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The inverse scattering method i; applied to the nonlinear resonant 

interaction of two oppositely diretted. laser beams passing through each 

other in a dielectr ic  f luid (an example of the three-wave problem). 

Assuming,that the lasev piofi 1 es are in i t i a l ly  rectangular, analytic 

closed form expressions are obtained far the time dependent transformed 

scattering coeffi cJents of the associated 1 i near (direct)  ei genval ue 
/" < 

problem. The &near inverse problem, which involves two coupled March- 

enko integral equations, i s  deal$ with numerically. The effect  of the 

nonlinear interaction on one of the laser beams i s  investigated. The 

solution obtained i s  seen to exhibit many of the features announced i n  

the 1 i terature by authors who have numerically solved the thrie-wave 

problem directly . 
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CHAPTER 1 

INTRODUCTION \ 

In the beginning man created out of the chaos of the universe the 

l inear  d i f fe rent ia l  equation, and he saw tha t  l i f e  was good; good as long 

as he did not look too closely a t  his world, a world inherently nonlinear. 

Today's physicists a re  entering regimes in which the resu l t s  of t h e i r  

experiments and theories can be modeled accurately only by u t i l i z ing  non- 

l inear  equations. Examples of th i s  would include experiments in nonlinear 

optics such as Stimulated Brillouin Scattering (an example of a three- 

wave problem) and theoretical calculations i n  gravitation such as the 

dynamics of rotating dense s t a r s .  As a result ,exploration in to  the f i e ld  of 

nonlinear par t ia l  d i  f fe rent i  a1 equations by mathematicians and physicists 

has grown tremendously. 
113 In 1967 Gardner, Greene, Kruskal and Miura sol ved the nonl i near 

Korteweg-deVries (KdV) equation by an approach now termed the inverse 
" ,  

scat ter ing method (ISM). Because comprehensive techniques fo r  solving non- 

1 inear problems, whether they be numerical o r  analyt ic ,  are  d i f f i c u l t  to  
. ~ 

find, great in te res t  was taken in a subsequent paper by ~ax[ ' l  in which 

he showed tha t  the ISM was not res t r ic ted  to  solving the KdV equation b u t  could be 

applied to  a larger  c lass  of nonlinear different ial  equations. Later theo- , 

re t ica l  physicists working i n  the f i e ld  of nonlinear optics raised the i r  eye- 

brows t o  a paper by Zakharov and co-workers 131 i n  1973 which demonstrated, 

' t ha t  in principle,  the three-wave problem could be solved using the ISM, i . e .  

a non-trivial analyt ic  solution to  the three-wave problem may ex i s t .  As a 

demonstration of the d i f f i cu l ty  of the ISM, i t  took these leaders i n  the 
i. 



f ie ld  two years (1975) t o  realize an asymptotic (t-t -) N - s o l i t o n ~ s o l ~ o n  
2' 

to the forward scattering case of the three-wave problem. ''I  anther group, 

[Bers, Kaup and Reimn-1 were able to give a more general treatment of the 
s 

LsY three-wave problem -by using numerical techniques' along w i t h  the ISM. 

In particular,  they used a WKB approximation to f i n d  the soliton regimes - 
for  the explo.sive interaction case of the three-wave problem; they "sed 

the ISM to  realize a soliton solution t o  the decay interactions case, for- 

tering of the three-wave problem in the asymptotic 1 imi t t -+ -; 

and they used both the ISM and numerical techniques to investigate the non- ' 
- 

sol i ton  so1 u t i  on to the decay interaction case, backscatteri ng, of the . 
three-wave problem where they assumed the in i t i a l  envelopes t o  be Gaussian 

(the ISM was only used t o  find a "closed form" expression for  the reflection 

coefficient, numerical techniques provided the actual solution). Of' the two 
id 

papers that presently exis t ,  one by Zakharov and the other by Kaup, which 

describe i n  detai 1 the 'general method of applying the. ISM t o  the three- 

wave problem, i t  i s  the l a t t e r  we have chosen to, follow. 

The ISM i s  based upon finding, associated to the nonlinear differential 

equation, a 1 i near differential equation and an evolution operator. The 

d i f f i cu l t ,  i f  not impossible, step o f  s ~ l  vi ng the nonlinear equation 

directly i s  avoided by executing a series of linear steps which include 

solving directly and in an inverse manner the associated linear differ- 

ential equation. 
-- - -  - --- - - - - -  - -- 

T h i s  method wi 11 be used to find solutions to the-three-wave problem 

as i t  i s  associated with stimulated Brillouin sGtteririg ( S E ) .  The laser  

pulses will be assumed t o  be rectangular in profile passing through each 

other, i n  opposite directions bbackscatteri ng) i n  an in i t i a l  ly undisturbed 
d 



medium. The asymptotic solut/on dqtained for  one of the beams wiTT 

clearly show the eff  of nonlinear interact& betweeen the 6 laser, 
' 

pulses beating and driving the .dielectr ic  medium a t  its Bril louin 

frequency. 
I 

The text  tha t  follows wi 11 begin w i t h  a description of the physical 

basis o f  the three-wave problem as i t  re lates  t o  SBS, fol lowed by an 

explanation of  the ISM, and concluding with de ta i l s  of the path taken to 

obtain wave envelope sol u t i  ons . 



THE THREE WAVE PROBLEM I N  NONLINEAR O P T I C S  

Consfder th ree  wave packets w i t h  wave vectors kl ,  by k3 and 
='- 

,a: 

c h a r a c t e r i s t i c  frequencies w l ,  w 2 ,  w g  s a t i s f y i n g  the  resonance cond i t i ons  

a + k  
I n  non l i nea r  o p t i c s  t h e  f i r s t  and t h  

1 . l  

i r d  wave packets represent  two in tense 

coherent p l  ane-pol a r i  zed 1 aser  beams beat ing  together  a t  t h e  resonant 

frequency, w2, of a d i e l e c t r i c  medium, through which t h e  beams are  

. passing wh i l e  the  second wave packet represents v a r i a t i o n s  f rom e q u i l i b r i u m  

o f  t h e  d i e l e c t r i c  constant  o f  t he  medium. L; 

The e l e c t r i c  f i e l d s  o f  t h e  two l a s e r  beams cause f l u c t u a t i o n s  i n  t h e  

d i e l e c t r i c  constant  which i n  t u r n  couples the  two l a s e r  beams so t h a t  energy 

from one o f  t he  beams may s c a t t e r  i n t o  the  other .  The "predator"  beam 

grows i n  i n t e n s i t y  as i t  eats  energy from i t s  "prey"?  t h e  o the r  l a s e r  

beam. The r o l e s  o f  p redator  and prey  are  determined by t h e  s i g n  o f  t h e  

f l u c t u a t i o n s  i n  t h e  d i e l e c t r i c  constant  and the  phase of t h e  two beams. 

There i s  another three-wave i n t e r a c t i o n ,  poss ib le  o n l y  i n  an unstable 

plasma medium, re fe r red  t o  as the  exp los ive  i n s t a b i l i t y  For t h i s  

process the  resonant cond i t i ons  show the  c r e a t i o n  of '  three-wave packets 

f rom a vacuum: 

t ~ h e  non l i nea r  terms i n  equations 2.6 descr ib ing  SBS a re  analogous t o  
Yo1 t e r r a ' s  competing species equations. P 



This  c lass  o f  three-wave i n t e r a c t i o n s  w i l l  n o t  be d e a l t  w i t h  i n  

t h i s  thes is ,  hence r e s t r i c t i n g  our a t t e n t i o n  t o  the  so -ca l l ed  decay 

i ns tab i  1 i ty process g iven i n  2.1. 
i' 

The one dimensional form o f  t h e  three-wave resonant i n t e r a c t i o n  

equations as g iven i n  t h d  n o t a t i o n  of ~ a u p ' ~ ]  are, 

(3,~ b c ,  Q., = i 3 Q Q: 
where Q . (x , t )  i s  ( i n  general )  the  complex envelope of the  jth wave packet; 

J 
,x and ,t, represent  p a r t i a l  d i f f e r e n t i a t i o n  w i t h  respect  t o  x and t ; * i s  

compl ex con jugate  ; vj = ? \  a re  constants; and c .  i s  the  group v e l o c i t y  
J 

of the  jth wave packet.  When a l l  the  ' s  a re  o f  the  same s ign ,  

b? 
3 

equations 2.3 descr ibe the  exp los ive  i n s t a b i  1 i ty process ;C71 i f  any one 

of the y ' s  h3s a s i g n  d i f f e r e n t  from the o ther  two, equations 2.3 
j 

descr ibe the decay i n s t a b i l  i ty process. I t  i s  t h e  l a t t e r  case t h a t  we 

s h a l l  so lve  us ing  the  inverse s c a t t e r i n g  method. 

L e t ' s  now see h ~ ~ i  the phys ica l  problem we wish t o  i nves t iga te ,  namely 

St imula ted B r i  1  l o u i  n S c a t t e r i n g  (SBS) , i s  re1 ated t o  equations 2.3, 
t 

f i r s t ,  "Whst i s  SES?" 

I n  a t ransparent  i s o t r o p i c  homogeneous d ie1 e c t r i  c  1 i q u i d  i t i s  

poss ib le  t o  generate a c & s t i c  phonofts i n  the reg ion  of over lap  of \-r 

two p l  a ne p o l a r i  zed mnochromat ic  1 aser beams. The frequency d i f f e r e n c e  

between the  h i g h  frequency beam, c a l l e d  the l a s e r  ( o r  pump) beam w i t h  

frequency and wavevector, wL, - k and the  lower frequency beam, c a l l e d  

the  s i g n a l  ( o r  sca t te red )  beam w i t h  frequency w e c t o r ~ ~ ,  k  i s  
- .  -S 

~& 



adjusted t o  equal the Bri llouin frequency wg = v k of the dielectric - * . r 
5 - .-- - * 

medium ( v  i s  the sound velocity in the dielectric and k i s  the pho- -. 

5 
- - - 

non's wavevector). In the backscattering case the laser beams are 

sent through each other in opposite directions i n  which case one can 

show, by conservation of momentum, k = k L +  ks. When subjected to 

e lect r ic  f ields a dielectr ic  feels intetqal stresses (see 2.4)  due to 

the interaction cf the e lect r ic  f ie ld  and the polarized dielectr ic .  

The diel ectr i  c mechanical ly  deforms to equal i ze these stresses, stretching 

a1 ong the di recti on of the e lect r ic  f i  el b, as a resul t the densi ty and 

hence the diel ectr ic  constant E change. 

The electLrostrictive force density - F produced by the e lect r ic  f ie ld  

E i s  related to the dielectr ic  constant E by ----* - J 

I t  i s  the nonlinear term E~ in 2.5 that mixes the harmonics o f  

the 1 ight beams together to give ,Brillou'in scattering. When the l ight  

, wh&e - P i s  the polarization vector. 

In the 1 i terature the electros t r i  c t i  ve pressure,' Pel i s  cal cul a ted 
'4 

using 2.4 and i s  given as f 

where Xe = 5 P ? -  (the Lorenti-Lorenz Law) 
T 3 

Here ye i s  the electrostr ict ive coefficient and p ,  T ,  n are respectively 

t h e  density, temperature and the refractive index of the dielectr ic  

medi um. 

beams have very h i g h  intensities the signal beam photons stimulates .. 



c t decay of laser  photons into more signal photons and accoustic 

-h phono . This amp1 i f ica t ion  continues unt i l  e i the r  damping o r  the 

-9 f i n i t e  energies of the beams 1 imi t s  the process. This i s  ca l l  ed 

Stimulated Bri l l o u i i ~  Scattering. 
~ * ; p  

"x, - Star t ing wi t h  Maxwdl ' s  wave equations describing the electro- 

magnetic fie1 ds ,  the hydrodynamic equations describing the 1 i  quid 

d i  el ec t r i c  medium and the resonant condi t i  on4 2.1 the fol 1 owi ng 

equations can be obtained. (Their derivation i s  lengthy and non- 

t r i v i a l  and may be found in  the l i t e ra tu re .  [81) 

where - 

AL(s) i s  the laser  (s ignal)  e l e c t r i c  f i e l d  amplitude, 

E ' =  - i  E X :  s l  i s  the amplitude of the change of the d i e l ec t r i c  

constant 

a ' s  a re  damping coefficients 

A U  = w - w B :  w i s  frequency of the d i e l ec t r i c  equal to  wL - us 

and wB i s  the Bril louin frequency of the d i e l ec t r i c  

- 
@ L ( s )  - 0 ~ ( ~ ) ' 4 E 0 :  E o i ~ t h e e q u i l i b r i u m v a l u e o f t h e d i e l e c t r i c c o n s t a n t .  

(3, :bE : 
i s  the density o f t h e  d ie l ec t r i c  i n  equilibrium, 

I 6'RpOVs and V i s  the velocity of sound in the die1 ec t r i c .  
5 

B i s  the  coup1 ing constant f o r  SBS. 5 

t 



- 
Setting the r ight  hand s ide  of equations 2.6 equal to  zero t u r n s .  

off a l l  nonlinear coupling. In f ac t ,  a l l  one has to  do i s  remove the 

e l ec t ros t r i c t ive  coupling term i n  2 .6c,  then since 6 i s  i n i t i a l l y  

zero ( i  .e. the d ie l ec t r i c  constant i s  a t  i t s  equilibrium value) i t  will , 

be ident ical ly  zero for  a l l  z and t leaving two uncoupled equations 

describing the evolution of the laser  envelopes. 
P 

By changing the c o q l i n g  constank 8<,  equations 2.6 may be used 

to  describe other phenomena in nonlinear optics such as Stimulated 

Rayleigh Scattering, Stimulated Thermal Brillouin ~ c a t t e r i n w i m u l a t e d  

r81 When the Thermal Rayleigh Scattering, Stimulated Raman Scattering. 

pulses a re  of very short  duration (picosecond laser  pulses) or  when AU 

i s  large,  equation 2 . 6 ~  does not apply to  any of the above processes, 

hl inal u d i n g  SBS, and a more complete thermodynamic description i s  needed. 

,. . A considerable e f fo r t  was spent in trying to  modify the inverse 

scat ter ing method so tha t  i t  could be appli 

one or  more damping coeff ic ients  non-zero. 

=0, and,alsoAw= 0. successful . (See appendix A ) We therefore s e t  as - 
- "L = "5 

Making the fo l l  owing change o f  variables 

y, = i (pIpL'$ A: 



q;,\ + V& +,, = ; yl, ci, 
@Equations 2.8 are  equivalent to equations 2.3 with y l  = yn = - us = - 1 .  

To see t h i s ,  s e t  

", 
We will be applying the inverse scat ter ing method (described in 

the next two chapters) t o  equations 2.8 (SBS) with v l  = - v3 (back- 

scat ter ing)  and v2 = O! We will take the i n i t i a l  pulse profi les  to  

be rectangular so tha t  the f i r s t  s tep of the inverse sca t te r ing  

technique can be solved i n  closed form. Real is t ic  l a se r  pulses 
-37 .. are dis tor ted G~.ussian shapes, b u t  rectangular pulses yield experi- 

mentally ver if iable  features (see Ref. [B]). 

t For r e a l i s t i c  laser  pulse durations, since l v 2 1 c < [ v l l  , [ v 3 1  one 
can ignore the propagation of the fluctuations in the time that  
i t  takes the two pulses to  travel through each other.  



- 10 - 
CHAPTER 3 

INVERSE SCATTERING METHOD: PART I 

s. 

The development o f  t h e  Inverse Sca t te r i ng  Method (ISM) began w i t h  

Gardner, Greene, Kruskal and M iu ra ' s  paper "Method f o r  s o l v i n g  the 

Korteweg-de-Vries - e d V )  equat ion"  pub1 ished i n  Phys . Rev. L e t t .  i n  

1967.r11 L a t e r  i n  1968 P.D. Lax expla ined i n  a mathemat ical ly  r igorous 

manner, the workings o f  t h e  method. I n  so do ing he was, a lso ,  ab le  

t o  genera l i ze  the  method, thus demonstrat ing t h a t  t he  r e l a t i o n s h i p  

between the  KdV equat ion and t h e  inverse method was n o t  a f luke.  Since 

t h a t  t ime many more equations have been discovered t h a t  may be solved 

by t h e  ISM, i n c l u d i n g  the  three-wave problem. [ m o ]  

I n  t h i s  chapter  we w i l l  i n t roduce the ideas and workings o f  the  

inverse method, us ing  the KdV e u a t i o n  as an example. The n e x t  chapter 4\ \ 
w i l l  deal w i t h  t h e  complicated marr iage o f  the three-wave problem t o  

the  ISM.  

The KdV equat ion desc r ib ing  the  propagation o f  shal low water 

waves of ampli tude $(x , t ) ,  v i z . ,  

idt = - ; d l X X  3 - I 
1 i ke most non l i nea r  d i f f e r e n t i a l  equations i s  extremely d i f f i c u l  t t o  

so l ve  d i r e c t l y .  The I S M  a l lows one t o  solve, i n  sequence, a se r ies  o f  

1 i near problems which when completed y i e l d s  the s o l u t i o n  t o  the  KdV 

equat ion.  
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1 a 4- The s e r i e s  of 1 i near s eps a re  a1 1 formulated i n  terms of the 

following two l i nea r  operators L and B which depend on 4(x, t )  

By forcing these two operators t o  s a t i s f y  the operator equation 

one i nd i r ec t l y  forces $ ( x , t )  t o  s a t i s f y  the  KdV equation. Equation 3.4 

i s ,  i n  f a c t ,  the  KdV equation when L and B a re  given by 3 . 2  and 3.3. 

( i  times the  time der iva t ive  of L equa.1~ imt and the commutator of B 

and L equals - i $xxx + i 6 $ 1 $ ~ ) .  

The following theorem quoted from Scot t ,  r e f .  [ I l l ,  wi l l  be the 

key t h a t  w i  11 enable the 1 inear  operators L and B t o  be used t o  solve 

the  KdV equation. 

Theorem 0 .f 
We a re  in te res ted  in a general nonlinear wave equation represented 

abs tac t ly  by 

where K denotes a nonlinear operator 
b 

Suppose we can f i nd  1 inear  operators 

solut ion of PDE 3.5,  and s a t i s f y  the 

on some su i t ab l e  space of functions.  

L and B which depend on 4, a 

operator equation 



When B i s  se l  f-ad.joint, 3.6 automatical ly  imp1 i e s  t h a t  the e i  genvalues 

5 o f  L, which appear i n  

are  independent of time. Furthermore, the -e igenfunct ions q~ may be 

shown t o  evolve i n  time according t o  

The proof of t h i s  theorem may be found i n  r e f .  [I 11. 

To solve the KdV equation 3.1 w i t h  the i n i t i a l  cond i t i on  

39 
d- 

by the I S M  we begin by so l v i ng  . the l i n e a r  eigenvalue equation 3.7 a t  

t ime t = 0, i .e. 

Note t h a t  the i n i t i a l  wave shape (,(x) takes on the r o l e  of the sca t t e r i ng  

po ten t i a l  i n  3.10. The nex t  step o f  the I S M  invo lves theorem 0, whereby 

the time dependence o f  the so l u t i on  g(x,o) i s  ca lcu la ted  g i v i ng  $(x, t )  

(a  s o l u t i o n  of 3.7). To use theorem 0 we must show L and B sa t i s f y  3.6 

and t h a t  L has t ime independent eigenvalues . The f i r s t  requirement 

has al ready been estab l ished and the l a t t e r  requirement i s  proven i n  

r e f .  [Ill. 



When the  I S M  i s  app l i ed  t o  the  three-wave problem i n  the  n e x t  

chapter  the c o n s t r a i n t  t h a t  5 i s  t ime independent i s  assumed before 

B i s  de r i ved  f o l l o w i n g  a method o u t l i n e d  by Ablowi t z  [I 11. I t  should 

be noted t h a t  B ob ta ined i s  n o t  s e l f - a d j o i n t  thus demonstrat ing t h a t  

the  se l f -ad jo in tness  o f  B i s  a s u f f i c i e n t ,  b u t  n o t  necessary, . cond i t i on  

f o r  the  eigenval ues 5 t o  be t ime independent. 

The t ime e v o l u t i o n  equat ion f o r  the KdV problem becomes 

h, 

We would now so l ve  3.11 f o r  $ ( x , t )  us ing  the i n i t i a l  c o n d i t i o n  $(x,o), 

obta ined from the  prev ious l i n e a r  step, i f  i t  were n o t  f o r  the  f a c t  

t h a t  $ ( x , t )  i s  unknown. We impose the r e a l i s t i c  c o n s t r a i n t  t h a t  

which s p e c i f i e s  t h a t  the  ampl i tude o f  t he  waves must go zero as x++m. 

Taking the l i m i t  x -t + a i n  equat ion 3.11 the  $ ( x , t )  dependence i s  

e l  i m i  nated enabl i ng the resu l  t i  ng equat ion 

t o  be solved f o r  the t ime dependent "sca t te red"  e igenfunc t ions  of 

Knowing the  s c a t t e r i n g  da ta  i . e .  l i m  $(x , t )  t h e  n e x t  and f i n a l  
X + + a  

s tep  i s  t o  so lve  the  i nve rse  s c a t t e r i n g  problem. That i s  t o  say 
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I 
the scattering potential + ( x  , t)  (solution to the KdV equation) 

i s  found from the scattered solutions ( 1  ' This "inverse 
=*tm 

sca.tteringH step i s  done by solving the 1 inear i el' fand-~evi t a n  

integral equations which are given in ref. [ I l l .  

With. the aid of the following figure 1.1 depicting diagramatical ly 
* 

. the steps of the ISM we will run th rough  the three linear steps (of the 

ISM) once more. 

Figure 1 . 1  
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.If we are  given a nonlinear different ial  equation which may be - 

expressed in the form 

where L and B are l inear d i f fe rent ia l  operators dependent on the 

solution b (x , t )  of the nonlinear equation and i f  the eigenvalues of L 

are  time independent - then we may solve the nonlinear problem by traversing ' 

l i near steps 

Step 1: 

Step 2: 

1 ,  2 and 3 ( in  figure 1.1).  

Wi th  the i  n i  t i  a1 condition B(x $0)  , representing the 

scat ter ing potential a t  t = o for  the operator L we solve 

the t = o l inear  eigenvalue problem f o r  +(x,o) . From this .  

solution we extract  the t = o scat ter ing data i .e. 

lim + ( x , o ) .  
x + i m  

The time dependent scat ter ing data lim + ( x , t )  i s  now 
x - t t m  

calculated using the time evolution operator B i n  the 

asymptotic l imit  x a + r n .  This l imi t  i s  taken so that  

the B(x,t)  dependence in B will  vanish as we will a1 ways 

assume, in physical problems, that  lim # ( x , t )  = o. 
x + + m  

The inverse sca t te r ing  problem i s  solved - the fu l l  time 

dependent scat ter ing potential B ( x ,  t )  of the ei  genval ue 

equation for  L(B(x, t ) )  i s  determined from the scat tered 

solutions 1 i m  $ ( x , t ) .  This s tep usually involves 
x + - + -  

solving a system of coup1 eh l inear  integral equations. 

B ( x , t ) ,  t!le solution of the nonlinear d i f fe rent ia l  equation, i s  known 

a f t e r  completing s tep 3 of the ISM. 
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2 

A t  this point one may wonder, how general i s  the ISM? The ISM i s  

severely limited in the sense that i t  ,cannot be applied to a n i  arbitrary 

nonlinear differential equation. Given a nonl inear differential equati bn- 

one i s  immediately limited in that one must guess the operators L and B 

i f  they even exist .  . A1 so one mus t be able to solve the i nverse scattering 

problem (step 3) for  the time dependent L eigenvalue equation. In general 

Gel ' fand-Levi t a n  type integral equations , which enable us to carry out 

this  step, do not exist .  A t  present there exist  only a handful of non- 

linear equations of interest  to the physicist which are solveable by the 

ISM (see ref.  [I  I ] ) .  

To avoid the guessing game invalved in finding L and B authors 

Zakharov and Manakov C31r41 chose a particular class pf l inear operators L ,  

for which the inverse problem, step 3, i s  solveable, and a general class 

of time evolution operators B and from this s tart ing point generated 

a large s e t  of nonlinear equations, sol veable by the ISM. Both the KdV 
1 

equation and the three-wave probelm were included i n  this s e t  of non- 

linear equations. 

In the next chapter we will assume the existence and form of the L 

operator for the three-wave problem and from this  s tart ing point we will 

derive the inverse problem integrals (Marchenko type) and derive the 

time evolution operator B (the method for finding B when L i s  known i s  

feud in ref .  [13]). 



INVERSE SCATTER1 NG METHOD : PART I I 

In th is  chapter we shall bring together the three-wave problem and 
- 

the inverse scattering method. The theory given here i s  a n  expanded, 

and hopefull* mgh-dea re r ,  version of Kaupls paper?' 

Following Kaup we begin w i t h  an investigation of the l inear differ- 

ential operator, t , and  i t s  associated eigenvalue problem. I t s  relation- 

ship with the tCree-wave probl em wi 11 be discussed la ter .  

The 1 inear eigenval ue equations associated with the three-wave 

problem t h a t  must be solved directly in step 1 and in an inverse' manner 

in step 3 (figure 1.1) are as follows: 
- 1 

where 

5 i s  the eigenvalue of L ;  v is a rank-3 column vector; V i s  a 3x3 

p ~ t e n t i a l  matrix with V i i  = 0; A i s  a diagonal matrix w i t h  constant and 
- 

real eigenvalues a l ,  a2, as; I i s  the identity matrix; and 3, represents 

a the partial differential operator . The a i i s  are ordered as follows: 



I \ - > - I > - 
d, 4, 

/ d3 

where none of the ai ' s  are  equal to zero. 
I 

-On the condition tha t  V -t o suf f ic ien t ly  rapidly as x -+ + m, two 

se t s  of three l inear  independent eigenfunctions may be defined%, The 

f i r s t  s e t  of eigenfunctions, @ ( j ) ( ~ , x ) ,  j = 1,2,3, 5 r ea l ,  a re  obtained 

,from the l e f t  hand boundary conditions, 

where n designates the n t h  component of @ (j), n = 1,2,3,. Similarly 

t h  sec i d  set of eigenstates,  a re  defined u s i n g  the r ight  hand 'C,s 
boundary condi t i  ons d 

To see tha t  the boundary conditions 4.4 and 4.5 a re  consistent with the 
b 

l inear  eigenvalue equations, we solve 4.1 in the asymptotic l imi t  

x 7 ? -. I t  i s  important t o  real ize tha t  and are  solutions of 

4.1 satisfying the i r  respective boundary conditions. , They do n o t  

represent the solutions of 4.1 i n  the 1 imi t x -t 2 -. 

The two s e t s  i @ ( j ) )  and ($( ' )I  are  each a &of l inear  independent 

solutions spanning the same solution space, hence, the two s e t s  can be 

related as follows 
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[a jk(<) ]  i s  i n  f a c t  t h e  s c a t t e r i n g  m a t r i x  f o r  $(j). To see t h i s ,  

consider  on t h e  l e f t  w r i t t e n  as 

Th is  e i g  s t a t e  w i l l  be sca t te red  i n t o  some general s t a t e  on the  r i g h t  C -- ( I )  4")  and @ which i s  represented by  a  l i n e a r  combination o f  4 , ( 3 )  

on the  l e f t  i . e .  

I t  i s  seen from 4.4 and 4.5 t h a t  +(j) as x - - - i s  i d e n t i c a l  t o  $ 
( j  

as x  -+ m. We a r e  t h e r e f o r e  ab le  t o  w r i t e  4.6 w i t h  [ajk] represent ing  

( j  1 t he  s c a t t e r i n g  m a t r i x  f o r  $ . 
Without l o s s  o f  g e n e r a l i t y  we take - 

where the  inverse o f  [ajk] e x i s t s  and i s  de f ined by 

The inverse r e l a t i o n  o f  4.6 can now* be def ined as fo l lows 



where [b. ([)I  represents the sca t te r ing  matr ix, from r i g h t  t o  l e f t ,  
~k 

( j  of Ji . 
I t  i s  more convenient t o  deal w i t h  the sca t te r ing  mat r i x  ( r e f l ec t i on  

and transmission c o e f f i c i e n t s  i n  the case o f  the KdV equation) when 

passing through steps 1,2 and 3 o f  the I S M  than w i t h  the actual  sca t t -  

ered so lu t ions.  With t h i s  i n  mind expressions w i l l  be obtained r e l a t  

the sca t te r ing  po ten t ia l s  Vij t o  the sca t te r ing  mat r i x  c o e f f i c i e n t s  a  

What fol lows w i l l  be the necessary theory t o  achieve t h i s  goal.  

An i n teg ra l  equation i s  obtained f o r  4'') by tak ing the l i n e a r  
/ 

eigenval ue equation 4.1. - 

mu1 t i p l y i n g  by the i n teg ra t i ng  fac tor  ,-;\+. and then i n teg ra t i ng  
X 

( x + y i n 4 . 1 0 ) , t h e r e s u l t b e i n g  
-00 Y 

x X 

-iby'tAm A \ -- + a& \#($ -a 

d m  
3 

Using 4.4, 4.11 can be rewr i t t en  as 



where 

It w i l l  now be shown t h a t  the  i n t e g r a l  equat ion f o r  $ has an 

a b s o l u t e l y  convergent Neumann se r ies  s o l u t i o n  i n  the  lower h a l f  5- 

plane. Th is .  w i l l  a l l o w  us t o  a n a l y t i c a l l y  extend I$(:) i n t o  t h e  

complex 6-plane where contour  i n t e g r a l  techniques can be used. . Def ine 

'? 
and t ke 0 < 0. Then s u b s t i t u t i n g  the  i n t e g r a l  equat ion f o r  $(:)(x) 

a L 
0 i n t o  4.17 i t  fo l lows. l tha t  

2Li .: where 

Q n m  3 \vILh\ 
and 



We have f o r  t he  f i r s t  approximations o f  the  Neumnn s e r i e s  s o l u t i o n  

S u b s t i t u t i n g  4.21 a  i n t o  4.21b and then t h i s  r e s u l t  i n t o  4 . 2 1 ~  g ives 



I n t e g r a t i n g  t h e  l a s t  term of  4.22d by p a r t s  w i l l  g i ve  

hence, 

S u b s t i t u t i n g  4.23 .into 4.22d y i e l d s  the  fo l l ow ing  expression f o r  w (2 )  

which my be genera l i zed t o  h igher  o rder  s o l u t i o n s  as fo l lows 

The Cauchy r a t i o  t e s t  may be used t o  prove t h a t  t h e  s e r i e s  i n  

4.25 i s  abso lu te l y  convergent p rov ided R i s  f i n i t e .  (Note t h a t  R 

i s  a s s o ~ i a t e d  w i t h  t h e  area o f  t h e  l a s e r  pulse.) Provided t h e  p o t e n t i a l  - 
( i  .e. l a s e r  pu lse)  goes t o  zero s u f f i c i e n t l y  r a p i d l y  as x -+ + t he  .'. 

Neumann se r ies  f o r  $ ( A )  i s  absol u t e l y  convergent. 
. . 

I n  a s i m i l a r  manner 4 (3 )  $('I $(3)  can be shown t o  have abso lu te l y  n n y  n 

convergent Neumann se r ies  s o l u t i o n s  i n  t h e i r  respec t i ve  6 - h a l f  planes. 

The r e s u l t s  a r e  summarized i n  t he  f o l l o w i n g  theorem taken from Kaup. 

a l l  and b 3 3  a r e  a n a l y t i c  f u n c t i o n s  o f  5 i n  t he  lower h a l f  6-plane 



6 in the upper half 6-plane (TI < 0 ) ;  and @ j e j  , 0(j)e- i6x/uj  

a  bjk are bounded functions of 6 on the real axis ( o  = 0 ) .  jk' - 
,Usi,ng the r e su l t  that  

in the integral equation f o r  $(:) one obtains the following integral 

equation for a i  

) J e-;'''b" L V  +" a;, = S?, - L 
-OD Y k\ 

hVn rn 

Writing out the expression for 

=: 
- \ 

be  see that  since the term $ (l)e-i'y'ul i s  analytic in the lower half 

[-plane, so i s  a l l .  In a  similar manner the analyt ic i ty  of a,,, b33  

and b l l  may be shown. 

Theorem 1 will enable us to  analyt ical ly  extend the functions 
( j  

( )  $  ( c ) ,  ai  (6)  and b .  . ( 6 )  into the appropriate complex 
1 J 

5  half plane. Once extended, many of the integrals  t o  be encountered 

,w i l l  be eas i ly  evaluated using contour integration techniques. Un- 
(2)  ( 2 )  

fortunately q(6;x) and 4 (5,x) cannot be analytical ly  extended since 

parts of these functions diverge %, in the upper half 5-plane and other 

parts diverge in the lower half 5-plane. To overcome t h i s  d i f f i cu l ty ,  

two analytical 1y.extendable functions wi 11 be constructed by considering 



the  a d j o i n t  problem of  4.1. One funct ion,  independent o f  ) and 
- 

Q ' ~ ) ,  w i l l  take  on the  r o l e  of  Q ( ~ )  and the  o the r  func t ion ,  independent , 

( 2 )  of 4'' ) Land  4(3),  w i l l  take  on the  r o l e  o f  4 . 
d 

The a d j o i n t  problem o f  4.1 i s  taken t o  be 

% 

where V i s  t he  m a t r i x  transpose o f  V .  

So lu t i ons  t o  the  a d j o i n t  problem 4.27 can be generated from s o l u t i o n s  

t o  the  r e g u l a r  l i n e a r  e igenvalue problem, 4.1, by 

where Enmp i s  the  usual ant isymmetr ic  tensor ;  Um and W a r e  two l i n e a r  
P 

independent s o l u t i o n s  o f  4.1. 4.29 may be v e r i f i e d  by s u b s t i t u t i n g  i t  

i n t o  4.28. I n  a  s i m i l a r  manner s o l u t i o n s  t o  the  r e g u l a r  l i n e a r  eigen- 

va lue equat ion can be expressed i n  terms o f  t he  a d j o i n t  s o l u t i o n s  as 

f o l  1 ows 



E i  genstates ( ('IA and $ ('IA are def ined as sol  u t ions o f  the a d j o i n t  

equations s a t i s f y i n g  the boundary condi t ions given be1 ow. 

- i l ~ l d j  $P"\,+) - - I s i c  

( j  )A A warning i s  needed a t  t h i s  stage: the a d j o i n t  so lu t ions 4 , 

vR are not  the same as the adjointso o f  the regu lar  so lu t ions 

('IA and $ The ana l y t i c  proper t ies  o f  4 are summarized i n  the n  

fo l lowing theorem, taken from Kaup, and v e r i f i a b l e  i n  a  manner s i m i l a r  

t o  theorem 1. 

are ana l y t i c  functions o f  6  i n  the lower h a l f  g-plane (n  < 0); 

4  (1  )Aei Odal and + (3)Aeigx/u3 are ana l y t i c  funct ions o f  [ i n  the upper 

h a l f  t -p lane (n  < 0)  and $ (j)Aei Sx/aj , ((j)*eigWaj are bounded funct ions 

of g  on the rea l  axis (I-I = 0 ) .  

A A The i n t e g r a l  equations f o r  IJ , 4 , $, bij are derived i n  a  s i m i l a r  

manner t o  the i n t e g r a l  equations f o r  4  and ai j. These are required i n  

the proof  o f  theorem 2. These together w i t h  equations f o r  4 and aij are 

l i s t e d  below. 



Two column vectors X, ana ly t i c  i n  the  upper ha l f  6-plane and x, 
ana ly t i c  i n  the lower half  E-plane,are constructed a s  follows: 



Now fr om equ a t i o n  4.29 i n  t h e  asympto t i c  l i m i t s  x -+ + - i t i s  n o t  

d i f f i c u l t  t o  show t h a t  -* > .  ,: 
-, . 

'L 

From which i t  fo l lows t h a t  

The d e r i v a t i o n  o f  equations 4.43 and 4.44 i s  sketched below. 

I n  m a t r i x  form equat ion 4.6 i s  w r i t t e n  as 
~ -- 

where 

The inverse o f  4.45 i s  w r i t t e n  as 

As [b]  = [a]-' 4.46 can be r e w r i t t e n  as 



The inverse of [$]  ([$I) i s  the  transpose of t he  c o f a c t o r  m a t r i x  of 

[$I ( [+ I )  d i v ided  by determinant ef 4 ([ly]) i .e.  

Using e ~ ~ r e s s i o n s ' s i m i l a r  t o  4.41 and 4.42 obta ined from 4.30 i t  
L 

can be shown t h a t  

3( 

which when s u b s t i t u t e d  i n  4:48 g ives (constant  terms can be shown t o  

cancel ) 

Equation 4.51 i s  equat ion 4.43 i n  m a t r i x  form. 

Using 4.6 t o  4.9 and 4.39 t o  4.44 expressions fo r  x and can be 

( i  obta ined i n  terms o f  $ . 
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The following results are now obtained using the integral eqiations 

h,, + oh151 



Coupled integral expressions for )'!I i n  terms of the scattering matrix 

coefficients wi 11 now be obtained using contour integration techniques. 

Define the contour C in the complex 6-plane to extend from -rn + i~ 

t o  ,+m + i ~  such that  C l i e s  above a l l  the zeros of a33 and b l l .  Define 

contour in the complex S-plane to extend from --ie to + a - i ~  such 

t h a t  1 ies below a1 1 the zeros of al 1 and b3 , t  

Consider the contour integral 

where 6 1 ies above (and be1 ow C )  . b 

The contour C i s  closed by adding a semicircle in the lower half 

6-plane, A. 

Table 4 - 1  

p- -- - + a,, , b,,, a,, and my i n  general have.zeros- anywhere i n  the complex 
plane. The restr ict ion here limits our  calculation to the continuous 
spectrum solution. In the next chapters we will show for SBS back- 
scattering the zeros gf a,, etc.  are consistant with the above 
definitions of C and C .  
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As there are no poles inside the closed contour AUC,  

Using 4.55 i t  can be shown that the integrand in '4.57 approaches 1 

as R -+ - where e1 5 ~ e ~ ' .  Hence, 

r 

Expressing - + ( I )  i n  terms of and a i j  (usiil? 4.6), 4.58 becomes 

The f i r s t  inte&al in 4.59 i s  evaluated by closing the contour with a 

semicircle, A ,  in the upper half S-plane. The integrand has a simple 

. pole a t  5 .  We have 



The inte'grand o f  4.60 can be shown t o  approach 1  as R +  - hence the 

con t r i bu t i on  along A i s  i n 6 l  4.60 may now be w r i t t e n  i n  the fo l lowing k ' 

form 
< 

I n  a  s i m i l a r  manner by considering the contour i n t eg ra l  

i t  can be shown t h a t  r 

An i n t e g r a l  expression f o r  $J ( 2 )  i s  obtained as f o l  lows. We see 
( 

frm 4.54 t ha t  x '  ) )  i s  ana l y t i c  ins ide  CUA, hence 
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In the  1 imit  R + t h e  integrand along contour R approaches - 6 2 k  

(use  4.54),  therefore  

- - 
Using the contour CUA one can show i n  a s i m i l a r  manner t h a t  

\ 

Combining 4.64 and 4.65 using 4.52 and 4.53 y i e l d s  

The second and t h i r d  i n t e g r a l s  a t  4.66 a r e  evaluated by considering the  

f o l l  owing closed contour 

Figure 4 - 2  



We have 

An integral expression for  +(') can now be written as follows 

-P 4 
The "fundamental" scat ter ing coefficients are defined i n  4.69 

and substituted into the integral expressions for  + ( i )  below. 





We are  now ready to  derive the inverse equations, i .e. the Marchenko 

linear integral equations. 

Assume tha t  can be written in the following form - 

I 

Requiring tha t  ) ( I ) ,  in t h i s  form, sa t i s fy  the  l inear  eigenvalue 

equations 4.1 will p u t  several constraints on the kernel K ( '  ) (x ,y)  i n  

4.73. After some elaboration we have 

Note tha t  the two terms 

/ 

1 areequal  t o z e r o  fo r  the secondcomponent K( ' ) (x , s  ). 

These two terms can be integrated by parts t o  g ive  the following 

a1 ternate  expression 



where the f o l l ow ing  cons t ra i n t  i s  int roduced 

Subs t i t u t i ng  4.76 i n t o  4.74 we get : 

A second  constrain^ i s  now imposed on K( l l (x ,y )  by requ i r i ng  t h a t  the 

integrand o f  4.78 be equal t o  ;era. This cons t ra in t  may be w r i t t e n  as 

A [a, +$,\ - A;\  A) 3, K" IX,E\ = - i RVLW~X,S\ I I l-\-')9 
b 



I t  i s  t h i s  constraint t ha t  assures the existence and uniqueness of 

K( ') .  After a l i t t l e  algebra what remains in 4.78 const i tutes  another 

constraint viz. 

' A  x ,  i&+ v,, (4 

This constraint on K ( ' )  will  be very useful l a t e r  on when the potentials 

( i  V . .  ( x )  are  to  be recovered from the kernels K . 
I J  j 

Writing 6(3) in the form 

.and proceeding along the same l ines  as above the following constraint 

"on i s  obtained 

Our original goal was to  obtain some equations re la t ing  the 

scat ter ing coefficients t o  the scat ter ing potential .  We'are f ina l ly  

ready t o  do so. 

Eliminate the +(') term i n  the integral expressions fo r  + (1 

and +(3)  by subst i tut ing 4.71 into 4.70 and 4.72. Next, eliminate + (1 

and + ( 3 )  by us*xpressions 4.73 and 4.81. Finally take the Fourier 

Transform of the resul t ing equations. The resul t m t  integral equations 

(Marchenko type equations) are  given be1 ow followed <by the s t ra ight -  



forward but lengthy de r iva t ion  of the  f i r s t  in teg ra l  equation.  

where 



The term - + i c  i n  4.89 and 4.90 i s  r equ i r ed  t o  push t h e  po le  of f  t h e  

cgntour .  The s i g n  i s  chosen s o  t h a t  t h e  i n t e g r a l s  do n o t  d ive rge  

a t  - + (This.  i i  11 become c l e a r e r  i n  t h e  next  chap te r .  ) 

. Der iva t ion  o f  t h e  f i r s t  i n t e g r a l  equa t ion  proceeds a s  fol lows.  

S u b s t i t u t i n g  4.71 i n t o  4.70 g ives  



The f i r s t  term on the LHS and the RHS o f  4.91 may be expressed i n  terms 

o f  K ( ' )  using 4.73. 

  qua ti on 4.91 then becomes 

where 



Multiplying each term in 4.9Lby 

and integrating with respect to 5 from - w  to " gives 

Before Fourier transforming Iga + Ijb we f i r s t  use 4.81 to  express 

(3)  ( E N  ) i n  terms of K ( 3 ) .  The 13, term corresponds t o  the 6 3 part  

and the Igb term to the r e s t .  

I t  i s  necessary to  push the pole 5" (or 5') off the contour c. This 

i s  done as follows 



'4a and Iqb follow i n  a s i m i l a r  manner. 

( 2  
'5a + '5b i s  s p l i t  up b y u s i n g 3 . 8 1  t o e x p r e s s $  . 

Combining the  above terms gives 4.83, 4.85, 4.87 and 4.89. 

9 
Due t o  the lengthy c a l c u l a t i o n s  t h a t  have taken place s i n c e  t h e  

, I 

beginning of t h i s  chapter  t h e  reader may not  r e a l i z e i t h a t ' a t  t h i s  

point  equations f o r  t h e  d i r e c t  1 i n e a r  problem and the i n v  



problem have been established. In the direct problem the scattering ". 

coefficients acre found by solving equations 4.1. In the inverse 

problem the scattering potentials are found using the Marchenko 

integral equations, 4.83 and 4.84. 

All that remains to be done i s  to calculate the time evolution 

operator and to show the connection between the scattering potentials, 

Vi j, and the three waves Qi of the original nonl inear problem. 

We begin by guessing the time evolution equation to be of the 

following form. (The following method i s  found in ref. [13].) 

The choice of going only to f i r s t  order in 5 i s  a result of the fact  

that the problem has already been worked through, previous to w r i t i n g  

this  thesis,  finding that coefficients of higher orders are zero. 

By di,fferentiating the time evolution equation 4.103 with respect 

to x and the linear eigenvalue equation 4.1 with respect to t, the 

resulting two equations can be matched and then compared to the three 

wave equation, thereby Bo and B , F  he relation between V i  and Pi 
w i  1 1 be deterrni ned. C 

Differentiating 4.103 w i t h  respect to x and 4.1 with respect to 

t gives 



, ~n 4.104 use 4.1 t o  express vx i n  terms of  v .  S imi la r ly  use 4.103 i n  

4.105 t o  express vt  i n  terms of v. Eliminate vxt from t h e  two equations 

and set  the c o e e f i c i e n t s  o f  c O ,  c1 and c2  equal t o  zero.  The r e s u l t i n g  

equations a r e  

Equation 4.108 implies t h a t  B1 i s  diagonal ( r e c a l l  t h a t  A i s  diagonal)  

Using 4.109 i n  4.107 and looking a t  diagonal elements only i t  can be 

shown t h a t ,  

Equation 4.107 now gives (using 4.109 and 4.110) 

Define ci such t h a t  . 



Without loss  o f  genera l i t y  and cons is tent  w i t h  the o r  @ring o f  ails, A 
the ci ' s  are  ordered as fo l l ows  / 
c, C, "C, 

Y-113 
Rewr i t ing  4.111 as 

and. using i t  i n  4.106 gives 

We wish t o  compare equations 4.115 w i t h  equations 2.3 r e w r i t t e n  below 

The po ten t i a l s  Vi have the fo l lowing symmetry 

where E~ = - + 1  depending on the type o f  th ree wave problem being solved. 



Comparison of 4.116 and 4.115 us ing 4.117 y i e l d s  

u,, = ( p,: p,,\-t Q3 

and therefore 

do and dl a re  a r b i t r a r y  constants. 

We a re  e s e n t i a l l y  done. The inverse method has been es tab l ished 

f o r  t he  th ree  wave problem. The r e s u l t s  t h a t  w i  11 now be es tab l i shed  
7- 

a r e  designed t o  make the  inverse method eas ier  t o  work w i th .  
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As a l l  the Marchenko dntegral equations are i n  terms o f  the 

sca t t e r i ng  c o e f f i c i e n t s  i t  i s  useful t o  have equations f o r  the t ime 

evol u t i o n  o f  these coe f f i c i en t s  . Recall the re1 a t i o n  between the 

l e f t  hand and r i g h t  so lu t ions  of $J('), i .e. 
\ 

, where J 

From the time evo lu t ion equation 4.103 w i t h  4.120 and 4.121 we see t ha t  

i n  the l i m i t  x + - -  the time evo lu t ion o f  ( ( i ) ( x , t )  i s  given by 

We define the t ime dependence of the sca t te r ing  mat r i x  ai ( t )  so t ha t  

i n  the l i m i t  x -t a, #(j ) becomes, n  



This choice i s  a r b i t r a r y .  Using 4.123 i n  4.124 we have 

4.125 and 4.124 i m d i a t e l y  g ive the t ime dependence o f  the sca t te r ing  

k o e f f i c i e n t s ,  i .e. I 

). 
By uslng 4.117 and comparing regu lar  so lu t ions o f  the 1  inear  eigen- 

value equation, 4.1 ; w i t h  so lu t ions t o  the ad jo i n t  equation 4.27 we see - 

t h a t  
I 

- from which i t  can be shown t h a t  the sca t te r ing  matr ices sa t i s f y  the 

symmetry property. (Use 4.37 and 4.38. ) 

It fo l lows from 4.128 t h a t  



The t ime dependence o f  

y i e l d s  

the sca t te r ing  coe f f i c ien ts  as def ined i n  4.126 

It i s  o f  i n t e r e s t  t o  note the lack o f  d ispersion i n  the sca t t e r i ng  

transforms un l i ke  o ther  invest igated systems where so-cal led non-sol i ton 

o r  background so lu t ions decay exponent ia l ly .  So l i tons and t h e i r  non- ~ 

occurrence i n  the three wave problem, backscat ter ing case, w i l l  be 

discussed b r i e f l y  i n  the f i n a l  chapters. 



This concludes the der i va t ion  of the inverse sca t t e r i ng  method as 
, 

app l ied t o  the three wave problem. A summary i s  i n  order. 

To solve the nonl inear three wave equations 4.116 one begins by 

sol  v ing the associated 1  inear  eigenval ue problem 4.1 w i t h  asymptotic 

boundary condi t ions given by 4.4. The sca t te r ing  po ten t i a l s  Vi a t  
f 

t = 0  are determined from the i n i t i a l  three wave shapes Q .  using 4.119 
3 

and 4.117. The sca t te r ing  coe f f i c i en t s  ai a t  t = 0  can be determined 

from the so lu t ions @(:) and 4.122. Four ier  transforms o f  the funda- 
- - 

mental sca t te r ing  c o e f f i c i e n t s  P Z ,  p2, a, a, e tc .  are  ca lcu la ted using 

4.85 t o  4.90. Next, t ime dependence i s  introduced w i t h  the help of 

4.135 t o  4.140.. The Marchenko i n teg ra l  equations, 4.83 and 4.84 are 

solved f o r  the kernels ~ ( i ) ( x , ~ , t ) .  F i n a l l y  using 4.80 and 4.82 the 

po ten t ia l s  V and hence Qi (x , t )  are determined. 
i j 

The three wave problem i s  solved i n  p r i nc i p l e .  A so lu t i on  i s  

ca r r i ed  through as fa r  as possib le i n  the next chapters. 
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CHAPTER 5  

STEPS 1  AND 2  - THE DIRECT LINEAR PROBLEM 

The equations f o r  SBS given i n  2.6 and r e w r i t t e n  below, w i t h  t h e  

damping c o e f f i c i e n t s  s e t  equal t o  zero, w i l l  now be solved. 

A l ,  t v, As,, - - - ps A,$* 

Equations 5.1, transformed t o  the  usual f o rm-o f  t h e  th ree  wave problem, 
' 

2.3, a re  a l so  rewr i . t ten  here. 

- ; u,  0: 0: Q,,; C ,  Q l , X  - 

where f o r  SBS we have 

Y, = u, s - = - 1  

By d e f i n i t i o n  the  p o t e n t i a l s ,  Vij s a t i s f y  the  f o l l o w i n g  symmetry 



where 

i .e. the backscattering case i n  which the "pump" envelope, Q3, travels to 

the right and the "signal" envelope, Q l ,  passes through i t  going to the 

l e f t .  

The in i t i a l  shapes and positions of the two laser beams are de- 

picted below. The medium i s  assumed to be in i t i a l ly  undisturbed. This 

i s  a good approximation to real i ty since the spontaneous fluctuations tend 

to be small compared t o  the laser induced ones (see Enns and Rangnekar). 

Figure 5.1 

As can be seen from the diagram the pulses are rectangular in-profi le ,  

with arbitrary heights and identical lengths. Rectangular pulses were 

chosen because the 1 inear eigenvalue problem (s tep 1 i n  the procedure) 
- .  

can be solved exactly. Furthermore, from ear l ier  calculations of Enns 



and Rangnekar on stimulated thermal scattering, one can expect to 

obtain many of the qualitative features of nonlinear light scattering 

using rectangular pulses. Taking the velocity, v2, characteristic of 

the fluctuations produced in the medium t o  be zero as already mentioned, 

i s  a very good approximation to  physical reality. (The ordering of the 

velocities i s  consistent with 4.113.) 

The ini t ia l  pulse shapes ( t  = D) are defined mathematically as 

fol 1 ows 
.(" 

F o r  x K O  unh 
F o r  O <  r 

where 



-- 

To s ~ l v e  the 1 inear  e i  genvalue equations i n  step 1, 4.1 i s  w r i t t e n  ou t  

I 
- 

The general so l u t i on  t o  equations 5.9 w i l l  b e  feund. by so lv ing  these 

'equations i n  the f o u r  d i s t i n c t  regions defined by h (x )  and H(x). Then 

con t i nu i t y  condi t ions w i l l  be imposed t o  e l iminate  the i n teg ra t i on  

constants. F ina l  1 y the boundary condi tfbns w i  11 tre 4useb-,to. def  i ne three 
s 

1 i near ly  independent sol  u t i  ons of 5.9. 

I n  region 1, x < -a, the so lu t i on  i s  immediately found since the 

RHS o f  equations 5.9 are i d e n t i c a l l y  zero. The so lu t i on  i s  

U: = u:, e if x /a, C 

where u; are the general so lu t ions of equations 5.9 i n  reg iyh 1 and 
1 

u i o  are a r b i t r a r y  constants t h a t  w i l l  be determined when d n t i n u i t y  and 

boundary condi t ions are .imposed. 



In region 2 ,  -a < x < o,  equations 5.9 become 

Equations 5.11 a and 5.11 b a r e  e a s i l y  decoupled and t h e  r e s u l t -  

ing second order  1 inea r  d i f f e r e n t i a l  equation e a s i l y  solved. The 

so lu t ion  t o  equation 5.11 c ,  of  course, is s i m i l a r  t o  the so lu t ion  i n  

where 

1- 

and a 2 ,  b2, a2,  b2 a r e  a r b i t r a r y  constants  r e l a t e d  a s  follows 
1 1 2 2  



or equivalently 

and 

o r  equivalently 

J 

The solut ion i n  region 3,  0 < x < a ,  obtained i n  a s im i l a r  manner 

t o  t h a t  i n  region 2 i; 

where L- 

and the  a rb i t r a ry  constant  a3 ,  b 3 ,  a 3  and b3 s a t i s f y  
2 3 3  3 



o r  equ iva lent ly  

and 

4' 

e n a l l y  i n  region 4, x < a, our so lu t i on  i s  

O f  the 16 i n teg ra t i on  constants; 4 are determined from equations 

5.14, 5.15, 5.18 and 5.19; 9 f r o m  the  con t i nu i t y  condi t ions w r i t t e n  

below; and the r e m i n i n g  3 fmm the boundary condi t ions.  - 
- 

Imposing con t i nu i t y  on the so lu t ions gives t h c f o l l w  n e a t i ons  t g w  
fo r  these constants. 



Solving equations 5.14, 5.15, 5.18, 5.19 and 5.21 i n  terms o f  u , u 
1 0  2 0  

and u l , one g e t s  
3 0  . .  



We continue now by imposing boundary conditions 4.4 to determine 

-the three linearly independent solutions (( ' I .  The asymptotic boundary 

conditions 4.4 are rewritten below. 



Set t ing  j = 1 i n  5.23, u 1  =- 1 ,  u = 0 and u 1  = 0 hence @ ( 1  1 
1 0  2 0 3 0 

i s  given a s  follows 
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I n  a s i m i l a r  manner 4'') and ( ( 3 )  are  found t o  be 

z (A ,  - i"I Jdrh = - 







Using (see 4.122)  

( '1 and it i s  a simple matter t o  find a i  froin our solutions @ , 

+ ( 3 ) .  These scattering coefficients are given as 



From 5.37 the fundamental scattering coefficients are readily i 
4 
1 

determined to be 3 
9 



where i n  5.37 t o  5.43 I have used the fo l lowing nota t ion.  
3 i 



F.. ' 

Step 1 i s  now completed, the l i n e a r  eigenvalue equation has been 

solved and the fundamental s ca t t e r i ng  coe f f i c i en t s  have been determined.' 

Before proceeding t o  step 2, the t ime evo lu t ion step, Four ier  t rans- 

forms of the sca t t e r i ng  coe f f i c ien ts  w i l l  be taken, s ince our theory . 

was developed t o  deal w i t h  these transforms, i .e. we must evaluate F, 

F, c, G,  etc.  I n  the s p i r i t  o f  t h i s  the,sis we sha l l  t ry  t o  push our 

ana l y t i ca l  approach through as f a r  as possible, t r y i n g  t o  ob ta in  exact 

expressions fo r  T, etc, using contour in tegra t ion .  

We begin by ca l cu la t i ng  the Four ier  t ransform o f  & ( 5 )  i . e . .  
- 

I F (x ) .  From 4.85 we have - 

where i s  the contour extending from - a - i,~ t o  w - i e  

and J1' as fo l lows 

l' 

Define 11, J I  
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- 

where, of course, J 1  + J/ = I F may then be rewritten as 

- 
F will be calculated using contour integration techniques. Do we complete 

the contour C with a semicircle i n  the upper half 6-plane, A,  or w i t h  a 

semicircle i n  the lower half c-plane, A? The answer to  th i s  question, as. 

will now be shown, depends on the variable x. 

Consider the integrand of in the l imit  R + - where 6 = ~ e ~ ' .  Within 

constant factors the integrand goes as 

To have convergence of the integral fo r  we require 

The f i r s t  term of 5.51 comes from J 1  and the second term from J:. From 

5.51 the following table i s  constructed indicating the half <-plane and 

the corresponding range of x for  which the integral converges. 

.. 
Table 1 



where U - "upper ha l f  S-plane" i n d i c a t i n g  e i n  5.51 between 0 and a 

and L = lower ha l f  6-plane" i n d i c a t i n g  28). Note t ha t  i t  I s  

necessary t o  s p l i t  up the i n t e g r  a/ d for  i n t o  two par ts  when -a < x < 0. 

I t  can be seen from 5.50 t h a t  the integrand o f  T i s  o f  the form 

t G? 

where 

hence the contour i n t e g r a l  on A ( o r  K) goes t o  zero as R 'goes t o  i n f i n i t y .  

The mathematical demonstration i s  no t  t o t a l l y  co r rec t  as I have ignored 

the existence o f  poles i n  which'case the l i m i t  i n  5.53 must jump around 

the poles. 

There are i n  f a c t  an i n f i n i t e  number o f  poles associated w i t h  the 

i n tegrand . 
# 

To f i nd  the poles, look a t  the zeros of the denominator of the i n t e -  

, grand. The denominator, D, i s  

r 

Upon inspect ion of 5.54 one might guess t h a t  5 = 0 and Ah = O,.and AH 0 

are zeros. More care fu l  examination w i l l  show = 0 i s  n o t  a zero o f  

D(E) ( 1  i m  EAh = f i n i t e  number). such t h a t  dh = 0 and 5 such t h a t  
€4 - 

bH = 0-are t r ue  zeros o f  D ( 6 )  bu t  i t  can be shown t h a t  the numerator -a lso 
- ----- - 

goes t o  zero a t  these po in ts .  Next, using L 'Hospi ta l  Is  r u l e  i t  can be 

Ti shown t h a t  A,, = 0 and A,, = 0 are no t  poles. The question asked, "does 



the integrand have a branch cut"? is answered i n  the n h a t i v e .  -- Series 

expansion of the integrand about gdh o r  gaH will show' thit only terms 

of order ( 5 ~ ~ ) ~ ~  or  ((gH)2n where n i s  an integer survive hence no 

branch cut  terms l ike  5 bH -. 3 occur. 

A t  this point one can use the computer to  f i n d  the zeros of the 

integrand. B u t  there wit 1 be no assurance tha t  a l l  the poles have been 

obtai ned . Further exami nation of the denomi nator- i s  cal l  ed for .  

We wish to f i n d  the roots of the following gquation 

where 

-. 3' 

After several algebraic manipulations equation 5.55 can be written as 

Introducing z such tha t  

5.56 becomes 

Now introduce w such tha t  
* 

s-s q 



so tha t  equation 5,58 becomes 
. . 

w 2 t i b h  s,.ln w 
By separating 5.61 into,  real and imaginary parts the following two - 

coupled transcendental equations are  obtai ned. 

where 

W t x t i 9  
solving 5.62' b fo r  x '  we have 

3 

where . 

. (  
and arcsi  n i s A d e f i  ned $as the principal value of sinm1. For each 

h 2 1 ,  or '  branch of the sin'' function, two roots of equatidn 5.63 and 

5.62 a may be fbund (one fo r  each sign -, + i n  5.63). I t  can also be n 
seen t ha t  f o r  re la t ive ly  large y 

t.for,.n = o only T roqt i s  used as 5 = o is  not a 
" 
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Both xp and Y ,  roots of 5 -62 and 5.63, go to infini ty,  b u t  y approaches 

infini ty much slower than x .  This , ?  will create a problem numerically. 
. , 

When the residues are surrnned their  cmvergence w i  11 be very slow, as more 

poles are included. 

I t  i s  n o t  d i f f i cu l t  to show that the zeros are simple poles of the 

' i nte&and, lying in the upper ha1 f E-plane and occurring i n pai rs ti, -ci3 .. 
1 

Since the poles a r e  simple the residue of I 1  ( E )  i s  given -by 
-\ C 

- 
The residues of J 1  and. J: are defined i n  a similar manner. The  residue 

a, 

' i - e  - ; J ~ H o ! I  p tS\ 
i 

W f t h  the aid of table, 1 ,  T(x) i s  evaluated, using contour integration 
* r 

techniques ,. to' be: (a1 1 poles are i n  upper ha1 f c-plane) . . 





1 
The integrand i n  thd, l imit R -+ -, 5 = Reie, goes> 

Hence for convergence we require 

The contours wi 11 be completed i n  the half plane indicated by the 

following table 9 

.%- 
%c7 

Table 2 

The poles of I, are found by looking for the zeros of 

I a -  A\, c o r ( ~ . b h a t z b o  5 -I? 

where 

I n  a manner similar to  that used i n  finding the poles of the integrand of F 

we transform 5.77 using - - . - 



to  ge t  

o r  when rewri tten in  imaginary and real  pa r t s  

Analysis of 5.80 a and 5.80 b i s  s im i l a r  t o  5.62 a and 5.62 b.  
i 

There a r e  an i nf i ni t e  number of i so la ted  simp1 e poles E 2  f o r  

( i )  I ) ,  ly ing i n  the  lower ha1 f E-plane and occurring i n  pa i r s  5 

and -<(;)*. For each s ign of 5.80 there  exists a zero which f o r  

large  y has the asymptotic form ( i n  the 4th quadrant) 
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Evaluat ion of F(x) using tab le  2 gives 

i i where E 2  = x2 - iyZi i s  the ith pole o f  12(5). 

We now move onto c(x,y) and i t s  i n t eg ra l  expression r e w r i t t e n  - 
here as 

where 

Ewf ua t ion  o f  P ( 6  ,y) i s  the same as except f o r  the add-i-t imaf 

pole a t  which i s  in tke upper half 5-plane on the contour C. We 

have f o r  '&,y) 



We de f ine  1 3 ( c )  such t h a t  '1 

From the  d e f i n i t i o n  11(6)  and 4.128 i t  can be shown t h a t  

i 
s-qo 

i 

Also, s p l i t t i n g  I 3  u p  i n t o  J 3  and J: where 

i t can be shown t h a t  
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With these re la t ions ,  the poles and residues are e a s i l y  determined. 

i * 
The poles of 13(c) are -Sf and 51 , found i n  the lower ha l f  S-plane and ' 

the residues P3(E), Q3(5) and Q: (5) are determined from the f o l l ow ing  

i e e n t i  t i e s  a 

1 

We now con ti nue. our evail u a t i  on o f  c ( x  ,y) . 
In the region y < -a, 6 ( x  ,y) becomes 

Af ter  examination of the integrand o'f the f i r s t  i n t e g r a l  i n  the 

l i m i t R + m o n e ' f i n d s  

where the fi r s t  term i n  the square brackets comes from the J,J, c w i  n- -- 

, r7 
a t i o n  of 1311, the second term from d3 J: and the l a s t  term 'from J,J: + 

J ~ J ~  . From 5.96 we see t ha t  the  i n t e g r a l  i s  convergent whenever 



from which the f o l l ow ing  tab le  i s  constructed. 

Table 3 

-'-. 

I f  we define 

then -L1 i n  the above mentioned four regions becomes 



- 
The next two integrals i n  5.95 are 

~ h e b f o r e ,  our requirement 
I .  

i s  r pectively . 4 

The integrands of these integrals are similar i n  their  asymptotic 
i e behaviour, R -+ where 6 = Re . In th is  1 imi t the integrand goes as 

for  the convergence of the terms J 3  and J$ 



which gives the f o l l ow ing  t ab l e  

Table 4 

Upon in teg ra t ion ,  L2* and L3 are given as 



There i s  no r e s t r i c t ion  indicated f o r  the y values because integrals  

L, and La  are  identical i n  both the y < -a region and the -a < y <'O 

region (they do not occur i n  the region y > 0 ) .  

The only other integral tha t  m u s t  be evaluated to  completely 

determine F(x,y) occurs i n  the -a < y < 0 region. In this region L1 i s  

given as a ' L  

As before the asymptotic behaviour of the integrand i s  examined to determine id 
the half plane i n  which the contour i s  t o  be extended. The fol lowing table 

i s  thereby obtained 

-. Table 5 
(. 



With the  a i d  of tab le  5 L1 i s  evaluated, y i e l d i n g  

We our now;ready t o  w r i t e  out  E(x,y) ,  by combining the expressions 
- 

f o r  L1, L2 and L; i n  t h e i r  respective regions. G(x,y) i s  













The regions o f  ~ ( k , y )  a re  sumnarized. i n  the fol lowing diagram. 

Figure 5.2 

The evaluat ion o f  G'(x,y) proceeds i n  exact ly  the same manner as . 
- 
GO(,Y). The s o l u t i o n f o r  G(x,y) m y  be found inrAppendix B. 



The followirtg diagram s u m ~ i z e s  the reglens Ilf G(x,y) . 
Figure 5.3 

Continuing, we calculate H(x,y) . Then using the symmetry relation 

4.134, ~ ( x , ~ ) < r n a ~  be written.  H(x,y) i s  given by ' 



+ r E 

The evaluated expression for  H(x,y) i s  g iven i n  Append43 C .  ;* ' 

Time dependence i s  introduced a t  t h i s  stage using 4.135 t o  
- '  

4.146. We se t  c, = - c , z  c w i t h  c,= 0. T(x;t),  ~ ( x ; t ) ,  G(x,y;t); 
- 

G(x,y;t), H(x,y;t) and H(x,y;t) are  given i n  Appendix D. 

, The next 

equations f o r  

step i n  the 

the kernels 

I S M  i s  t o  solve the Marchenko i n t e g r a l  
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CHAPTER 6 

STEP 3 - THE INVERSE PROBLEM-SOLUTION OF THE 

MARCHENKO INTEGRAL EQUATIONS 

The f i n a l  step cons is ts  o f  attempting t o  solve the Marchenko i n teg ra l  

equa ti.ons 

( fo r  K(:) and K (hence Ql and Q3) .  Because the 6, R, G and H, 

found i n  the previous chapter, are s p l i t  i h t o  many regions, an exact 

ana l y t i ca l  so l u t i on  o f  these coupled VoJ ter ra- type i n teg ra l  equations 
r :  

appears impossible. However, an i t e r a t i v e  so lu t i on  may be feas ib le  as 
- - -  

ser ies  expressions e x i s t  f o r  the funct ions F, G, H y  F, G y  and H. 

. F i r s t ,  however; l e t ' s  examine the s t ruc tu re  o f  the Marchenko equations 

when the s igna l  beam i s  turned i f f ,  i .e. h = o, thus a1 lowing the pump 
- 

beam, t o  t r ave l  through the medium undisturbed. I n  t h i s  ,case, p - ~3 = 
- k - 
a = 0 SO t h a t  H, G, F and are a l l  i d e n t i c a l l y  zero.' ( S e  Appendices B, 

'C,D.)- The k c h e n k o  Tntegra1"equations then reduce-to 
r o o  

We now inves t iga te  the term which i s  much s impler i n  s t r uc tu re  

than the kernel c. To e x p l i c i t l y  evaluate r, the poles which con t r ibu te  



-- 
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to  th i s  term must be determined. A numerical evaluation of the f i r s t  50 

poles Ei was carried o u t  for two different  s e t s  of i n p u t  parameters, the 

resul ts  being summarized i n  Tables 6 and 7.  The medium was chosen t o  be 

transparent 1 iqui d C C ~  4 w i  t h  the fo l l  owing room temperature character- 

i s t i c s :  density p = 1.594 gm/cm3, sound velocity vS = 9.3 x lo5 cm/s 

and refract ive index n = 1.46. In the f i r s t  table ,  the l a se r  intensity 

was taken to be IL = 1 x lo1* ergs/s-cm2 and the pulse duration r = 

lo-' s ,  yielding H = 8.7 x lom3 statvolts/cm, a = 20.5 cm and aH = 0.18 

statvol t s .  In the  second table ,  IL = 5 x TO1' ergs/s-cm2, T = lo-* s 
1. .- 

so tha t  H = 1.95 x statvol  ts/cm, a = 205 cm and aH = 4.0 statvol ts.  

These laser  i n p u t  parameters are  typical of a Q-switched ruby' laser  

(operating frequency w = 2.7 x 1015 Hz). With double precision specified 

in the-program the f i r s t  f i f t y  poles, 51, were calculated i n  f i f t y  seconds 

on the IBM /370-155 (Fortran H compiler). 

Several features of the poles are  imnediately apparent: (1 ) the 
i imaginary part  of 5, i s  increasing very slowly; ( 2 )  the poles l i e  in the 

i* f l  f irst  quadrant, hence, upper half <-plane (there are also poles a t  - t l  , fF 
f 

( i  .e.  i n  the .second quadrant) which we have not bothered to  show); and 

? ( 3 )  the rate  of increase of the imaginary part  of E l  i s  f a s t e r  for  

aH = 4.0 s t a tvo l t s  than\ i t  i s  for  aH = .18 s t a tvo l t s .  

The second feature leads immediately to  a very important 

Kaup has shown tha t  i f  a l l  has a zero ( i . e .  pole of F2) i n  the lower half 

5- lane, which is possible in the forward scat ter ing case, then this zero 

will give r i s e  to  a soliton* wave solution. To see where the terms which 
- - 

Hve r i s e  b-..solitons. come f ccrm we must go back to  Chapter 3.  
1 

tSoliton is a term coined by l%Nsky and* Kruskd t o  describe a 
localized travel1 ing wave o r  a travel l ing wave whose t ransi t ion from 
one constant asymptotic s t a t e  to  another is localized (e.g.  tanh 
(x-ct) ) which asymptoti cal 1y preserves its shape and vel oci ty upon 
coll  ision with other sol i tons.  L1s3 

L* 



TABLE b 
i 

Zeros of a l l ( 5 ) ,  e l ,  with IL = 1014 erg/cm2-S, 

T = los8 s ,  H = 8.72366 x statvolts/cm, h = 0, 

a = 2.05336 x lo1 cm, aH = .I79128 s t a tvo l t s .  



b 
- !? 

TABLE 3 

Zeros of a l l ( ~ ) , 3 i ,  w i t h  IL = 5 x 1014 erg/crn2-s,' 

r = S ,  H d l  .95067 x i t a t v o l  ts/cm, h = - 0 ,  

a = 2.05336 x 1 O2 cm, aH = 4.00543 s ta tvol  ts . 
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To obtain an integral expression fo r  we considered the integral 

- 

where was defined to pass under a1 1 zeros of a l l  ( E )  . In the forward 

scat ter ing case this assumption, about c, i s  not true.  In addition to 
/ ' 
t-le a t  5 there will be a number of additional poles i n  the lower 

half 6-plane which will add discrete  spectra terms to  expression 4.60. 

I t  is these additional terms which, Kaup has shown, give r i s e  t o  sol i tons.  

In the problem tha t  we are  solving (backscattering case w i t h  gular 

pulses) a l l  has -no zeros i n  the lower half 6-plane hence no sol i to$ 

solutions,  only a continuous spectrum. Similar remarks apply to  a33 

where i n  th is  case poles i n  the upper half 6-plane produce sol i tons.  - 
--- 

We now continue with our evaluation of F. The output of the pole 

calculation was used i n  another computer program designed to  sum the 

f i r s t  f i f t y  residues of the se r i e s  expression fo r  F'. . The rather 'sur- 

prising output is  plotted i n  Figures 6.1 and 6.2, where Figure 6.1 

corresponds t o  aH = .18 statvol ts Figure 6.2 to  $H = 4.0 statvol ts. 

The computer time was of the order 60s per graph of twenty data points. 

In the asymptotic 1 i m i  t x + - we i n i t i a l l y  thought tha t  the integral term, 

containing in 6.3 would be equal to  zero and we, therefore, expected F(x) 

to  approximate the i n i t i a l  - rectangular - pulse - shape of height - H. To 

explain the unexpected resul ts we conjectured tha t  the pole representation 

of T(x) must be converging very slowly. (We had a1 ready checked and re- 
C 

checked $he algebra and, c e u t e r  program). 



To check ,this conjecture the integral expression fo r  F(x) i n  4.85 
- 

4 

(5.46) was (direct19 numerica integrated using the trapezoidal rule.  
Ik 

Because the integrand of F rapidly osc i l la t ing  function w i t h  a - 
1 

period on the. order of 5'; ) a s tep  s i z e  of 1 0-l4 s/cm2 was adopted. 

Integration 1 i m i  t s  (lower and upper, respectively) were cutoff a t  

-10-lo s/cm2 and 10-lo s/cm2. Results for  aH = .18 s t a t v o l t  and aH = r 

4.0 .statvol ts a re  plotted i n  Figs. 6.3 and 6.4 respectively. The er ror  

bars around the data points indicate the maximum uncertainty due to  the 

0s C 

cut 

has 

(aH 

been drawn through the .center of the error  bars. 1n.Fig. 6 . 3  
< 

= .18 statvo1ts)anearly rectangular pulse i s  shown w i t h  the i n i t i a l  

if latory nature of the integrand and the f a c t  tha t  the l imits  were 

aff a t  f-in& wlues .  For convenience i n  viewing, a smooth curve 

wave height H = 8.7 x statvol ts/cm. In Fig. 6.4 (aH = 4.0 s t a t -  

vol ts)  we see an osc i l la tory  function w i t h  amplitudes on the Larder of the 

in i  t i a l  rectangular pulse height, H = 1.95 x statvpl  ts/cm. To aid 

in the interpretat ion of the T diagrams, note tha t  i s  purely imaginary ' 

and hence only th is  component i s  plotted. Also note tha t  since the . 

contribution of F t o  the f ina l  pump wave envelope Q3 i s  given-by . 
9 

Qj = -iF + integral t e r n  the contribution to  Q3 can be read d i rec t ly  

from these diagrams. 

Comparison of Figs. 6.1 and 6.2 to  6.3 and 6.4, respectively, 

reveals an interest ing point. Including the f i rs t  50 poles in the 

calculation of (diagrams 6-1 and 6.2) does not bring F ' s  s e r i e s  

representation anyw-here near the actual value of 'F (Figs. 6 . 3  and 6.4) 

evaluated d i rec t ly  from i t s  integral form. I t  appears tha t  the slow 

increase of the imaginary par t  of the poles is d i rec t ly  related to  the 



mmt-gence of the P p o k  representation. To see th is  examine the x 

dependent porti-on of the pole represen a n  for  F. This term goes as 

The magni tude of th is  term and hence r depends upon yj  , the i k g i  nary 
i part of 51. Taking any x value between -a and 0 and evaluating th is  

term a t  the lSt and 5oth p d h  for both aH = .18 statvolts  and aH -.- = 4.0 

statvolts  will reveal two points of interest .  F i rs t ,  the 5oth term i s  

' not that  much smal l e r  than the lSt term. Second, for  aH = 4.0 statvol t s  

the ra t io  between the lSt and 5oth term i s  greater, i .e. the t e n s  get 

smaller fas ter ,  than for  aH = .18 statvolts .  The f i r s t  point indicates 

that because the terms in the inf in i te  series representation for T 

decrease slowly i n  magni fude, these terms wi 11 necessari ly'be small in 

magnitude and therefore a great number of these terms must be summed 

in order t o  obtain an accurate representation of r. +The second point 

explains why for aH = 4.0 statvol t s  the series representation of i s  

qualitatively a much better f i t '  than for aH = .18 statvolts .  

We conclude that for the problem we are investigating the pole 

representation of converges too slowly for this method of evaluating 
- 
F t o  be viable. Future investigati& by numerical experts may change 

th is  situation but i n  this thesis we will use the direct  numerical 

integration method to  eval uate F(x) . 
: An obvious~questTon~arise~ w h e n  one compares F ig .  6;3 a-nd 6;4, 

> 

"Why does -i-w approximate a rectangular envelope in the case  aH = .I8 

s ta tvol ts  and does not in the case aH = 4.0 statvolts"? .c 

* 
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To answer this ques t ion ,  l e t  us return t o  t h e  f u l l  Marchenko 

i n t e g r a l  equat ions ,  6.1 and 6.2. 

Take aH < < 1 and ah < <1. We wi l l  determine the  order  of  the 

individual  terms t h a t  occur i n  the  Marchenko equations.  F i r s t  note - 
1 1 

t h a t  the  poles 51 and 5, a r e  of the order  l / a c  hence dH and bh a r e  '3 
of  the  order  c .  I t  is  not d i f f i c u l t  t o  show t h a t  

where the symbol "%" s tands  f o r  " of the order  o f " .  Next we f ind  the  
0 

order  of the terms F, c, Hy F ,  G and H by using 6.7 i n  5.169 - 5.217. 

We include only the  f i r s t  res idue  s i n c e  incorpora t ing  residues 

evaluated a t  poles 51 i - > 2 ,  51 i - > 2 complicates matters  and does not  

a1 t e r  the  val i di t y  of  the  demonstration. 
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The order of each term in the Marchenko integral equations can - 

now be calculated. From 6.1, 6.2 and 6.8 we have, 

In obtaining 6.10 from 6.9 we have replaced the integral with a times the 

integrand since K(:) and ~ ( 2 3 )  are approximately rectangular pulses of 

width a. - 
We see that  for  aH < . andxah c 1 F provides the major contribution 

t o  ic(lland F to  K ( 2 ) .  I n  par t icular ,  for  h = , O  and aH = 0.179, Fig. 6.11 

t e l l s  us that  -iF(x) should approximate the i n i t i a l  rectangular shape of i 
i 

height H =-*8.7 x statvol ts/cm to  within a k u t  3% since the integral 

term provides a correction %(aH) 2. The magni tude of the "ripple" i n  

F i g .  6.3 i s  indeed l e e  than 3%! 
' 6 n  the other hand, carrying. out a similar analysis fo r  aW > > I ,  

I 

i t  c h T b e  shown t h a t  the terms i n  Eq. 6.1, for  example, are  of the 

fol'l owi ng order. 
- 

Thus, for h = O and aH = 4.0 s t a t d l  tsjcm, one would expect ' g a t  t 
3 

the integral contribution m u s t  n o t  be neglected i f  one wants to  regain 1 3 

the i n i t i a l  rectangular shape. T h i s  i s  why Fig. 6.4 does not look a t  

a l l  rectangular. Or t o  p u t  in another way, i f  aH > > 1, one has to 
> 



solve an integral  equation even for' h = 0 t o  regain the rectangular 

shape. The rectangular shape does not 

th i s  case. Furthermore one needs t 

i s  not an easy-task.  

For h non-zero, we must return to the coupled equations 6.1 and 6.2. 

F i r s t  we wil? t ry  to  obtain some relat ively simple resu l t s  (avoiding a 
3 

brute force approach) which might be relevant tod an experimentalist. 

Le t ' s  t ry  to  find the asymptotic shape of the pump beam long a f t e r  the 

interaction with the signal beam has taken place. First consider the 

l imi t  t -+ + m-, holding x-ct=constant. As t increases so must x .  

Returning to  the definit ions in the previous chapter, i n  this l imi t  we 

find tha t  F ,  G ,  H ,  F a l l  go t o  zero. Then Eqs. 6.1 and 6.2 reduce to  ' 

( reca l l  y 2 x )  

The second equation simply confirms tha t  there i s  no signal beam 

i n  this l imi t  since i t  has travelled off towards x = -a as t -+ m .  

The term now depends on h as we1 1 as H .  Provided tha t  aH < < 1 , i t  can 

he showfi tR*---,fw ah  -)I t h e  ih-deperidence cancels out  o f  t h e  integral term 

in 6-13 and-the integ& is again-negligfblte-asS-i t:-wasS tor a h < ? -  We have 



Using d 

s t a t v o l  ts/cm 

I n  Figs 

and h = JZ5Ti 
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i r e c t  numerical i n tegra t ion , f  i s  ca lcu la ted f o r  aH = . I79 

and vary ing values of h. 

. 6.5 , -  6.7 , we see the output f o r  h = $m H, h = 10H, 

H, respect iue ly .  

Fig.  6.5 shows the f i r s t  e f fec ts  o f  the signal, beam's existence. 
? 

A s l i g h t  dep le t ion of thb pump beam's ampl i tude i s  apparent near i t s  

t a i l .  I t  i s  per turbut ions i n  the medium which couples the two laser  

beams together. I n i t i a l l y  the medium i s  'undisturbed, bu t  when the' two 

beams overlap they d r i v e  the medium, gradual ly  'bu i ld ing up s i g n i f i c a n t  

perturbat ions i n  the medium's d i e l e c t r i c  constqnt. By the time the 

t a i l s  of the two beams are overlapping the medium's d i e l e c t r i c  constant 

has been dr iven t o  s u f f i c i e n t  amplitudes t o  make the two beams' predator, 

prey ro les  v i s i b l e .  I n  t h i s  case the s igna l  beam i s  tak ing energy from 

the pump beam. 

Increasing the amplitude of the i n i t i a l  s igna l  beam t o  h = 10 H, 

i n  F ig .  6.6, we see the e f f ec t s  o f  even stronger nonl inear coupl ing. 

DepTetion i s  s t i l l  v i s i b l e  i n  the pump envelope bu t  i n  add i t i on  

osci 1 l a t i ons  i n  the amplitude and pulse s t re tch ing  occur. The o s c i l  l a t i ons  

i n pulse ampl i tude ahrees qua1 i t a t i  ve ly  w i  t h  the numerical resu l  t s  of 

t Bers, Kaup and ~e imanl ' ]  us ing Gaussian shapes ( they numerical ly  solved iP 
the three wave equations d i r e c t l y )  . The osci 1 l a t i o n s  occur as the r o l e s  

of predator and prey reverse. Pulse s t re tch ing  was pred ic ted and explained 

by Enns and Rangnekar. 

A f t e r  the l ase r  pulses have passed through each o ther  the medium's 
*, 

d i e l e c t r i c  constant i s  s ti 11 h i gh l y  perturbed (damping of the f l u c t u a t i o n  

has been neglected). Because o f  the continued coup1 i ng o f  the medi um 

Note added i n  proof: See a lso [ly]. 



with each of the laser beams there i s  an exponential decay rather than 

a sharp cut off i n  the t ra i l ing edges of the pulses. By increasing the 

amplitude of sinnal pulse H, Fig. 6 .7 ,  this effect  becomes 

q u i  t e  dramatic. Increasing ,the amp1 i tude of the s i  gnal beam beyond 

these values i s  physically unrealistic because e lect r ic  f ie ld  gradients 

o f  the laser envelope will then be greater than t h e  ionization potential 

of CC14 and dielectr ic  breakdown will result.  



- 'XU -a O '- r - c t  

Figure 6 - 2  
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F i g u r e  6.3 

F igu re  6 - 4  
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Figure 6.5 

Figure 6.6- 





To more easi ly understand the occurrence of these nonlinear effects  

see Fig. 6.8 a ,  b, c ,  and d, depicting the spat ial  positions of the two 

laser  pulses and the disturbed medium. 

Figure 6.8 





Fig. 6.8 (a) schernaticaly depicts the in i t i a l  situation of an un- 

disturbed medium, wi t h s  two rectangular laser  beams about to pass t h r o u g h  . 
each other. As the pulses pass through ea& other they perturb the di'  

e lec t r ic  constant of the medium. The maximum spatial extent of th is  

disturbance of medium occurs when the two laser pulses completely over- 

lap as shown i n  diagram 6.8(tj. The pulses continue to drive the medium 

until they no longer overlap, diagram 6 .8k l  Once the medium i s  per- 

turbed i t can couple the two laser  pulses together so that  nonlinear 

interactions between the two beams can take place. In diagram 6.8 (c) we 

see that the signaT beam s t i l l  overlaps the die lect r ic  perturbation, 

causing pulse stretching of the pump beam and, similarly, the pump beam 

over1 appi ng the die1 ect r ic  berturba tion causes the signal beam t o  stretch . 
B 

A1 1 appreciable nonlinear effects end when the two laser pulses trai l ing 

edge reach the edge of the. dielectr 

l a s t  diagram of the series . The pu 

travel undamped in thei r respecti ve 

has a negl i g i  bl e veloci ty (which we 

t o  the speed of l ight ,  the asymptot 
\ 

c perturbation, as depicted in the 

ses, now in their  asymptotic form 

di rections . Since the f l  uctuation 
1 

have approximated as zero) compared 

c form of ei ther  pulse- i s  actually 

achieved when the pulses move out of the interaction region. The 
i 

\I interaction region does not propagate b u t  remai ns stationary between 

- & 5. Physically this disturbance should die away due to damping 

b u t  th is  feature was not included i n  the three wave equations that we 

have attempted to solve . I f  damping of the medi urn were incl ud& t h e  onf y- 

effect  that  th is  would have on the laser pulse sol~l t ion i s  t o  'decrease 

the magnitude of the pulse stretching effect  since the magnitude of the 

medium's disturbance would begin t o  die away a t  t = a/c shown i n  

d i  agram 6.8 \c 4 

.t 

- 



What about the  asymptotic form of the  signal  beam? Unfortunately 
$ 

F, i n  equ. 6.2, can never be an accurate representation of K:' 
8 

a f t e r  the  in te rac t ion  so one i s  forced t o  attempt to  solve the  

complete in tegral  equation. The reason for  t h i s  i s  t h a t  F s t r u c t u r a l l y  

d i f f e r s  from i n  a  very s i gn i f i c an t  way. ~ n l  ike  T, F contains 
\ 

no- H dependence so i t  can not possibly account fo r  the  in te rac t ion  

s f  the  signal beam w i t h  the pump beam. 

One a lso  notices t h a t  the regions fo r  F, when compared t o  

F, G a re  s t r u c t u r a l l y  d i f f e r e n t .  The terms and 3, which a r e  

associated w i t h ,  t he  pump beam travel  l i n g  <o the r i g h t ,  a r e  i den t i ca l l y  

zero i n  f ront  of  the  Q 3  envelope, x - c t  > 0. F and G ,  which a r e  

associated with the  signal beam, a r e  not zero i n  f ron t  of the  

leading edge of Q, , x + c t <  0. This suggests t h a t ,  i n  the  second 

integral  equation 6.2 both the  F term and the  kernel G term a r e  

required t o  play an equally important r o l e  i n  determining K?, t h e e b y  

cancell ing out  i n  the region x + c t <  0. Otherwise, the  physically 

un rea l i s t i c  s i t ua t i on  of t he  leading edge of a l i g h t  pulse t r ave l l i ng  

f a s t e r  than the speed of  l i g h t  i n  the medium would occur. 
I=-, 

a fea tu re  of the method t h a t  the  solut ion for  the  signal beam i s  

harder t o  obta in .  

Of course i f  G could be evaluated we would attempt t o  solve 

Eq. 6.2 by an i t e r a t i v e  procedure. Direct in tegra t ion  of G will involve 



9 considerably more computer time than F since a double integral i s  in- 

15 s/data 

the shape 

probl em, 

volved (numerical evaluation of F ' s  integral representation took about 

point).  No attempt will be made to  carry th i s  out.  Obviously, 

of 1 ight  pulses fo r  "intermediate times" involves the same 

i . e . ,  one needs as well. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 
li 

I n  t h i s  t h e s i s  t h e  f ~ v e r s e  s c a t t e r i n g  method has been described and ' 

app l i ed  t o  the  th ree wave problem as r e l a t e d  t o  SBS, t h e  backscat te r ing  - 
case. Because rec tangu la r  i n i t i a l  pulse shapes were chosen steps 1 

and 2 proceeded w i  thou t d i  f f i  c u l  ty and exact  expressions were obta ined 

f o r  t h e  t ime dependent s c a t t e r i n g  transforms. -Numerical techniques 

were incorpora ted i n  t h e  t h i r d  s tep  t o  ob ta in  asymptot ic s o l u t i o n s  f o r  

t he  pump wave envelope. 

I t  was found t h a t  the  po le  representa t ion  o f  T converged very 

s lowly ;  so s lowly ,  i n  fac t ,  t h a t  F was subsequently evaluated numer ica l ly  

us ing  i t s  i n t e g r a l  form. We have shown t h a t  - i r ( x )  represents, t o  f i r s t  

o rde r  i n  aH when aH < < 1, t h e  ampli tude o f  t he  pump beam. No correspond- 

i n g  r e l a t i o n  was obta ined f o r  s igna l  beam as i t  was shown t h a t  the  

f u n c t i o n  F and the  i n t e g r a l  term con ta in ing  G p layed an equal r o l e  i n  

the  determinat ion o f  t h e  ampl i tude of the  s igna l  beam. 

I n  agreement w i t h  r e s u l t s  obta ined by d i r e c t  numerical i n t e g r a t i o n  

o f  the  th ree wave problem found i n  the  l i t e r a t u r e  our  s o l u t i o n s  f o r  the  

pump beam's envelope, us ing  T, showed the  non l inear  e f f e c t s  of: dep le t ion ,  

pu lse  s t r e t c h i n g  and ampli tude 'osc i  11 a t i o n  .\ 
With regard t o  t h e  poles o f  & and p2, i .e. zeros o f  all and a33 

we confirmed. t h a t  al has a1 1 i t s  zeros i n  the  upper ha1 f <-plane and 

a33 has a l l  i t s  zeros i n  the  lower ha1 f c-planet, hence no s o l i t o n  

s o l u t i o n s  e x i s t  i n  the  backscat te r ing  case of SBS. There e x i s t s  an 

i n f i  n i  t i  number o f  these poles, the  r e a l  component i nc reas ing  1 i n e a r l y  
tNote  added i n  proof: ~ a u ~ ~ ~ h a s  found t h a t  a, can have zeros on the  
p o s i t i v e  imaginary a x i s  provided t h a t  a h k 1 . 5 .  



whi 1 e the imaginary component increases logarithmically . 
All of the above mentioned resul ts  were obtained without having to  

c, solve the tegral equations. I t  was origianl ly hoped tha t  a 
/-' 

closed form analytic s h u t i o n  could be carried through steps 1 ,  2 and 3 

of the inverse scattering method. This goal ,was not achieved. Re- 
1 

K i s t r i c t ing  the problem t o  a numerical eval uat3on of the r integral to  

get out an asymptotic solution to  the pump laser  envelope i s  of l i t t l e  

consequence to the experimentalist who usually only investigates the 

scattered ( i  .e.  asymptotic) laser  pulse, anyway. Numerical evaluation 

of the original three-wave equations i s  conceptually simp1 e r  b u t  1 

def in i te ly  not as e f f i c i en t  as the numerical evaluation of the one 

integral corresponding to F. 

The problem i s  by no means wrapped up;  there are  many unanswered 

questions. I s  i t  possible to  choose a continuous function to  represent 

the i n i t i a l  shapes for  which steps 1 ,  2 and 3 may be solved? I s  the slow 

convergence of the pole representation of F, c, e tc .  a general feature of 

the continuous background solution? Can we devise an e f f i c i en t  programne, 

w i t h  respect to  computing time t o  evaluate those terms involving double 

integrals ,  e.g. G ,  and thus solve for  the final form of the signal beam? 

I s  i t  possible t o  apply the ISM when damping i s  included? 

I t  has been s tated i n  the l i t e ra tu re ,  as early as 1976, tha t  a 

closed form solution t o  the three-wave problem, backscatteri ng case, 

w i t h  rectangular i n i t i a l  profiles i s  obtainable. However, no solution 

has ever appearedt This f a c t  and the attempted closed form solution 

here indicate tha t  such a solution i s  in f ac t  more d i f f i c u l t  t o  obtain 

than as f i rs t  anticipated. 

t Even ref .hwhich only appeared when th i s  thesis  was being completed 
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APPENDIX A 

S t r i  ct1.y speaking, damping of the laser  induced f l uc tua t i on  should 

no t  be neglected i n  the backscat ter ing case. However, a l l  I S M  t r ea t -  

ments o f  the three-wave problem ignore damping. Examination o f  the 

re levan t  operators suggests a simple modi f ica t ion which would lead t o  

the i nc l us i on  o f  damping terms. We go back t o  chapter 3 where we 

der ived the form of the time evo lu t ion  operator f o r  the three-wave 

problem. Inspect ion of the ca l cu la t i on  suggests t h a t  a mod i f i ca t ion  

o f  L o r  Bo w i l l  in t roduce the desired damping term. E i t he r  take 

where 

I f  L i s  chosen as above then the r e s u l t i n g  three-wave equation obtained 

from cross d i f f e ren t i a t i ng  the time evo lu t ion equation and the modi f ied 

l i n e a r  eigenvalue equation i n  terms o f  Vij i s  



The fo l l  owing conditions a re  imposed upon ni  when the -symmetry 

of V i j  i s  introduced. 

We see imedia te ly  from A4 tha t  q i  must be real but this leads to  purely 

imaginary damping coeff ic ients  i n  the three-wave equations, i .e. in A3. 

This is  physically unacceptable. 



APPENDIX B 
Y 'O X - y e - s  X C  0 









QI [J,' 1 Q: 15:) e ~ ~ l ~ ~ ~ ~  , i Q p x , ~  - L C ]  

'5: + 32 4 
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APPENDIX C 

Evaluation of H(x ,y) is straightforward, proceeding along simi l a r  

1 i nes to. G(x ,y) and c(x ,y) . The t e n  - i ~  pushes the pole 6 + i E above 
- ,  

the contour C ( the  poles of p 2 ( $  ) are below C )  . After evaluating the 

f i r s t  integral (with respect to  Q ); E i s  s e t  to  zero from the r i g h t .  

A1 though, i n  the beginning of this chapter I choose c, = -c3, I have not 

introduced this  res t r ic t ion  in to  the problem, and will not do so unt i l  

time evolution of the scat ter ing data is calculated. Therefore 61, i s  

i n  general not assumed t o  be equal to  823. I take 612 > 623 as t h i s  

corresponds to having the velocity cha rac te r i s t i e  of c he fluctuations 

Define X such tha t  











- 
H(x,y) n o t  w r i t t e n  o u t  here,  i s  e a s i l y  found a i n g  
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APPENDIX D 

x - c t  < - Q  , 

- 
F (x;i) 2 I x L H  i [P, (ki) e -i(tc (x-ct)  

+ C . L .  sf I 

























Q K xtct 



H(x,y;t) i s  exactly the same as H(x,y;t) given i n  - the  ,preceding 

equations ,except tha t  y and x are interchanged. As an example i n  region 7, 

H(x,y;t) i s  given as 
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