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ABSTRACT 

The accent  i n  t h i s  t h e s i s  i s  on t h e  s t r u c t u r e  of  l i n e a r  

A r e l a t i o n  between the value  of  a continuous l i n e a r  funct ional  

(defined on M) a t  a convergent sequence and t h e  l i m i t  o f  t h e  sequence 

i s  es tabl ished.  This  forms t h e  foundation f o r  the  s t r u c t u r e  theorems 

which follow. Ult imately,  it is shown t h a t  any c o n t i n u ~ u s  l i n e a r  

7 

functional  on M can be w r i t t e n  as a l i n e a r  combination of a t  most 

t v ~ o  non-negative regular linear func t iona l s  and a l i n e a r  funct ional  

of another type, i -e . .  an  E1-multiplier. 

The existence -of severa l  types  of  l i n e a r  func t iona l s  on M 

i s  also discussed. This involves an app l ica t ion  of t h e  Hahn-Banach 

extension theorem and an i n f i n i t e  dimensional H a m e l  base argument. 
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This preliminary chaptelr covers some fundamental concepts. 

- - - 
- - - -- -- -- 

Its pnrpose is to-i~troduce notation and elementary concepts and t o  give 

the reader a survey of the material which w i l l  be used l a t e r  i n ' t h e  

thesis. - A versed - reader - - may omit it and proceed to  - tJe n e x t  c & p t ~  - - 

on structure theorems and use Chapter 1 only for reference. 

We take for  granted that the reader is familiar with the 

concepts of a s e t ,  a subset and a sequence. We also presuppose a 

familiarity with,the basic operations involving sets .  Now we intrbduce 

The s e t  of a l l  natural numbers (positive integers) w i l l  be 

1 
denoted by the l e t t e r  N and the setdo•’ a l l  real  umbers, by R . /" 
We shal l  write, for a sequence x , of real  n d ,  

. 

the sequence (6,0, .,., 0,1,0,0, ... ) ,  where the 1 comes i n  the i-th 

i place, w i l l  be denoted by e . The sequence 0 , .  - 1  w i l l  be 



denoted by . The sum of two sequences a = (a, ) apd 
- pp - -- - - -- 

b = (b.) 
I 

is the  sequence (al+bl , = a2+b2 , a3+b3, . . . 1 . It  w i l l  be denoted by 

a+b = (ai+bi). Simi,larly, the difference of two sequences is defined. 

Furtheqmre,  f o r  a real number X , Ax = A (x, 1 = (Ax, . Consequently, 

for a r e a l  number k, the  constant 

- - 

and 

sequence 

k-x = (k-xi) = (k-xl,k-x ,k-x . . .) 
2 3 ' 

= ke-x . 

We presume a f a m i l i a r i t y  w i t h  the  concepts of bounded 

sequences and convergent sequences. The s e t  of a l l  bounded sequences of 
a -- - - - - - 

1 
--- 

r e a l  numbers w i l l  be denoted by M . For a sequence x = (x,) of + 

- -  ~ 

real n&ers,which i s  convergent to  a limit 8 (where 8 is a r e a l  

number, of course),  we  shall wr i t e  x + C as n + o r  l i m  x = 8 n 
o r  lim x = 8 . The set of al l  convergent seqyences of r e a l  numbers 

n + -  



w i l l  be denoted by c . Moreover, the  set  of a l l  sequences of real 

numbers that qre convergent t o  0 w5Il be denoted by c . It is 
./ 0 

easy to see t h a t  i f  a sequence (xnl of r e a l  numbers i k  condergentr 

. then i t - i s  bounded. Thus, w e  have the , fo l lawing inclusions:  

* 
Now we acquaint- thg reader 'xith the  concepts of  l i m i t  

.? 
c. 

. -. - .  

superior  and 1imit ; infkrior  of a sequence,, which'we w i l l  need i n  t h e  
' n - - -- - - 

r. 

t h i r d '  chapter of our thes i s .  w e  , therefore,  s t a t e  the  following 

de f in i t ion ,  

Definition 1.1. Let (xn) be a sequence of r e a l  numbers 

that is bounded . Let M '  = sup  {\rxn+lrXwzt- . . I-. . Then t h e  - 
.n 

b 
It is  not 'hard t o  see  tha t  the  sequence (M 1 is monotqnically 

n 

decreasing. Hence, - 

similarly; we define f o r  a sequence ( x  I ,  vhifh is bounded r 
n 



- 
Eviden t ly , - fo r  any bounded sequence x , of real nuLnbers, 

l i r n  sup x and l im  i n f  x are f i n i t e  r e a l  numbers, 
n A - - A- 

Next, we f i s t  a few propertLes of l i m i t  supe r io r  and limit 
1 

i n f e r i o r  of  a sequence, w h i d h  w i l l  be us'ed l a t e r :  

I f  (x,) is  ' a convergent sequence o f  real numbers, then 

l i r n  i n f  x = l i m  sup x = l i m  x , And conversely.  
n n 

If (x,) and (yn) are bounded sequences of real n w s ,  \ 

For a r e a l  number a T 0 , l i m  sup (axn) = a lim SUP x . 
n 

* 

For a sequence (x f of reai numbers, l i r n  i n f  x = 
n n r .  

-1im sup  (-x and l i m  sup (x 1 = - 1 i m  inf 4-x ) . 
n n n 

W e  assume that the r eade r  i s  'familiar vie 'the concept of a 

L 

+ 
D e f i n i t i o n  1 .2 .  - A non-empty set of  bounded s w p n c e s  of 

d 
real numbers i s  called a linear space of bounded sequences over the reals 



s c a l k  multiplication* - -. -r m--ordrnatewxse a d h t i o n  and 

defined earlier, - 

spaces ov&r the for example, M , c *an& c are. l inear 
0 

C 

For the mma-tt ,  we shall 

- - Tkfimtrrons and properties.  

be concerned with som general 

Definition 1.3, A norm 
\ - on a l inear  space x , is  -a 

T;II I-x+ - 

such t ha t  funct ion  

11 *!I) is a l inear - Definition 1.4. A normed linear space (X, 

- space X , irrif3-1 a now defined on it- 

It fs nat hard t+u see that M , c and co become norbed 

linear, spaces over the reals.with.norm defined on them a s  Sallows: 
> 

/!XI! = sup lx-1 , fqr all x . 

Definition 1.5.  A non-empty subset S of a linear space X 

4 1 
for all A ,  y € R . 



A s  an i l lus t ra t ion ,  both 
- - - - - - - - 

c and c, are  subspres of hi . 

Moreover, i f  { S  ) is a family of subspaces, men n S  is  also a 
a '. a 

subspace. 
P 

W e  now introduce the important concept of a l inear  operator. 

Definition 1.6. Let XI Y be l inear spaces. - Then a 

function f : X - t  Y - is  called a l inear operator (or map, transformation) 

i f ,  and only if, for  a l l  x x € X , and a l l  scalars A.-p . 
1' 2 

It  is easy t o  see that the composition of two l inear  operators 
-# 

i s  again a l inear operator. 

Definition 1.7. f is called a ' l inear  functional on a l inear 

1 space X i f  f : X -t R i s  a l inear  operator, i - e . ,  a l inear  

functional 4s a real-valued l inear op&tor. 

The zero l inear functional w i l l  be denoted'by 8 . Thus, 
8 : X +  R' is  such that B(x) = 0. for a l l  x F X . 

Linear operators on normed' spaces, which are continuous, are  of 

special in teres t  i n  functional analysis. They form the pr imry subject 

matter of our thesis. 



- 

Definition 1.8. Let X I  Y be normed l inear  spaces. Let 

f : X -+ Y be a' l inear operator. Then f is called continuous a t  

x € X i f ,  and only i f ,  for  every E > 0 , there exis t s  6 > 0 , 
0 

Definition 1.9. The function f i n  the above definit ion 
A- - - L - L- - -- - -- - - - - - - - - - - - 

is called continuous on X i f  f i s  continuous a t  each point i n  X  . 
t 

~ n o t h k  type of operator on a nomed space,which actually 
-- - - 

t o  be the same thing as a continuous l inear operatorris a 

-4" bounded linear operator. 

Definition 1.10. Let X I  Y be normed l inear  spaces. Then 

a l inear operator f : X + Y i s  called bounded 

exis t s  a constant M such that 
- - - -1 -- --- 

Defimtzon 1.11- Let X 

i f ,  and only i f ,  there 

for  a l l  x € 

be a normed 

X .  

l inear  space. A l inear 

functional f : X -F R' is called bounded i f ,  and only i f ,  there exis t s  

a 'constwt MI such tha t  

Now we give a very 

& for a l l  x c x . 

useful and well-known property of 

. oontinuous l inear operators. 



f : X + Y be a l i n e a r  operator.  Then f is  continuous on X i f ,  

and only i f ,  it is  bounded.. 

4. 

Proof.  L e t  f be bounded. Therefore, there e x i s t s  a 
6 - 

constant M such t h a t  /lf(x)I) I M llxll ' f o r  a l l  x € X . Now, 
1 1 .  

E i f  I f ~ - ~ f ]  < - . Hence f i s  uniformly continuous on X . 
Ml 

/ 

Conversely, le t  f '  be continuous on X , Then it is  

- 
continuous a t  0 , i n  p a r t i c u l a r .  Rence,there e x i s t s  6 > 0 , 

6 = 6 (1) such t h a t  f t  f (x) I f  < 1 whenever jlxli < 6 . Take any x # 0 . 

and so 



Thus, in both cases, "f fx) " < - - , whence f i s  bounded. 
6 

T h i s  corizpfetes the proof. 
- - - - - - - 

I n  particular, t a k i n g  y = R' , we have t h e  fo l lowing  

i m p r t a n t  and commonly used t h e o r e m .  

1 
Theorem 2.13, A linear f u n c t i o n a l  f : X + R is con t inuous  

1 

on X i f ,  and only if, it is bounded. 

D e f i n i t i o n  1 . 1 4 .  A non-empty set of  l i n e a r  f u n c t i o n a l s  on 

the same space X , which is  closed under a d d i t i o n  and s c a l a r  

f Definition 1-15,  The set sf  a l l  l i n e a r  f u n c t i o n a l s  on* M 3s 

a f i n e a r  space (under the u s u a l  o_perat ions)  and it will be denoted by 

' D e f i n i t i o n  1.16. The set o f  a l l  c o n t i n u o e u n d e d )  l i n e a r  * 

f u n c t i o n a l s  on M is also a l i n e a r  space under the u s u a l  o p e r a t i o n s  

W e  now d i s c u s s  a feu more concep t s  concerning l i n e a r  spaces 

i n  g e n e r a l ,  which w e  w i l l  app ly  later i n  the t h e s i s .  



Definition 1.17. L e t  S be a subset of a li ear  space X . \ -. w 
The l i n e a r  hul l  of S i s  the intersection of a l l  subspaces containing 

3 . It w i l l  be denoted by IS3 , Symbolically, 

IS] = fl { V ~ V  a subspace of X and S c V) 

= smallest subspace of X containing S . 

We shall  also use the terms 'span of S' or 'subspace 

generated by S *  for l inear hull  of S . We now present the following 

interesting theorem. 

Theorem 1.18. t S be a non-empty subset of a l inear 

space X . Then the linear hul l  of S is  the s e t  of a l l  f i n i t e  linear 
- - - -  - - - - - - - - - - - - - 

combinations of elements of S . 

Proof. u t  s t  = f)llxl + A x + ... + A x Ixi F S,  7- 
2 2 n n L1 .-. 

1 5  i 5 n ,  n f N). It suffices t o  show that  [SJ = S ' .  

I t  i s  easy t o  see tha t  S *  is a subspace of X containing 

S . Since [Sl is the smallest subspace of X containing S , it 

follaws that 1 S the other hand, s i n e  &L i s a x h q a c ~  

of X . f i n i t e  l inear combinatio_s of ekmer&s_of I S 1  belong t o  ISL ,- - - -- - 
- 

But as  [Sl contains S , f i n i t e  l inear combinations of elements of 

S also belong t o  f S1 . Consequently. S ' - c IS1 , and w e  are done. 



Def in i t i on  1.19. A f i n i t e  subse t  {x1,x2,. . . , x n  of X 

i s  c a l l e d  a l i n e a r l y  independent set if, and only i f ,  a r e l a t i o n  of  

the form 

implies t h a t  X = X = ... = A = 0 . 
1 2 n 

I f  a f i n i t e  subse t  of a l i n e a r  space is no t  l i n e a r l y  

independent, it w i l l  be c a l l e d  l i n e a r l y  dependent. 

De f in i t i on  1.20. An a r b i t r a r y  subset  (no t  neces sa r i l y  - 

f i n i t e ) o f  X i s  c a l l e d  l i n e a r l y  independent i f ,  and only  i f ,  every 

one of i t s  f i n i t e  subse t s  is l i n e a r l y  independent. 

De f in i t i on  1.21. A , subse t  B of X is c a l l e d  a Hamel 

base  ( o r  b a s i s )  f o r  X if, and only i f ,  B i s  a l i n e a r l y  

independent s e t  and [Bl = X I  i . e . ,  B genera tes  t h e  l i n e a r  space ,X . 

Theorem 1.22. Every l i n e a r  space X has  a Hamel b a s i s .  

For a proof see, e .g . ,  Maddox [ 3 ] ,  p .  78. 

- - -- - - - - - - - - 

It is well-known t h a t  any b a s i s  f o r  a subspace of  X is 
- - - - -- 

contained in  so re  b a s i s  f o r  X . (The proof of t h i s  r e q u i r e s  an 

a p p l i c a t i o n  of Zorn's lemma and i s  s i m i l a r  t o  t h e  proof of  Theorem 



Def in i t ion  1.23. A l i n e a r  space X is c a l l e d  f i n i t e  

dimensional i f ,  and only i f ,  X has  a f i n i t e  Hamel base B , i .e . ,  

B i s  a f i n i t e  set which is a H a m e l  base.  I f  X is n o t  f i n i t e  

dimensional, it is  c a l l e d  i n f i n i t e  dimensional. 

* I 

W e  remark t h a t  M I  c, co,  M and M a r e  a l l  i n f i n i t e  

d i m n s i o n a l  l i n e a r  spaces .  Furthermore, i f  X i s  any F n f i n i t e  
- 

dimensional space with  a H a m e l  base  {ba 1 ~ C A ] ,  then f o r  each x C X , 

t he re  e x i s t  unique s c a l a r s  A a € A such t h a t  x = C X b , where 
C1 

a CA a a 

A # 0 f o r  a t  most f i n i t e l y  many a . 
a 

Def in i t ion  1.24. I f  X i s  a f i n i t e  dimensional space,  then 

i ts dimension is  def ined t o  be the number of elements i n  any of its Hamel 

bases .  ( ' B ~  fieoren 1.26 below, t h e  dimension of X i s  wel l -def ined) .  

e- - - -  - - - 

W e  conclude t h i s  chapter  by s t a t i n g  a couple of theorems t h a t  

w i l l  be usefu l  l a t e r  on. For proofs ,  see, e.g., Maddox [ 3 ] ,  pp. 

76, 77. 

-: Theorem 1.25. Let X have a Hamel base with n elements. 

Then any set of n + 1 elements i n  X is l i n e a r l y  dependent. 
- - 

- 

Theorem 1.26, ?kt X be f i n i t e  dimensional. Then a l l  

t h e  Hansel bases  f o r  X have t h e  same number of elements. 



CHAPTER 2 

STRUCTURE THEOREMS 

This chapter i s  concerned with the structure of continuous 

l inear  functionals &fined on the l inear space, M- , of axr bounded - 

sequences, over the f i e ld  of real  numbers. We recal l  that  M is a 

normed linear space over the reals ,  with norm defined on it as follows: 

for x C M , llxll = sup /xnl . Moreover, the class of a l l  continuous 
n 

linear functionals on M is  i t s e l f  a l inear space, denoted by M* . 

Non-negative l inear functionals and regular l inear functionals 

on M w i l l  be defined. It w i l l ,  furthermore, be shown tha t  every 

non-negative linear functional on M i s  c,odnuous on M CTheorem 2-13) , - -- - - 

A special class, , 'of continuous (and non-regular) l inear  functionals , A 

on M w i l l  be,defined and it w i l l  turn out t o  be a subspace of M* . . 
A relation between the value of a continuous l inear functional a t  a 

convergent sequence and the l i m i t  of the sequence w i l l  be established 

(Theorem 2.10). Then it w i l l  be shown that  every continuous l inear 

functional on M c p  be expressed ei ther  in  terms of a continuous and 

regular l inear functional, and a linear functional from 1 (worm 

2.15) or  as a difference of two continuous and regular -~ - l inear  
~ -- --- - - 

functionals, and a l inear  functional from (Theorem 2.16). 

Moreover, it w i l l  be shown tha t  every continuous l inear functional 

on M can be written as  a difference of two non-negative l inear  

3 



func t iona l  s on bf fIama 2.17) . In  addi t ion ,  it wi f lbe  

denonstra ted t h a t  every continuous and r egu la r  l i n e a r  func t iona l  on M 

can be expressed a s  a par f icu la r  l i n e a r  combination o f  t w o  non-neqative 

and r egu la r  l i n e a r  f u n c t i o n a l s  on M . 

The set of a l l  continuous and r egu la r  l i n e a r  func t iona l s  on 

M w i l l  be denoted by ?? and t h e  l i n e a r  h u l l  of R w i l l  be denoted 
- - - 

by [ R ] .  Furthermore, it w i l l  be exh ib i t ed  t h a t  M* i s  t h e  d i r e c t  
ri 

sum of i t s  subspaces [I?] and 1 . The set of a l l  non-negative and 

r egu la r  l i n e a r  func t iona l s  on M w i l l  b e  denoted by R+ and i ts  

+ 
l i n e a r  h u l l .  by [R 1 . It w i l l  then be shown t h a t  [ R I  = [R+I . 

+ 
Consequently, M* w i l l  become the d i r e c t  sum of i ts  subspaces [ R  I 

and L .. 

Fina l ly ,  it w i l l  b e  d e m n s t r a t e d  t h a t  every continuous l i n e a r  

func t iona l  on M can be expressed as a l i n e a r  combination -ofpat %st 

L 
t w o  non-negative, regular l i n e a r  func t iona l s  and a l i n e a r  func t iona l  

. from . This  g ives  an upper bound t o  t he  number of l i n e a r  func t iona l s  

t o  be  taken from R+' , i n  t h e  preceding r e s u l t .  

W e  begin our d i scuss ion  wi th  a f e w  important . de f in i t i ons .  

Def in i t i on  2.1. A sequence a = ( a .  1 i s  c a l l e d  
1 

abso lu t e ly  c ~ n y e r g e n t  i f  - 



The set of  a l l  absolutely convergent sequences w i l l  be 

ca l l ed  dl and Cl forms a l i n e a r  space under the  usual  operat ions.  
* 

Evidently,  El is a subspace of M . I n  f a c t ,  El  i s  a subspace 

of c so t h a t  we have t h e  following inclusions:  
0 

Defini t ion 2.2. A sequence c = (ci) i s  ca l l ed  the  term . - - 

by term product of .two sequences a = (ai) . and b = (bi) i f  

The following theorem es tabl i shes- the  absolute convergence 

of t h e  term'by term product of an absolutely convergent sequence and a 

bounded sequence. 

Theorem 2.3. I f  a € el and x E M , then the  s e r i e s  

converges. 

5 l i m  
n - t m  



as  required. 

The above theorem peknits the  following corol lary .  

m 

C a x converges. 
i i .  i=l 

Proof. An absolute ly  convergent s e r i e s  of r e a l  numbers i s  

W e  now introduce t h e  concept of a regular  l i n e a r  funct ional  

Definition-2.5. A l i n e a r  funct ional  f - Dn -K - i s  called 

* 
regular  i f  it extends ' l i m ' .  I n  o the r  words, f o r  x f c , . 

f ( x )  = l i m  x . 

The following r e s u l t  is an indispensable t o o l  i n  working 

with continuous l i n e a r  funct ionals  on M . 

- - - - -- -- - - 

Theorem 2.6. Iet a € L1 . Then the function f defined 



is a continuous l inear functional on M . Furthermore, f is not 
% 

regular. 

Proof. It follows, from Corollary 2.4, that f ( x )  = C a x 
i i 

i=l 

converges. Therefore, f : M + R' and so f is  defined for  a l l  

Now w e  show that f is a l inear map. To t h i s  end, l e t  

a, f3 be any scalars and x, y C M . Then 
- - - 

w 

f ( a x  + By) = Z a .  (axi + Byi) 
1 

i=l 



I n  order  to show t h a t  f is  continuous on . it is -.- 

s u f f i c i e n t  (by Theorem 1.23) t o  show that f i s  bounded on bA . 
Thus, for each x € A.( , 

m 

where A = E ai I .  Thus, there exists a eons tan t  A such that 
i=l +. 

continuous on A.( . 
I t  remains t o  show that f i s  not  pgular. For t h i s ,  it is 

enough t o  prove the-existence of x f c such t h a t  lim x = 8 ,  but 

f ( x )  # d . W e  consider the followilig two cases, 
- - - - -  - -- -- 

-I. T k r e & t s S  &-th t -a i  # C J  7- 

i 
.- 

e = (0,0,...,0,1,0.0,...), where the I comes i n  the i - t h  place, is 

i i - i 
sii& that lim e = 0, but  fie 1 = ai f 0 = lim e . 



Case 11: a = 0, for a l l  i . Then e = <l,l,l, ... 1 is 
-- - - 

i 
--- 

* 
sncttthat l i m e =  I ,  but ffsl = O f  1 = l i m e  , This provesthe 

theorem. $ 

Definition 2.7,. The l inear functionals on M I of the type 

ftxl = I a.x , where a = (ai) C C and x C M ,  are called the 
i=l 1 i 1 

? 
- A-A - -- -- - - LA-A2L-- "- 

r-mult ipl iers .  The set of all such linear functional~ will be 1 

a3 
- - - ---- 

In vim of Theorem 2 . 6 ,  for f ( x )  = C a .x  , it follows that 
i=I 1 i 

the 8 -multipliers are continuous and non-regular linear functionals 
1. 

- 
C ,  

It is instruct ive to observe that the correspondefice a t+ f, 

where a 6 8 and f lx l  = 
1 

E a . x  for a l l  x C It( , is an isomorphism. 
i= f r i 

* 
€unsequemtly, is a subspace of . 

4 
k 

Definition 2 . 8 .  The signum of a real n-r .a , denoted by 

sgn a , is defined as foflows: 
* & 



a sgn a = l a /  . 

The following theorem gives  a very important property of 

the sequence formed by the values of a continuous l i n e a r  func t iona l  

i 
evaluated a t  the bounded sequences e , i = l ,2 ,3 .  ... . 

- - -- - - 
- - - -  

I a 

i 10 

iheorem 2.9. Let f C M *  and a = f ( e  ) ,  i = 1.2.3 .... . 
i 

Then a E E 
1 '  

Proof. X 
i=l 

- = l i m  
n - t m  



1 2 * n 
where E~ = (sgn f (e  1, s~ f (e I . . . . . SF f (e 1 .O , O n .  . . I  . Not- 

t h a t  ' I J E ~ J J  5 1. Now, s i n c e s  f i s  bounded, there ex i s t s  a constant 

n 
M1 

such that 1 f (en) 1.5 M1 1 1 ~ ~ 1 [  5 M1 , which implies t h a t  f (E ) C M1 . 

n Thus, ,lim f(E ) 5 M < ; t h a t  is ,  Z /ail < , whence a is an 
1 n +a. i=l 

element of 
i 

- -- - - -- 
The following -theorem provides a re la t ion between the  value 

of a continuous l inear  functional a t  a convergent sequence and the 

l i m i t  of the sequence. It  represents a s l i g h t  generalization of the - ,' 
well-known characterization of continuous l inear  functionals on c 

(see, e.g., Mddox [ 3 1 ,  p. 109). 

* i . 
Theorem 2.10. Let f 6 M , f ( e )  = a; (i = 1,2,3,....), 

. 
Then for  x E c , 

f ( X I  = (8-s) lim x + g(x) . 

Proof. Note t h a t  by Theorem 2.9, a € 8 and by Theorem 2.6, 1 

Also, observe t h a t  

Now, l e t  x E c and let  l i m  x = L . We sha l l  f i r s t  show that 



that .isI 

NOW I 

= sup 
i L n+l  

Since l i m  x = L ,  the l a s t  expression tends t o  zero  as n _ t e n d s  
- - - -  - - 

i n f i n i t y  . Therefore, ( I) has been proved. 

have 

1 

using t h e  l i n e a r i t y  and the  continui ty of f 



n n 
+ l i m  [ C  xiai-L .C a .1 

1 
n + m  i= 1 i= 1 



L 

This. completes the  proof,  

Defini t ion 2.11. A sequence x = (xi) i s  ca l l ed  non-negative 

- 
i f ,  and only i f ,  x 1 0  f o r  i = 2 ,  . . We s h a l l  wr i te  x 1 0  , 

i 

The s e t  of a l l  non-negative and bounded sequences of r e a l  numbers v i i l l  

+ 
be denoted by M+ , i . e . ,  M = {x € M I x t 51. 

We now introduce t h e  important concept of a non-negative 

l i n e a r  funct ional  on M . 

- Defini t ion 2.12. A l i n e a r  funct ional  f ', defined on M , 
* - 

i s  ca l l ed  non-negative i f ,  and only i f ,  f o r  a l l  x € M , x 1 0 

implies t h a t  f fx) 1 0 .  The s e t  of a l l  non-negative l i n e a r  func t iona l s  

on M w i l l  be denoted by hf . Occasionally, f o r  convenience,we s h a l l  , . 
- - -- - -- - -- - - 

wri te  f t 0 f o r  f € N . 

The following theorem presen'ts an i n t e r e s t i n g  and a very 

useful  property of non-negative l i n e a r  funct ionals  defined on M , 

see,  e.g., Schaefer f 6 1 ,  p. 228. 
s- 

Theorem 2.13. Any non-negative l i n e a r  funct ional  on .  M is 

- continuous, i . e . ,  N s M * .  

Proof. t f be a non-negative l i n e a r  funct ional  on M . 
- 

Let f (e)  = 8 . For any constant sequence c = ' ( c , c , c , .  . ,)', we have 



2 5 

L e t  x € M  a n d l e t  b = I l x l l .  Wehave, f o r e a c h  i ,  
- - .- 

I x .  1 ' SUP I x .  / = b 
1 1 

i 

Therefore, -b I x.  5 b f o r  a l l  i , which implies t h a t  b - x ? 0 
1 i 

f o r  a l l  i , and b + x. I 0 f o r  a l l  i . 
1 

~ h u s ,  the  sequences (b-x. 1 = be-x and (b+xi) = be+x a r e  
1 

bounded and non-negative. Since f i s  a non-negative l i n e a r  

funct ional  on M , we have 

0 5 •’.(be-x) = f (be) - f ( x )  = be-f (x) , 

which implies t h a t  f (x) I bC = Ilxll8. Similar ly,  0 5 f (be+x) = 

bt+f (x) , which implies that -f (XI 5 bC = llxllt . 
- - -  - - 

Therefore, it follows t h a t  [ f (XI 1 5 8llxll f o r  a l l  x M 

and hence f is bounded on M , which is what w e  wished t o  show. 

It is worth remarking t h a t  there  e x i s t  l i n e a r  funct ionals  

on M which a r e  continuous bu t  a r e  not non-negative (viz .  Chapter 3,  

Theorems 3 . 4  and 3.6) so t h a t  the  converse of the  preceding theorem is  

not  t rue .  

Defini t ion 2.14. We s h a l l  denote the* s e t  of a l l  coritinuous 
- - - - - - - - --- - 

and regular  l i n e a r  funct ionals  on M by R .  Likewise, t h e  s e t  of - a l l  

non-negative (hence continuous) and regular  l inea r '  funct ionals  on M 

w i l l  be denoted by ?+ . 
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We now prove some of- the  most important theorems of th is  

chapter which demonstrate the structure of hntinuous l inear 
d - '  

functionals on M . a 

w * i 
Theorem2.15. Let f C M ,  8 = f ( e )  and s =  C f ( e ) .  

(i) ,f(x)  = A h(x) + g(x) ,  for a l l  x C M ; . 

(ii) A, h, g are unique. 

Proof. (i) From Theorem 2.10, we have, for f d M* and 

1 
where g C L. Since 4? f s ,  exists.  Therefore, from (3)  we 

obtain, for x € c , 

- 
t -s [f tx) - g(x) 1 = l i m  x . 

Then h € M* . mse  ver, n a; 
Furthemore, for each x € M 

view of ( 4 ) ,  h. is regular. Hence h C R . 



where A = 8-s is a constant.  This proves (i) . 

(ii) We f i r s t  prove t h a t  g i s  unique. It has a lready 

been shown i n  (i) t h a t  f o r  each x € M , f (x) = A h (x) + g (x) , where 

h f R , g C and A i s  a non-zero r e a l  constant.  Let f ( x )  = 

. A'h' (xf + g f  (x) , be another representat ion of  f (x) , where h '  C I? , 
i 

g' f L and A' i s  a non-zero r e a l  constant.  Put t ing  x = e i n  

both representat ions of f and using the  regu la r i ty  of h and h '  , 

w e  have, f o r  each i , 

i i i i i i i 
f ( e  ) = A h ( e  ) + g(e  ) = A l i m  e + g ( e  ) = 0 + g ( e  ) = g ( e  ) ,  - -- - 

b 

. . 
i i i i 

and simiEarly, f ( e  1 = g' (e ) . Hence g ( e  ) = g'  ( e  ) , f o r  a l l  i . 
Now l e t  ( a . )  and ( b . )  be the  sequences i n  El corresponding t o  g 

1 1 

i i 
and g'  respect ively.  .Then synce g ( e  ) = g '  ( e  ) f o r  all i , it 

follows t h a t  a = bi f o r  a l l  i . Consequently, g = g' . 
i 

Next, we show t h a t  A is unique. To t h i s  end, l e t  x = e 

i n  t h e  two representat ions of f ( x ) .  Then 



Final ly ,  since A = A '  'and g = g ' ,  w e  conclude t h a t  , 

We can formulate a theorem analogous t o  Theorem 2.15, which 

handles the case C = s ,  a s  follows: 
* -, \ 

* i 
f C M , C = f ( e )  and s = C f ( e  ) .  I f  8 = 2, then there , ,ex is t  

t C and g C f such t h a t  

(i) ? f ( x )  = t ( x )  + g ( x ) ,  f o r  a l l  x C M ; 

(ii) t and g a r e  unique. 

Proof. The argument is e s s e n t i a l l y  the  same as  t h a t  i n  the  - .  

proof of Theorem 2.15. 

(i) Observe t h a t  from Theorem 2 . l o ,  f o r  f F M* and 

where g E L ,  Here C = s anbso 

1. 
f(x) = g l x ) ,  f o r  a l l  x € c . 



- - -  t 
T be any continuous and regular  l i n e a r  funct ional  on M , - - 

iir / S  < 
I I 1 

e l  T C R . Define o : M -+ R a s  follows: 

* 
We claim t h a t  . o C R .  Since f ,  g, r C M , w e  have o C M* . Moreover, 

from ( 5 )  and the regulari ty of r , w e  g e t ,  f o r  x C c , - 

a(x)  = f(x)  - g(x) + ~ ( x )  = 0 + r ( x )  = l i m  x , 

which s h m s  t h a t  a i s  regular .  This e s t ab l i shes  our claim. 

Final ly,  from (6k, we have, f o r  x C M , u(x)  = f i x )  - g(x) 

+ T ( x ) .  This means that f ( x )  = o(x)  -:$+I) + g ( x ) ,  where a ,  T C R 

where t C P and g C L .  This completes the  proof of (i).. 
I 

(ii) Let f (x)  = t ' ( x )  + g B ( x ) ,  where t' C and g '  C L , 

*me qveMierr of the e&stenee- 

the next chapter. The reader i s  assured t h a t  such r do e x i s t ,  - > 

F - -  
e .g., r a Banach l i m i t  (see   he or em 3.1) . 



be another representation of f . Let t ' = a '  -- r , where 

i 
a ,  T' € . Putt ing x = e i n  both representat ions o'f f , it 

i 

i i follows exact ly a s  i n  t h e  proof of Theorem 2.15 t h a t  g ( e  ) = g t ( e  ) ,  

f o r  every i and t h a t  g = g ' .  P' 
3 Now, we proceed t o  prove t h a t  t is unique. Again, 

\ 

considering the  above two representat ions of f , w e  have, f o r  x F M , 

Consequently, 

f o r  a l l  x € M and hence t is  unique. This completes the  proof of 
- - - - -- -- - - -  

(ii) , and the  theorem follows. 

I t  i s  i n t e r e s t i n g  t o  note t h a t  a and T are not unique - 

i n  the  above theorem. 

W e  r e c a l l  t h a t  the  set of a l l  continuous and regular  l i n e a r  
7 

funct ionals  on M is  denoted by R and the  set of a l l  non-negative 

(hence continuous) and regular  l i n e a r  funct ionals  on M is denoted by 
- 

- 
- - - - - - - - - -- - - - -- 

R' . The l e t t e r  N denotes the  s e t  of a l l  non-negative (hence 
- - + y- - 

- --- 

continuous) l i n e a r  f u n c t i o n a l ~  on M . Furthermore, M denotes 

the s e t  of a l l  non-negative and bounded sequences of r e a l  numbers. . 
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Our next venture is t o  prove a very important lemma, which 
- - 

- -- 

is  a corol lary  of a r e s u l t  i n  t h e  theory of Topological Vector 

Spaces, see ,  e . g., Schaefer [ 6 1 , p. 218, W e  a r e  going td present an 

independent proof.  The importance of t h i s  lemma 1 i e s . h  the  fact t h a t  

it is a powerful taol i n  determining the s t ruc tu re  of a continuous and 

regular  l i n e a r  funct ional  on hi . 

* 
' Le- 2.17. hf = hl - N , i . e . ,  f o r  each f d M* , the re  

e x i s t  g, h C bf such t h a t  f = g - h . 

I n  order to esta33lisf.t the proof of this fezma, w e  first 

present  the necessary background material .  

the 

the 

and 

+ 
Defini t ion 2.18. L e t  a  be a r e a l  number. Then a , 

+ - 
p o s i t i v e  p a r t  of a , i s  defined by a  = max ( a ,  01, and a  , 

- 
negative p a r t  of a  , is defined by a = max (-a, 0 1 .  Thus, 



Clearly, 

u L 0, 

W e  define 

Then x = 

sequences. 

Befinition 2.19. L e t  x be any sequence of  rea l  n u h e r s .  . 

the positive and the negative parts- of x as follows: 

+ - 
It is clear that x and x are both non-negative 

Propos i t ion  2.20, 

A , w e  have 

For any sequence x and _any real number 
/ -.-- 

Proof. (a) We f i r s t  establish the r e s u l t  for areal 

+ 
Aa = X max ( a ,  Of = Xa . How l e t  cr < 0.  gain; by Definition 2.18, 

- -  - 

i i 
tAa1 = max (Xu, 0) = O = > * O  = X max ( a ,  0) = Aa . T ~ U S ,  in either 

+ i 
case, (la) = 13 . 
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by Def in i t ion  2.19, w e  have 
,- 

9 - -  

This  proves (a]. 
1 

0 . 
Tne rest of the cases can also be handled similarly. 

+ - 
Corol la ry  2 .2  1- For any s-&quence x, (-XI = x and 

- - + 
(-XI = X . 

will + used in the proof of 2.17. 
J 

Def in i t i on  2 .22 .  We say tha t  a V e n c e  x i s  less than 

. o r  equal  t o  a sequence y and write x 5 y if, and only if, 

The following p r o p s i t i o n  i s  e s s e n t i a l l y  found i n  the 

Propos i t ion  2.23. t x, y, z b non-negative sequences. P 

Proof ,  Let z =  u + v ,  where 0 5 ~ 5 ~ .  O - C V ~ Y ,  

Then by Definitions 2.11 and 2 . 2 2 ,  O I u, 5 x .  for ail i and 

0 i v. 5 y for all. i . &is inplies that 0 1 u. + v 5 x + yi 
I i 1 i i 

- - 
for aff F . Therefore, 8 5 u +. v 5 x + y ,  i . e . ,  O 5 z 5 x + y . 



- 
Conversely,- let  0 5 z 5 x + y. W e  wish t o  show t h a t  the re  

0 - - 
e x i s t  sequences u and v such t h a t  0 5 u 5 x, 0 I v 5 y and 

such t h a t  z = u + v. We f i r s t  prove t h e  r e s u l t  f o r  non-negative 

r e a l  numbers. It s u f f i c e s  t o  show t h a t  i f  0 5 r 5 s + t , where 

r, s, t are non-negative r e a l  numbers, then the re  e x i s t  r e a l  numbers 

a and b such f&at 0 5 .a 5 s ,  0 5 b 5 t and r = a + b , F o r  - _  _- 

t h i s ,  l e t  

3 9 

a = i n f  ( r ,  s} and b = r - a . 

Clearly, 0 5 a = i n 5  ( r ,  s} 5 s . I t  remains t o  show t ha t  0 5 b 5 t. 

Since b = r - a ,  i f  a = r ,  then b = 0. Thus, 0 5 b I t. I f  a  = s, 

*en r Z s (since s = inf  ( r ,  s )  5 r) and b = r - s 1 0. Also, s ince 

- 

r 5 s + t, we have b = r - s 5 t . Therefore, i n  boah-Eases,-0-5 b-5 t. ,, 
+i Naw we prove t h e  des i red  r e s u l i  f o r  non-negative seque ces.  

That i s ,  w e  intend t o  show t h a t  given x ,  y ,  z non-negative and 

- 
0 5 z 5 x + y, there  e x i s t  s u and v such t h a t  5 '5 u 5 x , 
- 
0 S v 5  y and such h a t  z To t h i s  end, l e t  



Proposition 2.24. Let x be a non-negative sequence. Then 

f o r  A 1 0, 

- - 
0 5 z 5 Ax if, and only i f ,  z = Ay,wfiere 0 i y I x.. 

- - - - ---- 
Proof, Let 0 5 z I Ax. Then f o r  A = 0, t h e  proof is  

- 1 obvious. If A > 0 , then on d iv id ing by A , we have 0 5 - z 5 x . 
X 

1 - 
Let - z = y . Then z = Ay, where 0 5 y 5 x. 

A 

- 
Conversely, assume z = Xy, where 0 5 y I x . I n  view of 

Defini t ions 2.11 and 2.22, 0 I y .  I x f o r  a l l  i . Therefore, 
1 i 

- - 
0 5 Ayi 5 Axi f o r  a l l  i ,  and s o  0 5 Ay 5 Ax . That is, 0 5 z 5 Ax. 

d 

This proves the  proposi t ion completely. 
- - --- -- - --- 

a 

Final ly ,  w e  come t o  the long-awaited proof of Lemma 2.17, 

which s t a t e s  t h a t  every continuous l i n e a r  funct ional  on M can be 

expressed a s  a d i f ference  of two non-negative l i n e a r  funct ionals  on M . 

Proof (of Lemma 2 .17) .  Let f C M* . Define g on M+ as 

follows : 

We first show t h a t  i f  A 2 0 and x C M+ , then g (Ax) = Ag(x). 



- 
Since A 0 and x F M+ imply t h a t  Ax 2 0 

+ 
(i. e. ; Ax € M ) , we have by v i r t u e  of (8) and Proposition 2.24 ,, 

g(Xx) = sup {f(i) I 5 5 z 5 Ax) 

Proposition 2.2 3, 



In  order t o  extend g t o  M , we define g as  follows. 
- - - - -- - - - 

For x c M ,  

W e  wish t o  prove that g is a l inear  functional on M . clear ly ,  g- 

- is a real-valued function on M . Therefore, it i s  enough t o  verify 

t ha t  ff 

(a)  g(Xx) = X g ( x ) ,  fo r  a l l  scalars  X and for  a l l  x € M ; , 

(b) g(x+y) = g(x) + g c y ) ,  for  a l l  x, y M . 

We s p l i t ,  (a) into- the  following two cases. 

Case I. X I 0, x C M . 
Using (11) and Proposition 2.20, we have 

+ 
g(Xx) = g((Xx) 1 - g((Xx)-) 



. *- 

Since X < 0, it follows t h a t  -A > 0 . Using ill) , Propos-ition- ZZU 

and Case I ,  we get  

= Xg(x) . This completes the proof of - (a)  - . - In both cases, 

Now 

c h4 

w&prove Cb). W e  show that g(x+y) = g ( x )  + g ( y )  fo r  . '7 .. ,/ 

a l l  x, i n  the following two steps. 

- 
Step I. W e  wish t o  prove that i f  0 5 x I y,  then 

- - - 
t ha t  y - x 10. Also, y = (y-x) + x. it follows Since x 5 y, 



- M , then 

Step 11, W e  wish t o  show t h a t  i f  x, y be a r b i t r a r y  i n  
- - - .- - 

- To prove t h e  above asse r t ion ,  we introduce four sequences u, v, w, z 

as follows. For x ,  1 y , l e t  i 1 t 

For x < y: , ' l e t  
i 1 

. c - - ' + - - + 
W e  observe t h a t  u  - v Z 0 , z - w 2 0 , u + v 2 u + v and 

+ - - + 
z + w L z + w . F u r ~ e m r e ,  w e  note the following s i x  i d e n t i t i e s :  



Now, i n  view of the above observations, (Ul, Step L,- - - - - - - - - - - - - 

r e su l t  (10) and Definition 2.19, we  have 

+ - - + + - + 
= g(u +v - gfu  t v - b - g ( z  +w-) 4- g ( z  +w ) 



This proves the asse r t ion  i n  Step 11. 

Now f6r x ,  y E M , we have g (y) = g f (x+y) -XI = 

g(x+y) - g ( x ) ,  by.Step 11. This y ie lds  

- 
- 2 -  -- - - 

and t h e  proof of (b) is  complete. Hence g is a l i n e a r  funct ional  on 

M , which i s  what we wished t o  show. 

- 
Next, w e  t u r n  t o  t h e  task  of showing t h a t  g i s  non-negative. 

For t h i s  purpose, l e t  x C M+ . From (8) , g(x)  = sup {f  (y) I 5 5 y 5 XI. 

Since f ( 5 )  = 0, 0 is a member of t h e  s e t  { f ( y )  I Q 1 y I XI.  Hence 

g(x)  1 0,  which implies t h a t  g i s  non-negative. Thus, g E N . 

The proof of Lemma 2.17 w i l l  be complete i f  we show t h a t  

g - f E N . Since g and f a r e  l i n e a r  funct ionals  on M , so  is  

g - f . I t  remains t o  show t h a t  g - f is non-negative. To t h i s  

end, l e t  x be a non-negative element of M . By ( 8 )  , 
- - 

g(x) = sup {f (y)  I 5 I y 5 x3. Obviously, f ( x )  is a member of the - 

- 
s e t  {f (Y)  I 0 I y I x) , and t h i s  leads t o  the  conclusion that 

. I 
sup { f (y) I 5 5 y 5 x) L f Cx) . Equivalently, g ( x )  5 f (x) . Consequently, 

g(x)  - f (x) 2 0 and s o  (g-f) ( x )  )_ 0 . Therefore, g - f is non- 



negat ive.  Hence g - f  C N . Fina l ly ,  

where h = g - f  and both g and h C f i  . 'Phis ends t h e  proof. 

I n  t h e  proof of  Theorem 2.26, we  use t h e  following 1- 

which is i t s e l f  an  i n t e r e s t i n g  r e s u l t .  
- - 

Lewna 2.25. I f  h is  any r egu la r  l i n e a r  func t iona l  on M , 

then f o r  x 6 M , - 

Proof.  



leads t o  the desired conclusion. w 

The following theorem is a consequence of Theorems 2.15, 
9 

2.16 and L e m  2.17. I t  asser ts  that  any continuous and f egular l inear  

F . . 
functional on M- can be expressed as  a particular l inear  combination 

of two non-negative and regular l inear  functionals on M . 
,. - + 

More precisely, 

+ 
Theorem 2.26. bet f f R . Then there exi$t g, h € R '  and 

. - 
a rea l  number c such tha t  

0 ' 

* 
Proof. Since f f R , it follows that  f € M (Definition 

- 

2.14) . Therefore, by  emm ma 2.17, there exis t  - a,  T f N such that  

In view of Theorems 2.15 and 2.16, we proceed to  enumerate the following 

four cases: 

Case I. Both a and T have the representation given by 
- 

Theorem 2.15 . 
\ 

Case 11, Both a and T have the representation given by 

Theorem 2.16 . 



' 44 - 
& 

Case 111. u and T have t h e  representat ions given by - - -- - - 

Theorems 2.15 and 2.16 respect ively.  

Case IV .  a and T have t h e  representat ions given by 
4 

I 

Theorems 2.16 and 2.15 respect ively.  

Now we discuss  the  theorem i n  each case. 

Cas'e I. By v i r t u e  o_f Theorem 2.15 ,- the re  e x i s t  

3' g2 
C L and non-zero r e a l  constants 

A1f A2 
such t h a t  

0 = A h qg and T = A h +g Consequently, from (15) , 1 1  1 2 2 2' -7  , 

f =  0 - T = ( A h  +g ) - -  ( A h  + g )  , 1 1  2 2 2 -  
c 

I n  order  t o  prove the  des i red  r e s u l t ,  we first intend t o  prove t h a t  . - .  . 

AiI h i ( i  = 1.2) are-non-negative. For t h i s .  we consider 

x = 0 0  . . . 0 1 . 1 I . . . ) (5 M', where the  f i r s t  1 i s  i n  the  k + l s t  posi t ion.  

Since a C N , it follows t h a t  a (x) 1 0 (Defini t ion 2 .li) . Also,, f o r  v 

91' g2 
€ L , there  e x i s t  ( a i ) ,  (bi) C t1 such t h a t  g (x) = Z a . x  

1 - i=l 1 i 

and g2 (x) = C bixi. f o r  a l l  x C M . Hence, 
i=l 



The l a s t  expression tends to  A -  as k + - [since (a. ) C el implies 
1 1 

that  C a a lso  converges and so l i m  a = 01 . This implies 
i=I- i i 

k + w  i=3c+P 
- 1. 

that A l - t  0 .  Aut by Theorem 2.15. A1 is  non-zero, hence A 3 0 . A I 
* -4 

similar argument reveals that  A 2 > 0 .  

x be a non-negative sequence i n  M . By virtue of the non-negativity 
L - 

f 

of o and Lemma 2.25, we have 



By Corol la ry  2 .4 ,  Z a x converges, this impl ies  that i i - - 
-- -- 

i=l 

l i m  C a . x  = 0 . Ynerefore, it fa l lows  t h a t  on t a k i n g  limits, we 
I i 

n -t CP i = n + l  , 

ob ta in  0 5 A h Ixf.. 
1 1  

But s i n c e  
A1 

> 0, it follows that hl(x) t 0 , 

i . e . ,  hl is non-negative. A s i m i l a r  a r g u k n t  shows that hZ is 

+ 
non-negative. Thus, h h2 F ?? . 

1 ' 

Our next  attempt i s  to show t h a t  g - 
1 - g2 . T h i s  can be 

i 
done by eva lua t ing  f a t  e and using t h e  r e g u l a r i t y  of f ,  hl and 

h2 . Thus, from (16), f o r  each i , 

m '  

whence a = b , for each i . It  now f o l l o w s  t h a t  g l ( x )  = C a x  
i i i i 

< 
---  --- - 

- - .=  i b.x = g2(x), f o r  each x C hi ; that is. g1 - 'g2 . 
1 i 

i-1 -. 

The proof of Case I w i l l  be complete if w e  prove that 

A = A1-1. 
2 

For t h i s  'ob jec t ive ,  we evaluate f at e i n  (161, keeping 
& .  

in view that - 
g1 - 92 

. T h i s  gives ffe) = A h  (e l  - A h  ( e f ,  which . 
1 1  2 2 

implies t h a t  1 = A - A or A? = A 1 - 1  The theorem now fol lows on - 
1 ,2 

1 .  

replacing A1, A2, hl, h i  by c, c-TI g resjkSFtiVeZXdESkiag- -- 

Ca3e 11. Xe x i s h  t o  s h w  t h a t  this case is  impossible, that -- .. 

is, 30th o and c-ot be  chosen as i n  Theorem 2.16. Thus, 



TroIds vacttoGSI~ii5 Ehi-s X e 7  Suppos el on the contrary , 3 

that a = 

In  addition, 
g ~ r  g2 

C L &lie s  tha t  there exist 

i ~ v i l u a t i n ~  f a t  e and using the regularity of  f , w e  ge t  for each 

i, ai = bit  as before. Thus, gl = g2 .. 

~gairi, evaluating f at e i n  (17), keeping i n  mind that 

this absurdity leads t o  the conclusion that Case I1 is impossible. 

Case 111. By Iheore. 2.15, there exist hl C R ,  g C f. and 
L 

a non-zero canstant A such #at o = A h + g 
1 f 1 1 

Likewise, by 

r = (k -k 1 + g2. Aou,  f r a  115). we have 1 2  



J . . 
4 8  - - - 

t (a. ) and (bi) be the sequences i n  8 corresponding t o  g, and 
L - - - -- - -  

g2 
respect ively.  W e  have already 

" 

: hl t 0 . pu. next t a sk  i s  t o  show 

: this,  take  

regu la r i ty  

x . € M+ . NOW using t h e  

of klI k2 ,-we obta in  

shown i n  Case 1. 

t h a t  kl-k2 is  

\ % 

that Al > 0 and 

non-negative. For 
C 

non-nagativity of -r and the  

-- 

Ihus, 0 5 kl(x) - k (x) = tk -k 1 (x) , whence k -k is non-negative, 
2 .  1 2  . 1 2  

non-negative (i .e.. x C M+) . Noting that x 6 M+ implies  t h a t  

that there e x i s t s  some such that 



kl (x) > k p )  . L e t  llxll = sup 1 xi 1 = b - . Therefore, -- -- the  sequegce 
i 

b - x is  non-negative. Since k -k - is non-negative, (kl-k2) (g - x) 1 2  

1 0. That is, 
0 

which shows tha t  k (x) 5 k2 ( x )  1 . This is a contradiction t o  our 

assumption. Thus, kl (x )  = k2 (x) f o r  a l l  x € M + . 
s 

Now, we accomplish our claim i n  the case when x € M is 

+ - arbi t rary .  We know t h a t  x = x - x and both x+ and x- are  

non-negative (Definition 2 . 1 9 ) .  Therefore, i n  the  l i g h t  of the  



This establishes o w  claim. 

C 

W e  now continue with Case 111. From (181, we have 

+ 
where A1 > 0, hl € R and gl, g2 € L . I n  order t o  get the required 

form, we wish t o  show tha t  g - 
1 - g2 

. For th i s  purpose, we employ 

- our usual technique. Then from (191, for each i , 
D 

i i i i 
0 = f ( e  I = A h  ( e l  + gl(e . )  - g 2 ( e )  = a - b  

5 
1 1  i i '  

- -  - - 

Hence a = b for each i whence i t  follows t h a t  g - 
i i 1 - g2 

Consequently, from (19) , 

where A > 0 and h h R+. The proof of Case 111 w i l l  be complete 
1 1 

i f  we determine the value of A 
1 - We proceed as follows. From (20) , ' 

1 = f ( e )  = A h  (el = A  l i m e  = A  -1 = 
1 1  1 1 Al 

D 

Now l e t  h be any non-negative regular l inear functional on M . Then - 



letting c = 1 = A and h = g in (201, we obtain 
1 1 -- - - -- -- - - - -- -- 

This evidently shows that the theorem holds in Case I11 also. 

Case IV, We intend to.demonstrate that this case is- A 

impossible, that is, and r cannot be chosen respectively as in 

Theorem 2.16 and Theorem 2.15. Thus, Theorem 2.26 holds vacuously in 

this case. Supposeton the contrary,that a and r have the 

representations given by Theorems 2 -16 and 2.15 respectively. Then it 

follows that o = (k -k ) + gl, where 
1 2  kl, k2 € I ? ,  g1 € L ,  and 

r = A h + g2, where A is a non-zero constant, hl € R ,  g2 € L . -  
1 1  1 . * . - 

Therefore, in view of (151, 
- - - - - - - - 

Let (ai) , (b  . ) be the sequences in 8, , corresponding to. g 
1 1' g2 

respectively. We have already shown, in Case I, that A1 > 0 and 

hl Z 0 .  Also, in Case II1,we showed that k = k2 . Thus, from 
1 



AS before, gl = g2 . Now f r o m  (22)  , we have 

+ 
where BI > 0 and hl F ?? . Evaluating f a t  e . we have A = 4 - - - 1 

T h i s  absurdity leads t o  the conclusion that  Case I V  is impossible. 

Thus the theorem is proved. 1 

I t  is  easy t o  see that  c ,  g and h are not unique i n  
L 

Theorem 2.26. 

From now on, we sha l l  be concerned mainly with the direct  

sum of two subspaces. We, therefore, s t a t e  the following definition. 

Definition 2.27. A l inear space X i s  called the direct  
- 

sum of two of i t s  subspaces M and N i f  - 

- -- - - -- --- - - 
where 0 i s  the zero vector. In t h i s  case, we write X = M @ N . 

+ 
We recal l  that  [Rl  and [ R  I  denote the l inear  hulls of 

?? and R+ respectively (Definition 1.17) . 



- - - - - - - - -- - *  - 

I t  i s  na tu ra l  t o  ask how M , [R] and 1 a r e  r e l a t e d  with 

one another. An answer i s  given i n  t h e  following theorem. 

* 
Theorem 2.28. M = [R]  3 I! . . 

Proof. W e  know (by t h e  e a r l i e r  remarks) t h a t  [ R l  and L ' 

are  subspaces of M* . Therefore, t o  prove the  required*asgert ion,  we 
- 

* 
f i r s t  show t h a t  M = [ R ]  + L . I t  su f f i ces  t o  show t h a t  

* 
To t h i s  end, l e t  f € M and l e t  f have t h e  representat ion 

given by Theorem 2.15. Then, the re  e x i s t  h C- R , g € 1 and a non- 

zero cons t in t  A such t h a t  f = ~h + g . obviously, Ah € [R]  . This 

shows t h a t  f € [ R l  + 1 , which l eads  t o  the  conclusion t h a t  - 

Now;- l e t  f be  given by Theorem 2.16. Then the re  e x i s t  ' 

k k E R and g ? such t h a t  f = k -k +g. Since k -k = 
1 ' 2  + 1 2  1 2  

l*kl+(- l )k2  € [RI , it follows t h a t  f € [R] + 1 , which shows t h a t  i n  

. . .- t h i s  case a l so ,  - 

Our next task is t o  ensure t h a t  ER] n f, = { e } ,  where 8 is  

the zero l i n e a r  funct ional .  O f  course, 8 f [R] I7 . The proof w i l l  



be complete i f  we  show that no continuous l i n e a r  func t iona l ,  o t h e r  than  

8 , i s  i n  both [ R I  and f . Assume the  cont ra ry .  Then t h e r e  e x i s t s  

a continuous l i n e a r  func t iona l  f such t h a t  f C [ R l  fI f and f # 8 . . 
Now, s i n c e  f C [I?] , t h e r e  e x i s t  f E R and s c a l a r s  a (1 I; j 5 n) 

j 

- 

such t h a t  f = a f + . . . + an fn  . Consequently, f o; each i C N , 1 1  

Again, s i n c e  f C f , t h e r e  e x i s t s  (ai) C el such t h a t  f ( x )  = 

Z aixi ,-- f o r  a l l  x C M . Since  f # 8 , we have a # 0 , f o r  
i=l 

.. i 
I 

some i . Then 

From (24) and (251, w e  a r r i v e  a t  a cont rad ic t ion .  Therefore,  w e  

conclude t h a t  no continuous l i n e a r  func t iona l ,  o t h e r  than 8 , belongs 

t o  ER] n f . Hence, [ R ]  fI f = (8)  and t h e  proof is complete. 
- - - -  -- 

The following lemraa establishes a relatG5ii b e t w e ~ I ~ ~ a f i d  



55 
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Proof. We need only show t h a t  IR] c IR'I. consider - 

f € [R]. Then f = a f + . . . + a f , where f . C R and ai scalars.  
1 1  n n 1 

1 5  i 5 . n .  But .  b y v i r t u e  of Theorem 2.26. fo reach  f i  (1 j i  5 n). 

there e x i s t  g h. 6 R+ and a r ea l  number c such tha t  
i' 1 i 

f . = cigi + ( 1-ci) hi . Consequently, 
1 

+ a c g +an (l-cn) hnr 
n n n  

+ 
where gi . h . C R ( 1 5 i 5 n . This exhibits  t ha t  C [R+] , 'and 

1 
- -- 

we are done. 

The following theorem gives a stronger r e su l t  &an 

Theorem 2.28. . 

Theorem 2.30. M* = [R+] '3 L . 
k 

Proof. The proof is  an+immediate consequence of Theorem 

2.28 and the preceding lemma. - 
- 

W e  conclude this chapter w i t h  a_hrie•’ discUSS.i-on of the 

structure of a continuous l inear  functional on M . -This discussion 

k takes the  form of the following theorem, 



Theorem 2.31. Every continuous l i n e a r  funct ional  on M 

can be wr i t t en  a s  a l i n e a r  combination of a t ,mos t  two non-negative 

regular  l i n e a r  f&ct ionals  and an 4 -multiplier.  
1 

*& 
Proof. Let f € M* . Then i n  view of Theorem 2.30, - 

the re  e x i s t  . f € R+ , s c a l a r s  A. (1 5 i 5 n) and g C L such 
i 1 

where each A .  # 0 . The following cases can a r i s e :  - 1. 

Case I. A .  > 0 f o r  each i . 
1 

Case 11. A .  < 0 f o r  each i . 
1 

Case 111. A < O and Xi > 0 f o r  some 
i 
1 2 

i and i 
.1 2 - 

? 
I n  Case I, the  expression X f + ... + A f 'can be 

1 1  n n 

where 



'Moreover, o € R+ due t o  t h e  fo+lowing reason. o i s  a continuous 

l i n e a r  funct ional  a s  it i s  a f i n i t e  l i n e a r  combination of continuous 

l i n e a r  funct iknals .  ~ l s o ,  s ince  a l l  Xi and a l l  f i  a r e  pos i t ive ,  
- .  

it follows t h a t  o C N . kzrthermore, f o r  x 6 c , 

Thus, 

where o 6 R+ and g C L . 

I n  Case 11, t h e  expression A f + A f + ... + A f can 
1 1  2 2 n n 

be replaced by 

where 



+ ' 
W e  now show t h a t  T € ?? . Clearly,  r C M* . ~ l s o .  T 0 - -- - - -- - - 

X 
because - j is p o s i t i v e  f o r e a c h  j (j = 1,2 ,  ..,.,n) and f ? O  

n i 

i 
-' f o r  each i (i = 1,2 , . . . ,n ) .  Furthermore, reasoning a s  i n  Case I,  

w e  can show that r is  regular .  ~ e n c e  r h R+ . Thus. 
_ _ I  - 

. . 

where r C R+ and 'g h L . 
i 

Final ly ,  i n  Case 111, without l o s s  of genera l i ty ,  we can 

assume t h a t  A > 0 f o r  i = 1.2, . . . ,p  and A < 0 f o r  

i = p+l,  p+2, ..., n . Then the  expression (1 f + ... +A nfn) = 
1 1  

( A f  + ... 
1 1  + A f 1 + (ap+lfp+l + . . . + X f ) can be replaced. by 

P P n n 

where 

and 



As be fo re ,  kl I  k2 C R+ -. Thus, 

+ 
where kl, k2 € R .  and g f L . 

r 

From t h e  above d iscuss ion ,  i t - i s e v i d e n t  t h a t  i n  

r ep re sen t ing  .. f i n  Theorem 2.30, the number o f  l i n e a r  func t iona l s  

from* R+ need no t  exceed two, as a s s e r t e d .  - 



-- 
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EMS!E%CE THEOREMS 

J 

I n  t h e  last chapter ,  t h e  ex i s t ence  of a continuous and r egu la r  

l i n e a r  func t iona l  -r ' an hf was requi red  i n  Theorem 2.16. I n  this 
\ 

chapter,  we prove the ex i s t ence  of Hch a T , us ing  the ~ahn-~anajl 
- -  -- -- 

' extens ion  theorem. I n  fact, t he  p r e s e n t  chapter is  devoted t o  a 

sys temat ic  study of t h e  ex i s t ence  of va r ious  t"ypes of l i n e a r  func t iona ls ,  

* 
on and f i n a l l y ,  of  Banach l i m i t s .  

4 

'Our f irst  theorem, shows that R+ # $. 

Theorem 3.1. &ere exists a l i n e a r  func t iona l  on which 

is continuous,  r egu la r  and ncn-negative, i . e . , R+ # $. 

- - - - - - - - -  

Before t u rn ing  t o  t h e  proof of the-above theorem, w e  need a few 

prel iminary lemmas. 

I+enrrma 3.2. Let f be any linear func t iona l  on M such that 

f ( x )  5 l i m  sup x f o r  a l l  x 6 !+[ . Then 
n 

- L a -  

P r o o f .  Since f fx2 ; 5 lim sup 

l im sup x . 
n 

-x, -do have f ( - X I  5 -% s-22 -x 1 . Therefore ,  -f (-%I 1 - l h  sap C-x ) , 
D R 

which yie lds ,  f fx) r - Z h  sug 4-x = fin inf x , w h i c h  is &at w e  
n , n 

wished to '  show. 



- -  t T F F a  linear functional on M . Then f € U+ 
L 

if, and only i f ,  + 

a 

I*)  for a l l  x f M, lim inf x 5 f (x )  5 lim sup x . 
n n 

&?roof. Suppose that f satisfies (* ) .  We w i s h  to prove that  

+ -  - -  - -- - - 

f f . It suffices to shov that f i s  non-negative and regular. To 

- 
#is end, mnsider x 6 M such that x 3 0.  Then lim i n f  x 1 0  . 

n 

Haw, let  x 'be a convergent 

l i m  SUP x - Again, in v i e w  
n 

+ To prove the reverse 

t h a t  f is non-negative ax3 

* 
sequence. Then lim i n f  x '  = n 

of ( * I ,  f ( & J  = lim X, wkence 

h p l i c a t i o n  , w e  observe that  

regular ." We wish to prove (*) . 3 9 6 r k s u l t  

i s t r i v i a l l y  true, in -ca~e- -x  isP&mnvergent-eL - k t - x C ~ h p - -  - - - 

arbitrary. Then since x is  bounded, w e  can choose coqvergent sequences 

y and z in !d such that p. C x C z and such that l i m ~  = 1 b  i n f  x , 
n 

lim z = lim sup x . To acco~pfish this, l e t  
n 

. d 

Then\ y .  5 xk for  k z i and zi f for k L i ,  where i .=  1,2,3,.,. . 
1 

Wis implies that pi 2 x .  4 z for all i . That is, y 5 x 5 z .  By 
1 i 



- - - - -  

- the  d e f i n i t i o n  of l i m  i n f  and l i r n  sup,we have a t  (y. l a n d  (z. 1 
1 1, 

converge and therefore,  f i m  y = l i r n  i n f  x , l i m  z = l i r a  sup x . 
n n 

9 

Y 
- 

Now y 5 x hip e s  t h a t  x - y 2 0 . A l s o ,  s ince  f is non- 

negative, f(x-y) 1 0, whence f ( x )  1 f ( y )  , which shows t h a t  f is 

monotone. But f regular  implies  t h a t  f ( y )  = l im y . Hence, 

- - A 

-- A 

l i m  inf x = l i m  y = f iyF f (x)  . n (1) 

A similar argument reveals  t h a t  

The required r e s u l t  now follows from (2) . This completes the  

proof of wma 3.3. 

'r, Proof. (Of The0rern~3.1). By v i r t u e  of Lemmas 3.2 and 3.3, w e ,  

have, f o r  any linear funct ional  f on , 
R" 

. .  - 0 

We shall show that there  is a l i n e a r  funct ional  f on M s a t i s f y i n g  
C 

a - the pr-rty Q X L _ t h e l e f ~ * a f a f a f c 3 4 - - - ~ ~  ~ I - L S  c ,%l , 

funct ional  f on M , 3 



Now p 
-- 

lim sup (x + y ) 5 l i m  sup x 4- l i r n  sup y = p (x) -+ p ( y )  . 
- n n n n 

f o r  a 2 0 and x f M I  p(ax) = l i m  sup (ax ) = o l i r n  sup x =e(x). 
n n 

1 
Now le t  8 = l i m n .  c -t R where c is the  subspace of M of a l l  

B 

convergent sequences. It is  easy t o  see t h a t  8 is a l i n e a r  funct ional  

on w- Furthermore, 8 (x) 5 p (x) on c . [In f a c t ,  E (x) = p (x) on c]  . 

p. 121),  there  e x i s t s  a l i n e a r  extension g of E t o  M such t h a t  
- 

+ 
g(x) 5 p(x) on M . I t  now follows from (4) t h a t  g € R . Hence the  

- --- 

theorem. 
- 

2 

Theorem 3.4. There e x i s t s  a l i n e a r  funct ional  on M which is 

continuous and regular  but  not  non-negative. 

Proof. L e t  f : M -t It1 such t h a t  f = 29-h, where g , h € R+ . 
WeclaFm t h a t  f %spa continuous an3  regular  I'lnear functl%narCW-M .-- 
That f is continuous follows from the  f a c t  t h a t  M* i s  a l i n e a r  space. 

Now take * x  € c .  The regu la r i ty  of g and h y ie lds  t h a t  

f ( x )  = 2g(x) - h(x)  = 2 l i m  x - l i m  x = l i m  x . This means t h a t  f i s  

a l s o  regular .  

O u r  next t a s k  is t o  f i n d  g,  h € R+ so  that f = 29-h is not 

non-negative. To t h i s  end, w e  def ine  el,. O 2  : M -t M a s  follows: 



r: - - 64 

Then f o r  x, y C h! andjfor  any s c a l a r s  a ,  B , 
- - - - - - - 

It follows t h a t  el i s  a l i n e a r  operator  on M . Similar ly,  it can be 

shown t h a t  e2 i s - a  l i n e a r  operator  on M . 'Now we intend t o  prove 

t h a t  el anT O2 arepbbunded. F o r  this l e t  x f M beparbi trary . 
Then 

= sup Ixi l 
i = l ,3s5 , . . .  

, 



6 5 

A similar argument reveals  t h a t  lle2(x1 11 5 l0llxll, which i s  what w e  wished 
- - -- - -- - 

* t o  show. 

Now let  a be a continuous, regular  and non-negative l i n e a r  -- 

funct ional  on M , t h e  existence of which is  assured by Theorem 3.1. 

Define g on M a s  follows : 

Then c l e a r l y ,  g : M + RI . Also, f o r  x, y f M and f o r  any s c a l a r s  

a ,  B , w e  have 

we check the  non-negatzvity of 

using t h e  non-negative property 

funct ional  on M . Moreover, g is  
- - 

of - two continuous functions. Next, 
- 

g . We consider any x € M' -. Then 

of a , w e  obta in  



which reveals  t h a t  g is non-negative': Now i n  order  t o  v e r i f y  the 

regu la r i ty  of g , w e  consider any sequence x € c . W e  note that 

l i m  B1 (XI = l in  6 (xf = f ite x . Then using the regt&arity-of - CI w e -  -- - - 
2 

have 

w. + 
Thus we have shown that  g C R - In  a s imi lar  •’ashion, w e  can show 

- - - - - - -  -- - 
- 

t h a t  i f  T is  a continuous, regular  and non-negative l i n e a r  funct ional  

on M . then h = r o 0 € R+ . It has already been es tabl i shed ( i n  
2 

the  beginning of the proof) that g, h t R+ implies t h a t  f = 29-h 

is a continuous and regular  l i n e a r  funct ional  on M . Now w e  wish t o  

prove that f is n o t  non-negative. To do t h i s ,  l e t  us consider 

the bounded s,epuence (0,1,0,1, ... 1 ,  which is evidently non-negative. 

Then using the regu la r i ty  of a and T, we g e t  

- - -  

FTXJ = [zs-m w = ~grx)-h(x) =TO . el(x)7 - r a 0, ( x i  



This proves t h a t  f is ~ Q L  rr~rr-negatLve, and the thewem follows, 

Theorem 3.5. There e x i s l  a l i n e a r  funct ional  on M which is  

mtiriucxs & soff-nqati-~e h t  m e  recphr. 

Proof. L e t  us consider the  function f : M + R' defined 

as follows: 

1 Since the sequence (T) C t1 , f f t (Defini t ion 2 .7) .  Hence f is a 
i 

linear funct ional  on hi t h a t  i s  continuous bu t  not  regular  (Theorem 2.6) .  

It remains to show t h a t  f is nun-negative. To do this, consider 

since 

- 
such t h a t  x 2 0 . Then 

n x 
i C - 3 0 for all n . This completes t h e  proof* 

i=l i 



Theorem 3 . 6 .  There exists a  l i n e a r  func t iona l  on M which - 
- - - - 

is continuous,  b u t  is n e i t h e r  r e g u l a r  nor non-qegative. 

Proof.  By v i r t u e  o f  Theorem 3.1, t h e r e  exists a l i n e a r  

func t iona l  g on $4 t h a t  i s  continuous,  r egu la r  and non-negative. 

Define 

Then f is a continuous l i n e a r  func t iona l  on M ( s ince  M *  i s  a l i n e a r  

space). I t  i s  no t  hard to see t h a t  f is n e i t h e r  r egu la r  nor  non-negative. 

Theorem 3 . 7 .  There exists - no l i n e a r  func t iona l  on M which is  

regular and non-negative bu t  no t  continuous. 

Roof. A non-negative l i n e a r  func t iona l  on f4 is  continuous 

(Theorem 2.13) . 

The proof of the fol lowing theorem is q u i t e  lengthy and involves  

vec tdr  space terminology. f l u s ,  sequences i n  M w i l l w c a s i o n a l l y  be 

called vectors. F'urther~mure, a l l  bases a r e  H a m e l  bases .  

T h e o r e m  3 . 8 .  mere exists a l i n e a r  func t iona l  on M which is 

regular but i s  neither continuous nor  non-negative. 

P roof .  Let c = C A be a basis for c and 
1 L b  s 

m = !baj9 C 4 ' ;  be a basis f o r  M . We can assume t h a t  h c A '  and 
1 

- 1 m , because, we caa a lways  exte& a b a s i s  fur c to a basis f o r  -1 1 

* b u ,v . we nc . sa l i ze  the basis vec to r s  as fol lows.  L e t  ba = - and 
I! bc, / ! 



' C a 
C =-  L e t  m'  = ~ b i l a  f and c '  = { c d a  € A], W e  claim t h a t  " Pa l l  - 

m' - c '  i s  an i n f i n i t e  s e t .  

Assume, on the  contrary,  t h a t  m' - c '  i s  a f i n i t e  s e t .  Then 

the re  e x i s t  n - 1 l i n e a r l y  independent vectors  x ,x  ,... ,x  
1 2  

such 
n-1 

t h a t  m' - c' = {x1,x2,.. . , X  1 ,  whence m' = c' U {x1,x2.. . . , X  1 i s  
n-1 n-1 

a b a s i s  f o r  M . Wviously,  dim [xlIx2, .... x I = n - 1. where 
n-1 

[x1,x2,...,x I i s  the l i n e a r  span of x .x ...., x 
n- 1 1 2  n-1 

W e  first f ind  vectors  ( these  a re  sequences, of course) 

1 2  n 
y ,y  ,...,y i n  M such that they a r e  l i n e a r l y  independent and s o  

that no l i n e a r  combination of them is  convergent, except the  t r i v i a l  

one ( i -e . ,  when a l l  scalars a r e  zero), as follows. For j = 1,2 ,  ..., n , 
define 

\ 1, f o r  i = (n+l) k + j, where k = 0,1,2 ,...; 

Now,for any s c a l a r s  .A J = l ,2 , . . . ,nI  
j' 

1 2  n 
so t h a t  the sequences y ,y ,...,y evidently f u l f i l  our requirements. t 



for each there exist  scalars 6 , a ' E A  and 
j a 

1 , 2 ,  ..., n-1 such that 

where the f i r s t  sum i s  f in i t e ,  Equivalently, 

h 
* 

r %.hat is, 



n- 1 n y n - c  = C X X .  
n i  i 

i=l 

J Note t h a t  each yJ - c C [xl, . . . , x I . 
n-1 

1 1 2 2  n n 
Next,we intend t o  prove t h a t  the vectors y -c ,y -c ,...,y -c 

a r e  l i n e a r l y  independent. To do t h i s ,  consider 

1 1  n n - 
A1(y -C ) + ... + A (y  -c ) = 0 , where 

'j (' = 
1121...,n) are sca la r s .  

n 

T h i s  y ie lds  

1 2  n 
B u t  s ince  c , c , ..., c a r e  a l l  convergent sequences, s o  is  

- 1 2 n X c + A2c + ... + X c . Hence the  l e f t  hand's ide i s  a l s o  convergent. 
1 n 

I t  follows, by t h e  property of the yj 's, t h a t  X i  = 0 f o r  
.J 

j = 2 ,  n .  Thus, we have been able  t o  f ind  a l i n e a r l y  independent 

which is a spaFe of dimension n-1. This i s  a contradict ion and so  - -- - ---- - - -  - ---- - 

I t  
m -c is an i n f i n i t e  set. 
- -- - - - - 

Now let. Cb' ,b: ,.. . , b f  , . . .) be a countably i n f i n i t e '  subset  of 
a a 
1 2 %  

a - n 

1 8  
m -c . W e  note that f o r  each x € M , there e x i s t  unique s c a l a r s  



such that x = C X b 1  , where 
a€8' a a . 

f i n i t e l y  many Aa # 0. Define f on M a s  follows: 

where 

limb: i f  b' € c 1  , 
a 
I t 

1 if bi € m -c and a f a 
i '  ,' 

i f  a = a  
i '  

- 
We wish t o  prove t h a t  f i s  a l i n e a r  funct ional  on M , f i s  regular ,  

f is not  continuous and f is not  non-negative, 
- 

- I 1 
~ b v i o u s l y ,  f : M + R ~  [s ince f rom.(5) ,  4 : rn -+ R 1 .  To ver i fy  

the l i n e a r i t y  of f , consider x ,  y € M . Then the re  e x i s t  ,unique -- 

s c a l a r s  A , 6  (a € 8 ' )  such t h a t  x =  L A b 1  and y = Z 
a a 

a € ~ '  a a 
a € ~ '  

bi 
- 

where a t  mos t  f i n i t e l y  many A and # 0 . Now i f  6 and y a r e  * 
a 

any sca la r s ,  then using (5) we have 



which evidently shows t h a t  f is  a f i n e a r  funct ional  on M . 

Next wr! show t h a t  f is  regular .  For t h i s ,  we  consider any 

x C c .  Then there  exist unique s c a l a r s  X a € A such t h a t  
a 

x = L X ci . Then keeping i n  mind t h a t  only f i n i t e l y  many X a  # 0 , 
a €A a 

\ 

we have 

,- - .  

Our next task  is  t o  show that 'f is  not continuous. W= consider 

. f(b' 1. i = 1.2.3 .... . Using (5) we have 
a, 



b 
Since i -+ = , w e  cannot find a 

. 
? 

C 2 4  
I *, 
real number M such that - i; 

- - -  t -- 
* 

Hence f is n o t  cont inuous .  Fur the r -  

m o r e , i t  f o l l o w s  from Theorem *2.13 t h a t  f is n o t  non-negative. This 
1 

completes  t h e  proof.. 

Theorem 3 . 9 .  m e r e  exists - no  l i n e a r ' f u n c t i o n a l  on M which 5 

0 0 

i s  non-negative b u t  i s  n e i t h e r  con t inuous  nor  r e g u l a r -  
- --- - 

Proof .  Ever-  nun-negative l i n e a r  f u n c t i o n a l  on M is cont inuous  

(Theorem 2.13) . 

Theorem 3.10. There exists a l i n e a r  f u n c t i o n a l  on M which is 

n e i t h e r  con t inuous ,  nor regular, nor non-negative. 

Proof. I n  view of  Theorem 3 . 8 ,  *ere exists a l i n e a r  f u n c t i o n a l  

h on hf that i s  r e g u l a r  b u t  is n e i t h e r  cont inuous  nor  non-negative. 
. I  

W e  observe the follctr*ing: 

(i) f is n o t  con t inuous ,  f o r  i f  it w e r e ,  t h e n  so would k 
' 5  

X lim x # l h  x ( s i n c e ,  A # 1). 



f i i i l  f is not  --negative, since h not non-negative implies ,, 
that there exists  a ncnr-negative sequence y in M such 

7 

W s  proves our assertion and the theorem follows. 
- 

Thus, it is evident from the above discksion that we have 

functional on bC . me rea&r may f ind them smmarized in Table I. 
r 

a 

indicates the absenoe oi the -. 
- .  



In the next few pages of this chapter ,  w e  shal l  be concerned 
- - - -- 

u 
mainly with the existence of a Banach limit on M . We ,therefore, state 
the •’0 1 l6wing d e f i n i t i o n .  

Definition 3.11. A Banach limit i s  any l i n e a r  funct ional  L 
? .  

&fined on 1'A such that 

k 

L(x) = L(ox) w h e r e  G denotes &e s h i f t  

I t  i s  evident t h a t  L is mn-negative and hence continuous 

(Theorem 2.13) . Now we state an important property possessed by a 

W& Gait. The proof can be found in [ 1 I ,  p.  64. 

l i z e  i n f  x C L ( x f  5 fh sup x for a11 x C M . 
n n 

t 

E 

useful corollary. 

Corollary 
- 

3.13. L C l? . 

M , Moreover, it is shift-invariant 



Our 

l imit .  The . 
next venture is t o  demonstrate the existence of a Banach 

existence of continuous, regular and non-negative linear 

on has already been ensured by Theorem 3.1. We note 

that not all members of R+ &e shift-invariant, e .g . ,  the functional 

g of Tfieorem 3.4, W e  now wish t o  exhibit that some such linear 

accomplishes the desired purpose. 

s i s  a linear operator. 
- -- - - - -  -- - - - -- -- 

s is non-negative. 

x -t C =. sTxf -t t . 
3 

+ 
f C ? ? + 3 f _ . S C R  . 



\ 
\ X +X +.* .+X 

RWce 1 
n 

n/ 5 5 far ail n f N . mis tha t  the 

( i i l  Let  X, y M and a,  6 any scalars.. Then 

and we are done. 



5 sup 
n 

fiv) The sequence farmed by the arithmetic mans of a non- 

n e g a t i v e  sequence w i l l  also be non-negative. 

,Z ,z ,... ) is any sequence (v) W e  first show t h a t  if z = (zl 

of real numbers such that z converges to 0 , then so does the 

given any E > 0 , there exists N E N (where N is the  set  of 
- - - L  - -- 

natural numbers) such that 

t ~f we let x = -(!zl/,!z2! ,... <lz 
f 



(N1-1) MI E 

Choose N € N , such that for n 3 N < - 
2 2 '  n .  2 - This impl i e s  

(N1-1) M (N1-11 MI 
1 -< E 

t ha t  - < - 
n 2 .  3 1' 2 Now Let N = max(N N 1 .  Then (7) 

N2 

* . conclusion.  

N a w  we show tha t  l i m  x = -8 # O = l i m  s(x )  = C . Since x 

converges to' 8 , x-C converges t o  0, i .e. ,  x -4  -+ 0 as n + - ,  
n 

and hence 1 x -8 I -+ 0 as n + , i . e . , l i m  1 xn-8 I = 0 . Therefore, 
n 

n + =  

by what w e  have just-naw s h m .  the sequence r = Lm), where 

which shows that s f x )  + 4 . 



Moreover, canposition of two l i n e a r  transformations is a l i n e a r  

t r a n s f ~ r m a t i o n ~ w h e n c e  it follows' tha t  f o s is  a linear funct ional  
. 

on.  . I n  addit ion,  f o s i s  continuous (s ince  it is  the 

c ~ s i t i o n  of two continuous mappings). That f o s i s  non-negative 

i s  a%ivial consequence of  the f a c t s  t h a t  f and s are both lion- 
4 

five 
b 

X e x L w - s k x  kbak f o s is regular- LeL x € c b e s u d - - - -  -- 

t h a t  - lim x = 8 . Then using ghe regu la r i ty  of f and r e s u l t  (v), 

we g e t  

which shovs t h a t  f 0 s i s  regular and hence f 0 s C R+. 

C v i i  That f * S -&Ga--i~tt0tt~;,-zeq3la~ zknc%t~~~--~e~atWe I!- 
l i n e q r  funct ional  on dr( has already been establ ishe? in  (v i )  . It 

remains to show that f 0 s is sh i f t - invar ian t  (Defini t ion 3 . l l f .  I t  4 

s u f f i c e s  t o  show t h a t ,  f o s ( x )  = f 0 s ( a x ) ,  where a denotes 

the  shift ox = U ~ ( ~ , X ~ , X ~ , . . . )  = (x2,x3, ... ) . .  Equivalently,  i; 

suff ices t o  show that f o s (x-ox) = 0, Now 



N o t e  

0 .  

that limfx -x 
1 2 '  

It now follows 

X -X . X -X  X -X 
1 3  1 4  

A 

- -I n+l 
2 3 ' " ' I  n I . . . f exists and is 

that  f o s is a Banach limit. 
- 

In the light of the above discussi~, we ran say that there 

exist shift-invariant mezhrs of R+ . &ivalently. there exist  
- - 

linear functionals on M which are continuous, regular, non-negative 

and shift-invariant. This ensures the existence of Banach limits on' M .  



* 
I n  Chapter 2 ,  it was d e m n s t r a t e d  t h a t  M is t h e  direct sum 

* 
M , the number of l i n e a r  func t iona l s  from R+ need no t  exceed t w o .  

In  this chapter ,  w e  g ive  another cha rac t e r i za t ion  of continuous l i n e a r  

func t iona l s  on M i n  terms of ' charges ' ,  t h e  

mainly t o  P . L. Rosenbloom [ 5 I . 
concept of which is due 

4 r  

W e  begin 03 -discussion w i =  t h e - l o I r & i n g  d e f Z i t i o n .  

Def in i t i on  4.1. L e t  zN be the c l a s s  o f  a l l  subse t s  o f  N ,-d 

w & r e  N is  t h e  set of a l l  n a t u r a l  numbers. Then a charge on zN is  

a funct ion u : zN + RI such t h a t  it s a t i s f i e s  t h e  following 

p o s t u l a t e s  : 



f o r  a l l  A 6 zN . 

The pos tu la te  (i) i s  a l s o  ca l l ed  f i n i t e  a d d i t i v i t y  of p *. 
Thus, a charge is a real-valued f i n i t e l y  addi t ive  and bounded set 

As an immediate consQuence of (i), we have 

Furthermore, proceeding induct ively,  one can extend (i) i n  Defini t ion 

4 . 1  t o ' g i v e  the  r e s u l t  that for any f i n i t e  d i s j o i n t  sequence 

Now we give a couple of examples of a charge. 

Example 1. Consider a = (ai) 6 el . Then t h e  f w c t i o n  

2N + It1 , defined by 

is  a charge on zN . 



Moreover, 
- 

Before w e  proceed t o  the next example, w e  introduce the 
. 

concept of the characteriskic function of a s&set of N . 

', 

0 otherwise . 

is called the characteristic function of the set A , 
, * 

-serve that has the following prkiperties: 

(al xA is a sequence of 0's and 1's. . 



- - -- -. - 

xA 1 0 , f o r  all A c 

X~ 
c P, f o r  all A c 

di 's joint  subse t s  .of, N. , , If A and 

then x AUB 

B are two 

- - XA +.XB '- 

A = $ , i n  which case  
# 

except  when 

Examp le 2. Let f C M* . & f i n e  p : 2* -+ R 1 as follows: 

N 
LICA) = f(xA) . for all A t 2 , 
- - - - - - -  - 

where 
A 

is  the characteristic fmction of A . Then is e a r g e  
t 1 

c zN such Proof. - . ~ e <  that  

- ---- 

Since f is bounded, 



,. - -- 

Thus, 11 is a charge on - zN . 
P 

The following theorem is analogous to a Jordan decomposition 
r 

- thgorem for signed F s x e s .  

* 

Theorem 4.3. Each charge p on 2N hasq a decomposition * 
s 

- into the difference of two non-negative chprges so that - - A - 

' +  
where u 

* 

N and are defined on 2N as follows. For each A F 2 , 

+ 
Proof. We sfiaU first show that p is a non-negative 

+ charge on 2N . Obviously, u (4) = 0% Consepuently, II is a non- 

+ 
negative set function. Wt u_  is bounded,is a trivial consequence 

+ of the fact that is bunded. It r d n s  to shw that p is 

N f initely additive. l o  this end, let A A C 2 such that A fl A2 = $. 
I* 2 1 



* .* . 
-- - 

For th i s .  we consider any B-c A1 U A2 such that B C 2N. clearly , .  ' ( 
2 

(B fl A,) fl (B n A,) ' 4.  Then by the f in i t e  additivity 

have + 

Since %he above inequality holds fer ewry 3 C A; U A , we get 2 P 

Now, t o  prove the reverse inequality, observe that 

+ 
p (A ) , n = I, 2, i s  always f i n i t e  . Therefore, given- & > 0, there 

n -  - 
- - - - -  -- - 

ex i s t s  for n = 1 ,2 ,  a s e t  B c A such that 
n n 

Note t ha t  B1 fl B2 = 4 (since A n A2 = + I .  Consequently, 
I I 



1 

Thus,- -(2?p= beenyrovedand rtpfollows t h a t  P ' i s  a non-negative 
1* 

- 
Next, w e  consider u . Clearly, p ($1 = 0, whence 

N N 
-p- (A) = i n f  f u (B) I B  c & € 2 1 5 0 for every A € 2 . Consequently, 
- 

p i s  a non-negative set function. rMoreover, proceed* ' 2 

+ N t o  s h o w  that p (A) = IJ. (Af - v-(A) for every A € 2 . To ttMs end, 

l e t  B c A be arbitrary. Then, by the  f i n i t e  a d d i t i v i t y  of p , we 

have 

Since p i s  bounded, p(A - B) i s  finite. Therefore, 



'C 
,' 

- 

- - - - -  - - -- -- - -- - - 

because of the f a c t s  tha t  p (A - Bl 1 in f fv(E)  I E  c A}  and 

~r (A  - B) 5 s u p h  (E) I E  c A } .  

a l l  B c A, w e  have 

B+ (A) 

Since 

v t A )  

t h e  above i n e q u a l i t i e s  are true f o r  

/ 

and 

- + 
-lJ CAI ? p(A)  - ( A ) .  

+ 
Now as A , - A and p (A) a r e  f i n i t e  , we can transpose; i n  t k s e  

1 

i n e q u a l i t i e s  and g e t  

- +-- 
5 !J (A) - 

- 
of Theorem This completes t h e  proof 

Def in i t i on  4.4 .  func t ion  such that 

W e  c l a i m  that the charges can be used t o  r ep re sen t  members 

this end, we wish t o  int roduce the  no t ion  of  the i n t e g r a l  



of  a bounded sequence with respect t o  a charge p . This involves  

the concept o f  a p a r t i t i o n .  

Def in i t i on  4.5. By  a p a r t i t i o n  of  N w e  mean a f i n i t e  
4 

c o l l e c t i o n  E l  . . . E of non-empty subse t s  of  N such t h a t  
n 

(i) E.  fl E = 4 , f o r  
1 j 

~ e f i n i t i o n  4.6. Let  ' T  = (E1,E2.. . . .E ) 
1 m 

n = (F1,F2,...,F be two p a r t i t i o n s  of  N . Then 
2 n 

refinement of n i f  each F i s  a subse t  of  some 
1 j 

and 

n i s  c a l l e d  a 
2 

E 
k * W e  s h a l l  

Note t h a t  the r e l a t i o n  o f  refinement g i v e s  a p a r t i a l  o rder ing  

of p a r t i t i o n s  and every p a i r  of  p a r t i t i o n s  'has an upper abound, e . g., 

the "superposi t ion" o f  two p a r t i t i o n s ,  where by superpos i t ion  we mean 

a refinement of the two p a r t i t i o n s  cons i s t i ng  of  a l l  non-empty sets of 

- t h e  form E .  n F where E € n (1 I- i 5 m) and F 
1 j ' i 1 j € 3  

sequence of r e a l  nunbers wi th  r e s p e c t  t o  a charge p on 2N . 



- - -- - 
--- 

Definition 4.7 .  Let x 4 -  Let p be a charge 

W e  say tha t  the intdgral  of x with respect to  the charge it is 8 

(where 8 is a real  nunber, of course) and write I x  dp = 8 , if , 

for every E 

fi) 

(ii) 

> 0, there e x i s t s  sans parti t ion n of N such t h a t  i f  

(5' ,P . 1 is any refinement o f  a and 
f 2" m 

then 

For a proof of the existence of the integral ,  see, e.g., 

Taylor [ 7 1, p. 402. 

Definition 4 .8 .  For a sequence x C M , - w e  define 

*ere e i s  the sequence (l,l, 1, . . . ) . 



?i terns ~f the charges o~ 

C 

%neorem 4 . 3 .  Let f f !'! . T - L ~ ~  there exist_s z charge j 



where - is the characteristic f u n c t i o n  of A . It was already 
L~ 

shwm in E & I ~  2 that is a charge on zN . 
- 

Hext, w e  h t e n d  to prove tbt  f (XI = fxdv , for all x C M . 

and f M , there e x i s t  z z r : s t ~ ~ ~ t s  B and k such that  

Let z > 9. Subdivide +A i n t e r v a l  i -B,  B] i n t o  n equal sub- 

- 
5 

i n t e m a l s ,  each of w i d 5  h 7 , by t a k i n g  equally spaced points 
.C 

-B, -3+h, -8+Zh,-- a - - , -B+(n-If 5, -B+rh f=B) . Then clearly, nh = 2B. 

that +Je subintervals are d i s j o i n t .  Now, d e f i n e  

men 7 = ( E ~ , E  2 , . .  -.E 1 is a ?ar4Atio~ of N . L e t  1 = (P1.P 2,.... F ) 
2 1 m 



hence to the same Es i ;  t h i s  implies t h a t  x and x l i e  i n  the 
, j t. 

same subinterval I . Also, note t3at  if y = Z x 'i( , then  
s 

i=l ti Fi 

'j = 
where j L: F . Tnerefore, for each j f H, 

ti i 

whence 

!!x-yi! 

i--- 
-&nee, in view of the above observ 

have 0 -9 

a t i o n s  and  the lin 
--. 

earity of f , we 



This completes the proof. 

Theorem 4.10 .- L e t  u be a charge on 2N . Then the function 

f , defined on M by 

for  a 

Proof. Obviouslyrf : M+R'. t x,  y C M  and A any * - 
scalar. Then using the standard properties of the integral ,  we have -- 

f (Ax) = jhxdp = A$xdp = Af (x) ; 

t h i s  shows that  f is a l inear functional on M . 
1 -  

t - 

I t  remains t o  show that f i s  bounded o n  hf . For th is ,  l e t  

x E M . Then i n  view of the standard properties of the integral ,  we * 

have 



* 
Consequently, f C M , a s  requi red .  

- Thus, we have shown t h a t  each charge p d e f i n e s  an f C M* - -- 

by the  formula f ( x )  = $xdv , x C M . On t h e  o t h e r  hand, i f  we s t a r t  
* 

with  f C M and d e f i n e  p by t h e  formula p (dl = f (xA) ,  A C 2N , 

then  I.I is a charge and f (XI = I x d ~ ,  x € M . 

\ f 
W e  now reach t h e  c e n t r e  of our  d i scuss ion .  W e  know t h a t  t h e  

members of  R+ and L played a s i g n i f i c a n t  r o l e  i n  t he  c h a r a c t e r i z a t i o n  

of continuous l i n e a r  func t iona l s  on M i n  Chapter 2. I t  is  now n a t u r a l  

t o  ask whether p r o p e r t i e s  of  a charge can be determined which a r e  
-- - 

necessary and s u f f i c i e n t  t o  c a u s e  t h e  l i n e a r  func t iona l  f (x)  = jxdp 

t o  l i e  i n  R+ o r  i n  1 . The answers a r e  given i n  Theorems 4.12 and 

N Theorem4.11. Let  ~ 3 0 ,  i - e . ,  v ( A )  2 0  f o r  a l l  A € 2 . 
Then f f bf and conversely.  

Proof.  By v i r t u e  o f  Theorem 4.10, t h e  func t ion  f def ined 

on M by f (x) = $xdp, f o r  a l l  x C M , is  i n  M* . I t  remains t o  

show t h a t  f i s  non-negative. To t h i s  end, l e t  x C M' . Then using 

proper ty  (iii) of  t h e  i n t e g r a l s ,  and the  non-negativity of  x and P , 

we have 



Hence, f € !-f , a s  required.- 

Conversely, let  f C h . Consider any A C 2N . Then using -: 
t h e  f a c t s  t h a t  x € M+ and f i s  non-negative, w e  have 

A 

This completes t h e  proof.  

Theorem 4.12. Let p 5 0, p(N) = 1' and p(F) = 0 '  f o r  a l l  

f i n i t e  F c N . Then t h e  funct ion f defined on M by f (x) = lxdp 
> 

i s  i n  R+ . Conversely, i f  f € R+ and f (x) = I x d ~  , then lJ has 

t h e  s t a t ed  proper t ies .  

Proof. By  Theorem 4.11, f C N . It remains t o  show t h a t  c. 

f i s  regular .  To t h i s  end, consider x € c . Let l im  x = 8 and 

l e t  E > 0 .  Then t h e r e  e x i s t s  n such t h a t  
0 0 .  / 

Ixi-81 < D , f o r  a l l  i 2 n 
0 -  

Let IT = (E ,E ) be t h e  p a r t i t i o n  o f  N such 
2 - - - - L- --- J4- - -- 

% 



Let  nl = iF1,F2,. . . ,F 1 be a refinement ~f T . Without loss of - 
m - - -- - - - - 

g e n e r a l i t y ,  we may suppose t h a t  F1,F2, ..., F c El and 
S 

FS+l I FS+2 1 IF  C E2 . Note t h a t  Fl,F2, ..., F are f i n i t e  sets m S 

( s ince  E i s  f i n i t e ) ,  so t h a t  
1 

Moreover, s ince  (Fl,P2, ..., F ) i s  a p a r t i t i o n  of N , it fo l lows  
m 

m 
t h a t  N = U F and Fi fl F = $I f o r  i # j . 

ik i i=l j f 

Now, l e t  t C F ,  i = 2 , .  . m . Then us ing  (11). (12) 
i .  

and (13 ) ,  we have 



- - -- - 

f ( x ) ,  whence f is regular. Hence 

+ 
Conversely, l e t  f C R . Then by the l a s t  theor=, 

r 

Furthermore, 

< 

Finally, i f  F i s  a f i n i t e  subset of N , then 
- - -  - - - - - - - ---- - 

JJ 
since 

X~ 
i s  a f i n i t e  sequence i n  

Thus, the theorem i s  provd.  
a 

In  order t o  establish the proof of the hext theorem,we , 

i - - - - - -- - 
- 

r 

f i rs thpresent  the necessary background material. - 

completely additive provided it sa t i s f i e s  the following postulate: 



v 
-- - -- - A - 

o f  disjoint sets from 2*. , then 
r- * 
: B %. 

~f I E  1 i' a sequence 
n -*I : -  - 

+ 
D - 

converges and 

where 

Theorem 4.15. Let 1.1 be a completely additive charge on 

Let {E be a sequence of disjqint subsets of n 
N and * 

* + 
Further, l e t  x € M . Then 

For a proof, 

[ 4  1 ,  p. 134. 

i n  a more general setting, see, 



r r o h s i t i o n  xI6. € p Tepa charge on zN . Then. t o r  

every A c 2N , 

Proof. 

Proposition 4.17. 1 l~ 1 is  monotone. 

Proof. Let A C B C N .  Then 

5 
since 1 is  non-negative. 



Lemma 4.18. Let JI be a charge on 5N and le t  x t M . 
Then 

w 

Proof.  I n  view of  Theorems 4 .8  and 4.10, there exists 

f f M* such that f ( x ) - =  I xdp , x C M and e ( A )  = f ( X A ) . , - ~  C N  . -  --- - - 

Therefore,  us ing  Def in i t i on  4.14, w e  have 

as requi red .  

F ina l ly ,  we come to '  Theorem 4.19. 



completely a d d i t i v e  and bounded (i .e. ,  a completely a d d i t i v e  charge on 

N 
2 1 .  Then the l ine* func t iona l  f  on M defined by 

- -- -- 
is such t h a t  it is  a n  element o f  L (i.e.,  f i s  an -8 -mu l t ip l i e r  1 

(ii) Conversely. l e t  f 6 L . Then the func t ion  p : 2N + R 
1 

def ined  by 
c 

N 
p(A) = f (xAf . f o r  a l l  A 6 2 . 

i s  completely a d d i t i v e  and bounded. 

Proof. (i) I t  s u f f i c e s  t o  show t h a t  f (x) = . C aixi , 
i=l 

f o r  a l l  x C M . where a  = Ca.) C -8 
1 '  

Now, 
1 



The proof of (i) w i l l  be complete i f  we show t h a t  

(a .  1 = (p ( { i} )  1 C Cl . To t h i s  end, we consider the  sequence 
1 

(5) = ( 1 ai 1 ) , of p a r t i a l  sums of Z 1 ai 1 . Then using 
i=l i=1 

Defini t ion 4.13, and Proposi t ions 4.16 and 4.17, we have 

- - -  

r (NT < m  

- - - - 

This shows t h a t  ( 1  is a non-decreasing and bounded sequence of 

real numbers, which implies  t h a t  (tkl is a convergent sequence. 
7 



Thus, f € 1 . 
w 

(ii) Let  f € . Therefore ,  f (x) = E aixi f o r  a l l  
i=l -- 

x C M , where (ail C el . L e t  ( A  .) be  a sequence of  d i s j o i n t  s e t s  
3 

from zN . Then us ing  a rearrangement theorem f o r  absb lu t e ly  convergent 

series of r e a l  numbers, w e  have 

NOW, s i n c e  f € L , it follows t h a t  f i s  a bounded l i n e a r  
e - -  - 

func t iona l  on M (Theorem 2.6) . Therefore,  f o r  any A € 2N , 



This completes the proof of the theorem. 

Thus, i t  is evident  from t h e  above d iscuss ion  t h a t  t h e  

* 
members o f  c a n  be cha rac t e r i zed  i n  terms o f  t h e  charges  on 2N . 
It is  a l s o  c l e a r  t h a t  t h e r e  exists a one-to-one correspondence between 

* 
t he  set  M of a l l  continuous l i n e a r  func t iona l s  on M and t h e  se t  

C of a l l  charges on 2* . The corresponden e between a continuous 4 
l i n e a r  func t iona l  f and i ts  associated(charge II being i n d i c a t e d  

by the -0 formulas 

2 

- The above correspondence i s f i n  f a c t r a n  isomorphism between t h e  spaces  

M* and C . Consequently, our  s t r u c t u i e  theorems of  Chapter 2 can be 

formulated i n  terms of t h e  charges on 2* . A s  an i l l u s t r a t i o n ,  

Theorem 2.31 can b e  s t a t e d  a s  fol lows.  Every charge p on zN can be 

w r i t t e n  a s  a l i n e a r  conhinat ion of a t  most two non-negative charges 

which s a t i s f y  t he  condi t ions  o f  Theorem 4.12 and a charge which 

s a t i s f i e s  t h e  condi t ions  of  Theorem 4.19. 

F u r t h e m r e ,  t h e  spaces M* and C -become normed l i n e a r  

spaces  ( i n  f a c t ,  Banach spaces)  i f  the norms on them a r e  def ined  a s  

follows: 



llfll = sup- , o r  a f c M 
* 

4 0  

and 

Consequently, the correspondence between M* and C given by 

formulas (15) and (16) becomes an isometry. This means that if 

f and p correspond to each other, then 

h 

We conclude our discussion by proving this fact. _. _- - - 

Theorem 2.20. If f ++ p, where f(x) = jxdu for all 

Proof. Using the standard properties of the integral, 

we have, for each x € M , 

whence 



Now w e  prove t h e  r eve r se  i nequa l i t y .  Le t  E > 0 . Then, 

+ - 
by t h e  d e f i n i t i o n s  o f  l~ and p (see Theorem 4 . 3 ) .  t h e r e  e x i s t  

B C 2N such t h a t  2 

Let  E = B n B2 . Therefore,  B = (B1 - E)  U E = A1 U E 
1 1 

and B = (B2 - 
2 E) U E = A2 U E . Clea r ly ,  " A  n A2 = $I . Hence. 1 

Le t  x = x - x so  t h a t  llxll = 1 . Consequently., + 

*, 



Since E is  a rb i t r a ry ,  we have 

a s  required. 
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