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ABSTRACT @

Given ‘a graph G and graphs 'Hl,Hz,}..,Hs., if there

exists a partition af the edge set E(G) such that the resulting Y
subgraphs of G are isomorphic to H

1'H2""' or HS we say that the

Hyeoeilly - In

_graph G can be decompoged into the graphs H

particular if Hl'é Hz = Hng H }say), the decomposition is called
an isomorphic f&ctoriza%ion of G . In this case we also say that
H divides G . _.”‘ , . |
| Similar definitions hold for directed gfaphs. o |
In Chapter l,bdecompositions of some complete multipartite
graphs and some special graphs into cycles of different lengths are
abtained. Most of the graphs considered here often appear as factors

] .
in the decomposition of complete graphs and complete symmetric digraphs

considered in the subsequent chapters. Thus the results of this chapter 4
are not only used in 6btaining results in other chapters, but can be
used as important tools in many other decomposition problems. 1

In Chapter 2 it is shown that for n = 5 (mod 6) the complete

-

éraph Kn can be decomposed into C3's and one Ks where Cr denotes

a cycle of length r . This together with the fact that a Steiner

triple sys;em i; known to exist fbr nz1or 3 (md 6) establishes ~

the exi§tence of a pairw;se balanced design - (n;5,3;1) for any odd K/f
In Chapter 3 it is shown that the necessary conditions

for the cycle Czipn + P prime and a any positive integer, to

divide Kn are also sufficient.

(iii)



-
-

N

In Chapter 4 it is shown that nécessaryiand gufficient

conditions for each orientation of C5 to divide a comiplete symmetric

digraph 'DKn~ are n 0 or 1 (md 5) and n > 5

¢

In Chapter 5 sufficient conditions are found for a self-

-

converse orientation of Ck . k o0dd, to divide a complete symmetric

'higrqph .DKn .. This result is used'po show that the necessary
‘quditions for any self-cohverse orientation of C7 to divide Dxn

~
are also sufficient.

A (iv)
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CHAPTER 0

INTRODUCTION o .

. It, all began in 1736 when Leonhard Euler initiated the
theory of graphsﬂin his famoug baper [12), though people had been
using combinatorial ideas to solve entertaining puzzles earlier. Thus
Oystein Ore has rightly remarked’in his.book Graphs and their uges [27]'
that the theory of graphs is one of the few fields of ;athematics
which has.a definite birth date. Euler himself started his paper
with tﬁ;}discussion of a puzzle, known as Konigsberg problem (see _
[27, page 23]). In the initial stage, since it dealt largely with ;
recreational problems, graph theory could not.draw mﬁch gttention from
the scholars in mathematics until 1847 when Kirchhoff [24] counted the
number of Spanning trees of a labeled graph and applied it to electrical
networks. After almost four decades, there came another startling
result in graph theory when Cayley [l1l1] gave a count for the labeled
trees with n vertices. He applied this result to the problem of
counting chemical isomers. In spite of all these early promising
applicétions, graph theory could not sever its relationship with
entertaining puzzles. .In 1890, Heawood [18] in an attempt to solye
the famous Four eolor pro@lem* proved the five color theorem, whiéh

,

is regarded as another landmark in the histor§ of graph theory.

‘ : =z
*The Four color problem after its long history was finally solved by

Appel, Haken and Koch [1] in the summer of 1976.

b i kel oliek AL ..
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For many years to come, because of its study of topological
properties such as connectedness, planarity and so on, graph theory
was regarded as a branch of topology. Thus, when J.H.C. Whitehead
. !
once described qraph theory as 'the slums of topology', he was
expressing the general consensus which\prevailed among thg mathematicians
at that time. Denés K¥8nig's book Theorie der endlichen ﬁﬁd unendlichen
Graphen published in 1936 was the first book ever written on graph
theory. Though it was an attempt to establish‘qraph theory as a
unitary discipline, it failed to satisfy a éectidn of mathematicjans
whio subscribed to the above Qtated view. We are indeed indebted to
Turdn who discovered a pioneering theorem in 1941. It not only opened
a new avenue in the study of qraphs'known as extremal‘grggh theory
but settled the issue that graph thgory has its own entity and can
not be looked upon merely as a branch of topologJﬂ Turdn [36] found
the maximum possible number of edges for all graphs on n vertices
which do not contain a triangle. He also showed that there is a unique
graph which realizes this number.

Graph theory today is like an old banyan tree with its
many branchés g%tendinq friendly help to the other brasphes of
mathematics, sciences and humanities. To, cite a few examples:

Menger's separation theorem of 1927 has 1eé.td'the development of
netwérk theory formulated by Ford and Fulkerson in’thdir work Flows
in' nétw&fk (1962) . Graph theory is used in the study ofgé;rtain
engineering and’structural systems which involveai;terrelated

components. It héé found applications in many areas like assignment

.



problems, timetabling problems;storaqe prdblems and so on. The
study of s;rected graphs has successfully been applied to the
problem of making a road system one-way, ranking participants
in a tournament or tﬁat of des#ning an efficient computér drum.
Graph Theory has also found applications in economics, psychology
and biology.

The problem considered in this dissertation come ugder
the branch called combinatorial designs which has been growing at
a fast rate. These designé are ysed as powerful tools in sstatistical
experiments. Starting with Latin squares, Hadamard matrices,
Steiner triple systems and more recently codiné theory, it has
generated much enthusiasm. Some of these designs such as balanced
incomplete block designs, pairwise biock de;%gns, balanced cycle or
eircuit designs or more generally the G-degigns are defined in

the subsequent chapters. The third chapter deals with the balamced

cycle designs which are useful in serology, a science of virus research.

To conduct the Ouchterlony gel diffusion test, samples from a number

of antigens (virus preparations) are to be arranged around an antiserum
on a plate so that every antigen has two others as its neighbours.
There are n kinds of antigens to be arranged on b plates each

containing k antigens. (see Rees [28] and Hwang [22]).

et e
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DEEINITIONS AND NOTATION ,
° Y

We shall use here the terminology commonly used.in any
standard text on graph theory, for example, by Bondy and Murty [8], by
Behzad and Chartrand [2] or by Harary [15]. Howyever, we give here
a few definitions which are not in common usage.

By a graph here we mean an ordinary graph, that is, a
finite graph with no multiple edges or loops.

We shall use the same notation as used in the above

books except for a complete n-partite graph K , which is

X,X,...,%

a graph whose vertex set may be partitioned into sets xl'XZ""’Xn

where lxil = x for each i =1,2,...,n and two vertices u and
v are adjacent if and only if they belong to distinct sets Xi

and Xj of the partition. We shall denote this graph by nKx

We shall use the notation K for the complete

|al, 8]

bipartite graph with maximal independent sets A and B .

DEF.: The union Gl U G, of two graphs Gl and G2 is a graph

with
V(c;l U G2) = V(Gl) U V(Gz) and I-:(Gl U G2) = E(Gl) U E(G2) .

of two graphs G and G, with disjoint

DEF.: jot
The jgotn G 1 5

+ G

1 2

vertex sets 1s their union Gl Ue together with all edges joining

2

the vertices of Gl and G2 .



P
(Note: Bondy and Murty [ 8] use the notation Gl + G2 for the
disjoint union of the  graphs Gl and G2)- It is easy to see
y
that
>
K = K +K
m,n m n
and .
K + K =K =K UK UK '
m n m+n m n m,

where Km represents the complement of the complete graph Km , that

is, a set of m isolated vertices.

DEF.: For a connected graph G, nG 1is a graph with n components
each isomorphic to G .
Note that nG 1itself is not connected if n>1.

-~

Example:

DEF.: The composition G = G, [G,] of two graphs G, and G, is a

graph with V(G) = V(Gl) x V(GZ) and two vertices u = (ul, u2)

o, ——




2

and v = (vl, v2) of G are adjacent if and only if uy is adjacent
to v. in G, or u, = v_. and u, is adjacent to, Vv in G, .

1 1 1 1 2 2 2

Example:

Gl[G2]:

DEF.: For any graph G, DG is a directed graph with V(G) = V(DG)

and for each edge uv of G there are arcs uv and wvu in DG.

Example:

" The digraph DK in particular is called a complete -

symmetric digraph. . ' -



DEF.: The converse D' of a digraph D is a digraph with
v(D') = V(D) and the arc uv is in D' if and only if the arc
) O

vu is in D .

DEF.: A digraph is said to be self-converse -if and only if it is

Example:

isomorphic to its converse digraph.

Example: . The digraph D of the above example is not self-converse,

while the following digraphs are self-converse.

/I~

N/
g

DEF.: A decomposition of a graph G into graphs “11“ ...,Hs is a

21,
partition of E(G) so that the resulting subgraphs of G are

isomorphic to H reesy OF HS and we say that G can be

l'H2
degbmposed (or G is decomposable) into the graphs H ,H,,...,H .




1 1 >~ x~ >~ x
A In particular, if Hl = H2 = ... = Hs_— H, the
decomposition is called an tgomorphic factorization of G and we

write H|G and read it as H divides G .

Isomorphic factorizations of digraphs are defined

analogously.

In the proof of Lemma 2.3 we use the following concept.

.

DEF.: A graph G with V(G) = {vo,vl,...,vn_l} is called a
circulant if for 0 < i, j < n-1, i % 3, vivj is an edge if and only
vi+kvj+k' 1 =k = n-1, is an edge of G . The set
s ={i: VoY € E(G)} 1is called the symbol of G

A circulant graph is described completely by its symbol.

The vertices in the neighbourhood of one vertex determine the

neighbourhoods of all the otherfverfices.

ke



CHAPTER 1

JJ In this chapter we consider the decomposition of some
complete multipartite graphs and some other graphs into cycles of
different lengths. The graphs considered here gene:ally appear as
factors in" the decomposition of complete graphs and complete
symmetric graphs. These results thus can be used as important
tools in other decomposition problems. The main results of the

succeeding chapters will illustrate this fact.

1.1 PROPOSITION: C_|_K_ for any positive integer x .

3|3 X

ult, {v.,vo,...,v} and {w_ ,w

2 Yy 1'Y2 X LWy

Proof: Let {ul,u
be the three maximal independent subsets of V(3Kx). Consider

the triangles

u,,v.,w ,u, ee. (1.1.1)
i’ 3 i

¢

where 1 < i,j,k <x'and i+ j +k =0 (mod x).. Since for any
pair of positive integers i,j such that 1 =i, j < x, the
relation i + j + k = 0 (mod x) determines a unique positive
integer k, 1 < k = x , the set of triangles in (1.1.1) gives éﬁ

desired decdomposition of 3Kx,D

\
Prop. 1.1 also follows from a result of Bermond‘¥3].



1.2 PROPOSITION: C,|.K. for any positive integer x .

Proof: First let x = 1. Also let {al,az,a3}, {bl’bz’bB}’
{cl,cz,c3}, {dl’dz’d3} and {el,ez,e3} be the five maximal

independent subsets of V(5K3). Following is a decomposition of

5K3 into disjoint triangles . With subscripts reduced modulo’ 3,

a;/b;dy 003y

3P40
for 1 =1,2,3, give six triangles. The rest are obtained by
rotating a,b,c,d,e in the cyclic order a to b, b to c,
c to d, d to e and e to a .

) ,A_L,A
Now for any 3x 1in general, let Al'AZ 3'B, and AS

be the maximal ihdependent subsets of V(SK ), each of cardinality

3x

3x. For 1i¥1,2,3,4,5, let

where |Ai = x. With _K < e associate a

thv t . “
5K3 so a

10.



11.

and an edge incident with AZm and Ars corresponds to the set

of all edges of the complete bipartite graph K A A which
. I im|, rs‘

is a subgraph of 5K3x . By the first part 5K3 is decomposable

into triangles, which amounts to the fact that the graph 5K3x is

decomposable into 3Kx's and the result then follows from Prop. l.1.0

1.3 PROPOSITION: For n 20 or 2 (md6), nz6, C/l(x -1

where 1 1is a 1-factor of K .

Proof: Adjoin a vertex u to K . The graph K + u is a
n

complete graph Kn+l with n +1 =1 or 3 (mod 6) and hence

can be decomposed into triangles by the existence of Steiner triple

system [14, Thm. 15.4.3]. The graph Kn =K, —u can be decomposed

into one l-factor and the rest triangles.O

\

K where n Z 0 or 4 (mod 6) and «x

1.4 PROPOSITION: C_ |
3 n 2x

18 any positive imteger.

Proof: With nKZx we associate a graph G as follows - Let
S | i
v, = - .. =1iz=
i {ul,uz, , u2x} ,1Si=<n &‘

%

a

be n maximal independent subsets of V(nKZx)' For i =1,2, . . ., n,




v

A
let
Sl = {ui,u;, ,u;} ’
Then we define
V(G) = {51’52’ - e - s, b,

and an edge between Si and Sj corresponds to the set of all
v

edges of the complete bipartite subgraph K S of nK2x -
1

- A

We observe that any two vertices Si' Sj are adjacent except when
LY

A . - i e - <
j n+i (l1<1i<n). Moreover, the edges Sisn+i (1 £1i=<n)
form a 1-factor of G . Thus the graph G 1is ~§2n - I where I
denotes a l-factor of K2n . Since 2n = 0 or 2(mod 6), by
Prop. 1.3, K2n - I can be decomposed into C3's, which amounts

to the fact that nK2x can be decomposed into 3Kx's and the

result then follows by Prop. 1l.1.0O

N

1.5 PROPOSITION; CSICS[E;] for any positive integer x .
A, where IA.I = x for
1 1

Proof: Let vgcs[xx]) = .

i

ncCcow

i=1,2,3,4,5" and the vertices u and v are adjacent if and only

12.



\ 13

/
if u € Ai and v € Ai+l' i=1,2,3,4,5 and subscripts are to be
taken modulo 5 . . For i = 1,2,3,4,5 1let

[ J
T O PYALRTL I -
¢
Ve “J!

Consider the 5-cycles

~4
a +++ (1.5.1)

1179242317245 %k %14
where i =1,2,...,x; j=1,2,...,x and i+ 3 +k = 0 (mod x).
Once 1 and J are fixed, the integer k is uniquely
determined by the relation i + j + k = (mod x). This implies
that the C_'s in 1.5.1 are all disjoint, and that they cover

5
all the edges of CS[E;]' Thus 1.5.1 gives a decomposition of

CS[E;] into C_'s.D

5
’ {
1.6 PROPOSITION: Cslsxx for any positive integer x .
.5 “ .
Proof: let V(_K) = U A, where for i=1,2,3,4,5, A. 1is a
froot: . 5 x ! ' .
maximal independent subset.of vertices and lAiI =x . With 5K,

we associate a complete graph K5 so that

V(K = {Al.Az.A3.A4.A5} ;




14.
and an edge AiAj, 1 =i, j =5, corresponds to the set of all

- edges of the complete bipartite subgraph K'A , IA ' of SKx .
. i r j =

We know that K; can be decomposed into two cycles of length five,
4

f
K can be decomposed”

which amounts to the fact that the graph; 5K,

f
— >
into two isomorphic factors CS[Kx] which can be further

decomposed into 5-cycles by Prop. 1.5.0

-
1.7 PROPOSITION: C. | K. for any positive integer x . '
Proof: First let x = 1. Also let {ul,uz,u3,u4,u5} ’

{vl,vz,v3,v4,v5} and {wl,wz,w3,w4,w5} be the three maximal

-

independent subsets of V(3K5)f The following gives one decomposition

of 3K5 into C5's . The cycles ,

) - .
17V s Vg Warty i Upa Vsl eV s Wartly i UgyVa sty oWy Vg s Ugs

5'VrW3rly UgrVgrWyrVyr¥Wyriy

are five C5's, of the decomposition. The rest then are obtained

by rotatin 1 ; d i rder u, . . o w.
Y g ui,vl,wl in the cyclic orde u1 to tl, vl t i and

w. to u.. »
i 1

Now for any- 5x in general, let Al, A2 and A3 be the -

maximal independent subsets of V(3K5x); each of cardinélity 5x .



For i =1,2,3, let

where IAH/I = |A12| = }Ai3| = lAi4| = ]Ai5| =x . With K.
associate a 3K5 goitﬁat
V(3K) = {a 1=1i<3,1=<75 =5},

1A
o
aj}

IA
w

and an edge incident with A&m and A , 1
1 =m s <5, corresponds to the set of all edges of the complete

bipartite subgraph K

,A» i of 3K5x . By the first part, 3

- Zm[,IArsl

can be decomposed into C3's, which amounts to the fact that the
graph 3K5x can be decomposed into ‘CS[E;] and the result then

follows from Prop. 1.5.0

e
1.8 PROPOSITION: For any odd n 2z 3, X can be decomposed into

3-cycles and S5-cycles. .

Proof: If n=1 or 3 (mod 6), we know that there gxistsla
Stei;er triple system on n objects, which iS'équivalent to the
fact that the cgyplete graph Kh can be decomposed into disjoint
triangles. In case n = 5 (mod 6), Spencer {35] has shown that
Kn can be decomposed into trianéles and one C4 . Lat

a, b, ¢, 4, a be the 4-cycle of one such decomposition. Let -u

15.

we

Xs



and v

u, b, 4, ﬁ and, v, a, ¢, v are two triangles of the decomposition.

FIGURE 1.(A)

(need not be distinct) be two vertices of Kn

a
, .-
P —
A B 3¢ .
- ’;’ N ’I’
p \ .
‘\ o A ;"
% N
SN P Y
N . N
N . .
N e AY
- A ” \\
“““ :\--_ ,’, ~N
- Sl N
~ T .. N B
tL’ ------ ‘\)
d c
FIGURE 1(B)

4
such that
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If the two vertices u and v are the same (see

Figure 1(A)),we get a decomposition of Kn into triangles and one

ka/ whose vertex set is {a,b,c,d,u}. But K

5

two vertices u and v are distinct (see

5

into two C_'s, giving us the desired decomposition.

can be decomposed

In case the

Figure 1(B)) we get a

decomposition of Kn into triangles and the two 5-cycies

ul b' a' c’ d’ u

and

a, d, b, ¢, v.o

1.9 PROPOSITION: cslnxS for any odd positive integer n .

@

Proof: With

we associate a complete graph Kh as follows:

Let V,,V,,...,V be the maximal independent subsets of V(,Kg)-

——y
-
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= ooy . .‘ < .I j = ’
Then V(Kn) {Vl,Vz,.’ Vn} and an edge VlVJ, 1<i, j<n

corresponds to the set of all-edges of the complete bipartite sub-

of nKS . By Prop. 1.8, .Kn can be decomposed
5| ,

TR Ky ||V
il, .
into 3-cycles and 5«cycles, which amounts-to ‘the fact that the

graph nKS can be decomposed into graphs isomorphic to either

3K3 or C [—5] and the result then follows from Prop. 1.1 and

Prop. 1.5.0

1.10 PROPOSITION (Bermond and Faber [5)): For any odd positive
integer n > 5 , the complete symmetric digraph DK can be decomposed
into directed cycles of length n-1.

Proof: Let V(DK ) = {0,1,2,...,n-1}. Also let ¢ be a

permutation on the vertices of DKn with cycle representation
$=(012...n-1).

Case 1. First let n =1 (mod 4), that is, n = 4m + 1 for some

positive integer m . Consider the directed cycle C of length 4m (see
Pigure 1(C)) as given below. .

Y

C: 0,1, 4m, 2, 4m1, 3, ..., m, 3m+l, m+2, 3m, m+3, ..., 2m, 2m+2,

2m+l, O

Ao ol i o

. o o S R




m+1 m+2 -
m @) . m+3 )
.. -
[ 4 .
2 ; .
L3 : I,’ .
1 ‘ .
2m
0 < 2m+1
Y |,
’I
{ 2m+2

4m 4

II

4m-1 o 7 o’
[ 3 [ 4
3m+1 3m-1
3m
FIGURE 1 (C)
. We say that a vertex j is at Jdigtance d from a vertex i,
0=1i, j =4m, if andonly if j - i =d and 4 is a
residue 1, 2, ..., or 4m mod (4m + 1), We observe that the vertices

in the neighbourhood of a vertex

3, ..
between the successive
1,

distances 2, ...

cycles ¢kC . k=0, 1,

arcs of DK4m+1'

.,and 4m from

, 4m occur exactly once.

0]

1A

i, i <4m , are at distances

i Moreover, if we consider the distances

vertices of the directed cycle C, each of the

Hence, the directed

2, ., 4m are all disjoint and cover all the

This gives a desired decomposition of DK

4m+1



Case 2: If n =3 (mod 4), let n = 4m+3 for some positive integer

m. Consider the directed cycle C' of length 4m+2 (see Figure 1(D))

C': 0, 1, 4m+2, 2, 4m+l, ..., 3m+3, m+l, 3m+l, m+2, 34, ...

eeey 2m, 2m+2, 2m+l, O .

m m+1
m+2
q 2 . o° , .
1 l/ L]
2m
<V ,
0 £ . 2m+1
4 )
2m+e
4m+2 g
4m+1 - M . ¢
[ hd °
3m+3 (0] 3m

3m+2 3m+1

FIGURE 1(D)

As in the case of the directed cycle C , here also the
distances 1, 2, ..., 4m+2 occur exactly once among the distances
between the successive vertices of the directed cycle C'. Hence
the directed cycles ¢kC' + k=0,1, ..., 4m#2 are all disjoint

and cover all the arcs of Dx4m+3 . Moreover, by an argument similar °

to the one we,used in the case of C, the rotation under the permutation ¢
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preserves the orientation. Thus the directed cycles ¢kC',

k=0,1, 2, ..., 4m+2, give a decomposition of DK4m+3.p

1.11 PROPOSITION: C | K for any odd positive integer n = 3 .

Proof: Let the five maximal independent subsets of - V(SXn) be

A ={aga;,...a b, B = {by/bysuuesb 11,
C = {co,clf...,cn_l} ’ D = {do'dl""'dn-l}'
E = {eo,el,...,en_l} .

. 4

On the 5n symbols in the union of the sets A, B, C, D and E , we
define a permutation ¢ whose cycle refffesentation is the product
of n 5-cycles as given below.

= (ag by cydyegdlay bycydye) oo @) Poy €1 %1 Gna

»

Also, let T be a permutq!!on on the n numbers O, 1, 2, ..., n-1

whose cycle representation is

T=(012... n-1).
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" We shall show that the 10n n-cycles of the decomposition are given by

N Iy e (1.11.1)

g TJz and OlT

for 0£i=<4 and 0= 3j=n-1, where 2. and Z' are two
n-cycles constructed with the help of the directed cycles C and C'

of length n-1 of Prop. 1.10, in the following manner. We recall that

in the case n = 4m+1l, m a positive integer, C -is the cycle

0, 1, 4m, 2, 4m-1, 3, ..., m, 3m+l, m+2, 3m, m+3, ..., 2m, 2m+2,
2m+l, O
and in the case n = 4m+3 , m a positive integer, C' 1is the cycle
N "/;3
0, 1, 4m+2, 2, 4mf§, ..., 3m+3, m+l, 3m+l, m+2, 3m, ..., 2m,

2m+2, 2m+l, O

If we regard the sets A, B, C, D and E as the vertices
of a complete graph Ks , this complete graph can be decomposed into

two disjoint 5-cycles
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and- H2 : A, C,E, B, D, A.
Let o and B be mappings of the set {0,1,...,n~2} into
the set {0,1,...,n-1} defined as follows. For any O < i =< n-2
. . th
a(i) = label of the i vertex of C and

label of the ith vertex of C'

B (1)

Qgt us first consider n # 1 (mod 10). 1In each case given
below the two'n-cycles Z and 'Z' are constructed as follows. In
the case of ‘the cycle Z we first construct a path of length ’n by
starting from the vertex a in A and moving through the sets
A,B,C,D and E according to the 5-cycle Hl while changing the
subscripts according to the cycle C or C' . The cycle Z is
then obtained by joining the end-vertices of this path. The cycle
Z' 1is also constructed in a similar manner with the difference that

this time we use the 5-cycle H2 instead of Hl

-

Case 1: If n = 3 (mod 20), the cycle Z is

3 = 30y’ Pa1)’ g2y’ (37 B(4)’ 28(5)" ' 2B(n-2)’ PB(n-1)’

Ce(n) = CO, ao

and the cycle 2zZ' |is

2 = 20’ 81’ %8(2)" Pa(3)’ Y84y’ 2B(5)’ 77 %B(n-2)" “B(n-1)’

= eo, ao

®8 (n)



Case 2: If n = 5 (mod 20), the cycle
a

and the cycle 2Z' is

a,. = e

0~ %0’ a(n)’

Case 3: If n = 7 (mod 20), the cycle

a

and the cycle 2' |is

a

Case 4: If n = 9 (mod 20), the cycle

3 = 30 Pa()’ Ca(2) %a(3)’ Ca(a)’

S

and the cycle 2' |is

{

a =

0= (0’ %at1)’ %a(2)’ Pa(3)’ %y’

0 = 22(0)’ Pa(1)’ Sa(2)’ Ya(3)’ Sa(a)’

a(2)’ Pa(3)” %4y’

0= 3%’ Ps1)’ %s(2)’ YB3’ %p(a)’

0~ 20’ %81’ ®B(2)’ Pe(3)’ Y84

23.

Z 1is

aa(S)’ . ea(n) = eo, ao
aa(S)' ceey da(n) = do, ao .
Z 1is

3g(5) * v ¥ (n-1)’

Pen) = Po’ %o

q(5)" " %B(n-1)’

a

=CO, 0o -

“g(n)
Z 1is

2,50 7" 2a(n-3)" Pa(n-2)’

= do, a

€a(n-1)’ da(n) 0

3x(5)" ' %a(n-3)’ Ca(n-2)’

e (n-1)" Patm) - 20’ 20 -

Case 5: If n 2 13 (mod 20), the cycle 2Z is

2= %0 Pa(1)’ Sa(2)’ %a(3)’ Cata)’

2a(s)’ e %a(n-2) " ba(n-l)'

= % %

€a(n)

SRR
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and the cycle 2' |is

~—

* 3" 7 a(n-2)’ Sa(n-1)’

3 =30 “a@’ %)’ Pam)’ Yaa

Case 6: If n = 15 (mod 20), the cycle 7 is

3y = a0y g1y’ g2y’ (3’ %8(a)’ 2(5)’ 7 %’ %0’ %
and the cycle 2' |is
a5 = 3300)7 a1’ %8(2)" Pa(3)’ Jp(ay’ ae<4)' oo gy T 99 3

Case 7: If n =17 (mod 20), the cycle 7/ is

3 7 20" Pa)’ a2’ a3’ Ca@’ s’ 7 fam-n’
ba(n)
and the cycle 2' 1is

a y €

0= 2’ %)’ %2’ a3’ Y@’ 2 7 fam-n

“a(n)
Case 8: If n = 19 (mod 20), the cycle 2Z is

3 = 30 Py’ a2’ Y83’ %sa)’ 28(5)7 "' 8(n-3)’ Pgn-2)"

“an-1)" %8n) = %’ 2o

and the cycle 2Z' |is

a5 = 200)7 a1’ %8(2)" P8(3)’ FB(a)’ 2B(5)’ 777 2B(n-3)’ B(n-2)’

®i(n-1)" P8(n) = o’ 3o

In the case n = 1 (mod 10), if we u$e the same construction,

the path of length n ends with the last verteéx being ao and thus

gives a cycle of length n-1. To avoid this we|make a different jump
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at the next to last vertex of the path. Thus in the case of the cycle
Z, we first construct a path of length n-1 moving along the 5-cycle

H. as foliows

20 T 2(0)" Pa(1)’ a2’ %3’ a4y’ 2s)’ 77 %a(n-2) ‘
if n = 1 (mod 20)

or

3 = 28(0)’ Pe1)’ B2’ () %@’ 2G5 T %B(n-2)

\ if n 11 (mod 20) : :

and then complete the cycle by joining ea(n-2) or eB(n-Z) to bO —

and bO to a, according as n = 1 or 11 (mod 20), respectively.

The cycle Z' is constructed in the similar manner by first constructing

a path of length n-1 moving along the 5-cycle H2 as

a =

0~ 20" Sa(1)’ %a(2)’ Pa(m’ @

(@)’ 2a5)’ 7 Yain-2)
ifn = 1 (mod 20)

or

3 = 2500y’ Sg(1)’ %8(2)’ P8(3)’ ey’ ()’

if n 11 (mod 20)

and then completing the cycle by 201n1ng da(n-Z) or dB(n-2) to Sy

and Sy to a, according as n = 1 or 11 (mod 20), respectively.

Noting that the permutation T acts on the vertex subscripts
and the permutation o on the vertices:-it follows then that

- 01132 and OITJZ'

for 0 <i <4 and 0 < j < n-1, are all edge-disjoint, have length n

oo e Ao

and thus cover all the edges of Kn. This completes the proof.o
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CHAPTER 2

In Prop. 1.8 of the previous chapter we have shown that for

any odd positive jinteger n > 3, a complete graph Kn can be decomposed

into cycles of length 3 and 5 . For n 1 or 3 (mod 6) the
result follows immediately from the existence of Steiner triple systems.
For the case n = 5 (mod 6), in the proof, using Spencer's [35] fesult,
we show that Kn can be decomposed into either one K5 and the rest
triangles or two disjoint Cs's and the rest triangles. Since K5

itself is a union of two disjoint C_'s, it is natural to ask: For

5
n 5 (mod 6), is it possible to decompose Kn into exactly one KS ;
and the rest triangles? In this chapter we answer this question in
the affirmative. Moreover, such a decomposition is a pairwise balanced
design, which gives another direction to look at this problem.

Pairwise balanced designs were introduced by R.C. Bose and

¢ ’ .
S.S. Shrikhande [ 9] and applied by them [ 9,10] to construct sets

of pairwise orthogonal Latin squares and thus prove the falsity of an old

conjecture of Euler [13] on Latin sjyarégf-

/

¢

DEF.: A patrwise balanced design ({;kl'k ..,km;k) of index X is

2’
an arrangement of Vv elements into %ubset (called blocks), such that
1 R
each block contains either 2,..3, o km distinct elements (ki < v),
~N

and such that every pair of distinct éi nts occurs in precisely A

blocks of the design.
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Unless the size of the blocks is important, we shall denote

a pairwise balanced design of index A , by A-PBD or simply by PBD. In

graph theory the existence of a pairwise balanced design (v;kl,kz,...,k i 1)

of index unity is equivalent to partitioning the edge set of Kv so that

the resulting subgraphs are isomorphic to a complete graph

+

Kk ,Kk yeeey OF Kk . In geometry 1-PBD's have also been known as
1 2 m

linear spaces (in which case the blocks are called lines). A A-PBD on
v elementsin which all blocks have the same size k 1is traditionally
known as a BIBD(v,k,x) (balanced incomplete block design: see [14]).
Thus, pairwise balanced designs of index A are generalizations of
BIBD(v,k,})-designs.

R.M. wils;n has considered the problem of existence of balanced
incomplete block designs and pairwise balanced designs. He has shown
[3:’58,401 that the necessary conditions for the existence of BIBD's or

that of PBD's on v objects are sufficient for sufficiently large wvalues

of v . He calls such conditions ‘'necessary and "asymptotically

sufficient” conditions'. The problem of constructing balanced incomplete
block designs or pairwise balanced designs has generated a great deal of
interest. Rosa, Hell, Huang, Bermond, Hendelséhn and many others have
considered the problem of constructing these designs for different
values of the parameters v, k and 2

Spencer;% result {35] that for n = 5 (mod 6), the edge set
of Kn can be partitioned into triangles and one C4 , the cycle of

length 4, corresponds to the existence of a pairwise balanced design

PRGN
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if each edge of .C4 is taken as a block of size two. However, if

trivial blocks of size two are not allowed, the decomposition is not

’

a pairwise balanced désign and simple arithmetic shows that the best
one.can 9btain is one block of size 5 and the rest triangle;. Thus the
main result of ?his chapter is equivalent to showing the existeﬁce of a
PBD(n;3,5;1) "for any odd positive integer n . We have learned that
the existence of this design also follows as a special case from a

" result of . C. Huang, E. Mendelsohn and A. Rosa which shall appedr in a
paper under preparation. However, the result proved here shows some-
thing more than the existence of a PBD(n;3,5;1). It shows that there
exists a PBD(n;3,5;1) in which the blocks of size 5 are at most onme in
number. This result as such also follows from a result due to

R. Wilson [39]. His proof is-based on group theoretic concepts. Here

we give an independent proof which is consistent with ‘the unified proof

techniques used in obtaining other results of this dissertation.

’

2.1 LEMMA: If K . m odd can be decomposed into one K, and cé's,

then so can tK ., t K where t 18 any non-negative integer.

Proof. ' We write

+ K = Uk U
tKm+l m th+l m tKm,m+l

where the vertex set of each of the complete bipartite graphs Km n+l
1

is chosen appropriately. Since Km can be decomposed into one KS

and C3's, it is enough to show that Fhe graph
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tKo 1 U txm'mfl =\t(xm+1 U Km,m+'1)

{ b
can be decomposed into C3's. Moreover, since this graph is a union of

P) .

t copies of the graph

m+l u m,m+1l

it is fficient to sh t K K b Ompos int
sufficie ow that e U _— can be decomposed o
C.'s.
, Since m+l 1is even, we know that Km+1 can be decomposed into

m l-factors [15, Thm. 9.1]. Take one such l-factor of Km+1 and one vertex,
say u of f; . The edges of this l-factor of Km+1 together with

the edges of K which are incident with the vertices of K and
m,m+1 m+l

the vertex u of E; give triangles. This is shown in the Figure 2(A).

[ ]
[ ]
[ ]
)‘F
L4
Km+1 Km
~
g .
¢ [ ]
§ °
i
. .
&
£ i
i #* \ .
z FIGURE 2(A) .
%‘ -
€
% .
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Since the number of 1-factors of Km+1 equals m , we can associate

each l-factor with a distinct vertex of E& . From the above it then

follows that C [K UK . and hence the result.o
3" m m+l,m -
2.2 THEOREM: If n =0 or 4 (mod 6), K, .5 can be decomposed into
's.
one K. qnd Cy
Proof: We write
Kenss = (WKg + Kg) U Koo
-/
where the vertex set of the complete multipartite graph nKG is chosen
appropriately. By Lemma 2.1, nl(6 + KS can be decomposed into one KS
and C3's. Also, since n = 0 or 4(mod 6), nl(6 can be decomposed
into C3's by Prop. 1.4.0
To prove the result for K , n =2 (mod 6) we
6n+5
need the following lemmas.
2.3 LEMMA: K, can be decomposed into one K, and cy'e.
: i = + . d
Proof We write K17 KS K12 We know K12 can be decompgse
- into eleven l-factors. Moreover, K can be regarded as a circulant

12
graph with symbol {#1,%2,%3,#4,%5,6}. The circulant subgraph with

symbol {tl,tz,ﬁé} is the union of five 1l-factors of Kl

and the vertices

P which

together with the edges joining the vertices of K12

5 ~N
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of Ks give C;'s. The union of the remaining six 1-factors of K12

is a circulant subgraph with symbol {#3,44,#5} . We now show that it

can be decomposed into Cy's. Let VV(Klz) = {vl'vz""'VIZ}' let

C = {vl,v ,vB}, and let ¢ be the permutation whose cycle decomposition

4

is (v1 v2 cos v12)' Then C and ¢kC (1 =k = 11) are the disjoint

3-cycles of the decomposition.oD

]

2.4 LEMMA: [et Kg be the complete graph with

= : <i=
V(K () {ui 1<ic<16} |,

= < 3§ < - ' -
and 1 ={uu, o :1<i=<8} a l-factor of Kig - Then Ky -1
can be decomposed into four K 's and c,'s.
Proof: A desired decomposition of K16 - I can be constructed as

-

follows: Let A = {u_ ,u, ,u.,u } and ¢ be the permutation whose

1'%%7 %10 M3
cycle decomposition is (u1 u, - .o u16)' Then A, ¢4A, ¢8A and

2
¢1 A are the vertex sets of the four Ks's. The twenty-four triangles

4

in the remainder of the graph are given by

c, = {ul,uz,us} , C, = {uz,u4,u8} ,
C2 = {ulru31u12} , Cs = {u31u81u10} ’
¢y = {ujougoul, Ce = lugruyosuy b
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4 8 12 .
¢ Ci , ¢ Ci , ¢ Ci for i=2,3,4,5, \\fﬂﬂ
sc. ) olc. . 6% for i=1,6.0
i .I i r i ’ .
2.5 LEMMA: C, | k. for any positive integer x .
Proof: Using the method used in the proof of Prop. 1.4., we associate
. -1 . .
with 8K6x a K16 where the vertices of K16 are independent
subsets of V(BKGx) each of cardinality 3x and I is a 1l-factor of
K16 . Moreover, by construction this l1-factor is the same as that of
K16 in Lemma 2.4. Hence, by Lemma 2.4 K16 -~ I can be decomposed into

C3's and four Ks's which amounts to the fact that 8K6x can be

's. The result then

s and the rest K

4 . R
ecomposed into four 5K3x 3K3,

follows from Prop. 1.1 and Prop. 1.2.0

2.6 LEMMA: K can be decomposed into ome K. and C_'s .

5 3 3

Proof: We shall use induction on n . The result is true for n = 0

6°30-1

and 1 using Lemma 2.3. Suppose that n > 2 and that the result is true

for all k < n . Consider and write

K6-3"—1

Keean_) = Kguge3n-2,6.30-2_3

= (8Kg 3n-2 + K¢ 3n-2_)) U gKe on-2
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where the vertex set of the complete multipartite graph is chosen

appropriately. By Lemma 2.5, 8K6'3n'2 can be decomposed into C3's.

By the induction hypothesis K6-3n‘2-1 is decomposable into one K5

and C_'s and since 6°3n-2 - 1 is podd, by Lemma 2.1

3

is decomposible into one K and C3'S.D

8Kg.3n-2 * Kg.3n-2_) 5

2.7 THEOREM: If n = 2 (mod 6), K 45 cCan be decomposed into one
and ‘s .
Kg C3
ﬂ?roof: let n = 6m1 + 2 for some non-negative integer m - We
write
= = +
Ken+s K36m1+17 (2m Ky g + Kpp) U 2m1K18
By Lemma 2.3 and Lemma 2.1, 2mll(18 + K17 can be decomposed into one
] 3 =
K5 and C3 s. Also, if 2111:l =0 or 4 (mod 6), by Prop. 1.4 2le18
can be decomposed into all C3's, and hence the result. In case
21'111 = 2 (mod 6), we write 2ml = 6m2 + 2 for some non-negative integer
m, and

Ken+s = K54'2m2+53 = (2m)Ky, + Kg3) U 2m2K54 y

Since 53 =6 ° 32-1, by Lemma 2.6, K53 can be decomposed into one

K5 and C3's and, hence, by Lemma 2.1, 2152)(54 + K53 also. Moreover,

-y

e e e e
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2m21<54 can be decomposed into C3 s - by Prop. 1.4, provided 2m2 =0

or 4 (mod 6). 1In case 211\2 = 2 (mod 6) we write 2m2 = 6m3 + 2 for

some€ non-negative integer m, and

= K162'2m3+161 = (2m K en * Kig)) U 2m3K162

Ken+s

Repeating the above argument, at the pth stage we get
Kenss = K6-3P-2mp+6-3p-1 = (m K p+ Kgop ) U 2mpK6'3p '

and as long as 2mp 20 or 4 (mod 6) we get the desired decomposition

il

of K into one K and C_.'s. Incase 2m = 2 (mod 6) we write
6n+5S 5 3 P

2m = 6m . + 2 and
Ken+s = KeeqP+liom  4g.3P+1 )
p+l

= (2mp+1K6.3P+1 + K6'3p+1-1) U 2mp+1K6'39+1 -

Continuing like this, at the final stage, say the tth, we have

) U

Ken+s = (2mKe 3¢ + Ko 3ty 2th6'3t '

/N

where 2mt is either 0, 2 or 4 . 1In case 2mt=4, Lemmas 2.6,

2.1 and Prop. 1.4 give the result. - : -
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\ .

= o\ : . .
If 2mt. O~or 2 then K6n+5 is K6-3t—1 or K6'3t+1-1 ’

respectively, and the result then follows from Lemma 2.6.0

S

, n odd, can be decomposed into one K. and C_'s.

5 3

2.8 T?EOREM: ,K6n+5

Proof: We shall use inductionon n . For n =1 we write

and the result follows from Lemma 2.1. Suppose that the result is true

for all odd k < n . Consider K and write ( o
. 6n+5

= + .
Kents.~ (MKg + Kg) U Ko

By Lemma 2.1, nK6 + K5 can be decomposed into one KS and C3's.

Let V_,V ,...,Vn be n maximal independent subsets of V(nKG) .

1" 2

With K. we associate a complete graph K with

e . . .V}

V(K ) = {vl,v2. a3

and for all 1 <i, j <= n , the edge ViVj corresponds to the set of

all edges of the complete bipartite subgraph KIV | |V | of nK6-'

Now if n =1 or 3 (mod 6), Kn can be decomposed into

C3's and hence, nK6 can be decomposed into 3K6's and the result

then follows from Prop. 1.1. If n =5 (mod 6), let n=6m + 5 for
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some m . We claim Kn can be'decombosed into one K5 and C3's.
In case m is eQen, our claim follows from Theorem 2.2 and Theorem 2.7.
If m is odd, the élaim follows from the induction hypothésis, as
m<n. Thusrthe graph nKB can be decomposed into one SKé and 3K6's.
The result then follows from Prop. 1.1 and Prop. 1l.2.0

Finally the results of Theorems 2.2, 2.7 agd 2.8 can be put

together into a single theorem.

2.9 THEOREM: If n = 5 (mod-6), n = 5, Kn ean be decomposed inﬁo one

K5 and C3 s.

2.10 COROLLARY: For any odd integer n = 3, K can be decomposed into

all triangles with the exception of at most one K -

Proof: For n =1 or 3 (mod 6), we know that a Steiner triple

system exists, which is equivalent to the fact that Kn can be decomposed
into triangles. In case n = 5 (mod 6) the result follows from
Theorgm 2.9.0 A

As we have stated in the beginning of the chapter, quollary"

2.10 can be restated in the following way.

2.11 COROLIARY: For any odd integer n = 3 , there exiéts a pairwise

balanced design (n;3,5;1).
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2.12 COROLLARY: For n = 10 and n = 4 (mod 6), K - I can be

decomposed into one K_ and the rest Cy's where 1 denoteé a

5
1-factor of K -
Proof: Let u ¢ V(Kn) be any point. The graph kn +u is a
complete graph Kn+1 with n + 1 =5 Ymod 6) and hence by Theorem 2.9

-~

can be decomposed into one K_ and the rest C ‘s. We can relabel

5 3
the vertices of ’Kn+l so that u is not one of the vertices of KS .
This implies that the graph Kn = Kn+1 - u can be decomposed into one

l1-factor, one K5 -and the rest C3's.m
The results of the Prop. 1.3, Corollary 2.12 and the fact

that K5 is a union of two disjoint C5's, give the following result.

2.13 COROLLARY: For any even n > 6 , kn-I ean be decomposed into

3-cycleg and 5-cycles where 1 denotes a 1-factor of K -

In prop. 1l.11 we proved that for any odd integer n & 3,

Cn 5Kn . Cor. 2.10 enables us to extend this resglt.

2.14 THEOREM: inmKn for any odd integers m, n > 3 .
Proof: In case m = 3 , let vl,vz,...,v be m maximal independent
subsets of V(K) and |V,| =n, 1<i<m. With K_ we

mn 1 mn

A

=]
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associate a complete graph Km as follows:

-

V(Km) = {vl,vz, ce. ,vm}

and an edge incident with the vertices Vi and VvV, ,1=<1i, 3 <m,

3
corresponds to all the edges of the complete bipartite subgraph

v, [, v

I of the original graph mKn . Since m is odd by Cor. 2.10
3

Km can be decomposed into at most one K5 and the rest triangles,

which amounts to the fact that the graph mKn can be decomposed
"\ .

into at m6st one 5Kn and the rest 3Kn . Sotteau [33] has shown

that K follows from Prop. 1.11.

for any odd n . That CnIS n

3¥n

This cogpletes the proof.o



CHAPTER 3

In~the beginning of Chapter 2 we have described BIBD's
(balanced incomplete block designs). These designs are special cases
of G-designs introduced by Hell and Rosa [19].

A

39.

DEF.: Let Kn denote a graph with n vertices and any two distinct

vertices joined by exactly A edges. An (n,k,A) G-design is a partition

(N

of the edge set of the graph Kn

isomorphic to a given graph G where |V(G)| = k ..

In the particular case where G 1is the complete graph
Kk‘, an . (n,k,A) Kk-design is nothing but a BIBD (n,k,A). For
a short account of G-desiqns we refer to a survey article [7]
by Bermond and Sotteau.

In case the graph G is C, , a gyclé'of length k ,

k

an (n,k,\) ck-design is also called a BCD (n,k,)) (balanced cycle

design, see [20]).
Similar definitions hold for directed graphs. If G is
a directed graph with k vertices, an (n,k,\) G-design is a

e A . .
partitioning of the arcs of DKi ) so that the resulting directed

- L] *
subgraphs are isomorphic to G . In case G is a circuit 'Ck , a
N .
Ck—design is called a balanced circuit design. A number of people

have considered the problem of existence of BCD's for directed and

undirected graphs. We mention here a few of them: Hung and

, so that the resulting subgraphs are

-
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Mendelsohn [21] , Schonheim [32] , Merriell [26] , Bermond ([3] ,
Befmond and Faber [5] ,'Sotteau [33], Bermond and Sotteau [6] and

Bermond, Huang and Sotteau [4], Rosa-[29] and Kotzig [23].

For the existence of a BCD (n,k,A) it is necessary that
Tt
n > k , k divides the number of edges of AKn . that is, kl-lﬂiﬂ:ll

2

and the degree X(n-1l) of each vertex of Kn is even. Thus we

have the following result.

3.1 THEOREM: The necessary conditions for the existence of a

BCD (n,k,\) are
(i) n =k ,

(ii) An(n-1) = 0 (mod 2k) and

(iii) A(n-1) = 0 (mod 2).

We wish #o kno& whether the conditions (i), (ii) and (iii) of
Theorem 3.1 are also sufficient for the existence of a BCD (n,kzk).

In this Chapter we co;sider the case for k even. “The
most complete results in this case are due to Bermond, Huang and
Sogteau [4] . They have shown that the necessary conditions of
Theorem 3.1 are also sufficient for even values of X satisfying
4 = k = 16.

.

We shall extend the result #or an infinite number‘of even
positive integers k > 4 where we restrict ourselves to the case
A =1 and prove that for k = 2p? where p is a prime. and a is

a positive integer, a BCD (n,k,1l) exists if and only if the conditions

(i), (ii) and (iii) of Theorem 3.1 hold.
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We shall use the following result of Sotteau [34} .
3.2 LEMMA: K can be decomposed into cycles of lemgth k,.k even,
if and only if m and n are even, m= 5, nz % and k divides
m. N\

In case k = Q {mod 4), Kotzig [23] has shown that
K2mk+1 can be decomposed into Ck s for all positive integers m .

A similar result has been obtained by Rosa [29] for k = 2 (mod 4).

We give here an independent proof to cover both the cases together.

3.3 LEMMA: For any even positive integer 'k and any positive integer

m s Oyl Rome -

Proof: We shall use induction on m . For m = 1, we use a construction

to show that the result holds. In case k = 0 (mod 4), let k = 2¢, ¢

. C i i =
even onsider a complete graph K2k+1 with V(K2k+1)

{uo,ul,...,u&,u&+1,...,u2k}. Let ¢ be the permutation with cycle

representation (u0 U uy ... qu). Consider a cycle C of length

k as given below (see E@gure 3(a))

R S T S T TR N L L WY TS P W FE Y

.

AR WYL WL W T TS R

-
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Uy
O
v,
uO \ Upat
o \
Uzk-1
[ - . . . . uk"—
U2k-0e3 up,te2 Yeetey
=Wk, l43
FIGURE 3(A)

If we say that the two vertices u, and uj are at a
distance d if and only if |i-j| = @ , we observe that the vertices
in the neighbourhood in K2k+1 of a vertex u, for all i are
at distances 1,2,3,...,k from ui. Moreover, if we consider the

distances between the successive vertices of the cycle C , the

distances 1,2,...,k occur exactly once. Hence the c!cles ¢jc ‘

j =0,1,...,2k are all disjoint and cover all the edges of K, .
In case k = 2 (mod 4), that is, k = 2¢, £ odd, £ = 3 A

consider the cycle C' given below (seg Figure 3(B))

', :
° NIRRT S SRR S T O S 220 S V2% LA

Uk+6 k-2 Mk +4 " U Pxe2 0



—

Ugyy Uge2 Ugex = uk-(fj
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ﬁ\ Te uy, ¢
|\‘
‘" o uk
(o]
Ugez .
@)
9 \!‘
y o
s . Up,e
Uok-tes o O O -

' u
= Uk, tes ukttﬂ' Ukeles Uy o, - k+l+d

FIGURE 3(B)

Here again among the distances between’ vertices of the
N

cycle C', the distances 1,2,...,k occur exact;ly once. Hence the

cycles ¢JC', j=90,1,2,...,2k are all disjoint and cover all the

edges (_)f K2k+1 .

This shows that the result is true for m = 1. Next assume

that the result is true for m , that is, k2mk+1’ can be decomposed into

Ck's. Conrisider the graph K We write it as T -

2(m+l) k+1°

v

F2 kel ™ Fomkeaxer T Fomx R U Ky KD UKy, o

"z.g+1”’5k+1”’5k,2-k_' , ' o '

¢ A S




where the vertex set of each graph is chosen appropriately. Since ,

-

k+1 * by the induction hypothesis, and K2k+1' by the first part
’ £

or m= 1, can be decomposed into cycles C

X it is enough to show

that Ck|l( . Since 2k - and 2mk are both even and each is

2k, 2mk

greater than % and also 2k*2mk = 0 (mod k), the result then follows

from lemma 3.2.0

3.4 LEMMA: If Cklxr , k even and r odd, then c |k, . for

all pogitive integer m .

Proof: We write

-

(K + k) Uk _,

+K1)Ux

Komk+r = Fomk+(r-1)+41 = ¥omk 2mk, (r-1)

-

xmﬂ U xr UK

2mk, (r-1) '

where the vertex set of each grb‘pﬁ is.chosen appropriately. Now K2mk+l

can be decomposed into Ck's by Lemma 3.3. Also Ck divides KIL by

the hypothesis of the Lemma. Thus it is enough to show that C

k
divides KZ-k,(r-l)' which follows from Lema 372, as 2mk and r-1
are even, both are greater than }—;- and k divid'és 2mk (r-1) .0

The following result follows immediately from Lemma 3.4.
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3.5 PHEOREM: G(Given k even Zei n = 2mk+r where m is a positive
integer and 0 < r < 2k. Also, let n,k and X = 1 satisfy
conditions (i), (ii) and (iii) of Theorem 3.1. 'Then L;heré é:mlsts

a BCD (n,k,1) <if there exists : ' ”
(a) a BCD (r,k,1) if k< r < 2k or

(b) @ BCD (2k+r.k,1) if 0<r<k.

) Now and hencefortb let n = 2mk+r, O < r < 2k, for some '
integer m . ~Furthermo}e, let k = 2°pa where p is a prime and

@ is a positive integer. The conditions (ii) and (iii) of Theorem

3.1 are .equivalent to
r(r-1) = O(mod 2k) and r-1l = O(mod 2) ...(*)

In case P = 2 we have the following theorem.

3.6 THEOREM: For any integer n and k = 2, satisfying the
gonditions (i), (ii) and (iii) of Theorem 3.1 with A =1

there exists a BCD (n,2a,1) where a 18 g positive integer.

Proof: The conditions (*) in this case become

r(z-1) = o(mod 2**')  anda  r-1 = o(mod 2).

-

1 -holds, it follow

1

That is, r = 1(mod 2°*!). since 0 < r < 2*

that r = 1. Thus in view of Theorem 3.5, it is enough to show that

o s eihr e pe s




46.

l+1,2a

there exists a BCD (ZOL+ ,1). The result then follows from

Lemma 3.3.0

In case k = 2°pa where p is an.odd prime and a is a

positive integer, the canditions (*) become

o .
O(mod 4p ") and r-1 = O(mod 2).

r(r-1)

That is either r 1 (mod pg), and r 1 (mod’ 4)

a

or r = 0(mdp) and r l(mod 4).

1t

l(mod 4) imply that r = 1(mod 4°p>).

Hi

1(mod p%) and r

1"

But r
Since 0 < r < 4pa we have r =1 . 1In view of Theorem 3.5, it

suffices to show the existence of a.BCD (4°pa+1, 2'pa,1) which follows

\

from Lemma 3.3.

If r=0(mod p?) and r Z l(mod 4) we claim:

r=3"  if p'z3meaa -

a . '
and r=op if-  p* Z 1(mod 4) . )

"

To show this let r = q'pa for some integer q , so that r = 1(mod 4)-:h\4\\__,

-

O(mod 4). Hence, -

»

implies that r-1 = q'pa-l

I(mod 4) if p°

n
i

q .3(mod 4)

‘ or g 1l(mod 4) if p> = 1(mod 4).- ‘

[

But 0 < r < 4*p" implies that q = 3 if p> = 3(mod 4) or
. ‘

.a ‘
Q=1 if p = 1(mod 4).
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In view of Theorem 3.5 and the above discussion, to prove
, that the conditions (i), (ii) and (iii) of Theorem 3.1 are necessary and
sufficient for the existence of a BCD (n,2°pa,1) where p 1is an
odd prime and a- a positive integer, it is enoﬁgh to show the
existence of a BCD (3°p%,2:p%,1) if po' = 3(mod 4) and that of a
BCD (5°p%,2+p®,1) if p- = l(mod 4).

Thus we have proved the following lemma.

3.7 LEMMA: Let n be a p_ositive\integer where n,2+p> and A =1
sasisfy the conditions (i), (ii) and (iii) of Theorem 3.1. Then there
exists a BCD (n,2'pa,1) for p an odd prime and o a positive
integer 1f there exists

= 3(mod 4) or —~

(a) a BCD (3'pa,2'pa,1) if p

% = 1(mod 4).

(b) a BCD (5°p~,2:p%;1) - if p

-

3.8 LEHHA:‘ There existe a BCD (§-p°‘,2-p°‘,1) where p 18 a prime,

3 (mod '4).

a 18 a positive integer and >

Proof: Partition the vertex set V(K3.pa) into pa subsets each of

size three . Label them with

€

1

,ut, T.: { Y, ...,

To: {uggrtgrrugyte Tye fuggiuypiuy,

pa-1= {upa-l,o'upa-l,l'upa—l,2} .

With x3.pu we associate a completg graph l(éa whose vertices are the

. . a
T., 0<i, j=p-1,

vertex sets T 'Tl"“_'Tpa-l and an,o_ége Ti 3

0



corresponds to all the edges of the bipartite subgraph K!T | IT
. : ’ .
: 1 Jl

of K3;pa . Since pa is odd, we know that Kpa can be decomposed

. ' '
into Sp-z-i) " disjoint hamiltonian cycles. We obtain one such

decomposition using Walecki's construction (see [25], p 162-3) as follows.

-

Let .
T
c : TO,TI,TZ,Tpa_l,T3,Tpa_2,..., T( a+3) ,T( a+ll 0

2 ) 2

be one hamiltonian cycle of the decomposition. (see Figure 3(C))

o * * L) o®
.
-
. Ty(~1)
T ! //
o
Ty,gt
-0 Py
oy / T(#3)
J -
T« e o ° .

FIGURE 3(C)

a .
Also let.‘ ¢ be a permutation on p symbols TO'Tl""'Tp‘kl

whose cycle representation is o
L 4
.”

¢ = (’ro! ('1'1 T, Ty --- ?pa-l)'
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o .
Then the (p2-1) disjoint hamiltonian cycles of the decomposition

2
. a ’
are given by ¢kc , k=0,1,..., u%?—z)' : .

Using the cycle [ we define two cycles C and C' of

length 2epa in the graph K3'pa as follows.

C:

TR

Y00’ %1 %11 %10 %207 %21 %p%-1,1"%p%-1,0" 30" 31

seeree1),17 Yip%e) 17 p®e3) , 27 (po+1) , 27 ¥ (p+1) , 07 00
2 2 2 2 2

and
N *

.. ) LR
€l Ugorty Y07 %an1,17 %307 " Y (p +1),0" 01" "10"
2

‘""u(ga-l),1'“(p“+3),o'“(ga+1),1'“oo
3 2 2

These cycles are also shown in Figures 3(D) and 3(E) respectively.

Y402 ¥ 10 TR e
L4

FIGURE 3(D)
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UL(rin,g
Ui(f+ao
*

0

ug(Fen2 Y4 (F 00

FIGURE 3 (E)

. a
Let O be a permutation on 3p symbols u00'u01'u02'°"'

upa_l O'upo'-l,l'upa-l 2 whose cycle representation is
14 ’

g = (u ) (

00 Yo1 Yo2) (W0 Yyp Vy) e (o g upaly 5 Yo o)
The cycles C, oC and Ozc are three cycles of length
2pa that use all internal edges of the pa triangles on the

N - < -
vertex sets To,Tl,..., o1 _and all edges uij ukj , 0 3J=2

between the successive vertex sets Ti and Tk of the cycle Z .
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: a
Also C',0C' and 02C' are three more cycles of length 2p and they
use the remaining edges u, uks , 0<r, s<2, r# s, between the

successive vertex sets Ti and Tk of the cycle Y .

]

. . 2
Thus we have obtained six cycles C, oc, 0 C, C', 0oC' and

a and we have used:

02C' of length 2-pa in K3_p

edges of K3.pa which are the internal edges of the

vertex sets TO'TI""'Tpa-l and

edges of K3.pa which corresponds to the edges of the
cyclg C.

In case p=3 and a =1 this gives a desired decomposition

~of K9 into C6's. Otherwise, we are left with the edges of K3.pa

which correspond to the edges of the remaining cycles ¢kc,

(¢ 1 R
k=1,2,..., Q%?iﬁ of Kpa . Since pa Z 3(mod 4), the number

AL '
(p=-3) is even. We pair these cycles as

(2m-1) ¢2m

z, S ~1<m<p*3

3
To complete the proof of ‘the lemma, because of the rotation
under the pernutation‘ ¢ , it is enough to show that the edges of
K3.pa in the union of one such pair can be decomposed into cycles of
length 2'pa . Further, again because of the action of ¢ there is
no loss in assuming this pair is ¥ , ¢ . We relabel the vertices of

the complete graph Kpa so that the cycle £ is written as
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T T T Ty Ty

~
1
v

Under this new labeling the cycle ¢ then becomes

" TouTy T T i Tn v Toa 4 Toa o0 Toe

Let Z be a cycle of length 2'pa obtained by joining
the vertices with labels 0 and 1 alternately between the
successive triangles of the cycle ', that is

Z:

..o seeesl

Y00'Y%117 %207 31" p%-1,0""01'"10 p%-1,1"%0 *

The thrée cycles Z, 0Z and OZZ use all the edges between the
successive vertex sets of the cycle [' except the edges of the form
U5 U,y for 0= i p>-1 and 0 < j < 2 which form a union of |
three disjoint cycles of iength pa . In other words, the set bf
edges between the successive triangles of the cycle‘ Z' can be so
partitioned that after pulling out threée disjoint cycles of length

pa » the remaining edges can be partitioned into three disjoint cycles
of length 2°pa . Moreover, this is also true for the other hamiltonian

cycles in the decomposition of Kpa . Thus, in general, for any

hamiltonian cycle of Kpﬂ . if from the edges between its suceessive
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triangles we pull out three disjoint cycles of length pa then
the remaining edges can be decomposed into three disjoint cycles
a
of length 2°p .
1f can find three edge-disjoint cycles of length
a , ¥
2*p which ude only the edges of K3_pa

or " and show that their union can be decomposed into three

along the cycle '

diéjoint cycles of length pa along 7' and three disjoint

cycles of length pa along ", then we are done. We regroup

N ~
the vertices of K3_pa into three groups ‘ =

}

Ao = {uOO'ulo'uZO"'°'upa-l.0

A, = {u01'u11'u21f""up“-l,l}

}

a A=
an o = {ugpruy Uoaly,2

We construct a cycle ¢ of length 2°pa illustrated in
l
Figure 3(F) and described below.
A solid line joining two vertices, say u and v ,

represents an edge incident wiih those vertices. A dotted line

'i

;
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between two vertices, say u and v‘, represents a path obtained by
joining the successive vertices, starting at u and ending at v
along the cycle Z'. The jagged line between the two vertices Ueo

and upa 6.0 represents a path obtained by joining the vertices in
=0,

succession along the cycle " . A forward jump from one block to

to A t A
another, for example, from AO to »Al' Al , Or A2 o o

corresponds to acchange in labeling in the second coordinate of the
vertices in the cyclic order 0 to 1], 1« to 2 or 2 to 0.

We start at the vertex u of the vertex set TO in the

00
block AO and join it to the vertex Uy in block Al . Note
that this is an edge between the vertex sets TO and T2 of cycle
Z". Next we join u to u (this is an edge between the vertex

21 41

sets T2 and T4 of Z") and then remain in block Al- joindng

edges along the path

Y4151 61" V02,1

We then join the last vertex upa_z 1 of this path to the vertex
r

Uy, of the block A2 . We remain in block Az joining edges along

the path

Uo2rY127%227 932742 -

We join the vertex u42 to the vertex ulO of the block AO . We

remain in the same bleck joining edges along the path
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"10"%60" "30" """ "p%-6, 0

and these are the vertices belonging to the successive vertex sets

of the ?ycle 3" . We join the vertex .upa-G,O to “pa-l,z and

‘ . w « . .
thep up0—1,2 to upa-4,0 e complete the cycle by joining
upa_4’0 to upa_z’0 )y 2,0 to upa_l'0 a?d finally upa—l,O
to Y00 °

. - . . a
In the construction of C , since we have picked p -1

vertices from the block A , pa-4 vertices from the block A and

0 1
five vertices from the block A2 ’ C is a cycle of length 2°pa .
We rotate the blocks AO' Al and hz two times in cyclic order,
that i A to A, , A A " A
is, 0 1 1 to 5 and 5 to Ao and get two more
cycles of length 2°pa . In other words these cycles are nothing

but < ,'o& and 026 . In view of what we have said earl#er, it is
‘enough to show that the unién of these three cycles from two sets of
. -
three disjoint cyéles of lenéth‘ pa .
ﬁetzus first consider the'edqes‘along the cycle 7 . 1In

the construction of c ., Oe and 026 -we have used

in ocC

the th r r ’
: pa Y0010 %2030 %40
the path u,_,u__,u__,...,u in 0%6
40’ 750" "60 p%-2,0
and the path, E

“pa-2,0 * Ypae1,0 * Yoo "
2

"4

™
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.

Therefore the cycles ¢ ' o¢ and 026 contain allAthe

5 %i41,3
disjoint cycles of length pp .

edges ui , 0 % < pa-l , 0<j =<2, which form three

As regard to the edées along the cycle " , in the

construction of C , Oe and 026 we have used.

thg path uoo,uZI,u41 in C
tﬁe edge u u i 026

g 41 12 in

. - A ( ’

the path Ujar¥garatrag 2 in 020
. /. 2’\
the edge upa_(_,’2 upﬂ—l,l in o C .
the edge u u ‘ in 026 ‘

g pa-l,1 “po-,2
the edge 24

g upa_4'2 upa__z’2 in o°c
and the ed g -

9¢  Ya,2 Yo in oC

‘Therefore, the cycles E ' g and 626 contain three disjoint
a
cycles of 1ength' p whose edges lie along the cycle [" . This

£

N L4 .
completes the proof. o s ’

-
3.9 LEMMA: There exists a BCD (5'pa,2-'pa,1) where p- i8 a prime,

a i8 a positive intéger and p® =1 (mod 4).



o g e

58.

"Proof: The proof is similar to that of Lemma 3.8. We divide the

a Ainto pa‘ groups each of size five and label

vertices of K
_ Se*p

thgm with

o

« St {uggrpy g rigaruggts 8y {“1of“11'“12'“13'914}' e

-

rer Spay G {“pa-l,o'“p“41;1'“pa71,2'“pa-l,3'“pa-1,4}»“

..0 Wwe associate a

As in the proof of Lemma 3.8, with KS B

| ) complete graph xpa , so that V(Kpa) = {SO’sl'Lff'Spa:l} agd an. -
edge S, Sj , 0<1i, j < p%-1 corresponds to all the edges between
the vertices of the setS' Si and sj in the original grabh. We
. o_ )
decompose Kpa into (25—12 disjoint hamiltonian cycles w#n ’

a
k = 0,1,...,(25122 where

-

‘: LI ) ’
N S0r81rSprSpa1s83 Spagr e B pacy) 1S ey S paen) 7o,
\ 2 2 2 :

and ¥ is a permutation on p> symbols SgrSyrrSpay with

cycle representation

V= (So)(S1 s2 s3 ces Sp“—l) .

Each KS vith the vertex set 51 S 0<1ic=s pa-l can be decomposed

into two disjojnt S5-cycles which are obtained by joining the vertices
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at distance 1 and vertices at distance 2 respectively. The five
cycles Tkg . 0 <k =4 of length 2'pa where we define C as

o
C: Ypgr¥o1rU11r¥107 207 21 Upa-1,1" p0-1,07 * * T Mg (p+5) , 17 I (p™45) | 2°

Ui (1), 2° M (pa-1) , 3° M (pO+3) , 3" M5 (p%+3) , 47 M (pP+1) , 4" s (p2+1) , 0" V00

-

"and T is the permutation

)

T = (uyg Yoy Yoo Yo3 Yoa) -+ (Upay 0 Yp0o1,1 Yp®-1,2 Yp®-1,3 Ypo<1,4

use all the internal edges of K5's which are at distance one and all

edges of the form u Uy oo 0 = jJ < 4 Dbetween the successive
. , 13 %3

pentagons Si and sj of the cycle n . Further we construct ten

more cycles ch', TkC", 0<k <4, of length 2'pa where

u u u u PR
00°711" 20" "p-1,1" """ Mg(pa+1), 0" %01 Y107 " T U (p2+1) , 1 Y00

I

and

-

C": u__,u._,u 7 e
00’ "12' 20" YpB-1, 2’ '“5(p°T1),o’“oz'“1o""'“g(p“+1),2'“00 y

These cycles use the rolﬁining edges between the sucgenlive pentagons -

<

of the cycle n . Next using the internal edges at distance 2 of
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[y

each of the Kg's with vertex set S, s 0<1ic< pa-l and the edges

between the successive vertex sets of the cycle yn we get fifteen
more cycles of length 2'pa in the same way.
In case p =5 and a =1 this gives a desired

"decomposition of K into cycles of length ten. Otherwise we

25
are left with the edges of K5°p0 which correspond to the edges

N (],__3 C
of the remaining cycles Wkn, k = 2,3,...,(425--—-2 of Kpa . &ince

-

pa Z 1(mod 4), these cycles are even in number.. ﬁe pair these

cycles as

5'pa in

To prove the lemma it suffices to show that the edges of K
the union of any such pair can ge decompogsed into cycles of length
2'pa . Because of the rotation under the permutation ¥ , it is
.enough to show this for the pair ﬁ , Ymn . We relabel the vertices . -

. of the complete graph Kpa so that the cycle n is written as
Q

., _
n': S58)sSysteSa ) -

Under this new labeling the-cycle Wn: then becomes

n" : 50,52,54,51,...,Spa_1,s a 4,Spa_z,So .



7

. 6l1.

Using the edges between the successive vertex sets of the eycle n' ,
we obtain ten cycles of'length 2'pa and we are left with the edges

.
of the form u for 0<i<p'-1 and 0<3 <4 which

iy %41,
form a union of five disjoint cycles of léngth pa . This, in

o along any hamiltonian

general, ;s true for the edges of K5°p

cycle of Kba . Moreover, this fact can be restated as follows.
The edges of K5°pa ’ between the successive vertex sets along any
hamiltonian cycle can be decomposed into five disjoint cycles of
length pa ané five cycles of length 2°p9 .

Our next attempt, therefore, is to pull out five disjoint
cyclas of length pa along»fhe cycle n' and five disjoint cycles of
length pa along the cycle n" such that their union gives fiv;
cycles of ;gngth 2°pa . In_vi;; of what we have said earlier the
genaining edqes of Ks-pﬂ .along the cycles n' and n" then can
be decomposed into twenty cycles of length 2°pa . We reqgroup the
vertices of x5°pﬁ "into five groups.

L4 . -

A - {“01'“11'“21"f"upﬂ-l,i}

for i = 0,1,2,3,4 .

-

Using the notations of Pigure 3(F), we give here in

Figure 3(G) a method of constructing a cycle C of length- 2'pP .




FIGURE 3(G) ’

We rotate the blocks Ao, Al, ey A4' four times in cyclic ordgr, - Cua

that is, AO to Al, Al to Az, ey A4 to A and obtain four

0
more cycles of length 2'pa . These cycles ;re nothing but ™ c '

0=k < 4.




otk B

k-
Now to check that T C , 0=k < 4 , contain five disjoint

a .
> cycles of length p whose edges lie along the cycle n' we observe

#that in the construction of rké , 0=k =4, we have used:

.

-

#he path “oo'“10'“20’“3o’“4o in Tc ,
i T°C
the path u40,u50, ,upa_z’o in c,
and the path in 4 .

Ypa-2,0%pa-1,0" %00
Their union gives a cycle of length pa whose edges lie

along the cycle n' . Under the rotations we obtain five disjoin#

such cycles of length pa .

Similarly, we have used‘the‘following edges and the paths

along the CYCIKn" s '

the edge Yo u21
the edge u21 u43, in €,
the edge u43 u14

the path u14,u64,...,uég_6'4 in‘ TC,

: 4~
the eéqe uﬁ“-6.4 upﬂ=1,3 : in TC,
the edge .. u in %

98 Ypy,3 Yprog,4 ’
L3 ’ 4-

the edge upn_4'4 upn-2,4 . in TC,

and the edge upﬂ-2,4 Ys0 in Tc .
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Their union gives a cycle of length pa~ . Under the
. ]
rotations we obtain five disjoint cycles of length p whose efiges
lie along the cycle n" . This completes the proof. o
3.10 THEOREM: There exists a BCD (n, 2'pa,1) where p 18 @
odd prime and o a positive integer if and only if 'n 18 odd ,

n > 2°p°' and n(n-1) = 0(mod 4'pa) .

'Proof:  In view.of Lemmas 3.7, the proof follows from the Lemmas

3.8 and 3.9.o0
Theorems 3.6 and 3.10 can be putr together to give the
main result.

3.11 THEOREM: There exists a BCD (n, 2°p°',1) vhere p 18 any

L4

prime and o a positive integer if and only if n > 2°p0' , n odd

O(mod 4°p™)

and n(n-1)

WA
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CHAPTER 4 : .

As we have mentioﬁed in the beginning of the previous chapter,
the problem of decomposing co?plete symmetric digraphs Dl(n into
directed cycles has been of equal interest to that of Aecomposiﬁg
complete graphs Kn into cycles of different lengths. But much less
* work has been done in the direction of decomposing complete symmetric

digraphs D§n into ozﬁeﬁiations of a cycle, other than the"

directed cycle. Hung and Mendelsohn [21] have found a necessary and  ’

sufficient condition for the partitioning of the set of arcs of a
complete symmetric digraph into each of the oriented triangles. 1In a

S
recent paper [16], Harary, Heinrich and Wallis have considered the same
problem for each of the four oriented quadrilaterals. In dding so- they
have made strong use of the fact that ea;h orientatidn of a triangle
and that of a quadrilateral is self-converse. Also, Harary, Palmer
and sSmith [17]'had earlier shown that the only gr;éhs for which every
orientation is self-converse are.the:two smallest complete graphs Rl

and the three smallest cycles C3,'C and C_ . In their

and ‘K 4 5

2
paper [ 16}, Ha¥ary, Reinrich and Wailis made a concluding remark that
it remains to investigate the case of oriented pentaéons. In this
chapter we consider this problem and show that the necessary conditions
for each of the oriented pentagon to divide complete symmetric digraphs

Dxn are also sufficient.
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A cycle of length five can be oriented in only four

different ways 4nd these are shown in Figure 4(A).

SReaoaY

A1 2 3 4

7)
’ o FIGURE 4(A)
.

The orientations will be describ:é»as

Al contains a path of maximum length two,
A2 contains a path of maximum length three,
A3 contains a path of maximum length four,
- ' . &
and A4 is the directed cycle of length five.

4.1 THEOREM: If AiIDKn , i=1,2,3,4, them n=0,1,5 or 6
(mod 10).

Proof: For i = 1,2,3,4 AiIDKn implies that 5|n(n-1). That is,

0, 1, 5 or 6 (mod 10).0

n=0 or 1 (md5) or equivalently n
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Since each oriented pentagon is seff-—converse, we have the

"C:\\ »
following result. .

. »
4.2 LEMMA: If cslxn, then Ai|DKn for i = 1,2:3,4
S
Rosa and Huang [31] and Berﬁpnd and Sotteau [ 6 ] have shown
indépendently that Kn can be decomposed into Cs's if and only if

m = 1or 5 (mod 10). This result together with Lemma 4.2 gi\/res the

) ,
following result. . 3

v ]

4.3 THEOREM: If n =1 or 5 (mod 10), then AiIDKn for i =1,2,3,4.

L} .
. - v ‘)

To prove the re‘t& for n 20 or 6 (mod 10), first we

show it for n =6 and n = 10 .

for i =1,2,3,4.
2,u3,u4,u5,u6}. Folloﬂﬁm{is the

decomposition of DK6 into each of Ai, i=1,2,3,4 by constmyction.
1 .

4.4 LEMMA: AiIDK6

Proof: Let V(Dl(s) *\l{ul,u
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FIGURE 4 (B)
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N
O

by

a3

FIGURE 4(C).
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A 'DK6

FIGURE 4 (D)
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4.5 LEMMA: Ailnxlo for i=1,2,3,4.

Proof: We write

= + = A
. Ko =Kg + Ky =K UK, UK, o .

’*; g

:

Lf; :Y(Ks) = {uorulru21u3ru4rum} and V(K4) = {V11V21V3rv4}
‘ 3 .

where V(K4,6) = V(K4) U V(Ke), V(K4) and V(K6) are the maximal

independent subsets of K4 6 °
’

The graph K, U K, 6 can be decomposed into four Cs's,
, :

ul,vl,v4,u3.,v2,ul , uz,vz,vl,u4,v3,u2 ’
113,V

73'V4 20 V1M 0 VgrVertyrV3eVarty

and a graph H shown in the Figure 4 (F)

. 4

PIGURE 4 (F) '

72.
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Since, for i = 1,2,3,4, Ai is self-converse, AiIDCS. Moreover,
AiIDK »1=1,2,3,4 , by Lemma 4.4. Thus to prove that’ Ailnxlo ’
i =1,2,3,4,it is enough to show that AiIDH for i =1,2,3,4 .

Here we give a decomposition of DH into each of Ai, i=1,2,3,4.

& v1
u V2
0
u, <
V3
Va

,AllDH

FIGURE 4(G)



A_|DH
2

FIGURE 4(H)

)

Figure continued.
juz

74.



A3 DH

FIGURE 4(I)

A,|DH

FIGURE 4(J)

75.
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1

4.6 THEOREM: If n = 6 (mod 10), AiIDKn for i=1,2,3,4.

Proof: Let n = 10k + 6 for some positive integer k. We write
C K, = Kopee = Kg(akeny4r = [(RRHDEKg + K T U o 01Ky

- 6 U (2k+1)%s ¢

o~ = (2k+1)K_ U

where the vertex set of the complete multipartite graph (2k+1)K5

is choéen appropriately. By Prop. 1.9 of Chapter 1, (2k+1)k5 can

5'5 and hence the complete multipartite

digraph D(2k+1)x5 can be decdmposed into each of Ai +i=1,2,3,4.

be decomposéd into C

Moreover, by Lemma 4.4 'AiIDK ,i=1,2,3,4 and hence the result.d

4.7 THEOREM: If n = 0 (mod 10) and n # 20, AiIDKn for

P

i=1,2,3,4.

Proof: The result for n = 10 has been proved in Lemma 4.5.

Hence, let n = 10k, k > 2 . We write

K, = Kok = %% YU kX0 -

-3

where the vertex set of the coupleie multipartite graph is

xF10
chosen appropt;ately. In view of Lemma 4.5, it is enough to show
that Ailo‘kxlo for i =1,2,3,4. With kxlo we associate a gfaph

G as follows.
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e

Let V. = {ui,u;,...,uio}, 1 =i <k, be the maximal independent

1,2,...,k let’

subsets of vertices in K . Also, for i

We define V(G) = {Sl,S ,...,Szk} and an edge incident with

2

Si and Sj corresponds to the set of all edges of the complete

bipartite subgraph xlsil'lsjl of kKlO' We observe that any two

vertices S, Sj are adjacent except when j = k + i . Moreover,

the edges Sisi+k ’ 1<i<k, forma l-factor of G . Thus

G=ZK,_ ~-1I where I is a 1l-factor of K By Cor. 2.13

2k 2k

.of Chapter 2, G can be deco-poséd into 3-cycles and 5—cyclés,
which amounts to th; fact that the giaph kxlo can be decomposed
into the factors 3K5 -and CSIKS]. Both these factors can be

decomposed into C_'s by Prop. 1.7 and brop. 1.5 of Chapter 1,

5

respectively. Thus Cslk‘lo and the result then follows from
/7

the fact that sach orientation Ai’ i=1,2,3,4 of C5 is self-

converse .0 .

prae|
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4.8 THEOREM: Ai|DK20 for i=1,2,3,4 -

Proof: We write 7 ’ ’ -

Kyo = 2K10 U 5Ky

wi the vertex set of the complete bipartite graph ° 2x1 chosen
0

appropriately. We shall show that AilD(Klo U ) for

2K10
i=1,2,3,4 . This together with Lemma 4.5 will‘prove the result.

[ ] .
Let the vertex sets of the two K, 's be {ul,uz,...,ulo} and

can be decomposed into a

{Vllvzr'o'lvlo}- The graph Klo U 2K10
graph A , as shown in the Figure 4(K) - _ . - : o
V1
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and twenty five 5-cycles given by
. ',
C: ul,vl,uz,v:;,v",v.x1 . Cc': 1.:1,v3,u.’,v2,v5,u1 ’
c™: ul,vs,ul‘a,v,’,vg,u1 ’

¢kC ' ¢kC' (1 =k = é) and ¢2kC" (L=k = 4)

where ¢ = (1 2 3 ... 10) is a cyclic permutation acting on the ten

subséripts.
Here we give a decomposition of DA into each of .
Az, A3 and A4 .

FPigure continued .
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Pigure continued.
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A3 DA

FIGURE 4 (M)
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Y1
v o v
10 © A 2
vy £ ir3
Vg Va
o ] (o]
V7 o Vs
Ve
, A,|DA
FIGURE 4 (N)

>

Now to show that AJ.ID('IOUZ‘N)' let T be a graph
defined by
o . .4
+T'=A-Cc*+C'"+¢cC" ,

v
‘
A

re C* is the -S-cycle Vztvsl"lo'v,".va"vz m. &10 U, 250 o



can be decompbsed’into the graph [' and twenty four disjoint

S-cycles:.’ . !

.

-
Ve

c*, ¢, c, ¢¥c, ¢"c' (1 = x = 9, ¢%c, ¢%" ana ¢%c .

Sincé Al is self-converse, it-is enough to show that

AIIDF-, Following is one such decomposition:

84.
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FIGURE
4(0)



Finally, _thé results c_f‘ Theorems 4.1, 4.3, .4.6, 4.7
and 4.8 can be put together into a single theorem. ) B
ot L ‘ . v

o

4.9 THEOREM: A, |DK , n = 5, for i =1,2,3,4 if and only if
. . 1 R

nZ0or 1.(modS>5).

86.
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' CHAPTER 5 -

-
»

In Chapter 4 wé have seen that each orientation of CS"

the cycle of length five divides the complete symmetric digraph

DKn for all,n'SVWhich satisfy the’necessary conditions. 1In this

F

chapter we conéider,thg case of the cycle C

 Where k. is any ¢dd *

positive integer and give some sufficient conditions so that any

"self-converse inentation X of C

divides DK for .
k ‘ n .

v L

n=0o0r 1l (md k). As an application of these results, we .show.

that the necessary conditions are also sufficient for any self-

converse orientation of C_, , the cycle of length seven, to divide

7

DK .
n

Theorem 5.2 does not include the case for k = 3 , as we

*
3 does not divide -DK_ (see [21]) !

know that the directed cydle T 6

which is one ofsthe conditions of the hypothesis. We prove the
result for odd k > 3 and for the case k = 3 we refer to Hung
and Mendelsohn [21] who have shown that each orientation X of €,

, divides DK if and only if n=0or 1 (mod 3) and n > 3 with
. o
*
the exceptioh of n = 6 in the case when X is the directed cycle C3 .
\ . ’ )

' 4

5.1 LEMMA: Let X be a selfhconverse orientation of C,, the cyecle

kl
of length k, and G be any graph. If ¢ |6, then x|pc .
Proof: ' The proof followé from the fact that the orientation X of

the cycle ck is self-converse.o

-

™
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5.2 THEOREM: Let X be a self-converse orientation of Ck g &y e

" dycle of length k where k is an odd positive integer greater

than 3 , 3uéh that

(i) xlmck+l : .

(ii)  x|ok : ,, .
, ) S~
and (iii) x|DK_ krgk . Then

XIDKn if n=0 or 1 (mdxk) and n > k .

Proof: To prove that ‘the conditions n = 0 or 1 (mod k) and

n >~k are sufficient, we consider the three cases n = 1, k (mod 2k),
) ) ,
k+1l (mod 2k) and 'n

1]
1

n 0 (mod 2k) separgtely.

Case 1: Let n=1 or k (mod 2k). In this case Rosa [30] has

shown that ~ CkIKn . Since X is a self-converse orientation of

C, + the result then follows from Lemma 5.1.

4
[ 4

Case 2: Let n = k + 1 (mod 2k), that is, n = 2mk + (k + 1) for

AR .
some non-negative”integer m . We write

5

K = Xeomker = [(2"'1)'32*\ KU e -

' " ” - (znﬂ)lku U 2m+1K_k

where the vertex 'set of the complete multipartite graph om+ 15

. . ' [} N
is appropriately chosen. Since xIDKk+1 by hypothesis, it is
L} : , -

~ enough to show that xlD(Zn-fl‘k)’ By Theorem 2.14, ck|23+1xk and

the result then follows from Lemma 5.1.
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A

»

Case 3: . Finally let n = O (mod 2k), that is, n = 2mk for

some non-negative integer m . For m =1, the result is true by
- <

hypothesis as XIDKék . In case m = 2,.we write ’

. :
Ky = 2K UKy UK oy |

where the vertex set of each graph’is apprdpriately chosem. Since
k 1is odd, we know Kk can be decomposed into hamiltonian cycles,
that is, Ck!Kk and hence by Lemma 5.1 xlDKk . Moreover,

X szk, and xlDKk,k,Zk by hypothesis and hence the result.

' Now let m > 3 . We write

where the vertex set of the complete multipartite graph is

appropriately chosen. Since xlDKz by hypothesis, it is enough -

k
). We will show that Cklmxzk and the

to show that xln(nxzk

result then will follow from Lemma 5.1. With the graph mKZk we

associate a graph G as follows.

Let V1,V2

). Clearly |vi1 =2k for 1 <i=<m. Also let

poes ,Vm "be m maximal indeperident subsets oy

i ii i e <
i 1'%2""’uk'uk+1""'u2k} for ‘1 <i<m. .

We define
s
i i i
Si = {ul,uz,...,uk}

i i i
and Sm+i = {uk+l'uk+2""'u2k}



for 1\5 i-<m . Then

}

V(G) = {8,,5,,...,5, - : S

172

and‘an edge Sisj oQfresponds to tﬁe set of all edges in the

original graph mKQk‘ which join vertices in _Si with vertices in

55 . We obsérve. SiSj is an edge for all 1 =1i, § =< 2m, i # 3

w j=m+ i f '<i<m. But 8,5 . ,1<i=m
except,:hen B i for 1 =i m,. But iSmei !

»

are not edges of G , and form a l-factor of G, the complement

LI

of° G . Thus, G .is isomorphic té sz;I where 'I is a 1-factor

of K2m . If 2m = 0 or 2 (mod 6), then 2m > 6, as m > 3

and hence by Prop. 1.3, G can be decomposed into C3's. 1f

2m = 4 (mod 6), then 2m > 10} as m > 3 ‘and hence by Cor. 2.12
‘G cah be decomposed into one Ks and the rest C3's. Hence for
m 2> 3, G can be decomposed into C3's and at most one KS ’
which amounts to the fact that the graph Ko can be decomposed
into _K 's and at most one K, - Since k is o84, Ck|3l<k

and Cklsxk by Theorem 2.14. This completes the proof.o

Let C;T, k odd, denote the directed cycle of length k -
Bermond and Faber [5] have shawn the existence of a balanced
circuit design (k+l,k,1)‘ for any odd> k > 3 . Also Bermond and
Sotteau [6] QPQe showq the existence aof a balanced circuit design
(2x,k,1) for k = 5. In other words, CZ?DFk;l for any odd k 2 3
and c;lnx2k for any odd k = 5 . Moreover, Sotteau [33] has

* ®
£ > 5. ‘
shown t?at ckIDKk,k,Zk or any odd k = 5. 1In view of the fact



. ’ . ) ’
that the directed cycle Ck‘ is a self-comverse orientation of

Ck' the cycle of iength— k , Theorem 5.2 gives the following
result of Sotteau [33].

5.3 THEOREM: DK  can be decomposed into k-circuits (directed
eycles of length k), k odd, k=25 if n =0 or 1 (mod k) and
n=>k. '

In case k = pa where p is an odd prime and a a
" positive integer, the necesséry conditions for a self-converse
orientation X of Cpﬁ to divide Dxn are n =0 or 1 (mod pa)

and n > p® . Thus Theorem 5.2 gives the following in this case.

5.4 THEOREM: Let X - be a self-converse orientation of Cpa .

where p 118 an odd prime and a a positive integer, such that

(1) xlmcpcl+1
(i) xlnxz_pa

and (iii) x|pk Then

pa'pa'zupa *

’xl'DKn if and only if n 20 o0r 1 (md p*) ad n > p* .

As an applicati®en of Theordh 5.4, we show that a

self-converse orientation X of C divides DKn if and only if

7
n=0or 1l (md?7) and n =2 7 . We know that c7 has ten orientations

and they are shown in Pigure S5(A).



FIGURE 5(A)

' The orientations A_. and Az have a p:a\ of maximum length 2; A

21 2 31’ P3p-

and A33 have a path of maximum length 3; A41 and A, have a path

- of maximum length 4; —A51 and A61 have paths of maximum length 5 and
o

is the directed cycle.

6 respectively and A71

e e e e A
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Out- of these ten orientations of C%, A ,JA‘ A31, A

21 22’ 41"

' A61 and A?l - are the~cnly self-converse orientations.

-

Byzr Bsy

-

5.5 THEOREM: Lef X be ome of the gight self-converse orientations of -
C,» then ,XIDKn if and only if n=0Q or 1 (md7) and n =7 .

4 . k
Proof: In view of the Theorem 5.4, it is. enough to show that X DK,

" 'Henceforth we shall writprthe eight self- .

x|pl<14 and x»|m<7,7’14 .

converse orientations as: . - ///,~

.0 . ' .
Tf a, b, c,4d, e, £, g, a is a 7-cycle then

A21 a*br+rc+dre<«f +g+«a
A22 a+*brc+d«e>f+qg<«a \\\7
' A3l a*rb+rcrd«e>f>>g<a
A4l a+*b+>*c>dre<«f+g<«a
A42 : a*b>rc+rd+re«f «g+a
» ASl : a+b->c~+>d +’e +f « g<«a -
A61 : a>*b>rc+>+rd+re+f +g<«a
‘ X~
A?l : a*b*c*+*d+*e>f>rg-~>a d .
¢ 3
* (1) Let V(Dxé) = {ul,uz,u3,...,u8}. We list below a decomposition
of st into each X . The direction of an eqée is as given by the
top cycle.



O

21°

3’

k ¢

a+*b+rc>d<«e

f >

94,
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A:a*,b4c+dA+e+f.+g+la‘ A_.:a+*b>*c+d>+e+>feg+a
42" - 51 . .
- -
M U3 Y7 Y4 Y2 Y Vg Y U4 Y7 Yg Y5 U3 W
C73 Tt Yy M W By M3 - U5 ug uy ug up uy
B [ &
Yg Y5 Uy Ug. Uy U3 uy. ug Y% W Yy Yy Y5 Yy
ug u, u, ) u, -u, 63 u4‘ ug ) Ut Uy uy U ug o ug
Uy Uy U3 UgwlUg Ug u, U, Yg U3 Yy Uy Yy Y4
Y Y Y4 Yg U3 Y5 .U u, Y Y Y5 Uy Yg Uy
u4' ul us u2 ue u., 06 u4 02 05 06 u3 ul ua
ul u3 u6 u2 usv u., ue ul u3 06 u., u4 02 ul
N G
A61:a+b+c+d+e+f+g+a a+*b+rc+d+e>f >
04 u_’ ue« u5 u3 u2 u6 u4 Ué u3 . u4 ul 07 u6
Ys Yg U UYg Uy U3 u; ug Yy Y Y5 Uy Yg Yy
06 ul 'u2 u7 05 u4 ue u6 02 ) us u6 03 ul 08
u_’ 02 u3 ue . u6 05 ul u., u3 u6 u_, 04 u2 ul

A,n: The following directed cycles give a decomposition of Dl(8 into

ul->L15->u2->u6->'.,u3->u.7->u4->ul

7
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and " S : .
Ug T Uy B Uiie T Uie1 T Uieg T Yie2 T Ui43 T Y
: . )
\ b . i . ’ . ,
F ) for i =1,2,...,7 and the subscripts are taken modulo 7 . .
' : . : ] ~ .
i (:ul Let - V(DK14) = -{uo,ul,...,ul3}. The fo]‘.lowz.ng gives a .
} _ decomposition of DK14 into A21 ’ N - N
. , .
Bo T Ui T Ui T Ye12 T Va2 T %an M3 T Y :
and
- > | < > “ . + 4- > @ 1
Y T U541 T Y12 T Yie2 T %10 T Yie3 T Y40 T Y .
for i =1,2,...,13 where the subscripts are taken modulo 13. )
To get the decomposition of DK, , into the other self- SR
converse .orientatiohs of Cl, we write °
~ I, e
K14 = K8 + K6
where V(Ke) = {uo,ul,uz,u3,u4,u5,u6,u¢}
and V(K6) - {vl,vz,v:’,v‘,vs,vs} .
f using all the edges of the form wvy, 154, §56 and the six
) edges of the 6-cycle ) ‘ ' ,I



e

we construct the followjng six 7-cycles

&
. o T
° v,,a,,v u, v, u, v, v
Ci‘ I A SRS TS RS TS IS TV RAS FS RAS PY.- 3/ i

for 1 =i < 6 where the subscripts are taken modulo & . Then Ka

can be decomposed into six 7-cycles Ci"l <i=<6, and a graph H

<

shown in Figure 5(B) - o ' ‘ ) ) .

. .

. PI@R! 5(B)
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In view of Lémma 5.1, it is enough to show that each self-converse

*

orientation X divides DH. Here we list a d'e’composition of DH

317 P40 Pgpr Bsyr Rgy andA,,

In each Geconposi'tion»bqhn the subscripts are to be taken

into, A22 . A

modulo 6 except the subécript'o and » which remain the same in

each orientation. The cycles
V. *u >v « v € v, +u, *+ v, « v,
i e

i+5 i+l 1+t'l‘ 0 i+2 i

i =<6 give a decouq;osition, of DH into A;. The cycles

&,

for 1=
. /
' > > > «
Vi % T Vi3 T Vier T Viea T % T Va2 T Y
for 1 =<i =<6 give a decomposition of DH into A31. The cycles .
X '
> -+ > -> « > «
Vi T % T Vie2 T % T Vie3 T Vier T Viea T Vi
for 1 =41 =6 give a Hecomposition of DH into A,.. The cycles A
. <~ T 41 AT
’ /
> > -»> > « « “ ’
Vi 7Y% T Vie2 T Vias T Viel T Y T Vieg T Vi ) S

f0t(

[
1A

K3 < - Iy - : ’ -
i=6 give a &WIOD of DH into A42 .. The cycles a

s o
v. *u >V . >V +u +v « v « v
i 0 ©

i+4 i+2 i+5 i+3 i

i £ 6 give a decomposition of DH into” ASl . The cycles

1A

for 1

o B
&
Vi T % T Vi3 T Vi T Vi4a T % T V2 T Y
. Vd



for 1 =i =<6 give a decomposition of DH into A61 and

finally( the cycles

u, >v, *v, > v, +> v, >u > v, +u
0 i i+4 i+l i+3 = i+5 0]

for 1 < i< 6 give a decomposition'of DH into Ay, -

(ili) rLet V(DK ) = {u

7,7,14 'Y

...,u7} U {v.,v ,...,v7} U

2’ 1" 2

+

{w. ,W_peoo,w

) 1'%5 cerzq)

7217257

where the thrée sgts in the union are the maximal independent subsets.

of V(DK7’7’14). The undirected graph K7'7’14 wltﬁ V(K7,7,14) =
. : A}
V(DK7 7 14) can be decomposed into twenty-eight 7-cycles given below
’ ’

and graph G , which is'gggzsﬁbgraph induced by the remaining

-

edges of K The eycles are

7,7,14°

u,,w.,u. _,W.. _,u..,,V,
(AR S T B MME T R TV i

z.,u,
i+5°71i" 71

v.,z,,V, 2z, v, u, w,.,V,
L7147 Ti+1 %142 Tiv4’ i 2

TirVie2 42 Vias Vive Viva Biel Yy
u,,z u z V.., W v u, 7
1771427 Ti44 i3 T i3 ive
o ‘
for 1 < i < 7 where the subscripts are taken modulo 7. In view of
A T . ) , : ’ .
Lelma 5.1, to prove that a self-conVerse orientation X divides . ./

-

/’,‘I

AN

a2
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DK7 - 14,' it is enough to show that -X divides DG. Here we.list

v Iy . . .

. [ L3 . . :

a decomposition of- DG into the orientations A21’ A22, A31 and !
: . ]

B 1

By - ‘ ' :

. - , i ,
In each decomposition below the subscripess are to be. taken

‘modulo 7. The cycles

w, > u + 2z, < u, -+ « >V, ., Cw
+ + +
i i+3 i i+4 i+l i+5 i+3 b ( /v-\
N
and -
-+ > ‘ > - “
i T Vie2 T W06 T Vi1 T Bie3 % T Y4 T Y
> ’ r ‘. »
for 1 =1i=7 give a decomposition of DG into, A21' The cycles J
' - > “ ' . - . >
%7 a3 T Y T Vi3 T %is T Viia T Ve T %
and -
W, >u, >z + + AR . '
17 e T % T Y3 T Vi T VYiee T Vi TV
* . 1]
for 1 =i <=7 give a decomposition of DG into A22' 'I‘t%e cycles
" V. -+ -+ . + u. « . > . > w, + .
i+3 ui+5 '1+1 u1+4 zl ui+3 '1 V1+3
and .
’ > v -+ -»> + >
143 7 Vie1l TG46 T Vie2 T Vi T Vg *
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for 1 < i =<7 give a decomposition of DG into Ay - The cycles o,

v > > w > u, > 2, € u,

. u, . > w, € vV,
i+3 i+5 i+l i+4 i i+3 i vl

+3
and

zZ, > u, > v, > w, > v, “« w, > u, +« z,
i 1+3 i+l i+6 i+2 i i+4 i

for 1 =1 <7 give a deéomposition of DG into A41_.

Now we give a decomposition of DK, 5 14 into each of the
. r’ ’

+ A and A . This time we

. » o . ’ v
remalining orientations 61 71

Bgor Bgy

decompose the Epdirected graph, K7 714 into fourteen 7-cycles
* r’ ’

, - .
given below and a graph G', which is the subgraph induced by the

remaining edges of K The cycles are

7,7,14°

(71\

v W,

u, v.
i+4' ’

LW, v, W, v,
i77i+67 i+l i+5' Ti+2 i+4'7i

and

W,

wW.,u. w, u, w, u, . ,,Vv. .
1771467 i+l i85 Ti+2' Tiv4 Tive 4

K]

—_—

-for 1 ='i =7 where the subscripts are taken modulo 7 . To
prove that a self-converse orientation X divides D 7,18 "
N et -
. S . s N ’
! because of Lemma 5.1 it is enough to show that X divides DG'. Here

. ¢ . . ' .
we list a decom?osltlon of DG! into each of A42, ASl’ A6l and A?l' In

each decomposition the subscripts are to be taken modulo 7. The cycles



for 1 =i =7 give a decomposition of DG' into A . The cyc'les

for

1=

1

42

-

zZ,*V, >z TV T B TV Utz .

51° The cycles

s | ?

< 7 give a decomposition of DG' into A




2 i+2

1 i+6 - i+5

v, >z -~ v, +u, >z, *>u, ->
i 6 i+l i 2 i+l

u, —bz -)v_-bz -bv_ > Z >
i+5 3 i 4 i+l

7 7 Viss i+6 4 i+2

w, > u, {7+ z_ *"u, >z -+ u,
i i+ 5 i+2 6 i+6

for 1 < i < 7 give a decomposition of DG' into A

A+ 4 i+2

W, *u, . *z2_ *u, . >z -+u,
6 i

for 1 =i =7 give a decomposition of DG' into A

completes the proof of the theorem.d?

103.

u, « v,
i+3 i

>z, € u,
1

w, * Vv,
1 1

v, < u,
i+2 i+5

>u, 2z
1

>V, * w,
1 i

61" The cycles \\\

4

> v, > w,
i i

7 - This

»r

-
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