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ABSTR;CT

A classical SU(3) Yang-Mills gauge fgheory with
prescribed external static sources is studied for finite energy
non-Coulombic solutions. Starting from an Ansatz Eonsistent with
SU(3) and rotational symmetry, the gauge field equ;tions are
reduced to a set of nonlinear, coupled, ordinary differential
equations. These equations are solved numerically by collocation
method using the code COLSYS.

Finite energy solutions require that (a) the source be
extended in space  and (b) two different sets of boundary
‘conditions be imbosed‘on the solutions.

The first tyﬁe of solutions are non-trivial
generalizations of non-Coulombic solutions studied previously in
the literature. These solutions and their energies are studied
i; detail 1in this thesis.

An exhaustive study is made of the type-two solutions. "
These solutions belong to the second type of boundary conditions
mentioned above: namely thef tend to a pureAgauge 5t infinity.
These solutions have remarkable properties: 1) existence of
critical source strengths below ‘whiéh solutions (of finite
energy) do not exist; _ii) bifurcation of solutiomns above the
critical source strength, 1i.e., there exist two distinct

branches of solutions above the critical point.

In our study®we have found three padrs of bifurcating



solutions. The first pair represents SU(3) generalizations of
~the. SU(2) solutions known in the 1literature. The other two

groups are unique to SU(3) gauge flelds and have no SU(2)

counterparts. They were discovered during the course of thi§

work.

The ‘'stability of these bifurcating solutions 1is
analysed and it is shown that the upper branch is unstable
rrelative to the lower branch. For thé lower branmch solutions it
s shown that no normalizable zero energy oscillations exist,

therefore the lower bramch solutions are absolutely stable.

iv
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I. INTRODUCTION
.,

Gauge theories offer the greatest promise for.

q

descﬁibing the elementary forces in nature. The Wéinberngalam

(W=5). model (Weiqberg 1967, Salam 1968) (orrgeneralizatfons of

it) and Quantum Cromodynamics (QCD) (see for example Marciano

and Pagelstth) areftheitwo existing non=-Abelian gauge theories

gnomenological importance.

EY

of reala

;Thel W-5S model which combines the -~ weak and

electfomagnetic interaction thfough the wuse of' the Higgs

mechanism (Abers and Lee 1973) was proposed about thirteen years

1

ago. QCD, the renormalizable quantum gauge theory of the

unbroken . local gsymmetry group Sﬁ(3)_ of colour, 1is widely

‘believed to be the correct theory of the strong interactions.

Non-Abelian gaugé theories were introduced by Yang and

Mills (Yéng and Mills 1954) over twenty-five years ago. For most

of this_period it was not knownrwhﬁther any of the interactions

fobserved in nature, could be.deécribed by a non-Abelian gaﬁge

theory. Quantization and renormalizability were .the central
topic of researéh.
" Ia 1971 “t Hooft €t Hooft 1971a, 1971b) proved

renormalizability of phe Yang-Mills (Y-M) theory,iandréfter.that

one - had confidence in Feynmanrdiagram calculational techniqués.
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The door to ﬁhe quantita;ive Y-M'ﬁhénoménology was finally open.

‘The 'W;S model .and QCD can be formulated in terms of,
Feynman path integréls (Feynman and Hibbs 1965, Popov 1977),
i.e. functional ., integrals  over all. c1assicél field
configurations weighted -by a factor exp(=-action). If one kn;;
lévgrything- abouf classicél field <configurations thén in
prinéiple all qﬁestions cohcerning the quéntum theory cqyla'bé
answergd. -

Partial information about classical fields might yield
at least some insight into the quantum theory. ThisAis the basic
hope which'motivates,pfesent research aétivity in the classical
Y-M theory.

In this .work we will study the solutions ﬁo the
classical Y~M field equations in the presence of static external
(non-dynamical) \sources. " The ‘physical, quantum-mechanical
significénce of such solutions has not,thué far been as profOund
aé that of solitomns, e.g. monopoles with Higgs-field sources
(where sources afe dynamiéal)('t Hooft 1974, Poiyakov 1974) nor
as that of ihstantons, (where sources are absent but the
equations are continued to imaginary time (Sciuto 1977)).

In the Abelian>case, the Coulomb field is fhe‘unique
and absolutely stable solution: for an arbitrary ’numﬁer of
charged particles of given position. Thtis westablishes the

dominant role played by the classical Coulomb interaction in the

low-energy regime of both classical and quantum eiectrodynamics.

Y



Héndﬁla (1976) showed how t&ﬁ\Abelian soiution could
be trivialiy' graqslated to the Y-M case (Sikivie and Weiss
1978a, ri978b).' Claséical sources are described by a charged
vector 1in a gaugé .group space, and "1if all the sources are
o;iented ‘in commuting directions in the Y-M space (fp{\example,
along -the ka and AS directions for the SU(3) éaugevgroup), it
13- consistent to make an Ansatz that ‘the only ndnvanlshing
components of thé Y-M fields are along these directions. This"
Ansatz immediatély linearizes thelfield equations and reduces
them to/a set of decoupled copies of Maxwell’s eduations in the

D \f"
presence of extermal fixed charges.

Since that tigg\jhﬁre have appeaggi in the literature

several papers that generalize Mandula‘’s sol ioﬁ and consider a
s;ability probleﬁ in the Y-M system with "external sources
(Mandula 1977, Magg 197%3, 197éc, 1979) as-well as a total
(EoloﬁT—~6{/ Y-ﬁ) charge screening (Magg 1978b, Cahill 1978). A
particular strong coupling gauge theory, the coloured
quark~gluon model (QCD) 1is wide1y favoured as a theory of strong
interactions, because of 1its successful interpretations of
scattering data and of hadron spectra. Therefore the questions
of stability and charge screening are important because
classical stability 1is necesséry if the classical solution is to
resemble the quantum situation (but it by'ﬁo means ensures such

resemblance) and 1in the colour gauge theor& the confinement of

quark quantum numbers requires that physical states be colour



.
singlets, that.is,‘that all coloui\charges Ee totally screened.
Jackiw, Jacobs and Reb%i (19795 give another example
of a solution for the sources of arbitrary strength1 which they
call the'nbn—Abelian Coglomb solution and thch differs from tha .
Abelian one by the property téat it does not wvanish with\the
vanishing of the source;2 rather it beéomes a pure gauge. Thef
solve the problem perturbatively in the source strength and find
that the energy of a non-Abelian Coulomb solution 1is al%ays
lower then a corresponding Abelian one. When the source strength
increases, tbe previous solution continues tb be present but in
addition, solutions which require a critical, minimal source
strength appear. One example of‘ such a solutio; is given by
Sikivie and Weiss (1978a, 1978b). It is their "magnetic dipole,
solution" which is gOCteﬁ by aligning an external source within’
the Cartan subalgebra of a gauge group. The extepded charge
distribution then yields a type ofk’solutioﬁ which has the
longjrange behaviour of a magnetic dipole field. |
The other éxample of é ﬁinimumfstrenéth solution is
giveﬁ by Jackiw, .Jacobé and Rebbi (1979). They consider the
gauge group SU(2) and use an'Anéatz for the Y;M fields’where't;e

explicit radial * symmetry is absent, ©but the rotatiomnal

lSolutions naturally fall igto two classes: those that exist for
arbitrary source strengths and those that require a critical,

finite source strength.

21n the absence of sources, finite energy solutions are
necessarily trivial (Deser 1976) :

!
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[ ’ 4
non-invariance could be compensated by a gauge trapsformatibn,3
Since their Ansatz contains %ﬁand Aﬂdifferent'from zero_(one

obtains the Coulomb solution by setting A“=0), . the full
. . / L - M . -

nonlinearity of the equations comes into play aftd there are no-

analytic methods available. For two different sets of ‘boundary

éonditions tﬁey get two types of sqlutiéns, whe;euthe first§type(

is in fact the non—-Abelian Coulomh’solution encountered before.
The sehond type qomes‘in two branches once the source strengtﬂ
exceeds aAcriticai magnitude.

It has been a challengemfor ﬁs to generalize results
and 1ideas - ta_ a much wmore 'complicated case‘with SU(3) gauge
symmetry, the symmetry which 1is used to describe hadrons and
their dinteractions 1in terms of quark f}elds coupled to gluon
gauge' fields. Once the spherically symmetric Ansatz H{f been

chosen (Corrigan et al.» 1976, Yates 1977) and the source had

been characterized {in a gauge 1invariant manner, -a whole

diveréity of ,gdﬁzz%fieid configurations was found. Within the
Ansatz, energy, the gauge 1invariant quantity, display;d
interesting bahaviour. The"appr;ach we use 1s based upon the
decomposition of 'gauge‘ fieldg and external sources 1into
symmetric, and anti-symmetric parts (Ragiadakos and Viswanathan

1979) -and a specific choice of SU(3) genetatoré (Marshak et al.

__________________ - 7&'
3This is the 8o called no&-Abelian fashion of the radial
symmetry. The Abéelian fashion is realized when everything points
in a™fixed direction 1in a gauge group sSpace and 1is .radiallyi
invariant (Sikivie and Weiss 1978b).



o

1969, ©Li Ling-Fong 1974), 1in order to .achieve a more general,

v

monopole plus quadrupole~like K  gauge-field - response to a

corresponding external source configuration.

-

In chapter 2 we review the 'general vétructure g?
classical field theories baseﬂt on the princf‘le‘of minimum
. oL - e N

)

action and explain some basic notions of gsymmetry

gransformatiﬁné and gauge 1invariance with emphasis on the

~/ . : <
non~-Abelian gauge 1invariance. In chapter 3 we briefly p;gsent'

the Y-M theory in the presence of external, static sources and

give the Ansatz we will be working Qith.

In chapter 4 a survey of numerical methods:- as applied

to our particular problem 1is wade including details of the

e

techniques we use in order ‘to prepare the problem for the

collocation method. A brief description of collocation is given.
. [y
v,
Chapter 5 1g devoted to a review of the g?Su}ts. The
. e o
complete numerical analysis is presented for différent external

‘source configurations, their strengths and positions.

-

In chapter 6 the stability theory is briefly reviewed

‘and stability properties of the Y-M fields with respect to

a

radial oscillations are determined.

Chapter 7 contains the conclusion and suggestions for

1]
the further research.



[-L I

II. THE FORMALISM Of CLASSICAL FIELD THEORY; SYHHETRIES AND

GAUGE INVARIANCE

The dynamical behaviour of a. physical system {is
usually described -~ by means of intagrﬁl, )differential or
o ¢ » , ‘ P

integro—differeh;ial equations, where the unknowns are arbitrary
functions (in classical }hysics) or operators (in qﬁéntum
theory). In.ﬁost of‘thg/important practical cases it is.pOSSible
to derive these'kgquations from a variational principle.‘fhis

means that the equations in question may be considered to be the

necessary condition for the extremum of a functional, the so

.called action functional S, which we write as

N
~

S= sd*x Jf:(4>(x),'b’u¢(x),a”‘a?4>(x),...-) (2.1)
where CP(K) are %n genﬁﬁi} complex fields, taken at the point
X ' ’
We‘ aésuﬁg in the féliowing that the integrand Ji
which is céiled ;hg Lagrange density, together %th all
derivatives which occur in the course of the calthations,‘are
conéinuduS‘ functions of all their arguments. We wiil keep o£1y
the’ first partiai derivatives - of tpe fields, and the

correéponding differential eqﬁations will contain, at most,

second order derivatives of th%ﬂfields. Introduction of higher



-
S
i

9

order derivatimes intoat wbéld result 1in the appearance of
higher order déri;atives in the correépondinglgfeld eéuationé,
but equations of this type, discussed in the literatdre, contain
some physically un;eas§nable features such as infinite energy
for the;dynamical system. v

A physical principle from whiph we can infer thé
"dynamical " behaviour of theusystem of fields under consideration
is brovidéd by the principle of sta;ionary action. ihé necessary

and sufficient conditioms for S to be stationary are the

Euler-Lagrange équations -

\
28 s X - : ]
d 9 3% d) °

In order that the field equations should be covariaqﬁ,

(2.2)

the action must be invariént under the Lorentz transformations
and, consgguently, the Lag;angian density must be a Lorentz
,scalar.' Additional requirements on 35 come from an aséﬁmed
invariance ,of- the theory (e;g. internal symmetries, discrete
symmetries etc.).

It 1s important td observe that the choice of the
Lagrangian density 1in the variational functional (2.1)»whiQp
leads to the actual equations of motion, 1is not unique. The
simplest type of change which 'can be made is the multiplication
of'gi by a quantity which does nof depend on the variables or

state functions of the system; that is, the multiplication of

5& by a constant. In addition we qbserve that the addition of a



four-divergence to the \Lagrangiad density - 1i.e., the

substitution

L—'& + UK (¢0)) BN ETES

does not médify't%e»equations ;f motion.
The conserVafion..laws usually express the fact that

certﬁin physical quantities,LSUCh as momentum, energy, angular
momentum, charge, etc., are coﬁstaﬁt‘in time. These laws follow
as a consequence- either from the field equations (2.2) or

= ]
directly from the action functiomal (2.1). The latter point of

%

-

“view is ihtimately connected with the structure of this
functional, in« particular with its invariance p%bperties with
respect to a certain set of transforﬁations;

Noether’s theorem a33ufes the existepte of comnserved
quantities when the action functidn;l is ;eft invariant by a set
of transformations of~fhe coordinates and the fields.

The combination of Noether“s theorem and.the principle
of statiodéry action clarifies the relatiohship between
conservation laws .and symmetry groups.llWe,will consider fhose

groups which «can be generated by infinitesimal transformations

in the neighbourhood of the identity transformation, so-called

Lie groups. The following theorem 1s thus obtained

- e - . — —————at - — -

lWe <call a transformation a symmetry transformation when it has
the property of 1leaving the equations of motion invariant in
form (form-invarfant)..
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If the Lagrangian density function 1is ianvariant Q%ger a
p-parameter Lie group, the equdtions of motion ensure p-
conservation laws. : :

"The Lie groups of . special 1interest 1in <classical
mechanics are the four-dimensional tfénplation group and the
three-dimensional rotation group (forming the Euclidean group),

the Galilean group and the Lorentz group. The Euclidean éroup
'corresponds to the following seven conser;ation laws:
conservation of energf (time-tfanslaéion invariance),
conserﬁatioq of 1linear momentumAYspace-tranglhtion‘invariance)

’

and conservation of angulg; momentum (rotation invariance). The
additional three pafametgrs of the Galile;n a;d the Lorentz
group yield the ;enter-of-mass theorem nonrelativistically and
felativistically, réspectivly.z

Now' we shall extend jthese idéas to non-classical
symmetries: called interdﬁl symmetries,/i.e., transfo:ma;ions
which do not involve space-time coordinates.

The discovery of interngiﬁ/éymmetry princiﬁles or
invariances under tertain gauge or pﬁase transformations leads
to conservation laws that greatly reduce-the mulﬁipligity of
processes and states of a theory.

One group of 1internal symmetry tranéformations that
plays aﬂ important role 1in particle physics and seems to be
unrelated to the space~time symmetries 1; -~ the gauge

This theorem states that the position of the center of mass bf

a system 1is a linear function of time (the velocity of the
center of mass is conserved).

10



transformation of the first kind. Simplest gauge trinsformgfions‘
of the first kind are transformétions of the unitary group U(1l),
which 1is a one-parameter Abeliaﬂ-pie group possessing only one

dimensional represenatations. Under these transformations the

fields change according to

-

- ' f , N S
Gx)—> p(x) =€ ¢ (x) (2.4)
with oC real. When the Lagrangian density function 1s invariant
~__ .

under the gaugé’ttansformation of the first kind we refer to it

as global gauge invariance. °

P B
///6augea invariance of the first kind gives rise to the

. — :
conservation of a '"charge". Besides the wuniversally known

conservation of the electric charge, experimental evidence

exists for the —conservation of the baryon charge or baryon

®

number, electron-lepton number, muon-lepton number, etc.

A theory may be 1invariant under a more complicated

4 '

group of transformations than U(l). We  can define a gauge

transformation by

-<Q, L S
¢(x)—> q)’(x) =€ * acb()(‘)’-' U(e)‘b(x) (2.5)
where (P(f) is a column vector and ‘ta is a matrix
representétion of thé‘generators of an internal symmetry group

G . The number of param_eteré needed to Specify U(@)e G is

the dimensionality of G .

11



A generalized gauge transformation can depend on the

space~time point. Let us take again the U(l) group

o =< @) .
* dx)—m>= ¢pkx) =€ $(x) (2.6)
This 1is the so-called gauge transformation of the second kind,
or local gauge transformation. Since the Lagrangian density

funetion contains the derivatives of fields|$(x) , it cannot in

general be invariant under these transformations. The invariance

is restored by introducing a gauge field A’u'(\x)

A — b#-—éeA‘“(x)- ) (2.7)
which transforms in a special way‘éo‘that the combination (2.7)
”tr;nsforms like in /(ZQES{ e i{s a coupling constant which
cha;acterizés stf?ﬁgth of the igteraction.
Yang -and Mills géneraliged the local gauge
‘transformation in (2.@) to non-Abelian groups.
J Let Tqo (a-l;.f.,N)<be\the generators .of a‘compaét Lie
group with étruétu;e constants Chhc (see Appendix ‘C). Let a

collection of scalar fields transform according to

, -1, () Lo _
P&x)— Px)=¢e q)(x‘)=U(9)¢(X) (2.8)
where ¢(K) is a column . vector and LQ is a .matrix
'representation of T . The Lagrangian density is assumed to be

a

o

invarianf™ under a transformation with constant C%_. The problem

"of how to construct a tﬁeory which is invariant under.a local

H

v .12



gauge transformation Qa_(x) as well, 18 solved by introducing

a covariant derdivative j}f‘ , which transforms like

| D ptx) —= U(e) D¢ ¢(x) (2.9)
Then, if a‘“q)(x) appears in £ ‘only as a part of %I“CPCK') | ,
Se will be invariant under localvgaﬁge transformations. )

The covariant derivative 1is constructed by introducing

a vector field At()(‘) for each dimension of the Lie algebra, .

hence .
@ﬁ =3+ égTa‘A(:(r) ‘
’ (2.10)

In (2.10) g is the gauge coupling constant.

In this way we have introduced an 1interaction between

Cp(x') and the gauge fields A(: .\H“h»is implies that only fields
in interaction can be invariant under gauge transformations of
the second kind. -

Now we must add to cf, the part in _wt;ich the A(: (x)

and their derivatives occur only in combinations

GV BNV Y m GRS
F a"a Aa.\'a A.q_""gco.bc Ab Ac. ‘ (2.11)w

W.The full Lagrangian density, which is invariant under the gauge

group G 1is

]

6€;=d€(¢,3#¢)+xynw=‘f(¢,3#¢)“%{ F(L;g F‘«qv (2.1

A
A%



and ,ag\{ﬁ s the Y=-M Lagrangian, 1s invariant since the
» 7 M
transformation rule for the gauge fields AQ(X‘) is defined to

be

(2.13)

o | -1 e -1,
A (x) — U@ A*U ce)—-é-[a‘“ucenu (o)
It is the last term of the right-hand side of thislequagion

which reflects the local character of the transformation.

is defined in (2.16).

M
The gauge filields or the. Y-M fields A&(X) are

Lorentz vectors which carry 1integral spin angular momentum.d

»

Because of these reasons they are often called "photons¥ or
b -

»

gauge bosons. The gauge field mass tefm would have -the form

—-—

‘—%MZA': AL & " (2.14)
which obviously violates local gauge invariance. The conclusion
is that local gauge invariance is impossible unless the gaﬁge
boson is massless.

It 1s convenient at this stage to introauée matrix
notation. In the adjoipt representation (seg Appendix B) the

generators TCL have the form

g ‘(Ta.)bc == Clobe . (2.19)

Let

) A% (x) = T, A(::(") | O (2.18)

14



Namely, A‘“(x)takes value in the Lie algebra of G. Similarly

F(‘WE -l'-a_,[--(m;L ‘ (2.17)

Then we can write

Ft‘“’=3/“A".—avA‘“'+L°3 [A‘“,A‘)]‘ (2.18)

. )
Now the deH of the total x can be written in the form

Lyw==77 Tr (FETFET) | (2.19)

where the normalization for the generators TCL is defined to be
' r

Tr (Ta Tb) =N gab (2.20)
and since F‘u'v transforms under the local gauge transformation

according to

FEr—sF ' = U@ F U (o) 2.21)

the iYM‘ is obviously invariant due to the cyciic property of

trace.

15



"III. THE CLASSICAL YANG-MILLS THEORY WITH EXTERNAL SOURCES

3.1 INTRODUCTION

A theory of free fields alone has no physical content.
The nature of.the pﬂysical world is revealed to us only tﬁéough
interactions. In constructing an interaction Lagrangian between
Y-M fields and an external, prescribed source. we shall be
motivated by analogy with the classical elect?omagnetic field.
This analogy ?anr be easily - seen jus; byh looking at the
Lagrangian density (2.12). |

There 1s no general recipe for finding the Laérangian
function which will »provide a giveﬁ set of_equ;%ions. Only
certain structural features can be assured from the outset. Its

exact determination is, in the last analysis, educated

guesswork. Physicaily, it adds nothing that is not contained in

T

o

the basis equations.
The Lagrangian demnsity for an elecirOmagne;ic field

interacting with an external electric current is

_ VY g o
Cﬁ"ZF(wF ) A (3.1)

where

16



FE= AT - 37 AY

. —(3.2a)

The action principle yields the Maxwell equations
BMF.Iu,\’z_ Y, "
:13 (3.2b)

The other two Maxwell equations ‘are~éutomatically satisfied
' , v
because pf the dafinition of ‘-_1“' .

The differential law of charge conservation

PNy
873" =0 (3.3)

which can be obtained from (3.2b) using the antisymmetry of Fﬂy

has an equivalent integral form

Q:-Sjﬂ'ﬁ‘“d“x i (3.4a)

thus

BJCQ"j(B‘uj(“)OLG =0 (3.4b)

We conclude this short expésition by stressing that under the

condition

Ox=0 ) (3.5)

where K_ 1is defined by the gauge transformation

b A |
AF—= AT+ 35X | (3.6)
the gauge invariance of the action functional is equivalent to

charge conservation (Rohrlich 1965).

17



We now consider the generalization qf the classical
electric and magnetic fields in interaction with a given charge
and curreﬁt fdistributién jv to.£he non-Abelian case. The last
chapter enables us to write the Lagrangian density which yields
the equations " of motion for the fields in interaction with

prescribed "colour' charge and current density 1l {5 the form

Y v .

c?f,f-"‘:}LF(:b Ftb ‘3':; A(:b (a;b=1,2,3) (3.7)

(see p-116 for the notation). Wg choose, for féasons mentioned
before, the semisimple compact Lie group SU(3) {éée Appendix C)
as the wunderlying gauge symmetry group. Thg,field equations
satisfied by the field strengths written in thg“matrix notation

) RS
F(Lw = F{:b uab - L - (3.8)

Y
so that F ™ can be written in the form (2.18), are

QEFL =4 G

where

SN VAR |
b = 9 +"3[A‘“’ ]ﬁ 3 =3ab uab (3.10)
Here [ R ] has meaning of the ordinary commutator (see footnote

lfFE terms "colour" 1imply only that the fields transform
according to some representation of a non-Abelian gauge group G
in a "colour space" (gauge=~group space), and their
non-comutativity is purely <classical, as a consequence of
non-comutativity - of matrices ©but not the quantum mechanical
operator non-comutativity.

18



1) so (3.9) can be written

v ) Y
S N Y ol Vo
AV FC + ¢ ' ~<caFt AT = '
SA F 3 3 =(3.11)
. < {f ’

The matrices Utxb are the matrix representation of generdtors .of

SU(3) (explained in details in Appendix B).
Since the gauge transformatiom properties of the gauge

N &y -
fields Aab and Fclb are given by (2.13) and (2.21), the
equations of motion (3.9) are covariant provided jg also
transforms covariantly
.y <1y .Y, -1
—_— = U (O (®)
3 3 Li( )3 LL (3.12)
flence, if Afkis a solution of the equations (3.9) with
‘ , | .

the —current jv , then A' |, the gauge transform of A#, given by
(2.13), is the solution of the equation (3.9) with the current
"V defined by (3.12).

The gauge covariant current jv », although not

conserved, satisfies,

(3.13)

a\’{‘éﬂ\)_ L%[A(&, F(u,v]} . .
Hence, the current Jv T

J =M
(3.14)

| ‘ »
is conserved due to the antisymmetry of ’E‘(‘l . Thus Jy(x) is a

. Y
conserved but not gauge covariant current, whereas j (x) is

gauge covariant but not conserved. However, the current j (x)

19



*77  gatisfies

$93.9 =0 (3.15)

In order to prove tbis relation we star; with

[2)(“,3”]4’: {'8 [F‘/w, 47\]\* (3.16)
{[a"+<glA%, 1,27+ <g[A”, 1} ¢ = 2637 +
+ gL, 01+ <9[N 20T + cg[A®, 27014+
Fog[AY APT - (cgf (A% 0 A’] -

V- |

-{f‘_"’)
(98] 0= ig[2* A"~ P'A*, 9] + (<9I A* AT o+
+ATTAM, T - [AC, $TA - GTAS, A’]

[N AR S - AR, O T+ (A, 01A  + A, AX]}

cand after simple manipulations the relation (3.16) is obtained.

Now

8#j#=a#3&+6%[Aﬂ;gﬁ]=
(3.18)

:=‘8(“ﬁavF:[Lv:= %-[ Q/L) 9\?] F[“)z(b

20-



We shall be concerned with static extermal sources. We

call a current jF(x) static 1f

i

o

jd(r)

3.o(x_)___g ?(5) (3.19a)
and ~
(x)=o0
'Bt e\X . (3.19b)
From (3.15) we can obtain a useful relation | between
A°  and [4 .
o
= 0 .. k
[A®, ¢] | a0y

which means that in a solution tﬁe-time component of the field
alt 1s always parallel to the source. Tﬁis remark is important
because it will 1in a way determine the form of an Ansatz for
Aoonce g is given.

Using (3.7) and (3.19) we can w;ite the total energy

of the system

H=4 (4T ICFeE) + 3 (F3)]

(3.21)
The colour electric and magnetic fields are
< o< .
Eab - FQb
‘ (3.22)
B'(: -—— 1 Eéa'k F_ ah ’.:;:"JE
ab 2 ab -

so the energy (3.21) can be written

21
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H=7 Sirg(ﬁib‘“ AB;iq.b)

(3.23)

. < .
By 1identifying Eab as momenta conjugate to the canonical

coordinate A;L , it 18 easy to derive the static Y-M equations

.,in the ©presence of an exter%???& prescribed time independent

source. Howevert, the variatioés of H, defined by (3.23), with
: ' <

ab which are mneeded for obtaining the

dynamical equations. ajre not unrestricted: they are constrained

< .
respect to Aab and

by the three relations that comprise Gauss’ law. other words,
the equgtions (3.9) for(&=1,2,3 are equations of ‘otibn, but for
éL-O, the equation 1s the restriction on what éonfigurations are
admissible. Gausé' law requires the divergence of the colour -
electric Tfield E;; to equal the total EOIOur_dengity J°
(3.14).

The constraint may be implemented with TLagrange
multipliefs which we..call A;l .(M?gg 1979), and unrestricted

variations are performed on the effective Hamiltonian

= o PP : < ¢ ' N
H = H‘Sd(c Aba {3 Ealo+ Lg[A )E ]ab*ggab} (3.24)
In this way the full Y-M equations are reéained ‘ '
| S
, > = O ,
$Aba - | | (3.25)

' Cod T al 1 g =
= 3B+ glALE ]y~ g S =0
(Gauss” law constraint - time component of th equations):

22 .



p =5tE =
=@ *B,) -ige T AN 3] -tatA £,
(Ampere’s law - spatial components of Y-M equations)
SH =<
< = d
§ Aba *Eéb **

= chb + BLA:b ”"3[/3“:) Al

. ' L
(definiton of the canonical momentum EQB ) W

o

23
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3.2 THE STATIC YANG-MILLS EQUATIONS

In simple dynamical systems it follows from Hamilton’s
equations of _.motion that the energy 1is stationary for time
independent solutions. |

Therefore, from the =equations of motion for the Y-M
fiel&s >(3.26) and (3.27) and from the constraint (3.25) we getu

the static Y-M equations

b‘;E:b+ 4;3[/\4;, Eé]a.b =3 Sab

‘ < . gk ok g . ) < ' .
(2% B,y =cg e [ATBI],, +4glaA" BT, O
< , £, 0 R < ; o
Eqbz—a Aab—{’a [A ’A Jab
The most obvious solution to the equations (3.28) 1is

- the static Coulomb one, where it 1is given by

A = O (3.29a)

and -

(3.29b)

A=¢ ; ab=-gg

but our task will be to solve the equations (3.28) retaining all

the components of the vector potential’

24
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3.3 ANSkTZE FOR SOURCES AND GAUGE POTENTIALS

-

In order to solve the set of highly’ non-linear
differential equations, we have to choose an Ansatz which will
simplify the system but- which will still exhibit all interesting

features incorporated in the Y-M theory. Proceeding in this

direction, we make the following decompositio7 of the colour

charge density 9Qb

ls)ab= f{db} * Srab] | (3.30)

where is symmetric and i$ antisymmetric under the
(ab} ~ (ab] |

‘interchange of a and b (Ragiadakos and Viswanathan 1979). In the

same way we decompose the potential
{

~—

C oA M N & “
= +
Aab A{ab} A[a-b] (3.31)
- . For an ek;ernal source we propose a spherically

symmetric Ansatz which transforms according to the adjoint

representation of SU(3)}. Recall that spherical symmetry in the.

~

non-Abelian gauge theoryfffﬁabe realized in the foilowing wéy:
if - explicit spherical symmetry is absent, any rotatiomnal
non-invariance can be compensated by a gauge transformation (see

remarks on the page 19 about gauge transformed quantities).

25



Hence for an external source being spherically
symmetric we have
+ =0
3+7,¢l=2

s

(3.32)

where i generates spatial rotations and E is a triplet of
generators of SU(3), that generate an SU(2) (or SO(3)) subgroup.

There are essentially two different ways of

identifying Z’among the SU(3) generators: =

Ea Ea, A2 o {2, hg AL

These generate SU(2) and SO(3) groups respectively, which are

(3.33)

subgroups of SU(3).2 We take T’s to be generators of the S0(3)

subgroup, which have the same commutation propérties as SU(2).

i

This is so-called 50(3) embedding of SU(2) in SU(3) or sometimes

-

) ,
called "nuclear physics" embedding.3

)

An invariant under the combined rotations (3.32) which

is antisymmetric in the colour indices is of the type
R

£ X

r

abk (3.34)

therefore we can write for ?[ab]

SO(3) is isomorphic to SU(2)/Z,where Z,1is center of the group.
We can say also that any element of SO(3) can be represented by
a matrix SU(2) defined up to a sign, or that matrices of S5U(2)
form a two-valued representation of the group SO(3).

3The other embedding 1is SU(2) or "U-spin embedding" (see
Appendix B). . : ’ :
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) k
Srabl = Eabk T = alr )—3_ (3.35)
and q1(r) is a spherically symmetric colour charge distribution.
We shall be concerned with gauge-fields configurations of finite
total energy - a requirement . which imposes regularity
constraints on the charge density. Conseqﬁently, we do not
discuss point sources.
The form of the symmetric part of gqb will depend
upon transf;rmation properties of the coset of SU(3) generators
{7\1n>‘3;>\4‘))‘4)7\8} (3.36)
,&Qder SO0(3), rotations generated by 2, Since the coset transforms
as a quadrupole moment tensor (Corriganm et al. 1976), it is
reasonable to construct an invariant by using the quadrupole
moment tensoryin the spatial coordinates so the symmetric Ansatz
becomes
S(KaXe_ 1 puciie |
5 {ab} r? 3 Tab’ g2 ' (3.37)
and the total colour source temnsor can be written as

. & - (r)
_ . X %«(") Ko Ko _ %2
Sab™= & pe T g% ( | “b) 3 | (3.38)

The condition (3.20) enables us immediately to write the Ansatz

for the zero-component of:the vector potential

1 ‘Fz(")
° = 5
Aab <€ "ir' 3"’ ( ) (3.39)

The :spatial part of the vector potential transforms as a vector ¢

27



under combined rotatioms (3.32). So its symmetric part can be

immediately written as an invariant (quadrupole moment teumsor)

13

"times" a three vector, i.e.,%

]H_Cz}_

. ol (3.40)

Since. the commutation relations among the S0(3) generators are

the same as those for §U(2), the antisymmetric spatial part of

the Ansatz for the gauge potential has the form

: <
4 .
| =4 € A \
.A[qb] abe c (3.41)
and with
¢ _ e xkew-q
AC Lck r - gr : ©(3.42)

it 1is simple to obtain the form for the Ansatz of the spatial
components of the gauge potential whdich transforms as a vector
~ é

under the combined rotations in Euclidean and gauge-group space

< Ka Kb 1

A b‘—b (B - )= L (G - S )5

a (3.43)

By imposing the Coulomb condition on the field é (see

for instance Bogoliubov and Shirkov 1976)

ac Aé _

ab (3.44)

&""As 1s known from the literature (Corrigan et al. 197612Yates
1977), from the rotational invariants x“/r, 6“3 and £4 one

can construct essentially six traceless, Hermitian, 3X 3
matrices.
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the antisymmetric part is identically zero

> A

and the only solution of (3.44) is H(r)=0. Therefore, for the

labl - C(3.45)

v N s t .
spatial part of the vector potential A we can write the Ansatz

in the form

4 ‘__ . Xa _ ) Xb G(")""l
b—{'((gb*:?- 5‘“’ ") 3r (3.46)

1t shapld be stessed here that the Ansatze (3.38),
(3.39) and (3.46) <can not be gauge rotated to lie entirely in
lthe Cartan subalgebra of SU(3). Namely, these solutions are not
gauge equivalent to Coulomb solutions. This will be seen from
the equations of motion which are nonlinea; in G(r) (Chakrabarti
1980) and from the existence of bifurcatiﬁg solutions which are
not certainly characteristic of Coulomb solutions.

The differential equations for f,(r), f, (r) and G(r)

emerging from (3.28) are

-+ HG M f(n=2rq ) eires
—f, (1) + S G rf,(r)=2rq,r) (3.475)

6" + L 16T -116m)- 5 [T + ‘"] 6(r)=0

(3.47¢)

while the energy is
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E=1F far 3 () 20 (60

(3.48)

+—({ +f)G+ (6—1)]

k]

- The equations (3.47) %g;low from varying the effective

Hamiltonian (3.24) which now can be written as

H=4% j dr[-£ (£~ & E)+ @)+ 75 (6%~ 1) -

(3.49)
_# (f%+ £)6 + 2r(fq, + %ﬁ%z)]

which coincides with (3.48) when Gauss’ 1law, (3.47a) and

o

(3.47b), 1is satisfied.
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3.4 BOUNDARY CONDITIONS

Finiteness of. the energy (3.48) requires that G goes
to 1 and that f1 and f2 vanish at the origin. At large distances
f1 and f2 vanish - and G(r) becomes +1 or -1. Therefore, we are

led to two types of solutions to (3.47), which differ in theiyp

asymptotic behaviour af“{erge distances:

type I
flo) = 0O f, () =0
f,(0) = O f, () =0 (3.50)
G (o) =1 G (o) =1

type II
{, () -0 f (e0) =0
f() =o f,(e0) =0 (3.51)
Gl) =1  G(») =-1

In other .words, for type I solutions we have vanishing scalar
and vector ©potential at the origin and at infinity whereas for
type 11 sd?utions, the scalar potential has the same behaviour

as the type I and the spatial part vanishes at the origin but itA
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becomes a non-trivial pure-gauge.as r tends to infinity

AL e (S D

abr-boo 31" a< r bt r ) (3.52)

The .results which we will present have all been
derived for a delta-function (more precisely, delta-shell)
source, that is to say ) ‘

3,(r)=Qd(r-r)
(3.53)
and

F2(r) = R&(r-1y) (3.54)
An advantage of the choice (3.53) and (3.54) 1is that Y=-M
equatioﬁs (3.47) reduce tq free equations (i.e., with qL(r)HO)
in the intervals O<r<r, , r, <r<r,and r,<r<+o@ , together with

1 1 2 2

requirement that f £,, G, and G’ be continuos at r, and r

1 1 2

whereas f; must have a discontinuity»of magnitude =-Q at r, and
f; a discontinuity of magnitude -R at r, . ’ &:
Tﬁe alternate formula for energy of t static Y-M
theory can'be written as }
£~ EF far e f6) - QSR + (- B)R S (eor)]
9 er :r z (3.55)

Thus " the whole <class of solutions depends on two
parémeters, the magnitudes (source strengths) Q and R.
Since gab is the gauge covariant quantity, a gauge

transformation will mix the '"mgnopole" (anﬁisymmetric) and
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"quadrupole" (symmetric) components. This fact forces us to find™
a gauge invariant characterization of the source.?d

The gauge invariant characterization

accomplished by calculating two 1invariant oﬁerators
gauge group SU(3) -~ two Casimir operators (see Appendix B) which
are nonlinear combinations of the group generators which commute
with all the generators of the group. The first one iskthe

quadratic operator (B=-1l4)

a—— 2'*' | |
C,(r)=Tre¢ = Sap Sba (3.56)
and.since &
o =" (8, = ")% —3-— Ere T F1 Fe T

(3.57)

1 ¢ Xa Xe 1 2
+'3'( a;:-z +—3-Sac)%2

the first invariant is

C,,_('”)?Z[C{:(")"'%'i—i(r” ‘ (3.58;

and with the specific choice of the colour charge distributions

%

(3.53) and (3.54) upon integrating over r we get
Z 2

b == :

ZQ 3 R (3.59)

Integration of (3.58) 1is justified by the specific form of the

5That the source should be described in a gauge invariant mahner
was pointed out to us by Prof.H. Pagels (Pagels 1980).
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energy (3.55) as a consequence of the choices (3.53) and (3.54).

The second invariant is calculated from

R
3 . < 3 2 (RaXp__ 2
fab =* €abk T T +-5-( r 5‘15)%' %2+ (3.60)

so | o | -
C3(r)=_Trg3(r)‘= Sab Sbe Sca

' Xo K 1 3
+ %(—?T,__h -y ‘ga,b) %2

(3.61)
and
2 3 : /
C3=-9—'R
- . ' (3.62)

The energy, a gauge invariant quantity, still depends
_on the two source strengths, but only those combinations of them
are admissible which simultaneously satisfy the equations (3.59)
‘and (3.62), for a given pair of4C1 and C, .

The two expressioné fo; the invariants can be brought

to a.-more simple form by substitutions

R 3 ‘ﬁ-iﬁniQ (3.63a)

r=
and
~ 1
(4 Y3
Cs "'(3 CS) ' (3.63b)
SO
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C,=q +r : (3.64)
and '
Y i
Hence we can write ‘ : "
B ‘ C 252.+ 2
. P (3.64)

l

The character df the solutions torthe Y-M equations wili give us
restrictions on ; choice of C1«and Cz . Iﬁ other words, the
numerical <calculations will show that there exist critical
values of the strength parameters, SO not all combinations of

v

C1 and C, are admissible but onl§ those which yield the strength

parameters above their critical values. The numerical
calculation will give <very accurate values of these critical

strengths, so it will be =simple to determine the suitable

combinations of C1 and Cz .
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Iv. ﬁUMERICALvTECHNIQUES; COLSYS

this chapter we will discuss some of the aspects of
the numerical calculation as applied to the system of coupied,
non=-linear, ordinary differential equations developed in Chapter

3.

4.1 NUMERICAL APPROACH

The boundary value problem, i.é., the differential,
equations (3.47) and the boundary conditions (3.50), is defined
on the semi-infinite interval [0,o0 ), but the program whi;h we
use requires a finite interval. Therefore we ﬁap’ the
semi-infinite to the finite dinterval [0,1] by means»df the
transformation

X = T ) r‘e'[‘j) qo] 3 X € [Q {1] ’ (4.1)

141

’

The differential equations (3.47) now have the form

- 2

_‘f (x)— f CK)—KZ(T x.)v. G (x‘)'F(x) )s ‘}1 (4.2a)

-{:(x)zT_%f;(x)—;rE—T G, (e)-14

)s c&,_( x) (4.2b)
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[G (x)=1- fcx) £)16x)

"

G (x 4(1 (4.2¢)
Having two sources of the delta-function type in the

finite interval, it is convenient to take advantage of s&mmetry.

Thus we choose radii of. delta-shells in the semf-infinite

interval 1in such way that they are mapped in'x1=1/3 and x2=2/3.'

" From the property of the delta-function

1 o ]°‘

() 1 ' '
o [3“)],:;- lg’(r,,)l[g'm x4 SCx=x,) (4:3)

(Krein 1972) it is easy to calculate that r1-1/2 and rl=2 will

be mapped in the appropriate way.

From equations (4.2) it is evident that since f" 1is

proportiomal to a delta-function, f° is discontinuocus. Upon

~

integrating the first equation around X, we get
X, +E X, +€ . ‘
n X Fl }
- = =\Yd (4.4)
£, (x)dx =2 o ) AxX
X,- € X~ € _

so the discontinuity is given by the following expression

) - e 9 . '
1 -f (++¢)= = '
{1(3 5) {1(3 ) 4Q‘ (4.5)
and repeating the same calculation with the other equation we

obtain

—
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LR ' ' 2 _ .
£ (3-¢€) -1, (3+s)-‘3eR o

As pointed out in Chapter 3, the advantage of the
choice of the so-called forcing terms 1in the form of
delta-shells 1is 1in the fact that the equations become free in
corresponding intervals. But some difficulties remain when the
problem must be formulated in a way that the numerical
calculation <can be applied. Thus we define for f1and f, Tour

2

functions in the following way

£()=®,(x)  ofx<E
{1(x‘)=<P7_(x) g—éx$1 (4.7)
and o
' f,(x).=®,(x) 0¢(x< 7
_ 24 & ‘
f, (x‘)-cP4(X‘) - > &x =1 (4.8)

N

Therefore we have enlarged the system of differential equations,

since the functions qt satisfy

i
o

v
1

n » 1.
P, (x) 5% 5 $x)=0 ‘x<3 ; |
. (4.9a)

and
¢ (x)=o 55X ¢ &)=0 x<F
3 e 4 (4.9b)
Therefore, the new solutionm vector now has the components
w(x) = [ Pkx) Px), ®(x) ,‘P‘*CK),G(X)] 410y
The functions must be matched at x=1/3 and x=2/3 so the boundary

conditions become

38



-
)
PN

%0 =0; $(0)=0; G(o)=1; 4(3)=%,(}); ¢,0) =0 ey

and , : ) .
WE-REF) =505 FB) =2 D) ;.
P (5)-F4(53)=36R; @,(1)=0; G(1)=21

(4.110b)

The expression for the energy 43.48) new. has the form
1

¥ = ‘}?‘f- So(x{(1-x)z[({:)2+;%(f,’)z+ (6)°] +

(o]

(4.12)

2 1 2 2
+-3(—z (-F:'-I- F:)G 4-2';'; (6™-1) }
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4.2 COLSYS

In this sgction we will present a very simplified
description of the general purpose code COLSYS (COLlocation for
8SYStems) for solving ©boundary value problems for mixed order
systems of ordinary differential equations. Mbre .detailed

explénations are given in Ascher, Christiansen and Russell 1979a

and 1979b. 1

Consider a mixed order system of 'd nonlinear
differential equations of orders 15m15m1...5m¢<4
(ma) oy | ) 3 b 3 n=1,..d
wpe) =FL G L) 5 acxch 5 ons 3o
N o~
where

w(x) = [ tQ(K) M () ‘L&(k)] (4.13b)

is a solution vector and
__ , (m,~1) (mg-1)
Z ()= (g g My ) Chl3e)

)

is the wvector of wunknowns that would result from converting
(4.13a) to a first order system. The system 1is subject to

- — i —— Y —— i ——

It 1is our pleasure to point out that one of the authors, Mr.
Jan Christiansen with his wunselfish help made this work

possible.
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* < |
.M =;mn ' (4.14)

nonliner multipoint separated boundary conditions

)

| gé(‘gi;;(zzg)) =0 3j 4= L m , s

.
where ‘Ed is the location of the j-th boundary~ (or side)"

condition, and

<% . %b

a_é§' < L. _§ x =0, |
1 §2 m (4.16)

In our, case, for the system (4.2) enlarged by the definitions

(4.7) and (4.8) we have: d=5, m;=Z, (i=1,..,5), a=0, b=l, F 1is

everything except the second derivative in (4.2). In addition

. b ) 7 ] ’ . *_
Z(4§)==(qﬁ>cﬂ ;¢2)q% .stq% )q;rqu‘)(;)G') ) m =10
. . . - 1. 1. - g_.g.-= 2
§1=O)\§Q=O)§3=O7'§+—37§5—3’§5“3’ 7= 3

- . - . - . —_ . — . . (4.17)
§8“1 ) §9“1 ) glo—'1 ) 31"11; 32‘ Zs)

_ : | R
$3=Zg-15 G4 =Z,- 237 §5=L 24~ 3R 9= Zs~ %y
97=Z,-2g—36R; 38 Zs) §9=2Z7 ) Jro=Z9% 1.

" To solve (4.13) and (4.15) nume;icall&; collocation at -
Gaussian points (zeroes of the appropriate yegendre polynomigls)

is applied, using plecewise poiynomial functions. If 1t is a

partition of [a,b]

T a=x, (K, < XX <X =b (4.18a)



where {x{} points form a mesh

Lo=(xg,Kp) s M=K, —xe5 €= 1N (4.18b)
and
h=1?C}ZN h; | . (4.18¢)
24 '
and
p‘tz,TC {v[v s a Poltjnomlal of order k| e 1sdy

%

(deg<k)on T <= tuyN]

then an appropriate solution is

¥
V=(VYy, Vy,.n , V) (4.19)
such that
C(m"_1"’) . n
v € P N oy n=t "
n ‘R+m T Ca,b] ! ) (4.20)

3
where C . is the class of continuous.'functions on the
. [a,b] ‘ : ‘

interval‘[a,b] and by the definition .
. &) Q) :
$0)€ Cpp 1 F () € Cpg 17 x€la)b] |
[a,b] [a,b]? L (4.21)
The requirement is that k>m where k is the number of collocation
points per subinterval.
It 1is convenient to define the collocation points in

the following way
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xg + xg+1 .

& )
where {?j} ‘=1 are roots of the Legendre polynomials mapped in
3= ‘

each interval.

The collocation equations which v has to satisfy are

v ")(x i) = Fa(x ‘3,;(\/))

(4.23)

and (4.15). Therefore the solution is determined by requiring
that 1t satisfy the differential equations at the images of the
k zeros of the appropriate Legendre polynomials in each element.

The nonlinear problems are solved using the Newt&n iteration.

Error estimates are

] 2 k+lﬂn‘£ :
= 9 bt

)

n (4.24)
and at mesh points
/S k ._
@ @) 2Ry »
(W =v ) x ) =0(h™) 5 <=1, Nj
n n 3 (4.25)
g=1,.,k; L=o, . ,me-1; n=1,.d |
To uge COLSYS the wuser must specify a set of
tolerances. COLSYS .:lows the wuser to specify different

tolerances for differant compbnents.
Mesh podints are selected automatically, although an

initial mesh <can =2 defined by the user. The mesh selection

=
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procedure’ 1s free ‘to chanée‘evgry in;eriof mesh point during
refinement. This ﬁrovides for flexible adjustment of meshes to
incorporate’ extreme characteristics of the sqlutiqn wi;h
relatively smail meshes. |

For instance, for the solution G(xf for the typé 11
family; third group (see Fig.5.21)’with a sharp peak at 2/3, and
rather ~irregular shape, the .‘mesh was selected on 38
subintervals, with error tolerances equal 10-5 .

COLSYS allows cohtinuation, i.e., it 1s possible to
use a former golution as an 1initial approximation for the
current nonlinear ‘iteration with the possible choice of mesh:
either first mesh for the current problem is constructed from
every second point of the final mesh for the former problem, or
the meshes are identical. - ‘

An important feature of COLSYé i1s that the appropriate
solution values at any points, and hence solution plots are
readily available. Plots with ‘high pesolution a;‘ those 1in

Chépger 5 can be easily generated by using mesh points plus a

sufficient number of equally spaced points (500 in our case). .

44

A



V. RESULTS

e
The finite energy SU(3), static, spherically symmetric
séluti;;s corresponding to our Ansatze (3.39)and (3;56) for the
gauge fields 1in the presence of sources of the form (3.38)
satisfy the coupled non-linear ordinary differential equ;tioné
(3.47a, 47b and 47c), 1in the radial coordinate r. Their energy
is given Ey (3.48) or equivalently, by (3.49).

‘The differential - equations are supplementea by the
boundary,c;nditidns (3.50) and (3.51);

We havg not succeeded in obtaining analytic solutions
to these -equations for any reasonable chéiee of the source
strength.characterized by ;he functions q1(r) and qz(r). However
wve have 'obtaiqed very  interesting results by §numeri;al
techniques. These results form the subj;ct matter of thig
Xi“:v

chapter.

- o

All results below are for extended SU(3) static source

of the delta-shell type. These are taken to be

%1(f)=%Q8("“%') o (3.53)

and

q,(x)= 36 R §(x-%) O (3.54)
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We remark that the static non-Abelian source is characterized by
two parameters Q and R and these do not represent two different
sources as one will obtain for Abelian sources. The solutions

are presented as functions of Q and R. Let us recall that there

are two distinct types of boundary conditions® imposed on the

< .
spatial components Aab of the gauge potential. For type=1.

(given by (3.50)) .

< o

ab r-« ’ (5.1)

while for type-II solutions

L _ 24 Xp X
Aa_b r-—soc gr (Jat—?‘-- b¢ r') (5.2)

which is a non-trivial pure gauge, i.e., it 1is not_homotopically
equivalent to zero gauge potential.

This chapter 1is organized as follows: 1in section\S.l
type~I solutions are presented for various combinations of Q and
R and their energy content is plotted. R

In section 5.2 the more interesting type-II solutions

and their properties are discussed.

\}‘g
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5.1 TYPE-I SOLUTIONS

As explained in Chapter 4, the semi-infinite interval
[0,0) in 1 is“mapped on to unit circle [0,1] in the\variable X

The radii .r and r of the two delta-shells of strengths Q and

1 2

R respectively are taken to be x1;1/3 for Q and x,=2/3 for R:
Figures 5.1 and 5.2 show the behaviour of G(x) (which
< ' ,
is the radial part of Aa.b ) for different values of the

strength combination (Q,R).
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Fig.5.1 Solutions for G(x) of type-1 family (Q fixed at 12.0)

-4

In Fig.5.1 - G(x) is displayed for the following stréngth
combinations, starting from the 1lowest curve: (12.0,0.0),

(12.0,0.5), (l2.0,1.0), (12.0,1.5) and (12.0,2.0).
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Fig.5.2 Solutions for G(x) of type~I family (R fixed at 12.0)

For Fi1g.5.2 data are: (0.0,12.0), (4.0,12.0), (12.0,¥2.0),
(20.0,12.0) and,(36;0,12-0), starting from the lowest curQe.

The gehaviour of f1(x) and fz(x) which characterize
the 80(5) and SU(3)/S0(3) parts of the scalar part of /\Z; of

the @gauge potential are shown in Figs< and 5.4, again for

different (Q,R) combinations.;
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We mnote that fz(x) is identically zero for R=0 and Q
arbitrafy. This can be easily inferred from the equations of
motion (3.47). This of course correspogds to the S0(3) embedding
in SU(é) andv this 1is identical to the solutions for SU(2)

previously found by Jackiw, Jacobs and Rebbi (1979).

@

+

1.8

1.0

Fig.5.3 f1(x) for fixed Q=12.0

The five solutions correspond to the following combinations:

(12.,0), (12.,1.0), (12.,1.5) (12.,2.0) and (12.,12.), starting

from the highést curve.
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NPl i -
8.0 |- -
f, (x) | -
1.0 = -
L] T ‘
2.0 o -
’ X

0.0 0.5 \ 1.

Fig.5.4 £, (x) for fixed R=12.0

There cotrespond two curves to Q=12 (lower) and Q=36 with fixed
R=12.

‘It is worth remarking that the depéndence of the
solutions on Q and R is somewhat asymmetric. This arises for the
following reason: when oﬁe transforms from the<variable r to x,

<
there arise extra factors in front of the delta shell sources as
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explained in Chapter 4. The quadrupole-like source described by
‘R gets multiplied by a .larger factor (due to its being placed at

x=2/3), than the monopole term.

Energies of these solutions are plotted in Fié:SIS.

E i} i
Q=12.0 -
- 80.0 .
L
4.0 L. » K=12.0
20.0 |.
: ' L1 Stre
0.0 5.0 10.0 h3+h

Fig.5.5 Energy vs. strength of type-~I family
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These are computed from formula (3.48) in units of 4TC/82' .

/-‘\Energy is a gauge 1invariant quantity. It -is plotted

here as a function of qQ kand R. Even though they are by
themselves not a priori gauge invariant, the discussion in
Chapter 3 on the Casimir invariants of SU(3) shows that since

C, is proportional to R hence R is gauge invariant. Hence Q

can also be used as gauge invariant object, instead of C1 .
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5.2 TYPE-IT SOLUTIONS ' ;
S ‘ : ~ E} N
Solutions of this type which differ form the ones in
]

the previous section 1in their asymptotic ©behaviour, showed
suprisingly remarkable propert;es. Numerical calculations
yielded six different sets of solutions for a given combination
of Q and R. All these golutions exist only for sufficiently
strong sources. Below a critical valué.of Q or R or both Q and

£y
R, solutions cease to exist. For fQ and R greater than the

critical wvalues, solutions bifurcate, i.e., there exist two
branches of solutions which have diff;rent energies for a given
combination of Q and R. In the case of SU(2) we reproduce the
results of Jackiw, Jacobs and Rebbi (197§) to better precision.
In this case R=0 and there‘ exlsts only one critical source

~

strength Qc. However wﬁen both Q and R are different from zero,
we observe . many more bifurcating solutions; We try to
systematize these solutions below.
Type~I1 solutions divide into thrée groups.
a. The first groﬁp contains two solutions for a given ialue
of Q and R. The solutions reduce to SU(2) soluéions
mentioned above as R tends to zero. These solutions_are

characterized by the existence of a critical value of Q

which changes as R is varied.
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The second group again contains two solutions for given -
(Q;R), but they are different from the group-one

solutions -by not only having different energy -content:

‘ they are characterized by a critical value in R; which

exists for every Q. Hence these solutions have nb»SU(Z)
counterparts. In fact these are genuine SU(3) solutions
which we have discovered, as fér as we know, for the
first time. Again for K>Rc the solutions bifurcate.

In this group solutions cease to exist for
(Q,R)<(Qc ,Rc ), 'contrary to p;eviqgs cases where :hefg
exists only one critical strength either in Q or iﬁ R.
For every R>R. there are two separate branches of
solutions for Q>Q. - Rc s are different for the'two
branches, and solutions simply terminate at R=R.. For
R>R. , as Q approaches Q. the solutions coiatige.
Therefore, this 1is another pafir of genuine SU(3)

solutions which we Thave discovered, with no _lowef

symmetry counterpart.

- We elaborate on these solutions now.
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5.2.1 Tyﬁe—II First group solutions

In all the calculations the radii of delta shells are
taken as for type-~1 solutions Fo be 1/3 and 2/3 for Q and R
respectively. We take an appropriate value for Q ahd'R and
change one of these, say Q, while the other is kept fixed. This
way we found that there exists a Qg. For‘eQery,value of the pair
(Q>Qc ,R) we found ‘two distincf sets of solutions which merge
1n£§ one as Q tends to Qc- When R i; continhpusly varied we.find
;hat in the. 1limit of R+ 0 we reproduce the solution of Jackiw
and collaborators. |

In Fig.5.6 we have plotted G(x) for different values

of Q (for a fixed R=12.0), as a function of x.
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G(x)

1.0
0.0
-1.0
-2.0
-3.0 v
L X
0.0 0.5 1o
Fig.5.6 G(x) for the group one of type-~II1 family (R fixed at
12.0) ‘
The critical value Q for this <case 1is 11.236. To that

combination cérre8p6nds the fourth curve from the above in the
figure; The *© curves in Fig.5.6 correspond tob the
configuration-strength - combinations with the —corresponding
energies: |

Q=20., R=12., E=116.774
Q=14., R=12., E=95.377
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Q=12., R=12., E=89.603
Q=Qc=11.3, R=12., E=87.794
Q=12., R=12., E=89.417
Q=1l4., R=12., E=94.047
Q=20., R=12., E=108.803

Wé‘\EEﬁ/ exploit the behaviour of the function G(x) to
establish.a method for finding a éecond branch solution once the
first has been found. "

Suppose we have found a solution which 1is suspected to
have a mate since there is a cri;ical strength below ;Hich the
solution does not exist. Suppose that this 1is the solution which
corresponds to curves 1,2,3 and 4 in Fig.5.6. In the region
ébout'x°go.2_we can see that G(x,) decr@ssgs as Q approaches QC’
and that the region bélow the curvEf?corresﬁonding to the
critical strehgth is "forbidden". We now énlarge the system of

differential equations by putting

H

=0
Q (5.3)

and 1impose an additional boundary condition -by requiring that

G(x) at the point x4, has a-value_in the forbidden q;gion (for

instance, G(x., )=0.0 in the case from Fig.5.6). In other words,

Q
we force a supposed solution to pass through the point which is
not allowed for the solutions we already have. Hence, we let

Colsys determine an additionmal '"function" Q, plus the new

solution vector, "similar" to the existing one but on the other
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branch. 1If an in;tiai approximation 1s good enough (it is
convenient to take the solution vector ‘for the ‘initial
approximation not far from the critical point) and the
additional bound;ry‘ condition is carefully chosen (not too far
from the critical value) the method turns out to be feasible.
f1(x) and f,(x) are plottgd in Fig.5.7 as functions of

x for the same source strengths as used to plot G(x).

I

8.0 L ‘f‘-.()() : ‘ . -

‘.o e -

2.0 -
0.0
0.0 T 0.8 o X
Fig.5.7 f1 (x) and f2 (x) solutions for the type II family (R

fixed at 12.0)

In Fig.5.7 there are 5 solutions for fy (x) shown for the
following values of Q: 14.0 (Energy=94.047), 12.0 (E=89.603),

11.3 - «critical strength (E=87.794), 12.0 (E=89.417) and 14.0
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(E=95.377). fz(x) is displayed‘for Q=20.0 with the/upper branch
energy being 116.774 and the lower branch eﬁergy being 108.803.
The solutions shown in Figs.5.6 and 5.7 are calculated

for R=12.0. In the following two figures Q strength is fixed,

and solutions are piotted as functions of x for different Q's.

G(x)

1.0

Fig.5.8 G(x) solutions for the group one, type II family (Q
fixed at 12.0)

A carefull examination will show that there are 6 solutions
displayed in Fig.5.8 which are divided in pairs in the region

x<0.5 <corresponding to two different branch solutions.'In the
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region x>0.5 they are grouped in a triplet according to three R

strengths, 10,12 and 14.

1
fg(x)
8.0 - ' R -y
e
%.0
2.0
°-00.5 0.5 - o K

Fig.5.9 f1(x) and fz(x) of type-II family, first group (Q fixed
at 12.0) :

~

Two pairs of f1 (x) are shown for (Q,R)=(10.0,12.0) and
(20.0,12.0) respectively. f£,(x) is plotted for R=12.0 and 20.0.
The tjpical energy dependence on Q and R is shown in
Fig.5.10 and 5.11.
In Fig.5.10 E 1is plotted as a function of‘Q. R 1is
fixed at 12.0. The energy bifurcates at Q. =11.236. For

comparison we have plotted the energy of type-I1 solutions 1h the
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same graph. We note that type-II solutions have higher energy

for all values of Q. ¢

E
T T
120 L
- 100
//f
80.0
80.0 L
: L : l Strength
0.0 10.0 ‘ 20.0 o

Fig.5.10 Energy vs. Q of type-Il and type-II, group omne solutions
(R is fixed at 12.0)

In Fig.5.11 we -exhibit the behaviour of E  as a
function of R when Q is fixed at 12.0. There are three parabolic

shaped <curves, and ‘cusp—like behaviour of E from Fig.5.10.°
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Evidently, the energy 1is defined for all values of R. Fdr the
fixed value of Q=12.0 there are two different parabolicjlike
curves which #re almost identic#l (af least in the figure) 3ince
Q =11.23632812 for R=12.0 and the energy difference betweié the
upper and the lower branch is very small:

AE =0.063 5.0
These two curves ;re presented by the lowest parabola. Two other

n

curves describe E vs. R for Q=20.0.

E

100.0

50.0

i i : S"frer\g‘l’h

0.0 10.0 \\ 20.0

Fig.5.11 Energy vs. strength for the group one of tyﬁé-ll family
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By ﬁoving tﬁe,delta-shells along the x axis, we can bring both Q

and R on the same delta-shell. Due to the symmetry of the unit
interval, we choose the radius of the delta shell as 0.5.

Solutions are presented in Figures.5.12, 5.13 and 5.14.

G(x)

X

0.0 1.0

Fig«.5.12 G(x) for single delta-shell distribution; group one,
type-=I1 solutions B

-

We have again two sets of solutions for the same combination of

Q and R as before.

-

The <curves displayed 1in the figures are results for

the (Q,R) combinations: (16.0,12.0), (12.0,12.0), (5.0,12.0) and
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(12.0,5.0). From data is evident that Qcis not any more 11.236:
critical value goes down when the radius of a delta-shell over

which a corresponding charge 1is distributed increases.

X

0.0 ‘ ' 0.5 1.0

Fig.5.13 f1 (x) for single delta-shell distributioh; group one,
type-II solutions

In their analysis for SU(2) gauge grouﬁ, Jackiw, Jacobs and

Rebbi computed their solutions with the radius of Q as x=0.5.
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0.0 / 0.5 | 1.0
Fig.5.1l4 fl (k) for single delta~shell distribution; group one,

A

type-II1 solutions

7

As a check, we found that for R=0, our results are in excellent

agreement with theirs. This provides. a nice check on the
H.

numerical accuracy.

In order to investigate how the energy depends on the

distance between delta-gshells, we fix a position of the monopole
« .
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charge <contribution and move the quadrupole along the x axis.
The strength parameters mustibé chosen carefully because, as we
pointed out before, the critical strength depends on the radius

of the shell.

N

For (Q,R) equal (12,12)  and for x1=1/3 the energy

_ dependence is crudely drawn in the following figure.

E : T

100 |

50-0 -
. . 3

Distance
8.0 8.0 10.0 12.0 T

-

Fig.5.15 Energy vs. distance between delta-shells

This 1is the typical energy behaviour and this calculation will

67 \\\ ¢

]

~



-

not be repeated for the other groups since it does not give,
there, any new feature.
. The total energy of the solutions increases with

relative distance. ‘E\is is an indicatiqn of the fact that the

N

solutions have larger spatial extent %i§?ne of the sources 1is

moved further from the origin.
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5.2.2-Typ¢ IT - éecond group
i
The problem setup i1s as before: radii are 1/3 and 2/3,
boundary conditiong 'gre as for group-one and Q=12, R=12., But
there 1s a difference which gives the solutions of this group
fquite a different character: instead ‘of having a Q¢» the
solutions exis; for every Q. But there is a Rc’ basically with
the same consequences: solutions split and the energy bifurcates
for R>Re.
. ' Therefore there 1is ~mo possibility of obtaining the

w

lower symmetry i.e., SU(2) situation as was the case for the
% .

group one solutions. However, by continuing Q to zero we get a

"coset-symmetry", the case when only the quadrupole contribution

- - s

remains.

The ,ecritical strength R,. depends wupon Q. This

dependence is weak, as can be seen from Table 5.1.

{

Q 0.0 2.5 45 50 | 12.0

R. 11360 |2 12 |2 13 [1.357 |1.812

Table 5.1 Re dependence upon Q.

LN
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The most significant difference between solutidns“fo?
the type I and type II family can be seen by looking at G(x).. In

Fig. 5.16 and 5.17 G(x) 13 shown for differenf sequence of

strengths.

G(x)

i - | 1 x
0.0 . 0.5 _ ‘ 1.0

Fig.5.16 G(x) of type-II1 family, group two (R fixed‘ai 12.0)

In Fig.5.16 solutions are displayed for Q eghdls: 0.0, 12@0,

20.0 and 30.0 (starting from the lowest curve;&ﬁ"f@gipn x50.5).

It 1s easy to recognize pairs of solutioms which give upper and

70
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-

A}

lower ‘energies: at - the point x¥0.25 mates stem from the same

line  (except the solutiols for Q=0). All these solutions almost

v

coincide in thgr regioﬁ where the quadrupole contribution is
doﬁidanf.
This . is hot the éése when ,R changes, as is shown in
"-Fi’g.S-i?. ‘ B N » "l‘ j\ '
.20 F ’
SN N-N
'/Y
N 0.0
@ - -i~o
‘_«.
0.0 - S os s 1.0
. Fig.5.17 G(x) of type=~IIifamily (Q fixed at 12.0)
! Here we have geven SOLugiogs for Q fixed atPIZfb. For this value
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of Q, RC-1.8120 and the curve in the middlé in Fig.5.17 is the
solution for this combination. At x50.75 one can recognize which
pair belongs tdlé given (Q,R). R values depicted in the‘figure
afé‘l.SZ, 4.0, 8.0 and 12.0.

: In the next two figures fl(x) and f, (x) are shown.

£,(x) | ' .

~

/j 1.5

1.0

Q.5

0.0 | X

- 0.8 1.0

Fig,S.ié f1(k) of type-II1 family, group two (Q fixed at 12.0)

7

+

Their shapes are similar to the solutions of the first group.

Their opairing is géident again, expecially for:£,(x) in the
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region around x=0.8. The curves displayed in the figures are
solutions for the sfrengfh combinations} (Q=12,R=12), (12,8),

(12,4)land (12,1.82). &

£, (x)

&

2.0 -

1.0 |

0.0 0.5 : 1.0

Fig.5.19 fz(x) of type-I1 family (Q fixed at 12.0)

The complete energy dependence on: - R 1is shown in
Fig.5.20. The figure requires a careful description: going along
the enérgy axis, the curve belonging to type-I family (Fig.5.5)
is met first: Q is fixed at 12.0 and R varies from zero t0f20.0.1
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180 B 1 1 I
, 8

5
4

50.0 = -
3
2
1

0.0 ' [ . Strength

0.0 5.0 | 10.0 15.0 20

Fig.5.20 Energy vs. strength

The next curve (2) encountered on the energy axis is actually
the double <curve explained on page 63 and shown in Fig.5.11.
Next two curves (3 and 4) are also-known from Fig.5.11: they
represent the lower and the upper branch for Q=20.0 as R varies
from 0.0 to 12.0 (therefore, this is the group one energy, with
Qe )+ The fifth curve on the energy axis describes type-~I energy

a
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and i{it intersects the first type I energy curve at the point

where Q=12.6. Here Q varies from O to 20.

The bifurcating curves on the left (6 and 7) represent
energy vs. R for fixed Q=12.0. R 1is 1.8120 (Table 5.1). Two

other bifurcating energy curves are the known group-ome curves,

which emerge at a critical Q=11.236.
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52.3 Type II1 - third group -

The third group of the tyﬁe I1 family contains again
two solutions. But the fact that there are two criéical
stréngtﬁs makes this group essentially different from the other
two. l

For a given pair of appropriately chosen par;meters
there exist two solutions. As Q approaches a critical value, the

two solutions <coincide. But when R decreases an upper-branch
vpper - _lower '

solution terminates at R _ wand a lower at R . Hence,
. : up, low
there 1s no finite-energy solution below:RC . We found
. e |
that generally Rgpp r *R?wer - At R therefore the solutions

are distinct as well as energies calculated from them.

| The types of the critical poiﬁts encountered here are
-known in the literature. Many problems'arisiﬁg in apélications
can be described by nonlineaf differential equations which
depend on real parameters. The'structu:e of solutions may change
dramatically at <certain critical points of a parameter, called
branch points or‘a; we call them:ﬁere, bifurcation points. It 1is
"common to classify the branch points according to the number of
emérging branéhes, and the two examples investigatéd here, in
the ' case of group one or two and the group-thfee faii’into’this

categorization. s

J
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In the case of group-oné and two, the main difference,
apart from energy behaviour, was in shapes of the function G(x).
The same happens again: the shape of the function G(x) is rather

unusual in comparison with the other solutions.

G(x)
‘.o
0.0
-‘uo
-2.0
i L 1 { X

Fig.5.21 G(x) lower branch solutions of typé-II, third group (Q
fixed at 12.0)

7
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The shape of G(x) for different strength parameters is
shown 1in Fig.5.2l1. The parameters . (§,R) have the following
values: (12.0,15:0), (12.0,12.0), A(12.0,8‘.0),‘(12.0,6.0)'an\d
(12.0,R. =4.2), starting £from the lowest curve at the point
x=0.5. Tﬁe highest curve at x=0;5 is the boundary curve fbr this
solution which yields the lower branch energy when the energy is
plotted against Q with some fixed R value. |

vIt 4s not hard to 1imagine how the other branch

solution will behave in the same situation.

G(x)

l .
1.0 A . -
0.0 -
-1.0
-'.. s -t
1
0.0 ~ 0.8 | . *

Fig.5.22 G(x) for the third group of type-II family (R fixed at
12.0)
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The bifurcating solution 1is shown in Fig.5.22. The boundary
curve for this solution will have an identical shape in the
region of the quadrupole dominance, and the difference between

upper and lower solutions will be evident only in the region

In Fig.5.23 all six G(x) solutions of type-II‘family
are shown, for the same combination of strengths,. (12.0,12.0).

It is easy to identify corresponding mates and groups.

G(x)
2.0 —3
o.o
-2.0

o.o o.‘ ' l. X

Fig.5.23 All six G(x) solutions of type-II family
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The third group solutions yield the highest energy
found in the <calculation. In Fig.5.24 all'bifurcating~enery

solutions are shown.

E
200 L
100 |
0.0 ' AN L Sh gth |

0.0 10.0 20.0

~

Fig.5.24 Bifufcating -=wergies of type~I1 family

f

For a fixed Q, a uniform curve which represents energy
vs. R is simply bounded below. A strength at which this happens
is ‘called primary branching point. To clarify this situation we

plot in Fig.5.25 E wvs. R in the same graph where E vs. Q 1is
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plotted. The cusp-like béhaviouriof the eﬁergy with Qc=10.692 ;§
easy to recognize. The lowest curve 1is in fact a.double curve
which consists of an upper an a‘ lower branch for Q=12.0,
‘fherefore not far gnough’from the critical point to give a good
resolution in the graph. But for Q=20.0, two upper parabola-like

curves clearly show the critical or the primary branching point

up low
Rc and Rc .- B
E
200 |
' s
100 L.
o : " Strength : .
0.0 16.0 W0

Fig.5.25 Energy vs. strength of type-II family, third group



5.3 SUMMARY

w

In this section we try to systematize the results
presented iﬁ.sections 5.1 and 5.2. |
V ' There are two essentially different‘ families of
‘
solutions: type I and type II.

The type-I solutions described in Séction 5.1 exhibit
regular properties with respect to strengths: they are defined
for all possible combinations of R and Q, and energy plot is
simil;if%o the Abelian Couloﬁb parabola.

\pre iI solutions can be classified according their
properties with respect to strengths parameters: the first p?ir
of solutions possess a criticai Q strength whereas R can be
con;inuously changedr , to zer;. (These sblutions ‘are
generali;attons of SU(2) solutions .inQestigated by Jackiw,
Jacobs and ﬂebbi (1979). The second ©pair of solutions are
chéracterized by an R; » whereas Q is free to approache zero.
Shesé are genuine SU(3) solutions, as are the third pair of

solutions.

In Fig.5.26 a sketch of type-I1 energies for the first

and the second group is made.

~

prs
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i
El COSET PLANE

Fig.5.26 Three-dimensional sketch of energy of type-II family,
first and second group ‘N

°

The third-pair solutions possess a remarkable
property: they .are defined only for a certain combination of
(Q,R)>(QC,RC). Qe is so-called secondary branching point, or as

it is often called bifurcation point:- solutions which are
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{
identical at Q=Q. bifurcate for\ngc. Re 1s a prinarylﬁfaBCQing

a solution (upper or lower) /does not exdist fot‘R<RC , but

point:
it- does, not coincide ﬁith;fits§ hate'(l r or upper) LAt Rc'

Moreover, upper-branch solutions and- lower~branch solutioas have

different Re . These energy-featuwes are qhown in Figa5.27;

E T \
) ‘/
- =
: <N K
’ »
] : - .
? R
i
B 1 e I ¢
¥ ,1:
@, Qc
-Q‘ | p LT o
. . ¢ N (
Fig.5.27 Three-dimensional sketch of energy of cype II famiiy,
o third ggfup S
84 * ’ o
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A»The!‘qugétion 6f ‘wheﬁhéfA“o; notvé pfimgry 5rﬁhphiqg
pdipt'is fn fac; séqond;ry, hag'a sfmp1g énswér&‘if fh;fe was an
other solution /emérging from 'R;;_ﬁhié7 wquLd-impljgﬁhgt'thié
éolution'has a bifurga?ibn.pbint:q; frbm §hi?hah6?H§r sblufifn
must ‘emerge, which possésg R¢:,-étct Iharéfore; tﬁe assgﬁpﬂioﬁ
that Re is a secondary branchigg"pbint leadslﬁo éﬁ iﬁfinigé

number of solutions, which ceriainly doeS’not{giiat;
- ’
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VI. STABILITY IN THE YANG-MILLS THEORY

©

The question of stability in ‘the classical Y-M theory

is 1important .because it addresses the issue of whether or not

the classical 301ution3'aré relevant to the quantum-mechanical

- f

situation. Classical instability is a sure sign that the quantum

N

situation will be quite ﬁnlike the classical one, but classical
N \b/"

stability = by 'no means ensures a resemblance between the

" classical and quantum situation. Therefore, classical stability

is .mnecessary 1if the classical solution 1s to resemble the.

s

~

quantum situation.

In this chapter we cdnside: stability properties of

®

the solutions to the Y-M gquationé discussed in Chapter 5. We.

concentrate —on’bifurcatipg solutions for which we discuss their

»

relative stability: dﬁe to the fact that for an.appropriately
7 . N -‘7. \/ﬁ . <
chosen, combination -of Q and R 'we have two bifur&sting solutionms,

‘we will} be able to develop a formélism“which enables us to

determine the relative stability of solutions, withoﬁt extremely - -

S

complicated humerical calculations.

Ve étaff‘Athe ‘discussion by . defining stability in

:

Hamiltonian systems. From _fhe definition we gét an eigenvalue
problem which can be generalized to the Y-M case.-to obtain

. B - M ) . . ) T -‘. -
r%%ations between eigen-frequencies and increments in energy and



gauge fields. From simple algebraic considerations, important’ %ﬁﬁ“
conclusions about relative stability are drawn. 'Y |

émdll osqilatio; eqﬁat;éns for increments of the gauge
potentials are de#elppéd. Numerical computations based on the
'théoretiCal cbqsi&eratioﬁs Qill Jjustify tge argumenfs.
; The chapter ié based gg>a general discussion given By

Jackiw>and Rosgsi (19§Q). - : . o \

H
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6.1 THE STABILETY CONCEPT IN MECHANICS

Consider a system with finite degrees of freedom

described by a Hamiltonilan H(P,Q); which 1is also the conserved

J .
&
energy. Equations of motion are

n o 2Q, o . (6.1a)

and

.n P, . (6.1b)
whgre n*l,...,N;

A static solution is one for which P and Q vanish. A’
natural'ques;ion .1s whether or pot é static s;lution g,a} is
stabl;.‘ We shall take stability As the requirement that the
equa?ions of motion for SP ‘and 8Q, when linearized aboué the
static éélution (§P and SQ are "small" quantities;i do ﬁqt
"yield exponential growth in time. In other wérds, for stable
motion tﬁe quantities Sé, Xo) fluétuate harmonically.in time with
’ réal fréquency, while compléx freqpéncies"signél‘instability. fo

derive the condition for this, we expand the equations of motion

around their static solutions. The Hamiltonian has the form
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H(P,Q) = H(P,Q)++ &P, T,, 8P, + &P, G, SQp +

(6.2)

+$8Q, Vam $Qm

S HRQ+EXAX

we find

- Hx = w nx - (6.3
where

T G Jo -<x o
X T o D O

and

: SP|l . _cwt Tt o] . 2‘; _
X = $Q ) X= e X5 I = o 1 . (6',.&;5)
We recognize the (constant) x a; simplectic’eigenvec%ors of 2£E
" with simplectic eigenvalue W (Abfahéﬁ'and‘uarsdeﬁ i967, Siegel
-and Mo;er 197}). Therefore, the stﬁbility condition becomés~
det (ﬂe-—wvt) =0= w real
o . \ : (6.6)
The off-diagonal matrix. G afiseé from mixed terms 1in the
Hamiltonian ‘yhich afg frequently called gyroscoﬁic or Coriolis’
terms. The kinetic ‘energy mat:i; T with an appropriate

‘definition of cootdinates can be choosen to be the identity.

Furthermore, the off diagonal matrix G fs always antisymmetric:
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~ GE=-6 (6.7)

so we are led to the simpler form for. ¥e

I 6] o
e = ~ ey
GV

The simplectié eigenvalue problem becomes

[Cw+G)(<w+G)+V] Q=0 6.9,
and the s;ability condition (6.6) reduces.ed q

det ('\/-F Gz-h, 2iw G—w‘zI ).““O = w reat. (6.10)

) .,/‘N
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6.2 STABILITY ANALYSIS FOR THE YANG-MILLS THEORY

We turn now te the stability  analysis of static

solutions to the Y-M equations. It should be pointed out that -

. —

the Y-M field thedry differs from the simple Hamiltonian: :athér
than 2N deérees of freedom, there is an infinite number. This
causes matrices  to be replaced by differential opefétors,
sumﬁétions by intégration, etc. Furtﬁermore, the Hamiltonian
formulation ﬁow ﬁés the Causs lﬁw cénstrainﬁs encoun;ered bggore

. . ) o
and implemented with Lagrange multipliers Aab‘

To determine the quadratic Hamiltonian (6.2) we set

—

A .

Ao ™ Aab"‘l‘%y. R (6.11)

and
. Av-
N |
= ab gab Sgab (6.12)

and with the help of the static equagions (3.28) sa{isfied by
A : R - :

A
ﬁ‘ab and Eab , we find

~

H= G +,g_-_5 % {(§8.) + (SEL,)+2EL, 6EL,

(6.1_}) '
o ke i R S
“3BZb g [gAz' 5Ah]b‘av+_7_4;g[A»,.g I, JAM}

where ' | :
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. , < S :
$ B:;,:'Q X Sﬁlab) +43 a‘ak[Ak» ‘SAa]_ab : (6.14)
We have suppressed thé labelﬁén the‘statiC'Backgfound field.
The iiﬁéar terms do not disapper, because as yetA;he
: éonstraint has not been,taken;into account.
" Expanding Gauss”® law aroupd the. static baékgroupd ‘
f?e;d ve get o ) | |
. < . .o e
3°8E,, +<glA" SET], ¥ cq[6ATET]  +

(6.15)
+4:3[6A£, <§E‘:]a‘b—.-’. o
H=H+$ (a% ((sp, b) L (SE° ‘)4

(6.16)

¢3h

gy, et aAt $A%],, +1‘~3[“A se'] ’A“}

We-can identify the elements of the quadratic Hamiltonian matrix

(6.8) with

Cj' . ﬁj‘ " I _
Gcbad_ d ‘3"5({-5)[/\5“ 6“" '(6 17')

é"mcsbe Aba. e Jdb] no+ summed. over the mpea‘feot indices.

Indeed ’ : - » e

< <3 i ooy _ o -t At -
J,Ecb,(f) Gcbad.‘SAad.(E )= <q(Ap, SEy, JAqi ,
o . . | : (6.17b)
-SE A, )'bgHA SE*] Al

ba
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The next term in the Hamiltonian (6.16)- becomes (,J///

. ot R 9 k"_..l < egh i
138, € gAbc'JAcag °3Bab &A - (6.18)
oAk Ll ;'CCJ' g
sAca. 2—‘3 Bab £ &Abc
N
so the corresponding matr;x is
ki NI 17
V(i) cabd = 243 $(r-r') gcd. € Bab (6.19)

< : :
The expression for 5Ehb (eq+(6.14)) can be written in

thé form

$By, == (D x88),,

(6.20)
'so the first te;m in the Hamiltonian (6.16) becomes
L L2 < <.
) = §
(8615) (@X&A)a’b (@X A)ba’ “ (6.21)
Vi | |
Cent L eak K gd ool <tm m

‘bi da (6.22)

The cor;espondiﬁg matrix is

=-8§(r-r )&M‘o% o%bi €

8o the total matrix V in the quadratic Hamiltonian is the sum oFf

m

QZ)c.bcLQ, (6.23)

(6.19) and (6.23)

<.€m L

S Dage s, 5,780, 9% ")

93



LY

The‘total effective quadratic Hamiltonién is

oz (O %’z gcm;{(as D +(5Eab) ; ch[SA SE'Y, Ara

cyk

g B, € TN SN, ~EAL QUGBS R e

+«.3[A §E ] b‘&g[SA E ] b>}

and from it we can derive the fluctatiou equations. We get

(2)
SR >SE; +L3{A §E]. %3[5/’\ E] o

5(&Aba.)

and

§ % { < GR. .k g

< t ab 9. 7o 19 € , a

6(5Ab‘l) ‘ *0 ﬁ ° (6426b)
-eqeTE A", 55’] .~ g[8 E] Lg[A" SET,,
vaﬁd N -
SR © < £ yioqe

SH -5 AL =SEL-d%as e -
. S(é‘Eab) - | . ) o ' (6,26'c) 

reglea Al g[S sl

. It can be recognized that these equations aresthe linearization
of the Y-M equations around the static background fields.

When a monochromatic Ansatz is made for

Y = SED

< -
§A.p | . (6.27)
the above equations take the form of a simplectic eigenvalue

94

(6.26a)



problem (6.3)."

5
B
-
B .

N \ )
-

P

e
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6.3 THE\STABILITYVANALYSIS OF THE BIFURCATING SOLUTIONS

The ~ bifurcating solution described im detail in
Chapter 5, section 2, exhibit properties which enable us to say

a considerable amount about their stability without explicit

P

computatiSn. B
We will ©be usiqg lalternative}y the matrix(andfthé

}nﬁegral rnotatién bearing in mind the»differeq;és betweén the
oYM and the simple Hamiltoniah theory. So the bracket n&tation
of the type | | : f
K% MY,
involves taking matrix‘elements over;whateVer degrees of freedom
are approﬁriatg.‘ | M

At the bifﬁrcation ppint the Y-M equptioas with the

static solution vector

-

n -
. : e
X =' E‘g!ubj -~
c Ai , (6.28)
- Ma b -

are solved. Next, imagine changing the.SOurcé~sLightly

g

= - -

T = R . .
Cc—> §cF0°og . - %6.29)
L et - '
"where 9C supports a unique static solution Xc.‘The increment in .
the Y-M fields defined in (6.%1) and (6.12) will satify the

fluctuation equations (6.26) except that {g occurs on the

©
»

-
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left-hand side of GauSe; laW'eonstraint, and

-

‘ v ‘ L T -
. = o . a B 8 = o . o ;; " :

a’c ‘SEab B - ,A ab I ©(6.30)

However, 1f we are at the. bifﬁrcatioﬁ point, it must . be

 impossible to solve these equations. This happens'when“tﬁel‘

homqgenoesl system has a nontrivial solution. Therefore, the

.stability condition (6. 10) implies that at the bifurcation point’

the stability equations have zero-eigenvalue mode. 1

o

By 1ntroducing a parameter (3 which is° chosen to be
 §ositiye and which systemizes the study of the theory around-‘the

bifurcation point we write

. . S

o — .'?C.‘. /5 é‘g | .r./’(ei.'él)_

It 1is now appropriate to expand the static solution about the

bifurcation point in ‘the form

(t(,‘= A’& 4/2 -(‘- -

(6.32a)

or

(9> = 19> w7y,
where FP > is the staric ‘solution at the bifurcation point:

and ‘zy> kis.fthe normalized zero-eigenvalue mode. A constant ¢

is 'a real number to be determined from -the fluctuation

S

lWhether these zero-frequency modes are normalizable or not will
be addressed later (see page 102)

Qg
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" equations. Therefore Rf> solves the eigenvalue problem (6.9)

(G2+ V¥ =W, 14>=0

o (6.33)
~and
We IC@> =T S (6.34)
yhére‘wc is evaluated at the bifurcation point.
In general, an ésciliatprymque ig_dgfined by
= r + :
k> =% +e T %>

80 slightly'abngJ§§§ bifurcation point we make an,pxpahsion of

'the'oscillating solution with a small eigen—fréquency W

-

Ty = 1) + 1%, - s

The eigen-value equatioﬁ (6.9) now has the form
(We + 24w, G) %0 = wo |&5) 6.37)
andb with.the‘definifipn,(6;33) we can write as a cohseQuence of
(6.31) | " | B N
(6.38)

| W =W, + /5?/26 A\/\/ \.

. ) - N
and since W, is a small quantity the eigen-value equation

becomes ‘ » T ‘ f
(6.39)

(W + B% 8W+ 20w, 6) (1) +18%Y) = wd [y
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. E - «b ‘.
From this equation, bearing in ‘mind that (6.33) holds and that G

is an'antisymnetric matrix, we get ' - -
At aawlny -‘
Wiz SR HIAWIH) | 640
o :

1+4<6% IWT6H) RN

Here)lG7+> is the zero eigenvalue solution transformed by the
gyroscopic term and WxW™ o, Therefore, since /5 is defined

‘ t . 2 }
to be a positive number, W, depends upon values ¢ can take. AW

8 2
el

is defined to be a positive;quantity.

The total effective Hamiltonian (6.25) can be‘fornailv’
written as » '
=Sd%ﬁ F (D)
| : - (6.41)

where q)b denotes the collection of fields.
Above the bifurcation point taking into account (6. 31)
and the) corresponding response of the fields (6.32a) and
(6.32h); ~ the quadratic’Hamiltonian is seen to be a function of

: Il
/5 . When (6.41) is differentiated with respect to,@ we find
{ o .

(6.42)

oH =Sd@—(3‘g{ bq’a.b(_’A" 2%ab >

Y P P ‘oo 33

But sinee for the static solution the first ‘term on the-

right- hand side vanishes, we get _
(ag A &, /2 aL%'A ) | o
==id Vba Sab ~ 9ab , (6.43) «
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or

HeH +pTr{ag A Sg-3peTria®ady

’ ‘¥\c in’ the -above | expression 1s the energy at the bifurcation

'poiﬁt.

In  order tordetermine the cénstaﬁt c we use (6.31) in

Eq. (6.34) ;nd;éxpand ;hesstat;c'solutién accordingi(6.32a).'We

find ) | | . o . |
. 2 WX /5'/2;\0 ) =-{4zpns ;\a

Sd..» (Cp AWgple P AL, 5CL A '9@, bo. i)

where AW "is the energy difference défined in (6.38). Hence

T‘rS d%e AW Ko

Therefore we can see that with an épprpﬁriate cholce of‘sign'gf}

| 59 . we ge{

c=tc, =% — D (6.47)

~and consequently, the- expression\(6;4ﬁ) shows that the energy

X

bifurcates with an energy difference rising as

Since ¢ can have either sign, we see from (6.40)'that-

v ” )
for omne branch W, 1is negative, hence there is an instability.
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Comparison with (6.46) and (6.44) eHowgrthat c is (-c°)<for:the
V'héper branch, .so (Df has the opposite sign from the’energy
'diffefence. Therefore,. the- uﬁper branch‘rof the bifurcating
solutions 1is unsteble'with respect teo radialeoseillations;»yhiie
the 1lower branch shafes‘the stability pfoperties of the unique
solution at ;he bifurcation point. | | |

Inl order te‘ determine stability oproperties o; the
lower branch §olutions, »we/ calculate the small oscillation
equatioﬁs (6.26). These equations are iﬁ fact 1inearized small

radial oscillations equations (3.47) when f; 1is replaced by f; +

P £, and G by G +&8 G. The equations are

, ] 2 _
- -8, ‘4__:_1(2@{‘ §G+G 8f)=0
(6.48a)
-§f) + —:f-z(zc;ﬂ §6 + 6 6f,) =0
and
_SG+ (3G~1-‘F ‘F)‘SG- :
(6.48b)

-z (,ﬂ&ﬂ ; fzafz) G=o0

These equations arise by varying‘ﬁe (4. 25) here given by
)

e A CICERDICO) + (50" G
-5 GZ(HJZ’ = £ (d6)'- = Gfﬂ S‘C‘x o6-
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—p A . -1 W_ 3 A0 ’F""'} R -
2 5 Gf, §§,66 -7 (66) -7 6 ( &f,) L (6.49)
énalyticr 9019tioﬁ3‘1t0§egfatioh§ (6.48) are of coﬁrse

out of the unes;ion@sihée we do‘QOt‘have closed'analytic form

v

for f1', fz ,'ana G. Clearly frém the known beﬁaviog;:af these

functions as r-»0 and as r-»o0, we can .conclude that

° E AR

v as r—s ©
§G —/» .o r—— o0. =~

-

If we 1insist on small fluctu@ttohé with finite energy\content,/w

we have to look for normalizable (square inﬁegrable) solutions

to (6.48). Numerical dalcuIatiqns have sgowﬁ that théré are a0 -
normalizable zero-f;equencyi fiuctuation-'modesvﬁ?his indicétes
that tﬁe ldwer' bfanch ‘of bifurcating solutions is absolutely
stable. In this ;espect‘thé solutions we have found share,thé‘k
properties of fluctuafions ~of fr;sad~sdmmerfieid monopole
solutions 1{in flat space for —SU(Zf'gauge fields (Adlér 1979,
Akhoury et al. 1980) and in curved space-time (Chakrébarti.apd

. Vis@anathan 1980). On the ofhei ha?d, one knows that for a cléés
of 1instanton solutions there exist non-trivial ,zero energy
fluctuation modes th#t are normalizable. . ,\b/
'ié' non—trivial normalizable (finite energy) solutions

N\\;o the small oscillatioﬁ' équations had been found this would

ave implied that non-zero frequency modes must be investigated.

Since all higher frequency modes include the zero frequency
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mode, it was enough to prové that this mode is not
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normalizable.
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6.4 IHﬁ, NUMERLCALQ CALCULATION OF STABILITY OF THE BIFURCATING . -

. SOLUTIONS

Using = the nume{iéal -results for the bifurcating

g

sdlutions (Chaﬁ} 5, sections 5.2.1,;5.2;2 and 5.2.3) we verify

correctness of the formalism developed in the previous sections.

-

" For the group one 6f the bifurcating solutions

(section 5.2.1) we found the critical value of Q and the

-eorresponding energy as

Qe (R=m) =245 E = (Qc ,12) = 87.64 (6.51)

From the followinggtable Wwe can see that‘ﬁhe ratio of the energy
A o o ‘ ' . 3,

difference, between . .the  upper and lower branch and (Q‘iCQ) is -

constant as predicted b§;(6444)7and equals 0.3. So*the par&metgt

{3 is taken to be a -measure how far from the bifurcation'poiﬁt

PR A

the solutions and - the gn;rgies are calculateds
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]

4.0 | 4.5 | 1.33 0.3
16. 0 10.391 S 3.09 | 0.3
'~18}.o . 17.58 5.32 0.3
20.0 25.93 1.97 0.3
22.0 | 35.30 10.97 0.3
24.0 | 45.58 14.29 | 0.3 ')
Table 6.1 - Results. of stability analysis for the group-one

bifurcating solutions

For the group ¢two of the bifurcating solﬁtiéns
(section 5.3)’ the same caléﬁlaiioﬁﬂgives results presented in
Table 6.2. The ;ritical Qaluequ %,fot“fixed Q=12.00 'is 1.81 and
the corresponding énergy ‘13718t74 (Lﬁ-&pprdpriate pnits - see

Chapter 5).
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R l(R_Rc)3/2 NS RATIO :
2. 0.08 - 0.17 0.5
3. 1.64 . 3.34 0.5
4 3.24 6.58 ~ o.5
5. 6.24 - 12.54 05
G. 8.58 - 17.14 0.5
8. » /15.40 30. 39 0.5
. 0. 23. 44 45.78 0.5
12 32.53 63.00 " o.5
fﬁi Tt iy slnaien o e e
Recall

soiutigps¢ with |

- g

that these 'soluf@ons a;g“genuine SU(3) -
enérgies above the energies of group-one

solutions (Fig.5.24);
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VII. CONCLUSION -

A

In this work we have 4investigated solutions to
classical SU(3) Yang-M%lls theory with static exte}nai sources.
The solutions are non-Coulombié and non;Abelian in nature.

From the 'Ansatze for the sources and the gauge
potentials, a system of mnonlinear differentiél equations i;
derived. The system is solved using COLSYS, a code for solving
boundary value problems for mixed o}der systemgs of ordinary

. v -
differential equations. The presented results are surprisingly

new and rich.

Investigations known 1in 1literature are concentrated
more or less on SU(2) gauge symmetry,ibfjon the SU(3)réauge
symmetry but with point sources, when~ all +the sources are
oriented in “éommueing direqti;ns in the géﬁée'spacé. The main
difficﬁlty in the Yang-Mills theory is the high nonlinearity of
equa@jmné govegfing behgviourvof gauge fields, so there éfé nb
anaiytic methods a&ailable ?n this case.

~ We found basically two different” types of spiutiéns
for the SU(3) Yang-Mifié theory, which differ from one another
in ﬁheir asymptotic behaviour.v ¢

‘The first type  of solutions - are nontrivial

geﬁeralizations. of solutions  found "by Jackiw ’and his_(
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L% . -

-

collaborators, to the higher symmetry éfoup SU(3), and with an

appropriaté choice of parameters we regained their results. The

4

generalizatiou gave a  class of solutiomns that teﬁa to SU(2)
solutions céntinuously, as one part of the SU(3) source is
turned off. |

The éther' type of solutions  exist only for
sufficiently ;trong sources, and they differ froﬁ the first type,
in’their spatial as&mptotic behaviour: they become a non-trivial
pure gauge as r tends to infinity. |

Surpriéingly, many solutions of the second type exist.
'Apart' from the generaiizations of bifurcating solutions of
Jackiw et al. with SU(2) gauge symmétry, there are four new
bifurcating‘l solutions w}th w,;he . genuine ‘Sﬁ(f) symmetry
érope;;ies. | |

It ié possibié ‘'to 'divide the four genuine SU(3)
'solutions into two groups, ginée‘ there 1is 'an essential
difference between the two pairs of solutions: while the first
group of solutions exhibit a %%furcation in one (qu&drupole)
strength parameter and they are defined for every value of the
monopole strength, the second ‘set pf solutioﬁs exhibit a
bifurcation in the monopole strength, but for the quadrupole
strength 'they are simply bouﬁded: below some critical value,
neither an upper nor a léxer'branch solutién exists.

A naturél question in every dynamical system 1is

stability of the solutions wunder small fluctuations. In
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classical- non-Abeliant gauge theory the quesfionAis extremely -
important since the ciassical inStabiiity i;”a sure sign that
the quantum situation will be quite unliké the classical one.

By taking advantage of the fact that the solutions

"bifurcate, we were able to prove that all, upper branch solutions

are unstable. Although this result can be said to be expected it
o ‘ : :

T ™

"~ 1s not obvious since there. exist physibgl systems whichJare
éstable even though their energy 1s not locally minimgl.

We thén proceed to show that tg; lower branches of the
bifurcating solutions have absolyte stability. It is found that
no normalizéh}e,zero energy oscillations exist: :

Some ‘guestioﬁs remain to be answered: how to cla§sif§
the static . SU(35 Yang—Miiié“ solutions, 1s a topologicai
classiffcatioﬁ appiicable as 1in ‘other branches of Yang-Mills
theory (e.g., instaﬁtons; merons etc.)? Are there other static
solutions and what is their energy in comparison to the ones we
h;ve found?

And some further compgtaﬁions ébViOuSly suggest
themselves, egpecially " concerning stability properties of
ﬂifurcating solutions under non—radial“oscilla;iohs. But all
these questions and problems are immersed in the most pfessing
‘ques;ion at the present time: what is-  the relevance of these
mathematical investigations to the quantum physics of Yang-Mills

theory."
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APPENDIX A - NOTATION CONVENTIONS

E

Throughout the tekt”ye will be using natural units defined 5y

(A-1)

‘The dimensions of the fuﬁdamental quantities become:
[El=(M]=(L" " )=[T""]

and [Q]=1. The fine dtfucéure_constant takes the form: -

12

1

o(—-_fzf. —— ) ) ’
4T 137 .(A-Z)

We will be working in the Minkowski space so the metric stemsor

ilt“vwill be .taken to be

"

Any repeated index will be summed oyver its range unless

‘dtag(1,-1,-1, 1) (A=)
stated otherwise. A point in the space will be represented by

x® | : - i' ' “ , ) : -

X“=(t,%)=(x", x) s

In that case we define:

1

S M S S Y
g v; af.:W ,b = BK‘: ’ at‘Bo"‘ 2t (A=5)
!

As a general rule, Greek indices o, 3,¥ ... will be Lorentz

: : ko _ .
indices, while the Latin indices i,j,k,l,m... will run from one

iy

to three. The Latin indices a,b;c,d,e, will be reserved to label

X

coiour-sPace quantities.
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A- product of 2 contravariant 4-vectors is therefore

defined as- L. . L ' B
oro -
a(u'b(“' -.-_-a.bl._.a._b, | ,
~ov (A-6)
/S _ , :
We will consistently keep the Lorentz ~indices up and the
coloured indices down.

The three dimensional integration will be performed
over‘the volume element
1 2 3 .
(a% = § ax'drtax -
. (A=7)

whereag, a four dimensional integral will have the form

(40 L . ‘ ‘
gd.X‘ ’ o (A-8)

, ‘ A
_A unit vector pointing out of the 4-dimensional'volume isn

It 1is perpendicular on the differentia} 4- surface d.G‘“

L

The D’ Alambertian operator is given 1n the form

) D=~A+3° | (A-9)
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. - APPENDIX B - SU(3) GROUP

fhe group :SU(3)"is the set of complex unitary unimodular 3 3
dmatriceé- "The elenents “of this group are characterized by 18
real paraneters- The unitarity and- unimodularity conditions give
10 real\né§ations among these parameters, so that we remain with
8 real parsmeters. 7
The generic element 'of the SU(é) grodp can be written

‘in the form:

, c Ao

U=-exp (+ 3 8)
, SN (B-1)
wittxek real parameters and Al eight "3X3 linearly independent
Hermitian mstrices. Explicitly the matrices are given“ by

(Gell-Mann 1962, Carruthers 1966):

o T - - . - r L ) N -
o 1 © , O -t O \ 4 0 o o o 1
A= 1 0 off At o o, A=lo -1 0|y A= o o o
1 7 2 , 3 4
o 0 o o o o lo o o 1 0o ©
s d B e ' - ’ by -J L ' -
: 4 S (B-2)
- = ’ r . b . ° b -V o 01
0 0 -t o o0 © o © "3
. . —_ Pl I . VA
Ag=| 0o o ol Ao o 1fiAzF 0 0 -cfiAg=lo Az 0
[ ‘ ' Y . 1
|t o6 O 0Ot o 0 4 o | o 0 43—-}




N The gépergtorsiqlgf the infinitesimal transformations

*

'ére’def{néd bpr¢ans of the relation:

S
T.=5 A
a z e (B-3)

- According to the fundamental theorem proved by Lie and

Enge;s,‘.;hé s;ructuré of the group 1s completely épecified by

"the  commutation relations among the geénerators. Ta of ‘the

infinitesimal transformations:

LT T l=A fg#(‘rcw " et

LAg, Al = 2if, A

]
N

or
(B=5)
The structure constants are realk\jf it must be, agd are given

by

¢
Ca.b - 'F‘lbc

(B-6)
. i
and they satisfy the conditions *
c . CC : )
= - (antisymmetr
~(_:cxb ba 7 y
¢ e .c e c

(Jacoby identity)
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| 1

=f,, { =4

147 156 ;46 | | 67 2 (B-7)
y ;f fs. o
458  'e78 2 -

Using (B-6) we can show that SU(3)-1is a semisimpiell
and compact Lie group (Racah 1964, Speiser 1964).

~ Gell-Mann (1962) hés“'introduced " some ‘other

7 coefficieﬁts defined by the relation: 2

. {ka ,7\1,}' S L+2 da.bc}\

63-8)
whére I ~is' the

,’unit matrix and d}bc are fullylsymme;ric. The

nonvanishing dqbc'coefficien;s are:

dig = Logs = Ls3g ™ Fo08 = TL{ | o
Apge = Ays7 =" 247" "zsc,.= d,:’_‘“ - | (-9
=d.555=-—d.5“——d.3.,7-12_- : T

L yag = lssg = d ==

From the relation

;.ié_'k SR R
7\ Ab' 3 gabl*’(dabcﬂb/‘fab_c)hc (B~10)
we can obtain the properties: : . : S 1

5

L A group 1s semisimple i1f it has no Abelian invariant Subgroup.

2 In the case of SU(2) the generators Q%'(Pauli matrices)’
satisfy the simple relations ‘
{ga. )%’b} =12 Sab
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T‘p‘mﬁzsab‘ ) e
Tr7\7\7\ 2(d e + ¢ Fupe)

Using the identity

[(4,8),C1= {[A<],B) +{A,[Bc])

we get

T o | N
+ {dbe dace = ' ‘
- (B=12)

f + ‘Fcbe

abe “cde ‘dae

The group SU(3) has rank 2. This follows from the fact
that' there are pairs of commuting elements3 a5 shown by (B-5)
and (B=7). It is then possible to build up two Casimir operators
‘for SU(3), i.ew non—linear invariant operators which commute

Y

~with all T

[ct)'r] o ; (a=1,.,8)(¢=123)

(B—iﬁ)

~The first one, apart from a - mnltiplicative factor, is the
quadratic operator

' (B-14)

The second one turns out to be a cubic operator

Cy=dope Ta' T-b Tc - . (8-15)

. T —— v — i~ —— -

.3To. be contrasted with commuting operators of the group, eege,
Casimir operators which are non- -linear in- T .
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For pratical purposes (see Chapter 3) it 1s convenient

to make a change 1in the parametrization of the group by
4

s introducing the’operatoré Uop (Marshak et él. 1969, Wérle 1966)

with4propertiés:

[u ab ,um] = 5bcuad—_ga.¢ucb

(B-16)
T . . o
(u-ab) = uba ) u’c:c-' i
The relationship between Ugb and T& ise: o
. _ o - - = .
u12_T1+~1'Tz" uz1-T1‘4'Tz7 ?-(uﬁ uzz) Ty
- . . - — .v ' “ ‘ (3-17)
u13“,T4.+(‘Ts ) U’31 ‘,T‘% Lig
” T Uy=T o AT Upmm 2T
uls"‘-l-;"'*-T'/? 32 ~ 6_£T7’ u33--\1—:§— 8
. : 3 e /
In compact form this relationship can be written as:
Wab =.(A°)ba:TL e f?“isﬁj‘
{' - S e ':[: IR SEE et
1;,= ra (Aa)Cdﬁ'qu. - f‘ ) (B-19)

The generators of SU(3) that are conveniently taken to

‘define isospin and hypercharge are

Tam Wi I U5 Tp=7 (U= Uy,)

- (B-20)
Y‘-‘: u11 + uu=—U33
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We can employ other subsets of SU(3) generators to describe

"U-spin" and "V-SPin"‘generators

LL+=-U.23', u-'_=u'32 ) u3= %(uu‘ u'ss)

- (B=21)

'V+=U,31"7 V_= -u-ls" “V3= %(uaﬁ_uﬂ)

Note that I;} »I_, 13 counstitute a subalgebra of SU(3) that is

isomorphic to the algebra of SU(2). This corresponds to the
obvious fact that SU(2) .1is a subgroupybf SU(3) (but not an
invariant one4).‘ Similarly the operators (U1, Uz, Us) and‘ZV1,

Vg » V,) define other subgroups of SU(3) where

=L
1"2(u +u) U, = u(u LL) (B-22)
and similarly for V. '
We can write 1in the mafrix form : ,
_ - s . I P
1 o o© 1 0 o©
1 . 1
= — - 0 = o
I=glo-1 o) Y=gslo 1t o
X - Q0 0O . o o -2 .
- ~ - , - C(B=-23)
[ - i -1 N ~ -
o 1 0 O. 0o o Q O O
=lo o 0O} U=lo o 1] V =]lo o o
L | + | B L
LO 0 ©° o © ol -1 o o} .-

A subgroup S of group G 1is an. invariant subgroup if gSg1 is in
S for every g in G and s in S :
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(B=~24)

+
I,= %X, U= 7 A, Vo= 3+ A, -
‘_[ -‘2. A, U,= ‘1'2 Ag 'V7_=“2L As (B\-ZS')
T,=1 2 =3 o)

The traceless 3X3 Hermitian matrices %Q were used to
introduce the set of real coefficients fqbc ang dec ,'anq
by the definition (B=6) the connection between fqbc and -the
" gtructure coefficients of the group was established. Now we

introduce the adjoint representation.5 By using the antisymmetry

property and the Jacoby ideﬁtity for the structure constants we

can get
d e d ~€ - d e
c. _c ,~-C.Cc  ,=-C C ,
ac ~bd bc “ad ab “dc (B-26)
If we néw define a set of 8 matrices R, by |
c -
(R),..=-C
a "~ ab
_bc (8-27)

the équation'(B-26) can be written as

SSometimes instead of the adjoint representation the word
‘regular representation is used. ‘
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(Ry)ed (Rp)ye™ (R eq (Ra) 4o = C:b (Rd)ce’lv o (-28)

or . ' : )

[Qo. y Rpl= ‘:"Fabc 'Rc-=- Rib Rc: | (B-29) /J;;

(The writipg of superscripts’and subscripts on théée.matrices is:
vonly a matter of a notational convenience.)

So, with tﬁe help of the strﬁcture constants'we”have
introduced the Hermi;ian 8x8 matricgs‘(Ra)bc .

Wel éfe able now to defing in the usual'way a vector

operator in SU(3).

Suppose we have a set (of .operators or NXN matrices)
‘. | .
Vs whose commutators with the generators T, (operators or NxN ™

matrices) satisfy
= 1, v = - A 4
. [Tq')vb] -Fa.bc ) C Rabc (B-30)
Then Vb is said to be a vector operator. This definition -shows

that under the transformation
<6 T, o
: . - - ‘ (B=-31)
Vb transforms according to the adjoint representation. We

consider infinitesimal transformation

W@V, U T vy i 80, [T, V-

-
{om

(B~32)

. Vo = ¢ $ O, Rope Ve = (8 + < SO, Rygc) Ve

[§
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APPENDIX C - LIE GROUPS
a set of elements G-{a,b,c,.i.}
. L .

with respect to which a single 1law of composition (or

An abstract group G 1is
multiplication) 1s defined. The ordered product a b of an§ two

elements must satify the following Conditions

l. Closure: o e
o .
¥ abeG; ashb €6
. A
2. Assocliative law:

¥ abceG  ac(boc)=(ash)ec

L]
3. Unit element:

34 ee G, VaeG») Qee€ =€e @ =Q

»

4. 1Inverse element:

‘\&ﬁi1 -1 . -4 ’
V&GG)3!~ a.ec-;’vo.oia. = oQa=¢

A group 1s called Abelian 1f all its elements commute

s

with each other.
The order of G 1s the number of elements in G. A group
is 'said to 'be finite 1if it has a finite number of elements.

Otherwise the group 1is said to be infinité{
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A number of elements of G are indepéndent if noge of
them can be expéesged‘ id terms §f the others. If a set of
indepqndené elements exists so that for any x€G, x can be
expressed 1in terms_%of the elemeﬁfs~of the-set wé say that the
latter is a set of independent generators for the gfzup.

The ‘subgroup H of G iswinvariant if it commutes with
any element x of G. In othef words, all conjugates of the

elements of H defined by

-1 _ ' .
)(h)()hEH)KG-G 4 (C=-1)"

are elements in H.Thus

(c-2)

x % x e H
A s8imple group has no invariant subgroups'(except the

unit element). A semi~simple group may héve,inv iant subgroups

o

but has no Abelianlinvariant subgroup.

We endow the set G (an infipite group) with a topology
in such a way that we define a system of subsets oflG‘such thaf
-every element of G ig in at least one subset of G, that 'the null
set and G itéelf are in the system, the intgrsection (set of.
elements in common) of two subsets and ‘their union are also 1in
“the syétem of subsetQ. Theg we say that G 1is a topological space
and the elements of G are called the'péints of t£e space.

| But‘ G has also group propertiesg which meagﬂthaf with

any two of 1its elements is associated another element that is
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4

their;‘prbdget. Thus;v,with _any two points a and b of G we
associate :another point ?(a,b).‘ Keeping a fixed, to every b
corresponds ?(a,b).i Also to‘ every b corresponds another point
,that is its/inverse. If these mappings of G into itself induced -
by group operétions are continuous we ‘say that G forms a
topological ‘ZTOUp. Therefofe tge gset G - has two kinds of
stfucture: a geometriqal one which makes it a toﬁological spaée
and also a group structure which induces co;tinuous ﬁapping of G

The gimplest kind of tépological groups are those

into itself.

which 1locally have the properties of an r dimensional Euclidean
space Ep , so that the neighbourhood of a point can be-.
continuously mapped into a one-to-one way (homeomorphic mapping)

to the neighbourhood of a point in EP « Such a topological

space 1s ‘called an r-dimensional manifold. A topological gréup

which 1s manifold is called a Lie group. It is also stated that

‘a Lie group. is a topological group whose underlying space (space

formed'by its elements) 1is an analytic manifold.

2 »

All the concepts of abstract group theory cqhtidue to
hold for topological groups and in particular for Lie gfoupéQ In
addition ’;e‘ fine compa;tness for any topological groué by the
followingr é topological group G 1is compact if 1its underlying
space S 1s compact 1in the to;ologiéal sense, that 1is, 1if any

infinite subset of S contains a sequence which converges to an

element of S.
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:.Another important topological notion ‘is
;onnectivity.To'define connect;yity tgke‘an arbitrarf point p in
the group Qpace S Qf G. Consider two closed curveé L1(t5 and
L, {t) that both begin and eﬁd at p. Here t 1is a parameter that

parametrizes the closed curves such that one point on the curve

—
.

is associé:ed with only one value of t. Further t=0 at the
beginning and t=1 at the end of the curves. If there exist a

function h(g,t) continuous in both 8 and s ha:
h(o,t) =L, (&) ; h(,t)=L,(t T
1 ’)(, 2 (t) J e

wi;h O<s<1 répresepting intermediate curves between L,(t) and
L, (t), then the two curves are said to be homotopic. This means
that they <can be  continuous1y deformed into each other by
changing the parameter s from 0O to 1. If all closed curvéé from
an arbitrary point p in a space can be deformed to zéfo ("are

homotopic to zero"), then the space is simply conected. If théré

are m closed <curves that cannot be déformed into one another,

— -

then the spéce is m-fold connected.

Lie proved some remarkable - theorems concerning the

. relations between the generators and the group.

In the first place, the commutator

(C=4)

(T.,T,1=T,T,-T,T.

of two generators is always a linear combination of generators
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[Ta. ,Tb] =, Cabc‘-rc‘ (C;B)

The . feal constants C%kare called the structuré consfants of thé
Lie group.
The relatiom (C-5) 1leads to the conceﬁt of the Lie-

algebra associated witE a %§iven» Lie group. This algebra is

composed of all linear combinations of generators

+

(G=6).
with real coefficients cq. This is an>élgebrg 1f we take for the

"product” of two elements their commutator.

4

It 1s <clear that the Lie group completely determines

the structure of the associated Lie algebra. The converse is
also /:§sentia11y " true: the 1local structure (that .is, the
structure ig'some neighbourhood of the identity) of a Lie group

is completely determined by 1its Lie algebra, that is, by the

structure constants Ca.b(' o
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