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. . ABSTRACT " ./ . L T
. \ ] o M- - Lo )
This thesis/is an ahaiysis of the'structure of'the

. R

Neo- -Classical theory of the f1rm conducted pr1mar11y by
examlnlng the copstralnts whlch the theory places on the

selectlon of a productlon or prof1t functlon. " The loglcal

requlrements for a comglete theory of the Firm are summarlsed

and an ax1cmat1c framework1developed wh1ch embraces the

iy ‘

e&sentlal features common to most treatments Qof . the flrm

f -

w1th1n the Neo Glass1cal gfadlfﬁon. In particular, the

e

short, intermediate and'long‘run dlstinctions made in the

two input analysis are generalised/to a sequence of periods
in which progressively fewer»ihputs are constrained.

Conditions are derived for the existence of unique
profit maxima in each run and for the possibility of zero
maximum profit in the long run as a result of the predicted
exit of firms from industries making negative profit and
entry into industries with positive profits. Two results
of particular interest emerge from this analysis. The first
is the construction of a Neo-Classical Framework for the ’
theory_of the firm which includes several hitherto largely
neglected models as well as the familiar cases of perfect
and imperfect competitjon. Secondly the analysis shows that
within this framework the concept of the perfectly competitive
firm having no influence on input and output prices is

(o

internally inconsistent, that is, a 'perfectly competi

production function cannot be found'.

iii-
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CHAPTER ONE -

- Introduction - -

[ 2 .-

1. PURPOSE:. This thesis is an analysis Qf the structure _ |
of the Neo-élasgical Theory of the firm conducted primariiy
" by exam}n;ng the constraints which the theory places onltgér
form of the technological relationship between inputs and
outputs, usually called the 'pr6duction'function'u- By
constructing a logical framework for the theory‘bf the firm
expanding on the usuai text-book expositiong attention is

drawn to the non-trivial problem of devising a production

function which is consistent with all the assertions which

the theory makes about the firm's behaviour. Thus a postulated

technical relation which satjisfactorily explains the -actions

of a profit-maximisigg firm subject to a limi;éd supply of
capital may fail to justify the same firm's behaviour when the - ;
constraint is removed. Similarly a production function which | ( ,
agrees with the predicted 'long run equilibrium' of the firm

and industry is not necessarily consistent with the theoretical

explamation of how this equilibrium is attained.

2. THE NEO-CLASSICAL THEORY OF THE FIRM: In its simplest

AN

form the Neo-Classical theory deals with a firm which converts
quantities of two inputs ('labour' and ‘'capital')-into a

single output, subject to fixed unit prices over which it . .
- L

has no control. The firm's decisions are limited to the

selection of input and output quantities subject to technical
1 .

~— .
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capability ( Zhe 'production function')‘and are made on“the
basis of the maximisation of the excess of sales revenue
over'input.cosﬁS%('pfofit'). (See Ferguson [26], for example).
The conveptional text book‘éxplanation of this choice
ﬁ}ocess is incompleté'in that it treats only the 'short run'
and the 'long run;. In the first case the firm is obliged
to pay for a fixed amount of capital and chooses only the.
quangity éf labour it will use. By contrast in the long
run the firm is free to select not only the optimum combination
.0of labour and éapital but also the indhstry to which it
will belong. -
Comgleteness of the theory requires some specification
of the '}ntermediate run' in which input quantities are
variable but the product type or industry is not. This
exfension is provided by Boland [9],7and it is this completed
version of the Neo-ClasgicéI'Thaory which 1s considered in
this thesis. Neo-Classical Theory predicts tha£ the independent
long run decisions of prqfi£ maximising firms will, througb
their combined effect on selling pricest:produce an equilibrium
situatién in which the rate of profit is the same for all
industfies,>and hence for all firms. Howgver those versions
of the Neo-Classical Theory which extole the virtues of
competition on this basis are intelléctually inadequate since,
as Boland argues [14], combetitioﬁ is unnecessary for ihe
achievement of a uniform profit level. This point is addressed

in Chapter Six. -



Generalisations of the above descriptioh are possible
by increasing the number of inputs as in Henderson and
'Quandf [36] for example, and Ly #elaxing the inflexibility
of output prices as in the fheory of Imperféct Competition

[50]. However, where an explicit account is rendered the

behavioural pattern is essentially the same.
- ' ¥

3.  PARTICULAR ASPECTS OF THE THEORY:  1In empirical work

it is common to assume a particular fdrm1of the production
relationship which meets certain iheoretical requirements
(such as decreasing returns to an input) and to attempt to
estimate the parameters of this function [64, for example].
Theoretical studies such as [62] have alsé taken a particﬁlar
family of production functions as given. This presupposes
that thérfunctional form is conéistent with the assumed
theory and confounds the implications of therresults for the
thedr} and for the chbiesqgf pro&ucgion function. 1t is
therefore appropriate here to treat the production relationship
as an integral part of the Neo-Classical theory limiting
its form only in so far as this is necessary for consistency.
with that theory. 1In short, the characteristics of the * L
production function are to be infeQred from the combination
of theory and observation rather than imposed a priori.

The uniform rate of profit prevailing at the end 6f the
long run 'is often referred to aé 'normal profit' or 'long
run zero profit' [26]. Interpreted literally this>léaves .

unanswered the question of why a profit maximising firm -

RSP ——
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4
chooses to remain in operation in equilibrium rather than
earning the same profit from closing down. Friedman [2B]

has suggested that the 'guiding spirit' or 'entrepreq&yr‘

5

earns a return for his administrative services in the long

run whereas he would be obliged to seek empléyment elsewhere
were the firm to be liquidated. However this raises the
problem 6f a perpetually constrained and 1arge{y unquantifiab}e
input (as Friedman ﬁotes) and intrqduces a second argument

into the firm's objective functiqn, that of entrepreneurial
preference. Profit maximisation may be retained as the

solé choice criterion if long run profit is a positive

constant and the analysis conducted as usual by defininé

pféfit net of this amount.

For a profit maximising firm to change industries within

" the scope of the Neo-Classical Theory an opportunity must

appear to exist for profit to be increased at the end of the
intermediate run. Either profits are uniform throughout

all industries in which case long run equilibrium is
established immediatelyvof a distribution of profit rates
exists between firms such that immigfation>into above normal
profit industries occurs together Qith emmigration from
lower than ééuilibrium profit situations. If the long run
is to be a distinct period with the entry and exit phenomena

described by the theory, varying levels of profit in the

intermediate run must be possible.

4. THE FORM OF THE PRODUCTION FUNCTION: Whenever the form




of a production function is specified in Economic analysis
it is almost invariably linearly homogeneous, usually of
the Cobb-Douglas form [18]. Lancaster [42] understated the

case when he remarked that "Homogeneous functions are of

considerable importance...especially in Neo-€lassical

vt W

productiongtheory". He notes that the more general class

of homothetic functiohs (which includes the only other
functional form regularly represented in the literature, the
Constant Elasticity of Substitution function), are "used
from time to time in various contexts".

Functions of this type are ﬁathematically tractable
both directly and in additive logarithmic form for regression
analysis [44]. Moreover the linear homogeneous function
exhibits decreasing marginal productivity for all inputs
and generates constrained and unconstrained maxima when
these marginal products are in the same ratio as prices.
éimilarly the existence of long run equilibrium is ensured
by the identity of unconstrained maximum output with zero
profit( However this raises the problem discussed by Boland
[14] and referred to in the\preceding section. If maximum
profit is necessarily zero in the intermediate run, this
period is indistinguishable from the long run and any entry
or exit behaviour is purely gratuitous in terms of the théory.
A full account of the Neo-Classical firm's choices requires
a production function which yields zero and non-zero
maximum (net) profit in the intermediate run depending on . %

the prevailing prices. Such a function is not apparent
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from the literature and it id the putpdsé of this ﬁhesis
to examine the form of a production function which meets
this condition whilst retaining the other attributes requifed

by the Neo-Classical. theory (such as constrained profit

maxima) .

5. THE AXIOM STRUCTURE: Considerable attention has been

. given to the axiomatisation of microeconomic theory when
applied to the consumer (see Walsh [63], for example), and
to general equilibrium as exemplified by the work of Debreu
[21]. With the exception of Boland [9], little attention
seems to have been given to reducing the theory of the firm
to a similar logical strﬁcture. Work has concentrated on-
the repreﬁentétion of the technological relationship divorced
from the wider‘requirements of the underlying theory. .
Linear programming [23] and activity analysis [42] providejlx
obvious gxamples although the more recent enunciation and
applications of Shephard's lemma [ 57] have expanded upon the
intrinsic duality of the technical and 'economic' aspects
of produetion first noted in the linear case [81].

Since an inconsistency appears to exis¢ between the
usual text book theory of the firm and the most ébhmonly
used forms of production function it is appropriate to restate
the fheory in a more rigorous form. Hence it bécomes apparent
what 'demands' are placed on the form of the technological
relationship by the structure of the theory and the extent

. . 13 . .
to which different functions meet these requirements.



6. DIFFERENTIABILITY AND DIVISIBILITY: Traditional

‘presentations of the Neo-Classical theory of the firm
frequently assume thé(differentiability of the production
function to permit the use of calculus maximisation techniques
as in [36], for example. However the work of Debreu {211

on general equilibrium and of Shephard [57] and Jorgenson

and Lau [40] has stressed the adaptation of results in convex
analysis to avoid differentiability. Attempts, have also

been made to incorborate non-convexities, notably by Fraﬁk
(27]. Linear technologies necessarily also includelgoints

of non-differentiabilipyA[8].  ‘

The extent to which the various relaxations of the
differentiability of the production function are consistent
with the Neo-Classicalitheory of the firm (as opposed to
general equilibrium theory) do not appear to have been
widely discussed in the literature. It is apparent from
the present analysis that there is little difficulty in
replacing a differentiable production function by a continuous
strictly concave one with the appropriate 'subdifferentialsf
but that linearity and indivisibility necessarily generate
ambiguity within the traditional explanation of the firm's

. . I
behaviour.

7. THE FORM OF THE ANALYSIS: In Chapter Two the logical

requirements for a complete specification of the Neo-Classical
Theory of the firm are discussed and the distinction made

between a general, irrefutable, theory and an auxiliary

-
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model by which the premises of the theory are related to
observable.phenomena or data. It is noted tﬁat an essential
characteristic of a complete theory-model combination is
that there exist conceivable data which would enable it to
be distinguished from competing explanations of the same
behaviour, in this case, the firm's choice of an input;
output combination. )

Neo-Classical Production Theory does not app?ar‘in the
literature as a clearly defined'structure. Consequently in
Chapter Three a framework is descE}bed which embraces the
essential features common to most treatments of the theory
whilst attempting to avoid unnecessary restrictions peculiar to
pqgticular versions. Thus the short, intermediaté, and
long run distinctions made in the usual two input analysis are
generalised to a sequence of runs in which progressively fewer
inputs are constrained. This sequence culminates in the
penultimate run in which no inputs are constrained and the
firm is restricted only to remaining in the same industry,
corresponding to thé intermediate runfiand the long run in
which the firm may change industries as in the simpler case.

The consequences of requiring the theory to be a complete
explanation of the firm's behaviour when restricted to one
industry are examined in Chapter Four by expressing the
framework of Chapter Three in mathematical terms. Hence it
is shown that the restriction of the relationship between

inputs and profit to strict concavity suffices to ensure

S



the existsence of the required uynique input-output
combinations in all runs.

Since the theory stipulates that profit achieve a ) ‘ |
uniform of 'normal’' level in all industries in the long
run, sufficient conditions to guarantee the existence of i
ﬁormal profit for the firm are derived in Chapter Five.

These conditions prove the possibility of the existence of

normal profit and in Chapter Six attention is turned to the
necessary consequences of postulating this existence.

Hence the perfectly competitive firm is shown to poéseSs

a anique input-output combination which generates this level
of profit regardless of input prices, and the consequences
of the singulérity are illustrated for the familiar-two
input case.

In Chapter Seven the requirements which the theory makes
on the production function of the perfectly competitive firm
are summarised. It is proved that if all other requirements
are met, the production function cannot be consistent with
the Neo-Classical explanation of the transition from.
penultimate (or intermediate) to long run. Thus the
Neo-Classical theory of'perfect competition is necessarily
inconsistent with itself. The significance of this and the
other results derived in the analysis are discussed in
éhapter Eight.

Mathematical definitions are repeated in the Appendix

which contains proofs of the results mentioned in the text.
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8. CONCLUSION: Two results of particular interest emerge
from this thesis. The first is the construction of what .

may be termed a 'Neo-Classical framework' for the theory

of the firm covering a broéd class of models of technical

and market behaviour. Secondiy the analysis shows that
within this framework the concept of thé perfectly competitive
firm having no influence on input and output prices is
internally inconsistent, that is, the perfectly competitive
production function does not exist.

The most significant restrictions placed on the analysis
are those of uniqueness of the profit maxima for any given
input and output market situations and of generality with
respect to all positive input prices. However the first
condition is a logical requirement of a complete explanation
rather than a peculiarity of the Neo-Classical apprdéch.

To explaingwhy a firm chooseb the input-output combination
which it does it is necessary (and sufficient) tQ~explain
why it does not choose any other attainable combinqtion

[9]. The absence of uniqueness requires a supplementary
theory to explain why the firm chooses one optimﬁm rather
than another. Ad hoc limitations on which input price .
vectors are admissable (i.e. 'work'}) also need justification
in the form of subsiduary aséumptions about which prices

can exist or how the‘firm reacts to an inadmissable situation
’in an input market. As recéived the Neo-Classical theory

of the firm provides no indicatiép of the form either of

these modifications should take.



CHAPTER TWO

Methodology

1. INTRODUCTION: The purpose of this chapter is to

summarise the job which a theory is intended "to do, and

the criteria by which its performance is to be judged.
'~§&6§E1hg the approach taken by Boland[12] leads to a

consideration of the correspondence between the speéification

of a model of a theory and the data available with which

to compare it. Thus every model is noted to require é

supplementary related theory regarding observations. 1In

the following chapter these conclusions are applied to the

specification of the Neo-Classical model of the firm which

is to be examined in the remainder of the thesis.

2. THE PURPOSE OF THEORY: Discussion of the purpose of
economic theory has centred on three viewpoints:
Instrumentalism, of which Friedman [29] is thé best known
proponent; Descriptivism which is espoused by Samuelson [55]
and a Logical Positivist approach derived from the writings
of Karl Popper [49]. The shortcomings of the first two
attitudes have been detailed in the literature by Boland
,[1d; wong 6], ,a/nd others and the methodology ;ado.pted

here is a iﬁzification of the views of Popper and Agassi
[2] expressed by Boland [121. Thus theory is seen as a
device for understanding and explaining (economic) phenomena
in terms of existential, and hence, irrefutable premises

11
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(assumptions).

3. TESTING CONVENTIONS: The various .criteria for the

acceptability of a theory are discussed by Boland [0]who
follows Popper in suggesting that the primary requirements
are logical consistency and the existence of conceptually
false, but hitherto un;efuted; implications. Contradiction
of oﬁe such implication by an observation, or 'fact', implies
the falsity of the set of basic‘sssumptions although it

does not directly indicate the culprit(s). However Boland
also argues [12] that the implications of a theory cannot

be compared with received data without the introducéidn

of subsiduary assumptions specifying the manner in which
theory and observation interact. Thus contradiction of

an implication permits gnly the deduction that the augmented'

assumption set is false when considered as a compound

statement. Theories alone cannot be empirically refuted.

4, THE MODEL: The model serves to provide the interface
between (empirically untestable) theory and fact. By
supplementing the existential premises of the. theory with
specifications of functional forms the possibility of a
directly falsifiable implication is introduced. Therefore
choice of an appropriate model from the non-denumerable
set which can be derived from a single theory hinges on
the data available. The construction of the model must

be such that there exist conceivable observations which

A\

\

\\\',
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would contradict as least one implication of the‘\
theory-model combination. Hence each model of a,theory
implies or requires assumptions on the data which are available
(conceptually) for its refutation.

Where competing theories exist to explain the same
phenomena from the same eventsB, a further requirement is
placed sn the model. As noted in(l4], at least one

'distinguishiﬁg observation' must.;;}rmssible which refutes

one theory but not the other.4

N\

5. MODEL AND OBSERVATION: 2 An observation is defined as

a true statement that an event has or has not ocurred.
Three categories of events are of interest:
(i) events which the theory seeks to explain, such
as the combination of goods which a consumer buys.
(i1) events which are used by the theory to explain
those in (i), for example, income and prices.
(iii) events which are implied by the theory-model
conjunction such as reactions to prics changes.
Sets (i) and (ii) correspond to the statistical division
‘between inaependent and explanatory variables respectivelx,
and must be assumed to be observable for the theory to be
of interest.6 As noted earlier, set (iii) mﬁst be non-empty
an@ contain events described by universal rathef than
existential statements, to permit refutation. For consumer
theory the statement 'all resctions to a price change
can be divided into a substitution effect and an_‘'

AN

N
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income effect' describes an event in (iii) but is existential
P

‘ve

! -
and irrefutable whereas ‘the substitution .effect always
dominates the income effect' is general and could be known

‘false (Giffen good). =~

By definition tﬁé theory-model must explain_gny partitular
¢onjunction of events in categories (i) and (ii) which,
as Boland has noted [ 9], requires the explanation of why
no other events in (i) can occur with the same observations
in (ii). Hence two types of implications would appeaf to
permit Fefgtation: .

a) arsequence of conjunctions of observations on

(i) and (ii) i -
ﬁ?:jihe observation of seperate events about which
the theory-model makes predictions. =

The simplest e}qpple of (a) is the failure of replication
in which the same obse}Qations in (ii) do not correspond
to the same observations in ) on different occasions.
Such situations are rare ;nd gratuitous in social and
astronomical science although traditionally the malnstay
) N
of refutatlon ﬂn phy81cs and chehlstry, for ekample.

Events of type (b)Afallvto satisfy the requ1remen£s of
refutation\since t@ey are necessarily defiﬁed within the
theory-model undgf testi/.8 Q?herwise they are either

explanatory (categogy (ii)), or to be explained (category (i)).
SN

Thus the statement that the failure of consistency of 11

preference in consumer théory is due to 'taste change'
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implies acceptahce 6f that theory‘and tannot provide
refutation unless the theory iS'aquZEted to explain'how
tastes change, placing tastes in set (i) above.

Hence the intrinsic theory of observation which
accompénies a.theory-model combination is one of a seguence
of observations on the independent and explanatory variables
and may be considered analagous to the procgss by which

a statistical model is successively 'identified' and

"tested' by sets of data.

6. SUMMARY: From the preceeding discussion the
characteristics required of a -model combination are
qui thpexy
that
(i) it be logically consistent,

(i1) it be complete in the sense that any qpmbination

of explanatory §£d independent events is explained

to the exclusion of any other set of indepgndent
events, and - Y >
(111) sequences of independeﬁ£ and explanatory évents
exist, the observation of which would
a) distinguish the theory-model- from other
postulated theory-model explanations of
the same sets of events, or

b) prove the theory-model false. -

In the next chapter these requirements are applied to

a theory of the firm.

e lee

o
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Footnotes

A much fuller treatment of this topic is provided in
the writings of Boland, and by R. Trumper in Economic
Methodology and the Methodology of Economists,
unpublished M. A. report supervised by the author,

Univarsity of New Brunswick, Fredericton, New Brunswick,

1977.

Hence a theory mlght be considered as analagon to
Weber's "ideal type" [ 65]. .

For example, Lancaster's characteristic analysis has
been suggested to be an alternative explanation of
consumer choice based on prices and income as is the
traditional theory.

If only one theory-model possesses a distinguishing
observation it is sometimes described as having
'greater explanatory power', and may be preferred.

If distinguishing observations exist for both theories,
they remain in contentlon until one such observation

is made. s

Thus false information is excluded as are probabilistic
statements since the description of, say the result

of a penny toss as 'an event of probability 0.5' is
properly a compound of theory, model, and observation.
See the discussion of stochasticism in Boland ([13]

and of the theory of probability in, for example,
Carnap [16].

Thus the celebrated Oxford conundrum of the existence
of the unobserved does not arise since an unobserved
event requires no explanation, except pérhaps in terms
of other unobserved phenomena as Chesterton suggested.

This is 1mp11ed by Samuelson's Revealed Prefgrence

~argument in consumer theory.

They could, however, constitute'distinguishing
observations for two theory-model combinations which
defined them in the same way.

4
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CHAPTER THREE

The Theory of the Firm

1. INTRODUCTION: The broad outlines of the economic
theory of the firm are laréely consistent in the literature
in specifying the maximisation of a function o Levenue and
cost subject to varying constraints.l However the/ models
derivedAfrom this basis vary considerably in detail from

tﬂe diagrammatic two factor approach of, say, Ferguson [ 26]
through the linear activity analysis models. (see Lancaster,
[42], for example) to the integer programming discféte goods
analysis by Frank [27]. In this chapter a model is developed
which it is hoped captures the‘important characteristics

of what may be termed the 'Neo-Classical Theory of the

firm' without introducing restrictions peculiar to any

particular treatment of it. .

2. THE TECHNOLOGICAL 'BLACK BOX': Economic theory has

almost invariably treated the technical relationship betwéen
goods purchased and goods available for sale by a firm as
exogenously determined at any particular time.2 Thus the
'state of the art' is represented by Marshall [ 46], Hicks [ 37],
Samuelson [SSJgand others as an engineering 'black box'

by which quantitiesvof certaiﬁ goods, inputs, become quantifies
of, usually, different goods, outputs. Such a transformation
relationship is referred to as a production function.

Constraints are placed on the form of the production function

18
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by the economic theory in which it is-used, as has -been

noted by Hicks [37] in his treatment of returns to scale.

These constraints will be the subject of further examination

in the ensuing analysis.

3. CONSTRAINED OPTIMISATION: Like the theory of the consumer,

the economic explanation ofrthe firm's behaviour is a )

specialisation of the general theory of chéice [63].. Thus.

the firm is described (or defined) as selecting a combination

of input and ®utput quantities from an attainable set in

accordénce with a preference ordering. This preference

ordering is commonly, but not dniversally, réferred to as

'increasing profit'.3 Following Boland [9 ] the theory of

the firm may be represented by five existential statements

which justify an answer to the question 'Why does the firm

produce at the input-output combination that it does?'

The traditional answer is characterised by Boland as follows::
'Because, given prices, that is the inputroutpht

combination which is the "most profitable" of
all the combjinations at which it "can produce”'. [9 ]

e

This answer may be justified by the following statements

(assumptions) which serve to represent the economic theory

v
'

of the firm:
(i) for each firm there exists an ordering based
on a maximum odtput (or revenue) for each input
- combination which defines 'technical capabilitieé'.
(ii) for each firm thereé exists a measure on |

input-output combinations based on prices which’

\ -

r
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defines "more profitable*.*

(iii) for each firm there exists a behavioural pattern
such that it seeks to improve by producing at
the more profitable of any two input-output
combinations at which it can ptdduce;

(iv) ' for each firm, giQen at least one input, there
exists ‘a limit on technical capabilities which
defines "can proddce". -

~ (v) for each firm, givsn,prices, there exists an
input-output combination which is more profitable.
than all other combinations at which it can’ s
produce.4

In the terminology of Chapter'Tw%, the set (i) of

independent events consists of all input—oqtput combinations

which are to be explained by prices which make up set (ii).

*

4. THE GENERAL MODEL: Suppiementary assumptions are

required, to relate the theory to the set of conceivable
obser?ations of.-a firm, Since the prbcess by which inputs-
become outputs is treated exogenously, attention is focussed
on the fi;m's seiection of input quantitiesx‘ To explain the
choice of each input they are sgperated temporally. Thus

in the 'short'period' or :short run' the, firm is able to
change the quantity it owns of one input only (the most
flexible).5 By constrast,‘in the 'lor§ run' the firm is

free to change not only the quantities of all inputs which

it owns,. but also the industry to which it belongs, that
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is the type(s) of output goods which it pfdduces. Between

theée two extremes lie time periods in which the purchased
quantities of some, but not all inputs may be v§ried. The
additional assumption of the General Model is that:
(vi) all inputs used by'a firm may be ordered in such

a way that a distinct time period exists for:

each input in which ghe firm may vary. its ownership

onlf of that idput and gll those ordered below,it.?

Hence a sequence of 'runs' is established such t%at in

the jth run only the first j iﬁputs are tradedvby the firm.

If there are m inputs, the (m+l)th run corresponds to the

long run described above.

5;, THE NEO-CLASSICAL MODEL: A representation of the

Neo-Classical Model df the firﬁ within an industry requires
one assumption in addition to those of the General Model.
- (vii) , That the firm's preference function is, determined
by ordering one atéainable input—outpué combination
above another if, and only if, it yields a
greater excess 6f sales revenue over costs.
(or a smaller deficit).
This 1s the profit maximisation assumption, in its
usual form. :
However, Assumption (v) refers to fixed prices and
Assumption (vi) applies to a firm within a particular industry
’ LY

and are &hus insufficient to justify the explanation of the

firm's behaviour in the long run when it is free to change

g 4
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industries and output prices are considered flexible.7

Thus further assumptivbns are required to justify the profit

maximisation answer to the question: 'Why does the firm

choose those outputs (that industry) which it does?' The
Neo-Classical explanation is tﬁat firms change industries
Seeking higher profits (Assumption (i)3 until profit is
the same in every industry. Such an equality implies that
the retufp to entrepreneurial endeavour over and above
managerial salafy (which is a real or imputed cost) is
Auniform throughout the economy. (cf. Friedman [28]}) 1t
does not embrace a return to capital per se which the

1Neo-Classical model includes as a further cost.8 This
explanation requires that:

(viii) éq the long'run, any firm is able to adopt the
technology of any other firm and operate on
the same economic terms,9 i.e. there are no
"barriers to entry (or exit)".

(ix) for all industries there exists a mechanism
whereby the price of any fixed guantity of an
output gqod decreases (increases) as the total
quantity produced increases (decreases).10

(x) for any firm in any industry maximum attainable
'profit increases (decreases) when ghe price of
a fixed guantity of an output of that firm
11 ‘

increases (decreases).

(xi) for all firms in all industries with any input

X
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prices there exists a set of output-price
combinéﬁﬁons for4which max imum a?tainable profit
is the same positive value, called "normal
profit".

Thus a profit-seeking fjirm is able to change industries

-
-

(Assumption (viii)), increasing price in the industry it
leaves (Assumption (ix)) and consequently increasing maximum
attainable profit for the firms remaining (Assumption (x)).
Conversely price and maximum attainable profit are reduced
in the industry entered. Assumption (xi) ensures that
normal profit is attainable in every industryténd under the
behaviour described each firm remains in an industry when
all firms are earning normal profits.12 This normal profit
level must be positive otherwise the theory fails to explain
why a firm which bases its decision purely on profit level
would not close down (earning zero profit) at the end of

the long run.13 Since normal profit is a fixed quantity

it will be convenient, and in accordance with common usage.
to consider profit net of this quantity and hence at the
)Z;é of the long period net profit will be zero for all

firms. ’ .

6. PROFIT AND PRODUCTION FUNCTIONS: The Neo-Classical

theory explains the behaviour of the firm directly in terms
of fixed input markets, that is invariant price-quantity
relationships, and similarly fixed output markets in all

but the long run. Once these are specified Assumption (i)



' 24

-

postulates the existence of a rel;tionship between inputs
ahd outputs which has already begn‘ﬁoted as the production
fhnction; Combining market ,structures with this function
yields the profit function which transforms a set of
price-quantity relationships into a difference between revenue
and.sales,which the firm 'can produce'. Thus a constraint
imposed by the assumptions on the form of the prof{t function
may make different requirements on the production relationship
according to the character of the markets for the goods
concerned. ’
‘In the ensuing analysis results are therefpre obtained
on the profit function where appropriate and then specialised
‘to the production function using a pafticular market structure.
The structure referred to throughout is that of 'perfect
competition' represented by the following three\assumptions:
(xii1) each firm produces one output | \\\,//
(xiii) each firm may purchase any quantity of any -
input at a fixed price, independent of quantity.
(xiv) each firm may sell any quantity of output at
or below a fixed maximum price.14
Reference is also made to 'imperfect competition' in which.
Assumption (xiv) is replaced by
(xiv') the maximum price for which a firm may sell its
output is inversely related to the quantity

of that output.

One further restriction is often placed directly on the



profit or production function, namely the requirement of

differentiability twice with respectfto all inputs. Whilst .

many iqfenencés may be made from the theory-model without

-

this assumption (See Debreu [21], and Jorgenson and Lau

[40), for example) its heuristic appeal and central place

in common treatméents of the Neo-Classical model (e.g. Henderson | ]
and Quandt [36]) make its total omission\inappropriate.

Thus the present analysis will be donducted in terms of

b e a1 e g

differentiable functions with corresponding results for

non-differentiable relationships noted where applicable.

7. AN ALTERNATIVE THEORY SET: Alternatives to the

Neo-Classical form of the Genéral Model may be generated
by varying one or more of A;sumptions (vi) to (ix) above.
For examble_the replacement‘of (viii) by prohibition of |
entry to an industry can generate a model of monbpqu in
which the firm never enters the long run [ 26]. Similarly
the firm's preferenee function may be defined in terms of

different measures of desirability either by re-defining«

e i e e At B

profit or admitting alternative objectives. As Nordquist
[47] remarks

Although it is not easy to classify the

many suggestions which have been made to
revise or reconstruct the theory of the .
firm, it is convenient to group them

roughly according to how the motivational
assumption is to be modified.

: Vd
Since 'profit' is mentioned in the traditional theory it may

be argued that the second case is an instance of a competing

theory rather than a different model. However as 'profiE'
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is primitive or undefined in the theory it may be set equal
. [ J

to any quantity as a substitute for Assuription (vii). -

S A

Thus an uncountable number of alternative models-éxist‘from 

which it is desirable that the Neo-ClassiCal version be
distinguished. It iS'theEFfore 1oqically impossible‘to :
ensure that this model or any other is fully 'idéntified'.

Nevertheless it is minimally necessary to prdvidé for

distinction between the Neo-Classical model and such competing

~economic e#plahatidns of the firm's behaviour as have .appeared
in zhefliterature. These may' be summariséd as follows; =
(i) Maximisation of 1oné {un,‘ratﬁer than short run
profit: Neo—Classicai theoryvgenerates l;ng'
run méximisation tbrough a sequence of short;run
optimising decisions and it is a reqﬁirement

on the theory-model-that the two be consistent

«
o ’

with each other. No alternative éxpfanation~
emerges in the litérature perhaps due.to the
'difficulties of advancingva concrete and
objectively satisfying définiﬁion_Of long-run
profit' [ 42 distinct from the Neo-Classical one.
(ii) Maximisapion of Utility. Cyert and Marcﬁ {19} -

suggést that Yengrepreﬁeﬁrs...have\a hbst of
personal motives' and<Papandre6u [48] ektendé
the argument by claiminé'phatx

'organisational objeqti§e§ grow out of

interaction among the various participants

in the organisation. - This produces a
\V/¢l general preference function.'
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Whilst such an approach increasés the
similarity between the theory of consumer

*

behaviour and that of the firm, it does not,
of itself, provide an éxplanation of the firm's
behaviour without additional, and, hitherto,
unspecified, statements about the firm's utiiity.
Moreover, in response to Papandredu, it is not
clear 'whether or not it makes sense to speak
of a well-ordered set of prefqrences for the
firm in view of the size and complexity of most
business opera{:ionsi [47]. This difficulty
arises from the problems of preferénce aggregation
noted by Arrow [5], and others, and which present
similar objections to'the ¢6ncept of household
decision-making in consumer theory.
Equilibrium and Survival. -Rothschild [52] has
suggested that the'firm's pfimary goal 1s long ruﬁ
survival and accordinglyvthat‘itsjobjectiVe is
to maximise security. In its received form this
appears to be a reiteration of the importance/
of competition and suffers from the Darwinign"
problem that success is perceived in terms of
survival. Extinct firms are, by definition,
unsuccessful. .

An alternative biological énalogy was

proposed by Boulding [15] aé "Balance sheet

homeostasis®™ in which firms seek a desired
¥ : ' '

15 -~
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set of qzzozgkieg'ratlos and react to re-instate

| S -
this equilibrium. : '
In the perfectly competitive cad®ishis

reduces to, uéility maximisation ih asset space

and is formaily iden'tical to proflt maxlmlsatlon
regardless of the preclse form of the firm's
preferences,“as BPuld1ng notes. He also shows
that the two.modéls diverge iR the presence of
impegfégt mgrkégs for which the production
transformation itself. takes sufficient time to

. permit prioes changeé’between the purchose of
inputs and toe'salelof the resultaﬁt outouts;
A thorough analy51s alomg these llnes requires
ghe seperat;on of the buylng, producing- and

L

B selling decisions and a characterjsation of

»

time which are at variance w;ﬁh the genektal
.choice theory engncia;eo earlier. It does not
appear to offer aﬁy competing model of the
same theory .v

(iv) Maximisasion of Revenue: If sales revenue is
maximised subject to a’ﬁixed cost constraint
the model is immediategly distinguished from
the Neo-Classical vérsio; by its inability to
explain any change in tho firms behaviour not
accompanied. by a change inkinput or output

prices. A varying cost constraint requires

a subsiduary explanation of the way in which
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J
it changes unless it is dependent solely on the

ability to altgr the amounts of particular inputs
owned by the firm. 1In th%s latter case the model
becomes formally identical to the Neo-Classical

one. ) -

The absence of a cost constraint renders
the revenue maximisation model incapable of
explaining any finite output level in perfect
competition (Assumption (xi )).16
Maximisation of Market Share; A firm's market

share 1s defined as the ratio of its sales

revenue (or output gquantity) to that of the

"industry. The remarks addressed to revenue

maximisation are also appropriate in this case
with the additional difficulty of explaining
industry size and inter-industry transfers in

the long run, since the firm's choice criterion
is defined in terms of the size and type of
industry to which it cufrently belongs.
Maximisation of Growth or Firm Size: No clear
definition of size emerges from the literature
although sales revenue and market share are

used. These cases fall directly under (i) and
(ii) above. Alternatively size may bé‘determined
by the amount of certain inputs (such as 'capital')

which leaves the choice of other input quantities

~

- .
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=

(such aé 'labour') unexplained. See the 3
discussion of Average Net Product, below, however.
Satisfactory Performance. Gordon [32], Simon [58]
and Margolis [45] have suggested that the firm
seeks only satisfactory profit and this approach
has been formalised by Day [20]. Whilst
'satisfycing'violates the general choice ‘théory

as well as the model it also fails to provide

an explanation of why the firm chooses one
satisfactory position rather than another.17

The same objection arises from the contention

of Cyert and March [19] that firm's do not
consistently maximise any quaﬂtity. Baumol,

[ 7]however suggests that satisfactory pfofit .
may bé a preliminary objective beyond which_
firms maximise sales revenue, treating the
minimum profit level as a, constraint.

Revenue maximisation subject to a minimum
profit objective is also identical £04the
Neo-Classical model unless it is possible for
the firm to exceed its objective. The observation
of any unconstrained firﬁ with a finite output
earning more than the specified profit level
serves to discredit the revenue maximisation

model.18
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(viiik® Maximisation of Average Net Product: The
maximisation of the Average Net Product’’ of

one of the inputs, in each of the runs defined

for the Neo-Classical Model appears to be the

_— only distinct proposal articulated in the
literature which is consistent with the remaining
model structure. It is shown subsequently

that a Model of Perfect Competition deduced from
one of the set of ANPi modelé (for some input i)
can be distinguished from the Neo-Classical
version by very few observations and may hinge

crucially on Assumption (x). -

8. SUMMARY: The Neo-Classicql model of the firm is one

in which a firm maximises profit subject to constraints on
input qqantities which are successively relaxed in a sequence
of runs. In the penultimate run all inputs aré variable and
in the long (or longest) run the firm is able ‘to pursue
greater profit by adopting a different technology to produce
different outputs (i.e. chahge industry). A normal level

of positive profit exists for all industries at which all
firms, given input markeﬁs, are unable to increase profit

by further change.

) An alternative explanation of the firm's behaviour

/

within the same framework is provided by postulating the
maximisation of the average net product of any one of the

firm's inputs. 1In subsequent chapters the requirements
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imposed on the profit and production relationship by the
assumptions of the theory and the necessity to distinguish

" it from the average net product explanation are examined.
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TABLE 1: vSUMMARY OF PREDICTED BEHAVIOUR oF PERFECTLY
o COMPETITIVE EIRM
. n
Profit, m = P.X - I p.X.,
. j=1 11
where P P are input and output prices respectiVely and
X X are input and output gquantities respectively.
At time zero prices are pi,'P ‘and
input quantities x. = ii i=1,...,n.
End of Neo-Classical Average Net
Run: Model . Product Model Comments
. . ) A
1 » |7 maximised s.t. ANP.=(X- 1L X )/x1
X.€X., j=2,...,n k#i .
J 3 maximised s.t.
= X E W
. ’ X.€X., J=2,...,n + o
J 3 - N
. .. sog -A
2 T maximised s.t. ANP., maximised s.t. < 0OX
X.€X., j=3,...,Nn 1_ . ' e850a
j ' ! . X.&X., 3=3,...,n O -A @
' j 3] O+ 0
IR
..................... S ec et s eesers et secsaseenennes| A UE
e X
n ]xﬂTng;ln(n) N ANPi max cmﬁ &
370 I=hee g1
(xj=O‘Vj+industry
exits>run n+l) , . §
n+l Tmax = NORMAL T n(n)z
_ n - as n NORMAL n
= max PX- L p.x, + P2P
jop 14 } ) <
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Footnotes ’ ceT

Day's treatment in terms of 'satisfycing' [20] is a
notable exception, but fails to explain a firm's
behaviour completely except in the limiting case when
it converges to a maximisation solution.

It has been suggested that in the macro context 'technical
progress' may be a function of capital or profit levels.
However at the level of the individual firm any change
in technology dependent upon input quantities is
necessarily embodied in the description of the input-
output relationship defined below.

Such a reference may be no more than labelling as
was suggested in Levine [43] and Rowcroft [54]. Efforts
to interpret 'profit' empirically have generated

- considerable controversy. See, for example, Hall and

Hitch [33] and Cyert and March [19].

Boland [9] combines (iv) and (v) in the assumption

that 'for each firm there is a limit on technical
capabilities which defines "can produce”'. However
this precludes the possibility that indefinitely large
inputs might generate indefinitely large outputs which
is sufficiently common in the literature (e.g. constant
returns to scale) not to be excluded a priori.-
Nevertheless it should be noted that in the Boland
Model all production decisions are implicitly short run.
Intermediate run and long run decisions concern changes
of the short run constraints. Thus Assumption (iv)

in the text simply acknowledges the existence of a
constraint explicitly. <

Ownership of other inputs is fixed although utilisation
of such 1nputs is merely bounded. See Boland [9], for
example. )

"

" Algebraically, if there are m inputs, x., j =1,...,m,
- there exists an ordering k = 1,...,m su&h that there

are m distinct time periods where, in period k, inputs
Xyreeer Xy (suitably re-numbered) are variable and

1npu§§ xk+1""'xm are fixed.- In the two~input case,

input 1 is usually associated with labour, L, which
alone is variable in period 1 (the short run) and
input 2 with capital, k. Both L and K are variable in
period 2 (the "intermediate run").

Since input Xy is variable in all runs subsequent

to k, each period must be at least as long as that
preceding it to allow re-adjustment of the preceding
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variables. Thié‘implies a type of "nesting" process
for input contracts or durability analagous-to that
described by Alexander { 3] in the context of consumer
goods.

this is not only usual in the specification‘of the
long run (See Ferguson [26], for example) -but also .
essential to the theory of General Equilibrium,(Debreu[21]).

A difficulty arises here from the imprecision of-the
Neo-Classical definition of a firm. It would seem
unnecessarily restrictive to assume that a production
unit of any size should earn the same return to
entrepreneurial effort when the size.and type of
committment may vary considerably. Whilst this is in.
part recognised by the imputing of costs to managerial
input (as well as to capital),(the atomistic concept
of the perfect competitor also appears to play an

‘implicit role.

If varying levels-of entrepreneurial effort were
acknowledged in different industries, it would be
appropriate to define the industry choice in terms of
the rate of return to the entrepreneur. However since
this effort is unobservable except perhaps as the 7
managerial labour already "netted out", its inclusion
as a variable renders the Neo-Classical explanation
irrefutable in the long.run. Any spectrum of positive
inter-industry profits may be considered uniform by
presuming appropriate degrees of entrepreneurial input
in the different industries. Thus it is necessary to
assume or define the firm to embody a fixed "quantum
of expreneurial effort [28], and 'profit' and 'profit
rate' become synonymous.

~8pecifically every firm faces the same markets for

inputs and outputs as every other.

This is the 'downwardosloping aggregate demand curve'
which is consistent with the requirements of consumer
theory (downward sloping individual demand curve) and
of general equilibrium theory (Debreu [21]).

Thus an upward shift in the aggregate demand curve -
increases maximum attainable profit for a firm
producing the good concerned.

Neo-Classical theory offers no 1nd1cat10n of the
adjustment mechanism beyond that specified which sufflces
to explain the absence of industry changes after the

long period.
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A firm earning zero profit in the long run might continue

to operate if the controlling interest (entrepreneur)

preferred its source of income as an input to the

alternatives available. However this introduces a

second preference function not normally found (at least g
explicitly) in the traditienal theory.

Assumption (vi) ensures that the firm in fact charges
the maximum price.

Such a theory might be developed by stipulating only

that each firm's preferences be such as to generate

an upward sloping supply curve for its product, although

general equilibrium requires only upward sloping : l
aggregate supply curves and the stronger condition

is sufficient but unnecessary. Compare the analysis

of consumer preferences in Boland [9 ].

In imperfect competition such a model requires output
at the point of unit elasticity on the demand schedule.
If this schedule is observable any other elasticity
constitutes a distinguishing observation.

If there exists only one satisfactory position in

all situations, this theory converges to utility or

profit maximisation depending on the definition of ) A
'satisfactory’. |

Since output price is constant and independent of
output quantity in perfect competition (Assumption (xiv))
the existence of a finite output implies positive
marginal costs for a firm under either explanation.

Hence the revenue maximiser will necessarily, increase
output and hence revenue until profit is reduced to

its minimum acceptable level.

The Average Net Product of input i is defined in the

case of a single output, X, as (X - I x.)/xi. See
jFi

Marshall { 46], Robinson [50], and Boland [9 ].



~ ;CHAPTER FOUR

Model Structure and the Intermediate Runs

1. =~ INTRODUCTION: Discussion in the remainder of this thesis

centres on requirements for the mathematical structure of
the specification of the firm's technology such that the
requirements of the Neo-Classical Model described in Chapter
Three are met. In this chapter the structure is defined
consistent with the assumptions and the consequences of
the theory are examined for every run except the longest
which is analysed in Chapter Five.

Results are generated on the profit function with
multiple outputs and imperfect markets.in most cases;
whilst not essential to the argument in later chapters,
this provides further generality without complicating the
analysis unduly. For convenience this analysis is conducted

in terms of net profit as defined in Chapter Three, that

is total profit less the assumed level of uniform profit
prevailing at the end of the long run. Thus the expression
'n o= 0; denotes the situation in which the firm is earning
exactly normal ptofit.

To preserve continuity only the results of theorems

are noted and proofs are provided in the Appendix.

Py

2. THE NEO-CLASSICAL PROFIT FUNCTIO&:

Definition 1: A firm is defined as a set of mappings from

an input space S into the real line R such that for all

37
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x = (x,...,Xx) ¢ S where S is of finite dimension, n, and

x> 2 0 for all j = 1,...,n, there exists ™ € R such that

m n . . .
m = I P*x'.- I plxJ, the net profit Function, where

Fl(xl,;..,xn), the production function for good i,

=
I

= p*(x'), the output price function for good i,

)
!

‘e

p] = pJ(xJ), the input price function for good j-

s

i=1,...,m 3 =l,...,n.
This distihction between inputs énd outputs and the

omission of joint products is consistent with most Neo-Cldssical

analysisl and facilli;ate; specialisation of the results

. to common cases. However it is not crucial'to the main

results of this chapter which are ~couched in terms of =

rather than the p;oduction function(s), Fi. A similar
justification may be made.}o; the independence of the price
functions from each other. ‘ ' : 2
The sequence of rung described in Chapter Tﬁree presupposes
that the firm reacts only to the suéceésive relaxation ofA
inéut constraints in the first’n‘fﬁnf aqﬁ to chhﬁges in
the output market(s) in thé‘lonélruh. ’Thus it is conveﬁient
to assume that all price functions are fixed thrbughout . !

runs 1 to n.2 In the long run the set of mappings, given

the p] is indexed by the changing Pl.3
As noted. in Chapter Qhrée the main body of the analysis

is cqnducted in terms of differentiable functions, hence

Definition 2: A Neo-Classical firm is defined as a firm

B
a
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BEL
such that F;, pJ are twice differentiable with respect tb
all xk and P}.is twice differentiable with respect to X},
i=1,...;m; j,k =1,...,n.

. : _ B . ‘ .
As an immediate consequence, P and T are both twice

differentiable with respect to xk; i=1,...,m, k = 1,...:n. - . .

[Lemma 1]

Definition 3: A shift in demand is defined as a mapping &

which thkes Pi(xi) to aPi(Xi),.i =1,...,m, wheré Pi(X%)
is speqifiéd_in Defi;ition 1 and « is an (unspecified) operator.

The intrbdﬁction of demand sbift permits allowance for
‘the changes iﬂ\output markét conditions'aésociated-witﬂ' T : . .‘ g
the long run entry and exit of firms (Assumption (ix)). S 11
iIﬁ particqlaf a firm shall achieve anfuncdnSt}ained.dptimuﬁ
(net) profif/ievel of zgro'for;§gmg possiblé level of markét . | ;
demand (Assumption (xi)x. |
Definition 4: A firm ;5 described as being in its jth gﬁg.

3 .

if it is free to vary xl,...,x and xk is,constrained by .

%X < x k, %K finite, for all k = j+1,...,n.
This is simply a restatement of the concept of runs L :
used in the Generga¥t Model and Assumption (vi). The requirements

of the Neo-Classical Model may now be restated as : .

Definition 5: Thé Neo-Classical Model of the firm is\defined

by the following Statementé abQﬁt the behaviour of a
Neo-Classical firm:
(a) In the jth run the«fi;m'é'choiceiof inputs and.’

outputs is uniquely determined‘by‘specifying that the firm

MY
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‘cannot be identified, ‘implying that X

" . . B

40
R o, ) r . L ..
maximises profit subject to the appropriate input constraints,
N . ¢ 3 - R . ’ * .

j=1,...,n.
(b), In the long ((n+1)th) run- the entry and ex1t of

competlng flrm S causes a ‘shift 1n demand such that the

1

maximum netwproflt,whlch“the firm can earnpls.zero.

. . . ¥ v )
Statemént'(ax embraces Assumption .(i) to (vii) and
(b) éorrespbhds to- Assumptiops (viii) and -(xi) - The
, . .‘ . o Pt .
réquirements of Assumptions (ix) and (x) are considered in

Chapter Six on long run.behaddouf. - .

'Defigition'G: A'run'j is well-defined by'thezNeo;CIassicaI
— . - . - L,

Model if, and only .if, max T in the jth run ¥ max 7 in (j+1)th
run, aimost everywhere. o

a

_No- change 1n proflt from run j to run (j+1) implies that‘

the constralnt kj_d N xj *1 was not blndlng and hence no

change in’ X nor in X w111 be perceived. Unless thlS is .an’
except;onal case, the p0551b111ty ex1sts that- the run

s i

+
J-and xJ luare complementary

1

in’prbdnction for the firm.conceried and should be treated.

- as a'composite goodl'4 “Henceforth we assume that run j is

well deflned for all 3, 1,...,n.
Iﬁ a Neo-C1a551cal flrm has (net) proflt functlon
14

n(x)‘= n(xl}...,x ) 1t may be shown that a sufflclent

condltlon for the extreme p01nts of m in funs 1 to n tp be

umax1ma subject ‘to the appnop:;ate cohstraints is that the

. . 4 - Y N
matrix of second order partial derivatives of 1, with‘resqéct

to x, (n,) be ndgative definite..  [Theorem 2]. Thus (1)
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negative definite ensures that the familiar marginal conditions
. > R ( .

(see [ 36], for example) genérate constrained profit maxima

’

in the first (n-1) runs and an uhconstréined maximum in
run n. Moreover if each run re&ains well defined the
result ig true for any ordering of the x3 [Corollary 2.1]

and provides unique maxima by Lemma 2.2.

One conseuence of the condition on Inik) is that

k .2 . .
L (3%n/3x7 ) < 0 for all k = 1,...,n [Lemma 2.3]"which is
j=1 - - . . , e :
a weaker version of the common specification that the

profit from any input be increasing at a decreésing rate as
the gquantity of the input incréases.5

ﬁy virtue of the cdnstrained maximisation it should also
be ﬁoted iLemma 2.4] that profit in run j‘caqnot be greéter

than profit .in run j+1, for all j =-l,...,n—i.6

3. INPUT VALUE THEORY: The alternative model (or theory)

introducgd in Chapter Three may be generalised slightly fo

correspond with the non~specific treatment of markets in

. 4
this chapter. Thus

Definition 7: The Average Révenue Product of an input xk

far a firm is defined as

m . . n N . ‘e .
ARP, = ('L P'xt - = prJ)/xk‘ for xk > 0
SR 37k : - .
Since ARP, is undefined for x* = O! it is useful to make

reference to the case when some input is always positive.

. "

Definition 8 : A j-integrated Neo-Classical Firm is a

1
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Neo-Classical firm for which tnere'exiéts a sequence of -~

' -

‘well-defineé runs l,...,n such that X+ > 0 implies xJ > 0;

.for all + = 1,...,n. Thus x
" production.’ ' , R

“Hence:,

- & -

) is an input to eVery non-trivial

N

Definition 9: 'The Input Value Model of the firm is defined ,

by the iollowing statement about the behébibﬁr of a k~integrated

Neo-C1a551cal “firm: - v ' — &

-

In the jth run the firm's ch01ce~of 1nputs and output(s)

is unlquely determined by 'specifying that'the firm max1mlse$t -

the Average Revenue Product ip input xk subject to the

appropriate constraints, j =‘1,...,n.7 . .

~ [

. The first order conditions for the maximisation of

. ¢ ’ .
ANPk are identical to those for profit maximisation for all

inputs except oy Conseéuently the two models are

-

indistinguishable in runs 1 to k-1. The existence of possible

observations on subsequent runs which permit the input value

'‘model to be rejected in'favou;,of the Neo-Classical model

is examined in the next section. .

,'4; DISTINGUISH&NG OBSERVATIONS: The necesSity for the'

-

ex1stence of distinguishing observatloﬁ% was noted in-
Chapter Two and an example was provided in Chapter Three

using revenue maximisation subject to a .minimum proflt.

" For a k-lntegr ted Neo—Cla351ca1 firm, as f1c1ent condltlon“

-t

for it to be 351b1e that exactly one of th% Neo-Class;cal o

and Input Value models be known false is that either
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k2

3ﬂ/3xk is known for run r, r > k or that the values of azn/ax

2 n .
and az/axk ) prJ $ 0 are known for the same run, r 3 k

J
[Theorem 3].

1

whil%st the behaviour of the cost expression ﬁay be
presumed known since market conditions for inputs ére known
(see seétion 2 above),‘the’observation of (temporary)
equilibria at the end of each run dqes not permit the
deduction of values for the derivatives of 7. Unless it may
be shown that the structure of the theory imposes sufficiently
strict conditions'on the derivatives~of T to generate a
contradiction, the Input Value Model cannot be”distingﬁished
on this basis. Thus for a l-integrated firm it would be
possible to discredit the ANPl model if

82/3x122pjxj v 2Zads > 0 [Lemma 3.1]
This may be expressed as the requirement that the marginal
cost of good 1 be increasing faster than the marginal
profit of the same good is falling when xl is increased.
However this would not téfute another model ANP,, k # 1,
if the firm were k-integrated. [Compare Lemma 3.2.7

The argument that the value of 3m/3x" is known since
-pk is observed and aw/axk = pk in run j for all j 3 k is
invalid since it depends on th assumption of profit
maximisation whiéh is part ofvonly one of the models
under scrutiny. |

If the price of the indispensable factor j is invariant

with respect to x the second derivative condition fails but
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may be replaced by the reqﬁirement that maximum 7#0 in run n.
[Lemma 3.3]. This raises tﬁé’question of the observability
of m. Since 1 here is net of the constant (but unknown)
normal profit, a direct calculation from prices and quantities
is inadequate. However it is possible to compute changes

in %. Both models indicatg zero (net) profit in the léng

run, whence a change in 7 from run n to run (n+l) suffices

to indicate max q‘# 0 in run n and provide the required
distinguishing observation in Lemma 3.3. Thus, drawing on

the analysis of legitimate observations in Chapter Two,

Definition 10: A set of acceptable observations consists

of the following information for each run k of a Neo-Classical

firm, k = 1,...,(n+1): |
(i) -the values of Pr¢xt), pl(xd) for a11i,5
(ii) the values of xj, xi for allii,j
(iii) by deduction, the value of n(r) - n(s) for all
r,s =1,...,n+l, where 7(k) denotes the
(maximum get) value of n‘in run k. Hence
the truth or falsity of the statement n(n) = 0.
It follows immediately that for a j-integrable firm a

distinguishing observation exists within the set of acceptable

observation if pJ is constant [Theorem 4].

5. REPRESENTABILITY: The questions of explanation and

distinguishing observations raised in Chapter Two are
sufficiently important in the requirements they place ﬁpon

the Neo-Classical Model to justify the amplification of the
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definitidonal structure to accommodate them specifiéally.

Definition 11l: A firm is representable by a theory if, and

-

~only if, there exists a proper subset A of the set of
acceptable observations B, such that, for all b € B,
(i) b e A implies that the theory .explains why  the
firm is not ﬁsing any other input-output combination,
and |
(ii) b ¢ A implies that the theory is false.
This is simply the requirement of "complete" explanation.
The necessity for a distinguishing observation is expressed

as -’ . . ‘

Definition 12: A firm is Neo-Classically representable if,’
and only if, it is
(i) Neo-Classical
(ii) representable by the Neo-Classical ﬁodel with
proper subset A & B, and
’(iii) representable by the Input Value Model with proper ~
subset AIC= B only if AN # AI. u
By condition (iii) B must contain at least one observation
. which'is not common to Ay and A; and hence refutes one of
the models. Although not admissable for a complete theory
it is common in the literature (see [42] for example) to
make less stringent requirements on.the Neo-Classical Model.

These may be represented as follows:

Definition 13: A firm is weakly representable by a theory

if, and only if, there exists a proper subset A of acceptable: : |
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. observations B, such that, for-all b € B, -
(i) the observation.b ;’A is explained by theﬁtheofy,
and

(ii) b ¢ A implies that the theory is false.

Thus £he theory may indicate that b € A is one of a
number of possiﬁle observations between which it'does not
distinéuish as in the case of an isoquant with a.lfnéar
segment in the traditional analysis (e.gf [ 81).

Definition 14: A firm is weakly Neo-Classically representable

if, and only if, it is
(i) Neo-Classical >
(ii) weakly representable by thé Neo-Classical Theory
with proper subset AN¢= B, and
(iii) weakly representable by the Igput-Value Model
. with proper subset Ai only if A-‘n AN = g.
By Definition 13 a given price set does not necessarily
permit a single input-oufput combination lo be inferred
whence the existence of a distinguishing observation is not

ensured unless A_ and AN have no common element.

I
Drawing on Dé}initjon 11 it hay be shoﬁn that a
Neo-Classicallfirm is represeqtable by the Neo-Classical
Theory if (wjk) is negative definite, n{n) # 0 and there

exists a shift in demand such that the unconstrained
maximum for 7 is zero [Theorem 5]. If, in addition it is

not k-integrable for any k = 1,...,n, the firm is

Neo-CLassicaily representable [Lemma 5.1). This remains
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true if the firm is integrable for k = 1 only and‘either ..

2 m . .
(a) (3%/axt ) 1z pixty > o0
i=1 )
2 n . .
or (b) (32/3x1,)( £ pIxJ) = 0 . [Theorem 6]
=1 '

Condition (a) requires that the maéginal revenue of x1 be
increasing with x1 whilst marginal profit is decreasing if
(ﬂjk) is negative definite [Lemma 2.3]. However condition
(b) leads directly to the result that‘if input prices are
constant, as in perfect and imperfect competition, /the
requirements of Theorem 5 suffice for the firm to be

Neo-Classically representable [Corollary 6.1].

6. REQUIREMENTS ON THE PROFIT FUNCTION:

- &
- Definition 15: A Neo-Classical Profit Function is a

function m such that a firm with profit function 7 is
Neo-Classically representable. .

For any Neo-Classical firm, a necessary condition for
maximum profit to be identically zero in run n is that for
all x* > 0 at the maximu;§32ﬂ/3x§ = 0 [Theorem 7]. If the
firm is l-integrable this condition is inconsistent with the
requirement that (njk) be negative definite [Theorem 8].
Consequéntly*the following requirements are sufficient for
7 to be.a Neo-Classical profit fynction by Theorem 9.

2 2

(1) x'(0,x%,...,x") = 0 for all x*,...,x" 7 o,

for all 1 =1,...,m

(1i) (wjk) is negative definite —

: | ' ‘1Z~.,,‘h_‘_ _
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(iii) there exists a shift in demand, a, such that
m .. n .. <
max.[m = Za pixt - ¢ prJ] = 0, and ‘
X i=1 j=1 .
(iv) either 2 ..
a)y (32/3x )z pixl) > 0
i=1
2
n . .
or b) (Bz/ax]') T prJ = 0. §
j=1

If input prices are constant then condition (iv) is
satisfied and conditions (i) to (iii) suffice for imperfect

and perfect competition [Corollary 9.1].

7. THE NON-DIFFERENTIABLE PROFIT FUNCTION: The different-

iability of the profit function is a di{ect consequence of
Definition 2. If this requirement is removed, the stipuiatidn
that "jk be negative definite [Theorem 2] may not be
meaningful. It may however be replaced by the condition

that m be a concave function of x [Theorem 10] with unigueness
of the maxima ensured by strict concavity [Lemma 10.2].

These two results include Theorem 2 as a special case

since if njk exists for a concave function, 7, it is

negative semi-definite and negative definite for a stricfly
cbncave function. An analogue of the’maximisation condition
in the differentiable case is noted in Corollary 10.1,

namely that the (non-differentiable) function n will attain

a (possibly constrained) maximum at x when zero belongs to

the appropriate subdifferential. at x.

If the convex conjugate of 7n(x) is defined as
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Tk (x*) = sgp{<x,x*> + m(xX)}
xjx*j,
1l

where <x, x*> is the inner product of x and x¥%,

™3

\ J
uniqueness conditiops may be obtained which do not require -
strict concavity. Thus a finite, concave 7 has a unique
unconstrained maximum at x if n* is differentiable at
x* = 0 and x = Vn*(O)[Theofem 11}]. If 7w is alsé closed,
this condition is both necessary and sufficient [Corollary
11.1]. It may also be demonstrated [Theorem 12] that under
the same conditions, the constrained maxima are unique.

Since the concavity of m is central to the assurance
that the appropriate maxima exist , a number of conditions
which ensure this céncavity are noted below:

a) a sufficient condition for 7 to be concave is that

'glp-xj and v§1PiXi be convex and concave functions
J= 1=

of x respectively [Lemma 12.1]

b) if C = pjxj, a necessary conditionvfor C to

1

o

j

be convex is
L 3

(i) [C(x+Ay) - C(x)]1/) be a non-decreasing

function of A > 0 for all y = yl,...,yn,

i.e. the cost function does not exhibit
"decreasing returns to scale"™ with any
origin,

(ii) the one-sided directional derivative of

C at x, C'(x:y) = inf{[C(x+ry) - C(x)]/A}
A>0



c)

d)

e)
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for all vy, a‘type of "upper semi-different-
iability" analagous to upper semi-
continuity, and
(iii) C'(x:y) is a positively homogeneous convex
function of y with C'(x:0) = 0 and
—C'(%:—y) € C'(x:y) vy. [Lemma 12.2].
s igi

Analagous conditions to b) apply for R = I P°X
=1

i
to be a concave function of x, including the
absence of increasing returns [Lemma 12.3}.
It is sufficient for C and R to be convex and
concave respectively that pjxj and Pixi be convex
and concave in x respectively for all i = 1,...,m;
j=1,...,n [Lemma 12.4 and Corollary 12.5].
Thus similar conditions to those in b) and c)
may be placed directly on cj = pjxj and ri = Pix‘l

[Lemma 12.6 and Corollary 12.7].

If either cost or revenue are differentiable, necessary

conditions are placed on the derivatives by the requirement

of convexity or concavity. Thus

£)

9)

h)

if ¢) is finite and differeptiable convexity
requires that the marginal c¢ost of input j be
non-decreasing [Lemma 12.8]

if r! is finite and differentiable concavity
fequires that the marginal revenue product of each
input in output i be non-increasing [Corollary 12.9].

the result in f) may he generalised if C is finite
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and cj differentiable for all j to the requirement
that all marginal costs be non~-decreasing, i.e.

vCc 2 0 [Corollary 12.10]. Similarly if R is
finite and r' differentiable for all i, the
marginal revenue product of any input in any
output must be non-increasing, i.e. VR ; 0
[Corollary 12.11].

The ésgumption of differentiability is siénificant in
two aspects of Theorgm 9 which provides sufficient conaitions
- for 7 to be a Neo-Classical Profit Function. Firstly
condition (i) that "jk be negative definite may be replaced
by strict concavity [Lemma 10.2] or by the conditions of
Theorem 12. However condifioh (iv) requires the
differentiability of R or C ﬁo generate the distinguishing
observation. Referring to Theorem 5, this cdndition may
be replaced by the double requirement that input prices be
fixed (perfect or imperfect competition) and maximum 7
in the nth ruﬁ be non-zero [Theorem 13]. From Corollary
11.1 this may be ensured if n*(x*) is non-differentiable
when 7(x) = 0 [Theorem 14]). This result will be remarked

upon in Chapter 6.

8. SUMMARY: In this chapter the assumption set in Chapter
Three has been used to formulate a definitional structure
for the examination of the Neo—Clacsical profit and
production functions. From these definitions constraints

were deduced on the form of the profit'function, particularly
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that it be concazp (stricﬁly so if unbounded)‘and that fof'
imperfect and perfect competion it must not achieve an
unconstrained maximum’of zero. The condiéions necessary
to guarantee aniacceptable long run profit situation

are examined in the next chapter.
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Footnotes o
Activity Analysis [42] is a notable exception.

The necessary condition is that aill. py and pJ do not
change in run k for all i =1,...,m and j < k since

a change in price of a constrained variable does not alter

the firm's 'maximisation calculation' subject to that
constraint. .

The Neo-Classical model does have implications for the
firm's reaction to changes in input prices. However
these are most readily examined in the context of the
properties of the production function in Chapter Seven.

Compare Samuelson s Composite Commodity Theorem in
consumer theory [42]. This p01nt is reconsidered in
Chapter Seven. . v -

For the perfectly competitive firm this becomes the

-same condition on marginal products.

Profit may fa11 from run n-1 to run n due to the behaviour
of all firms seeking long run equilibrium, as noted in
Chapteyr Six.

Often labour is considered to be an indispensable
input which with Definition 9 yields a primitive
Labour Theory of Value applied to the behaviour of
an individual firm. 2

o



CHAPTER FIVE -
_ S s
Existence of Long Run Zerd Maximum Profit

»

1. INTRODUCTION: The existence of a position of zero

maximum (het) profit is crucial to the explanétion of the

firm's long run behaviouf.(Assumbtion'(xi)) and is in contra§t4_

Pl - - i .
with the requirement of non-zero profit in the penultimate

(nth) run. This potential conflict is resolged by the concept

of a demand shift (Definition 3) by which the firm moves from

. ’

a position of net gain or loss'undér’a set of output market

conditions to one of normal profit under different, but
related conditions. 1In this chapFer suéficient ‘onditions are
examined for the existence of zero maximum profit under- some
set of market relations. Ooﬁsideration of necessity and
rintegration with the requirgments of the precéding chapter

is deferred until Chapter Six.

2. HOMOTHETICITY: If the profit function is 'zero whenever

had ~

the‘paximising cohdit}ons aré effective, it will have zero
maximum Qalue in the long run, regardless of the demand
conditions which the firm faces. This is commonlx:échieved.fdr
the perfectly competitive firm by spécifying that the
production function be linearly\homogéneous. (Compare Baqland
[14] and Lancaster [42], for example.)1 Howéve; it may be

shown that this is a Q?rticular case of the result that almost
any homothetic profit éﬁnction necessarily has zeib nmaxima
[Theorem 15]. Consequently if reveﬁue and cost are homogeneous
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of the same degreé, other than zeroz, maximum profit wili'
bg—zero.l [Theoreﬁ 15]. '

VWhilst the existence of a demand shift such that the °
profit function becomes homoéhetic provides a sufficient '
condition it degenefates'for the perfectly competitive.firm.
to the trivial case of linear homogeﬁeous production. An |
obvious recourse in this case is té construct a productioﬁ
function of a linear combinatjion of two homogeneous functiéns

. .
such that increasing and decreasing returns to scale “qancel'

out" to produce zero maximum profit at a particular proéuction

level. This procedure is illustrated in the next section.

3.° AN EXPMPLE: Let the production function of a perfectly

competltlve firm be the sum of two Cobb- Douglas functlons

such that the 1soquants of one function are a (non-llnear)

“ ®

translation of the isoguants of the other. Thus the 1soquants

for the compound productlon function will have the same’

concave contour as those of its cemponent functions. If the v

production is given by
a_6-a 8. .9-8 ‘ .

X = ALK + BL K - N

A,B positive constants, § > 1 >0 >a >0; § > 8 > 0,
it consists of one function with decreasing returns to scale
and one with increasing returns to scale. 1If, in addition,

ﬂ:

the slopes of the isoquants of both functlons w111 be 1dent1ca1“

for any values of L and K.

First order derivatives of X yield
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a-1 _6-a

AaL K° %4 BBLB 1 k-8

XL

Xy

both of which are positive. for all positive L,K.

A(6- a)LaKe -l p(g-p) LBxk# 8“1

Zero Maximum profit occurs where .
= + ’
X = LY + KXg,

A(1-0)L.%%® = B(g-1)LBx# B

’

Together with the first order conditions, the following are

necessary and sufficient for a maximum:

Xpp < 08 Xpg <0; Xpx > 0

- >
xLLXKK xLK 0.

The second derivatives have the required signs for all
positive L,K if 8 < 1 and g <1+ ‘a. However the

determinental condition becomes

2a—2K2812a-2 28-2K25-2B~2

a%a(8-a) (1-6)L +B%8(g-8) (1-9)L

+ AB{alg-8) [(a-1) (g-B-1) - B(6-a)] + B(6~a)

[(8-1) (8-a-1)-a(g-8) 1}

>. 0 '

At zero maximﬁm profit this condition is

4

{a(B-a) (1-8) (F-1) = (1-8) 28 (g-8)
(g-1) i .
+ d(ﬂ-B)((a—l)(ﬂjB-l)-B(e—a)]

2 2a- 2 20-2a-2

+ B(8-a)[(B-1) (6-a-1)-a(@g-B)]} >0
and, noting that aﬂ = g8, we have, after some simplification,

(1-9) (a-8) 2[1 + g-61 > 0
1 a-B
i.e. (#-8)/(a-8) > -1 N
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Since g-6 > 0 by specification, the condition is met if
a > 8. However a > B > 0 implies af > BF since g > 0.
whence 86 > Bg
and thus 6 > @ since 8 > 0,
a contrad;ctionl
fherefore 0 < a < B and the second-ofﬁer conditi;n becomes

LN
g -6 < —-(a - B)

i.e. g% - 69 < BY - af since § > 0
Hence g(g - 8) < B(F -6) -
i.e. g < B.since g - 6 > 0, contradicting\ihg

specification of B. ,

Thus the second order conditions for a maximum do not

" hold at the point of singularity where profit is zero3.

. ; ) * 3
The problem of-ensuring the existence of zero maximum

-profit $s therefore éddressed in greater generality in the
- )
next section.

4. EXISTENCE OF ZERO MAXIMUM PROFIT: For a perfectly

competitive fir@ to attain a'point of zero maximum profit its
product%pq funct}on Fkx) must be such that when it is maximised
!susject‘to some set of pricé ratios-pj/P, factor paymenté
just abséib odfbdf, i.e. -
F(x) = x.VF(x).

‘Such an exﬁression is always true if the productién‘
function is homogeneous of degree 1, and hen&e for any F(x),
£he—zero maximum profit point may be considered as one af '

which F(x) is "locally 1inea‘r1yvhomogeneous".4
r 4 .
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Equivalently if F(x) attains zero maximum profit when x = x¥*,
then there exists a linearly homogeneops'function G(x) such
that G(x*)'é F(x*) and both func;ions Have the séme first
derivatives at x*, i.e. VG(x*) = eF(x*).‘

Let Jy: x * y represent a mapping from input space

into itself such that F(x) = G(y) and VF(x) = VG(y), then

the existence of a zero maximum profit point for F(x) is

clearly equivalent to the existence of a fixed point for

¥ such that x = y.

A general result on mappings from one function to another
in which an operation on the function is preserved‘(such as
V) is provided by Theorem 16. Applied to a Neo-Classical
Production Function, F(x), tﬁe théorem requires that for any
X, p and some P it be possible to find a y such that
F(x) = G(y), p/P = VF(x) = VF(y) and that the set-of such

Yy be closed and bounded [Lemma 16.1)}. Under these conditions

either the required fixed point exists or there is a pair
’ N

v

of values x* ¥ y* such that x* maps to y* and vice versa,
which we may call a "two-cycle".

The possib@lity of a two-cycle may be removed by
placing further conditions oﬁ the production function. By
Theorem 17, if F(x) is concave and VF(x) non-zero, no"
two-cycle exists if

[F(y) - F(x)] . x . [VF(y)& VF(x)] <O
for all x # y with equality included if F(x) is strictly
concave. This is a type of "diminishing marginal product”

rule which asserts that if output is, say, increased by
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changing facfé? inputs from x to y, the total cOsfmof the
old inputs ;ﬁfthe new priéés (VF(y)) must be less than the-
cost of the old inputs at the old'pricés'(VF(x)); |

Requirements for a (not necessérily'diffe;entiable)
production function to géne;ate zéro maximum profit for
some output price P are sdmmarised in Theorem 18. It should
be .noted however that the restriction 6f finiteness, whilst
useful in Theorem‘ll to avoid the necessity for strict
concavity, and in Theoremé 16 and 17 to ensure the existence
of the fixéd point, is hard to justify a priori. Without
‘input restrictions, which are excluded by definition in the
long run, there would appear to be no reason why a firm might
not produce any output, although not necessarily for maximum
.profit.5 ' :

Conversely if F(x) is dif:erentiabie on an open - convex
set, such as x 2 0, strict concavity implies that if F(x) 3 0,
maximum profit must always be positive [Theorem 19]. 'This
result illustrates two difficulties concerning the origin.

-

Whilst a zero maximum profit with zero inputs will not

permit the Neo-Classical Model to explain the (non-trivial)‘
behaviour of the firm in the long run, ghis possibili;y has
not been specifically excludeduin the gneceding theorems.
Moreover by Tﬁeorem 22 the natural suppasition that zero input
generates ierp output leads.to diffiiculties with strict
concavity. Recalling the discussion of nofmal profit in

Chapter Three it may be noted that F(x) corresponds to fhe

net profit function w (. If the level of normal profit e
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and the long ruA price 1eve1_§ were known thié difficulty'
might be resolved by setting F(0) = -nN/§ < 0 although this
introduces the further complication of a region of.pOSitive
inputs for which'}outéut' is less than zefo.

It seems more appropriate to define F(x) only on X > 0
and to consider x = 0 as a special case in which the
production function is no longer applicable since the firm
has 'exited from the industry'. Thus {x} remains an open
convex set but the argument in Tﬁeoreﬁ 19 ceases to apply.
Moreover any point of zero maximum prokit muéf necessarily
' be distinct from the origin as requifedrby the Neo-Classical

Model.

5. SUMMARY: Th this chapter sufficient conditions for a .
general profit or production function to generate an '
unconstrained maiamum profit of zero have been explored.
Homotheticity provides maximum zero profit to the exclusion of
any other value, whereas an approach using fixed point
techniques imposes somewhat stringent requirements on the
production function. It was also noted that the ofigin should
be excluded from the dom;in of this function. ‘

Since the theory requires the zero_maximum profit point
it is also appropriate to assume its existence and hence
dgduce constraints on the profit or p;oduction function

described in Chapter Pour. The derivation of such necessary

condt&ions is the subject of the next chapter.



Footnotes

The most common example is the Cobb-Doﬁglas function

X = A.LGKB where a+f = 1, [14,43. If, in particular
a =8 = 1/2, then in terms of the familiar short-run ’
diagrammatic analysis, minimum average cost will
occur when (average) variable cost is equal to (average)
fixed cost. ’

Zero would imply that costs and revenue were invariant
with respect to scale. The input-output combination
would be undetermin by the Neo-Classical Model in
this case.

This example is an}iﬁ?tance of a function which is
concave-~contoured but\neither concave nor convex
(c.f. Lancaster [42]).

This expression was suggested by W. J. Baumol.

Conditions which limit the domain of the mapping in
Theorem 19 to points of maximum profit (for some p.P),
or to a closed, bounded set containing them but
excluding values for which F(x) is infinite, appear

to amount to an assumption that the result of the
theorem holds. Consequently they are omitted.

If otherwise desirable this might be rationalised as
being-'below minimum opergting scale' or as the
opportunity cost to the m of being in the ‘'wrong’
position with respect to industry or input constraints.




CHAPTER SIX

The Neo-Classical Firm in the Long Run

1. INTRODUCTION: In the preceding chapter sufficient

conditions were deduced for the existence of a zero maximum
profit point for the firm. Here the requirements of the
Neo-Classical Model described in Chapter Four are assumed
to apply and are used to derive necessary conditions on the
production relationship. To avoid confusion between
reqﬁiremeﬁts on production and market conditions, this
analysis is coHﬁucted in terms of the perfectly competitive
firm defined in Chapter Three. Thus all prices are invariant
with fespect'to quantitylahdtkhe long run is distinguished
by changes in output price in response to the ent}y and
exit of firms. Analysis is facilitated by tentatively
retaining Definition 2 that the profit and hence production

function is twice differentiable for all positive input vectors.

2. PROFIT AND PRODUCTION FUNCTIONS: For any fixed set

of input prices it may readily be shown that concavity of

the profit function (strict or otherwise) imposes the same
degree of concavity on the revenue function, R(x). [Lemma
20.1]. The perfectly competitive firm produces one output
sold at a quantity-invariant price, P, (Assumption (xiv)), and
hence the concavity applies directly to the (single)
production function F(x)?7 [Lemma 20.3). If T is twice
differentiable, it follows directly that the requirement
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for a Neo-Classical Profit Function that (ij) be negative
definite given in Theorem 9 is equivalent to the stipulation
that (ij) E‘VzF(x) be negative definite [Lemma 20.4]. It
was noted in Chapter Four.that this condition ensures that
the extreme pointé of n(x).are unique maxima subject to

the appropriate constraints, if any.

3:/ﬁ'LONG RUN BEHAVIOUR OF THE. PERFECTLY COMPETITIVE FIRM:

Assumptions (viii) to (xi) describe the behaviour of
Neo-Classical firms in the long run as‘a process of
adjustment to changing output market conditibns resulting
from firms changing industries in search of greater profit.
Ultimately the situation is static at the end of the long
run when all firms earn the same normal profit, or net
profit, m = 0.2 , N

In perfect competition, Assdmptions (xii) to (xiv)
permit long run behaviour to be stated more fully as follows:

a) the firm faces a set of positive input prices
P = (pl,...,pn) which do not change Fhrohéhoﬁt
runs 1 to n+l.

b) the firm faces an outputprice, P, which does"
not ch;nge throughout funs 1 to n.

c) in run (n+l) , the long run, the entry and exit
of firms causes P to change to P* such that
the maximum net profit a firm can earn with

prices p, P* and given technology F(x) is zero.

d) if F(x) is twice differentiable the firm




/ an input vector x such that
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maximises profit for prices p, P by choosing

VF(x) = 8F,...,9F y TP [see [36], for example])

(
axl 3xT P

Thus (net) profit, m(x)

Consequently max 7 (x¥*)

F(x*) =

[

0

PFKx) - X.p

P[F(x) - x.VF(x)]

\

when 71 is maximised.

if, and oﬁiy if,

* VP (x*).._
e (x )’/A;,

Since p is constant, but unrestricted beyond.p > 0

in this process, the explanation of the firm's behaviour

must be consistent with any choice of (finite) positive

input price‘s.3 Thus the theory requires that for any p > 0,

and positive P # P*, maximum 7(x) in run n is non-zero

but that P changes to P* in run (n+l) in a manner consistent

with Assumptions (viii) to (xi).

4. OUTPUT PRICE BEHAVIOUR IN THE LONG RUN:

is limited to input combinations, xo, for which profit is

3

maximised for some P and a given input price vector, P

the first order condition in the previous section indicates

- that '‘the components of VF(x0) must be positive and inversely

proportional to P. Conseguently F(xo) is an increasing

function of the components of x0 and all are non-decreasing

functiongs of P [Theorem 21]. This is a particulaf case of

the positiwe "output substitution effect" [Theorem 22]
A -

which corresponds to the negative demand’ effect specified

+

If consideration

\\,/—}
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by Assumption (ix) or deducible from consumer theory..4

Thus the output of a perfectly competitive industryﬁ}ncreaseé
with price for two reasons: individual firms increase '
output. as they maximise profit and new firms are drawn into
the inaustry by the (hypothesised) increase in profits.
This increase in output quantity tends‘to réduce output
price by‘the assumed action of market demand. The
significance gf entry and exit is consequently to ‘initiate
an output price change and sustain this change uptil (net)
profit is zero. Assumption (x) that maximum attainablg
profit is an increasing function of P is crucial for the

required entry and exit behaviour to be consistent with

(explained by) by the firm's profit maximising objective.

5. LONG RUN ZERO PROFIT: For a given input price vector

p the Neo-Classical Model requires the existence of an
input vector, x*, such that, for some P* > 0, profit is
maximised by setting x = x* and w(x*) =‘0. Equivalently,
for the perfectly competitive firm,

F(x*) = x*.VF(x*) = x*(p/P*)
Moreover from the preceding section,

PSP+ a(x¥) $o, i.e.

F(x%) 5 x%.wr(x?) = x°.(p/p)

Since an input-point with these properties must exist for
any choice of 3 éositive input price vector, p, it{is
appropriate to examine the locus of such 'zero profit

o~

points'. However, the requirement that VZF(x) negative
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definite suffices to make this locus degenerate,'that is
only one pbint Xx* can exist, independent of tne‘choice~
of p. [Theorem 23]. Furthermore, no other input®combination

will produce the same output F(x*). [Theorem 24]. Two
dimensionally;'fhere is no isoquant through x*.

The singularity of the input coﬁbination X* which must
be finite and non-zero to fulfill the fequireménts of the
Neo-Classical Model, provides a-direct‘contradiction to
Definition 2 which specifieg the differenﬁiebiiity ef F(x).
An (ad hoc) relaxation of this definition‘pernits thei
convenience of the’calculus treatment to be‘ietained for
most situations: |

Definition 2': A Neo-Olassical firm is defined as a firm

sich that Fi, pj and P' are twice differentiable with
respect to xk, i 1,...,m; j,k = 1,...,n almost everywhe}e.

For coneisiency, ana_as a heuristic device, VF(x*),
‘may be defined as Laking on the values of all pesitine
vectors with a specified norm. -This ensures tﬁﬁt for some
P* dependent on p, and for all p >A0[ the ueual prof;t

maximisation éalculation will®lead the firm to 'use inputs

x* to produce F(x*) with consequent zero profit [Theorem 25].

6. PROPERTIES OF THE ZERO PROFIT POINT: Undér'Définition

strict concavity of the production function'implies.thét
is negative definite almost everywhere [Theorem 26].
If x* is the only singular point, the isoquant surfaces must

be smooth and concave contoured through all other input
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points [Lemma 27]. As P changes, given p, the expansion
pafh of any firm must.;ass through x* but remain distinct
from_that of the same firm with a different set of input
price gatios.5 Thus .x* may be cqnceptualisea as a 's&itching'
point at which the firm changes from one mode of operation

'
to another. Specificglly,'the relationship between profit
maximising x (xo) and P described in Section 4 above,
impliés'that profit gs positive for all x0 > x* and negative
for all'x0 < x* [Lemma 28].6 This phenomenon may be
incorporated iﬁ the explanation ©of the firm's behaviqur
in a number of ways, of which FB;ee are illustrated for the
two input éituation in Figure 2. Here the 'isogquant-space'
is divided'iﬁto two disjoint fegions such that for high
values of p/P the firm's maximum profit is negative and

is achieved at an ihput point in the area labelled 'mmax<0'.

‘Conversely for a sufficiently large output price P the firm

will optimise by choosing an input combination in the
'imax > 0' set with consequent positive profit. Corresponding
marginal product curves are depicted in Figure 3.

The behaviour shown in Figure 2(a) requires discontinuity

-.at all points for which x) = xJ*, any j = 1,...,n such that

a small change ip the quantity of one input, from xj* - A
to_xj* + A say, could produce large changes in the profit
maximising ihput quantities.7 Figure 2(b) indicatésa situation
which avoids - this type of general aiscontinuity at

the expense of creating a subset* of input vectors the choice.
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of which is proscribed by the,Mé&el a priori, and hence
unexplained.8 Both difficulties are resolved by.requiring'

the isoquants to converge on x* as F(x) increases to F(x*)

]

as shown in Figure 2(c). 1In this case the only excluded

%

input combinations are those which are "technically inefficient"

and lie outside 'ridge.linee' defined by the pxoduction
function in the manner of standard Neo-Classical analysis
(see [¥, for.example).

The specificatkon of' a production function which meets' .
the requirements derived here will be considered in' tHe |
next Chapfer. Howeéver it shoula be noted that the necessary»
existence of the singularity x* érovides a means By which |
lthe Neo-Classical Model may be refuted by direct ebservation,'
of input combinations,. Thus if the long run input combihation
»has:beeﬁ ebserved, any obséryatioq of any inqrt vectﬂé X

. - ., . . 5 - ) .
such that xJ = xJ* and x? 2 x* ‘in any run, and at any prices,

necessarily implies that the thgofy—model is'false [Theorem 29]}.
. , B ¢ "

H . 7\ »
7. SUMMARY: In perfect competition the zero maximum

[

prefit positioh required by the Neo-élassical,model,musb;
- . _ ,
occur with the same input combination, irrespective of input
prices. This input point generatee a singularity in the”
production function which makes the model inconeistent with-

the requirement that this ﬁfnction be differentiable everywhere.

If this sinqularity is admigted by revising the specification

of differentiability, it #ndicates a¢set of observations of

input quantities which refute the theory modei irrespective

/o . S



69 .

-

of<piice5'or ihput constraints. A : -

In Chapter- Seven a class of production functions is,

-

;construstéd which appears to meet the,conditions'derived

from the Neo-Classical Model of Perfect Competition and the

properties. of these functions are examined.

-
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Footnotes

-

Equivalently marginal revenue is 1dent1ca1 to average
revenue for the firm [ 9].

As noted in Chapter Three only the end of the run is
relevant to the consideration of the Neo-Classical
Model which generates no statement concerning behaviour
between static equilibria.

Whilst this is a requirement of the Neo-Classical
Model itself,. it is also necessary for most general
equilibrium proofs such as that given in Debreu [21].
Compare [ 4 ], however.
Assumptlon (ix) is the aggregate analogue of the
'own price substitution effect' obtainable from the
Generalised Substitution Theorem for the individual
consumer (see [42], Section 8.3, for example).

AE, A > 0, generates the same expansion path as P
since it is equivalent to dividing P by A and retaining

P

The firm's behaviour is analagous to that of
Relaxation Phenomena encountered in Engineering
and Electronics. Compare [52]), for example.

Whlist not a contradlctlon, this would make the
‘.trial-and-error profit seeking behaviour described
by Boland {9] and Day [20], somewhat implausible.

An observation of inputs in the interior of this
region would not refute the model but simply imply
that the productlon function for F(x) < F(x*) was
mispecified, i.e. the shaded region was incorrectly

defined.

L~

b et
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CHAPTER SEVEN

The Neo-Classical Production Function

~

1. INTRODUCTION: The analysis of the preceding chapters

has generated constraints on the form of the Neo-Classical
Profit or Production function. Here the requirements are
summarised and a family of production functions is,sohght
which fulfills them for the perfectly competitive firm.

As before the emphasis is on functions which are twice
differentiable almost e;;rywhere although mention is made
of the consequences of relaxing this stipulation,

In Chapter Six it was moted that the perfectly competitive
firm experiences a switching phenomenon or "phase change"
at the point of zero maximum profit. Thus the production;
function is treated seperately in its &wo modes in this
chapter before examining behaviour in the neighbourhood
of the relaxation point. For ease of exposition a specific
two input model of the production function is described
which fulfills most of the requirements of the model

before proceeding to considerations of the general, n-input

form.

2 REQUIREMENTS ON THE PRODUCTION FUNCTION IN PERFECT
»

-COMPETITION: Since the conditions on the Neo-Classical

Production function are developed in the preceeding chapters
and the related theorems, they are summaris@d here without

further justification:

73
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(a) Under Definition 2' F(x) is differentiable
almost everywhere. Hence the existence of

2F(x)

unique profit maxima requires that V
be negative definite almost everywhere.

(b) The Neo-Classical description of long run
behaviour requires that there'exiét a unique
input point, x*, such that for any given set
of positive input prices p there exists a
positive output price, P* dependent on p
for which x* maximisgs profit and
T(x*) = P*[F(x*) - x*.pl = 0.

(c) Por all output prices P > P* profit is
maximised at a point xq such that x0 > x*
and ﬂ(xo) > 0. Conversely for all positive
P < P*,

(d) F(x) is defined over a IRputs x 3 0 and

must generate a unique profit maximising
. —
input-outpyt combination for all ppsitive

prices p, P.

3. THE POSITIVE (NET) PROFIT REGION: By condition (a)

above the production function_is strictly concave in this
region and hence cannot exhibit increasing or constant
réturns between any two input combinations x, @x, § > 0,
within the region [Lemma 30]. Hence,a function exhibiting

constant returns to scale within this region may be found

such that the production function lies beneath it for all

PR o
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X > x* [Theorem 31]. Denoting the production function in
its "positive profit phase®” by H(x) it‘ﬁay be shown that

H(x) < H(x*).

=S

. . Q. n
(xJLxJ*) ] La, =1, a, >0
j l ~ - j=l J 'J .

3 : j=1,...,n
where H(x*) is the output which would be produced by:
applying H(x) to the zero profit input combination x*, and
the aj are ‘arbitrary positive indices summing to unity.
Thus decreasing returns 'to scale' .apply to any two input
combinations x

X, > x* lying on the same ray through

1’7 72
x*. ‘'Scale' in this context refers to expansion along

a ray through x* rather than through the origin as is more
usual.i Hence the usual propérty 6f decreasing returns to
scale of generating negative profit for all positive
inputs is avoided.1 This requirement is illustrated for

a two input case in Fidure,4;

4. THE NON-POSITIVE PROFIT REGION: AN ILLUSTRATION

From Chapter Six a two input.produbtion function
should imply concave isoquants which.converge to a single
point, x*, in positive input space.z Avf;mily.of ﬁuch
curves may be generated by considering the app?oﬁriate
poftions of ellipses centred on x* such that the foci
approach x* as x increasés to x*, ‘Tﬂis process is shown
in Figure 5.

The general formula for an el;ipse centred on (x*,y?*)
with major axis parallel to the x axis is

(x-x*)2/a% + (y-y)2p? =% 0<b<a

.
ot
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and the foci are given by (x* hs 4, y*). . For concrefeness
let b = a/2 s whence both axes of the ellipse approach
zero simoultanedusly. If F(x) is chosen such that
F(x) = A - a, A a positive constant, F(x) will increase
as a approaches zero and A may be gelected to ensure that
maximum profit, \
P{F(x) - xVF(x)} » 0 as a ~ 0.

Combining this condition with substitution for a yields

F(x,y) = [x*2 + 4y*2]1/2 _ [(Xt\; x)2 + 4(y* - Y)2]1/2

which has the following properties for 0 < (x,y) < (x*,y*):

a) OJF/3x > 0; dF/3y > 0
\
b) 3%F/ax® < 0; / 3%F/3y? < 05 3%F/ax3y > 0
c) Lt F(x,y) = 0
(x,y) - 0 \
d) Lt F(x,y) = [x*2 + ay*211/2 5 ¢
(x,y) + (x*,y*)
e) Lt VF(x,y) is indeterminate.

(x,y) + (x*,y*)

These results follow directly from the specification
of the prodﬁcgion function and are in Theorem 32. Property
(b) is the two dimensional expression of tﬁe general
requirement that V2F(§) be negative definite. The limiting
value of output as inputs approach (x?,y*) is positive
from property (d) and is the obvious choice for F(x*,y*).
This may then be substituted for H(x*) in the condition
derived in the previous section, establishing continuity

of the production function as inputs expand through x*,

-



Property (e) confirms the validity of allowing VF(x) to

assume any positive slope at x*:as suggested in Chapter

Six.3

- As shown in’Figuré 6, the ridge lines for this production

function are parallel to the x axes or coincide with them

which is a result of the linear, homogeneity of a family

of ellipses about a common centre. Similarly each expansion

path is a straight line through x* for positive inputs.4

However, even in this form, the specified productiqn\

function appears to mimic conventional text book treatments,

(e.g. [261), whilst converging to the required singularity

at x*. The function fails in the vital requi:;ment that

it generate negative profit since throughout the region

contained by the ridée lines, maximum profit is non-negative,

becoming zero on the ray from the origin through x*

Ehedrem 33]. No variation in the functional form which

preserves a) to e) and F(x) > 0 for (some) inputs lessA

than x* appears to produce negative profit throughout 1*
’ i

the region. This leads to the consideratioh of the

-

requirements for this region in general in the next section.

5. THE NEGATIVE PROFIT REGION: A DIFFICULTY: Strict

concavity of the profit function, which in the differentiable
é;se corresponds to (ﬂjk) being negative definite, is
_ required to ensure the existence fnd uniqgueness of the
appropriate profit'maximising input combinations. It

implies that decreasing returns t’nugt‘apply between any

. y o - .
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two input combinations [Lemma 34.1)]. . However this requires
that if profit is negative‘for a particular set of inputs
it must be decreasing as inputs are increased along the
appropriate expansion path [Lemma 34.2] if a path exists.5
The consequent contradiction may be expressed in at least
two ways: ~
(a) With constant input prices a firm experiencing
an increase in output price from P to P'
is always able to use the same iput-output
. .
combination under P' as it did under P. 1If
the expansion path leads to lower (more
negative). profit, the profit maximising firm
will prefer its old input-output combination
thus rejecting the ';angential’solﬁtibp"‘
which should generate é{maximum if (njk)
negative definfte._ | |
(b) As noted in Chépter Six maximum profit is
required to inérease witp P which it_clgarly
does not. ' Moreover thé dégline‘ih préfig
invalidatgthhe limiﬁiﬂg”procéduré illustrated
in the same éhapte;; generating regiops of
- ’diséontinuity and / or seté of input ;ﬁluéq
which are afbitxarilybprosc:ibed.
. . .
Weak concavity may be used inAconjuncéion with auxiiiary

conditions for non-differentiable functio@b as shown in

Chapter Four. However this admits only‘tﬁe extré possibility

a8
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that profit be constant throughout the negative, profit
region gnd does not méet the objections described ip (a)
and (b).above. Hence no expansion path in the ysual sense
exists in the negative profif reéion and the Neo-Classical
Model can only explain the behaviour of a firm méking
negative profit by postulating input constraints, that is

in runs 1 to n-l6 [Theorem 35]. "The consequences of this

restriction are examined in Section 6 below.

6. NEO-CLASSICAL PROFIT MAXIMISATION: The abgence of
hegative (or 'sub-normal') profit'in the éenultimate (nth)

run does not directly invalidate the Neo®lassical explanation
of the entry and exit of firms to and from different

industries since a firm may change output'fype in search

of higher than normal profit.,7 However the assymetry of

this préqess linked with the oﬁtput §riée‘adjustment mechanism
of,Chaptér:Three implies that if an industry exists in

which firms are making more than normal profit, ﬁo long

run eqﬁiiibrium is, possible. If a fifﬁ leaves a normal ’
_profif industry it must, acpérding’to the model enter.a

higher profit industry and hence depress price. _Simqﬁltaneously
‘the output price in ;he industry left will rise. ‘E;ther

éhis process results-i&-& unifoym level of profit above

-normal profit (a‘éohtrédiction)s or éhe'profit level in the
entered industry must sink below hérmai profit. Hence a

profit maximising*firm wil move in'tﬁe:revefseidirection and .

- the cycle repeats indefinitely [Theorem 36]..
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Long run equilibrium méy be-achieved only‘by’ensuring
that no induetfy is making excess_;fofit aF the beéinnihg
of the long run. However as noted earlier thisje%fectively
"collapses" the long run into run n!since they gannot be
distinguished either by changes in profit or industry
(comparelboland[ldl). Any change in industry is unexplalned
by the model and must be aggumed tolbe elther wh1m51ca1
(1f the flrm maximises only proflt) ‘or a refutation' of’ the
Neo-Classical model (if it doesn't).' The class of homothetic
pfofit functions‘which provide zero (net)‘profit for all
maxima was defined in Theorem 15. "
7. < SUMMARY: For the perfeetly competitive firm two-sets
of input vectors were delineated, %hose whicﬁ produced
negative maximum profit for given input prices and some
output prices ana those which resulted in positive’maximum
profit. The requi;ements of concavity generated aﬁgupper
bound on the production function in, the positive profit

region, but resulted in a contradiction for the area of

negative profit. Exclusion of this region in'the penultimate

and long runs causes the two runs to be indigtinguishable,

and long run equilibrium cannot exist, unlesg it is made

automatdc by requiring unconstrained maximum net profit to

be zero at all times. Thus the Neo-Classical Model fails to
' B - g ’ . : . .} ) . ’

provide any explanation for the movement ‘of a firm from one

industry to another.
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FIGURE 4vfu;£TURNS TO SCALE IN THE POSITIVE PROFIT REGION

. _ . .
Isoquants showing same
proportional increase
in output.

e = — - -

‘Imax m < 0

-

) . 4
FIGURE 5: CONVERGING ISOQUANTS IN THE NEGATIVE PROFIT REGION
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isoquants

Note decreasing marginal’
" product of x1 with fixed ’

x<.  (C.f. Boland [9].) e
ridge

-1
lines

C - - |

expansion
- path:
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L

FIGURE 7: . GENERALISATIONS OF ELLIPTICAL ISOQUANTS
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"in a region of increasing returnsrunless‘constrained o

\v N \
Footnotes ‘

The existence of decreasing returns of some klnd'
for sufficiently large inputs has long been noted
in the literature (see [26] for example).

The presence of a zero component in X* is not excluded
per se although it leads in this case to the absence
of that input in optlmum productlon throughout the
negative profit region.

Since, by inspection, it is apparent that F(x) is
neither 1 nor 2-integrated the refutation of ARP
models is superfluou$§ since they are not defined.
However the zero profit point remains an’ integral
part of the Neo-Classical explanation of the long-run.

These characterlstlcs may be avoided,- at thé.cost of
some complexity in the production functlon by varying
tha relationship between the major and minor axes

(a and b) and by rotation of. the axes af the elllpses.
See Flgure 7. .

This may explaln the common depiction of a production
function in text books (e.g. [26]) as having a region

. of increasing returns to scale followed by a-.region ®f

decreasing returns to scale as inputs increase. As
often noted the profit maximising firm will not produce
to do so. Thus its presence .in such a region in the
penultimate run in which there are no input constraints
(other than x * 0) would contradict the Neo-Cla831calnndel.

Constraining VF(x)> 0 implies that-constrained inputs

will be used to the full since the cost of their.
purchase must be incurred regardless of use. "See *
Boland [9]. . -

L '
All that is required here is a non- tr1v1al 'ordering’
of profits analagous to ‘that of consumer preférence.
C.f. Takayama [61], for example. - P

-

If the other conditions of the model are met this

would imply an upward movement of normal profit and

output prices over time, i.e. a kind of "technical

. inflation" against which the model could be tested.

; -
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CHAPTER EIGHT

Conclusion . .

t

1. COMPLETE EXPLANATION: The foregoing analysis indicates

that the received Neo-Classical Theory does not'provide

an adequate explanation of the behaviour of a firm whicﬁ

exercises no controi over. its input and output prices.

"This. inadequacy may be manifested in one (or more) of three

ways: failere to distinguish between different 1nput-output—

combinations which generate the same max1mum profit;

restrietions on the inbut price Veetere fer'which the firms
. ,

response can be explained; and inability to justify a‘long'

!

run equilibrium resulting from. the entry and exit of firms
. ‘ - [ ] .

'“additional-assuhptions must be made (and justified) to
! IS .

"guarantee the appropriate market conditions for ovegall:’

to and from different industries. As noted in Chapter One
the first two cases were excluded from the analysis on
methodological grounds. Both ad hoc price restrictions t}

and failure of -the long run equ1librating mechanism raise

difficulties for general equilibrium analysis. If the

firm's technology is dependent on input price ratios,

¢ B

.
7

equilibrium. This prdblem'is non-trivial as has n noted:in,<

9

similar. attempts to introduce the influence of prices ong

consumer prefereﬁd! (Seg Arrow and Hahn [ 6]) An

- alternative aolution is the abandbnment of the entry and’

-exit aspect of the theory and the merging of the 1ntermediate'

.and long runs. Whilst this provides no explanation af the

84
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firms change of industry, ‘it permits a general equiiibrium
solotion‘with'the required uniform profit rate generated
autom;tically by tﬁe production functions. However it
implies that the distr%butioh of firms be tween industries
is .gratuitous and must be taken as given together with the

initial distribution of wealth.

2. RETURNS TO SCALE: In Chapter One it was remarked that

\whenever the form of a productlon functlon is spec1f1ed

Vlﬁ the literatdre it is almost invariably homothetrc and -
most/commonly lineariy homogeneous.’ It now appears that~

-this ch01ce 1s not so;eiy 5 matter ,of alaebnala convenlence

but necessary to reconcile proflt maxlmlsatlon w1th the

long run "zero" profltuequlllbrlum required by general
equilibriup analysis.‘ ApartJfrom the failure to jUStify s
industry (or output‘type) changes; the use of such a fﬁnction

‘also renders the level of the firms output under unoonstrained
profit max1mlsatlon dependent on absolute ‘price levels.

Thus the fam111ar general equ111br1um assumption of homogeneity
of degree zero 1n prlces renders every perfectly competitive
firm's behav1our 1neXp11cab1e 1n both the intermediate and .
long Yuns. As long as the real prices of inputs are in the
same ratios as their marginal products, maximum (net)’ .

"profit is°zeto. i |

Introductions to microeconomics often depict the

production function (graphically) as an S-shaped curve

(or surface) with a region of increasing returns to scale
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followed for larger inputs by decreasing returns to sCalé.

- The large scale portion agrees with the analysis presented s

’

in Chapter Seven, for the positi‘p profit region, andv
4

'serves to ensure a limit on the size of the unconstrained

firm [26]. At the boundary the point of inflecti

-,

be considered analagous to thé zero maximum net
singularityAderived in Chapter Six. Moreover thef;egion~of
inc;easing retprné‘corrésponds to the aiffiéultf‘éiscﬁssedl‘
in conneqtion with the negative profit region, namely, that
no profit maximiééng firm‘will produce in this area unless
constrained to do so. ’ vnm;;» .
‘Under constrained optimisatidﬁ it appears from Chapter
Four that any concave function with strictly concave contours
or isoquants will 'do the job' the theory requires by
yieldihg the apppopfiate (uniquei prgfiF maxima. ngeverr
the long run equilibrium of- the firm described by ﬁeo—Classical \d

Theory requires the imposition of a homothetic (e.g. linearly

Jhomdgeneous) production function which .is lbgica}ly equivalent
to the direct'assumption of zero long run profit. No ?
inferences about the firm's unconstrained behaviour may be- ' ih
drawp from the theo}y with such a function which d’o'n_ot:~

o

follow from postulating a direct transitioﬁ from_constréined

optimisation to long run equilibrium at inPut-output

‘combinations dependent on the absolute price level.
Referring to the discussion in Chapters Two and Three,

for the perfectly competitiVé case af’least'the'NeOFCIassical

-
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Theory gannot do, the joH'thch i€~sets'out to do. Thus
the theory fails to explaihx&hy.the firm ohooses that
input-output combination ﬁh&ch it does by'providing no
Justlflcatlon for the type of output good produced, i.e.
ithe 1ndustry to which the flrm Hblongs. By the same token
the autoﬁatio attainment of Zero'het proflt in the

R 1ntermed1ate long run' makes the shuttlng down of any

f1rm 1nexp11cab1e within the theory. v

3. FURTHER RESEARCH: Further investigation is indicated

for the case of imperfect~competition in which the firm
exercises some influence over the price of its output.
Since the basig frame!;zk of this thesis is couched in
‘terms of profit rather than production functions it remains
appropriate for this analysis. - Howeve; the traditional
description of changes in industry is less clearly delineated
here than in perfect competit;on. A priori it is not clear
whether a change in‘the number o comﬁetlng flrms, ho;eve;
defimed, results eimply in a lateﬁeIlshift of the imperfect
competltor s demand ‘correspondence, or variations in the
price elasticity of demand. Text book graphical analy51s
tends to blur theee points and the ex1stence~of the deplcted
equ111br1um requlres more ]ustlflcatlon than is usually N '
given. See, however, Boland [9].

In addition to imperfect competition; the' framework

developed-in this discussion permits the examination of

o

a number of other models of the firm's behaviour scantily ait-

L A
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ffeated iﬁzthe usual analyses.. Specifieally; 'Imperfectlons'

f

in the markets for inputs recelved 11ttIe attentlon except

) B}

1n the celebrated example of 1ndetenm1nacy resultlng from ‘_ul,_? w.e

'-the confrontatlon of a monopollst and a moncpsafakt.

Thus ‘the relevance.of the Neo-CIa551ca1 framework to flrms

~‘5 - ° ﬂ \ =, - » e’
which are 'perféct sellers'.and’ 1mperfect buyers' or e
. : - & o
imperfect buyers and sellers remains.-té be ‘explored. ’
s B > : v~. B - RO N L ) o )
!
?
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Definition 1: A flrm is deflned as a set of mapplngs

from an input space S into the real*IIne R such that‘

Vx = ,(x-‘,.-..,x. ).e Swhere S is. a'«’Subset o,f tpe non- -
P R -

'

H&fg”l " -t-fvnegatlve orthant of n- dimen51ona1'

t

Euclidean space, En, n finite

4

Jr eRs.t. ' ' ' SO

m . s n .
n= ¢ Pixt - X pjxJ : L. . L
i=1 ) j:l . ) . ’ . ‘./’;..( .t ‘<\,>,',
- k .~ - N - - . -
where A : ,
Xl = Fl(xl,...,xn), Fl(xl,...,xn)> 0 ¥x > 0 )
, Vi=1,...,m, m finite
Pt = p(x')’ Vi=1,...m
p? = pl(x) Vi =1,...,n.

Definition 2: A Neo-Classical firm is defined as a firm

such that S is compact. - ‘ - 3

Definition 2a): A Differentiable Neo-Classical firm is

3

defined as a Neo-Classical firm for which Fl, p’ are twice

differentiable with respect to all xkand P! is twice

-

differentiable with respect to‘Xl, for i =1,...,m;
) i &

i,k = 1,..5,n.

LEMMA .1 | e

° . . -

Given€® Pl(xl) a twice differentiable function of x1 and

xi

Fl(x) a twice differentiable function of xJ,

'Vj::l:---,nf x= (xl;ooo,xr%).

To Prove: P} (Fl(x)) is a twice differentiable function of”

X

a j' j = 71,\--.“,“- ’ ) V R ‘ ' b

Proof: Immediate by the Compgsite Function Theorem

'[619DTheOfem 1.C.2, for example]. : “
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Definitiom, 3: A shift ‘in demand is defined as a rﬁéppihg L R ;

1...,m, where rody o

. ".‘

whlch takes pl (X ) “to aP (x ),_

1sras spec1f1ed in Deflnltlon 1. i-.:,ﬁ

Definition 4: A f1rm 1s descrlged as being in its. jth SO .,
. J 4, .

-run if 1t is’ free to~vary x ,...ij and,_xk is’ constrained

- . -~ .
€.

by x~ < x ’ Vk 1+1,...,n.

- - . ' . K s

Def1n1t;on§5 The Neo-Clagélcal Model of the firm 1s 3 S

~

. "o :
,deflned by the follow1ng statements about the beﬂav1onr N

-
»

of a Neo—C1a551cal firm: veew ‘4 - _ :

»

(a) In the jth run the‘firmfs choice of inputs and outputs

[P R SR, S

is uniquely determined by specifying that the firm max-
imises profit subject to the apprbpriate.input constraints,
3 =1,...,n.

(b) In the long (or (n+1)thf run the entry and exit of
competifig firms causes a shift in demand such that the
maxim profit>which the firm can earn is zero.

Definition 6: A run'j is well-defined by the Neo-Classical

moqel if, and only if, max 7 in the jth run # max 7 in the
(j+l?th run almost everywhere. .

THEOREM 2

gizgéi A differentiable Neo-Classical firm with profit

function m(x) = ﬂ(xl,...,xn).

To Prove: A sufficient condition for the extreme points
"of " in runs 1 to n to be maxima subject to the -/;).
. appropriate constraints is that the matrix of \ i

second order partial derivatives of 7, ("jk)

be negative definite.

’

gt ) e v
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Propf: We may con51der the rth run, 1 < r::n as the maxim—- IR

. Co oy rdl '
, v ! .-1sat10n of T -ag a functlon of xl,.;.,x ’ x‘ i subject ‘e

rl~,-f+1 : '
cL- X

—to the 51ngle constralnt pY = 0 31nce thls

-3 .. Lo LI . . A .‘ . -
‘is necessary and suff1c1ent for the rth run to be . X -
- * B e R A - =8 :
L i .. . '
well—@ef;ned by Deflnltlon 6. - o+ . . ) __g' T
- If n = an/axj =90 for 3= 1,...,r, we have e .y
[ LIS N B I e

from [42,“p. 531 that a sufflclent condltlon for thls

bl

T ' o extreme p01nt to be a max1mum is that the determlnant

. > .of L have 51gn (- l)r+;, the largest pr1nc1pal mlnor
“’7 . LT should have a 51gn opp051te to this and successively .
. smaller minors should alternate in. 51gn down ‘to the” ¢
principle minor of order 2, where ' .
A - e
0, 0,...,1} - . :
' ~ 0, ) 2 - 2 A _ r
L=]..L ;L=§-E.‘£'k—”—]=[w -A—Lf(r”—xr”).
° 1 axJ ax xJax
. 7 T
where . o ° )

(vjk) is (r+l) x (r+1)

Naw det L has the opposite sign to that ef ("jk)rxr'
. - . r !
Hence we require that (-njk)rxr have 51gn—( 1)° and that
. s _
('njk)sxs have sign (-1)~ for s = 2,...,r.

By induction "(w has_sign (-l)s, s=1,...,n"

jk)sxs
is a sufficient condition for maxima in aj} n runs, since

m < 0 is sufficient for run 1.

11
From [42 p. 299), a matrix is negative definite if
and only if all ifs principal minors of order r have the

. r ' . .. . . e
sign (-1)". Thus (wjk)ﬂxn negatlve definite 1s‘suff1cient J

or the extreme points of 7 to be maxima in runs 1 to n.

e
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,COROLLARY 2.1

PLEMME 2.2. T o, . B

* . : e - ?%*\T

D,

oo~ Prov1ded each run remains well deflned Theorem 2 holds

. § , e . "l( .' . "~
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for'any orderlqg of the xJ? This result follows 1mmedlate1y c

AN

from:

, . o S - . .
A matrix 4is -negatiVe definite if and only if the - . =
. principle mlnors of. succe551ve1y higher orger a1~ -
ternate .in 51gn.' Thig conditign must hold for all
possible sequences © *prlnc1p1e minors" M2, p. 300
(Empha51s added) . o

e M

i (3
hd -

Given: A dlfferentlabLe Neo—C1a551631 flrm w1th proflt

0
/{/F\\‘ o functlpn n(xl,...,x )g&uch that ﬂjk is negatlve

S N
. I 2N £

‘ definité{

r

T To Prove: Allhextreme'bOints Qf #* in runs 1 to n are unique

maxima.

Proof: Direct by Theorem 2 and [42: Section R 8.4).

LEMMA 2.3

Given: A difflerentiable Neo-Classical firm with profit
1

function ﬂ(x) = T(x ,...,xn) with™runs 1 to n-1

well-defined.

‘"To Prove: A necessary condition for (njk) to be negative

. . X
definite is that I (3%1/9x3%) <0 Vr=1,...,n.

. j=1 '
Proof: - From [42, p. 298], "a real symmetric matrix is

negative definite if, and only if, all its chara-

-, . .
cteXxistic roots are negative". Now (Trjk)rxr is
real and symmetric Vr = 1,...,n and if ("Jk)nxn
is negative definite so are (m.,) , r =:0,1,...,n=-1.

2 Jk’ n-r

But, from [67, p. 376] , trA = L)X where {1} are the

characteristic roots of A.

ol

-

S . C R -

<!

L
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P

8 .ﬁ’trévjk)rxr < 0 ‘ . Vr ‘= l’ o -’n‘, o R - ' ‘i
Tile. I (M. vy =a, . n
i J l jJ . : 'L‘ v - ~ . / _n 7

| ¢
. LEMMA 2.4 ‘

! ' )
Given: A Neo C1a551ca1 firm w1th proflt functlon ﬂ(xl,...,x )

k-
-

w;th runs 1 to n well- defined.

3
. R ’ . . - ’ N <
‘'To Prove: Max T sAn the run j < max.m in rum (3+1), = .
. . ~ . . I -
’ J = 1,...,n-1-

-~ -e Proof: -Maximisation in,run j is‘subject to the constraints”
| k . -k

4

.X ¢ x T, ko= 3+1,.:.,n whereas max1mlsat10n ‘in run« .

(: ‘ . (3+1) is subject to the constraints xk s'x k,
k = 3+2,...,n .°. max 7(3j) > max w(j+1) imblies i
not maximised in run j+1’contrary to assumption.
. . max 1(3) é’max m(3+1) . .
In fact, by Definition 6, max m(j) < max m(j+1)

almost everywhere.

Definition 7: The Average Revenue Product of an input xk

ii n i 9., k
plxt - T plxd)/x
1 J#k

for a firm is defined as ARPk =

i3

i

/ Definition 8: A j-integrated Neo-Classical firm is a Neo-
- Classical firm for which there exists a'sequence of well-

defined runs 1,...,n such that 35 € {1,...,n} for which

x! >0~ xJ >0 ¥Vi = 1,...,m. Thus x? is an input to

every non-trivial production. -

_ 4
Definition 9: The Imput Value Model of the firm is defined

by the fo%égﬂing statement about the behaviouyr of a k-

integrated Neo-Classical firm:
! H
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In the jth run the firm's choice of inputs and outputs

ls unlquely determined by spec1fy1ng that the firm maxlmlses

4

the Average Revenue Product of 1nput k subject to the

appraprlate Fonstralnts;jj =1,...,n.

\“"

-

To Prove:
— < &

THEOREM 3,~

PR,

. Fa B .
‘ ] . . A . R
‘ . > ~ ’ B

r . r
A syfficibn® condition that it be possible for

ex&ctly one. of xhe two theories of the firm'in

?

Definltlons 5 and 9 to be known false from the

-~

equ111br1um behav13ur of the f1rm 1s that one "of
the follow1ng-stat ents be true: : ‘ 4
{i) The value of the function,n# is known for-

run j where j 3 k r

(ii) the values of the function Mk and
: p2 N .
32/0x% (1 P¥xY $ 0 are known for run j
=1

where j 3 k.

Proof: From the Neo-Classical theory of the firm, in run r,

mT is m?ximised when

am/ax? =0 'Vj = 1,...,05 *r =1,...,n

where the second order conditions are functions of

Trjsl jls = lloo-r;*-/\
From the definition of ARPk,
a/axJ(ARP ) = n./xk Vi # k

Since x idp by assumption, 3ARP /ax =0 ++nj =0

3/3x (ARPk) =0+ ARP, =T

.
N

Vk # j
+ a/axk(pkxk) =

K K
k™ ii

//" 3/3x" I P°X
‘ i=1

g\\ T '-m-..;‘

. N, s i . . - .
GiveB®: A k-integrated differenﬂiable‘Neo;CTassical firm, .- °

<{?’

)
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32(ARPk)/3xr3xfm§‘3ts/x5‘,when BARPk/er'=“0 or o
. ' ‘ -g
azstRpk/axs =0 Vr # k, Vs | o
2 k2 Lk 2,..k2. 0 9.1 T
9 (ARP, ) /93X = 1/x [n,, ¥9°/3x" ( L p"x") ) when
k (Mye o1

3aRp, 73x" = 0
fhus”thé mai&ihél.qnd sec -oxder conditiong\for each

LY

theory fulfill those of the o

theory with two
exceptions: :
(1 = # 0 u ghé input value theory for all Funs

k, k+1,...,n whereas the Neo-Classical théofy

implies T =0 in the same funs.t? , | 'S -
(ii)' For run k and subsequent runs (ARPk)kk may be of

a different sign to that of = and hence it is

kk
possible that the second order conditions for a
maximum might be fulfilled for one theory and
not for the other.

LEMMA 3.1

Given: A l-integrable differentiable Neo~Classical firm.

To Prove: A sufficient condition for the input value model

of the firm using input 1 to be known to be false
when the Neo-Classical model is not known to be
falgse is that

2 n PR
3%/ax1 (x_ plaxd)>-m ) >0
j=1

Proof: From the proof'6Z)Theorem 3, the condition specifies

that a necessary condition for ARP, to be maximum
-fails whilst the same condi¥ion for n does not.

LEMMA 3.2

-~
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Given: A differentiable Neo-Classical firm which is j-

- - e -

. : integrable for j = l’gnly.
To Prove: A sufficient.condition for all input value modé€ls
of the firm to be known false when the Neo-
Classi;él is not known,false is that
n

- L prJ > - T1 > 0

-

aZ/ax
e
| QJ'EEQQ£:. Direct by noting that Aﬁ%ﬁ is gqiyqdefined for‘ali
. x for»j = l_by"Definition'B,and can ‘be distinguished
_ %, frOm-gﬁg Né9401a§siqgi;méde1 by Lemma 3.1. |
i. ingMA 3.3 |
EJQEXEQ: A j-integrated Neo-Classical firm witb the,pricé of
) factor j invariant Qith réspect to x. |
To Prove: A sufficient condition thai‘it be possible for
exactly oné ofnthe th theories of the»firm in
definitions 5 and 9 to be‘%noWn false from the
equilibrium behaviour of the firm.is ihafrone of
"the following stalements be true:
(i) the value ofithe function ™ is known for

run k where k 2 j

(ii) maximum T #¥ 0 in run n.

Proof: (i) follows immediately from Theorem 3 by noting that

iﬁ this qase.a/axj(ARPj) =0 > ARij= "j + pJ,
(ii) from Theorem 3 max. ARP. in run n occurs when
. I . . J
_ j i i
ARP. = 3/3x°(f X P )
J i=1
Hence, by definition of ARP., ' -
y Mo D ox x Joym
1/x7 [z X't - I pxS1= oa/3xd ¢ x'p
i=1 k=1 i=
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i.e. ? X"P" = ; xk 3/3xk(‘? XiPi)

=1 k=1 i=1
But under this condition, the Neo-Ciassiéal model
leads to the conclusion that magimum profit is zero

in run- n. . :

Definition 10: A set of acceptable observations consists

of the following‘information'fB% each run k of a Neo-

Classical firm, k = 1,...,(n+l):

(i) the wvalues of Pi(xi), pj(xj) vi,Jj
(ii) values of xj, x* - vi,J
(iii) by deduction, the value of t(r) - m(s) for all
r,s =1,...,n+l, where m(k) denotes the

(maximum net) value of 7 in run k. Hence the
truth or falsity of the statement 7(n) = 0.
THEOREM 4 -
Given: A j-integrable Neo-Classical firm-and a set of
acceptable observations.
To Prove: The possibility of the input valﬁe theory of the
| firmAbeing shown false and the Neo-Classical
theory not being shown false by a set of accept™
aﬁie observations exists if the price of facter*
3 is constant. |

Proof: Referring to Definition 10, item (ii) permits the

definition of a sequence of runs and if the number

of constraints observed to be binding is ¢ € n,
&

the observations 7(c) # 0, and m{c+l) = 0 suffice

to discredit the input value theory by Lemma

-

2.4 and Lemma 3.1.
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Definition 11: A firm is representable by a theory if,

and only if, 3a propef subset A of the set of acceptable
observations Bi such that vb € B, (i) beA » the theory
explains whY—the firm is not using any other input-output
point, and kii) b ¢ A »+ the theory is false.

Definition 12: A firm is Neo-Classically representable if,

v

and only if, it is
(i) Neo-Classical
(ii) representable by the Neo-Classical theory with proper
subset AN’ and
(iii) represemtable by the Input Value Model with‘proger

subset A

1 only if AN # AI.

Definition 13: A firm.is weakly representable by a theory

if, and only if, 3 a proper subset A of the set of acceptable
observations B, such that ¥b ¢ B, (i) b € A is explained
by the theory and (ii) b £ A » the theory is false.

Definition 14: A firm is weakly Neo-Classically representable

if, and only if, it is
(i) Neo-Classical
(iii weakly representable by the Neo-Classical theory
with proper subset AN, and
(iii) weakly représentable by the Input Value Model with
proper subset Aj only if A ~ Ay =’ﬂ.
THEOREM 5§ \V/
. Given: A differentiable Neo-Classical firm such thaé:

(i) (ﬂjk) is negative definite.

(ii) ‘3 a shift in demand a such that max-n(x) = 0.
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(iii) max m in run n # 0.
To- Prove: The firm is representable by the Neo-Classical
! theory. -
: —
Proof: The set A of Definition 11 c0nsists of any accept-
able observations in runs 1 to (n-1), the obsefvation
T # 0-in run n with ™ = 0 in run (n+l).
A # # by condition (ii)
A # B by condition (iii)
Thus A is a proper subset of B. ///ﬁ
For all b ¢ A the Neo-Classical theory is a
complete explapétion by condition (i), Theorem
2 and Lemma 2.2. b ¢ A »+ the Neo-Classical theory
is false by Definition 5.
LEMMA 5.1
Eiiéﬂz A Neo-Classical firm which is representable by
the Neo-Classical theory and not j-integrable, for
any j e'{l,...,h}.
To Prove: The firm is Neo-Ciassically representable.
Proof: Conditions (i) and (ii) of Definition 12 are ful-
filled by assumption.
Since the firm is not j-integrable for any

j e {1,...,n}, A_ = g and Condition (iii) is

I
satisfied trivially.

-THEOREM 6

Given: A firm such that

(i) it iéﬁ}epresentable by the Neo-Classical theory,

(ii) it is l-integrable
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(iii) « it is differentiable and either
2 n . .
a) 32/3xl (Z prJ) > -7 >0 i.e.
: 11 :
J=1
2, 1% _ii -
3°/9x" (IPX7) > 0
2 n ..
or b) 32/8x% (I pIxd) = o
j=1

To Prove: The firm is Neo-Classically representable.

Proof: It suffices to show that 3 an acceptable observation

which is not common to Ay and AI' "

If condition (iii) a) is met this [follows immediately
from Lemma 3.1.
If condition (iii) b) is met the rqsult follows from
Lemma 3.3.
COROLLARY 6.1
A l-integrable differentiable Neo-Classical firm facing
constant factor prices is Neo-Classically representable if

(1) (m.,) 1is negative definite

jk
(ii) :3 a shift in demand a such that max 7(x) = 0, and
(iii) max T in run n # 0.

This follows directly from Theorem 5 and Theorem 6.

Definition 15: A Neo-Classical profit function is a function

m such that a firm with profit m is Neo-Classically
representable.

Theorems 7 and 8 provide necessary preliminary results.
THEOREM 7
Given: A differentiable Neo-Classical firm
To Prove: A necessary condition gor'ﬂ max = 0 in run n is

that for all k such that xk'# 0 when 1 = 1 max.,
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"kk = 0 »
T oigi ST
Proof: m = I P X - L pjxJ and for a maximum
i=1 j=1
m .
i i i k k. k —
= E Xk[P 1x + Pty - p° - PX = 0 Vk’— l1,...,n
m .
i.e. pk = I Xi[P Xl l] - p)}:xk
i=1
moo.o n . -
Let ARPk = (zpxt - ¢ pjxj)/xk = pk when ™ = 0
i=1 j#k

where k is such that xk # 0 when ™ = 7 max. Thus
m 3.4 S T T i k_k

(L prxt - I plxd)/x" = 3 Xk[P xt o+ pYy - PpX
i=1 j#k i=1
Differentiating w.r.t. xk:
i i moioi T 5.3 K, 2
{x* z xk(p x' +PYH] - [ Ppxt - oz oplx)1l/(x))
i=1 J#k

i i k _k k
l{(xk) [P x + 2Pi] + P xkk} pkkx Py

I MB

i

k ? {(x') [P x + 2Pi] + pt x } - k & - pk
.opg = k i kk Pk Py
i=1
. . Trkk = 0 -

THEOREM 8
Given: A l-integrable differentiable Neo-Classical firm with

profit function 7w (x) = ﬂ(xl,...,xn).

To Prove: A suffici;nt condition for the extreme points of
7 in runs 1 to n to be maxima subjeét to the
appropriate constraints, and for it to be possible
that maximum 7™ # 0 in run n is that (ﬂjk) be
negative definite.

Proof: The sufficiency of (njk) negative definite for maxima

is proved in Theorem 2.

-,l"}

L ot Ata, e T
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From Lemma 2.3, (ﬂjk) negative definite -~
¥Vr = 1,...,n, and in particular ﬂll < 0. Since
the firm is l-integrable, x1 > 0, hence by Theorem 7

mT max = 0 - L 0, contrary to the assumption that

(njk) negative definite.

THEOREM 9

. . - 1 n, - M i i D45
Given: A function m(x) = T(x",...,x ) = I P'X - L p-x
i=1 j=1
su®h. that Xl, Pl, pJ are all twice differentiable
w.r.t. xk vi=1,...,m, k=1,...,n.

-

To Prove: A sufficient condition for T to be a Neo-Classical
AN

profit function is that all the following hold:

(1) x*(0, x%,...,x™ =0 wx%,...,x" 3 0
vi = 1,...,m.
(ii) (Trjk)nxn is negative definite.

(iii) J a shift in demand o such that maximum

T(x) = 0.
2 ..
(iv) either a) 3%/3x1 (zpixY) > o
. 2 n .o
or b) 3%/3xY (I pixd) = o
j=1

Proof: By @ssumption, and Definition 2 a), the firm is a

differentiable Neo-Classical firm. (i) implies that
the firm is l-integrable by Definition 8, (ii) implies
that the extreme points of 7T are maxima and

m max. Z 0 by Theorem 8. (iii) implies that

37 max = 0 in the (n+l)th run. Thus the firm is
representable by the Neo-Classical theory by Lemma 5.1.

By Lemma 2.3 n11»< o, .°. -7, > 0. Thus if



COROLLARY 9.1 ‘ N

A function 7(x). is a Neo-Classical profit function if i

i

and k

-by Theorem 7.

X, pl are twice differentiable w.r.t. x

(1) x*(0, x

(11)
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\]
(iv) a) holds, the firm is Neo-Classically

representable by Theorem 7. =«
Similarly mmax. Z 0 by Théorem BKAahd hence if (iv)

b) holds, the firm is Neo;Claséically representable

k ¥vi=1,...,m

l1,...,n, p = (pl,...,pn) are constant, and finite, and

S N
2 .5 =0 vx?,...vx" 2 0, 3

Vi = 1,.*.,m

o e

“jk)nxn is negative definite, and

(iii) 3 a shift in demand o such that max m(x) = 0,

Proof is immediate by Theorem 9 using condition (iv) b).

LEMMA 9.2

Given:

A differentiable Neo-Classical firm with input prices

p independent of inputs x, and profit fﬁﬁction m(x).

To Prove: 1If profit is maximised by setting Vm (x) = 0 for

Proof:

unconstrained x, and the set of all profit maximising

-

input vectors for any positive p is open and convex,

(r.,) is negative semi-definite over this set. If

jk
the maxima are unique (wjk) is negative definite over

this set.

Let 7 (x) = XiPi(Xi) -

1 3

xIp) = R(x) - x.p %
1

TR
]

i
and let x,y be distinct profit maximising® vectors.
By assumption x maximises profit when Vn (x) = 0, i.e.

VR(x) = X whence \
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R(x) - x.p 3 R(y) - yv.p *

R(x) - xVR(x) » R(y) - y.VR(x) -+

(y=-x) VR(x) 2 R(y) - R(x) ~*

R(x) concave by [ 61, Theorem 1.C.3]
+7(x) concave by Lemma 20.1 below.
+(ﬂjk) negative semi-definite from [51: Theorem‘4:5].
Uniqueness implies stfict inequality hence strict
concavity and (ﬂjk) negative definite from the same

Theorems.

THEOREM 10 (A‘generalisation of Theorem 2)

Given:

—

A Neo-Classical firm such that 7m(x)< «» ¥x and x >» 0.

To Prove: A sufficient condition that m attain a global

Proof:

maximum in run k, k =1,...,n-1 is that m be a

concave function of x, or, equivalently, if 71 is twice

differentiable, "jk be negative semi-definite.

Maximising T in run k is equivalent to the problem

min(-T) over ﬁn s.t. xJ - §J < 0 j=k+1,...,n.

T concave > (T") convex, rR" is a convex set and all
constraints are affiine, hence convex and concave. Thus
the problem is an ordinary convex program [51]. By
assumption §. > 0 ¥j = k+1,...,n so a feasible x
exists, and again by agsumption -m > -», whence a

Kuhn-Tucker vector A = (A l,...,An) 2 0 exists for

k+
this problem. [51: Corollary 28.2.1]. Thus there

~
exists a minimum for -7 and hence a maximum 7.

/
njk

implication of [51: Theorem 4.5].

negative semi-definite «+ concave is a direct
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The local minima of -7 (x) are global minima by the
" convexity of -m(x).

COROLLARY 10.1

If m(x) = Tmax in the kth run in Theorem 10,
n .
0 e[-91&) + I A.dx?]
J=k+1

where 37 (x) is the subdifferential of T at x. This result

follows directly from [5]1: Theorem 28.3]. From the same

éheorem weshave
Aj 3 0, xj - §j £ 0, Aj(xj-ij) =0 Vi = k+1,...,nA

LEMMA 10.2

Given: A Neo-Classical firm

To Prove: A sufficient condition for m(x) to have unigque maxima

at its extreme points for each run k, , = 1,...,(n+l)
is that w(x) be a strictly concave function of

(xl,..,,xj) ¥y = 1,...,n.

Proof: Uniqueness follows from the properties é(iﬁ strictly
conc;ve function, and from (42, p. 333] ué}have thgt
all extreme points of a strictly concave function are

N .
maxima.

THEOREM 11

Given: A Neo-Classical firm such that 7m(x) finite and T(x)
concave Vx.

To Prove: If mw*(x*) is defined as inf{x.x* - m(x)}, a

sufficient condition for m* to have a unique

(unconstrained) global maximum at x is that m*(x*)

be differentiable at x* = 0 and x = Vrn*(0).

Y
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+

Proof: T®*(0) = -m(x) which is finite by assumption. m*(x*)

differentiable at x* = 0 + 7*(x) subdifferentiable
at x* = b., .5.'—n*(x*) is proper by.[51: Theorem
- 23.37. ‘.'. -n(x), the convex conjugate of ~7m*(x*)
is closed and proper by [51-74Theoremr12.2]. ) )
X = n*(O) by assumptlon,g; .uthe,hihioum‘set of (=m(x))
contalns a. uanue vector. x. by [51. Theorem 27. 1(e)]
-m(x) is a globel m1n1mum by the Canexlty of -n(x)

¥ .
B - 9

[5'1,5271 co T o .

COROLLARY 11.1 . - 3;‘ T

If ©(x) fulfllls the condltlons of Theorem 11 and 1s, in

addition closed, then ‘the exlstence of a unlque maxlmum atvr

X implies that n*(x*) is dlfferentlable at x* = 0 and

X

X = Un*(0). The proof is direct by'notlng m fipite » =m
proper and applylng [81: Theorem 27.1(e)].
THEOREM 12 ’ |
Given: A Neo-Classical firmjsuch that ©(x)< « and ﬁ(x) is
22ver : ,

closed and concave Vx.
To Preve: If the condition‘észhéprem 11 is satisfied, the

constrained maxima of Theorem 10 are unique.’

Proof: {m(x)} closed » {-m(x)} closed.
xJ - %) ¢ 0 are closed functions since x31> 0,

Vj = k+l,...,n

. n ..
I Let h = -m(x) + Ixfx) -%))- .
j=k+1 3 - ,
where X = (Ak+l""'kn) is a Kuhh—Tuckerpvector.'

By Corollary 10.1, inf.h = inf[-m(x)] = supm(x).

o
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By Theorem 11 supm(x) is unique. Thus inf h is unique.
Therefore by [51: orollary 28.1.1], the minimum
problem in Theorem 10\ has a unique solution for each
k=1,...,n-1.
LEMMA 12.1
Given: A firm with profit function 7(X)
To Prove: A sufficient condition for m(x) to be concawe is
n . . \ m . .
that £ pjxJ be convex and that I P X' be a
i=1 ' i=1
. 1 n
concave funct of x = (x7,...,x ).
' m . . o

Pl-x1 concave + =~ L Plx1 convex
1 i=1 .

Proof:

n o3

i
pjxJ is convex by [51:
l e”“
Theorem 5.2] .°. 7m(x) is concave. "7 o

-prxt +
1 J

*. —ﬂ(x) = -
i

3
Mo

LEMMA 12.2
Given: A firm with total cost function, C = IxJ

P
1

nhmg

‘ , j
Vx = (xl,...,xn)-

prJ to be convex is
1

To Prove: A necessary condition for

ez

J
that
NP

(i) Vy = (yl,..-,yn), [C(x + Ay) - C(x)]1/X be a

non-decreasing function‘of A >0,

(1ii) the one-sided directional derivative of C at

S

x, C'(x:y) = inf [C(x +7 - C(x)], Vy and
A>0 N A

ﬂiii) C'(x:y) is a positively homogeneous convex |
function of y with C'(x:0) = 0 and

-C'(x:~y) € C'(x:y) Vy.
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Proof: Since C(x) is finite for all x, results follow directly .
from [51: Theorem 23.1].

COROLLARY 12,3 *'\>

m . .
If the firm has a total revenue function R = I plx?*
. i=1
which is finite V¥x = (xl,...,xn), a necessary condition for R

to be concave is that
(i) Vvy = (ylr---ryn)v [R(x+y) - R(x)]/X be a non-

increasing function of A > 0,

the one~sided directional derivative of R at x,

"(x:y) = sup[R(x+Ay) - R(x)], Vy, and
A>Q A

Lo 5\" N Vs
(iii) R'(x%y) is a concave function of y with X+
~
R'(x:0) = 0 and -R'(x:~y) > R'(x:y) vy. ~
LEMMA 12.4 | Voo
‘ n . .
Given: A firm with total cost-function C = L prJ
B ’ J=l
. n P
To Prove: A sufficient condition for prJ to be convex is
- j=1-

that p xJ be convex Vi = 1,...,n.
Proof: Immediate by [51: Theorem 5.2].

COROLLARY 12}5
‘ m

A sufficient condition for I p'x' to be concave in
o n, . ii, =l . .
x = (x",...,x ) is that P"X" be concave in x Vi =1,...,m.
LEMMA 12.6

‘prJ such that
j=1

...,n and Vx = (xl,...,xn).

[ e B

Given: A firm with total cost function C =

cd = pJ J is finite Vy =

To Prove: A necessary condition for J to be convex is that
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(1) ¥y = (yh .. y™, 1 Iy - SFed)yin

be a non-decreasing function of A > 0.

(ii) the one-sided directional derivative of cJ

at xJ

¢l (x):y) = infd x4y - IR
A>0 A .
Vy, and
(iii) c) (xj:y) is a positively homogeneous convex
3 ] 3 .
function of y with c) (xJ:O) = 0 and
Cy s . .
-cJ (xJ:—y)‘S c) (iJ:y), vy. .
Proof: As in Lemma 12.2.
COROLLARY 12.7

m
fiyrm has a total revenue function, R= I P°X

such pix! is finite ¥i = 1,...,m and vx = (x1,...,x",
a necessary condition for ri to be concave in x, is that -
(1) Vy = (yl,...,yn), [ri(x+Ay) - ri(x)]/k be a
non-increasing function of A > 0, :
St

(ii) the one-sided directional derivative of r1

i i i
r- (x:y) = sup[r (x+\y) - r (x)], Vy, and
A>0 A

(iii) ri'(x:y) is a concave function of y with ri'(x:O) j

0 and -ri|(x:—y) 3 ri'(x:y) Yy. - |

LEMMA 12.8 }
1pjxj such'that l

Given: A firm with total cost function C =

Il o =)

3

cl = pJ J is finite and differentiable for some

3 ¢ {1,...,n} and Vx.

]

To Prove: A necessary condition for c- to be convex is that J

the marginal cost, 3/3x7(c)), of the jth input be

] AN s
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non-decreasing.
Proof: 'Immediate by Lemma 12.6.

" COROLLARY 12.9

, m
If the firm has total revenue function R = - L P x' such
. i=1
i izl s . . ’
that r~ = P'X" is finite and differentiable for some

ie {1,...,m} and ¥x a necessary condition for ri to be concave
in x is that the marginal revenue product 3/3xj(ri) of the jth
input in the ithioutput be non-increasing, Vj =1,...,n.
COROLLARY 12.10

If the firm has total cost function C =

[ e =)

pjxJ such that C
i=1 o

is finite and cJ is differentiable Vj = 1,...,n, VX, a necessary

condition for C to be convex is that VC > 0, i.e. the marginal

cost of input j is non-decreasing Vj = 1,...:3.
COROLLARY 12.11 ’
m . .
I1f the firm has total revehue function R = - I Ple such
' i=1

that R is finite and rt is differentiable Vi 1,...,m, Vx,
a necessary condition for R to be concave is that VR < 0O,

i.e. the marginal reévenue product of input j in total output

-is non-increasing vj = 1,...,n.
THEOREM 13 -
m . . .
Given: A function w(x) = n(xl,...,xn) = 1 x'pt(xt) -
i=1
S T O
I x°p (xj)ﬂ defined on x > 0.

j=1

To Prove: A sufficient condition that 7(x) meet all the

requirements of a Neo-Classical Profit Function

W

N
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without necessarily being differentiable, i.e. is
a "non-differentiable Neo-Classical Profit Fupction",
ii\that all of the following hold: ’ é
(i) Either T is strictly concave or T is concave,

closed, finite and the concave conjugate

m* (x*) fulfills the conditions of Theorem 1l2.

(ii) pj is independent of x7 vy =1,...,n.
Cx s
(iii) J a set of functions{P® (x*) >0, i = 1,...,m}
s.t. maxm = 0

(iv) V functions piixly > 0 s.e. prxh) # PTxh),
i=1,...,m, maxT # O.
Proof: By fi) 7 has unique maxima in all runs. If the firm
is j~integrated for some j =-1,...,n, the Neo-Classical
model ?s distinguishable from the ARPj model by
conditions (iii) and (iv). Hence by direct analogy
with Theorem 5, 1 is a non-differentiable Neo-

4

Classical Profit Function.

THEOREM 14
m . . .
Given: A function m(x) = ﬂ(xl,...,xn = z XlPl(Xl) -
i=1
n .
z xjp](x]) defined on x 2 0.
=1
To Prove: 7(x) is a non-differentiable Neo-Classical Profit

Function if all the following conditions hold:
(i) Tm is concave, closed, finite and n*{(x*)

fulfills the conditions of Theorem 12./

(ii) p] is independent of x3 Vi =1,...,n.
Cx
(iii) J a set of functions {P* (xl) >0,1i=1,...,m}
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s.t. maxm = 0
(iv) 7(x) = 0 implies that if m(x*) is different-
iable at x* = 0, Vn*(0) # x or
plxh) =Y 0 vi=1,...,m
Proof: From Theorem 13 it suffices to show that conditions
(i) and (iv) imply that maxm # 0 unless Pi(xi) =
Pi*(xi) Vi = 1,...,m. Suppose the contrary:
maxm = 0 > m*(x*) differentiaﬁle at x* = 0 by
Corollary 11.1. Thus if 7m*(x*) is not differentiable
at x* = 0 the contradiction is imme@iate, otherwise
maxm(x) = 0 » Vr*(0) = x also by Corollary 11.1,
contrary to assumption.
THEOREM 15
Given: A differentiable Neo-Classical firm with unconstrained
outputs x = (xl,...,xn) |
To Prove: (1) A sufficient condition for m = 0 at all
extreme points of m is that 7 be homothetic
in x, but Tw(tx) # (t-l)nﬂ(x) for any n # 1.
(ii) A sufficient condition that m be homothetic
is that Total Revenue ( ? Pixi) and Total
i=1
n . .
Cost ( L pr]) be homogeneous functions of
j=1
the same degree.
(iii) 1If Total Revenue and Total Cost are both
homogeneous oOf degree r # 0, every extreme
poiﬁt of m has m = 0.
Proof: (i) By definition 7 is homothetic in Q»iff T(tx) =

[ 8
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g(t)m(x), vt > 0 and some functioﬁ #. Since
T is differentiable for a Neo-Classical firm,
@ is differentiable and by the éeneralised
Euler Theorem [42]

BT (L)m(x) = Vn(x). x
n(tx) # (t-l)n m(x) unless n = 1.
#'(1l) # 0. At an extreme point Vm(x) = O,

.. m(x) = 0.
m . n . .
(ii) Since w(x) = PX - I pjxj, T is homogeneous

i=l j
of the same degree as total revenue ané total
cost, and hence homothetic.

(iii) This résult follows immediately from (i)
and (ii).
THEOREM 16
Given: Two families of correspondences, X = F(x|a),.
Y = G(y|B) where a and B are parameters such that for
some a = o*, and for all B:
(i) domain (Y |B) & domain (X |a*)
(ii) range (Y|B) = range (X |o*)
(iii) D.F(xla*), D.G(y|B are defined for all
x ¢ domain (X |o*) and for all y € domain (Y |[8),
where D is an operator such that
range (D.F(x|o*)) & range (D.G(y|R))
To Prove: Let ¢(x) = {y:[y edom(Y|B ] & [F(x|o*)=
G(y|B] & [D.F(x|o*) .~ D.G(y|B # #1}
| I1f 3 an ordering on (Y,B), VB8 such that{min d’(x)';

x ¢ domain (X|o*)} is closed, then there exist x*
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e domain (Y|B;) and y* ¢ ddmgin'(lez) for some + i
Bi1, B2, such that / ' -
x* ¢ d(y*) & y* € ¢(x¥*). | A
x*, y* are not necéssarily distinct buf are
necessarily finite if min®(x) is boupded for all X.
Let a'= a*: ¢(x) is non-empty by specification.

Define the point-set mapping #: domain (X[a*) -

. domain (X|a*) such that @(x) = miné(x) which is well-

defined by assumption. The composite mabping ﬂn(x)

i% defined recursively by

gh(x) = B(y), vye " lx) vn1.

# generates a relation ® on domain (X|a*) such that

xl() X, «+3dn > 0 s.t. [xlle ﬂn(xz)] & [x2 € ﬂm(xl)]
+m > n.

Hence the sequences Cr(x) = x, ﬂ(x),..;,ﬂr(x) may

“be defined V¥x such that

rz3i>jsz0->yloy’

vyl e ptx) s vyl e pI(x).

~ Three cases may be distinguished:

only for r = 0, y ¢ #(x)~ y@x

~But n = 1l Yields y ¢ ﬂn(x), hence dm < n =‘;///ﬁ///
s.t. x ¢ f0(y) Vy e #(x). (

i.e. X € f(x) or x € #(y) = ﬂzf?)

(i) I1f3x ¢ domain (X|a*) for which Cr(x) is defined <2/;§

which is the required result.
(ii) If 3x ¢ domain (X|a*) for which Cr(x) is

defined only for finite r, Ja largest integer
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' r for which Cr(x) is defined. Hence 3i,

0¢i<€rs.t. yr+1 € ﬂr+1(x$ and

yi £ ﬂi(x) for which yf+1<$ yi.

But yE € ﬂ;(x) »> yfr > yi Vyj € ﬂj(x),

0 € j < r by construction. Whence, since @
is trahsitive withih a particular chain by
'construction,

yr+1 @ yr Vyr € ﬂr(x) .

Setting x = y* in (i) the required result

follows.

(iii) If an infinite sequence C(x) exists for
every x, C(x) & {mind¢(x): x ¢ domain (X|a*)}
whicﬁ is closed by assumption. Since x(? X,
an oscillating sequence must be finite, whence
C(x) approaches a limit in {mind®(x)} . Let
this limit be L(x). By constrﬁction
L(x) & domain (Y|B) &« domain (X|a*). and by
the construction 6f C(x),

v¥ e L(x) > y*® y?(x) vy® ¢ g"(x), Vn and

y' e gL » yEtt @ L(x)

Setting x = yL in (i) the required result

followe )

‘[The approach used in this proof is derived

from that of Abian and Brown [l] in their
work on partially ordered sets].

Definition 16: A Perfectly Competitive firm or Perfect

Competitor is defined as a Neo-Classical firm such that .




2

m = 1 and E,,pj,are,positive and independent of X, x,'

Vi=1,...,n.
LEMMA 16.1 /
Given: A per%ectly competitive firm with production function
F(x).
To Prove: If F(x) is concave, closed and bounded and 3 a
finite, positive vector z € @F]x,'Vx, then
(i) ] two finite vectors x*, y*, not necessarily

distinct, such that

n sx o) n cx vy
F(x*) = ol (y3)%7; F(y*) = v1 )"
j=1 , j=1" )
< a>0,y>0,a>0,vyI >0 j=1,...,n;
n . n , .
tad = 2yl =1
: j=1 j=1

F(x¥*) (Gl/yl*,.'..,o.n*/yn*) € [BF]X\'r
F(y*) (Yl/xl*,...,Yn/xn*) € [BF]Y* where
[BF]x is the subdifferential of F(x)

evaluated at x.

(ii) - If x* = y*, J positive prices p, P such that
F(x) - x.p/P € 0 with eqﬁality if x = x*.
Proof: Result (i) follows from Theorem 16 by setting X|a = F(x)
n . Bj . n .
Y|g =81 (yH* any 87 > 0 s.t. I gl =1.
j=1 j=1

DB(x) = {z: z e [3B(x)] & z finite & z > 0}

and noting that the domain and range fequirements are
met.. F closed and bounded implies that Y is closed and
bounded whence ¢(x) is closed and x*, y* are finite.

1)

Result (ii) follows by setting



118

E/P =‘(al/xl*,...,an/xn'ﬂ F(x*) in (i) and noting
that for F(x) concave, p/P € [BF]x* implies that
F(x) - x.p/P is maximised at x = x* from [51:
Theorem 28.3].

Definition 17: An Imperfectly Competitive firm or Imperfect

Competitor is defined as a Neo-Classical firm such that m =1
and pj is positive énd indepermdent of,i; Vi = l,.l.,n.
"COROLLARY 16.2
Lemma 16;1 may be applied to an'imperfect competitor by
substituting "the revenue function R(x) = P(x).F(x) for F(x)
and making the requirements of R(x).
THEOREM 17 |
gizgg: A perfect competitor with once-diffgrentiable concave
production function F(x) such that VF(x) > 0, F closed
-and finite for all x. .
To Prove: If F(x) meets the conditions of Theorem 16 when

Y|B = B yl/n

P a sufficient condition for the
j=1

(=]

existence of a zero maximum profit.point is that,
VX,Y,

[F(y) -~ F(x)].x.[VF(y) - VF(x)] < 0 with equality

permitted if F(x) strictly eoncave. '
Proof: By Lemma.lﬁ.l the resulf follows immediately unless a
two-cycle exists. Let x*, y* constitute a two-cycle

and w.1l.0.g. let F(y*) 3 F(x*). Since F(x) concave:

(y-=x) VF(x) 3> F(y) = F(x) VX,y [61, Theorem 1.C.3]

*. (y* - x*) VF(x*) 3 F(y*) - F(x*) > 0 by assumption
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'.’ Y*VF(X*) > X*VF(X*)-..;...............-,a;...(l)

~n
Choosing Y|8 = 8 T y;/n in Theorem 16 yields
3=1

¢(xf = y when yj = F(x)/huaF/ij) which exjs¢a by
assumption and Lemma 16.1 | |
"L F(x*) = ny? 3F/3x) = y*VF(X*).rnrnn... e (2)
Similarly F(y*) = x*VF(y*).....ccvvuannn.. eerssa(3)
(2) in (1) yields F(x*) 3 x*VF(x*)
Hence from (3) x*VF(y*) 3 F(x*) 3 x*VF(x*)
i.e. x*[VF (y*) - VF?x*)] 3 0...... ceeeean ceveesa(4)
which contradicts the presumption
(F(ly) - F(x)] x [VF(y) - VF(x)] < 0, Vx,y.
If F(x) is strictly conﬁfve (1) and hence (4) become
strict inequalities, contradicting equality iv the
presumption.
THEOREM 18
Given: A perfect competitor with production function ¥(x),
not necessarily differentiable, x > 0. -
To Prove: A sufficient condition for the existence Qt 3
zero maximum profit point is that all the tollowing
be true:
(a) F(x) finiLe and concave
(b) 23F(x), the subdifferential of F(x) contains
a finite positive vector quantity far all x > 0
(c) either P(x) is strictly concave or ‘2&;\\\\vv
m(x) = PF(x) - p.x meets the conditiana of

Theorem 11 for all P > 0
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(d) {P(y) - F(x)\ - x [z(y) - z(x)] < 0 where
z(6) is any fositive element of 9F(8) and
equality is permissable for F(x) strictly
concave.
Proof: Given input prices p. From Corollarylo.l and conditiens
| (a) and (c), m(x) achieves an unconstrained maximum
when 0A€ {-3m(x)} i.e. 0 € {-3F(x) + p/Pl. Since
p and P are bdth positive this implies that {9F(x)}

contains a positve vector which may be mapped into
n

ngly;/n as in Lemma 16.1, for any P. As gf(x) always
confains a finite positive vector, the‘mapping is
always well defined. Hence ;;eorem 16 may be applied
directly since F(x) finite, and the result follows '
by an analagous process to Lemma 16.1, with 2 cycles
eliminated by Theorem 17.
THEOREM 19
Given: A perfect competitor with strictly concave production
function F(x) such that F(0) 3> (0)
To Prove: F(x) is once differentiable on an open convex set
inR", maxw(x) = P[F(x) - x.p] = P[F(x) - x.VF(x)]> 0
for all positive p, P.
Proof: F(x) strictly concave and differentiable on an open
convex set X inR" implies
(y »~ x) VP(x) > F(y) - F(x) Vx,y € X, x # y-

/

(61, Theorem 1.C.3]

/\_/

Letting y = 0, -xVFP(x) > - F(x)

v e
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i.e. F(x) - xVF(x) > 0.
LEMMA 20.1
Given: A profit function with fixed input prices
To Prove: If'ﬂ(x) Z R(x) - x.p, T(x) is (strictly) concave
if, and only if, R(x) is (strictly) concave.

Proof: T7m(x) is strictly concave iff

T(6x + (1-0)y)> Bm(x) + (1-8)m(y) O % B <1
i.e. R[8x + (1-8)y]) - 6xp - (l-8)yp > OR(x) - 8xp
| + (1-0)R(y) - (1-8)yp
i.e. R[6x + (1-6)y] > 6R(x) + (1-8)R(y)
i.e. R(x) strictly concave.
Similarly for weak concavity.
COROLLARY 20.2 ﬂ,
If R(x) is the revenue generated by the sale of one output,
x, at price P(X) and X = F(x), 7T(x) is (strictly) concave
iff P(X)F(x) is a (strictly) concave function of x.
LEMMA 20.3 !
Given: A profit function =(x) with fixed input prices and
single output price, P, independent of output quantity,
X.
To Prove: n(x) is a (strictly).cohcave function of x iff
X = F(x) is a (strictly) concave function of =x.
Proof: Since P(X) = P the proof is direct by Corollary 20.2.
LEMMA 204
Given: A profit function n(x) with fixed input prices and
‘\\\\ single output price, P, independent of output quantity,

X.
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Al

To Prove: If X = F(x) is twice differentiable, (Ijk) is

negative (semi) definite if, and only if, (ij)
is negative (semi) definite.

m(x) = PF(x) - x.p , p fixed, hence if F(x) is twice

Proof:
differentiable so is ¥ (x). Whence (njk{’negative
(semi) definite « w(x) strictly (weakly) concave
by [51: Theorem 4.5) where thé’proof given extends
directly to strict concavity. Hence the result
follows by Lemma 20.3.

LEMMA 20.5

Given: A concaveafinction F(x), x = (xl,...,xn).

To Prove: 1If z, ¢ JF evaluated at-xi and z, € dF evaluated

Proof:

THEOREM

Given:

+ £ where £ = (0,...,0, £€3,0,...,0), £E3>0

at x2 = x1
z% < zi, j=1,...,n where 9F is the subdifferential

of P, and z = (zl,...,z .
By definition 3P is the set all z such that

F(y) ¢ P(x) + (y - x).z Vy [51:§30])
Let Y, = x1 + g, whence P(xl + E) - F(xl) < zg.gj
If y, = x;, F(x)) - F(x; +E) ¢ -;ggj

i;e; zigj 3 F(x1 + F) - P(xl) by ngj- VEj >0

A perfectly competitive firm with concave production

function F(x), and fixed input prices p = (pl,...,pn).

To Prove: If x(P) is the profit maximising input vector for

output price P, x(P) and F[x(P}] are increasing



123 -

functions of P and zJ (P) is a decreasing function
of P where PzJ(P) = pJ, j=1,...,n and

2(P) = (zX(P),...,2"(P)) € [3F] the subdif-

x(P)’
ferential of P(x) evaluated at x(P). .

Proof: Since x maximise; profit, z exists from [51: Theorem -
28.3]) .°. for p constant and positive, zj(P) « 1/P
vy =1,...,n. zj is a-;gh-increasing function of xj
by Lemma 20.5, hence xj is an increasing function of
P, and P(x) is an increasing function of xj,
Vj = 1,...,n. Thus F(x) is an increasing function
of P. |
THEOREM 22
Given: A strictly concave profit function g5(x) = X.P(X)-x.p(x)

To Prove: 1If prices change in such a way that P, P’', and

Proof:

maximum profit is unchanged;
(X' - X) (P' - P). 3 0 where X', X are the profit
maximising outputs at the the two price levels, and
(x' ~ x) (p" - pP) < 0 or x' = x, where x', x are
the profit maximising inputs.
fhese results might be termed the "generalised
output and input substituJLon effects™ respectively.
Let S = {x: w(x) 3 7°}and T = {X:" x ¢ S}
Since #®(x) is strictly concave, S is a strictly convex
set [42). 1If max n(x) for P, p is x°, let x' be such
that w»(x') just attains this level for P’', p', in

the sense that xp and x'p' are minimised over S.

Consider the hyperplane H defined by y.p = x.p
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Given:

"XP and X'P' are maximised over T and hence S when
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and let H+

{y: yp = x.p}

H = {y: yp

-~

A

x.p}
By the minimum property of S, S ==H+ and H supports
S at x. . .Either x' = x or x'p > xp.

Similarly H' defined by yp' = x'p' yields either

X' =x or xp' > x'p' -
whence x' = x or (p' - p) (x' - x) <0
Now let X' = X(x'). By the strict concavity of 7(x),

-

regarded as functions of x, x'. Thus if the
hyperplane G is defined by

Y.P = XP, and

et = (¥: yp 2 xp) ' ‘ -

G = {y: yp

A

YP},

- - b
T <« G by the maximum property of T.

X <
i.e. X'P = XP

WA

Similarly XP' = X'p' .

whence (x* X) (p' -P) 3 0.
23
A perfectly competitive firm with strictly concave

production function P(x). , :

To Prover"ifNEBbre exists a non-zero input vector x such that

Proof:

F(x)-x.z=0 where ze(aF]x z2>0, F(x)#0, x is unique.
Suppose the contrary: Let y#¥x be such that
F(y) - y.w =0, we [3F]y, w >0, FP(y) # 0.

Choose p_, P_, Ey’ Py positive such that
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Px.z = Py and Py.w,= By'
If Py = Ey' Px = Py, otherwise by Theorem 21
maximum profit must change from x to y. Hence

'x = y by the uniquieness of maxima. Thus gx# Ey'

-
L]

Let u = 6x + (1-6) for some 6, 0<6<1 such that u.p./P,

= u.g&/?y which exists by. Théorem 21. Thus

u.p /P = 6xp /P + (1-8)yp /P ..cueuenn.. . (1),
= OF(x) + (l—e)yEx/gx since w(x{=0
< F(ex)+(l-6)yp_x/Px by strict concavity of F(x)

= +(1- P —ew] ..

énd uEy/Py Gxgy/Py+(l e)ygy/Py < BxEy/ y+F[(1 8yl .. (2)

Combining (1) and (2)

0%, /P, + (1-8)yp /P, < 6p /P + F[(1-0)y]..\c ... (3).

and similarly ‘ ‘

exEy/Py + (l-B)yEy/py‘< F(6x) + (l-e)xgx/Px.....t....(4)

Adding (3) and (4)

’ {FI(1-08)y] - (1-8)ygy7Py} + {F(6x) - Bxeg/Px} > 0...(5)

At least one of the terms in {} must be positive and hence

either (1-6)y or 8x yield positive profit at y or x prices

respgctively, cofitrary to assumption. .°'.x = vy. |

THEOREM 24 | . ‘ :

Given: A perfectly competitive firm with concave production
function F(x) and zero animum profit yint x*.

To Prove: There does not exist‘z Y # x* such that F(y)=

F(x*), i.e. there is no ™isoquant"” through;x*,,
-

Proof: Suppose the contrary:

Let F(y) = F(x*), y ¥ x* and choose p, P > 0 such

© beagsd

T
. h.m@u&ww&t—.m




126

that P.w = p and w € [BF]y, i.e. y 1is the uniqug
profit maximising input for p, P.
.". max ©(y) = P.F(y) - y.p > PF(x*) - x*p
..o x*.p > y.é. |
Let P* > 0 be such that P*F(x*) - x*p = 0.
Since x* is unique by Theorem 23, and every firm has
a zero maximum profit point for some P and every
B Xx* maximises profit for P*, p-
However x* # y, whence by Theorem 21,

P* # P and F(x*) # F(y) contrary to assumption.

Cefinition 2b): An Almost Differentjiable Neo-Classical Firm

is defined as a firm such that F', pJ and P! are twice
. . 1

differentiable with respect to xk almost evervwhere,

i= l,...,m; j,k = 1,...,n.

Definition 2': A Neo-Classical FPirm with Concave Production

Functions is defined as a firm such that Fi,'pj and Pi ére
continuous fu ions of xk and Fi is a concave function of x
such-that he subdifferentialiof Fi(x) contains a‘finite
positiVe'\ector for all x, i =1,...,m; 3,k =1,...,n.
THBORE” 25\\\
Given: A perfectly competitive firm with concave production
function P(x) .and zero maximum profit point x*.
To Prove: If [3P] , = {é: a >0 & .g aj2 = NZ} for some
—_— _ . j=1
N } 0, 3 P*(p) > 0 such that x* is the profit
maximising point for prices p, P*.

PYoof: For prices p, P the firm maximises profit at x where
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p/P € [aF]x from [51: Theorem 28.3]. It suffices to

show that Vp 3 P* s.t. p/P* ¢ [BF]x*.

n .2
Let pd =M >0 .
3=1 -
2 -~
.. if Pr(p) = MZ/N% > 0,
nooy2 2 2,2 2
p/P* > 0 and I p- /P* = M N"/M" = N

j

as required.

THEOREM 26
Given: A concave function 7(x) which is twice differentiable
almost everywhere in its domain.
To Prove: (njk) is negative semi-definite almost everywhere
and negative definite almost everywhere if
T(x) 1s strictly concave.
Proof: Let 7m(x) be defined on the domain x ¢ X and let
Y be the (denumerable) subset of points Y € X at
which 7m(x) is not twice differentiable.
Now X N Y contains no boundar§ points not in X
whence 7(x) is twice differentiable at all points
in X N Y by construction and since X N Y = X,
m(x) is concave for x € XNY. Whence (ﬂjk)
negative semi-definite Vx ¢ X N Y from [51: Theorem
4.5].
The proof for strict concaﬁity is directly analagous.
LEMMA 27
Given: A concave function F(x).

To Prove: The family of loci, F(x) = constant are concave
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contoured, i.e. F(x) = c is the lower boundary
of a convex set.
Proof: Immediate by [42: Section R8.5].
LEMMA 28
Given: A perfectly competitive firm with concave production
function F(x) and zero maximum profit point x*.

< <
To Prove: X X* » F(x) - x.2z 0

> >
Vz > 0 s.t. z € [BF]X.
Proof: By Theorem 23 x* lies on the expansion path of the
firm for any input prices, i.e. Vp > 0 3 P*>0 s.t.
P*F(x) - x.p is maximised -at x = x*. Q\\\\\
Let x < x*, and let p, P be such that p > 0, .
P >0 and p/P = z € [8F]x, i.e. x maximises profit
for prices p, P.
By Theorem 21 x < x* implies that P < P* and hence
maximum profit at X* > maximum profit at X by
Assumption (x).
7. F(x) - X.z = F(x) - x.p/P < F(x*) - X*p/P*P 0
Similarly for x > x*.
THEOREM 29
Given: A perfectly competitive firm with concave production
function F(x) and zero maximum profit point x*.
To Prove: If x is a profit maximisation point, x 3 x*
implies x > x*.
Proof: Let p, P > 0 be such that p/P € bF]x, i.e. X

maximises profit for prices p, P.
X 2x*» 33 ¢ {(1,...,n} s.t. \J> xJ*

-
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.’. by Theorem 21, P > P* where p/P* ¢ [BF]x*

. . by the same theorem x% > xk* Vk = 1,...,n

. X > x*,
LEMMA 29.1

Given: A perfectly competitive firm with concave production
function F(x) and zero maximuﬁ profit point x*.
To Prove: x > x* if, and only if, F(®» - x.2 > 0
Vz > 0 s.t. z € [aF]x.

Proof: Sufficiency is proved in Lemma 28

Necessity: Suppose 3j € {1,...,n} s.t. xJ < xJ*
iz > 0 s.t. z ¢ [BF]x by Definition 2', .°. x is

profit maximising for prices p, P s.t. P2 = p.

. . not (x > x*) requires not (x 3 x*) by Theorem 29

xJ < xI* for some j
.. P < P* where p/P* ¢ [aF]x* by Theorem 21.
‘. F(x) - Xx.z = F(x) - x.p/P < F(x*) - x*p/P* = 0

i.e. F(x) - x.z2z > 0 for some z ¢ [3F]x‘+ x > x*,
COROLLARY 29.2
By an analagous proof to that of Lemma 29.1 it may be

shown that x < x* «> F(X) - x.2 < 0 Vz > 0 s.t. =z ¢ [aF]x.

COROLLARY 29.3

By Lemmébé?.l and Corollary 29.2 the observation of
'k

= xj* and » # xk* necessarily implies from the Neo-

xJ

Classical Model tha{ input xJ is constrained, i.e. the

firm is in run r < j.
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THEOREM 30. - ' :

Given:

A perfectly competitive firm with concave production

function F(x) defined over x € S.

To Prove: If S is not compact, every expansion path (set)

Proof:

must have at least one common point will all others,
i.e. x* € S such that vp > 0, 3P(p) for which
X* is the profit maximising input vector.
If_S is not compact,3x* £ S, 6x* + (146)y € S,
0€ 6 <1, ye S~>6 =0. Consider‘y # x* such that
F(y) = F(x*): By supposition 3z > 0, z ¢ [BF];*
and w > 0, w € [3F]y. Choose p/P = z and p'/ P' = w,
i.e. x* maéimises profit for prices p, P and y
maximises profit for prices p', P'. Thus»
(p/P) (y - x*) > 0 Vy and (p'/P') (x - y) > 0 V¥x
Three cases are possible: a) y } x* & x* ¥ y;
b) y 3 x*; c) y € x*,
a) Let G be the hyperplane through x*, y defined by
v(p"/P") = y(p"/P") = x*(p"/B"), p", B" > 0
and let u maximise profit for pric;s p", P". Now
(1) (E/P) (u-x*) < 0 » F(u) > F(x) » x does not

- maximise\profit for p/P, contrary to

-

assumption, .. (E/P) (u - X*) 3 0.

(ii) similarly (p/P) (u -V;) < 0+ F(u) > F(y) » y
does not maximisg profit for p'/P',

. contrary to assumption.

S. (p'/P') (u -y) 3 0.
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Hence u = 6x* + (1-8)y, 0 € 8 < 1
which implies u = x* or y
.« F(u) = F(x*) = F(y). Thus x* and y both
maximise profit for prices p", P"{ contradicting
uniqueness.
b) y & x**(p'/P')(x - y) € 0 vp'/P' > O,
contrary to assumption.
c) similarly y € x*> (p/P)(y - x) & 0 Vp/P > 0,
‘contrary to assumption.
3 Hence no y exists such that y # x* and
F(y) = F(x*). Moreover from Theorem 21, if y
is a profit maximising point y 3 x* » y > x*
and y € x* - y < x*, (proof directly analagous
to Theorem 29) and hgnce’all expansion sets
contain x*, irrespective of p.
COROLLARfu30.1
If all inputs are indivisible, that is the input set
consists of distinct points x, the firm maximises profit
by choosing an x from a sequencé of input combinations
XyreoosXyreos suqh that X > X - This choice is made
entirely on the basis of the output price and is independent
of the input price ratios generated by p > 0. Hence no
‘input substitution' occzfg.
LEMMA 30.2
Given: A perfecély competitive firm with concave production

function F(x) and zero maximum profit point x*.
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To Prove: If x > x*, F(ﬁx) < PF(x) vg > 1.

Proof: Suppose F(fx) 3 PF(x) for some x > x*, # > 1.
Choose p, P > 0 s.t. p/P ¢ [BF]X, i.e. X maximises
profit for prices p, P, whence
F(x) - x.p/P > F(y) - y.p/P Yy #.x.

Let y = fx # x sihce g > 1:

F(x) - x.p/P > F(§x) - @#x.p/P

v

#F (x) - fx.p/P by assumption.

BlF(x) - x.p/P]

But x > x* implies F(x) - x.p/P > 0 by Lemma 28

.« 1 > g contrary to assumption.
COROLLARY 30.3
If x < x*, maximum profit is negative by Lemma 28 which
implies F(6x) < 8F(x) vV 8<1.
THEOREM 31

Given: A perfectly competitive firm with concave production

~o—
function F(x) and unique zero maximum profit point x*.

n
To Prove: If F(x) = H(x) for x > x*, H(x) < (x*) II (xj/xg)aj
—_ , j=1
n
v @y > 0 such that T aj = 1. ,
. §=1 7 S .
n .
Proof: Let H(x) A Y(x) = A | (xj)aJ, a >0 Zaj = 1 for some
j=1 A
x > x*, ?
- n .. °
Now Y(#x) = A T (ﬂxj)“a = PY (x) = PH(x) VP
j=1

But H(Px) < PH(x) V@ > 1 by Lemma 30.2
.« H(fx) < Y(Px) vg > 1

Since x > x*, 38 > 1 such that x > gx*
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.. 4f Y(x*) = Lt H(x), H(x) < Y(x) ¥x > x*
X >x*
n s
.e. A\l (x*) ] = H(x*), say.
=1 J
n
.o = H(x*) T (x*) %3
j=1 )
n .
.. Y(x) = H(x*) @I (x./x*) ] as required.
j=1 J )
THEOREM 32
Given: A function F(x,y) E'Ik*z + 4y*2 1/2] - I[(X*—x)2
+ 4(){,{_){)2]1/2|

.

defined on 0 < (x,y) < (x*,y*).
To Prove: a) OF/9x > 0; 9F/dy > O-J

b) 92F/ ax2 < 0; 82F/dy? < 0; 3°F/3xdy > 0

c) Lt F(x,y) = 0
(x,y) >0
d) Lt Fix,y) = |[x*2 + ay*?1172| >0
(x,y) > (x*,y*)
e) Lt VF(x,y) is indeterminate.
(x,y) *» (x*,y*)
= SO (x*=x)2 + a(y*-y) 2172 2(x*-x) (-1)
= [(x*-x)2 + 4(y“'-y)2]-1/2 (x*~x) >0 ~

‘ Proof: a) ©oF/9dx
E ,‘\‘\
k\l&izj

for x < x*.%
Similarly 3l 3y = 4[(x*-x)2 + 4(y*-y)2]-1/2(y*-y) > O

for y < y*.

b)  32F/3x% = - (%) [ (x*-x)2 + 4(y*-y) 21732 2(x*-x)2(~1)
- )2 4 gy 217172

Lx*-x02 + 4y 17 2 Lxe-0)? -

(x*-x)2 - 4(y*~y)%] < 0

Similarly for 32F/ay>.

Ga ik am Rt N,
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32F/3x3y = -2[(x*-x)2 + 4(y*-y)2]-3/2(y*-y)2(x*—x)(-l)
> 0 for 0 < (x,y) < (x*,y*)
c), d) follow directly by substitution.
e) OF/3x = (x*~x)/0{[x*-x] + 2(y*-y)}
Lt 9F/3x as (x,y) = (x*,y*) depends on the relation

between x and y. Similarly for 3F/dy. In.particular,

Lt (3F/3x) (3F/3y) L = Lt (x*-x)/y*-y.
(x,y) = (x*,y*) )
THEOREM 33 '
Given: A production funcfion F(x,y) = [x"2 + 4)"‘2]1/2
- [(x*-x)2 + 4(y*-y)2]l/2, 0 < (x,y) < (x*,y*).

To Prove: Maximum profit is non-negative and equal to zero

. when (x,y) lies on th%\;:: tﬁrough (x*,y*).
Proof: Maximum profit is proporti l to F(x) - x.VF(x) and

F(x) - x.VF(x) = [x"2 + 4y"2]l/2 - [(x*-x)2 +
aiy*-y) 2112 C [x(x*-x) + dy(y*-y) 1/[(x*-x)% +
4iy*-y) 2172 = [(x2-x2 + a(yr-y) 2] "V 2 xr2eayr?y1/?

2.1/2 _

[(x*-x)% + 4(y*-y)?) [(x*-x)x* + 4(y*-y)y*]1}.
Since [(x*-x)2 + 4(y*-y?2 ] > 0, taking positive roots;
this function has the same sign as
(x*2 + ay*?] [(er-x + 4(y*=y) 2 )=[ (x*=x) x*+4 (y*-y) y*]°
= a(x*y - y*0) 2 0.

This expression is zero when x*/y* = x/y, i.e.
(x,y¥Y lies on the ray through (x*, y*).
.LEHMA 34

Given: A perfectly competitive firm with concave production
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function F(x) and zero maximum profit point x*,
To Prove: Maximum profit is non-negative for all positive
prices p, P.

Proof: Let x maximise profit for prices p, P and suppose

F(x) - x.z < 0 where p/P = z € [BF]x.

By Corollary 30.3 F(6x) < 8F(x) v, 0 < 8 <1
Let y = 6x: F(y) < eF(e‘ly)

i.e. @F(y) < F(gy) vg =671 >1 7

contradicting the assumed concavity of F(x).

THEOREM 35

Given: A perfectly competitive firm with concave production
function F(x) and unique zero maximum profit point x*.

To Prove: x) < xJ* for some j=1,...,n implies that the

N
N

firm is in run k, k < n-1.

Proof: Since Max 7(x) 3 0 + x 2 x* by Lemma 28, x cannot

be an unconstrained profit maximisation point by
Lemma 34. Therefore x must be constrained, i.e. if
the firm is in run k, k < n-1l by Definition 4.

THEOREM 36

Given: A perfectly competitive firm.

To Prove: The Neo-Classic;I Model is inconsistent with long

run equilibrium.

Proof: By Theorem 35 every firm has non-negative net profit

in run n. Prom Assumption (X) the Neo-Classical
firm does not have zero net profit identically.
Hence there exists an industry for which max » (x) =

ﬂl> 0. 1If all firms have profit n_, Assumption (xi) is

1

Docs w9 one
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contradicted since ”l defines a different level of
normal profit from ™ = 0. Thus there exists another
industry with maximum profit N 32 0 such that

T, # 7T, W.l.o.g. let T, > T,.

By Assumption (iii) a firm earning profit Ty will
leave industry 2 and enGEr industry 1 in the long
run causing ﬂl to decrease and m, to increase by
Assumptions (ix) and (x). Let the new levels of
L be ”l(l) and T,(1). .

If ﬂl(l) > Wz(l) thd process repeats until ﬂl(t) < ﬂz(t)
When ﬂl(t) < Wz(t) the process is repeated with
reversed indices, 1i.e. ﬂz(t) > ﬂl(t) > 0.

Equilibrium requires that ﬂl(t) ='ﬂ2(t), but ,this

must be the limit of a sequence of decreasing values

of ﬂj and increasing values of ﬂk, j,k’= 1,2, 3 # k,
i.e.

ﬂj(t-l) > ﬂj(t) = Wk(t) > ﬂk(t—l) 3 0

Hence the equilibrium defines a level of normal
profit above that defined by 7 = 0, contradicting

Assimption (xi):
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