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ABSTRACT

The accent in this thesis is on the structure of linear

A relation between the value of a continuéus linear funétional
(defined on M) at a convergent sequence and the limit of the sequence
is established. This forms the foundation for the structure theorems

which follow. Ultimately, it is shown that any continuous linear

functional on M can be written as a linear combination of at most‘

two non-negative regular linear functionals and a linear functional
of another type, i.e., an Zl-multiplier.
The existence of several types of linear functionals on M

is also discussed. This involves an application of the Hahn-Banach

extension theorem and an infinite dimensional Hamel base argument.
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CHAPTER 1

INTRODUCTION

This preliminary chapter covers some fundamental concepts.

Its purpose is to introduce notation and elementary concepts and to give
the reader a survey of the material which will be used later in the
thesis. A versed reader may omit it and proceed to the next chapter ... .

on structure theorems and use Chapter 1 only for reference.

We take for granted that the reader is familiar with the
. concepts of a set, a subset and a seguence. We also presuppose a
familiarity with the basic operations involving sets. Now we introduce

-some -notation.

The set of all natural numbers (positive integers) will be

denoted by the letter N and the set of all real?umbers, by Rl».
I

We shall write, for a sequence x , of real m

1331--»)l ’

x = (x) = (x,,x,

using round brackets to avoid confusion with a mere set. The sequence

(1,1, --)y will be denoted by the letter e . For each {1 = 1,2,3,...,
the sequence (4,0,...,0,1,0,0,...), where the 1 comes in the i-th

place, will be denoted by e~ . The sequence (0,0,0,...) will be



denoted by 0 . The sum of two sequences a = {(a.}) agd b = (bi)
- N L j —

is the sequence (al+b ,-a_+b o) o It will'be denoted by ‘

17 3y%h,, 25tb

3!
a+bh = (ai+bi). Sim%}arly, the difference of two sequences is defined.

Furthermore, for a real number A y AX = A(xi) = (Axi). Consequently,

for a real number k, the constant seqﬁence

>

¥

! ) k = (k,k,k,...) = k(1,1,1,...) = ke

and

k-x (k-xi) f (k-xl,k-x ,kfx3,...)

2

I
-
~
W

i
X
X
X

1772 »3"")

k(1,1,1,...) - (x.)

]

ke~-x .

We presume a familiaiity with the éoncepts of bounded

>sequences and convergent sequences. The set of all bounded sequences of

-~ real numbers will be denoted by M . For a sequence x = }xn) of’

real numbers,which is convergent to a limit ¢ (where £, is a real
number, of course), we shall write X, -~ £ as n * e or lim x = £

T or ilim x_= ¢ . The set of all convergené sequences of real numbers
n+o ;



Now we acquaint'the reader‘with'the,cqncepts of limit

superlor and llmlt lnferlor of a. sequence, whlch,we ‘will need in the

third‘chapter of our theeis.

definition.

r

‘Definition 1.1.

that is bounded .

sequence (M )

Let M‘ =

Let (xn) be'a sequence of real numbers

sup {x X

- S

We,therefore,state the follow1ng

converges and we deflne lim sup x.

4

n+l X2’

o

}.. Then the -

7 td be 1lim M

will be denoted by c . Moreover, the set of all sequences of real .
numbers that are convergent to O will be denoted by ‘CO . It is
L ' ‘ , e , .
eaSy to see that if a sequence (xn) of real numbers is cqnéergent,
then it is bounded. Thus, we have the'folloﬁing inclusions:
- & .G c-A M.
) “ . - - O ? ;
¢ 3 . /_ ,*'
- 2 . - et S [ — - “

It is not hard to see that the sequence (Mn) is monotonically

n-+m

decreasing. Hence, .
- lim sup x = lim [sup{x X 1 n+2,...}] -
n > <
3
R _ = inf £§UQ{X44)L 11.
P = , - B

n

nF1’ n+z"f'

)

Similarly, we define for a sequence (xh), which is bounded

]

‘_\\\A

-l



e B s ~ 4
h.f“ﬁ,
- ,ﬁ%f?f“f x = lim [1nf{xn,xn+l,xn*2,¢,:}l )
H Yip & @ - T R g ]
v e 7 o - ' E R R
= sup[lnf{xn,xn+i,xn+2,...}]. - ;
n .
L ‘ -
Evidently, for any bounded seguence x , of real numbers,
lim sup x  and lim inf x  are finite réal numbers. L :
Next, we list a féw:propefties of limit suberior and limit
inferior of a seqﬁence, wh%éh will be used later:
. . ) ° ’ 1 : . ’ "
ta) If (xn) is’'a convergent sequence of real numbers, then
1im inf x = lim sup x, = lim x , &nd conversely.:
(b} 1If (xn) and (in) are. bounded sequences of real numbers, N
- + S > : I3 . Y ’ A
_ . then lim sup (x 4y ) = lim sup x + lim sup y .- :
(cf For a real number o« > O , lim sup faxn) = o lim sup X -
(d) For a sequence (xn) of real numbers, lim inf x = . 3
-lim sup {(-x ) and lim sup {x )} = -lim inf {-x_).. :
] n ' " n . n
We assume that the reader is familiar with the concept of a
linear space.' We will denote the zero vector by 0 . One type- of
- linear space; which we will be concerned with; is that consisting of bounded —
sequences of real numbers. ]
3

Definition 1.2. A non-empty set of bounded segquences of

real numbers is called a linear space of bounded sequences over the reals

#



— if jt i der co~ordinatewise addition and sca}ai multiplication

.

of séquences as defined earlier. -

For example, M , ¢ *and N

are. linear spaces ovér the

reals.

.~

Por the moment, wetshall be concerngd with some general

definitions and properties,

Y
-

Definition 1.3. A norm Jl*ll , on a linear space X , is-a

S o 3 S
function [|*f] : x * R* such that
(i) Wxll = 0 if, and only if, x =0 ,

(i1)  Maxlt = 2] dxh ’ y

-

(iii) byl < dxl + fyll

Definition 1.4. A normed linear space (X, I|-ll) is a_linear

~~ space X , with a norm defined on it.

It is not hard to see tha;; M, c and A become normed
linear, spaces over the reals.with-norm defined on them as fiollows:

b

Ix! = sup ]xnf , for all x . P

n

Definition 1.5. A non-empty subset S of a linear space X

™

is called a subspace of X if Ax +yuy €5 , whenever x, y €5 ,
for all X, u € Rl .



_ As an illustration, both ¢ and c. are

- Moreover, if {Sa} isla family of subspaces, “then ﬂSa is alsc a
: . v S

o e

- .-

subspace.

a B -

. ’
v,

We now introduce the important concept of a linear -operator.

- Definition 1.6. ©Let X, Y be linear spaces.  Then a

function f : X+ Y is called a linear operator (or map, transformation)

if, and only if, for all x

- 1’ X5 € X, and all scalars A, u ,

_f(lxl+ux2) = Xf(xl) + uf(gz).

: It is easy to see that the composition of two linear operators
. ' , ' '

is again a linear operator.

We are now in a position to define the concept of a lihear

functional. - . : <

~

Definition 1.7. £ is called a linear functional on a linear

. 1 . . .
space X if £ : X-> R is a linear operator, i.e., - a linear

functional is a real-valued linear operator.

‘The zero linear functional will be denoted*by 6 . Thus,

8 : X > R1 is such that 6(x) = 0, for all x € X .

+®

Linear operators on normed'spaces,which are continuous, are of
special interest in functional analysis. They form thé/primary subject

matter of our thesis.



- Definition 1.8. Let X, Y be normed linear spaces. Let

£: XY be a‘linear operator.” Then f is called continuous at

X € X if, and only ‘if, for every € > 0 , there exists § > 0 ,

’6(x0,e) such that [[f(x) - f(xo)” < ¢ whenever Hx—xoﬂ < & .

Definition 1.9. The function f£ in the above definition

is called continuous on X if f 1is continuous at each point in X .

-

Another type of operator on a normed space,which actually
turns oyt to be the same thing as a continuous linear operator, is a

bounded linear operator.

Definition 1.10. Let X, Y be normed linear spaces. Then

a linear operator f : X - Y is called bounded if, and only if, there

exists a constant Ml such that :

lecall < m x|, forallx ex .

™~

Definition 1.11. ILet X be a normed linear space. A linear

functional f : X +,R1 is called bounded if, and only if, there exists

such that

a ‘constant Ml

= [£(x) | < Ml lxll, for all x € X .

Now we give a very useful and well-known property of

continuous linear operators.



. Theorem 1.12. Tet X, Y be normed linear spaces. ILet

f : X+Y be a linear operator. Then f is continuous on X if,
and only if, it is bounded.

@

Proof. let f be bounded. Therefore, there exists a

such that [[f(x)]] < M. x|l - for all x € X . Now,

constant Ml

e -l = IE-p)fl =8 llx-yl < e,

a

if  x=-yll < ﬁ—-. Hence f is uniformly continuous on X .
1

S .
Conversely, let £’ be continuous on X . Then it is
continuous at 0 , in particular. Hence,there exists 6 > 0 ,

§ = 8(1) such that [f(x)|| <1 whenever |x|| < 6 . Take any x # 0 .

and so

_Then  ___ . e e e




o it B by}
el < BE o Zpgs 2y
£ x=0, then UfGui=0=2-0=2x = 2.
:“"“5 é 6
2

Thus, in both cases, !f(x)i <

This completes the proof.

In particular, taking vy = R1 , we have the following

important and commonly used theorem.

. . 1 ,
Theorem 1.13. A linear functional f : X + R is continuous

+

on X 1if, and only if, it is bounded.

Definition 1.14. 2 non-empty set of linear functionals on

the same space X , which is closed under addition and scalar

multiplication, is called a linear space of -linear functionals.

Definition 1.15. The set of all linear functionals on" M 1s

a linear space (under the usual operations) and it will be denoted by

¥ »

Mo

’ Definition 1.16. The set of all continuouﬂfiéyunded) linear -

«

functionals on M 1is also a linear space under the usual operations

: L Lk Lt
and it will be dencted by H . Obvicusly, M is a subspace of M .

- We now discuss a few more concepts concerning linear spaces

in general, which we will apply later in the thesis.



Definition 1.17. Iet S be a subset of a liggiihiface X .

The linear hull of S is the intersection of all subspaces containing

S . It will be denoted by [5] . Symbolically,

{s] N {ViV a subspace of X and S C V}

smallest subspace of X containing S .

We shall also use the terms 'span of S' or ' subspace
generated by S' for linear hull of S . We now present the following

interesting theorem.

Theorem 1.18. ILet S be a non-empty subset of a linear

conbinations of elements of S .

-
*.

voe +
Proof. Let S (A% Ay + oo+ Anxnlxi € s,

1

SR e

1%i=<n,n €N}. It suffices to show that [S] = S'.

It is easy to see that S' 1is a subspace of X containing
S . Since [S] 1is the smallest subspace of X containing S , it
follows that [S] £ S'. On the other hand, since  [S] .is a subspace =

of X , finite linear combinations of elements of ([S] belong to [S] .

But as [S] contains S , finite linear combinations of elements of

S also belong te [S] . Consequently, S' S_[SI, and we are done. . - -
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Definition 1.19. A finite subset {xl,x2

;oo X } of X
n .

is called a linearly independent set if, and only if, a relation of

the form -

implies that Al = A2 = ... = An =0 .

If a finite subset of a linear space is not linearly

indépendent, it will be called linearly dependent.

Definition 1.20. An arbitrary subset (not necessarily -

finite)of X is called linearly independent if, and only if, every

"one of its finite subsets is lineafly independent.

Definition 1.21. A subset B of X is called a Hamel

base (or basis) for X if, and only if, B is a linearly

independent set and [B] = X, i.e., B generates the linear space X .

Theorem 1.22, Every linear space X has a Hamel basis.

For a proof see, e.g., Maddox [3], p. 78.

It is well-known that apyipgsisfforra”sﬁbséaqé of X is

ngntained'in”éomé BAQis for X . (The proof of this requires an
application of Zorn's lemma and is similar to the proof of Theorem

i

1.22).



Definition 1.23. A linear space X 1is called finite

dimensional if, and only if, X has a finite Hamel base B , i.e.,

B 1is a finite set which is a Hamel base. If X is not finite

dimensional, it is called infinite dimensional.

* T
We remark that M, c, Sy M and M are all infinite
dimensional linear spaces. Furthermore, if X is any infinite

dimensional space with-a Hamel base {balaEA}, then for each x € X ,

there exist unique scalars Aa ,0 € A such that x = I Aub » where
a€A

Aa # 0 for at most finitely many o .

Definition 1.24. If X 1is a finite dimensional space, theh

its dimension is defined to be the number of elements in any of its Hamel

bases.'(By Theorem .26 below, the dimension of X is well-defined).

s N o . o _ _ _ . _ o

We conclude this chapter by stating a couple of theorems that
will be useful later on. For proofs, see, e.g., Maddox [3], pp.

76, 77.

. Theorem 1.25. Ilet X have a Hamel base with n elements.

Then any set of n + 1 elements in X 1is linearly dependent.

Theorem 1.26. et X be finite dimensional. Then all

the Hamel bases for X have the same number of elements.
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CHAPTER 2

STRUCTURE THEOREMS

This chapter is concerned with the structure of continuous
linear functionals defined on the linear space, M, of all bounded
sequences, over the field of real numbers. We recall that M is a
normed linear space over the reals, with norm defined on it as follows:

for x € M, |lx|| = sup fxnf . Moreover, the class of all continuous
n

linear functionals on M is itself a linear space, denoted by M .
Non-negative linear functionals and reqular linear functionals

on M will be defined. It will, furthermore, be shown that every

non-negative linear functional,on,,Mﬁ,is;qontiguous”onﬂ,MWLTheoremW2,13).W7,w,”h”;

A special class, L , of continuous (and non-regular) linear functionals ‘

on M will be defined and it will turn out to be a subspace of M* .‘ £§2

A relatiop between the value of a continuous linear functional at a

convergent sequence and the limit of the'sequence will be established

(Theorem 2.10). Then it will be shown that every continuous linear

functional on M can be expressed either in terms of a continuous and

regular linear functional, and a linear functional from L (Theorem

2.15) or as a difference of two continuous and regular linear

functionals, and a linear functional from L (Theorem 2.16).

Moreover, it will be shown that every continuous linear functional

on M can be written as a difference of two non-negative linear

<
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functionals on M (Lemma 2.17). In addition, it will be
demonstrated that every continuous and regular linear functional on M
can be expressed as a particular linear combination of two non-negative

and regular linear functionals on M .

The set of all continuous and regular linear functionals on

M will be denoted by R and the linear hull of R will be denofed

by [R]. Furthermore, it will be exhibited that M is the direct
7

sum of its subspaces le and L . The set;of allbnon-negative and

regular linear function;ls on M y;ll be denoted by Rt and its

lineér hull, by [R+]. IL will(then be shown that [R] = [R+] .

Consequently, M will become the direct sum of its subspaces [R']

and [ .

Finally, it will be demonstrated that every continuous linear

functional on M can be expressed as a linear combination of at most
two non—negative, regular linear functionals and a linear functional
from L . This gives-an upper bound to the number of linear functionals

- L ' . '
to be taken from R, in the preceding result.

We begin our discussion with a few important definitions.

Definition 2.1. A sequence a = (ai) is called

absolutely convergent if o ) o

N o1 8

la,] <= .
ey
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The set of all absolutely convergent sequences will be

called Zl and ¢ forms a linear space under the usual operations.

1

Evidently, El is a subspace of M . In fact, Zl is a subspace

-

of cb so that we have the following inclusions:

wgeosestc

Definition 2.2. A sequence c = (ci)_ is called the term

by term product of two sequences a = (ai) ,and b = (bi) if

The following theorem establishes the absolute convergence

of the term by term product of an absolutely convergent sequence and a

bounded ‘'sequence.

Theorem 2.3. If a € 31 and x € M , then the series

[=<]
i laixil converges.

i=1

® n
Proof.iil}aixi+ = 1inr*~*i%m¢aix1+*W”ﬁ****”' -

IA
| d
’_J.
=]

z lai] sup [xi[
n &> o« 1e

1 i



el <o

as required.

The above theqrem permits the following corollary.

Corollary 2.4. If a <€ 817 and x €M, then,theﬂseriesf,

I a,x, converges.
" i1,
4i=1
Proof. An absolutely convergent series of real numbersuis
convergent. - ‘
We now introduce the concept of a regular linear functional

on M.

Definition 2.5. A linear iuncti,onal, f on M_is called .

regular if it extends 'lim‘.‘ In other words, for “x € ¢ R

L.

f(x) = lim x .

The following result is an indispensable tool in working

with continuous linear functionals on M .

© Theorem 2.6. Let 7a”6'Zi . Then the function f defined

on M by

a.x,, for all x € M,

- f(x) 1%
1

1]
N~ 8



is a continuous linear functional on. M . Furthermofe, f 1is not
regular.

oo

Proof. It follcws,‘from Corollary 2.4, that £(x) = I

converges. Therefore, f : M » R1 and so f is defined for all

x in M. N

Now we show that f is a linear map. To this end, let

a, 8 be any scalars and x, y € M . Then -

o

f(ax + By) = -E ai(axi + Syi)
i=1 : .
o]
= L (3ux, +apy)
i=1 i
n
im z (aiaxi + aisyi)
n <+ o =]
n n
=0 lim I a,x, + B lim I a.y
n > o i=1 n o> wx i=1 1 1

+
.

a £(x) + B £(y)

]
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In order to show that f is continuous on M , it is . e
sufficient (by Theorem 1.13) to show that f is bounded on M.

Thus, for each x € M ,

i
[
L
®
’!

IR

1A
Nt 8

A
®
’ e
"

i
=z
2(—_‘

where A =

lai]; Thus, there exists a ‘constant A such that
i

l i . 7 -

It ™~ 8

[£6x)] < allxll , for a1l x € M . Therefore, f is bounded and hence
continuous on M .
- It remains to show that f is not regular. For this, it is

-

enouthto prove the existence of x € ¢ such that 1lim x = £, but

£(x) # £ . We consider the following two cases.

--——Casge I: - There exists i- fﬁnﬁrtiatﬁ*a§4¢49—f—~Then
e’ = {(06,0,...,0,1,0,0,...), where the 1 comes in the i-th place, is

sich that lim e’ = 0, but f£(e’) = a, #0 = lim e”



Case'II: ai = 0, for all

i.

Then e = (1,1,1,...) ié .

S e

such
theorem.
f(x}) = I a.,x, , where a = (a,) € ¢
. i'i 1
i=1 -
1’
- /

that lime = i, but f(e) =0 # 1 = lim e . This proves the

1

»

Definition 2.7.. The linear functionals on M. of the type

and x € M, are called the

T 7 I -multipliers. The set of all such linear functionals will be

1

denoted by L .

'In view of Theorem 2.6, for f{x)

a,x; , it follows that

W~ 8

i=1

the £ljmultipliers are continuous and non-regular linear functionals

P
on M . ™~
- - &
It is instructive tc observe that the correspondgﬂce a+— ¢,
- , B} S _ _
where a € Zl and £(x) = I ax. for all x ¢ M , is an isomorphism.
i=1 '

. &*
Consequently, 1 is a subspace of M

sgn a

ot

Definition 2.8. The signum of a real number .a , denoted by

, is defined as follows:

(l if a >'0 ’
sgn a = 4 C if a=20,
l-l if a < 0 .
Thus, for a non-zero real number a , sgn a is +1 or -1 acég:;ing
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as a 1is positive or pegative. Moreover, for all a , we have

a sgn a = |aj .
The following theorem gives a very important property of

~ the sequence formed by the values of a cohtinuous linear functional

evaluated at the bounded sequences el; i=1,2,3,... .

o

) . .
Theorem 2.9. et f €M and a, = fle'), i =1,2,3,... .

1l
- @ ~ ©Co .
i .
P . =
roof 'Z [ai] T |f(e) ] —_
i=1 - . i=1
n i ‘
= 1lim T |f(e)] ~
n - © i=1 L
n . .
. . i i
= 1lim LI (sgn f(e")) fle”)
n -+ i=]
1Y
n L. ’
: . i i
= lim L f((sgn f(e))e)
~n > = i=1 .
: ' ’ .o i i
- e e = 1im (T —{sgnf{e~)}e }—
- n > ® i=1
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.21 .

, 1 . ) ,
~where E" = (sgn f(g,l,ﬁgggﬁijg?ll,,4,i,sqn £(e™),0,0,...). Note

that “En” < 1. Now, since. f is bounded, thererekists a constant

M. such that |£@E&™][-< M, JE™] < M 1

1 1’ which implies that ‘f(En) =M

I~ 8

Thus, lim’ £(E™) < M < ; that is,

' lail < » , whence a is an
n > i , ’ ‘

1 -

element of Zi -

ﬂﬁﬁeif5ii6§fﬁ§mih56réﬁLﬁfd&i&éé“amféiatibh'Béﬁweenuzﬁe value
of a continuous linear functioﬁallat a convergent sequence and the
limit of the seQuence. It repreSents a)slight generglizgtién ofithe o
well-known characterization of continuous iinear functionals on <

(see, e.g., Maddox [3], p. 109). .

* s : .
Theorem 2.10. "Let £ € M, f(el) = ai (i = 1,2;3,...), o
and g(x) = Zb'aixi for all x €M . 1et s =g(e) and £ = tte). —
e e oo - ‘ 1:]: B e R —————

~

Then for x € c ,

f(x) = (£-s) lim x + g(x).
Proof. Note that by Theorem 2.9, a ¢ El and by Theorem 2.6,

g € L . Also, observe that

o ‘o .
S - s=gle)= % a = % fleh)
i=1 i=1

i

' Now, let x € ¢ and let 1lim x L . We shall first show that



Y

X =Le + I ,(34:'@,93,,44,:,
. i >
i=1
that is,
_ _ n g )
fix - [z + I (x.-L)e 1] » 0 as n > = , (1)
Ci=1 t
Now,
n i n i
Ix = e+ I (x;-1)& Ml =flx -1e - = (xi—L)e'H
i=1 - i=1 : N
-/
= ”(xl’x ) - (LILI“') -

s

oo

L.

” (OIOI v e ,Op?in_*_l-L,xn_*_z

- = sup Ixi-L‘.

i>n+tl

Since 1lim x = L, the last expression tends to zero as n . tends to

infinity. ‘Therefore, (1) has been proved.

have

—
Further, using the linearity and the continuity of f , we

.



)

. n 4"_.‘__‘
ElLe) + €0 lim 1 (x,-0 &

i

,f, {x)

AY

N

~

£(

= Lf

s

n > oo i=1

4"l-

n .
1e) + lim f£[ §° (xi—L)el}
n -+ « i=1

n .
(e) + 1lim z in-L)f(el)
n > ® i=1l

+ g(x) - Lgl(e)

+ g(x) - Ls

= (£-8)L + g(x)

SR RPI TP Y SR PO [NV e PR S S

)
By
‘x
%
.
1
. ;
.

3
B
;
=



= (£-s) lim x + g(x).

This- completes the proof.

Definition 2.11. A sequence x = (xi) is called non-negative
if, and only if, x, 20 for i =1,2,3,... . We shall write x 2 0 .
The set of all non-negative and bounded sequences of real numbers will

be denoted by M* , i.e., MY = {x € M | x > 0}.

We now introduce the important concept of a non-negative

linear functional on M .

Definition 2.12. A linear functional f‘, defined on M , -

o

is called non-negative if, and only if, for all x € M , x > 0

implies that f(x) = 0. The set of all néﬁ-negative linear functionals

- on M will be denoted by N . ‘Occasionally, for convenience,we shall oo

write £ >0 for f €N .

The following theorem presents an'interesting and a very
useful property of non-negative linear functionals defined on M ,

see, e.g;, Schaefer [ 6], é}‘228.

Theorem 2.13. Any non-negative'liﬁear functional on; M is

] -, | /
continuous, i.e., N ; M. : ' N

Proof. Let f be a non-negative linear functional on M .

let f(e) = £ . For any constant sequence c¢ = (c¢,c,c,...), we have

f(c,c,c,...),w= flce) = cfle) & cf . (2)
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let x €M and let b = ”x”. We have, for each 1i ,

} lxll = S:P lxil =b -

Therefore, -b = xi = b for all i , which implies that b - xi >0

for all i , and b+ x =20 for all i .
. i ,

Thus, the sequences (b-x,) = be-x and '(b+xi) = be+x are
bounded and non-negative. Since £ is a non-negative linear

functional on M , we have

0 = f(be-x)

£(be) - £(x) = bb-£(x) ,

which implies that f(x) < bf = [|x[|£. Similarly, 0 < f(be+x) =

bl+£(x), which implies that -f(x) < b¢ = ||x||£ .
Therefore, it follows that |£(x)| =< &||x|| for all x € M

and hence f is bounded on M , which is what we wished to show.

It is worth remarking that there exist linear functionals
on M which are continuous but are not non-negative (viz. Chapter 3,
Theorems 3.4 and 3.6) so that the converse of the preceding theorem is

not true. .

Definition 2.14. We shall denote the set of all corntinuous

and regular linear functionals on M, by R. Likewise, the set of all

non-negative (hence continuous) and regular linear functionals on M

will be denoted by R' .
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We now prove some of.the most important theorems of this

chapter which demonstrate the structure of continuous linear
P

functionals on M . . o .

£(el).
1

o~ g

*
Theorem 2.15. Let £ €M, £ =f(e) and s =
i

If ¢ # s, then there exist h € R, g € L nd a non-zero real constant

ﬁ such that
&

(i) .f(x) = A h(x) + g(x), for all x € M ;

(ii) A, h, g are unique. . ~

. ] . C %k
Proof. (i) From Theorem 2.10, we have, for f € M and

x € c,

f(x) = (L=s)lim x + g(x) , o o ""1SY"W"W’ﬁl

where g € L. Since ¢ # s, 7—s ©exists. Therefore, from (3) we

obtain, for x € ¢ ,

= [£® - g1 = limx . ()
1 * _1 .
ﬁ (f_g) € M - -Let ‘h = ng(ﬁ-g}: ‘ - e

in view of (4), h is regular. Hence h € R .
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]

£(x) = [£(x) - g®] + gx = (B-9)h(x) + g(x}

A h(x) + g(x) ,

where A = f-s is a constant. This proves (i) .

(ii) ‘We firSt prove that g 'is unique. It has already
been shoﬁn in (i)rthat for‘eech x € M_,.f(x) = A h(x) + g(x), where
h€R, g€l and A is a non-zero real constant. Let f(x) = |
A'h'(x) + g'(x), be another repreeentation of f(x), where h' € R,
g' €L and A' is a non-zero real constant. Putting x = ei in
both representations of‘ f and using the regularity of h and h' ,

we have, for each i ,

f(el) = A h(ei) + g(ei),= A lim ei + g(ei) =0 + g(ei) ;,g(e}), e

r
e s i i i, i 4 ,
and simitarly, f(e") = g'(e’}). Hence gl(e’) =g'(e"), for all i

Now let (ai) and (bi) be the sequences in 81 corresponding to g

and g' respectively. “Then Since g(el) = g'(el) for all i , it

follows that a, ='bi for all i . Consequentiy, g=g'

Next, we show that A is unique. To this end, let x = e

in the two representations of f(x). Then

‘ f(e)A=7A h(e) + g(e) = A lim e + g(e) = A + g(e).

T

e i s ¢ MG s T e
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Similarly, f(e) = A' + g(e).r Thus, A = A'.

Finally, since A =A' 'and g = g', we conclude that .

h

i

h' as A # 0 . '

We can formulate a theorem analogous to Theorem 2.15, which

handles the case £ = s, as follows:

Theorem 2.16. et P=R-R={og -1 o, T € R}. Tet

o

| S
W o8

* R N L3 .
feM, £ =f(e) and s f(el). If £ = &, then there .axist

i=1

t €0 and g € L such that

(1) .£(x) = t(x) + g(x), for all x € M ;

(ii) t and g are unique.

— . S - IR - o

Proof. The argument is essentially the same as that in the

proof of Theorem 2.15.

. N l * »
(i) Observe that from Theorem 2.10, for f € M and

X € ¢,

f(x)

(£-s)1im x + g(x),

n

where g € L . Here £ = s and so

£ {x)

g(x), for all x € ¢ . (5)
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e . ‘ . . t
It T be any continuous and regular linear functional on ‘M,

i.e., T € R . Define o : M > Rl as follows:

o{x) = £f(x) - g(x) + t(x) . : (6)

* .

, . . A
We claim that -0 € R. Since f, g, 1 € M, we have o € M . Moreover,

from (5) and the regularity of T , we get, for x € c ,
g(x) = £f(x) - g(x) + 7(x) =0 + 1(x) = 1lim x ,

which shows that o0 is regular. This establishes our claim.

Finally, from (6),, we have, for x € M, o(x) = £(x) - g(x)
+ T(x). This means that £(x) = o(x) -%¢x) + g(x), where o, T € R

for x €M,

and g € L. et t=0 -1 . Then

N £(x) = t(x) + g(x), *\ (7).

’

where t € D and g € L. This completes the proof of (i).

2
-

-

(i) Let f£f(x) = t'(x)r+ g'(x), where t' €D and g' €L,

<
™

=y

-

e .
~{-Th.e question of the existence of v Rarises here. This is treated in

the next chapter. The reader is assured that such T do exist,

e

e.g., T a Banach limit (see The@rem’s.l).

gt




be another rgpreééntation of £ . Let t' =o'~ 1', where -

: - . ' i, o )
o', '€ R . Putting x = e in both representations of f , it
o

follows exactly as in the proof.éf Theorem 2.15 that g(el) =-g'(el),

for every i and that g =g'. Ve

~

} Now, we proceed to prove that t 1is unique. Again,

considering the above two representatidns of f ,rwé have, for x € M,

‘f(x) t(x) + g(x) % t' (%) + g(x) .

Consequently,

t(x) = £f(x) - gx)-= t'(x),

a

for all x € M and hence t is unique. This completes the proof of

(ii) , and the theorem follows.

It is interesting to note that o and 1 are not unique

in the above theorem.

We recall that the set of all continuous and régular linear
functionals on M is denoted by R and the set of all non-negative

(hence continuous) and regular linear functionals on M is denoted by

+ A —
R° . The letter N denotes the set of :all non-negative (hence

- . . SR T -
continuous) linear functionals on M . Furthermore, M denotes

the sét of all non-negative and bounded sequences of real numbers.

-~
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Our next venture is to proée a very important lemma, which

'is a coroliary éf a:result in the theory of Topological Vector

Spaces, see, e.g.,—Schaefer [6], p. 218. We are going to'presgnt an
independent proof. The importance of fhis lemma lies-in the fact that
it is a powerful tool in‘determining the structure of a continuous and

reqular linear functional on M.

' * v * L
Lemma 2.17. M =N - N, i.e., for each £ € M, there

exist g, h € N such that f =g - h .

In order to establish the proof of this lemma, we first -

present the necessary background material.

*

+
Definition 2.18. Iet a be a real number. Then a ,

‘ . . + : -
the positive part of o , is defined by o = max {a¢, 0}, and o ,

the negative part of a , is defined by a = max {-a, 0}. Thus,

- a if a > O"



Befinition 2.19. Let x be any 'sequence of real numbers.

We define the positive and the negative parts of x as follows:

y
+ + - -
x = (x.}), x = (x.) .
s i s
- + - ' : N
Then x = x+ - x . It is clear that x and x are bo;h non-negative
sequences. ) o
Proposition 2.20. Forrany sequence x and any real number
. .
A , we have \
(ay (" = ax {(» 20y , )
(b)  (Ax) = ax (x > 0) ,
. _ ,
(c) (Ax) = -Ax (A < 0},
o= +
(@) (Ax) = -Ax (A < Q)

Proof. {a) We first establish the result for a real

° +
_number a . Let a > 0. By Definition 2.18, (lz) = max (ia,0} =

. + ..
Aa = i max (a, 0) Aax ., Now let a < 0. Again|, by Definition 2.18,

+ + .
(Aa} =max (Aa, 0) =0 = 40 = A max (a, 0} = ia . Thus, in either

case, (ku)+ = lu+ .
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Now, for any segquence x, by Definition 2.19, we have

FOoOUTOF T NTFE JOOUTFT O F T
{(Ax} = ((kxi) Yy = (A el k(xi} = Aix . This proves (a).
- | »
Tne rest of the cases can also be handled similarly.
Corollary 2.21. For any sequence X, (--x)+ = x and
- .\ -

{(-x) =x .
Proof. - -Take——#x =1 —inparts-{c) and {d}r-of Proposition

2.20. 3

We insert a few more definitions and propositions which

will be used in the proof of Lemma 2.17.

Definition 2.22. We say that a §gquence X 1is less than

.or equal to a sequence vy and write x <y if, and only if,

L3 = Yy for all i . Eguivalently, x =y if, and only if, y --x 2 0 .

The following proposition is essentially found in the

‘Decomposition Lemma' of [ 2], p. 230.

Proposition 2.23. let x, ¥, z bg non-negative sequences.
v{? = =

Then 0 < z < x+y if, and only if, z = u + ,where O < u < x,

5 <wc< Yy ..

A
G
L]

Proof. let z = u + v, where 6;1:5;;,65\,’

Then by Definitions 2.11 and 2.22, 0 = u, = x, for all i and

5
= C S

<v, = Su, +tv, Tx +vy.
0 vi yi for all 1 This implies that O ulr vl xl yl

for all i . Therefore, 0 S u+v=<x+vy, i.e., 0= z=Zx+y.
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Conversely,- let 0<z<x +.y. We wish to show that there
exf%t sequences u and v such that 0<wuc< X, 6;5 vy and
such that =z = u + v. We first prove the result for non-negative
real numbers. It suffjces to show that if 0 = r = s + t , where

r, s, t are non-negative real numbers, then there exist real numbers

a and b such that 0Ta = s, 0=b=t and r=a+b. For

T

this, let

. > - -

a=inf {r, s} and b=r - a .

Clearly, 0 < a = inf {r, s} < s . It remains to show that 0 <b = t.

IA
r’-

Since b=r -a, if a=1r, then b =0. Thus, 0 =D 1f a=s,

then r =2 s (since s inf {r, s} =r) and b =r.- s > 0. Also, since
X i

]
2]
|
0]

r<s *t, we have b = 5 <t .  Therefore, in both cases, 0 =b = t.
Now we prove the desired result for non-negative sequé%ces.
That is, we intend to show that given x, y, z non-negative and

0=z =x+y, there exist sgquences u and v such that 0<u<x,

"0<v<y and such that z = u + v. To this end, let

a, = inf {z., x.}, v. =2z, -u,, i=1,2,3,...
i i’ i i i i

Proceeding as above, it can be seen that O

Mor all i . This means 0<u<x and 0O

which is what we wished to show.
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Proposition 2.24. lLet x be a non-negative sequencé, -Then

for A > 0,

0 <z <aAx if, and only if, z = Ay, where 0 =< Yy = X.

Proof. Let 0 <z < Ax. Then for A = 0, the proof is
’ e oas o= 1
obvious. If A > 0 , then on dividing by A , we have 0 = 3 2 =x .

z=y . Then z = Ay, where O < y = x.

1
Let 0\

Conversely, assume 2z = Ay, where 0 < vy =x. In view of

Definitions 2.11 and 2.22, 0O = yi =< xi for all i . 'Therefore,
0 < Ay, < Ax, -for all i, and so 0 <Ay <Ax . That is, 0 < z < Ax.
This proves the proposition completely.

Finally} we éomé to the long-awaited proof of Lemma 2.17,
which states that every continuous linear functional on M can be
‘expressed as a difference of two non-negative 1inéar'functionals on M .
, Symbolically, M* =N-N. ’

Proof (of Lemma 2.17). Let £ G'M*’.> Define g on- M as

follows:

T~
A

- gtxr=swp ) | O sy =x}-

- - + ° ' v
We first show that if A > 0 and x € M , then g (Ax) = Ag(x).



-

5
\
\

Since A >0 and x € M imply that Ax >0

(i.re.,' Ax € M), we have by virtue of (8) and Proposition 2.24,.

g(Ax)

Now we show that for x,

Proposition 2.23,

g(x+y)

y

sup {f(Xy) I

sup {Af(y)» | 0

A g(x)

€ M+ , g(x+y)

sup {f(z) | O
sup {f(ut+v) |0

sup (£(u) + £(v) | O

=

IA

“A sup {f(y) | 0 <

= g(x) + g(y). By (8) and

IA

sup {£(z) | 0 < z S')\x}

Ay < Ax}

z < x+y}

(9)

(o]
+
<
N
]
+
<.
ol
IA
o
IA
®
=J
1A
<
A
<
(-

A

u

sup {f(u)] 0 < u =< x} + sup {f(v)| 0 = v =y}

g(x) + gly) .

e

(10)



In order to extend g to M, wqrdefine; g §§7follows.

For x € M,
.\ _ . .
g(x) =g(x) - glx). » - (11) -
We wish to prove that g is a linear functional on M .- Clearly, g-
is a real-valued function on M»f“Thereforé, it is énohgh-to verify
that _ . o ’ -
(a) g(Ax) = A g(x), for all scalars A and for all -x € M

(b) g(X+Y) = g(x) + gly), for all x,y €M.

We split _(a) into the following two cases.

Case I. A =20, x € M.

Using (11) and Proposition 2.20, we have

- g(ax)

g - g(Ox )

g(Ax’) - g(Ax))

Ag(x') = Ag(x)

Alg(x) - g(x )]

I

0

Ag(x) . B ' (12)



Case II. A <0, x €M .

Since A < 0, it follows that =-A > O . Using (11), Proposition 2.20

and Case I, we get ‘ ‘

g(axh - grox)

g Ofx)
‘= g(-Ax) - gk-xx+) f

= Ag(x) - (=N g(x)

= (-3) [g(x) - 9(x+>l

= Ag(x) . ) (13)

&

In both cases, g(Ax) = Ag(x). This completes the proof of (a). -

- Now we prove (b); We show that g(x+y) = g{x) + g(y) for

all x, y € M in the following two steps.

Step I. We wish to prove that if 0 < x < v, then

- . ‘ gly-x). = gly) - g(x).
Since x =<y, it follows that y - x > 0. Alsa,~y = (y-x) + x.
Therefore, g(y) = gl(y-x) + x] = g(y-x) + g(x), by (10). Thus,

gly-x) = gly) - g(x).



&

Step II. We wish to show that if x, y be arbitrary in

M , then

" To prove the above assertion, we introduce four sequences u, Vv, W, 2

as follows. For xi Z ¥V,

I

For xi'< V. , ‘let

— - '+
We observe that u - v 20, 2 - w :_0 s, 0+ v

g(x~y) = g(x) - gly).

let

>

+ + . .
zZ +w Zz +w . Furthermore, we note the following six

o (§-¥2f

= u-v, (x-y) = z-w,

+
€
»
I
e
!
+
€
'

39

jidentities:
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Now, in view of the above observations, (11), Step I, . . __ . _

result (lO) and Definition 2.19, we have

g((x-9) ). = g((x-9) ")

il

g(x-y)

g(u-&) -~ g(z-w)

]

glu’=a)) - " = v - gliz™-27) - w'-w) ]

.

gl +v7) - ()] - gliz" ) - (z7+")]

g(u++v_) - ggpffvi)w—ﬂg(zi+wf)'}'g(z_+w+)

e et -

+ g(w+)

gta) + g1 - [g) + g1 - lg(h + g(zh)

+elg(v) + g(2))]

[ga +w) ] = [glu+w )] = [g(v 421 + [g(v+2)]

gixh - g&x1) - gty + giv))

glu') + glv) - g(u) 4lg(v+) ~g(z") =gw) + g(z7)
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[g(x") = g(x)1 - [gly)) - gty )]

g(x) - gly)

“

This proves the assertion in Step II.

Now for x, y € M , we have g(y) = gl(x+y)-x] =
g(x+y) - g(x), by.Step II. This yields '

o

g(x+y) = g(x) + g(y) (14)

and the proof of (b) is complete. Hence g is a linear functional on

M , which is what we wished to show.

Next, we turn to the task of showing that g is non-negative.

, + o ' R S

For this purpose, let x € M . From (8), g(x) = sup {f(y) | 0 <y =< x}.
Since £(0) = 0, 0 is a member of the set {£(y) | 0 <y < x}. Hence

g(x) = 0, which implies that g is noﬁ—negative. Thus, g € N .

The proof. of Lemma 2.i7 will be cémplete if wershow that
g-f €N . Since g and f are linear funétionals on M, sois
g-f . It remains to show that g = £ is non-negative. To this
end, let x be a non-negative element of M . By 8,
g(x) = sup {£(y) ‘ Q< yii-x}. Obviously, f(x) is a member oﬁ t?e
set '{f(y) | 0= y < x}, and this leads to the conclusion that
- sup {f(&) i 0<y=<x}>f(x). 'Equivalently, g(x) > £(x). Consequently,

g(x) - £f(x) 2 0 and so (g-f)(x) > 0 . Therefore, g -~ £ is non-
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. negative. Hence g - f € N . .Finally, . L o

rh
i

g - (g.- f)

where h =g - f and both g and h € N . This ends the proof.-
In the proof of Theorem 2.26, we use the followihg lemma

which is itself an interesting result.

. Lemma 2.25. If h is any regular linear functional on M,

then for x € M,

h(xl,xz,x3,...) h(O,x2,x3,...) =7h(0,0,x R

~Proof.

h[(xl,0,0,...) + (0,x )]

h(xer21x3l---) 2Ix3l--~

h(xl,0,0,...) + th,x ,x3,.,.)

2

lim(xl,0,0,...) + h(O,xz,ngf.f)

h(O,xz,x3,...)'.
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It is now very sasy to see that a repeated application of the regularity -

leads to the desired conclusion. s

The following theorem is a consequence of Theorems 2.15,
9 ° N < i .

2.16 and Lemma 2.17. It asserts that any continuous and fegular linear
functional on M- can be expressed as a particiular linear combination ’

of two non-negative and regular linear functionals on M .

- - -

More precisely, .

-

- ) : | + V
Theorem 2.26. Dbet f € R . Then there exist g, h € R* and

a real number c¢ such that ;

- £ = cg + (1-c)h .
Cs\\\ :

- : *
Proof. Since f € R, it follows that f € M (Definition

2.14) . Therefore, by Lemma 2.17, there exist- g, T € N such that

Hh
Il

o -T . (15)

é

In view of Theorems 2.15 and 2.16, we proceed'to enumerate the following

four cases:

Case I. Both o and T have the tepresentation given by

Theorem 2.15.

Case II, Both o and T have the representation given by

Theorem 2.16.
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s
Case III. o and 1 have the representations given by

@

Theorems 2.15 and 2.16 respectiﬁely.

Case IV. o and T have the representations given:by
, _ SRt ‘ o

Theorems 2.16 ahd_2.15 respectively.

Now we discuss the theorem in each case.

Case I. By virtue of Theorem 2.15, there exist hl’»hé
gyr 9, € L and non-zero real constants A, B, such that
= ¥ = +g.. , :
c Alh;+gl, and T .A2h2 9, Conéequently from (;5),

=0 -1 = +g.) - - +q.
) £ c T (Alhl gl) (A2h2 92?

= A - + - - . ,

ARy T RRy ey mgy - | (16)

In order to prove the desired result, we first intend to prove that

,Aif hi'(i = 1,2) are-non-negative. For this, we consider

) + . .~
x = (0,0,...,0,1,1,...) € M, where the first 1 is in the k+lst position.

Since o € N, it follows that o(x) > 0 (Definition 2.15). Also, for
o

9,7 9, € L, there exist (ai), (bi) € @l such that gl(x) = -El a x,

1

o
and g (x) = I b.x,, for all x € M . Hence,
2 i=1 11 : )

0 < g(x) = (Alh + gl)(x)

1

Q
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alhl(x) + gl(x{ ' ' .

Alhl(0,0,:..,O,l,l,..i) + gl(o,o;...,o,l,l,...)

Al ¢« 1 + z a; - . !
- . i=k+1

‘The last exp;essioh tends to A; as k + ® [since (ai) € 51 implies

-

1
. that z 'ai, also converges and so lim b ai = 0]." This implies
i=1- o k + =  i=k+lk
. : oL -
that A1_2'0.<JBut by Theorem 2.15, Al is non-zero, hence Al >0 . A

similar argument reveals that A 5 > 0 .

x be a non-negative sequence in M . By virtue of the non-negativity

Lo

Finally, we

2 ,

show that““hi (i = 1,2) are non-negative. QQF

of o and Lemma 2.25, we have

G(O,O,...,O,xn

Alhl(0,0,...,O

Alhl(xl'Xfo3’

= -]

Alhl(x) + z

i=n+l

+l'xn+2"")
’ R + g e ’ , Ve
,xn+l xn+21 ) gl(0,0, ,O,xn+l xn+2 )
°tt * e =1 7 g e
) *9,00,0 0r% 417 %042 )
a e - e _ o -
S S
;%" -
« ¥
‘&

N
. W]
y .
.
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By Corollary 2.4, =L a,X, converges, this implies that
i=1
=
lim by aixi = 0 . Therefore, it follows that on taking limits, we
n > i=p+l ’
obtain 0 = Alhl(x). But since Al > 0, it follows that hl(x) >0 ,

I.e., hl is non-negative. A similar argument shows that h2 is

+
non-negative. Thus, h, h2'€ R
Our next attempt is to show that gl =9, - This can be
done by evaluating £ at e’ and using the regularity of £, hl and
h2 . Thus, from (16), for each 1 ,
i i A i i
0 = f(e7) = Alhl(e } A2n2(e )+ gl(e ) gz(e ) = a; bi ,
whence a, = b., for each i . It now follows that g {x} = I a.x,
1 1 B ) o e 11
= I i = } ; i = .
‘ Dixi gz(x), for each x € that 1is, gl 92
i=1 <
The proof of Case I will be complete if we préve that
A2 = Al-l. For this objective, we evaluate f at e in (16), keéping‘

in view that gl =g, - This gives ffe} = Alhl(e) - Azhz(e}, which

'implies that *1'=»Al - Az or’ A2 = Al-l. The theorem now follows on

hzﬁ by ¢, E;I]?giig'"résPectlvely and taking

5 1

ll

replacing A Az, hi,

5, =49, in (16). - o S

Case II. W¥e wish to show that this case is impossible, that

is, both o9 and <t <canrot be chosen as in Theorem 2.16. Thus,
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 that o=t +g, and T =t ¢+ g, » where o, T €N, ¢, ¢t
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- Thedrém 2.26 holds vacuously in this case.” Suppose,on the contrary,

1 1 2—'_€R“‘R'
gl,'gzlé L. In addition, 9,7 9, €L i;plies that there exist

a;x, and gz(x) = fZ b.x.,
1 i=

™~ 8

P : =
(ai), (bi) € l“such,that gl(x) ;

for all x € M . Therefore, by (15), o7 éff’},

f=o’-1=t1—t2+gl—gz. A (17)

Evéluating £ at e1 and using the regularity of f , we get for each

i, a, = %i' as before. Thus, gl = g2 ’.

Again, evaluating f at e in (17), keeping in mind that

=
|
Hh
—
2
I
n
o

7 tl(e} - #Z(e} =0 -0

* -

this absurdity leads to the conclusion that Case II is impossible.

€R, g €L and

Case III. By Theorem 2.15, there exist h 1

1

a non-zero constant Al such that o = Alhl + 9, - Likewise, by

e *Wﬁﬁtherﬂnst—kﬁ%—g—atﬂ—g—(—l.—mh—that* :
1 2 2

T = (kl-kz) + 9,- Now, from {15}, we have

f=0-1 = (Alhl f gl) - {kl-kz} -9, - (18)
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Let »(éil~ and (bi) "be the segquences in 31 corresponding to §1 -and-

. ‘ , ' - » )
92/ respectively. We have already shown in Case I that Al > 0 and
N h, 20 . Our next task is to show that k -k, is non-negative. For

- - - ;
4

. NPT . c el - '
‘this, take x € M' . Now using the non-nsgativity of T and the

regularity of kl,'kz , "we obtain

0=r1(0,0,0,...,0 )

X X -
"“n+1’ "n+2’

[(k k) M 9,1 (0,0,...,0,% /X openn)

iy

kl(O,O,...,O,xn+l,xn+2r---

) - kz(O’G’...,O,x

-

kl(x) - kz(x) +‘- z 'bixi
i=n

> kl(x) ~ kz(x) 'asA n > o

5

E

< B _ _ . _ . - .
Thus, 0 =< kl(x) kz(x) (kl kz}(x), whenceé .kl k2 is non negatlvg.

e e D ——.—Next—,—rwee%aiﬂktha%if—}%lrkziafé%egful&r—aﬂd—ki-.kz—z%—,—w

— 7ngthenfmkigé;kjmjwuwemﬁizstgestablishgourgglaimﬁingthegcasegwhenggngis
. - ) + - .
non-negative (i.e., x € M"). Noting that x € M implies that

' : +
kl(x) > kzéx), we assume that there exists some x € M such that



kl(x) > ké4x). Let ”x” = sup in,,é b . Therefore, the sequence

b

>

1

— Lo —

=

49

~ X 1is non-negative. Since kl-kz‘ is non-negative, (kl—k2)'(5-- X)

o.

That is,

Q
IA

(kl-kz)(b'— x)

7

Kb =% -k (B -

ky(B) =k (x) = k,(b) +k,(x)
b -k (x) -b+k,(x)

K, (%) +’k2(g) ,:

which shows that kl(x) = k2(x). This is a contradiction to our

R = : - - - +
assumption. Thus, kl(x) = k2(x) for all x € M

»

Now, we accomplish our claim in the case when x € M is

4

arbitrary. We know that x =x - x

and both rx+ and x-’ are

non-negative (Definition 2.19). Therefore, in the light of the

pPrevious result, kl(x+)'=~k2(x+) and kl(gj) = k2(x-). ‘Thus, we have

>

o
kl(x) = kl(x -x ).

() -k
ky (5 = k) (x)

x + . -
k2(x ) - kz(xrf
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This establishes our claim.

We now continue with Case III.  From (18), we have

f = Alhl + gl-g2 ’

-

(19)

, + :
where A, > 0, h1 € R and 9,7 9, € L . In order to get the required

form, we wish to showrthat' gl = 92 . For this purpose, we empioy

our usual technique. Then from (19), for each i ,

- i, _ i iy N -
0 =f(e) =2 hl(e ) +‘gl(e ) .g2(e ) = a; b, .

- 1

Hence ai = bi for'éééh7”im[myhénaéwiimféiiowéﬁiﬁéfmmgiﬁ;'g2 B

Consequently, from (19),

B + : . T .
where A, >0 and h. € R'. The proof of Case III will be complete

1 1
if we determine the value of A1 . We proéeedvas follows. From (20),
! e el

1l =f(e) = alhl(e) = Al lim e = Al-l = Al ke

Now let h be any non-negative regular linear functional on M . Then



letting ¢ =1=A and h, =g in (20), we obtain

1 1

f=cg=cg+0=cg+ 0*h =cg+ (1-1)h = cg + {(1l-c)h .

This evidently shows that the theorem holds in Case III also.

Case IV, We intend to.demonstrate that this case is_
impossible, that is, o0 and T cannot be chosen respectively as in
Theorem 2,16 and Theorem 2.15. Thus, Theorem 2.26 holds vacuously in

this case.  Suppose,on the contrary,that ¢ and = have the

representations given by Theorems 2.16 and 2.15 respectively./ Then it

Lk

follows that o = (kl—kz) + gl, where k1

5 €ER, 9; € L , and

T = Alhl + 9, where A, is a non-zero c»onstant,,.‘]:lu1 € R{ 9, €L .
Therefore, in view of (15),
= - = - + - - .

£ o T (k1 k2)’ 9, | Alh1 792 (21)
let (ai), (bi) be the sequences in 81 , corresponding to . gi; 9,
respectively. We have already shown, in Case I, that A1'> 0 and
h1 > 0. Also, in Case III,.wérshowed,that kl = ké . Thus, from
(21), we get 7 - o



where 9,0 9 €L,Aa >0, h, € RY .

2 1 1
As before, 9, = gé . Now from (22), we have ‘
f = -aA (23) °
Ah, o . ,
. . o
where 2 >0 and h, €R . Evaluating f at e, we have A =~-l'. . "

This absurdity leads to the conclusion that Case IV is impdssible.-

Thus the theorem is proved.

It is easy to see that ¢, g and h are not unique in -

v

Theorem 2.26. : . . oo

a

From now on, we shall be concerned mainly with the direct

sum of two subspaces. We, therefore, state the following definition.

Definition 2.27. A linear space X is called the direct

sum of twoe of its4subspa¢es M and N if
(i) X=M+ N,

(ii) Mmn N = {0} ,

P

where 0 is the zero vector. In this case, we write X =M ® N .

We recall that [R] and [R+] denote the linear hulls of

R ana R' respectively (Definition 1.17).
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- } R o
It is natural to ask how M , [R] and | are related with

one another. An answer is given in the following theorem.

Theorem 2.28. M* = [R] &L

3

Proof. We know (by the earlier remarks) that [R] and L
o, ,
are subspaces of M ~. Therefore, to prove the requi;ed‘asgertion, we
: * 7 L V 7 o
- first show that M = [R] + L . It suffices to show that
*
M < [R] +1L
. *

To this end, let f € M and let f have the representation

given by Theorem 2.15. Then, there exist h €R , g €L and a non-

zero constant A such that f = Ah + g . Obviously, Ah € [R]. This

shows that f € [Rj + [ , which leads to the conclusion that

= />~ . <
-
i

M'KEE'IRI”$’LWT"”"””"’ S

- Now, let £ be given by Thebrem 2.16. Then there exist '

k.-k.+g. Since k.-k_ =

kl,k2 € ? and g € L such that £ 17k, 17K,

1k, +(-Dk

, € [R], it follows that £ € [R] + L , which shows that in

this case also,

Our next task is to ensure that [R] 1 L = {8}, where 6 is

the zero linear functional. Of course, 6 € [R] N L . The proof will



be complete if we show that no continuous linear fuhétional, other than
6 , is in both [R] and L . Assume the contrary. Then there exists
a continuous lihear functional £ such that £ € [R1 N L and f#6 ..

Now, since £ ¢ tR], there exist fj € R and scalars ,“j (1 =3 =<n)

such that f = alfl + ... + anfn . Consequently, for each i € N,

fle’) = a. £ (e’) + ... +a £ (eV)
1 . nn
=a,*0+ ... +a 0 =0 . (24)
n. ) )
Again, since f € L , there exists'-(ai)>€ 81 ‘such that f(x) =

a,x, . for all x €M . Since f # 6 , we have a, #0 , for
1 . s N ’

ft o1 8

i

- o R - _ [ S

some i . 4Then
i
fle) = ai #0 . (25)

From (24) and (25), we arrive at a contradiction. Therefore, we
conclude that no continuous linear functional, other than © , belongs

to [R1 N L. Hence, [R1 N L = {6} and the proof is complete.

- " . The following lemma establishes a relation between [R] and -

R].

Lemma 2.29. [R] = [RT1 .

-



+
Proof. We need only show that [R] ¢ [R']. Consider
£ € [R1. Then f=af + ... +af , where f, € R and a, scalars,
B 11 nn i 1
1<i=<ssmn, But, by virtue of-Theofem 2.26, for each fi (1 =i <n),

+ - R
there exist g hi € R and a real number c; such that

fi =c.9;, *+ (l—ci)hi . Consequently,

-

= -C, : - e +(1-
£ | al[glgl+(; c12hl] + a2[c2g2+(l c2)h2] + f an[cngn (1 cn)hn]
+ al(l—cl)hl + a €59, + a2(l—c2)h2 + ...+ ancngn+an‘l-cn)hn,

=359 2

where g, h, € R' (1= i <n). This exhibits that £ € [R'], ‘and
we are done.

The following theorem gives a stronger -result than

Theorem 2.28.

_ * +. .
Theorem 2.30. M =[R'1®L.

J"lé%i‘;'

Proof. The proof is an immediate consequence of Theorem
2.28 and the preceding lemma. -

We conclude this chapter with a brief discussion of the
structure of a continuous linear functional on M . -This discussion

takes the form of the following theorem.
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Theorem 2.31. Every continuous linear functional on M

can be written as a linear combination of at most two non-negative

¥ . .

_regular linear functionals and an Bl-multiplier.

-t

. . .
Proof. Let f € M . Then in view of Theorem 2.30,

+
there exist . fi € R, scalars Ai(l <i=<n and g € L such

that‘

+ Azfz +on + Anfn +qg, : (26)

Hh
Il

M1

where each Ai # 0 . The following;gases can arise:
Case I. - Ai >0 for each i

Case II. Ai < 0 for each 1

Case III. A. <0 and A.. > 0 for some
1 1o .

-

In Case I, the expression A_f_  + ... + A £ ~can be
11 nn :

replaced by : - R - e
(A1+}2 + ...+, (?7)

where
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Al ln ,
O=——f + ... F=—Ff . 0 oy
n. 1 'n n o | ‘

; 2)\1 Z~Al
-i=1 . i=1

’ + L s I .
Moreover, 0 € R° due to the following reason. o is a continuous
linear functional as it is a finite linear combination of continuous
linear functionals. Also, since all A and all f, are positive,

it follows that o € N . Furthermore, for x € c ,

/' )
ag(x) =/ + . + n lim x = 1lim x .
f n n ! . .
boToa, Z A -
bi=l . i= /
Thus,
f = (Al+12:+ ses + An)o + g=nARa0 +.g ’ (29)

where o € RY and g €L .

I I i : + ... + >
n Case 1II, the expression lel + X2f2 ann can

be replaced by

(Al + ...+ An)t R (30)
where ' j&
. y )
//
Al A
T = fo+ ... + n R (31)
n 1 n n
z Al LA
i=1 i=1 1



5

. + - : * _
We now show that T € R' . Clearly, 1 €M . Also, t 20,
. ' A' - . .

" is positive for each j (j = 1,2,...,n) and £, 2'0"’

n
LA -
=1 ’ 7 ) | eI

because

. ‘ : é
for each iv(i =1,2,...,n). Furthermore, reasoning as in Case I,

we can show that T 1is regular. Hence ‘T € R . Thus, , -

= + ...+ +g= +qg, B )
f (Al An)r g . B; g - (32)

where 1t € R' and ‘g €L . : o 3 . T {

Finally, in Case III, without loss of geﬁerality, we qén
assume that Xi >0 for i=1,2,...,p and A; <0 for

... ¥tA £ ) =
nn

i = pt+l, p+2, ..., n . Then the expression (Alf1 +
+ ...+ ) + . “by
(Alf1 }pr) (Ap+lfP+1 f + Anfn) can be replaced by
(Al + ... 0+ Xplkl + (AP+1 + ...+ An)kz ' 0 (33)

where

Al A

k = f +.-..+—'-Lf ’
1 p . p p
LA %A
i=1 i=1

and



A A
k., = —EL ¢ + ...+ n £ .
2 n p+l n n
T Aj ' z A
J=pt+l J=p+l
. | .
As before,. kl, k2 € R' . Thus,
= P + (X + ... + +
£= (A + Ap)kl (Apﬂ Ak, + g

+ +qg, .
Ak, A2k2 g .

where kl, k2 € R" ang g €L .

L

From the above discussion, it is evident that in

representing . £ in Theorem 2.30, the number of linear functionals

4 o
from R need not exceed two, as asserted.
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CHAPTER 3

EXISTENCE THEOREMS

4

In the last chapter, the'existence of a continuous and regular

linear functional T ‘on M was required in Theorem 2.16. In this

3 . ' - - . -
chapter, we prove the existence of such a T , using the Hahn-Banach

extension theorem. In fact, the present chapter is devoted to a
systematic study of the existence of various types of linear functionals

. -

on M and finally, of Banach limits.
‘Our first theorem, shows that Rf £ b,

‘Theorem 3.1. ThHere exists a linear functional on 4 which

; : : ‘ : . +
is continuous, regular and non-negative, i.e., R # 3.

Before turning to the proof of the above theorem, we need a few

Y

preliminary lemmas.

Lemma 3.2. let f be any linear functional on ¥ such that

f(x) < lim sup x for all x £ M - Then

av

lim inf x_ = f£(x) 'S lim sup xn -

- A
A

Proof. Since .f(x) < lim sup x _.for all x € ¥, replacing x by
21991 ; n : :
‘-x, w2 have f(-x} = &M sup (—xn). Tharefore, -f(-x) = - 1im sup-(—xn),

which yieldsfi(xiz*-limfsu? (-xn) = lim inf X which is what we

wished to show.
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T Lemma 3.3. Let T be a linear functional on M . Then f € K

if, and omnly if, 4 -
(*) for all x ¢ M, 1lim inf x < f(x) < lim sup x -

Proof. Suppose that f satisfies (*). We wish to prove that

— e e e e -
£ € R. It suffices to show that f is non-negative and regular. To

this end, consider x € M such that x > 0. Then 1lim inf X >0 . |

Therefore, iQ;Yi@!iQ£,£3)L“fiXI > 0. This means that £ is non-negative -

Now, let x be a convergent sequence. Then lim inf x' = lim x = )

lim sup x . Again, in view of (*), £(%) = lim x, whence £ is regular.

. . . ) L
To prove the reverse implication, we observe that f € R implies

that f 1is non-negative and regular.” We wish to prove (*). ”1EQKQESu1t

. is trivially true, in case x is i,;:onvg:gentjeqnencet, , ,mt,,,x,ﬂ,,b&,;,,i,,i,_
arbitrary. Then since x 1is bounded, we can choose convergent sequences
y and 2z in M such that y<x =<z and such that liq¥§L= lim inf X v

~

lim z = lim sup X, - To accomplish this, let

. = inf {x., x, X, e .
¥y it Tiel" Ti42’ b
i
= PO S - ap 1 L4 A ¥
A~ 2 St . . ] Y = 172:3r-+1-
- 1—1 Uy \Al; 1+1: 1*21 A % rrrer;

s 4

Then Yi < xk for k 2 i ard zi > zk for k > i, where i.= 1,2,3,... .

This implies that ¥ = x; = z, for all i . That is, y € x < z. By
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~ the definition of 1lim inf and lim sup,we have that (yl) and (yi) ¢}

converge and therefore, 1im y = lim inf X lim z = 1lim sup xﬁ,.

x
" L

Now y < x implfes that x - y = 0 . Also, since f is non-
negative, £(x-y) = 0, whence f£f(x) > f(y), which shows that ' £ is

monotone. But £ regulat implies that f(y) = 1lim y . Hence,

ST  ;‘ lim inf xn = lim y .= f(yy?f f(X);' (1)
A similar argument reveals that S ] _ . e =
f(x) = £(z) = 1lim z = lim sup xn . 7(2)

The required result now follows from (1) d (2). This completes the

proof of Lemma 3.3.

-~ Proof. (Of Theorem 3.1). By virtue of Lemmas 3.2 and 3.3, we
have, for any linear functional f on M ,

S : . ' J

£(x) S limsup x = £ €R . ’ (3)

We shall show that there is a linear functional f on M satisfying

E 3

. the property on the left hand side of (3). To this end, for—x €M,

let pix) = lim sup X . Then from (3), we have, for any linear

functional f on M, ’ .

f(x) <plx) = £€R . . (4) ~o

L
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Now p is subadditive on M ;, because, for x, y € M, p(x +oy) =

lim sup fxn + yn) = lim sﬁp xﬁ +’lim sup’yn-; p(x)‘% p(y) .  Moreover,
for a > 0 and x’E M, p(ax) % limvgup (qxn) =.a»lim sup x = p(g).
‘Now le£ 2=1lim~ c -+ Rl, where c¢ is the subspéce of M of all

P : ,
convergent sequences. It is easy to see that ¢ isAa linear functional

on Gw. Furthermore, £(x) < p(x) on c¢ .. [In fact, £(x) = p(x) onrc].

Hence, by the Hahn-Banach extension theorem (see,e.g.,Maddox [3 ],

p. 121), there exists a linear extension g of £ to M such that

g(x) < p(x) on M. It now follows froﬁ<(4) that g € R". Hence the

theorem.

i
B

Theorem 3.4. There'exists avlinear functional on M which is

continuous and regular but not non-negative.

Proof. Let £ : M~ Rl such that £ = 2g-h, where g, h € R,

a

That f 1is continuous follows from the fact that M* is a linear space.
‘Now take *x € c. The regularity of g and h yields that
f(x) = 2g(x) - h(x) = 2 lim x - lim x = 1lim x . 'This means that f is

also regqular.

+ - .
Our next task is to find g, h € R so that f = 2g-h is not

non-negative. To this end, we define 6 8. : M> M as follows:

1" "2

=

ﬁl(xl;XZ,XSTQ--) = (xl,x3,x5;...) '

1 X _yeee) .

. (X, , X ,X_,.0..) = (x2,x4 6

271273
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Then for x, y € M gndj%or any scalars a, B ,

Gl(ax + By)- el(axl + Byl, ax, + Byz, ee.)

+ By . e-n)

+
(agl Byl, ax.,

,,,?ﬁ(axl, OX.ye ceo) + (Byl, BYBJ PSR
=a(x., Xy, «..) + B(yl, y3,’ ees)

s 1 3

o Gl(x) + B &1(y) .

o

It follows that 61 is a linear operator on M . Similarly, it can be

shown that 62 is-a linear operator on M . 'Now we intend to prove

- that 6, and 60, are bounded. For this, let x € Mf'béf'a"fB’i'Efa'i'?f’W'”"' -

1
Then

Hel(x)H = Hel(xl,xz,x3,...)” = ”(xl,x3,...)H

e Ixl
i= ~l,§,5/;‘. .o
i S < sup lﬁl

j=1,2,3,...

O ' - : ' g
o= ixll = 1-]Ix|




d

A similar argument reveals that ”ez(x)H < 1.}

x||, which is what we wished

65

to show.
Now let o0 be a continuous, regular and non-negative linear

functional on M , the existence of which is assured byf@heérem 3.1.

Define g on M as follows:

Then clearly, g : M> R . Also, for x, y € M and for any scalars

o, B, we have

g(ax + By) = 0 o el(axr+ Ry) o(el(ax + By))

q(ael(ﬁ) + B8 (v))

a§(el(x))’+ BG(Gl(Y))

aq o-el(x) + BO o el(y)

ag(x) + Bg(y);

this shows that g is a linear functional on M . Moreover, g is

continuous, being a composition of two continuous functions. Next,

S ne
we check the non-negativity of g . We consider any x € M -. Then

using the non-negative property of ¢ , we obtain
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glx) =0 q,arizl

o0,y )

c(xl,x3,x5,...} >0,

which reveals that g is non—negativéi Now in order to verify the

regularity of g , we consider any sequence x € c¢ . We note that

lim el(X) = lim 92(x)'='lim x . ‘Then using the regularity of ~o we — — ————

have

1l

g(x) =0 o Ql(x) = U(Bl(x)) lim el(x)

lim(x)

+ T ‘ ,
Thus we have shown that g € R . 1In a similar fashion, we can show

that if 1 is a7cdﬂ£iﬁﬁoﬁs,7£é§uié}”éndrﬁéh;negéfive7iiﬁe§i7fﬁnctionél
on M, then h=1 o 62 e RT . 1t haslalready béen established (in
the beginning of the proof) that g, h € R implies that f = 2g-h

is a continuous and reqular linear functional on M . Now we wish to
prove thét f is not non-negative. To do this, let us consider

the bounded sequence (0,1,0,1,...), which is evidently non-negative.

Then using the regularity of o and 1, we get

£(x) = (2g=R) (x) = 2g(X)~h(x) = 2(0 o 6,(0) = T o 6,

= 20(91(x)) - T(Bz(X))



20(0,0,0,...) - t{(1,1,1,...)
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2x0-1=-1<0

it

This proves that £ is not non-negative, and the thearem follows..

2 1im(0,0,0,...) - 1im(1,1,1,...)

Theorem 3.5. There exists a linear functional on M which is

continuous and non-negative but not regular.

Proof. Let us consider the function f : M - Rl defined

[

as follows:

o

f(x) = I —% .
i=1 1

Since the sequence—(-%p € 81 , £ € L (Definition 2.7). Hence £ is
‘ i .

linear functional on M that is continuous but not regular (Theorem
It remains to show that f is non-negative. To do this, consider

x € M such that x > 0 . Then

a

2.6).
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Theorem 3.6. There exists a linear functional on M which .

is continuous, but is neither regular nor non-negative.

Proof. By virtue of Theorem 3.1, there exists a linear
functional g on M that is continuous, regular and non-negative.

Define

Then f 1is a continuous linear functional on M (since M* is a linear

space). It is not hard to see that f is neither regular nor non-negative.

Theorem 3.7. There exists no linear functional on M which is

regqular and non-negative but not continuous.

Proof. A non-negative linear functional on M is continuous

(Theorem 2.13).

The proof of the following theorem is quite lengthy and involves

vector space terminology. Thus, sequences in M will occasionally be

called vectors. Furtheremore, all bases are Hamel bases.

Theorem 3.8. There exists a linear functional on M which is

regular but is neither continuous nor non-negative.

Proof. lLet c, = {c3§a € A} be a basis for c¢ and
o . - [ S _
m, = {baga € A'} be a basis for M . We can assume that 4 C A' and

{1

m, , because, we can always extend a basis for ¢ to a basis for

, L ' bu
M . We normalize the basis vectors as follows. Let ba = b 1
\ B s 811

and



c =2 . Let m' = {bﬂ]a € A'} and ¢ 7=7{calq € A}. We claim that

m' - ¢' 1is an infinite set.

Assume, on the contrary, that m' - ¢' is a finite set. Then

there exist n - 1 linearly independent vectors X 1XpreeerX such

1 At — I s
that m c {xl'XZ""'xn-l}f whence m c' U {xl'x2"'°'xn-1} is

] =n - 1, where

a basis for M . Obviously, dim [xl,xz,..

[xl'x2""'xn—1] is the linear span of’ xl,xz,...,xn_1

" We first find vectors (these are sequences, of course)
2 ] . .
yl,y ,...,yn in M such that they are linearly independent and so
that no linear combination of them is convergent, except the trivial

one (i.e., when all scalars are zerc), as follows. For j = 1,2,...,n,

define

1, for i = (n+l) k + j, where k = 0,1,2,...;
0, otherwise.

Now, for any scalars Aj’ j=1,2,...,n,

o .
Iy e g
E x Y - (lexzy---,In,U,rln;,...,Xn,CY,..j r

so that the sequences yl,yz,...,yn evidently fulfil;oﬁr requirements.



Now, since yJ EM (5 =

for each j

A.., 1=1,2,..
ji

W PN .
«That 1is,

there exist scalars 6ja

.,n-1 such that

70 o

1,2,;.,;n}—and—hml:—isAagbasis4for4‘M‘7““““““‘*

, & € A and scalars

7
n-1
YJ - E 6 C + Z A.i X ’ j = l,2,---,n ’
Q€A =1
o C~ o
where the first sum is finite. Eqguivalently,
yl = I § el 4+ A x, AL X+ ...+ A X
la o "1171 1272 1,n-1"n-1 "'
o €A
no_ § c 4+ A %X + A .x + + x
4 z no nl’1 n2"2 " n,n~1"n-1 °
a€A ) - ) ) - S
let c? = I - c; r 3 =1,2,...,n Then
a€h I
n-1 ’
1
y = cl + I A, ’
. 1i° i
i=]1 -
o _n-1 R _ .
Yy =c 4+ I A _.Xx,
. i
_ i=]1 _ e
L
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n-1 -
yPoct = A x

. 1171

i=1 .
n n n-1
y -¢ = .Z Anixi

i=1

S R SO
Note that each vy c’ € [xl,...,xn_l].

Next, we intend to prove that the vectors yl-cl,yz-—cz,...,yn-cn
are linearly independent. To do this, consider
11 n n — . '
Al(y -c7) + ...+ An(y -c) = 0 , where Aj(J =1,2,...,n) are scalars.

This yields

. 1 2 n .
But since ¢ , ¢, ..., C are all convergent sequences, SO 1S

chl + kécz + oo+ Ancn . Hence the left hand“'side is also convergent.

It follows, by the property of the yj's, that Aj =0 for
i=1,2,...,n. Thus, werhave been able to find a linearly independent

set yl-cl,yz-Eg,;,.;yn-cn of n vectors in [m'-c'] = [xl'x2""'xn-l]/A

which is a space of dimension n-1. This is a contradiction and so

L} T . . . : .
m -C is an infinite set. .

Now let'{b; ,béj,.,,,b; ,...} be a countably infinite subset of
S 1 2 : n » '

m —c'. We note that for each x € M , there exist unigge scalars



Aa , o € a' such that x = Z 'X b' , where B;WE”mL"Taﬁd at most
a€A ’

finitely many Xa # 0. Define f on M as follows:

f(x) = f(Z A_b) = ¢ X: &(bl) ' : o j (5)
C!EA" a o ) (!€A' a a

where

lim’b; if b;ec', o
1 if b €m'-c' and o # a, .,
a 1

i if o =a, .
) . 1

We wish to prove that f is a linear functional on M , £ ~is.regular,

f is not continuous and f is not non-negative. . e

Obviously, f: M-~ Rl [since from (5), ¢1;7m, +'R11.; Tovvefify‘ )

"the linearity of f , consider x, y € M . Then there exist:unique’

scalars -A_ ,8 (a € A") such that x= I A b’ and y= I 6§ b
a a . . v a o : Ty
€A - a€A

where at most finitely many Aa‘ and 6& #0 . Now if B anqlly’ are

any scalars, then using (5) we have

£(Bx +yy) = £(B LA b’ + yI §, b
) o a S - - - T
- | )
7 ‘ = f(Z(Bka +*{6a)ba) - : §
. i a _ X
:'_ - \\‘ )

A



"

Z(Bka + YGQ?:¢(bq)
u .

b Bxa ¢(ba) +3 yGa ¢(ba)

o o

]

B Z Xu ¢(ba) +yv 2L Ga ¢(ba)
a ~ a

B E(x) + v E(y) ,

which évidently shows that f 1is a linear functional on M .

Next weé show that £ is regular. For this, we

consider any

x € c. Then there exist unique scalars Aa ,0 €A 'such that

X = L Xd c, - Then keeping in mind that only finitely many Xa #0 ,

—_ N .
we have '

f(x) = % A, ¢(c;) = £ A lim c;
. Q€A acp @

”1 f(b; ), 1 =1,2,3,... . Using (5) we have
, i , ) , o

[

=

1]

=

It
=
=
]

=
o

‘fxbai)l'= l¢§ba)

1

-

Our next task is to show that 'f is not continuous. We consider
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_ , . : - -
. ¥ g P
Since 1 + = , we cannot find a real number M such that _ s
B ’ - ’ . *
[£(x) ] < Mlﬁxﬂ for all x € M. Hence f 1is not continuous. Further-
more,it follows from Theorem 2.13 that f 1is not non-negative. This
7z
completes the proof.:
Theorem 3.9. There exists no linear functional on M which L

2 ’ ’ »?

is non-negative but is neither continuous nor regular.

Proof. Every non-negative linear functional on M is continuous

{(Theorem 2.13)}. ' 7 o

>

Theorem 3.10. There exists a linear functional on ‘M which is

- neither continuous, nor regular, nor non-negative.

Proof. In view of Theorem 3.8, there exists a linear functional

h on M that is regular but is neither continuous nor non-negative.
. N 1 .
Define . o T T
SN

‘-\

%, -

We observe the following: . -

(i} £ 1is not continuous, for if it were, then so would be

ff%llf:
X

|4

Ah = h, which is not the case.

>

P

»

{it) £ is not regular, because, for x € o, f{x) =ahix} = —

A lim x # 1lim x (since. & # 1).



B

(iii})

#

f is not non—hegative, since h not non-negatibe‘implies

that there’exists a non—negativé sequence y in M such

that h(y) < 0 . Then f{y) =

-

Ah(y) < O .

¥

This proves our assertion and the theorem follows.

Thus, it is evident from the above discﬁssion that we have

/

conSidered eighigdiﬁig;enzépﬁﬁﬁibili;iesAfQr~the*exi5tenceAQfﬂa#linear*AAA*ﬁwAAAuA#

functional on M . The reader may find them summarized in Table I.

e
£
3
{ Continuous | Regular Hon~négative Existence Theorem
: - oy
?, + + + + 3.1
4 , )
?Q + + - + 3.4
'“y?, _ + - + + 3.5
‘4. + - - + 3.6
3
5. - + -+ - 3.7 -
5. - + - + 3.8
7. - - + - 3.9
8. - - - + 3.10
*In the above table, '+' indicates the property holding and '-*

indicates the absence of the property.

,
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In the next few pages of this chapter, we shall be concerned

-.JA - » v 3 - :/
mainly with the existence of a Banach limit on M . We ,therefore, state -

the folléwing definition. ' -

befinition 3.11. >A Banach limit is any linear functional L

defined on M such that

-

{a) L{x) =2 0 if x 0 for-alln ,

e

£ .
L{ox) where o denotes the shift

1b) Lix) =
?(X) = G(xl;xzjrxg'l-'--) =7 (xzﬁtfgl-"i)l . B i
{c) Li{x) = k

1 if x = (1,1,1,...).

‘It is evident that L is non-negative and hence continuous
(Theorem 2.13). Now we state an important property possessed by a

Banach limit. The proof can be found in [1], p. 64.

" Theorem 3.12. If L is a Banach limit, then -

-

lim inf x < L{x) < lim sup 2n for all x € M .

&
=

As a conseguence of Theogem 3.12 and Lemma 3.3, we have a very

useful corollary.

Corollary 3.13. L € R’

In view of the above coroiiary, we are in a position to say
that L[ is reqular. Hence a Banach limit is a continuous, regular and

non-negative linear functional on M . Moreover, it is shift-invariant
L R

[Definition 3.11(b)}.



~ -~ - functionals are shift—invariant also. « The following theorem
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bur hext'véntuie is to demonstrate the>existence of a Banach
limft. The existence of continuous, reguiar and non-negative linear
functidnals on M has alreadyrbeen ensured by Theorem 3.1. We note
that not all members of R’ are shift-invariant, e.g., the functional

g of Theorem 3.4. We now wish to exhibit that some such linear

accomplishes the desired purpose.

3

-~ theorem 3:14. let s be & fynction defimed om M by -

A
o

xl+x2 . xl+x2+x'3 .

2 T3

s{x} = (x R I Then_ \

~ (ii) s is a linear operator. .
{iii) s is continuous. _
{iv} s 1is non—hegative.
(v) x> =si{x) =~ 1¢
: ™
/ a
(vi)y £€R =fos€¢R .

+
(vii} £ € R = f o 8 is a Banach limit.

Proof. {i} Since x € ¥ , x is a bounded sequence. Therefore,

there exists a real number M, > 0 such that }xb{ =M, for all n € N.

. x1+12+...+xn
Now, the general term of the sequence si{x} is s ., and
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R 4x_+...+ + 4.+ '
AR I L o b LY
| = = =M .
. o, n n 1
\ L
\\ Xi‘l’X 2+ con +Xn : ] } -
Hence = = Ml for all n € N . This implies that the
sequence s(x) is bounded, i.e., s(x) €M .
(ii) Let x, vy €M and a, 8 any scalars.. Then
\
N
N\
N+ = - . : N
S(Gx\?ﬂ 5(&"1"'8?1’ &x2+8y2, S
: +By_+ax_+
= {ax_ +8 ! Byl > BY2 )
1Y T2 vt
/ 2
- tox S )+ (@ 2y *BY, )
1} 2 r Ll Yll 2 ¥ L4 «
X, +X Y.ty
_ 172 172
- a(xl, 2 I .~.:.) + B(YII 2 s ~'-) ,

= a s{x) +’B s{y) ,

and we are done. -

el __{3i3i)} It suffices to show that there exists a constant M. such
1 B

that ls{x)il < M. fxfl for all x € M . ILet s(x) =y . Then
i |

X 4X +...+x
1l 72 n

n




o (Lalllenl )

. (lfxn+uxn:...+uxu )

n

sup llxll = llxll = z-lixll .

(iv) The séquence formed by the arithmetic means of a non-

negative sequence will also be non-negative.

(v) We first show that if z = (z .) 1s any sequence

llzzr?3l
of real numbers such that =z convergéé to 0O , then so does.the

Z.+Z zZ, +Z +2

se nce 0o = (z 12 P 2 3
e SRy T2 3

, --.). Since z > 0 as n =+ « ,
]

given any ¢ > 0 , there ef%SF?,,glﬂfvﬁm,EYhffg,,y _is the set of

natural numbers) such that

lz -0l <% for alln >N, . ~ (6)
n 2 7

.
L

If we let Ml = max(gzlg,fzzg,.},ffzﬂl_ll);}then we have, g?rf nz Nl P
N ?
. B 5
e vz
Tl TR TR T e Ty Ty T a” T %n
1 1
o _ I s — =




=

- + (n-N_+
(N -1)M, + (n-N_+1)

€
= (N_-1)M
< 1 1

7780

|
.
\
|
-
R

n .

which shows that s{(x) = £

*5
n

(xl-&) + (xZ-Z) + ... + (xn-Z)

n.

[xi-él + ]xz-Zl + ... 4 Ixn-&]

Seme?

: €
Choose Nz € N, such that for n > Nz ’ ln 1. 3 - This implies
(N, -1)M, (N -1 M, - :
that < — . Now let N_ = max(N_,N_.). Then (7)
n N2 2 3 12
gives Lah!,< %4+;§ =& for all n z N, , which is the desired . . .
-gonclusion.
Now we show that lim x = £ # 0 = lim s(x) = £ . Since x
converges to £ , x-£ converges to 0, i.e., xn-8 +0 as n+ o,
and hence [x -8! +0 as n->= , i.e., lim ]x -Z, =0 Therefore,
n .n > x «
by what we have just now shown, the sequence T = (Tn), where
1xl-zl + IxZ-Zl + ... +‘lxn-51
IS T ST ——— ., also converges to O . Now
. + ... + x + ... + X -né
1- n n

n h
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?i~€Viil'That - £ o g is a continuous, regular -and non-negative

1

(vi}. Since S'u?t{-*ﬂa:xzd?f ;WH-*R]' s, fFos: M>R .

81

Moreover, composition of two linear transformations is a linear

. transformation,whence it follows that f o s is a linear functional

-

on, M . In addition, f o s is continuous (since it is the
composition of two continuous mappings). That f o s is non-negative

is é‘krivial consequence of the facts that f and s are both rion-
*

: ’ Y
negative. Next,we show that f o s is regular. Let x € ¢ be such

that- lim x = £ . Then using the regularity of £ and result (v),

we get : ' : b

fos (X) = £({s(x)) = lim s(x) = £ ,

-

=3

. , +
which shows that f o s is regular and hence f o s € R'.

il

linear functional on M has already been established in (vi). It

remains to show that f » s is shift-invariant (Definition 3.11). It 4

suffices to show that, f o s (x} = f o s (ox), where 0 denotes

the shift ox = o(xl,xz,x3,...) = (xz,x3,...)., Equivalently, it
suffices to show that f ¢ s (x-0x) = 0. Now
- ". » .
P

- —— L 77”7£W’1;54(x:m”57Lgi%%”wwi'—i

o

e b 4

ree))

= f(s(xl—xz,xz-x3,...,xn—xn+l

.4
b kil LA AR i b3 it At s ek



- fix -x o s S R 1 n+l 3
172 2 g 3 Pttt n P
 imr-x xl-x3 xl—x4 xl—.xn+l 5
1 21 2 r 3 r s r n g oo el
X, -X_+ X, ,~X X, X -
. i 3 1 4 1 "n+l . ,
Note that llm(xl xz, 5 R 3 F oeens ” + +»-) exists and is
0o . It now follows that £ ¢ s 1is a Banach limit. -

In the light of the above discussign, we can say that there

. e . + Ny ' :
exist shift-invariant members of R . ?&ulvalently, there exist

linear functionals on M which are continuous, regular, non-negative

and shift-invariant. This ensures the existence of Banach limits on M.

-
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BNOTHER CHARACTERIZATION

OF

_CONTINUOUS LINEAR FUNCTIONALS ON M

-
In Chapter 2, it was demonstrated that T is the direct sum

of its”subspace§££2+} and | and that in representing anreleméhtuof:

M*, the number of linear functionals from R" need not exceed two.

In this chapter, we give another characterization of continuous linear

functionals on M in terms of fcharges', the concept of which is due

, - : o
mainly to P.L. Rosenbloom [5].

We begin our discussion with the following definition.

i i - H
Definition 4.1. Let 2 be the class of all subsets of N ;~

where N 1is the set of all natural numbers. Then a charge on '2N is
a function vy : 2N - Rl such that it satisfies the following

postulates:

(i) If A, B € 28 such that AN B = ¢ , then

AU B) = uA) + (B S

(ii) There exists a real mumber b > O - such that

I -



for ail a € 2N .

The postulate (i} is also called finite additivity of u .

Thus, a charge u is a real-valued finitely additive and bounded set

, N
function on 2 . _

As an immediate conséquence of (i), we have
p(g) = 0.

Furthermore, proceeding inductively, one can extend (i) in Definition.
4.1 to'give the result that for any finite disjoint sequence

. 7 N
- EjEoe.. /B Of sets from 2,

n n .
WCU B = T wE). (1) .
i=1 " i=]1
Now we give a couple of examplés of a charge. ‘ ./”
| , ~
. . Example 1. Consider a = (ai) € 81 . Then the fuynction

w: 2% > R', defined by

W(a) = I a, forall A€2 ,
. e , .

A Y

is a charge on ZN .

e
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Proocf. Iet A, B E‘”Zﬂ ‘such that AT B = ¢ . Then
i uAa UB) = I a = ZLa + I a = p@ + u(B).
i€aUB . i€a i¢B e
Moreover,
7 7 e =TT a,| = 1 |ai| =z Ja] <=,
T iea i€éa i€N , -
. ,a&zeqmmd; -
. Before we proceed to the next example, we introduce the
concept of the characteristic function of a subset of N .
- . Definition 4.2. Let A N . We define a function )
XA : N &> R:L as follows:
" . 2
1 if n € a ,
- T ' - : e ‘ ’XA(n) = ’ - .
- . . ' . 0 otherwisel .
Xy is called the characteristic function of the set A .
: ’ _Observe that Xy has the following properties: '
{a) XA" is a seguence of 0's and 1's.
b =e, . =0.
{b) ,(' e ,<§



ey

e
, a . : .
() x, 20, forall acn. i
(@ x, € M', for all acnN.
.
(e) If A and B are two disjoint subsets of: Nv,“ -
then ‘XAUB = Xp +.XB B B ) o
(£) ”XA“ =1, except when A = ¢ ,vin which case
M = . Véfi . 7
x I = 0 . Thus, Ix,ll = 1.
; * Z. N 1
Example 2. Let f € M . Dpefine p : 2°' > R as follows: .

) o
o
&
u

£(x,) , for all A € Al

where Xp - is the characteristic fupction of A . Then ¥ is qreyarge
I O

H . . ES
on 2 ., . . g

5
Proof. .Let A, B € ZN such that AN B = ¢ . Thzé

he

#(A U B) = f(xAUB} = f(;(A + xB) = f(xA) + f(xB) = L(A) + u(B).




Thus, u is a charge on N
The following theorem is analogous to a Jordan decomposition.

(¢

-

~‘theorem for signed measures. e

*

PR

: e — : : N ‘s
Theorem 4.3. Each charge p on 2 has-a decomposition
— o _ : s

intO;EHe,differencembﬁ'tWo nbn-négative charges so that =

3

ﬁ

, - ¥ - '
where | and u are defined on 2N as follows. For each A € 2N .

- ' \

. u+(A) sup{u(B) |B € ZN\, B C A},

-

.

'

]

— S uT ) = -inf{p@)yB €2, B cal . :

, . + . .
Proof. We shall first show that is a non-negative
- + he
charge on 2N . Obviously, u(¢) = 0: Consejuently, u is a non-
4
negative set function. That u. 1is bounded,is a trivial consequence

of the fact that y 1is bounded. It remains to show that u+ is

finitely additive. To this end, let AI’AZ € 2N such that Al n A, = $.

We wish to prove that - —— - — — 0 —

+ . _ L+ +
u;(AI o A2) =1u (Al) + (Az). - (2)



For this, we consider any B C A U»A2 "such that B € 2.

(B N Al) N (8N AZ)

have -~

Since the above<ineqaality holds for every B C Ai 3 Az , we get

Clearly,.

= $. Then by the finite additivity of £ we

p(B), = u{(BN Al) U@an Az)) = u(B.N Al)

.

+ + 4
u (Al U AZ) =y (Al) + (Az)-

: ..
+UBNA) WA @),

-

»

(3)

Now, to prove the reverse inequality, observe that

+ : R . .. ] .
u(A), n=1,2, is always finite. Therefore, given ¢ > 0, there

exists for n

Note that B1 N'B

1,2, a set Bn - A such that

2

+
?"Alﬂu,52? z v

= ¢ (e&ince A n A, = ¢). Consequently,

(B, UBy) =uE) +ue) 23 a) +u ;) - ¢ .

S R A, —

-

Since the above inequality holds for every € > 0, we have

+ i, + +
v (B U A) :Vu (a,) +u (A).

(4)



-

e - ’ o o ‘ . '””‘&Kﬂf o T 7”5”"7'"’7'7' T T/ 8’9’7 B -
T Thus," (2} has been proved and E;follows that §  is a non-negative.
- N N - 3
charge on 2 . ST -
L] ' - < Y
Next, we consider u . Clearly, p(¢) = 0, whence .
-4 () = infiu(B) !B <A €.2N} < 0 for every A € 2Nvl . Consequently,
§ is a non—négative set function. Moreover, proceeding . L=
, + - - B ' A
L as in the case of ¢ ., we can show that 4 ..is .a charge -
on ZN .
o ~ ﬂ . N . + . _ 5 . . »
Our next venture is to show that u = o= w . It suffices -~ —
. o+ - '
to show that u(A) =y (A) - 4 (A) for every A € ZN. To this end,
let B € A be arbitrary. Then, by the finite additivity of up , we
have
\- 7
b . -
PR . #® =uBUGA-B) B
i = u(B) + pu(a - B) .
Since puy 1is bounded, ‘u(A - B) is finite. Therefore,
‘ u(d) - u(aA - B) = u(B) ,
o _ . O s
that is,

u(,B)' = p(A) - p(a = B) | =u@) +yu (a)

> p(a) - u(a)



because of the facts that u(aA - B) > inffu(E)lE C A} and

p(a - B) = sup{u(E)lE C a}. Since the above inequalities are true for

all B € A, we have

+ -
p (A) = u(a) + u () (5)
J '
and
, - . T :
-u (A) = u(a) - p (A). : (6) .
- + . o .
Now as u(A), u (A) and u (A) are finite, we can transpose in thease
inequalities and get :
. e - N St A S
p (A) -~ u (A) = p(A) =pu (A) - p (A) . , .
This completes the proof of Theorem 4.3. :
s sas : N 1 \ . é
Definition 4.4. Let\\lgl : 2 >R Dbe a function such that ‘ :
A + - ’ : '
. lul = u +uo. :
It is easy to see that |[u| is a non-negative charge on 2" . ¢
) We claim that the charges can be used to represent members %
of M. 1o this end, we wish to introduce the notion of the integral E

R AR st a1



of a bounded sequence with respect to a charge u . This involves

the concept of a partition.

Definition 4.5. By a partition of N we mean a finite
- ' e

collection E,,E,,...,E_ of non-empty subsets of N such that

, ‘ , o R
- (i) EiﬂEj=¢,for i#g, R

i=1 ' *
Definition 4.6. Let ﬂl = (El'Ez""'Em) and
T = (Fl'FZ""'Fn) be two partitions of N . Then T, is called a

refinement of w. if each Fj is a subset of some E

1 k

. - <
write Tl'l = TT2' .

Note that the relation of refinement gives a partial ordering

of partitions and every pair of partitions has an upper bound, e.qg.,

the "superposition" of two partitions, where by superposition we mean

a refinement of the two partitions consisting of all non-empty sets of

1

. the form E, NF,, where E, € 7. (L <i<m and F. € L]
i j i . J
“1<3<n. L -

— Now we are in a position to define the integral of a bounded

, N
sequence of real numbers with respect to a charge uy on 2 .



92

Definition 4.7. Let x € M. Let u be a charge on

We say that the inté€gral of x with respect to the charge i

(where £ 1is a real number, of course) and write fx duy = £

r

for every e > 0, there exists some partition 7 of N such that if

(i) =, = (Fl,Fz,.

(ii) ¢, ¢ Fi, i=1,2,...,m,

then

i(i X, u(Fi))-Zl < ¢

171

18

-—,Fm)' is any refinement of #© and

For a proof of the existence of the integral, see, e.g.,

Faylor [ 71, p. 402.

Definition 4.8. For a sequence x € M , we define

o

L \
x| = (Ixii) .
= Note that for each - i—i* J[Xijg*’_‘fsup hti'f =izl —rhus; -

Ix| < Ixlle , for all x € M,

where e is the sequence (1,1,1,...).



Now we state without proof a few standard properties of the ——————

integral which we shall need later:

(1) [ix+yldr = fxau

(i1}

i i £ . :
fiii) ;fxda; T pEidiu.

. s 4
(iv) x <y = )xdu 7 :yd..

() fzdzu‘ = cuin},

where

The following two theorems

-
+ Py ix 3
terms of the charges on 27 .

L 4
Theorem 4.9. Iet £ ¢ H
on 2 suzh that
Ei{xy =
for all x ¢ U
2root. Cefins a fanozicon

L ! N
kadg = ajxdw , ¥ any scalar.

>3 .
- is the const
give a character

Tnen there
’.;ﬁ
4.,
- .
-t L
2 =~ R by

+ fydu and jxd:l+fxd:2=jxd{u +;

o
S

sezuance

exists a charge
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3(A34;”§Ex#), aeV

wners Lp is the characteristic function of A . It was already

. — ‘ N
shown in Examﬁle 2 that u is a charge on 2 .

-

Mext, we intend to prove that £(x) = fxdu , for all x € M .

To this end, comsider any »x £ M . Since x is-a bounded sequence-

s A
and £ £ M, there exist constants B and k such that

-B < x. < B(i ¢ 4} and ,f(x}; < x xo(x €.
Let = > 0. Subdivide the interval ({-B, B] into n equal sub-

intervals, each of width h < by taking equally spaced points

wlm

-B, -B+h, -B+Zh,;. ..., =-B+{n-i}h, -B+4rh{=B). Then clearly, nh = 2B.

Furthermore, let the sabinter#éls be 11'12""'In where 3§\
-B+nh], =0

-B+2h}, ..., I =
n

I, = [-B, -B+h], I, =(-B+h,

2 (-B+(n~l)h,

that the subintervals are disjoint. Xow, define

is a partition of N .

5f T . Further, let ii EVP,, i'=71,2,.,.,m.

1

£
4
|
®
‘
1A
)
A
o m

i



$

%

- for each 3 é?i {since 3 an&"'ti belong to the same Fi and

hence to the same Es};this implies that Xj and xt lie in the

- i
m
same subinterval IS . Also, note that if y = & X, XF , then
' i=} i i
yj = X, where j £ Pi . Therefore, for each 3 € N,
i ,
i ' £
I ;‘ = {x. - X < — . tgy
B 3 ti{ k
whence
-yl < £, 10
08 S (10)
?

,“nﬁgﬁence, in view of the above observations and the linearity of f , we

have M

l£(x) - x, p(Fi)l [f(x) - I x f(xF_)!

1 i i=1 i i

[ =

i

| £(x)

|

n M8
H
»

[£(x) - £( 2 x

|
Hh
=

I (x)

| £ (x-v) |



ey

S P B 3

s

This completes the proof.

‘.

Theorem 4.10.- Iet i be a charge on 2N

f , defined on M by

for all

scalar.

£(x) = [xdu

*
x €M, is in M
Proof. Obviously ., £ . M +—Rl . Let x,y €M and A any

Then using the standard properties of the integral, we have

£(xty) = [(x+y)du = [xdy + [ydu = £(x) + £(y) ,

£(OAx) = [Axdu = Afxdu = AE(x) ;

A

this shows that f is a linear functional on M .

x €M .

have

It remains to show that f is bounded on M . For this, let

Then the function

‘
o
Vo



Ux@.l = [ix] ajul = IH#H edful - e

e

Izl fealu| = |Ixl| - lul )

*
Consequently, £ € M , as required.

' *

Thus, we have shown that each charge u defines an f € M

by the formumla f(x) = fxdu , Xx €M . oOn the other hand, if we start
" .

with £ € M and define u by the formula u(X) = f(xA), A €N ,

then u is a charge and f(x) = fxdu, x €M .

We now reach the centre of our discussion. We kgow tﬁét the ;.
members of R’ and L played a significant role in the characterizationv//—J
of continuous linear functionals on M in Chapter 2. 1It is now natural S
to ask whether properties of a charge 1 can be determined which are
necessary and sufficient to'cauée the linéér functignaiirf(x57= fxdu

. . + . . . .
to lie in R or in L . The answers are given in Theorems 4.12 and

4.19. :

. Theorem 4.11. ILet u 20, i.e., u(A) 20 for all A € 2

Then f € N and conversely.

Proof. By virtue of Theorem 4.10, the function f defined

. -
on M by f(x) = fxdu, for all x € M, is in M . It remains to

- - _T_ .
show that f is non-negative. To this end, let x € M . Then using

property (iii) of the integrals, and the non-negativity of x and 1y ,

.
< w

we have



%

- 0= U'xdﬁ[ < [Ix]a|u| = [xan = £(x)

- Hence, f € N, as required.™

Conversely, let f € N . cConsider any A € 2NV. Then using ;

N :
the facts that Xa €M and f is non-negative, we have

n(a)

f(xA) >0

This completes the proof.

- Theorem 4.12. Let u 2 0, u(N) =1 and u(F) =0 for all
finite F C N . Then the function f defined on M by f(x) = fxdu
5
+
is in R+ . Conversely, if f € R and f£f(x) = fxdu , then ¥ has

the stated properties.

Proof. By Theorem 4.11, f € N . It remains to show that =
f 1is reqgular. To this end, consider x € ¢ . Let 1lim x = £ and

-

let € > 0. Then there exists n, such that ' -

[x,—£| <g¢, forall i=2n_. ' : (11)
i 0 - , ]
Let m = (E,,E;) be the partition of N such that o

E, = {1,2,...,n5-1} , E, =j{no,n0+1,no+2,...} .



S

Let T = (Fl,Fz,.,.,Fm) be a refinement o N'. Without loss of

generality, we may suppose that F_,F

S
1 o Fy E and

1

c . ' e ini
Fs+l'Fs+2" 'Em E2 Note thét Fl'FZf ,FS are finite set;

* : .
{since El is finite), so that ; ,.i\

u(Fi) =0 for i=1,2,...,s . ‘, : (12) N

2,.}.,Fm) is a partition of N , it follows

Moreover, since (Fl,F
. m .
that N= U F, and F, N F,=¢ for i# 3 . Consequently,
8 j=1 1 i 3 - -

1=um =u(UF) = IuE): ’ (13)

Now, let t; € Fi, i=1,2,...,m . Then using (11), (12)

and (13), we have

£ - ©x : £+« L u(F,) - Ix_ u(F,) :
T EET U T R :

=

—

|
I}

A 12
m ‘ .
= |z (£ - x, ) u(Fi)]
i=1 - i
|z |
= T (£ -x_ ) u(F.)
Cfestr 0 S o h e
m

1A

ro|e - x| u(E.)
i=stl by *



. m
. <e 1 urh ™
i=s+1 1
* m
i =¢e I p(F,)
i
i=1 ”
- =€ . (14)
Hence £ = fxdu = £(x), whence f is regular.
+ 7
Conversely, let f € R. .. Then by the last theorem, "y >0 .. . _

Furthermore, : o -

H(N) = f(xN) = f(e) =lime =1 .

Finally, if F is a finite subset of N , then

| | W(F) = £(x) = lim (x) = 0, 7 | ,
(-r ; o \\

since X, is a finite sequence in M
Thus, the theorem is proved. < : - .

In order to establish the proof of the hext theorem,we'
A S

firstkpresent the necessary background material.

Definition"4.13. A charge u : N5 rY is called

=S

completely-additive,provided it satisfies the following pbstuléte:

¢ .
ra
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. : T T "\i oo T/ T 7: B 7-77 .,,,, B 77"' 7.7”'7‘77 "Aﬁ.; T T T '77,;' - T’:’f-* -
- I ,{En} $&523 §squnge,of QlS]Olnt sets from 21:, then Ty
) L _ 7 Lo T e T
'T - " fé Z U(En) - R RN
. - n=1- ‘ : c :
- 7 M ‘
converges and o
o yw(UE)Y= TuE) . ‘
, B n n
, - n=1 n=1 .
- - Definition 4.14: Let x-€ M and A CN .- We define -
f xdu = fx 'XAdj‘t ’
A - j
where x-X, = (xle(l), XZXA(Z?"") EM .

Theorem 4.15. Let 1 be a completely additive charge on

27 . Let ‘{En} be a sequence of disjoint subsets of N and

s
Ey = U E - Further, let x € M* . Then

. I xduy = I f xdu . ) . ' \ ”(i\
S ST T T T E T n=l E — : -
.{;) "0~ n -

For a proof, in a more general setting, see, e.g.,

Munroe [41, p. 134.

o
"
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- Proposition 4.16. Let | be a charge on e Then- for B
every A’E 2N ,
fuar| = |ul @
Proof.
e ] = W@ -w @] = ]+ eT@]
=@+ (@
) =l ® .
as required. B
Proposition 4.17. |u| is monotone. -
Proof. ILet ACB C N. Then
L lu] ® = Ju] @ U & - a)
= |lul @ + |u] ®-n) -
> |ul @,
LR . oy
since |u| is non-negative.



Lerma 4.18. Let u be a charge on ”QN and let x € M .

N -
N

Then

{f}xdﬁ =x, » (ib .
i

Proof. In view of Theorems 4.8 and 4.10, there éxists

* o . '
f € M such that ,f(x)-=~f xdy , x €M and u(a) = f(xA),LA CN .-

Therefore, using Definition 4.14, we have

f xdﬁ = f_x_x du
{i} {i}

- = f(x ¥ )
s J iy = -

f(0,0,...,O,xi,O,...)

f(xico,O,...,o,l,o,;..))

X £¢,0,...,0,1,0,...)

r

x; £y _ ) = X, u({i}h) ,
{i}

as required.

Finally, we come to Theorem 4.19.
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~Theorem 4.19. (i) Let u : 2N + R

104

" _be such.that it is .

completely additive and bounded (i.e., a completely additive charge on-

2N). Then the linear functional £ on M, defined by

¥

Cf(x) = [ xau, for all x € M,

- ¢

is such that it is an element of L (i.e., f 1is an Zl—multipliéf"

on M)..
(ii) conversely, let f € L . Then the function u : 2

defined by

’

p(a) = f(xA) , for all A € 2N '

is completely additive and bounded.

LY

]

N o8
o1
%

Proof. (i) It suffices to show that f(x)

for all x € M , where a = (ai) € 81 . Now,

+ R

£(x) = [xau = [x a-p)
. i 'S
= fx dp - fx du
= x dau - x du

u{i},i=1,2,... U{i},i=1,2,...



A

.0

[ xdu+ - Zr;rjrxdpj< ” -
i=1 {i} i=1 {i}

Iox, pTdih

i=1

W™ 8

(-]

i=1

=

T x, M ({ih

i=1

x, W - dih

L x, n({ih =

The proof of (i) will be completé if we show that

(a.)
i

~

(t,) (_i Iail), of partial sums of

i=1

- (u({ih)) € 81 . To this end, we consider the sequence

a,|. Then using

Definition 4.13, and Propositions 4.16 and 4.17, we have

k - .k
6, = = gl = z lu({ih) |
i=1 i=1l
This shows that (tk) is a non-decreasing

real numbers, which implies that (t,)

k

is

1

<

n o=

la’ul ({l})

o i=1

]

k
[uf (U {i}h

i=1

'u]({l,2,...,k})

1A

Juf a2 -

and bounded sequence of

a convergent -sequence.
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Consequently, - ) ) -
® © . k ' .
T Ju{ih| = = tail = lim z Iail = lim t, <= ;
i=1 i=1" kK> o i=l k > ;
Thus, f € L
[
(ii). Let £ € L . Therefore, f(x) = L a, X, for all .
i=1 : . I

x € M, where (ai) € 81 . Let (Aj) be a sequence of disjoint sets
from 2N . Then using a rearrangement theorem for absolutely convergent

series of real numbers, we have

ao o©
uf ua,} =f¢ = I X (i) a
j=1 7 Ua, j=1 U~a
3>1 7 j>1 J
ao oo ) ) ~ B L B
= I (I x, (ia,)
i=1 j=1 Pj 1
oo oo
= I I x (i) a,
g =1 i=1 2

Now, since f € L , it follows that f is a bounded linear

PO R R s e —-

functional on M (Theorem 2.6). Therefore, for any A € 2N '

lum | = 1£6) | = mlix,ll = m .

bt 3 0



This completes the proof of the theorem.

Thus, it is evident from the above discussion that the
"k . . N
members of M _can be characterized in terms of the charges on 2 .
It is also clear that there exists a one-to-one correspondence between
* _
- the set M of all continuous linear functionals on M and the set
N .
C of all charges on 2 . The correspondenge between a continuous

linear functional f and its associated/charge u being indicated

by the two formulas

-

I
=
=
Qu
ho
b
m
=

£ (x) {15)

u(a)

i
Hh
<
w\/
i
T
¥
2

(16)

The above correspondence is;in factran isomorphism between the spaces
M* and C . Consequently, our structure theorems of Chapter 2 can be
formulated in‘termsjof the charges on 2N - As an illustration, .
Theorem 2.31 can be stated as follows. Every charge u on 2N ’can be
written as a linear combination of at most two non-negative charges
which satisfy the conditions of Theorem 4.12 and a charge which
satisfies the conditions of Theoreﬁ 4.19.

Furthermore, the spaces M and C( ‘become normed linear
spaces (in fact, Banach spaces) if the norms on them are defined as

follows:
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Hell = sup_ lf(X) , for all f ¢ M (17)
X + 0] x .
and ;
”U” = |u|(N), for all u € C . (18) %

*
Consequently, the correspondence between M and C given by
formulas (15) and (16) becomes an isometry. This means that if

f and u correspond to each other, then

—
el =l (19)
SO
We conclude our discussion by proving this fact. e
Theorem 2.20. If £ <> u, where £(x) = [xdu for all

x € M, then £} = [jul.

Proof. Using the standard properties of the integral,

we have, for each x € M,

l£x) | = |[xau| = x| alu| = lIxll [ ealu]| = |u}o0 -l

el = sue_ Lol < pyjen =l . (20)

X 0

whence
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Now we pfove the reverse inequality. Let € > 0 . Then,

. + - .
by the definitions of and U (see Theorem 4.3), there exist

N
R 2
Bl B2 € such that

) > W - e/2,
-u(B,) > u (N) - g/2

Let E =B_. (1 B, . Therefore, B. = (Bl -~ E) UE ='Al

1 2 1

UE

and B_ = (BZ -E)UE=a_UE. Clearly,nAl n A, = ¢ . Hence,

2

u(a)) - H(ay) =u(a) + wE - H(a,) - w(E)

u(Bl) —}u(th)

\

i) - € = ull - ¢

Let x=yx -x so that [[x|| =1 . consequently, -

| [xau]

lel = el - xll = 200 |

Ifoldu - foSUI

L1t

lua) - w@yy| > ful -« .

(21)
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Since € 1is arbitrary, we have
el = Hull, -7 (22)

as regquired.
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