | 1 €2} of pairwise disjoint, 2-infinite and tﬁo—sided paths with

the following properties:

(1) If o is orientation preserving, then for all ie€Z a(Hi)'= H, ;

(2) If a 18 orientation reversing, then for all iel a(Hi) = H_i;_

and

(3) If i<j<k, then Hy and H are separated by Hj .
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Proof,';ByxThecfemﬂ4.23I3' there iS an d—iqféfié;t, é-infinite §ﬁdii.
two-sided path Ho.,‘Let Hé’and Hg be its Sidégnglf'q iS'biieﬁiafioﬁjvf'
'preserving,lthen a(Hé) = Hé and if a is ofientatioh revergingfpﬁen«.
d.(H(’)) - H7. Inm the first cése put B = o and in thé“séCIO'nd B - 4% :so; that -
B is orientatign‘preéerving and’ﬁ(H;)'?,ﬁébdnd B(Hg) = ﬁg::,

We  now proceed by induction. ‘Suppose we have fouﬂd’fairwiseAdis?; ,
joint, @—invariant,\ééinfinite and two-sided paths'Hél..;,Hﬁ in H&
such”that‘(3)ﬂholds whehever 0<i<j<kgn., In view bf Theorem 4.2.13‘

b Tom

" there is a B-invariant, 2-infinite and two-sided pathfﬁn.+1 disjoint

from Hn which is separated from Hi’ 0 <i<n-1, by Hn' It follows that

"(3) holds for 0<i<j<k<n+1,.

Now consider the collection {Hil i =0,1,2,...}icon$tructed in the
above fashion. If & = B, we similarly construct {Hil i= —{,-2,...}
in H but if B = o®, then we put H, =a(H ) for i = 0,-1,-2,...

It immediately follows that the collection {Hi | 1 €Z} satisfies (1)-(3).0

NOTE 4.2.18. Let (G,P), {'Hi'] ieZ)and i be as in Theorem 4.2.17
“and let Li be a shortesF path joining Hiwand Hi-+1’ for all integers i |
if a is orientation preéérving, respectively, for all nonnegative i's

if o is orientation reversing. It is easily seen that thé pafhs aj(Li)
and ak(Li) are disjoint for j #k. We now consider the smallest subgrgﬁﬁ
H of G which is a—iﬁvariant apdrcontains H, and Lirfd% all i“aﬁa j”
(for illustration see Figure 4.2.4), Letii = <> . By Lemma 4.2.1? o
H satisfies the Assumptions 5.2.10,(1),(2) andu(ﬁT. Moyeoyer; # can be

1 . N . : . . o
drawn in the plane R? to yield an-isomorphic, Tz—invariant Rz—graph PF

- A



2T 101.
t . ¥
e
~ _ .
(where I,. = <T> , respectively <1> , depending if a is orientation

2

preserving or orientation reversing, and T and T are the translation,.
respectively gleitreflection, defined on p. 13 ) such that conditions
(4) and- (5) of Lemma 5.2.12 are satisfied. These observations are of

basic importance in the proof of Theorem 5.3.1.

|
o ‘ a H
N Jv 1
2
%(Lg) (Lo)
- ~H,
a? (L_D)
o— 2 ih%——itl
figure 4.2.4
5

LéMMA 4.2.19 Let H be a cycle and H' be one of its sides in the
planar 3-polyhedron (G,P) . Let a T 4{{} be orientation preserving and
let T meet Assumptions 4.1.1. If a fiies H' and 1f there is ﬁo fixed
vertex of <o> in H' , then Hi-H contains a nonempfy a-invariant

component.

Proof. An edgé e €e E(H") - E(H) with iG(é) = {x,y} cV(H) is called a
ghord of H' and dH(x,y) is called its length. If e;se, are chords of H',
iG(il) ={x,y} and iGtez) = {u,v} , then {*,y]doesn't separéte {u{v} on H.
Mcreover, G has no multiple edges and no edge is fixed by o so that every
chora of H' has length 1e;s than |[V(H)|/2. |

vWe‘partially order‘the chords of H' as follows: e, <e, if

H(xl,yl)c:H(xz,yz){ where 1G(ei) = {xi,yi} and H(xi,yi) is a subpath of



H of 1eng§h dH(xi,yi). Since o acts order preserving the collection C
of all maximal chotds is a-invariant. Moreover Ic] = 0 or [C]:zZ.

If Czp, then C tégether with all paths.in H between endpoints of
di;tinct maximal chor&é forms. an a—inv;riaQ£ cycle k in H'. Leth'
be the side of K not containing H. We know K' cH' and no non—méximal
chord of H' belongs to.K'. Hence K' doesn't have any chords. Since
a(K') = K',‘K is not a boundary and therefore V' = V(K') - V(K) = p.

Moreover, K' - K is connected since K' hasftno chords. Also, K'-K is

o-invariant. Thus, K'-K is an a-invariant component of H'~H. 0

3

We recall that by Theorem 4.1.14, |V<Y>\< 2 where V<Y> is the set of

fixed vertices of <Y> . The following theorem is of basic importance

in the proof of Thegorem 5.3.1.
}

s
s

THEOREM 4.2.20. Assume that the subgroup A of Aut(G,P)

satisfies Assumptions 4.1.1 and let a € A- {1} be orientation preserving

and of finite order. IfV .4 ={ul}, respectively V o5 = §, then
there is a coZZection-fCi |i=1,2,...}, respectively {Ci! iel Y,
of pairwise disjoint a-trwariant cycles with the beZowing‘properties;

=§ for all i.

(1) V(Ci)r1v€a> . )

(2) If Vegs = {ul , then with C_ = {u}'Ci separates Cy

from Ci-*l for ?ZZ ie {1,2,}..}.

] c .
.(3) If V<a>-¢, then Ci separates Ci _q from Ci»+1 for all iel.

Proof. We note that G;—V<a>

Using Lemma 4.2.19 and Theorem
, : 1

is connected since G is 3-connected.

4.2.13 the remainder of the proof follows
>

'

y



by iﬁduction and is similar to. the proof of Theorem 4.2.17. 0O

s

NOTE 4.2.21.* Let_A@andv& be.as ip Theorem 4.2.20. If V<a> =
{u,v} , . then by»Propos%tibn 312.3 G1 =G - {u,v} is connecéed apd‘by .
Theorem 4.2.13 has an Erin&ari;ﬁt cycle K. By Lemma 4.1.13it £ollows
" that u,;ﬁd v aréASeparatéd by.K.‘ Let Lu and Lv bevshorteétkpatﬁs
joining u and v to K and let Hibe f%e smallest a-invariant subgraph
of G containing‘K, Lu anerv. The'Subgiaphs of H in the two §ides“of
' K aré»”wﬁeels" (aSvillustrateﬁ in Figure 4.2.5 ) sinée the only fixed
vertices of @ are u and v. ‘ =
| <1 consider thé»subgraphs*ci c;ngtructea in Theorem

In case ‘V<a>

4;2.i9. We joim C. and C_+_11by a shortest path L;. for all i and

i o1 . ) . ,
consider the smallest G-invariant subgraph chontaining Ci and Li for
all i. We note that'ak(Li) and aJ(Li) are disjoint whenever ak zal”
except possiblf when i = 0 in thch-casegtheir.intersection is contained

in V see Figures 4.2.6 and 4.2.7 for illustration).

<o> (

Now set Ii=<a> . It is easy to see (see Lemma 4.1.13) thgt H1
satisfies Assumptions-5.2.10, (1), (2) and (3) in both ﬁases considered
above. Moreover, it can be drawn on S =/S2 if,rlhaS»two nged vertices}
on'S = SZ—AI(O,Q,I)} if Iihas on; fixed vertex;_land on S{= 82-4{(0,0,1),

(0,0,-1)} if'Flhas no fixed vertex. This produces an isomorphic f;—in-’

~

variaﬁt S—graph_H1 (where r2'= <b6> , with Pg the rotation ‘defined on

p.13 ) such that conditions (4) and (S)wof Lemma 5,2.12 are satisfied.

These observatiens will be used in the brbof of Theorem 5.3.1.
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figure 4.2.5
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§3. GROUPS OF AUTOMORPHISMS OF " (G,P,)) - WITH COMPACT

FUNDAMENTAL DOMAIN - . ; .

Let G = (G,P,X) be a 3—poiyhedron aﬁd’iet I" be a subgroup of
Aut(G,P)A)_satisfying'Aééumptions 4.1.1. We note that barycentric
éﬁbdivisioné of &lagaih satisfy.Assumptions 4{i.1‘and.r naturally acts
on .them @seé Chapter 3, 84). The quotient:graph of G modulo r, de-
noted as G* or G/F’ is ? graph whose vertices dnd edges are the

3

I-orbits of vertices and edges of G, respectively. The incidence

tion i., is defined by setting s (e%) = {u*,v*} where x* is

the T-orfyit containing x for everyAX éV(G)u ETG). G* is connected

aﬁd locally finite and possibl&”has loops or multiple edges. A

loop in G* is caused by two adjaéent vertices of G in the same I'-orbit.
By applfing a first o;dér bafycentric subdivision to G w§ elipinate.
the loops from G* and it is easy to see that another first order bary-
centric subdivésion also eléminates muléiple edges from G*. Hence

we may assume G* has no loops or multiple edges.‘ Let T denote the
canonical projection mapping fromyG’to_G* aésigning to each’veytéx and

s

edge of G its T-orbit.

PROPOSITION 4.3.1. The collection {II(B) | B 18 a bounddry of
(G,P, A} consisting of triangles in G*, called the bqundariés of G%
has the following properties.

(1) ‘Each edge of G* is contained in at least one but no more

than two boundaries of G*.
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(2) At each vertex v* of G* the edges incideut to v* can be

arranged in linear order e*, els--- e; 10T in cyeclical

order (e ,e ,e;_ 1) such that e’i* and e’{ .1 belong to

Toeen
the same boundary of G*, for 0 <ig n -2, respectively
0<i<n-1, where e* = e*, ‘

Proof. The first part of the claim follows from the fact that -

each edge of G is contained in eiactly two boundaries of G. To.prove

(e svese ). If v ¢Vp, then .

2

the second part let veV(G) and PV

no two edges of EV(G) are in the same I'-orbit since no two adjacent
b | ;)
vertices of G are in the same T'-orbit. Hence (e;-,.-.v.- ,—ce; _ 1) is the

desired cyclical arrangement of EV; (G*). Now assume that v eVI, ‘_V(Sr),

(where SI‘ is the subgraph of G induced by the fixed edges of I),

By Lemma 4.1.10, YP Y-l = P for atl -Ye 1" and therefore for all

Y € I‘ there is a k dependmg on Y such that Y(e ) = vk for

0<i<n-1, where i +k is calculated modulo n. Let k be the smallest

positive integer with Y(ei) e for some Y,e'I'V - {1}. - We note

i+k

that by Corollary 4.1.3, I'V <Y>, Moreover, e(’;, - ,eﬁ‘ _q are

distinct and (e(’;,....,,e;*( _ 1) is the desired cyclical arrangement of

E-V* (G*). Now we assume v €V(Sp). We recéll from Lemma 4.1.10 that
O -1 _ -1 L -

y\eV(Sr&);f ignd only‘1f YPVY = PV . ‘Thus Y(ei) =€ i for

0<is<n-1, where k-1i is calculated modulo n. By Corollary 4.1.8

| at . , 7 <ji <
we may assume that e, €E(Sp) and ey €E(SG) but e &E(SI‘) foﬂr 0 /1 k.
It follows that e(’;,...,e]’: are distinct, e’i'_ and e’.* 1 ‘are in a.
boundary of G* for 0<i<k-1 and E *(G*) = {e* ,...,e}‘:}. Yet there is
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at most one boundary of G* containing both e; and‘ei. O

From the previous lemme it follows that G* has the eimplicial'
structure of artriqngulated_(oordered) surface. (For a definition
of a bordered surface see [20]. A simpliciai complex is'a set K
equipped with a collection € of non-empty subsets.ot'K which has
,thelpropertytthﬁt every non-empty subset of a set of C belongs to 0).
From Proposition 4.3;1 it follows that the borders of G*, that is,
the subgraph of G*'oonsisting of 311 edges which are in only one
boundary of G*, is the image of Sr under Il and that each border
component is a cycle or.2—inf£nite'path. ‘

Now let us assume that (G P LA) = (G P) 15 a planar 3- polyhedron
and every cycle of G* has at least one- f1n1te side. Then every
2-infinite path in G is'two—sided; From Proposition~4.1.9‘it foi;
lows that SP r is

not empty. Hence G is finite if SY is a cycle since y switches the

is a cycle or a two-sided and. 2-infinite path if S

sides of S_. If SV and 56 are distinct»cycles, tﬁen it follows from
the(finitenees of G thao S# meets SG’ more preoiselm, SY and 56 meet
,in exactly two vertices (see Corollary 4.1.8 and Theorem 4.1.13),

If yel -{1} is orientation preserving and fixes two vertices,athend;
by Lemma 4.1.13, G is finite. /Conversely, if G‘is finite and

Y eT - {1} is orientation preserving then by Proposition 4.1.2 y has
finite order\and by Theorem 4.1.14 has two fixed vertices. If G

¥s 1nf1n1te and yel - {r} is orientation preserving and of finite.

order, then by Theorem 4.2. 20 Y has exactly one .-fixed’ vertex It

follows that if SY and Sﬂ are distinct 2—1nf1n1te paths, then they
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"have at most one common vertex.

We now;additiOnaliy assume that G is infinite and G*;=‘G/f is
fiﬁite.> (1f G*>is infinite then the §imp1icia1rcoﬁplex\induce& by o
the boundaries of (G,P)lis called an "Ebeﬁes Netz" b; Zieséhang 28, p.
55].5' Then every one of the finitely many'borders of é; isva cycle
and"G*/haslonly finitely many r-points, where an r-poirt of G* i;
.the‘imége under 1T q% an r-point of G and the latter has thevproperty
that Y(ﬁ) = v and yPVy'l = vafor SOmg 115r -{1}. A fundamentai
domain F for T is a simplicial complex induced by a maximal cbllecfion
of non-equivalent boundaries of (G,P). Since G* is finite, every s

fundamental domain F for T is finite. We say that F is connected

if for any two boundaries B' and B" of F there are finitely many

boundaries B ,...,B_ in F such that B' = B , B" = B and B. shares

o n o n i
an edge witthi_Fl. A gonnected.fundamentalvdomain‘for I' is obtained
from a maximal set Bl,...,Bn of non-equivalent boundaries of (G,P)

with the property that Bi has a common edge with the simplicial

complex formed by B .,B for 1 <i<n.

177 i-1
If C is a cycle in G, then the finite side of C is“called the
inside and the other side the outside of C. The next proposition

is the equivalent of Satz IV.6 of [28, p. 66] and a remark follbwing

after its proof. It shall be stated without proof.l

PROPOSITION 4.3.2. If F is a connected funddmentalrdbmaiﬁ
for T, then there is a cyele C in F é&ch that F is thé inside of C.
If a,B el are distinet, then d(F) and B(F) are disjoint or intersect

>

in a path. Moreover, u{o(F) | aeT} - G.
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The following proposition is Satz IV.7 of [28, p.67] and its

proof-is omitted. _ : S E

PROPOSITION 4. 3 3. Let F and C be as in Proposition 4.3.2

i >
1,...,en}.

Then E* = E(E)LJE(E) is partitioned znto orbits moduZo I' in such

and- Zet E and € be the two orientations of C and E(E) = {e

a way that

(1) each orbit has size less than or ééual to 2,

- (2) for no i 4; (mnd‘gi are in the same orbit,
(3) if Y(e )= gj then Y ie orientation preserving, and
(4) 1if Y{e ) =2§ and Y 21 then Yiis orientation reversiné.

It is cleer that a connected. fundamentalbdomain F containexa
vertex, an edge, an r-point and ; fixed edge of T from each of thelr
respectlve orbits. Moreover, by the last prop051t10n every T-point
or fixed edge in F lies on the border C of F. In addltlpn, no  two
vertices or edges ef F other than on C are equivalent. Thus we also
obtain the coﬁplex G*Afrom F by identifyipg, through applieation of
; -

, vertices and edges of C from the same orbit.

‘2Let g,q,m be the genus, the number of Boundaries, the number

~of nonﬁborJEr r-points of G*. These parameters sufficiently describe -

the bordered surface G* (if we also cdnsider the m r-points as borders).

hd

According to [28, p, 651, a connected fundamental domain can_be
transformed, using the method of ‘"cutting and-pasting" described

in [28, p. 461, into a canonical fundamental domain which can be
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thought of being_fobtaine&\by cutfinggG4r‘along a cahonical system

of curves.. This:fact is statb@ywithéut'proof in Theorem 4.3.4,

‘(Theorémk4.3.4 is an equivalent verﬁion'onSatz'IV.S’in [28, p. 651.) . -

£ 3
Fa

| THEOREM 4.3.4. ILet (G,P) be an infinite, planar 3-poiyhedron
‘Eﬁﬁ assu;é the‘subgrou? I;pf‘Aut(G,Pi safﬁgf%eé Assumptibns 4.1.1.
Mgfébﬁéf,‘gésu;e G* = G/‘ is fiﬁit; and every cycle K in (G‘P)‘haé
one finzté side. Then in some barycentrtc subdivzszon (Gl,P ) of
(G P) of suffzczently hzgh order there is8 a connected fundamental
. domain ‘F of P whzch has an orzented bounddry cche C which has one

of the beZowzng two canonzcal fbrms,

@ 1 sis?ton oot AICII o ol
a) M s!'s,” - tlu. t.u, C; S on
S qey AR 5o 33 3T k=1 Kk mt1 7k :
B T osrs By IcIl Lo -1
© 8.8, V.V, e, c. . ...¢C e.: -
‘ i=1 11 gz 37 gy KUK k, “‘k+1 k.
where R

(c) m,g,)q.iz‘O, 'm+g'u+q >1 and m=0, g=0 or q=0 means qthdt the

corresponding term in’(g) or (b) is;missing.,

(d) si,s;,ti;t{, eté(;afe oriented p¢$Hsuon C and paths denoted

by the same symbol (fbr exampZe, 5; and s!or t. and tf)
. are P—equivaleni. The termmnal vertzces of Si are r-points,

1si$m..HW%>0,thmt%etmmwmkva%uwsofck;'"

vvl <1<mk also tmwe r-poznts.: If mk-,o, then the vnztzal

vertex of ¢ zs noi an r—poznt. Any two of these . rupoznts

k 1-
and_any two paths whzch are not denoted by the same symboZ
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are not T-equivalent.

' If (G,P) and T are as  in Theorem 4.3.4, then as shown in

[28, §IV.5] T has one of the following two algebraic structufes,

given in terms of generators and defining relations and stated in

Theorem 4.3.5, that is, [28, Satz IV.81.

T
s

THEOREM 4.3.5. If (G,P) and T are as in Theorem 4.3.4, then it

has one of the following algebraic structures described in (A) and (B).

(4)

«

m g -
(h) I;I g. E TyHi T Wy n F 1.‘

Generators:

1

fa) © 5O, W >0;

1’
(b) TysHys one ?Tg',p » 8205

(c) s ,nq, qz20; and

(d) mkzofor 1<k<q.

11 L1700 Yl, ml'+1 > Yq,mq+1 ?

)0 % :
N

Defining relations:

» l . .
(fe) »o, "=1,1<is<m; : -

1 e
2
(f) - ¥{ ;=1 1sis<q, 1<j<mn;
o h .
(9)° (4 5.1 ¥i,3) 7 =1 lsisq, 1sjsmg;

o ' S e
Yi,1 M Yym 41Ny Vs 1<ic<q; and
3 Hy ) ‘

Lot
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(B) The same as (A) except that (b) is sustituted by (b') -

and (h) by (h'):

(b') v,, ...v_, g20 and

PR

il
(h') 1T o

Note 4.3.6. Let (Gl’Pl)’ [" and the fundamental domain F with boundary
C be as in Theofem 4.3.4. Let H1 be the smallest I-invariant sub-

graph containing C. Then H, is infinite and thus by Proposition

1
4.3.2 satisfies'Assumpt;ons 5.2.10. From the proof of Satz VI.8 of

£28, p. 1453 it follows that H, can be drawn in the euclidean plane

1
S = E or non-euclidean pléne S = NE (see Example 1.3.4) to yield an

~

isomorphic, T -invariant S-graph HZ’ where T, is a group of iso-

2 2

metries of S, such that conditions (4) and (5) of Lemma 5.2.12 are

satisfied. These observations are used in the proof of Theorem 5.4.1.
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=
v

CHAPTER 5. TOPOLOGICAL CHARACTERIZATION OF CERTAIN DISCON-

TINUOUS .GROUPS

In Chaptér 1 we introduced the notions of topological polyhedron,
diécontinuous homeomorphism groups and in Chapter 2 we showed that
every discontinuous homeomorﬁhism‘group acting oﬁ.the surface S can
 be thoﬁght of as acting on a topological 3-polyhedron. This faét
is importaﬁt sincé it allows us to study algebraic and othér properties
of discontinuous groups without'refering to the underlying fopological
space (see Chapter 4). In fact these properties only depend on the
combinatorial properties of the surface. Thus instead of discpntinuous
groupé we study groups of automorphisms of abstract polyhedra.

In Chapter 5 we shall establish the link between the topological
and algebraic concepts of polyhedra and discontinuous groupé and the
combinatorial concept of polyhedra and automorphism groups.

In Section 1, Theorem 5.1.1>together with Theorem 5.1.3 is an
infinite version of the Embedding Theorem [25, p. 43] for graphs
on surfaces. We do not prove a full geﬁeralization of that theorem,
since we have no need for it. In Theorem 5.1.1 we show that any
topological 3-polyhedron (S,G) can be equipped with a boundary tour
scheme describing the boundaries of the faces of (S,G) and vice versa
by Theorem 5.;.3 forvevery abstract 3-polyhedron (é,},k) there is a
topological 3—polyﬁedron (E,E) with boundary tbur scheme (F,X) such
that (G,P,A) and (G,P,X) are isomorphiec, that is, (G,P,A) can be tri- .

angularly embedded in a surface. Moreover, (G,P,A) is orientable
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if and only if g is orientable and planar if and only if S is planar.-
If (S,G) is a tOpologicall3—polyhedron with boundary four schemé?(P,A);
then a cycle or path C in G is two-sided if‘and oﬁly if S'—pS(C) is dis-
connected. _ v T

Section Zldéals with the relationship of discbntinuous groups and
groués of automgrphisms of an abstract 3—polyhedron. Every discontin—‘ 
uous homeomorphism gfoup of a)topoiogical 3-polyhedron (S,G) induces.
aﬁ isomorphic subgroup of Aut(G,P?A)qwhere (P, isva bouﬂdary tour
" scheme for (S,G). Conversely, if T is a subgroup of Aut(G,P,}) then
there isia discoﬁtinuous'grOup T of (S,G) inducing T.  Let F;‘be
two diséontinuous groups aSting on-the 3~pdlyheéra (SifGi) and let.
Fi be the induced suBgréups of:Aut(Gi;Pi,Fi) (where.(Pi,Fi) is a‘
boundary tour scheme for (Si,Gi)), 1<i=<2. Then F1 and fé are
topologically<ZQUivalent if and only if ¢Ff¢_1 = F2 for some isomor-
‘_ phism ¢ from (Gi,Pl,Al) to (GZ,PZ,AZ). At the end of this section’
we shall prove a lemma which is used in the proof of_Theoreﬁ 5.4.1.

In Section 3 we topologically characterize orientation preserving
elements of finite order and elements of infinite order in a dis-
continuousrhomeémorphism group of a planarysurface by showing that
they are topologically eqpivalent to Eertain types of elementary map-
pings of the sphere or euclidean ﬁlane.

In Section 4 we topologically characterize discontinuous homeo-

morphism groups with compact fundamental domain of the euclidean plane

by showing that they are topologically equivalent to groups of iso=

e

metries of the euclidean or non-euclidean plane.
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k4

§1. TOPOLOGICAL POLYHEDRA AND ABSTRACT POLYHEDRA
. : &

THEOREM 5.1.1. Given a 3-polyhedron (S,G) there is a boundary tour. -
scheme (P, ) for G such that -
(1) PV is a rotation at v induced by S for all v eV (G) and ’ A

a

(2). (G,P, ) isaln) (abstract) 3-polyhedron and'thé*boundaries
of (G,P;A) are identical with the‘boundarieg of thqrf&ceskof~.'

(S,G) .-

We shall call (P,A) a boundary tour scheme for the topoldgical

polyhedron (S8,G). . .

Proof. Let P = {PVJ\IGV(Gﬂ be any rétation system such that Pv

is induced by S for all v €V(G). Given e €E(G) there are (unique)

.triangular faces F1 and Fé'meeting;along e (see Figure 5.1.1). -
op s : ) p6 _ 58 - o
NowrfllJFz ='F is a disc. We note that Pu(al) = e, Bi(e)=eq,
- € - , (-
2) = e, Pv(e) az,ffor some §,¢ eZZ, and (al,e,e>) and (ez,e,az)

have the same (clockwise or counter clockwise) sense with respect to

£
YPV(e

some clockwise orientation of F. There is a unique ){(e’)veZ-2 with

8 A(e), 1£ 5 is

g = ‘GA(e) %nd tﬁus‘ (al,e,e ) cPu 5

and (ez,gfaz) cP
orientable and endowed with an orientation and if Pu and PV have the
 same clockwise or counter-clockwise sense, then 6:=s andi Ale) =1

(see Corollary 5.1.2), By determining A(e) as described above for all

e ¢E(G), we get a polyhedron (G,P,}).

Let F be a face of (S;G) with boundary arcs g,g and ¢ oriented
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- as shown in Figufe 5.1.2. By the deflnltlon of A we have P (a) —'E

Gl(b)(b) Gk(b)A(c)( ) = g and paA(b)A(C)A(a)( ) Hence

AGRBAE = 1 and (B,6) @ SENE, ABA@)) is an orbit of P

Thus .the edges a b and ¢ form a boundary of (G,P A)
In tHe other direction let (.- (a 6)(b Bk(a))(c Gk(a))\z(b))

be an orbit of P*. From the way A was defined wefconcluq§ that a,b and

‘¢ bound a face of (S,6) and‘éiSO form a boundary in (G,P,X). Therefore,

(G,P,)) is a 3-polyhedron and each béundary of (S,G) is;a boundary of

(G,P,2) and viceversa. [

(¢33

7 oY

X 2 Y

figure 5.1.1. 'figure.$51.27

COROLLARY 5.1.2. If (S,G) is‘bpientable and s ig endowed with
a clocszse sense of orientation, then (P A) can be chogen such that
(1) Pv is a clockwise rotation fbrveach veV(G) and

'(Z)V A(e) = 1 for each e €eE(G).

THEOREM 5.1.3. Given a 3—polyhedron (G,P,2) there 48 a topo- :
logical 3-pothedron (S, G) and a bound&ry tour scheme (P ) fbr (S G)

such that (G,P,\) and (E,E%Z)rare zsomorphzc.
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PR

Proof. We choose a collection of pairwise disjoint triangles

cbrreSponding‘to the bourndaries of (G, P sA) and label their-vertieeévy . 1:

and edges approprlately by the vertices and edges of the correspondlng

b *

boundaries. Every edge of G is 1n exactly two d15t1nct boundarles
Therefore this scheme labels exactly two edges beTonging to-distinct

triangles;‘ Also, if v e V(G) and ?v(= (al,::,;an) is the rotation at v,
v ) » 7 v & > .‘ o ' ' ) (. ; !
then a; and a..;‘ belong to the same boundary, for 1 Si.Sn. Hence the

ﬂc1a551ca1 side identification process used to 1dent1fy 1dent1ca11y

-

labelledwvertlces and edges of the trlangles yielos a_surface S and an
"S—graph G whose edges,and vertlces are the edges and vertices of the

identified triangies. " The mapping ¢ which assigns a vertex v e V(G) to

the vertex “of G labelled by v is®an 1somorph15m of G and G. Moreover,

. ¢P ¢ ¢( v) is a rotation at ¢(v) 1nduced by S and 1f we deflne - <;

A(¢(e)) A(e) for a11 e € E(G), then (P A)gls a boundary tour scheme
_fOr (S,G) . It is then tr1v1a1 that ¢ (G P A)“*(G 3 A) is an iso- -

morphiSh. a

COROLLARY 5.1.4. Let {G,P)“be:anbéﬁientable,Sfpolyhedroﬁ and,;
o (S,E) be the,topdiogical 3—polyh¢dfbn with the boundary tour scheme P
. constructed in Theorem 5.1,3. Then (S,G) is orientable.

Proof. We note that P*(E(G) <{1}) = E(G) x {1}. Moreover, each -
face 6f (S,G) corresponds to an orbit of P*»in E(G) x {1} anddthe .

orientations»induced on them by those orbits are coherent. That is,

the orientations induced on any edge by those of the adjacent faces
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: by K.H::‘,

are opposite. Therefore (5,G) is orientable.[J .

s

LEMMA 5.1.5. Let (G P) be a pZanar 3—pothedr0n, C'a eyele or

2- tnfintte two- saded path of G and Zet ¢ cS be a etmple closed curve.

Then there %S a pZanaratopoZogtcaZ 3-polyhedron 5,5 with boundary

"tour scheme P so that a - T o -

B

(1) (G P) 18 tsomorphzc to (G P) and _9‘ :
(2) if Cis the subgraph of G correspondtng to C (under the
tsomorphesm) then ps(C) =c tf C is a cycle, and ps(C) =

c.- {x} X e C, zf C Zs a path.

E
an - - S R - &

ol

- Proof, -Lef;(eijiv>lwbe‘en;enumeration of E(G). (We know G is -

locally finite and connected so that V(G)'UE(G) isgcouhtébie.}ﬁ“We

=
'?

_ehall recur51ve1y construct a sequenCe (@. ) 0'of graphs and derive'

from it the requ;redis—polyhedron (S,G). G1ven an. 1somorphlsm between

two graphS'Hi and H2 we shall denoteithe-lmagg of a subgraph K of Hi-

~

_Set G =C. If C 1s a cycle, let G be an S cycle, where S 2, ;
# » ) .
is the sphere Wthh is 1somorph1c to G and whose pblntset is c. If

C is a 2- 1nf1n1te path, then let G _be an S- graph where S —{x}, ,
whlch is 1somorph1c to Go and whosevpplhtset is cui{x}(j .

Now suppoee.i_ZOAand we heye'construcféd ahgubgreph Gi Of.G and an
isomorphicls—graph G; meeting the folleﬁing conditions: .

(1) G, -G is finite; - L .

(2) For all e€E(G) —E(Gi) there is a (unique) cycle or 2-in-
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‘(ak b,ak 1) are clockw1se if § = -1 and counter-clockwise if §

S e o 119.

finite two-sided path in Gi Sepai'afing e from Gi and ,
‘-\ﬁ - . 0 - . = . .
moreover, K separates S into twp regions both having ps(X)

as their boundary;

[

(3) A‘{el,’.‘..‘,ei},cﬂEtGi); and 7
(& . If {al',.:.,a'n} = E'V(‘Gi);,‘where V§V(Gj;) and n23, a'nd ,
| (alk, .,an) c PV, then (51,. . .,Sn) is the .clockwise rotat‘ion', .
induced by S on {Zl, . ,an = E;;(ai) .o "

These' assunipdti‘ons trriviallgl hold fer i = 0. wé shall now determin'e_ ,

Gi+iandG +1 Ife . 4€E@G;), then we set G, +1—G andG ie1 = G

‘Clearly (1) - (4) hold for i+1. :If e. &_E(G,i), then by (4) there is a

. -

cyle or 2-infinite two- ‘sided path K in G ‘separating e: 1'from Gi'

Let K‘ "1<i<2, be its sides and assume e, +1 c K1 and G~i.c K'z-, Sincé

G is 3- conne’cted there is a "chordal" pa,th B .in K containing ei+ 1

SN ;

and 301n1n§ u,veV(K). Let K = (...,u ai,u sece) and assume u = ﬁo_’

J+1) 6.foreeEJ(G)—

6
k+1) kforaeE (B), beE (B).

(We note that by (1) K contalns dlS}OlJlt l-infinite subpaths of G = C

&

= . There is a 662 such that (a »€,a.

E(K) and (a. »a,8y ) cP 6, (ak,b a

if K is a 2-infinite path. Moreover, ps(K),u {x} (recall xec) is a

simple closed curve in 782 and thus di'vide}gs into two Jordan regions

R1 and R2.) Now K = (...,no,al,ul,...) divides S into two reglonsz1

and R2 both%ia,ving psg'!v(') as their boundary. Mereoverl, by (4), ps(ai)‘ -

'ps (K} is either in R, or=R,. Let us "draw an isomorphic copy B of B

1 °F "2

as a "crosscuf" of R, or R joining G with v so that (50,5,'5 ) and

1.

]:l

‘Then ps(Gi) CR3 -3 if ps(B) cRJ by (4) and the choice of 5 and B.
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Therefore G +1 Ei uB is an S-graph ‘i’sdmorpﬁic to—Gi . 1=Gi‘ U.B and i ‘

(1) - (4) are ea511y seen to be satlsfled for i+l.

o

Let G be the graph whose VBrtexset and edgeset are u{V(G ) |0< i<ow}
and u{E(Gi) [0<i< =} réspectlvely, and .whose 1nc1dence relatlon is

defined by-i~(e) = i~ (e) for e eE(Gi). G is 1somorph1c'to G.

1 ' ' ~ “~ ~ o
Mqoreover, if V;;’(G) and (a ..,an). = Pv’ then (al,‘...,an) = Pvlls the
clockwise rotation induced by S on {Ei,...”zh} = E;(a), Thus '(G,P) and
‘(E,E)‘areAisomorphic.’ R )

We note that G need not be an S-gr.a,‘ph”,but we shall ‘show thét there
is a subsurface g‘c'S 'containing,ps (E)“sb ““thévt (E,E) is a 3-polyhedron.
Each Boﬁndary B of (E,E) bounds a disc F £SZ where ths (E) = ps (E)
We shall call F a face of E in s2. We note ;‘..’hat”if v eV(E) anci '1;"7 =
/(gl" . .,En), then the;'e bare faces F:i ccintra‘lining Zi ar;d ;i +‘1 so that

F.nF. = {e, .} and F_u...uF_ £ F is a disc containing v in-its
i i+l 1+1 17" " 'n ) T ‘
intérior. Thus the,unic}n § of all faces of G in 82 is a surface and

(§,E) is a 3—pol\):hedron. J

THEOREM 5.1.6.  Let (G,P) be!a planar 3'-é‘olyh£dron.‘ Then theré\
18 a planar topologwal 3—pothedron (3,G) with boundary tour scheme

v . ’w.fy)
P so that (G,P) <s zsamorphw to (G,P) . . -

Proof. This follows immediately from Lemma S5.1.5 and concludes

this section. [



121,

‘.LEMMA 5.1.7. Let (S, G)be a 3—pothedron with a boundbry tour scheme
(P,X) and let C be a cche or 2-infinite path in G. If E,(C) = {e } ,
ay,a, <E_(6) LE(Q), (el,al,ez)izpj and}(el,az,ez)ﬁ:Pj, then a, - i4(a,)
and az;-iG(az) beZQng to the same component of S -ps(C).

?roof; -Clearly it sufficesrto prove‘the lemma iﬁ.the cése,;hat
Pj(all ; a,. Bﬁt in this case the stafement ig¢ trivial as éi and a2

2

are in the boundary of a face. [J

“

St

LEMMA 5.1.8. et (S,6), (P,\)and C as in Lemma 5.1.7, let Q =

Y(Vo,el,vl,..z,vn__l,e V) +'C be a subpath of C and let eoezEVO(C)-E(Q),
e ,1€ (C)-—E(Q) If ackE (G) -{e »eq } and b €E, (/) - {e ,en_+1}
and if (e ,a,e ) CP and (e',b e _;ij CPGK(Q) then a-1 (a) and

Vo
- 1_G(b) ‘beZo_ngr to the same component of S -ps(C).

_3‘

Proof. We proﬁerthe‘lemma by induction dn the leﬁgth n of Q.

If n = 1, then in view of Lemma 5.1.7 we may assume P (a) ahd

. GA
(Q)(e ) = b, that is, a,e; ©
Avl 1

is tr1V1ally true Now let n = 2. In case there is some ¢ eEV (GlﬂjE(C)
6A§el) '
Vi

and b form a boundary. The lemma then

)< the lemma .follows from the case n = 1. Other-

wise, in view of theﬁprevious lemma, the existence of an edge a with
8 8A(e,) »
P = : =

Vo(a) e;s P "17(ey) = e, and P

with (el,c e

sx(el)x(e
2
C 1 ; V2

settles the case n = 2.

2)(e23 = a (see Figure 5.1.4)

i
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~Now assume Q has length n+1 and that the claim is true for every

path of length lessrthan or equal to n. Leth = (vo’el_’""en} 1°Vn + 1)
and a€E_ (G) -E(C), bekE (G) - E(C) such that (e ,a,e.) <P’ and
P VR v , . ’ 0 1 v
0 . o n+1. 0
(e ,b,e ‘)cP(SMQ) . Since every boundary is triangular there is
n+1 n+?2 Vo1l ‘ )

aceE (G)-E(C) with (e c-e ' )CPG)‘(Q') where ie {n-1 n}' Q' =
. € Vi i: : i+1 Vi , > >

‘ " - : ‘ . "
(vo,el,. .. ,vi) and Q (vi, cees L1V, 1)j . We conclude the induction

tan

proof by applying the hypothesis to the paths-Q' and Q" which are both

A8

of length at most n. 0O

LEMMA 5.1.9. ‘Let (S,G), (P,A) and C be as in Lemma 5.1.7. IfC

18 one-sided, theﬁ S -ps (C) Ts  connected.

Proof. First we consider the case that C is a cycle which is not

A-trivial. Let u,ve V(C), uz'v and ac¢ Eu(G) -E(C), be EV(G),'E(C)'
”W‘é choose edges: el,eﬂvz,cl,c2 and‘.};aths Ql’QZ as shown in Figure 5.1.3.

&

figure 5.1.3 :  figure 5.1.4

8 . £ . - -
If. (el,a,cl) CPu and (cz,b,ez) va’ where §,¢ ¢ Z,s then ¢ (SK(QI) ?r
£= 5)\(Q2) since A(Qq) # A(Qy). Therefore, a-i.(a) and b - iG(b)-
belor';‘g to the same component of S -ps(C), as follows from Lemma 5.1.8

and, moreover, ps(G) - ps(C) is contained in the same component of

s
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S -ps(C). | ‘ - o -

“ Now consider‘phe case where C is a A—trivial cycle or a 2-infinite
path with associated relation . Since_C is one;sided there are edges

- a;b eE(G)'-, and i,gzz su;ﬁ that i éhﬂa); -1 ew(b) and a-iG(a) and

, b —iG(b) belong to the same component of S-—ﬁs(C). On the other hang;
Lemmas 5.1.7 and 5.1.8 imply that e-iG(e) and f-—iG(f) belong to the
same component of S:-PS(C) if erww(e)rwm(f) +7¢. -We conclude that
ps(G) -pS(Cj is contéined in the same ;omponent of S-ps(C) = §',

' C is not a bpundary and therefore,S' is connected. [} | |

¢

% 5.1.10. Let (S,G), (P,\)  and C be as in Lemma 5.1.7. If Cis .
R ; , |

two-sided, then S - ps(C) i disconnected.

Proof. Assume C is two-sided and Cl,C2 are the sides of C in

(G,P,A). Each boundary of (G,P,A) is in C1 or in C, LetﬁOi be the

union of all faces whgjsfﬁ%ﬁﬁﬁz;;zzs in Ci and Oi = Oi-—ps{C).r’ﬁé' : s .
' T

claim that S -ps(C) is disconnected. To prove this let e be an arc in s

S joining u, €0, with u_,e0,. The collection of faces of (S,G) is

1 1 2° 72

locally finite and each face is compact. Hence there is a last point

w‘on the arc e froﬁ u1 to u2 which lies in the face Flcontained in Oi.

~ Then w lies on the boundary-B

4

i of F1 and also on the boundary B2 of a

face,FZQ:Oé. Thus w is contained in a cgﬁhon vertex or edge ‘of B1 and

B2 so that weps(C). It follaws thaf‘ermps{C) = P, that is, 01 and

O2 are in distinct components of S' = S-ps(C). This shows that S' is

disconnected. []

N
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THEOREM 5. 1 11. Let (S,6), (P A) and c be as in Lemma 5.1.7.

Thén C is two—srded if and onZy af S - ps(C) 18 dtsconnected

¥

L Proof. This follows from Lemma 5.1.9 and 5.1.10. [

o
1

' 'THEOREM 5:1.12. Let (S,G) be a topological 3-polyhedron with -
b;undara tour scheme (P,l).,_(S,G)'isﬂrlanar if and only <if (G,P,A)

%S pZanar; - o : L LT .
Proof. ¢A;sume'(S3G)‘is planar:, If C.is a cycle in G; thenA
S - ps(C) rs disconnected (by Jordan's TheOrem) By Theorem S i 11‘
C is two~s:\1\s1ed in (G,P,1). Tt follows that (G,P,\) is planar. -
" Now ssume that (G,P A) is planar. (G P A)?is or&entable and
therefore 1somorphlc to the73—polyhedron (G Q). By Theorem 5.1.6 ,
there is & planar topologlcal 3- polyhedron (S G) w1th the boundary N\
'tour soheme Q such that (G,Q; and (G,Q) are 1somorph1c¢; In view of Z » o
Theorem Sizf%’ tE,E) and.(S;G) are hoﬁeomorphic.' Therefore (5,G) is |

planar. 0O -

. B B . ~ . - . .
/_\ ) 7 ) » | . ‘
N . - - . o>



. | | :\' " o S . _.7.\ " ‘. »\ » | ‘ ) “ ~-‘ 125.
§2. DISCONTINUOUS HOMEOMORPHISM -GROUPS AND . AUTOMORPHISMS
. i B . ) » EY

OF POLYHEDRA. L,

-

d

‘LEMMA Sv2 1. L Let”(S' ) be- topolog%cal 3—polyhedra wzth boundary

3

PR T

tourschemes (P@ >\) P for 151<2 Ifcp 1, 1)+ (s, G2)~ is a

homeomorph$sm, then the tnduced %somorphzsm 1G> G2 is an iso-

moYPhtsm from (Gl,Pl,A ) to (G2,P2 AZ) Conversely, if ¢ i8 an iso-

morphzsm‘from (G Al)to (G A ) then there 18 a homeomorphzsm

}
¢w (S G )-+(S G2) indueing ¢.

Probf" In order to‘brove the first sfétement 1et'$:(S G4)-+(S G2)

.Qe a homeomorphlsm and let ¢ :G .~ G be the 1nduced 1somorph15m, that 1s,

1 K3
1¢(x) ¢(x) for all xe'V(G ) UE(G ). Now ¢ preserves*the rotations Pi
- v
. o ‘ .
so that ¢P ¢ e {p g | 8e 22} for all v eV(G ). Let ee E(G)), o
. S ¢(v) 6‘
G (e) = {U v}, ¢ Py ¢ P, ‘ and,¢Pi(e)¢71»- pE . We shall
'y ¢(u) v 2w

. show that € = 6u(¢(e)) and thus conclude that o 15 an 1somorph15m

Letaél and e, be edges such that Pl‘(gl) f e and P (e)(e) = e,. ‘Thus
L o “u , v

e;el,ezkbound a face, say F, (see Figure 5.2.1) and ¢(e) = ef, ¢(e1) = eir

-+ and ¢(e2)i=-eé bound the face $(F). Moreover, P (e T e' and
B - - u R,
) P; (") =le§ so that € = 5X2(e') because (Pé,x2) is a boundérybtdur )
v! ' : , _ , ,

,_ééheme for (Sz,Gz). This4§IOVesvthe,first statemeht; “

 Now assume the isomorphism,<b:(GlsPI,Xl)-+(Gé,P2;AZ) is given.
It is easy to see that there is a homeomorphism gi:ps(Gl)-+ps(Gz) '
which induces ¢ and since ¢ maps boundaries ofvfaégs Of’(sl’Gl) into

_boundaries‘of faces of (SZQGZ), $i can bé extended to a‘homeomorphism i
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£
E :(Si,Gl)-+(S‘ ) by applylng Corollary 1.6.6 to each face F of

(Sl,Gl) and the correspondlng-face ¢ (F) of (S ) 0

a

THEOREM 5.2.2. Let (S ,G, ) be topological 3—polyhedra wtth
boundary tour scheme (P A ) s for 1<i<2, Then (Sl’ 1)fcznd (82,G )

are homeomorphzc if and onZy 1j’(G1, 12 ) and (G,,P,,A ) are isomorphic.

2° 2’

Proof. This theorem is a direct consequence of Lemma 5.2.1. ]

COROLLARY. 5.2.3. et (S,G) be a 3-polyhedron with boundary tour
scheme (P,\). Then (S,G) is orientablé if and only if (G,P,\) s
orientable.
Pro6f. If (S,G) ds orientable then by Corollary 5.1.2 it also
has a boundary tour scheﬁe Q. By Theorem 5:2.2, (G,P,A) and (G,Q)

?

~are isomorphic. Thus (G,P,X) is orientaﬁle;, If (G,P,)N) is Qrientable,
‘ythenAthﬁre is some boundary tour‘schemé Q such that (G,P,A) and (G,Q)
are isomorphic, Accdrdingito Corollary 5. 1 2 there is some orientable
.topologlcal 3~ polyhedron (S G) w1th boundary tour scheme Q such that
(G,Q) apd (G,Q) are isomorphic. By Theorem 5. 2.2, (S G) ‘and (S G) are.

homéomorphic which implies that S is orientable. a

' - figure 5.2.1

1.
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THEQREM 5.2.4. Let (S,G) be a polyhedron and assume G is ﬁot a
,cché. Given a group T of homeonczoz’phisms‘of (8,G) , the canonical
homomorphism Q:F » Aut(G) Zs a monomorp'hism if 'ffacts discontinuously

on S.

Proof. Assume T acts discontfhuously on S. Let ;ef" and assume
'@;,(?) = .. Then ? fixes every vertex an%{thus every edge of G. Moreover,
for every e EE'(G), <;>(e is a discontinuous .group of the arc e fixing
its endpoints. . As noted in Chapter 2; §3, ;!e = lle, and therefore

v = .. Now v fixes every face F of S,G) since G is not a
Vps@) = Hpsieys Mov Y (5,6)

cycle., Thus <y> is a discomtinuous homeomorphism group of the disc

I
F fixing its boundary pointwise. By Corollary 1.6.5, ;IF = 1|F and

therefore ; = 1. Hence ¢ is a monomorphism. (I
We shall also prove a partial converse for Theorem 5.2.4.

' THEOREM 5.2.5. ILet (S,G) be a 3-polyhedron with boundary tour
scheme (P,\) and let T be a group of homeomorphisms of (S,G) .
If the c?ﬁnonical homomorphism ¢: ?—>Aut (G, P,\) Ze 1-1, theﬁ ? acts
disconﬁnuéusly on S.

| Pro’of. We shall prove this theorem by a céntr’gpositi‘ye argument.
. Assume T does not act discontinuously on S. Then there are points
. x and Y, in S such tﬁat' {(YeT| ?(Vx) nVy::g} i~s infinite for all

neighbourhoods Vx of x and Vy of y. For all zeS let UZ be the
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neighbourhood con51st1ng of the union of all faces containing z (there
are finitely many such faces). Thus {Y €r IY(U )r;U 2P} is 1nf1n1te
It follows that there are two faces Fy and F, such that {y eT |
;(Fl)n F2= P} is infinite and since each face meets only finitely
many other faces, there is a face F such ghat»f% = {§1ef'|§th = F} !
is infinite. On the other‘hand, @(f%) is finite by Proposition 4.1.2.

Hence ¢ is not 1-1 which is a-contradiction. [}

¢

COROLLARY 5.2.6. Let (S,G), (P,A) and T be as in Theorem 5.2.4.

If ® is not a monomorphism, then the kernel of ® iédinfinite.

THEOREM 5.2.7. Let (S,G) be a 3-polyhedron with boundary tour
scheme (P,\). Let T be a subgroup of Aut(G,P,)) and assume that
(a) Y(e5==e implies Y(ﬁ}= u for u eiG(é) where Y el and
e €E(G) and - -
(b) (B)-— tmplies Y =1 where B is a boundary of (G,P,A)
and y el . '
Then there is a discontinuous homeomorphism group T of (S,G) with

oy =T

e :;

Proof. Condition (a) is equivalent to (a'): Yili &)~ YZ‘iG(ej
; : G

~whenever Yl,Y eT and Y (e) = Y, (e). Condition (b) is equivalent to

(®"): v4(B) = ¥,(B) implies Yy =Y, where B is a boundary of (S G) and

YI:YZ'ET. We introduce scme notatlon. Let X = {{v} !v eV(G)} ,
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Xl = E(G) and Xé = “(S‘,-G) Give@e X2 with boundary B and 'YEF‘ , then . ..
let y(x) denote the face with boundary ¥(B). If xeX,, let dx = uly |
‘&cx,'yexj,_’ 0<j <»i} , that is 3x = @ if xeXO, X = iG(x) fo.‘r X eXl

and 'Bx is. the frontier of x ‘in S if x eX Let Yi c‘Xi be a set con-

2"
sisting of one object from each T-orbit. ALgrf: Zi be the ;et of all
pairs (x,y) erZL of ,I—'—ievqu‘ival_ent object; X,Y.

We shall Izecur_s.ively const_?fuct'a system {X,X)’ lr(x,y) eZz} of homeo-
morphisms and;use it to define a'hqrﬁeomorphism Y for eaéh Y eT.
Let os‘k si and assﬁe we have constructed a system {Xxy‘ ] (x,y) gZJ.,
0<j <k} of homeom'orphisms‘ Xxy ;';c +y such thaypfhe following \conditions
are met. | *

(1) If (x,y) EZJ., then Xxy’u = Xus (u) whenevef ucx, u EXJ;’

0<i<j and §(x) =y for §¢T . -
| (2) Xxx(u) = u for all uex and all x er.
(3) Xy = Xox if (X)) €Zy. :

Xy
4) x

xz = Xyz *Xgy I (GY),(ys2) €25 ) )

(S)‘ Xxy(x) lx ny - XYY()’) lx ny fér all=x,y exj‘ and yeT,

For k = 0 these assumptions hold trivially if we define
X{x}{yr(x)}(x) = y(x) for every x €X° and yeI'. We shall now constmct
a system {xxy | (x,y) €Zk . 1} of homeomorphisms Xxy : x>y such that
(1) - (5) hold with k+1 instead of k.

We start by defining Xxx(u) = u for all x €X and all u €x,

k+1
noting that this definition agrees with (2) -. (5). In order to show,
..that it also agrees with (1), we recall from (a') and (b') that §(x) = x '

implies §(u) = u for all uexi with ucx and isk+1. 'Thus‘xxx|u =



130.

Xau = Xys (u)" '

We now claim that for all x¢Y
. k+1

= Xué(u) for ung, ucx, j<k+1 ahd

and Y ¢ I there is a homeomorphism

Xxy(x):X+Y(x) such that Xxy(x)lu

- for all § el 'with y(x) = §(x). We distinguish the cases k = 0 and k = 1,
In case k = 0, §(u) = y(u) if 6(x) y(x), and ueX , ucx eYl, by (a').

. . o~
Hence there is a homeomorphism ¥ :x »y(x) with the de51re,d property

xy (x)’
In case k = 1 we recall that for x eXz, Y(x) = 6(x) 1mp11es Y 6.

Let xl,xé,xs be the edges of the face'x (as in Figure 5.2.2).

figure 5.2.2

By assumptiO_n‘, XxiY():i) () = Xuy(u) =Y(u) for ucx;, ueX,. Hence tlere

is a homeomorphism X':9x *3Y(x) such that X' lz = for all z er,

[

X2y (2)
0<j<k=1, with z <3x. By Corollary 1.6.5 there is a homeomorphism

)’S(Y(x):X+Y(x) such that XxY(x) ‘z = kXZY(Z)

z ©<x. This proves the claim.

for zer, 0<j<k+1, with

. E
Having thus defined XxY( ) for 'all x eYk 1 and Y el we define

_ 1 . .
XY(x)x = Xevx) We note that Xxy has so far been defined in case

= y and in case (x,y) €Z and {x,y} Ny, +'1 1 ¢ and this definition

’ k+1
is in agreement with conditions (1) - (5). '
If (x,y) eZk ‘1 and x,y &Y +1° We define Xy = Xyz‘_"xxz , where
(x,2) eZk +1 + We mow claim that the collection {Xxy | (x,y) € Zk . 1}.
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defined Vsatis:fies conditions (1) - (Sj with k +1 instead of k. -Notice

thit conditions (1) - (5) only need to be checked for j = k +1 as they
are true for j <k by assumption. Now (2) -is true by definition.
. 7 s

Condition (3) needs only be checked for (x,y) € Zk s10 XY *.Yk .1 @S

.for all ‘othe‘r pairs it is already known to be true. We have Xy =

o B -1 -1 _
Xgy *Xyz? where (x,z) eZ;  ;, zeYy 4 and Xyx = Xzx Xyz )
h y-1 . -1 '

Xzy ©Xxz Xxy

To prove (4) let (x,y), (y,z) eZk 1 and we dlStlngUISh two cases.

In case 1, x,y,z ¢y and case 2 is the negation of " ‘case 1,

k+1-

Case 1: 1If X,Y,Z &Y for u eY . Thus .

th‘en (x,u) € Zk K+ 1

k+1°
= Xy ° Xxu? Xyp = Yuz ° Xyu and Xxz = Xuz ®¥xu by defln;tlon.

+1

X
Xy
Hence Xyz °XKy = )glz ° DS’U °Xuy) “%u T Xz K "% T Xz K T XXz'

Case 2: '{x,y,z.}nYk;’l’"vcg, If xeY then X =X ©°X

k+1° yz Xz yz

by definition . Hence X _°X_ = X_ . A similiar argument works if.
v yz Xy XZ : : ‘

erk+1 or z €Yk+1'

To prove (1) let (x,y),(y,z) €Z, €Y 1 x,ink+1, and let

k+1° ? k+
x, 6(z) = y. Hence 5'Y- (x) = y. It suffices to prove that

Y(z)

x. |

= T wi = =
Xy 'u Xus(u)’ for all ueX,, ucx and Bel with B(x) y\. x__ |

Xz u

. XuY-l(u) and Xzy'Y-l(u) = XY-l(u)ﬁY_l(u) for all u EXk with u €x by the

It

above note. Thus Xxylu Xu&y—l(u) and by assumption Xu&y-l(u) =

for all BeTl with B(x) =

Xapu)

To prove (5) let x,y eX xzy, xny=zf@ and let yeT.

k+1°
. - . : . . R S N N . . ) .
Now x ny = iz | zexny, 2 eU{Xj | § <k}}. By condition (1), XxY(x)l.;z

g

o
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Xzy(z) = X)’Y()’)‘ for all z eu{Xj\] jsﬁk}rwith Zcxn}' . Thus

XY(X) xny XW(Y) “Y
In view of COl’ldlthTl (5) for {Xxy | (x,y) € Zﬁz}' it is possible to
‘define a mapping ;:S-*S for each y el through its restriction at the

faces of . (S, G), that is, if x€¢X,, define ?] ‘It follows

2’ Xxy )"

that if y=4, then Y 1s the identity mapplng on S. It is clear that ?
is onto S. Moreover, slnce YI ig 1-1, for xeXz,- and Y(x) = Y(x) = .

Y(y) = Y(¥) if x #y €X;, it follows that Y is 1-1.

Let T = {y | YeT}. We now claim that:

(a) ? is a homeomorphisfn of (S,G) and @(?) = v (where <D(§) is the

-

induced 1somorphlsm), »
(b) T is a group, and ¥: T -*1" defined by IP(Y) ; is an
isomorp}iism; and

(e) T is discontinuous.™

-

To prove (a) we note that ﬂ 5 and ;_ll yﬂ are continuous. for all

X,Y GXZ . Now )('2 is a locally finite collection of closed sets whose
union* is S. By Proposition 1.4.2 ¥ and TY'-1 are continuous, that is, "
? is a homeomorphism -of VS:M "Let u€X le ucx €X2 -and.y eT'. Then '

;(U) = (ﬂx)'(u) = XXT(;);('US = uT(u) (W) =Y (u) so that <I>(‘Y)

To prove (b) we know ¥ is ;)‘n'to by definition. Moreover, since Yi

~ o~ ’ . s

is induced by Y i Yq implies leYz_jmd hence ¥ is 1-1... Thus we only

%7, _
have to show that ¥ is a homomorphism. Let Y>¥psY, € I'and x ¢ X2‘

X 1 °X ~' o¥.]., . Thus y y. =
Y1 (x)v,Y4 (X3 XYl(X) 2ly, (x) " Talx e 271
fo-1
YY

P d
Now Y2Y1 Ix =

il

Y2°‘\i. . Now Yy—l = 1 and ﬁénce =yy = 1. It follows that
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Y

“ﬁg note that & = w-l'is a monomorphism. Hence by Theorem 5.2.5,

vr'is distontinudUs;whiChvproves (). .

<

P & E

_ COROLLARY 5.2.8. ZLet (S,G) be a 3-polyhedson with boundary tour

scheme (P,X) and let T be a“subgroup4of'Aut(G,P,A) .  Then there is a

Jrﬁiécqﬁfihuoﬁs hbmeomorphiSm grOup.f of (S,G) inducing T,

Ty St i

: N - . B o € C & R
Proof. - Let (S.G') be the first order barycentric subdivision of -

» (S,G) and let (P' A') be 1ts boundary tour scheme The group I' induces -

a subgroup F' of Aut (G', pr AN 1somorph1c to I' which satlsfles condltlons
(a) and (B) of Theorem 5.2.7. We construct a dlscontlnuous“group T

according to Theorem 5.2.7 and it follows that T induces I'. [

THEOREM 5.2.9. For 1°'<i <2 , let I be a discontinious homeo=

merphism group of the Sépélyhedroﬁ (8,,6.) with boundary tour schemes

K3

(P ) ) and let T.c:Aut(G P, ,Xij be the induced groups.’ If there is

) L3V§ such that o1 011 2 then

an isomorphism O :(G 1

1’ 1’
Fi and FZ are topologzcally.equzvalent.

B

e

Proof. It is sufficient to show that there is a homeomorphism

-1

z :(Sl,G1)+-(SZ,GZ) such that FZ = aflz Before going ahead with

the proof we introduce some notation. Let X0 ='{{vi| ve V(G; ),

i=1ﬂG), ;= Fs, G, )amiZJ xdxlxexﬂ for 151 %2, 0<j<2,

We note that z9 = V(G.), Z% = ps(G.) and Z? = S.. 1f x:eﬁ( then
i i’ "1 i i i

= y-l. Thus y is a homomorphism and since y is onto T, T is a groﬁp.

o
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‘let ox = u{y |y cx y er 0 <J <k}. Let Yj~ 1 <j QZ.Abe a subset of -

-

Xi contalnlng exactly one chect from each orbit with respect to Fl

Set YJ {o(y) ly eYJ} . Then Yéczx% and Y%’éontalns exactly one

object from each orblt‘w1th respect to T We shall use the symbols

2"
Yi’éi etc., respectlvely Y 31 etc., to denote the obJects of F

~

respecti?ely Fi. Moreover we shall ‘assume that ® (y ) = Yi’ i(Gi)‘=V

: = = :I‘,+I‘_ y
':§i etc., and v, gyi s 52 . 6610 (wherg ®i; i is the canonical

-monomorphism).

S e

Wé note that if x EX'—i 7/7’; o(x), then ;1 E'fl if and Ohly ]% o
. v 1,
e eFi‘ 1f-and’6n1y isz el, if and only if‘?‘ efﬁ . Also, for

2y )’

51m911C1tY of notation we shall not dlstlngulsh distinct functlons with
the same domain if they take 1dent1ca1 values. T e
N «- We shall construct the'homeomorphism z récuréﬁveiy. "Assume that

0 <k =1, and that for each j, 0 Sj Sk; we have defined a homeomorﬁhism

Z.: 2+ 7 such that

j 1 2
(i) Zjl'zi ='Zi¥ for 0 €i <j and
s 7 1 v : b
B P o~ . ~ . -1' -~ o .7 ~
. - _ € :
Sll) -Y2|Z% ElelziEj , for all Y, Fl (or equivalently for

Y, ef
ql;,Yzle 2).

" This assumption holds.for k = 0 by deflnlng Z ;Z?-*Zg  by Zo(x) = g(x)

for all x,eZ0 _ Then™ (i) is tr1v1a11y satlsfled'ahdv(ii},holds ‘since. -

1°
EO =0, Y1l2§>=‘Y1kand YZ'Z; =Y, Thus Y2‘Z§ =y, =0y0 =
v 7 -1 '
ZOYllztiilo . ; e o T

We shall construct a hqheomorﬁhism,zk‘+1:zz +;;+Z§ E1 satis~



135,

k+1
1

fying conditions (i) and (ii) with k +1 instead of k. Pick xe¢Y
and put y = g(x). Theﬁ‘ak<:2§,'ay<:zg and Zk(éx) =;ay.~)In:Vi§wV9f

|3y'=

the note above and (ii), ;16351 if and only if §2<5F2v and ;2
- . X Y
R R N | This implies T, |q. = I |s.F. |. 221, . By Corol-
ki axYelax?k Vay- T2, 19y T Pilaxc Taxk Tayt Y

lary 1.5.6 there is a homeomorphism Zx:x-*y~suchj}hat_,

(a) leak = Zklax and

(®) ;;ly L Yll Z for all Yl eFl » or equivalently, for all
;2 er both hold.
4
A . . k+1 )
Having defined Z satlsfylng (a) and (b) for all x eYl o, we
proceed to define Zx for dﬁl X €X§'+1-Y§.+1. Assume Xx: eX? > X € §.+1

/

X, FX, and assume x and x are in the same orbit with respect to‘rl.

1]

. . Set 0(x) =y and c’(xo)_

o
Y, We note that if Y 51 EFI and Yl(x)‘s”b
E

8, (x) = X then Y, (y) = S,(y) = y_-

. We now claim that if Yl(x) = Gl(x) = X, thEn_Yélzx Y l'

1" x

5;1£X Gllx' We have Y15;1 ¢T and therefore Z Y -ll

1x 1 1 X xo
A ("'--—— ; .0 . , o ,

~ ~_1 . P . . B L s 4-:1 - o~ . »

I B > I - . L &
Y2 2.|y by cho;ge‘gf . (see (B)). 1t follows that Y2 x Yl'x

o 4 + o ~ o} .

~—1 ~ N . . B = . N 7 ) ’." ]
5, ;x'allx which proves the.claim.

N
By the preceedlng claim, we unamblguously deflne a homeomorphlsm

Z x>y by settlng T (u) = yzlzx yl(u) for aIl uex. Thus we have

k
1

~defined a homeomorphlsm\zx:x-+o(x) 1“e}nd wé note:
o ‘s .

1 )

Ly for all xeX

]

) r -
t .
(a") 'Ifﬁx.ex , th?“,leax k]a.x,'and _
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as xny ex:i

k+1 - | ' = p
(") If X,y e Xy and x 2y, then ExI‘X’n)’ = xy[xny

for 0<j sk, or xny = @.

therefore p0551b1e to deflne a mapplng %, ]1<+ 1 ‘*212( +1 by
ng Zk* 1' (u) = Ex(u) for all uex and all x €x11<+1‘.» S , -

- We claim that:

To pr

1

k+1

1-1, I’

(o (X)

= U{ax | x €X } and therefor

) I, liis’ 1-1 and onto;

(3) ¢ jis a homeomorphism; and

k+1
4 Yzlzgfl =z

for all ;2 €T ‘)

k + 1:(‘1 lzk +1 Zk-j:l for all ‘?l € ?1 (Or equivalently

+1, =5

klax: Moreover,

k+1|3x

Lk + 1'-211‘ = I and Iy, 1|Z'Jl' =

ove (1) observe that 1f X € X).

i( 1

then. L

Zk+_ llzklZJ = Zklzi: Zj , w1t‘hthe last equal-lt-y given by (1)._

1
is onto, as v{d(x) |x exk’*l} SR+

2
k+1‘. Z . _ Z _ z .
R fl\lso K41 is 1-1 since k+1|Z]1( = is

o 1s 121 and, moreover, _K-+1('x‘—_3x)”ﬂ ,Zk 13- 9z) =

k'+,1_
1.

z
Now k+1

(x) for all x GX

and 9(x) = Z;x(x) =

k+1'x
-30(x)) N (9(z) - 30(z)) = B if x*z and x,2 €X
k +

‘This proﬁes (2).

. Now X. 1 is a locally f1n1te collectlon of closed sets such that | )

u{x |

- | B
all x eX; - a_\nd‘y“e)( ". By Prop051t10n142 Zk+ _andgk+1 L e

X eXk+1} 1.(+1 ‘and both Zk 1| andZ

1 o Jk+1

e 1| are con.tlnuous for

2

are cbntlnuous and hence Zk +1 is a homeomorphlsm This proves (3).

‘ k+1 N B
for all x¢ )(1 where y,._ o(x). Fet ‘x/e:\,xl s Xy e". 1 . 2 Y,O = g(xo),

To. prove (4) it sufflces to Prove that Yzl = Iy ()t)?'ll-x z;lly
k+1 Yk.+1
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= g(x) and Si(Xj = x_ for 51 er ~ Then gz(y) = ;L, We haVe Ty

, ~—1 PR
2 T 05 | andjgyl(x) 7252 Zx 6171 1 by def1n1t10n. Therefore,
Z;Q(X)Yi|x2;}Jyv=H§é{y»aslcan_bejgeen Py‘substithting Zxrand-z$i(x)‘._>' »

Thus we have shown ‘that the homeomorphlsm Zk 1 satisfies (i) and - -
©= ’

C(ii) with k+1 instead of k. So Z‘= Zé is the desired homeomorphism

proviﬂg'the theorem.

i
A

The foilowing Lémm§4is uSedpiﬂxihe'proofxof,the_Theorggs'5:3.1*end
. S ' . - V - e - ‘ v -
5.4.1 . As the assumptions for it are very lengthy we shall state them .

P d

separately. . \/fv " . F
- ”_- 2 N

Assumptions 5.2.10. Let (G P ) ‘be a planar 3- polyhedron and let

-

Fi‘be/aesubgroup of‘Aht(Gi,Pl). Assume that H %y a F -invariant sub-
graphcqf G1 satiéfyingvthe‘following properties:

(1) H1~is not a cycle.. -

(2). For every edge x eE(Gl) —E(HI) there'is.a'thle‘C ‘of Hy

separating x from Hl. We shall call the side of C in (GI’PI)

4 in (Gl;? ) and-C its'boundary.
is a Boundary of (G

1 1’ 13’
a face of Hl in (G'l;Pl)- Let'F be_/tfe collection of 311, e

not.containing H; a face of H

'~ Similarly, if CeH we shall call C

T faces;of H141n (Gl, 1)

',(3); For every y'eF - {1} and every Fe F y(F) zF. S

Let Ql = {Q | v eV(H )} be a rotatlon system for H1 so that Q1 (:P1<
B . vV v

for dll,v EV(HI); We ndte that F isrfl—invariant. In view of (1) and

(3) the canonical homomorphism which assigns to eaehrautomorphism of



(C ,P ) the Ifiduced automorphlsm of (Hl,Ql) is 1- 1. Let p' be the L

subgroup of Aut(Hl,Ql) thus 1nduced by ?‘

- Assumpt'lon 5 2. ll ‘ Let I‘ be a discontinuous ‘gr‘oup'of homeo-v/'

,morphlsms of the planar and clockw1se orlented polyhedron (S Z‘).'

' Let Q2 be the 1nduced clockw1se rotatlon scheme. ~By Theorem 5.2.4

~

Fz 1nduces a subgroup I" of Aut (HZ,QZJ whlch is 1somorph1c to I'2

p—

. ] . . W . N N N ., .
LEMMA 5.2.12.. If under the Asswiptions 5.2.10 and 5.2.11
; R (H, Ql) > (H,,Q,) i8 an ieomorphism_ so -that ‘
(4) \;DQl \p-l = Qz for some (and thus for all) v eV (H) ’arﬁ )
. u w(u] ’ . ) .
(s) ryyt |

then there is‘ a 'S—poZzzh.édron '(ASJ G ) so that LT

(6) S S and (S G ) 18 é—znvarzant

- (?) H cG and Q2 CP for all veV(H ) where Pz is the- mduced

cZockm,se rotamon scheme on G and ‘
&

r

(8) there is an esomorphv,sm ¥ (G P) (G P2) so that IP

\”V(H ) and ¥T ¥~ 1ot where L, is the %ubgroup of

2
Aut(G P mduced by T, '

-~ Proof.® Let\F,1 eF be 4 face with'the boundary Cl‘ and let ‘C-2' = \p(Cl)‘;s

. In,view(of {4) th_ere is a unique face F;of '(S,Hé). w}iich is bounded by

“P

CZ"‘ In fact, th"ere"‘vis a. 1-1 correspondence between‘e F and the set.
F(s,H ) of faces of (S H ) \ By Theorem 5.1. 6 F1 can be drawn ou F;
resultlng in a graph E"' w11:h ‘the. followmg properties: , .



* the corresponding elements of T
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(9) :C cF and ps(Fz) ch H and

© (10) There is an- 1somorph15m X = ?Fl, x:F -+F2, so that X'V(C )

and XR X f TX(V) for ail V~EV(F1) where R, }s N

1ndu;ed on E_{F,) by Py a?d TX(V) is the c10ckw;se rotation
i'ndlliced OTI EX(V) (Fz)'bySl. | ‘." o

wlvcc )

L

A

Let FotiF be a minimal set’éontaining an object from each Fz—orbitvof F.

For each F, e F_ let us define F. and ¥. :F.+F. satisfying (9) and (10).
. hFy el tet 2 P72
. , and Tet B*‘be the face of (S,H,) bounded

by C = w(C ). We shall now define B

Let B, eF - Fo have boundary C

,-and wBl By>B. . In v1ew»of
Assumptions 5.2.10 and 5. 2 11, there 1s an isomorphism from Pl to. F2

<

the-unique Y"efz for which inw = Y% where,

1 A

Yi and Yé are the automorphisms of (Hi,Q ), reséeatively'(Hz,Qz), in--

duced by Y, reé@ectively’Yz. Thus 1f Y1,51 el 1 then let Y2,5 denote

By Assumption 5.2.10 (3) there is a

assigning to each Yq €l

, 27
\ . ) ~ . C-
~ unique Yl Erl and a unique F €F with Y (Fl) = Bl' Hence.Yz(F;) = BE.
We define B. = Y F)), v, = Y w Y l and see without difficulty -
2 2% 2 B1 1 1 .
that (9) and (10) hold for B, and BZAinstead of F/ ahd,F . Now consider

the graph G, =u(¥p (F) |FeF}. It follgys from (9) and (10) that H, <G,

and Q2 cpP, for all v €V(H2) where p Lls the clockwise rotation 1nduced

\' ZV

on‘G2 by 'S. According to our construction Gz‘is Pz—igvariaﬁt.
Moreover, by Theorem 5.2.4, f; induces a subgroup FZ of Aut(Gz,Pz)

which is isomorphic to Fz. Let the isomorphism ¥:6, +G, be defined

by w]F = Y for all FeF. From (10) it follows that ¥:(Gy,P,) > (G, P 5)

is aﬁ isomorphism and that W| = ¥, In order to show that ¥T W =

V(Hl)
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N L . é.,.,_
l"2 let Yl € I'l ?nd' ?2 6?2 inc?;c,é Y5 f l"z. :It’ suffices to show F-hat g
171‘93;1' - YilB’z for any Bli"}:"}/‘e?e A7 () and vy () = By
Let Fy cF; énq 5, eTl'wifh 5,(F) = B, By definition, ¥, -

Ya

~ o~ a1 . -1 : S St I o
YaSa¥p (v181) Tla = vplq¥p C(ry8) . Hence yy v (8yup 8,0y )= vyl
1 1 F1 S Ay TR 2 By 2By,
o o . -1‘ L : X . . » . . » ) ; .
Ihgt is, \P,AlYl\PBllB = Y2]B2: We see that the co;lectl?n of faces of G,
i ' ‘ L .
-in S (defined at the end of the proof of Lemma 5.1.5) form a I‘z—invariant

subsurface S of S. ‘Hence (E,G ) is'a 'szinvariant polyhedron. [J )
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- §3. TOPOLOGICAL' CHARACTERIZATION OF INDIVIDUAL ELEMENTS OF A

DISCONTINUOUS GROUP OF A PLANAR SURFACE.
. TN
, >

{

A

Let pd, T, T, 0, and § be. the mappings,defined in Chapter 1, §3,

Example 2, and let M = {r,7,0,0}.

THEOREM 5.3.1. Let S be a planar surface and T be a discontinuous
‘homeomorphism group acting on S.
(1) If ;n;F-;{i} has finite order and ig orientation preserving,

then for some real number § there is some pa-invafiant stb-

surface SO»CS2 such that o is topologically equivalent to

- 05!56' e

o - (2) If a el has infinite order, then there is a Y €M and a
Y-invariant subsurface_so of Rz_such that a is topologically

equivalent to YIS .
. o

-

Proof. By Theorem—2.4;1 there is a T'-invariant 3-polyhedron
(5,G). Let P be a boundary tolr scheme for (S,G). Let @:Ff+*Aut(G,P)
be the canonical monomorphism (see Theorem 5.2.4) and let @(F) =T

-and @(;d = vy for all §e;F .  In view of Theorem 2.4.1 we may assume thgt

]

Msatisfies Assumptions '4.1.1.
If a el - {1} has finite order and is orientation preserving,
then g acts orientafﬁon preserving on (G,P). In view of Note 4.2.21,

Lemma 5.2.12, and finally Theorem 5.2.9, there is a planar pa—invariant

-
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=

subsurface So csz such that y is topologicelly equivalent to pGIS .

If ;e; has infinite order, then in view ’of Note 4.2.10 or No;e
4.2.718 (depending if (G‘,-Pr) has an d—invariant, two-sided an‘db 2-ini"in_ite
path), Lemma 5.2.12 and Theorefh 5.2.9, t_here is a (plana:?) Y—inkrariant
subsurface SO cR'Z; where Y€ M.,v such tha't‘ 8 is topologicaily equivalent

1

toYls.D V
o ' o

Y
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i e

§4. DISCONTINUOUS HOMEOMORPHISM GROUPS lOF‘kTHE EHCLIDEAN?

PLANE E WITH COMPACT FUNDAMENTAL® DOMAIN.

THEOREM 5.4.1. Let T be a discontinuous Qroup 5f homeomér?hiémé
of the euclidean plane E which hdé compact funddmental‘dbmain, that is{
there is a bounded set B in E such that TB = E. Iheﬁ‘F is‘topplbg—
ieally équivalent to a group'of isometries of the euclidean plane E or
the noniechidean plane NE.

Proof. By Theorem 2.4.1 there is a F—invariant 3-pothednon
(E;G). Let P be a goundary toeréchemavfor (E,G). Then (G,P)-is
piénar, by Theorem 5.1.12 and'every cycle in (G,P) has one finite
side.‘;Let @:?v+ Aut (G,P) be ﬁhe cdnonical monomorphism (see Theorem
5.2.4) and let &(T) = T and ®(Y) = y for all yel. In view of
Lemma 2.3.1 and Theorem 2.4.1 we may assume T satisfies As;umpf525;>
4.1.1. The faﬁt that T has compact fundamental domain implies that
G¥ = G/r is finite. ”Ié followsvfrom Note 4.3.6, Lemma 5.2.12 and
Theorém 5.2.9 that T ié%gopologicafly eduiuglent to a gfoup.of iso- R

metries of E'pf NE. O
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