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Abstract

Dissatisfaction with ordinary least squares estimation
(OLS) in the presence of multicollinearity has resulted in
the development of various alternative estimators which

claim to be better than OLS These c1a1ms have not been

e —— *’*W%ﬁemmmerrnmwﬁmatm,
= ~ estimators to determine their performangs relative to OLS

'and each other. The performance of each estimator is evaluated

under a varlety of data condltlons In additlon, thersubjectlve
: nature of the ridge ‘trace estimation method is determined
and:évaluated. '
The method ‘used - to evaluate the estimators ialthe.Monte

Carlo simulation method. The performance criterion is total

-
Fal

— - mnean square error. .. = S - .

The simulation stuéy revealed that the ridge trace estimator,
even‘when adjusted for itsvsubjectivity, ranked first in
overall performance relative to OLS and*relative)to the other
estimators considered. The overall.performance of the alter-

natlve estlmators (except one) was better than OLS. The absolute

¢

,performance of the alternative estlmators! and thus the1r

performance relative to OLS and each other, varied with the

degree of multicollinearity, the variance'of'the error term,

‘and the direction of the true coefficient vector.

'

-iji- .

o



>

It is concluded that one of the alternative estimators
éhould be uéed’in place of OLS, with the specific choise
dependent on fhe condition of the data. In the absence of
reliable knowledge of certain data conditions, the ridge

trace estimator should be used in'piace of OLS in the presence

——————of multicollineéarity. /!

—iv—
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CHAPTER 1 - 1.

INTRODUCTION °

‘Dissatisfaction with,brdinary least sguares (OLS) estim-

ation in the presénce of multicollinearity has led to the
development of several alternative estimators. Tyé mosti. .
popular of thésgvis the ridge estimator of Hoerl aﬁd Kennard.
(Hoerl and Keﬁnard 1970a and 1970b) = It has receivéd con-
sideraple atxentibn in the literature and has ‘been the sub-
"ject of several émpirical evaluations (Néﬁhouse and Omaﬁ
1971, McDonald and Galarneau 1975, Guiikey and Murphy 1975,
Deegan 1975, Hoerl, Kéngaid and Baldwin 1975, Lawless and
Wang 1976 and Hoerl and Kennard 1976). |

Aithough a theoretically promising aiternative, there
is a practical problem with ridge regression. For any given
problém the pegformance (in terms of total meanvsquare error)
of the ridge estimafor dependé on an elusive parameter,u
“which must be estimated from tﬁé sample data. If a "correct"”
Qal;e of the parameter is chosen a reduction in the total
mean square error relative to\OLS is aéhieved. If an
incorrect value is chosen the ridge estimator will perform

hY

— .
worse than OLS. Most current research has attempted to

- derive ‘an explicit mathematical formu%} for détermining a

value of the parameter conserving a good perfqrmancé from
. ~ R : ~ . A ° e
the ridge estimator. S Ny
7 . - Y .
f . , o .
In addition to the mathematical means of ldcating this

varameter yvalue, there exists an intuitive-figthod for choosing

-

3



it. The technique, known as the ridge trace method, was
originally proposed by Hoerl. (Hoerl 1962,‘Hoérl and Kennard
1970a and 1970b). Although satisfactory resﬁlts have been
obtained with this method in several specific applications
(Hoerl and Kennafdéii;}6g3; Watson and White (1975}, Mason
and Brown (197§) and McDonald and Schwing (1973) it hds never
been objectively ewvaluated. |

The primary purpose of this thesis is to attempt to-
provide, by means of a Monte Carlo siﬁuiation study, an !

. 7 !
evaluation of the ridge trace method of choosing a value of

the parame;er in gquestion. This method is compared to OLS
and tb several methods using mathematical rules for determining
the parameter value. |
Although the ridge estimator has beenAreceiving the
bulk of attention, the literature contains a number of
estimators which alsodclaim to be better than OLS (and in
some cases bettér than ridge estimation itself) under
conditions dz‘multicollipearity. Some are similar to the
ridge estimator; in fact some have arisen out of investig-
ations of the ridge estimator. However, noﬂ; have as yet been
directly evaluated. The thesis proposés to do this. By |
comparing these estimators with OLS and with the various
versions of the ridge estimator, it is hoped that the
characteristics of these alternative estimators can be

specified sufficiently accurately to allow a researcher to

choose that estimator which best suits his purposes and data



conditions.

The thesié is structured as follows. .Chapter 2 presents
fhe classical linear regression model and the problems
associated with OLS when the assumption of uncorrelated
independent Variables is dropped. All the estimators uﬁder
investig;tion are summarilyhintroducéd. -Chapter 3 provides
a detailed description of these estimators. Chapter 4 ,
éuﬁmarizes the results of existing empirical studies on the
topic of ridge regression. In Chapter 5, the design of the
Monte Carlo experiment and the criterion used to evaluéte the
estimatogs is presented. The method used to evalﬁate the |
ridgé trace parameter selection in ordinary ridge regression
is also discussed. Chapter 6 contains the results and

conclusions drawn from the experiment and finally, Chapter 7

provides a suggestion for future research.

e
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CHAPTER 2

THE CLASSICAL LINEAR REGRESSION IMODEL AND OLS:IN THE

PRESENCE OF MULTICOLLINEARITY

Consider the classical linear regfession model (CLRM)

y = XB + ¢ (1)

where B is the Nx1 vector of population values of the par-
erreters; € is a Txl vector of error terms having the proper-
ties; E(e)=0 and E(ee')=0€21 (I being the TxXT 1identity
matrix). The vector y is Txl and contains the observed
values of the dependent variable at the T data poinfs.
X is a TXN matrix having rank N and contains the values of N
ekplanatory variables at each of T data points. X is fixed
in repeated samples which implies that the regressors are

&
nonstochastic and tﬁat X and € ar& independent. Unless
otherwise mentioned, the independent variables in the CLRM
are assumed to be standardized so-that X'X is in the form
of a correlation matrix.

The conventional estimator of B is the ordinary least

sqgares (OLS) estimator defined by
"E::,“

T,
e
s




minimum variance among all linear unbiased estimators of B.

In practical estimation p;oblems a researcher is usually
faced with a small sample in which there is some degree of
intercozgelation among the explanatory variables.. The term
multicoiiinearity (ill-conditioned or non-orthbgonal) is
used to denote thgtpresence of approximate linear relation-
ships among the eéglanatory variables as reflected by a high
degree of intercorrelation.

Although the OLS estimator remains an unbiased and
minimum variance estimator in the presence of multicollinear-
- ity, these properties are based on averages taken over a
large number of samples (or in a large sample) but in any

particular sample which is small, the OLS estimator may

exhibit large errors. How the presence of multicollinearity

/ k]

in a particular sample may%impair the accuracy and stébility

of the OLS estim;tor of B will be revealed in the following v

discussion. |
The presence of multicollinearity in a particular sample

implies that the vectors of X deviate from orthogonality

resu}ting in an X'X matrix which is "nearly" singular in the

sensé\§? possessing one or more small eigenvélues.

If xlgﬁzi,...,zxnio are the ordered eigenvalues of X'X

then as X deviates further from orthogonality, x&

smaller. If we let TV(B) denote the total variande of B,

becomes

then



TV(B) = tria.a
BB -~
= g ztr(x'x)_l
£
2 N
RIS VW . (2)
" n=1
(where tr denotes trace). 1f one or more An are small (as

they are certain to be in the presence of multicollinearity)
equation' (2) shows that the total variance of 8 will .
_be large (ie. the distance between éand B will be large).
‘Thué in any pérticular sample, B can be expected to be

‘far from the true value B (in the sense of Euclidean

distance).

A

For any individual coefficient estimate; Bi’ of the
true parameter Bi' the presence of multicollinearity will

produce OLS estimates which on average are larger in

absolute value than the true values. To see this, Hoerl

and Kennard (1970a) have shown that
N 2 N
= ) B.+TV(B), (3) .
. i .
i=1 :

E(8'B) =‘E<T

implying that one or more terms (Bi) appearing in the left

hand summation are expected to be larger than the true

values %_in the right hand summation. It is in this sense

that the individual OLS estimates are deemed to be in-

accurate.

0
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of multicollinearity has led to a search for alternativé
- estimators. As seen above in (2) and (3),Vthe OLS estimates.
are imprecise due to the inflation of TV(é). Consequently,

the se;rch for alternatives to OLS have focused on deflating

the total variance. Considering the total mean square error

(TMSE) of any estimator B, defined as

K4

E{(B~8) ' (B=8)]"

TMSE (B)

(Total bias'B)2+TV(B),
it would be desirable to obtain an estimator which by
allowing a little bias, substantially reduces the tetal
variance and hence circumvents the undesirable effects of
multicollinearity. The criterion for a good estimator would
then be small TMSE.

The above considerations have led to the development
of several biased estimators each of which claim to have.
smaller TMSE than the OLS estimator. For reference, we now

list these estimators; they are described in greater detail

in Chapter 3.

1. If B, and B2 are two estimators of the true parameter

vector B the conventional definition of MSE is
Mi=E(Bi-B)(B.—B)', i=1,2. Then B2 has a "smaller"

MSE than Bl if Ml-M2 is non-negativé definite. Now
since TMSE(B,) trM an equivalent criterion is ob-

tained by comparlng the sizes of TMSE(B ) and .
TMSE(B ). (See Appendix 1). -
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E

The ordinary ridge estimator- (ORE) defined as

B (k)

1

= (X'X+kI) X'y,

where k>0 is fixed. The following methods of

choosing k are considered:

(a)

(b)

(c)

(a)

ORE 1;

ORE 2;

ORE 3;

Let Q =

The ridge trace method;

Choosevk = _&_ , whereﬁ

N

™

Choose k = , where

™ >
™ >

N is the number of independent variables;

N
2
L 1/x

B'B-0o
€ n=1

then the following rules determine k:

ORE 4a;

ORE 4b;

If Q9>0, choose k such that (B(k))!'B(k)=0Q.

If Q<0, choose k=0:

If >0, choose k such that (é(k))'B(k)=Q;

If Q=0, choose k=w,

Note that ORE 4a and ORE 4b are identical if >0,

however if Q<0, ORE 4a specifiés that 8 be used to



el r

A

estimate B whereas ORE 4b specifies that the zero

vector estimates B.

The generalized ridgé estimator (GRE) is defined as

- 1

a(K) = [(X*)'X*+K] ~(X*)'y

where X*=XP' (P being the NxN orthogonal transformation
such that P'P=I) and K is an NxN diagonal matrix with
diagonal elements kl,...,szo. The following method
leads to a'qriterion which is equivalent to choosingj

values for the ki(liiiN):
GRE‘l;.i. . For the model y=X*oa+e (a=Pf) obtain the OLS

~

estimates o, (i=1,...,N) and the estimate

N2 e 2
o, of o .

ii. Calculate

~2
o]
for i=1,...,NH.

i (0) ~ 2
N

iii. If ei(0)>l/4’ let ai(ki)=0.

~

~ a,
i
<1/4, let ai(ki)—————

1f O<ey l+e,
i

i(0)

where ai(ki) is the ith GRE and

>

1-2e, = ~71-4e; ()

i(0)

1 2ei(0)
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3. The Minimum Mean Square Error Linear Estimatof (MMSELE)

defined as

‘ Al [ ~ -

. MMSELE = B'X'y 8.
O +8'"X'"XRB
4, Stochastically Shrunken Estimators defined as
SSE1 = G6BB' (I+8BB") B
where 8e[0,»). A value of § is chosen by means of the

ridge trace method.

SSE2 = [1+ys2(8'8) "1]8 where
;r‘
- 7 S _ N-2
S =y y’B X'XB and y = T-N+3 -
5. Generalized Inverse Estimator defined as

- _ + '
GIE = A_X'y

where A:=(X'Xr)—l, r being a suitably: chosen rank of

X'X.

The performance of the abové estimators (in terms of
TMSE) relat}ve to OLS will be evaluated under a variety of
data conditions. First, however, the next chapter discusses,
in some detail, the properties of these estimators and the

claims made regarding their performance:

Y
’

// , j

g,
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CHAPTER 3

ALTERNATIVES TO OLS

Ordinary Ridge Estimator (ORE)

The ordinary ridge estimator is defined by

1

é(k) = (X'X+kI) X'y

where k>0 is fixed. Note that é=é(0) and é(k) is a‘biased
estimator if k>0. A comprehehsiVe‘theory concerning the
properties of é(k) has been developed by Hoerl and Kenhnard
’(1970a). In particular, the ORE minimizes the sum of
squared residuals subject to a constraint on the squared
Euclidean length (é(k))'é(k) of the estimator. Thus é(k),
for k>0 is "shorter" than §,~i;e., (é(k))'é(k)<é'é. In
addition, for any giveﬁ problem there exists a range of
vélues of k (admissable values) for which TMSE[é(k)]<TMSE(§).
However these admissable values depend on the unknown
coefficient vector B, on‘cs2 and the X matrix through the
eigenvalues of X'X. Thus no constant Qalﬁe of k can be
assured to yield an ORE which is better than OLS (in terms
éf TMSE) ggr all'B,‘oe2 and X. Consequently,various
"rules" have been developed for choosing an admissable
k value. There are essentially two types of rules -
subjective and mathematical.

The subjective method of choosing an admissable k ’
value (ORE 1) consists of examiningvthe ridge trace

which is a two-dimensional plot of Bi(k) .



and the residual sum of squares, ¢(k), for values of k in
the interv&l {0,1]. Hoerl and Kennard deem this to be the
best methodrfor selecting an admissable value of k and thus a
unigue é(k). They give the following criteria to guide
one to a good choice of k when examining the'ridge traces
- At a certain value of k the system will stabilize
~and have the genefﬁl characteristics of an '
orthogonal system;
- Coefficients will not have unreasonable absolﬁte
values;
- Coefficients with(apparently incorrect signs at
k=0 will have changed to have the proper sign;
- vThe residual sum of séuares will not have been
inflated to anvunreasonable value, i.e., not

be large relative to the minimum residual sum

of squares (at k=0).

The problem with the ridge trace method of selecting
k is thaﬁ’different investigators are likely to choose some-
what different values of k. (This problem is éxamined
in more detail in Chapter 6). This ﬁroblem with the ridge
trace method has led to the development of'vérious
mathematical rules for determining an admissable value

of k.

In their study of ridge estimation Newhouse and Oman
(1971) proposed the following choice of k (defining ORE

2):
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2

kK = & .

'B

Q>

™ >

The rationale behind choosing this value of7k is that

TMSE (B (k)) < TMSE(8) when

2
o
£

Since, in the presence of multicollinearity,
B'B .

k <

B'B>B'R, it will be likely that -

"2 2
o o

E . _E_ \
B'B B'B

A slight variation of ORE 2 gives us another choice

[

of k, namely

This choice of k (defining ORE 3) comes from an article
by Farebrother (1975). He observed that if X'X=I, then

TMSE (B(k)) is minimized at this value of k. 1In various
SN2 '
No

examples cited by Farebrother,
i - B'B
the minimal value of TMSE(B(k)) even though X'X#I. Also

generated approximately

Hoerl, Kennard, and Baldwin (1975) have shown that if
Na 2
€ is used as an estimate of k, then significant

B'B

improvement (in terms of TMSE) over OLS is obtained.




)
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McDonald and Galarneau (1975) base their choice of k
on an unbiased estimator of B8'B, the squared length of the

true coefficient vector. This unbiased estimator is given

by
0 =8'8-0_° ] 1/
n=1
~2_ g . . . 2 '
where 0."= g is an unbiased estimator of o, g(o)

being the residual sum of squares for the OLS estimate.
The mathematigal rules for choosing k are then given as
follows: |
ORE 4a. If 0>0, choose k such that (é(k))'é(k)=Q
If QiO, choose k=0.
ORE 4b. If 0>0, choose k such that (g(k))'é(k)=Q

If‘Q=O, choose k==,

ORE 4a and 4b are identical if Q>0, however if Q<0, ORE4a
specifies that é be used to estimate B whereas ORE4D
specifies that the zero vector estimates B. This follows
from the fact that as k approaches infinity, (é(k))'g(k)
approaches zero. The reason for basing the choice of k

on Q is that in the presence of multicollinearity

(3) shows that the squared Euclidean length of é is expected

to be too large. So, choosing k such that
(B(k))'B{k) = B'B-0 1/x (4)

is insuring that the squared length of B (k) is expected
™~ : ¥
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to egual the sguared length of the true coefficient vector.

That is from (4)

E{(B(K))'6(k)] = B'B

&

Thus unlike the OLS estimate B, the elements of B(k) are

not expected to be large in the presence of multicollinearity.

Generalized Ridge Estimator. (GRE) < )

. /
In their -1970a paper, Hoerl and Kennard propqlé;
a general form oﬁgthe ridge estimator. It is
obtained as fdllows: ‘
From the classical linear regression model (1) consider
X'X which is anNxN symmetric matrix. Since X'X is symmetric

A
there exists an orthogonal transformation P(P'P=I) where

P is NxN, such that
PX'X)P' = Q

where Q is a diagonal matrix with g;jgonal elements kl,...,AN,
the eigenvalues of the X'X matrix. We can then write (1)

as

& = . X*o+te (5) 

where X*=XP' and =P8,

The generalized ridge estimate (GRE) is defined as

2 (K) = [ (xX*) 'x*+K]) L (x*) 'y

(eR) "L (x*) ty
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where K is an NxN diagonal matrix with diagonal elements

kl,...,kHiO. Note -that o (K) is an estimate of a=PR. To

transform 2 (K) into estimates of B we use the following

relationship:
B(K) = P'a(K).

Instead of adding the same guantity k to each eigenvalue
of X'X as in ordinary ridge regression (ORR), the GRE is
obtainea by augmenting the eigenvalues of X'X by differing
positive guantities ki (i=l,...,ﬁ).

Cleangiif ki=k for all i, then.;(K)=é(k). In this
case, if §>O, Heocerl and Kennard (1970) have shown that

TMSE (B8 (k) ]<TMSEL2) provided that

2 -
Kk < > ™~
5 )
a
nax
wherg G0y =Thax {al,az,...,QN}.

J
A~

Similarly, when the ki are not equal, TMSE [a(K)]<TMSE (a)

L

(3¥Q-l(x*)'y is the OLS igtimate of a in model (5)) if

k., = -2, i=1,...,N.

&s with ORR, the values of ki are functions of the unknown
coefficient yvecter 2, ﬁgz and the eigenvalues of X'X.
Furthermofe, for GRR, there is no équivalent to the ridgeA
trace method of ORR for determining the optimal value of'ki.

Hoerl and Kennard (1970a) Suggest an-iterative procedure
p- .
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to determine the optimal ki values. By examining the

convergence properties of this iterative procedure,

Hemmerle (1975) was able to derive an explicit solution

for GRR.

GREl: The following steps lead to a critetion i,

%‘

This constitutes our selection rule for GRR.

~ which is. equivalent to choosing the

optimal k values for GRR. )
For the model
y = X*oate
obtain the OLS ektimates a, (i=1,...,N) and the
| ‘_}

~ R

. 2 2
estimate ¢ of o where
€ 9\ .

; 2 _ y'y-a'(x*)‘y'

€ T-N
Calculate
~2
9e
ei(O) = - for i=1, ..'Nj R
Aiai
If ei(0)>l/4, let ai(ki)=0.
- : a;
If 0<ei(o)§l/4, let(%i(ki) = Tte;

where a, (k.,) is the ith GRR estimate and
i1

1-2e. -
e, = i(0)

1 Zei(U)

rl-4e, 3
i(0) .

A
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The study of ORR and GRR has led to the development

4>/V of other biased estimators which attempt to alleviate the

ill effects of multicq}linéarity. o /7‘

Minimum Mean Square Error Linear Estimator (MMSELE)

2
The details of the MMSELE are given by Farebrother

{1975). It is defined as

gr = [ XY g , :
o, +B'X'XB :

.

~

—

The TMSE (B*) is less than thé TMSE of any other estimator
which 1s linear in y. Since it depends on B and 062 it is
not operational. Farebrother suggests using the operational

variant of B* given by

b‘X{y'

5 b
S +b'X"'Xb

b* =

where b and sE2 are any consistent estimators of B and

:\\/)' oezrrespectively. In particular heAsuggests via an
_ 2_" 2
example the use of b=g and S, =0,

Farebrother states, "Our study of Hoerl and Kennard's
worked examples suggests that the subjective method of the

ridge trace should be replaced by

MMSELE = b* = [—B XY |g

A

0€2+B'X‘x§
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Shrunken Estimators

Mayér and Wilkié (1973) have proposed the followinq
estimators as possible alternatives to OLS estimation'in
the presence of multicollinearity. For a detailed discussion
of these estimatdrs, the reade;\is referred to the above
article. o

In general, Mayer and Wilke define a stochastically

shrunken estimator (SSE) as

5

~

SSE = f£8

where f=f(B'B) is a scalar function of B'B.

.In particular for

SIR'B+ (148" 8) 16 (8" 8) 2]

rh
it

and

[1+ys2grg] ™t

Hh
i

where 82=y'y%é'x'xé and §, ye[0,») are fixed, we obtain

two shrunken estimators which (depending on the values y

of 8§ and Yy chosen) will have TMSE less than that of the
corresponding OLS estimate. The term "shrunken" is used

to describe the fact that the squared length of‘these'
estima£ors is smaller than the squared i@ngth of é. As

was shown earliér, this is a'desirable asset for an estimator

in the presence of multicollinearity as the squared length

A

of B tends to exceed that of the true coefficient vector.
The following shrunken estimators are included as

1
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alternatives to OLS in the presence of multicollinearity:

SSE1 = §[R'8+(1+8'8) Ls(8'8) 218

588" (1+688") 18, sel0,») ‘i

and

A

[1+ys2(8'8) 118, velo,«).

SSE2

As‘with ORR, the problem afises’of how to choose the
proper shrinkage factor i.e., a & and y which will ensure
that SSE1 and SSE2 have a smailer TMSE than that of é.
Mayer and Wilke (1973) suggest that § can be chosen
by plotting (SSEl)i against é range of values of § in [0,1]

N ]
and to then use the same stability criteria as used by

Hoerl and Kennard for choosing k in ORR. This method will

be used in this paper.

For SSE2 the value :

_ N-2
T T-N+2

is suggestea by Mayer and Wilke. This value of y will
guarantee that SSEZ2 has a smaller weighted total mean
square error (WTMSE) than B.l This value of y is used

in this study. .

1. The WTMSE of an estimator,B‘is defined}by Mayer
and Wilke (1973) as ’

WTMSE (B) = E(B-B) 'X'X(B-B).

[

~
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Generalized Inverse Estimator (GIE)

One of the assﬁmptions of the CLRM (1) is that the X
" matrix is of full rank N. This ensures that X'X is non-
singular and hence that (x'X) ! exists. If the rank of X
is less than N, the OLS estimating procedure breaks down
mathematically. However, in the presence of multicollinear-
ity, X'X may be "nearly" singular in the sense of possessing
near zero eigenvalues. These eigenvalues are made even
smaller in practice due to computer rounding error. As
seen earlier, it is the presence of these small eigenvalues
which leads to inaccurate and unstable OLS estimates of B.
This suggests that bétter estimates of B may be obtained by
effectively discarding these small eigenvalues from the |
estimating procedure. The.GIE attempts‘to'do just that. By
s
considering a range of "effective" ranks of X'X obtained
by"aiscarding?its near zero eigenvalﬁes the GIE obtains a
TMSE less than TMSE(%). The GIE and its propefties as
outlined by Marquardt (1970) are discussed below.

For the CLRM (1) consider the OLS estimate B=(X'X)_1X'y.

Suppose the rank of X'X is r, where r<N, then (X'X)_l does
not exist. The "solution" of y=XB+e can be written in the.

form

where A' is a suitably defined matrix of rank r. To see this,

congider the transformed model



y = X*o+te-

1 1

as defined in (5). Now(x'X) "=pQ "P' if X'X is of full rank N.

. But rank (X'X)=r implie§ithat the last (N-r) ordered elements
S\ : _ >
of Q@ are zero (or nearly so if X'X is "nearly" singular).

VPartition P as follows: | ' ,
P = (PrlPN_r)r
where P is Nxr, P _r&is Nx (N-r) .

'N

Partitition @ similarly:

where Qr is rxr, QN_r.is (N-r)x (N-r).

Now by supposition,QN_r=0. So,

Q I 0 P!
[ : r r
X'X = (P_I|P
r r' " N-r
0 ‘ 0 PNLr
P L}
r
= (P_Q IO) 1
rr PN_r K
=P QP!
rrr
ot -l_ -1 '
and (X'X ) "=P Q _ "P_
Let
at = (x'x 7!
r r



4+, . . ; :
then Ar is a generalized inverse, and : P
“+ +,
B = ArX Yy

r

is defined to be the generalized inverse estihator of B.

A: is a generalized inverse of rank r only if X'X is
of rank r. In ofder for'égz\ﬁfﬁ to be valid, the
effective rank (r)of X'X must be determinea. In general,
there is an “ogtimum“ value of r for any prqblemzbut it is
desirable to examine the GIE for a range of admissable
values ofAr for the following reason.

In prattice, X'X has eigenvalues falling into two
groups (note that the rank of X'X is the number of non-zero

ejgenvalues of X'X);

1. substantially greater than zero
2. slightly greater than zero.
Those gigenvalues in group 2 can further be different-

iated as; (a) zero but for rounding error; (b) genuineiy
non-zero. In practice, the distinction between

(a) and (b) may be unclear and there will be uncertainty
regarding the actual rank of X'X. thactShere may be a range
of aecceptable ranks that would bé reasonable choices. Ther
GIE however, has the ability to determine the generalized
inverse for any assigned rank in this reasogfblé range.

The ranks and hence thir corresponding GIE are deemed

admissable'(optimal) by the criterion of TMSE. fﬁat is,B:

-

-

. . A + A .
is an admissable estimator if TMSE Br<TMSEB. e
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~ + , . . . .
For Br, the assigned rank may be either an integer, r,

(1<r<N) represénting the number of terms retained in

1/1.5.8."
1 /355453

ood
+
]
o~

(where S, is the normalized eigenvector corresponding to

A.) or continuous variable (0<r<N) obtained by including
' + C .

all terms in Ar for which j is less than or equal to the

integer part of r, plus the fraction in the next term by

which r exceeds its integer part. The choice of the

range of values of r is based on inspection of the spectrum

of eigenvalues of X'X.

The above estimators are those that will be evaluated
in this study. The following Chapter summarizes and
discusses the findings of other emplrlcal studies whlch

have evaluatéé\varlous alternatives to OLS in the presence

of multicollinearify.
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CHAPTER 4

RESULTS OF PREVIOUS MONTE CARLO STUDIES

Newhouse and Oman (1971) conducted a series of

- Monte Carlo experiments comparing various ridge estimators
with each other and with OLS. Their model consisted of
two explanatory variables with 100 observations on'

each. The values of the correlation between the two
variables considered were .90 and .99. One value of

2 . ..
Oe and seven different true coefficient vectors were

considered.

The following ridge estimators were evaluated. They

pertain to the class of estimators defined by

1

B(k) = (X'x+K) Tx'y.

1. The first estimator (identified as R1lA by the authors)
set K = KI. Also X'X was in the form of a correlation
matrix. The value of k was chosen by considering the sum

of squared errors,
£EB8(k)] = [y-XB(k)]'[y-XB (k)]

as a function of o = ||B(k)]||, the length of the estimated
coefficient vector. The value of k corresponding to the

value of p'for which
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, _ a2 (£172)

dp2

is maximized is the one chosen. The estimator is claimed
by the authors to be the mathematical equivalent of the
ridge trace method of choésing k. However, as the authors
recognize, it has not been shown that a maximum for g
always exists. In fact, g consistently failed to achieve
a maximum for the models under consideration. In such

cases, k was assigned the arbitrag{\;j;ue of .5. It turned

out that RlA performed worse than OL or most values of

B. -

2. R1B was identical to R1A except that the variables
were not first standardized. R1A and R1B gave considerably
different estimates for the same value of B, but their

performance averaged over all the B vectors was similar.

3. .'RlC was the iterative procedure for determining K
in the orthogonal model presented by Hoerl and Kennard
(1970a) . its pérformance, in terms of TMSE, was markedly‘

worse than OLS.

4. R3A was the same as R1C except that
_ ~
9¢
k. = k = —x——7r, for all i,
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b
were the diagonal elements chosen for yﬁ . ™

5. R3B was the same as R3A except Eﬁat the variables

were not standardized.
6. R3C appears as ORE2 in this paper.

All three of these estimators were approximately equal to
OLS for r=.9. For r=.99 they wéré better or worse than
QLS_depending on the value of 8.

'Newhouse and Oman concluded that, "All the ridge
estimators ... did worse than OLS for ét least somé choices
of the true coefficient vector: Moreover, in our opinion,
the ridge estimators failed by a sﬁffi&ient number of cases
to’preclude their uéé".

A study by McDonald and Galarneau (1975) usés a
model with 3 explanatérylvariables with 100 observations
on each. They consider four different sets of correlation
(.64, .81, .95, .98) between the variables as well asA7 ‘

values of Ge and 2 values for 8.

They evaluate ORE4a and ORE4b presented in this paper
Qith OLS by means of TMSE as a function u, the degree of
éorrelation, g and O+ fhey also compare these rules with
the estimators proposed by Newhouse and Oman-for the two
variable case. 7 |

ORE4a and ORE4b proved to’be better than OLS for only

some values of y, GE and B, however the ¥eduction in TMSE‘




schieved in some cases led the authors to recommend their
use. .’,

Guilkey and Murphy (1975) introduce and evaluate a
modification of GRR. The authors refer to it as directed
ridge regression (DRR). It was developed on the basis of
the following discussion:

Ait is known that GRR may substantially reduce the total
vsriancé,relafive to OLS. Howsver this is done at the
expense of introducing bias into the estimating procedure.
DRR is a modification of GRR which attempts to redﬁce the
bias associatsd with GRR—while maintaining the reduction
in total variance afforded by GRR}’ As was discussed
previously, the individual OLS estimates which are most
affected by the presence of ﬁulticollinearity are those
which correspond to small eigenvalues of the X'X matrix.
The magnitude of an eigenvalue dictates whether or not the
variance of an OLS estimate will be unduly large - the
smaller the magnitude, the larger the vari;;;; of the
individual OLS estimate. This is evident from the formula

~

for the variance, of an OLS estimate, Bi, which is

,wIQ
M N

-

DRR alters only those diagonal elements of X'X which
correspond to relatively small eigenvalues. Consegquently,

only the individual estimates corresponding to small
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eigenvalues will be biased while those éorresponding to
large eigenvalues (whiéh do not contribute mucﬁ to the
imprecision of the OLS estimates) remain unbiased. The
end resuit should be a reduction .in total bias over GRR,
a reduction in total variance over OLS and finally a
reduction in TMSE over both OLSVand GRR.

Specifically, Guilkey and Murphy introduce and
evaluate the following DRR estimators:

Recall that the GRE is
- -1 '
a(K) = (R+K) “(X*)'y

where { is the diagonal matrix whose diagonal elements

are the eigenvalues, li, of X'X. In order to apply DRR

it must be established which of these eigenvalues are to
be considered as "small". Guilkey and Murphy consider

an eigenvalue, Ai, small if

where A is the largest eigenvalue of X'X and ¢ is

some arbitrary constant. (The authors considered 3 values
of ¢ in their ewvaluation, namely 1, 2 and 3).
Once the small eigenvalues have been identified the

authors construct an esﬁimator called DREl, which is

based on an iterative procedure for selecting valueg of
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ki as suggested by Hoerl and Kennard (1970a). Here,

however, only those values of ki corresponding to the

small eigenvalues of X'X were added to the diagonal

elements of Q. - ' ’E

A second variation given by Guilkey and Murphy,

called DRE2, allows ki=k (wherefi is4selected as above)

to increase until the unexplained variance has increased

from o to (o§+qci) where g is some arbitrary constant

{(the authors used g=.1, .05 and .0l in their study).

The evaluation used a sample of size 30. Different

- degrees of multicollinearity and values of the true

coefficient vector were considered in the experiment. The

number of regressors usedeas 2 and 5. DREl and DRE2 were

vcompared with GRR and OLS, the comparative criterion being

TMSE. —
The results obtainé? by the authors for the 2
regressor model showed that DRE1 and GRR usually provided
substantial reductions;in TMSE felative to OLS with.
DREl generally slightly better than GRR.' DRE2 consis-
tently provided a reduction in TMSE, though not as sub-
stantial as DRE1l and GRR. DRE2 was found to be less biased
than DREl and GRR.

For the 5 regressor model, GRR and DRE2 (with c=1
and 2) consistently provided an imﬁébvement over OLS.

-

In general, DREl {c=1 and 2) resulted in a dramatic

improvement over OLS in terms of TMSE. Also DREl proved




better than GRR and DRE2 however DRE2 was less biased.
N Hoerl, Kennard and Baldwin {1975) evaluate ORR

where k is chosen to equal

NeZ
£

[4

B'B

where N is the number of independent variables. They

found that significant improvement over OLS in terms of

TMSE is achieved by using this estimate of k.

i

In a later paper, Hoerl and Kennardl(1976).note
that in general, B8'3 will be larger than B'g particu-

larly in the presence of multicollinearity.

This
NG 2 |
fact may then make :—% too small. To overcome this
B'B

difficulty the authors suggeét an iterative method.

They consider a sequence of estimates of B and k given
as follows:

5 ) .
. Na':' . . ) ch
B,/ky = i 8(ky),k, = —= ;
1 el 1 2 Yy A
B'8 (B(ky))'B(ky)
X N&i
B(ky) ky = ; ;

31.
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Here B(kl) is used in place of B (the iterative method

using B is suggested in Hoerl and Kennard (i970a)) since

(B(kl))'B(kl) is smaller than B'BR. Several methods for

terminating the iteration arerdiscussed in Hoerl and
Kennard (1976) .

The conélusions of an empirical evaluation of the
above procedure were that a significant reduction in
TMSE was achieved and that the improvement increases as
the degree of multicollinearity increases. .

Lawless and Wang (1976) evakuate a number of ridge
and principal components estimators. The ridge estimators

considered in this paper are of the following type;

- A, ~
. 1
%5 (_—A Tk ) oj
1 1

where a; is the OLS estimate of a; in the canonical model .

' (5). The estimators vary as to the method of choosing ki'

the parameter in GRR. A detailed discussion of the
estimators is given in the above paper.

In addition to comparing the estimators in terms
of TMSE error, the authors use a criterion called the
total mean square error of prediction given by

N

M= Z

~ 2
l_lAiE{(ai-ai) }.
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The major conclusion of an empirical evaluation was
that, "the ridge estimators considered have m;ch to
recommend them on the basis of the mean square érror
criteria considered, whereas}the principal component
estimators do not offer a great improvement over OLS".

In general, the various ridge estimators evaluated
~in the above studies perform better than OLS in the presence
of multicollinearity (with the exception of the ridge
estimators evaluated by Newhouse and Oman (1971)).

However, there is no clear indication of which ridge -
estimator is best as the performance of the various ridge

estimators depends on such factors as Oc v g~and X'X.

kY

The remainder of the thesis will attempt to clarify the

relative merits of the alternatives to OLS under a variety

of data conditions.
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CHAPTER 5

DESIGN OF THE EXPERIMENT

The Monte Carlo Evaluation Study

The criterion for comparing estimators will be TMSE. -

In particular for ORR (as well as for the other esﬁimators
considered) Lhe TMSE of é(k) depends upon the true coefficient.
vector, B; the error variance, ci;’&nd the sample data

matrix X (through the eigenvalues of X'X). Thus different
values of B, cz and the degree of multicollinearity (as
ref%ected in the elements of X'X when in correlation form)
"will be used in the experiment. To determine the appropriate
values it is necessary to investigate TMSE é(k) as a function

of R, 02 and p (the degree of multicollineérity) respectively.

£

1. TMSE [R(k)] as a funetion of B8

Newhouse and Oman (1971) have observed that if TMSE
[B(k)] is regarded as a funcfion of B8, with og, k and X “\\
fixed, then subject to the constraint that the Euclidean
length of 8, ||8]|, be one, the TMSE [8(k)] is minimized
when B is the normalized eigenvector (VL) correspondiﬁg to
the largest eigenvalue of the X'X matrix (note ||VL||=1).
Similarly, TMSE [R(k)] is maximized when g = V_, where
Vs is the normalized eigenvector corresponding to the y,

smallest eigenvalue of X'X. ’ -
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It should be noted that the above result requires
that k be fixed. For any given X howevér, the absence of
a criterion for explicitly determining the optimal value
of k means that k is not fixed.

Despite this, the above result concerning TMSE

[é(k)] and B presents a rationale for choosing values of

8. The two values eof 8, V., and V_ will be used through-

L

out for all experiments.

To obtain VL and Vs explicitly for a given X matrix,

the ordered eigenvalues,

, .
Ay 2 Ay 2 ... > 2 0f X'X are determined. For i, and A,

we solve the equations
'R- = D' =
(X'X Al)ZL 0 and (X'Xx )\N)Zs 0

to obtain the eigenvectors ZL and ZS corresponding to

and ),, respectively. We then normalize ZL and Zs

N

to obtain V. and Vs i.e.

L
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2. TMSE [B (k)] as a function of O~
The TMSE[BR (k)] is the sum of the total variance and

squared total bias of the parameter estimates. Thé total

-

variance TV[B (k)] is given by

A

N .
2 i
¥ —— .

TVIB(k)] = o
4 i=1 (Ai+k)

7

5 S A -
If o e[0,1], then TVB(k) (and hence TMSE[R(k)]) is a
strictly increasing function of oez approaching o as o€2+o
and being maximized when 0€2=1. Many of the rules éonsidered
here for choosing a value of‘k in ORR (as well as some other
estimators) are functions of Sez, an estimate of oez.
By alldwing 052 to take on different values its effect on
the choice of k can be determined.

Vvalues for Y where €y i=1,...,T are independent

N(o,oez) pseudo-random numbers are generated. 1In view of
the above discussion the following values of O. will be

used for all experiments; 0.1, 0.5 and 1.0.

3. TMSE[é(k)] as a function of p, the degree of
mﬁlticollinea;ity.

As mentioned in the introduction, as\the desgz; of
"multicollinearity increases (or a}ternatively, as the
vectors of X deviate further from orthogonality), AN’
the smallest eigenvalue of the X'X matrix, approaéhes zero.
The TMSE{éUQ](as well as the TMSE of all other estimators
considered in this paper) depends on the data matrix X

through the eigenvalues of the X'X matrix., So the TMSE
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of our estimators is a function of the degree of multi-

- collinearity. ]

If X={x1,...,xN) is a set of explanatory variables,
then the degree of(multicollinearity of the set X depends
on the corfelatioﬁ within all pgssible subsets of X (with
more than one element) and the nuﬁber of these subsets
which are highly correlated. For our purposes we will
only be concerned with the correlation of subsets of size
two.

v :g? -
The desired degree of multicollinearity may be obtained

by generating the observations on the explanatory variables

as follows:

Let

Xtn = 1-u* Zen M2 w41
for t;l;...,T and n=1,...,N where ztn’ n=1l,...,H+1 are
independent i (o,1l) pseudo - random numbers and p is specified
so that the correlation between any two xtn is uz. In
this study pu=.6,.8,.9 and .95. These variables are then
standardized so that X'X is in correlation form. The role of

the standardization is presehted in Appendix I.

Observations on the dependent variable are determined by
yt=81xtl+...+8NxtN+Et, t=1,...,T.

It is common in practice to have models with a
relatively large number of variables and a small number of

observations. Thus we set W=6 and T=20. Fifty samples are

generated by allowing the random error e (and hence the
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dependent variable) to change while the explanatory variables.

(X) and the true coefficient vegtor (B) remain fixed.

For each sample so constructed the following calculations

are made (for a given B8, 062 and u) ¢

1. é(k) = (x'x+k1)'1x'y

A

(a) For the ridge trace method, ORE 1, B(k) is

evaluated for 15 values of k (0,.01,...,.05,.1,...,

.9). Note that 8(0)=§.

: 082 No 2
(b) For ORE2 and ORE3 we calculate —< and AEA
B'B B'B

respectively.

(c) For ORE4a and ORE4b, (B(k))'B(k) is evaluated for

201 values of k (0(.0005),.05(.001),.1(.01),

.5(.05),1.0). k is chosen so that

A

A A A N
(B(k))'B(k) = B'B-0_ nzll/xn.

2. For GRR, we generate the model Y=XB+ec as above.
For each X matrix we must determine XP' and PR where P is
the orthogonal transformation such that P'X'XP=Q.

Now (X'X)P=PQR. Let P=(V VN) and let

precer
An(lfnﬁn) denote the nth diagonal element of Q, then

(X'X)V =\AnVn, n=1,...,N

implying that Vn is an g%genvector corresponding to the
eigenvalue An. Thus the columns of P are the eigenvectors

corresponding to the eigenvalues of X'X. We then form the

<~

[ e
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moael

(XP')PB+e

<
i

]

X*g+e

and employ GREl to determine the optimal ki'values and

a(K). a(K) is then transformed to B(K) by
A A i’
B(K) = P'a(K).
B'X'y 4

3. br = |5 ~|8, the MMSELE of 8. | £§2f
o, “+B'X'XB é

lB for 15 values of § (same

4. (a) SSEl = &BB' (I+8BB')"
as 15 k values). An admissable § value is obtained

by the method of the riage trace.

(b) SSE, = [1+ys®(8'8) 118 for
N-2
= Tom+z - 0-23
. 5. GIE = A:X'y where r is chosen after inspection _gf the

eigenvalue spectrum of X'X.

Throughout the above discussion we have assumed'that
X'X is in correlation form and X'y represents thé vector of
correlations between the dependent variable and each explan-
atory variable. The coefficient estimates obtained from this
standardized model are the "standardized" coefficient estimates.

Appendix 1 provides an interpretation of the standardized
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coefficient estimates as well as the method for transform-
iﬁg the standardized coefficient esglmafes to the non- A
standardized form. It should be noted that the properties
of the estimators considered in this paper have been developed
for the standardized model. 1In particular, the TMSE proper-
ties are developed in the context of this model. That these
TMSE properties hold in the non-standardized model is
discussed in Appendix I. This result is important since -
if TMSE(B*)<TMSE(§) holds in the standardized model we

wish this result to be preserved when the coefficient
estimates are in the original units.

The experiment presented above is repeated fdr all

values of u,,oez and B.

Criterion For Evaluating Estimators

The estimators (and rules) presented here will be com-
pared with each other and with OLS through the Monte Carlo
simulation method. fo evaluate their relative performance,
a criterion which is deemed desirable or optimal for
estimators to possess must be chosen.

When confronted with a small sample §ize, the desiréble
aspects of an estimator are that it hmnaaksmall total bias
1and‘£otél variance. Ideally, we would prefer an estimator
which is unbiased and has a smaller total variance than any
other estimator, including biased ones. Unfortunately, in

the presence of multicollinearity, the acceptance of an

unbiased estimator (OLS) is made at the expense of a large
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total variance. Given that Ehere is a tradg—off.between the
size of the total variance and the amount of total bias of
an estimator, the alternati&es to OLS presented here hope
that by allowingAa little biéér theltotal t?riance can be’
greatly reduced. The ideal of unbiasednes; and minimum
total variance is then replaced by ﬁhe next best thing -
an estimator'isrdeémed desirable if its total bias and total
variance combined is smaller than any other estimator.
This property is manifested in the TMSE cr%térion.

Being forced to choose among biased estimators there
may sﬁill be those who prefer a small total bias (despite
the size of the total variance) or vicejyersa. Thu§ in
addition to TMSE, the total bias and to%al variance of each.
estimator is reported separdte{y.

In summary, the following criteria will be used to °*
evaluate the proposed estimators. (Note that the total

bias, total variance and total mean square error have been

estimated on the basis of 50 samples).

6
1. Total bias B* = [ (B*-B.)
. i i
50 i=1 -
1 (BDI .
where EI = lflgﬁ———-is an estimate of EBY.
2. Total wvariance B*%*
50

=1 2
E j£l<e;-§;) ] f
i=1

50
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3. TMSEBR* = (total bias B*)2 + total variance R*.

In addition to the above, the following gquantities were -

recorded. - -
1. The average squared length of the egtimator.
2. The average k value of the ORE's.

3. -The average Q value for ORE4a and ORE4b.

\

Evaluation of the Ridge Trace Method of Choosing k in ORR

The performance of the ridge trace method of choosing
k, as proposed and accredited by Hoegl and Keﬁnara (1970a,
p.65) and several other investigators, has never been
evaluated save in several specific applications. This is
due to its subjective nature; the choice of k depends on
who is examining the ridge trace. Despite this drawback,
the ridge trace method is being used in practice (eg. Watson
and White (1976) P and is claimed by Hoerl and Kennard to
be the method for achieving a better estimate of B.
Consequently, an attempt will be made here to evaluate this
technique.

To do this, 14 individuals with general experience
in the area of econometrics were each asked to choose their
k values for 50 graphical representations of the ridge trace.
The standard'deviation of the k's so.chosen was recorded
to determine the‘subjeétive error associated with the
ridge trace method. An interval around the k value chosen
will be constructed and the ORE evaluated at the endpoints

(as well as at the mean value) to determine the sensitivity
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of the TMSE to tgg.k valde chosen. The above

~evaluation will provide an indication of the sensitivity

associated with the ridge trace selection of k in ORR.
]



44.

CHAPTER 6

RESULTS AND CONCLUSIONS

As discussed previously, the use of ridge regression
as a viable alternative to OLS uﬁder conditions of
multicollinearity is dependent on finding a method
which consistertly chooses a k value such that TMSE{é{k)]<
TMSE(é)} Consequently, research has focused for some
time on finding methods of selecting a k valué which
would provide ORR with such consistency.

One such methodaof selec£ing k values, the ridge
trace method, was claimed by Hoerl (1962) to be thé best
method. However, the subjective nature of this method re-
sulted in research being directed at developing mathematical
methods for selecting an admissable k value. Several such
mathematical methods subseguently appeared in the literature
as possibly being bette; alternativéé to the subjective
ridge trace method. The subjectivity of the ridge trace
method, of course, lies in the fact that different in-
dividuals are likely to choose different values of k
through the wvisual interpretation of a given ridge trace.

In addition to the various ridge estimators, severai
other estimators appear in the literature which claim to
be éuperior to OLS (and in some casés to ORR} in the
presence of multicollinearity.

This thesis investigates the claims made above by
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evaluating the relative performance of these estimators

(in terms of TMSE) under a variety of data conditions.

In particular,J{g;\}urpose df this thesis is to: |

1. Estimate the "subjective error" associated wiph the
ridge trace method of selecting k for ORR; |

3. Compare the performance of ORR using the subjeétive
ridge trace method of selecting k with the pérformance
of ORR when the mathematical methods are used to
select k;

3. Compare the perfo}ménce of all ridge estimators and
all other ei}imators considered with OLS aqd with each
other under a variety of data conditions;

4. Investigate and compare the performance of all
estimators as functions of B, the true coefficient

2 .
vector; o , the variance of the error ‘term; and yu,

the degree of multicollinearity.

CONCLUSIONS

In summary, thg/ﬁollowing are the conclusions obtained
(a detailed discussion of thése conclusions is presented
throughout the remainder of this chapter):
1. the "subjective error" of the ridge trace method of
selecting k was estimated tovbe 0.062. Thét‘is,
on the average, the value of'k chosen by using the
ridge trace method will vary by 0.062 from individual

to individual. The subjective error of 0.062 amounts
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4

to 44% of the average value of k (0.14) chosen by
fourteen individuals (over a sample of 50).

The ridge trace method of selectihg k is a consistent
method providing improvement in TMSE (or in a few
cases, no significant increase) relative to ORR

using a variety of mathematical means to select k:

' The ridge trace method is considered to be the best
method for choosing k (relative to the other methods
considered).

The ridge trace estimator ranks first in overall
performance relativg to OLS and‘relative to all other
estimators considered. Furthermore, -~in the presence
of ‘multicollinearity one of the alternative estimators
should be used in place of OLS. In particular, the
fidge trace estimator or ORE3 can be used to ensure

a befter performénce in most cases.v

The TMSE of the estimators considered (and consequently,
the performance of these estimators relative to OLS)‘
was demonstrated to vary according to the true valﬁe
specified for oM and B. It was found that the
performance of all estimators relative to OLS improves
as u, the degree of multicollinearity increases.

When BS is the true coefficient vector, the relative
TMSE of the alternative estimators and OLS appears

to be a decreasing function of a. for values of y.

When BL was the true coefficient vector, the TMSE

T T
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of SSE2, OREl, SSE1l, GlE and GRR relative to TMSE(OLS)
decreased as O, increased. No definite relationship
was found for ORE2 and ORE3. The relative perférmance
of the estimators was found to be particularly sensitive
to the true value of B. Estimators which performed

well relative to OLS when BS was the true coefficient
vector, saw the situation reversed when SL was the

true coefficient vector. (This result is discussed

further in this Chapter and in Chapter 7).

RESULTS

Apbendix 3 contains the results of the Monte Carlo
evaluation of the estimators considered. Table Al contains
the X'X matrices (correlation mat:ices) for uy=0.6, 0.8,
0.9 and 0.95. Table A2 contains the eigenvalues for each
X'X matrix.‘ The true,coefficient vectors, BS and BL
(being the eigenvectors corresponding/to the smallest and
largest eigenvalues of each X'X matrix respectively) are
pggsented in Table A3. Table A4 contains the avérage
i&&:f 50 samples) k values for each ridge estimator and the
average § value for SSEl. 'Table A5 gives the average Q
value and the number of negative Q values (out of 50
samples) for ORE4a and 4b. The average (over 50 sampleé)
of each estimator is presented in Table A6. Tables A7,

A8 and A9 contain the average total bias, average total

variance and average total mean square error of each
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2
Oe
for each

estimator respectively. The value of
o max

estimator, degree of multicollinearity and each value of

1

B, appears in Table AlQ. Finally, Table All gives t?e

g
number of k values (out of 50) in the interval <i, S )
- a“max

-

for each ridge estimator.

1. Subjective Error of the Ridge'Trace Method

As discussed at the beginning of the Chapter, the
ridge trace method of selecting an admissable k value in
ORR was claimed by Hoeri and Kennard (1970a, p.65) to
be the best method for obtaining a better estimate of B
under conditions of multicollinearity. However, the ridge
trace method is subjective - given anykbraphical representa-
tion of the ridgédtrace, dirfferent individuals will choose
different values of k no matter how stringently they
follow the guidelines given by Hoerl and Kenn;?ET This
section proposes to estimate how subjective the ridge
trace method is and how the subjective error affects the
pe?formance of ORR (in terms of TMSE) relative to the
performance of ORR when various mathematical means are used
to select k.

 The subjective error associaped with the ridge trace
method was estzﬁﬁted in the folié&ing manner: Fifty
samples were generated with 0€=0.5, u=0.9 and B=BS.

" 1

For each sample, B(k)=(X'X+kI) X'y was evaluated for 15

values of k between 0 and 1. A ridge trace was generated
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for each of the 50 samples. Figure 1 displays the ridge
trace for one such sample.

Although the graphical representation of the ridge
trace changes from sample to sample»(and for different
values of p,0 and B) it is assumed that the subjective
error will be constant across sampies. This assumption
is based on the premise that the subjective error is not
a function of the ridge trace method per se, but rather a
functioh of who is examining it. (For comparative purposes,
an example of the ridge trace for SSEl with u=0.9, 0.=0.5
and B=BS appears in Figure 2).

To estimate the Subjective error, fourteen individuals

”

with experience in-the area of econometrics were each>
provided with copies of éhe 50 ridge trace graphs as
outlined abové. Each individual was requested to choose a
value of k for each ridge trace -according to.the guide—
lines given by Hoerl and Kennard. The average standard
deviation (over 50 samples) of the fourteen sets of k values
so chosen was taken to be the estimate of the subjective
error associated with the ridge trace selection of k. The
subjective error was estimated to be 0.062. The average k
vaiue (over 50 samples) of the fourteen sets of k-values
chosen was 0.14.

Thus, the value of k chbgen via the ridge trace method
can be expected to differ by én average of 0.062 from

individual to individual due to the visual interpretation
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Ridge Trace for u=.9, 0€=.5, B

Figure 1
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required by the ridge trace method. This subjective
error of 0.062 amounts to 44% of the average k value
(0.14).

The concern caused by the subjective error of the
ridge trace method of selecting k is that it may/gé in-
consistent with respect to other means of selecting k.
That is, oh average, due to thg subjective error, TMSEé(k)
where k is chosen from the ridge trace may exceed TMSEé(k)
with k selected by some mathematically consistent method.
If in fact this were the case, a researcher would be wise
to opt fof the mathematical method of choosing k. To
determine if this indeed is the-case, the following
experiment was conducted.

The average k value was obtained from a sémple of 50
using the ridge trace method for each value of O.r M and B.
This average k value was adjusted by the average variation
of 0.062 obtained from the subjective error evaluation;
That is, if kA is the average k value chosen (over 50

samples) for a given value of u, o_ and B, then TMSE[B(kA)],

£
TMSE[B(kmin)] and TMSE[B(kmax)], where kmin=kA~0.062
and k =k, +0.062 are averaged and compared to the

max A v
TMSE of ORE2, 3 and 4a, b, the ridge estimators where
mathematical methods are used to select k. Table 1 below
reports the results of this comparison.

When'BS is the true coefficient vector, the TMSE of

the ridge trace estimator, OREl is less than the TMSE of
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OREZ2, 3 and 4a, b for almost all values of OE and u

(for py=0.6 and 0.8 and o0=0.1, TMSE of ORE2, 3, 4a andt

b is slightly less than the average TMSE .of OREl). Further-
more, as the degree of multicollinearity increases, the
performance of the ridge trace éstimatpr improves relative
to the other estimators. On the basis of these results, it
is concluded that, on average} the ridge trace method of
selecting k, in spite of its subjective nature, is con-
sistent, and hence is a better method than the mathematical
methods considered (in terms of proviaing an averagé_
improvemeht in TMSE) when BS is thé true coefficient

vector.

The results are not as apparent when BL is the true
coefficient vector. 1In the majority of cases,

TMSE (ORE2) <TMSE (ORE1) , howéver only marginally so. ORE3
exhibits slightly better results than OREl for small
values of OE with the results feversed for‘o€=l and - .. =~
for puy=0.95. Both ORE4a and b in general have a greater
TMSE thén ORE1l.

It is concluded that thé ridge trace method, in
general, is superior to the mathematical methods considered
for ORR. This conclusion ig based on the conéist;nt
performance and significant improvement in TMSE of OREl

when Bs is the true coefficient vector. When BL is the

true coefficient only one estimator, ORE2, performs better
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(in most cases) than OREl and only by a slight margin.
furthermo;e, as g increases the performance of ORE1l
improves (and even exceeds the performance of all other
estimators) .

In general then, it is concluded that the ridge
trace method of selecting k is a consistent method and
that improvement in TMSE (or in a few cases, no significant

increase) results relative to ORR using mathematical means

to select k.

2. Relative Performance of the Estimators

This section compares the performance of each estimator
considered relative to OLS and then relative to each other.
The criterion of performance will be TMSE. In particular,
the quantity M, defined by the ratio)

TMSE(Bl)

M= THSE (F,)

is used to compare any two estimators, Bl and 62.

A. Performance of Estimators relative to OLS
This section compares the performance .

of OREl, 2, 3, 4a, b, MMSELE, GRR, GlE, SSEl, and SSE2
TMSE (B*)
TNSE (R)

other than OLS, is used in making the comparison. Table 2

with OLS. The ratib, M= ,»whefe B* is an estimator

contains the value of M for each estimator as a function of
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g, o, and u. The results contained in this table are

-

discussed below:

a. M as a function of 8

In general, the performance of all estimators (with
the exception of SSE2) is much worse when B is the eigen- -
vector corresponding to the largest eigenvalue of X'X.

For this B8, M is in the neighbourhood of 1 meaning that
most estimators are slightly better or worse (depending on
the wvalue of . and u)_£han OLS. | /

The estimators which are most sensitive to thg value of
,the true coefficient vector are GRR and SSEl. For BS, GRR
puts in an astounding performance with .05<M<.60 for all.
values of u and o_. However, for B, 2.26<M<4.28 for GRR.
Similarly, for SSEI, .21§Mi.48 when Bé is the true coefficignt
vector and 1.59<M<3.34 when BL is the true coefficient
vector.

When BS is the true coefficieht vector, the average .
ridge trace estimatcr, OREl, performs well relative to QOLS,
with .25<M<1.55. For 8, .88<M<1.05 for OREl. The
remaining ridge estimators perform consistently better
(or at least as well as) OLS. ORE3 perfp;ﬁsrthg‘best in
this group with .44<M<1.00. For OREZ, ORE4a and ORE4b
the respective ranges of M are [.81, 1.00}, [.56, 1.00}

and [.74, 1.00]. For SL' these estimators, on the whole,

perform worse than OLS in varying degrees. For OREZ2,
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.QRE3, ORE4a and ORE4b, M4is confined to the following
intervals respectively, [.97, 1.01}, [.91, 1.071, [1.01,
1.46] and [.95, 1.20]. '

| For both BS and BL’ GIE performs as well as or

better than OLS. For BS’ .27<M<1.00 and for BL, .87_<__I*4_<_}.00.~
It should be noted that fo; p=.6 and .8 the GIE is in fact

~

8. This is so since the value of r choosen was 6, the

E

rank of X'X. Had we not restricted ourselveé’to integef
values of r, the performgnce of the GIE may have been
improved in these cases.v (For a complete discussion of
the selection of r the reader is referred to Marquardt
* (1970)) .

The performance of SSE2 is better for BL than it is.
for BS; a reversal of the situation experienced by all other
estimators. For 8, 1.0<M<l.18 and for 8, .82<M<l.0.
In fact for BS; SSE2 consi§£entlf performs worse than all
other estimators however, for B, it performs better than

all other estimators in every case save u=.95, c€=1.

b. M as a function of O

When Bs isvthe true coefficiént vector, M appears
to be a decreasing funct;on of g, (for allfvélues ofﬂuy”aﬁa'”_
for all estimators except SSE2. When SL is the true coefficient -
vector, and for SSE2, OREl, SSEl, GIE and GRR, M appears
to be a decreasing function of o_ for all values of ji

ORE4a and MMSELE .are increasing functions of ce'for all
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values of y. For ORE2 and ORE3, M increases as Oe increases

for p=.6 and .8 and decreases for u=.9 and .95.

c. M as a function of u

Regardless oflthe true coefficient vector, for all
estimators, M decrease; as u increases i.e. the performance
of all estimators relative to OLS improves as the degree
of multicollinearity increases. |

As seen above, the performance of the estimators con-
sidered depends‘on O the standard deviation of the error
term; u, the degree of multicollinearity; and most
critically on B, the true coefficient vector. Since none
of these parameters are known in practice, a researcher
would be in doubt as to which estimator to use'given a
particular sample. To aid in making such a decision, we
provide an overall ranking of the estimators which takes
into consideration the following:

- the overall performance of each estimator (over

all values of oe;iu and 8),
- the degree of improvement of each estimator over
OLS and relative to each other.

Table’3 contains the aggregated TMSE ©f each estimator
which is obtained by summing the TMSE of an estimator over -
all values of Oc and p (for a given B). Tables—4 and 5

~contain the ratio of the aggregated TMSE of the estimators

v



for BS and BL respectively. For example, the entry in

row 2, column 6’(2.09) in Table 4, is the ratio-of the
aggregafed TMSE(ORE4a) to the aggregatéd TMSE (ORE1l) meaning
that the aggregated TMSE(ORE4a) is 2.09 times greater than
the aggregated TMSE(ORE1l) . Tableé.4 and. 5, then provide

the overall relative performance of the estimators.

Table 6 ranks the estimators in'terms ;f the magnitude
of the ratio of their aggregatéd TMSE to the aggregated
TMSE (OLS) for BS and BL individually, and forxr BS ;hd BL
together. For example, the aggregated TMSE(OREl) (for
BS and BL) is .68 times that for OLS. - This table provides
the overall pérformance of the estimators relative to OLS

in order of improvement.

Finally, Table 7 presents an overél} ranking of the
estimators for BS and BL individually and taken 'together.
For example, for BS and BL together,’the'aberagehratio i
for OREl is .80. This was obtained by summing the ratio
of the aggregated TMSE(OREl) to the aggregated TMSE of |
each estimator and then dividing by 10, the number of

estimators other than OREl.
e

B. Overall Performance of the Estimators

The ridge trace estimator, OREl, ranks first in overall
performance relative to OLS and relative to all other
estimator; considered. However, this is based on an

average performance over all -values of Ocr M and 8. When




Table 3

Aggregated TMSE

Estimator QS BL

OREL 3.719 22.345
ORE2 8.898 22.415
ORE3 6.096 22.442
ORE4a 7.777 26.108
ORE4b 8.315 23.645
MMSELE 8.686 22.682
GRR 1.732 65.951
GIE 8.419 22.336
SSE1 2.361 53,461
SSE2 10.658 21.410
oLS 10.232 22.564

62.
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Table 6

Ratio of Aggregated TMSE of Estimators to
Aggregated TMSE of OLS. ’

65.

5 and'BS

Rank Ratio Rank Ratio Rank | Ratio
GRR .17 SSE2 .95 ORE1 .68
SSE1 .23 OREl .99 ORE3 .80
ORE1 .36 ORE2 .99 GIE .91
ORE3 .60 GIE .99 ORE2 .93
ORE4a .76 ORE3 1.00 ORE4b .93
ORE4b .81 MMSELE 1.01 MMSELE 93
GIE .82 ORE4bl 1.06 ORE4a .96
MMSELE .85 ORE4a 1.16 SSE2 1.0

ORE2 .87 SSEL 2.37 SSEl 1.3

SSE2 1.04 GRR 2.92 GRR 1.55
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"~ Table Overall Rank of Estimators Based on Average
Ratio of Aggregated TMSE of the Particular
Estimator to all Estimators
BL BS and BL—
Rank Average  Rank Average Rank Average
Ratio Ratio Ratio
GRR .29 SSE2 .82 ORE1l .80
SSE1l- .42 ORE1l .86 ORE3 1.06
ORE1l .73 GIE .86 SSEl 1.31
ORE3 1.25 ORE2 .86 GIE 1.32
ORE4a 1.63 | ORE3 .86 ORE4a 1.33
- ORE4D 1.75 OLS .87 O§E4b 1.33
GIE 1.77 MMSELE .87 MMSELE 1.35
MMSELE 1.83 ORE4Db .91 ORE? 1.37
ORE2 1.88 ORE4a 1.02 GRR 1.50
OLS 2.17 SSE1l 2.19 OLS 1.52
SSE2 2.27 GRR 2.72 SSE2 1.55
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BS is the true coefficient vector, both GRR and SSEl
pe;form extremely well (and better than OéEl). For BL
however, these two estimators do not perform well. Since
B is not known in practice,vit would be unwise to use
GRR or SSE1l due to their sensitivity to‘the'true value of
B. Rat;er, it is recommerided that OREl or 3 be used as,
on average, they provide a substantial ihprovement over
OLS for BS (and for extreme mu1ticollinearity). For BL
OREl and 3 do not perfofm significantly worse than OLS.
The general conclusion drawn on the basis of the
overall performance of the estimators is that one pf the"
alternative estimators should be used in place of OLS?khen
the data exhibits multicollinearity. In particular the
ridge trace estimators, OREl, or ORE3 can be used to
ensure a good performance in all cases. If a particular
value of 0.+ W Or B is.suspected, the estimator which
provides the best performance for these values can be

used. Tables 2, 4 and 5 can be used to make the decision

as to which estimator to use. ,
hS



CHAPTER 7 |,

SUGGESTION _ FOR FUTURE RESEARCH

This thesis has concluded that there ére several estimators
(eg. various versions of ridge regression) which, in most
cases, perforﬁ better than OLS in the presence of multi-
collinearity on the basis of the IMSE criterion. However,
the relative performance of these estimators depended
most critically on the direction of the true coefficient
vector, B. That is, most estimators performed particulariy
well relative to OLS when B was in the direction of the
eigenvector corresponding to the smallest eigenvalue of
the X'X matrix. However, when B was in the direction of
the eigenvecﬁor corresponding to the largest eigenvaluefh
of X'X, most of the estimators ‘perfoimed worse than OLS.
The sensitivity of the estimators' performance to the |
direction of B casts doubt on the use of ridge regression
and other alternatives in practical situations as the
direction of B is not known. ; ’

Given this situation, the use of ridge regression or
some other alternative to OLS in practice is predicated
on being able to comment on the direction of B based on
sample data. Consequently, one important direction for
future research is to develop some means of obtaining a

reasonable estimate of the direction of B based on the
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5
- single sample on hand. The following discussion suggests

. 4
one possible method of doing this.

be the ordered eigenvalues of X'X.

Let A ixzi.;. iA

1 N
Let Vl""'VN be the eigenvectors corresponding to,Al,...,AN

. : B . .
respectively. Then ViBu (where Bu=7§$§— 1s the unit vector
in the direction of B) is the cosine of the angle bj;ween

V. and Bu (and hence B). It is easily shown that ViBu
is theA est linear unbiased estimator of ViBu (where

~ ~

Bu=“z§r§— and B is the OLS estimate of B8). Furthermore,

2
~ 0 ~
var(ViBuF=XE . This result shows that ViBu will be a
. i . .

-precise estimate (in terms of having a small variance)

of the direction of B8 relative to the A corresponding to-
large eigenvalpes; and an iﬁprecise estimate of the directioﬁ\
of B relative to the Vi corresponding.to small eigenvalues. '
Thus the spectrum of eigenvalues can be used to reasonably
comment on the diréction of B felativerto éome eigenvecfbrs.
In most practical situations it is expéctéd that there

will be at leas§ one "large" eigenvalue (ie. the degree

of multicollinearity would unlikely be so severe as to
reduce all eigenvalues to 0). '

Suppose Aj,...,AN, - J<N are the large eigéﬁvalues

(ie. significantly different from 0) of X'X for a given X.
Then V{éu, j<i<N, will be precise estimates of>V£Bu.ﬂ If
V{éu, for some’i, ié large (ie. close to 1) then B is in

the general directicn of v, . In this case, the ;esults‘of

the last chapter indicate that OLS estimation is relatiVely
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- precise and could then be used to estimate B. If, on the
othgr hand, Viéu is small (close to zero) for all i, B
will be in the direction of some VE (1<£<j) corresponding
%;mffﬁmf€6J€jsmall eigenvalue, in whiéh case our results have
shown that considerable improvement in TMSE can be aqgieved
by using one of the alternatives to OLS.
As an example, suppose the true coetficient vector
was BL,and ¥=0.9, 0€=0.1.A'Now'BL=VL, where v, is the
eigenvector corresponding to the largest eigenvalue of
X'X (see Table A2 for the eigenvalue spectfum of X'X
corresponding to p=0.9). 1In this case, V;§u=.99884
suggesting that B is in the direction of VL and consequently
OLS shouldbe gSed to estimate B. On the other hand, if BS were
the true coefficient vector BS=VS, where VS is the
eigenvector corfes?onding to the snallest eigenvalue of
X'X, then VLéu=.00712 implying that B is in the direction
of VS and consequently that some alternative to OLS be
used to improve TMSE. Table 8 below-provides'the.vgiues

A A . A A .
of VLBL and VLBS (where BL and BS are the unit OLS estimates

of B, and BS respectively) for all p and O~

L

| | el
Table 8. Values of VLBL-and VLBS

u 0.6 0.8 0.9 0.95
% Jo.1 05 1.0 |01 0.5 1.0 lo.1 0.5 1.0 |0.1 0.5 1.0
V{fL 1.00 0.95 0.83 | 1.00 0.91 0.75 0.99 0.85 0.63|0.99 0.76 0.5]
) Vifs |-.003 -.005 -.004 | .007 .009 .009 |.007 .008 .008 | .006 .006 .006

R AL

-
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APPENDIX 1

Throughout our discussion.of the model y=XB+e we have

been assuming that y and the variables of X have been - _

¥

standardized so that X'X isrin the form of a correlation
matrix and X'§ is the vector of cdrrelétidns of the dependent
variable with each explanatory variable. We now discuss thé
.standardization proceaure as well as ghe transformation used
to convert the standaraized coefficient estimates to the
non-standardized coefficient estimates of B in the model
y=XB+€ where y and X are in wueviation units.

Let X be the TxN matrix of observations, xtn’ on the
explanatory variables expressed in deviation units, that is
xtnzxtﬂ-ih where X is the t-th observation on the n%ﬁ
variable in original units and fh is the mean of the t

observations on the nth variable. Let S be the NxN diagonal

matrix whose nth diagonal element is

Then XS=XS is the matrix of standardized variableg and

e

Let . e

XéXS=S'X'XS is the correlation matrix.
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then X;Ys is the wvector of cﬁrrelations of the dependent
variable with each explanatory variable.

If y=XB8+e is the model with the variables in the originél
units we can write it as

(xs>s"ls

wfl(wy) +€

-1
LA 4

]

+
s = XsBs*E

where the variables are now standaardized. Thus the co-

/e&ficient estimates obtained will be estimates of BS=S-lB.

i
:

The estimated coefficients in the non-standardized

imodel describe what happens at the orig;;\SQFCh is usually far

r

. from the data. The role of the standardization is that the
standardizea coefficient estimates describe the effects of

. the variables in the region of the data. Also the estimated

Fal

coefficients are easy to interpret; Bi is the predicted

\ change in the dependent variable when X5 is changed by one

standard aeviation.
Probably the most significant role of the standardization
is that it puts the estimators on a common scale. This

scaling also applies to the eigenvalues and eigenvectors

-~ corresponding to the xgxs matrix and as we have seen, eigen-

analysis of the‘XgXS matrix is crucial for determining the

admissaple values of k, & and r. ' e

In this study the stancéardized moael is used to obtain
admissable values of k, .4 and r. The coefficient estimates

so optained are not transformed into original units since as
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will be shown the rank%ng of the estimators (in terms of
: 5 .

TMSE) is invariant under the trahsformation.
We have seen that the standardized coefficient estimates

are estimates of S-lB. If b and b* are the non-stanadaardized
1

and standardized coefficient estimates (of B and S
. . .

B)

respectively -then

<3 B
b = w “Sb*

o

is the transformation which changes the standardized co-
7 efficient estimates into the non-standaraized estimates.

Suppose bl and b2 are any two estimates of B8, then
lbi, i=1,2 is an estimate of S-lB=B*. Then

4

p*=g"~
1

TMSE(bz) E(b;-e*)'(b;—s*)

1 -2 - 3
E(bl-B) S (bi B)' 1-112

where S-2 is non-negative definite (n.n.d.)

How Theobald (1973), page 104) has shown that if

ni = E(bl_g) (bl-B) ' r /.j-_.=112

and mi=E(bi-8)'B(bi—8} ‘where B is any n.n.d. matrix then

the following are eguivalent -
(a) M;-M, is n.n.a. - S
(b) ml-mzio for any n.n.d. B.

The implication of this result for us is that if

* * - 1 3 |7 B 1
TMSE (b}) >TMSE (b3) then M,;-i, is n.n.d.. ©Wow i,-H, is n.n.d.
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if and only if tr(Ml'Mz)ZO' that is, if an only if

THSE (b;) >TMSE (b, ) .
.This shows that the TMSE is invariant under the trans-

formation from standardized td non-standardized coéfficient

estimates.
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APPENDIX 2

This section provides the formﬁlae for the standard
errofs of the estimators considered. For all the estimators
considered, the standard errors are'estimates of their

respective variance - covariance matrices.

1. The variance-covariance matrix for the OLS estimate is

given by
= 2 ' -1
P = o, “(X'X)
BB
It is estimated by

S.n = ng(x'x)'
88

1

where

~ 2 _ (y-xB) (y=XB)
€ T-N

¢

The standard error of the ith OLS coefficient estimate is
given by

S~ = 0o _rC;
Bi
where Cis is the iih'diagéépiiéigaggi of (X'X)-{.

2. Hoerl and Kennard (1970, page 60) have shown that

' 2 por 1
7 =0 "2X'X) "z

g(k)é(k)
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where

Z = [I+k(x'X)'l]'l

Then we let

S N = g 2Z(x'x)'lz

B (k) B (k) €

where
52 _ ly-XB(k)])'ly-XB8(k)]
T_

9¢ 3

Then the standard error of the ith ORE is given by

S = 5 /C.i
B. (k) €2
1
where
C.. = ith diagonal element of Z(X'X)_lz.
11
3. For GRR, ” 3 .
¥~ - = c€2W[(x*)'x*]'lw '
a(K) ,a(K)
where ‘
Wo= [T+K[ (x*)'x*)" 07D o
Thenk
A =P}~ . P!
B (K} B {K) a(K)a(K)
; = cesz[(x*)'x*]'l(PW)*.
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Hence we let

where

S 2 _ Iy-XB(X)1'ly-XB(K)]
s TN

‘

ana C,. is the ith diagonal element of

ii
PW (x*) 'x*] "L (PW) "
4. For the MMSELE
H ] ~
b* = (rotY )8 ;
g “+BX'XR
>
::aB
we have
= a’s 2(X’X).l
b*b* €
which is estimated by
S b= azo 2(X'X)_l
b*b* €

where

22 _ (y=X0*) ' (y-¥Xb*)
£ T-H

then the -standara error of the ith IMMSELE is given by

5 FaN
Sb* ;,aqaycii
i

77.



where C.. is the ith diagonal element of (X'x)"

(a) For SSEl we have
~ AA' _lA
SSE; = 4BB(I+6BB') B
= SAR
Theﬁ
= 52062At (X'X)—lA
) SSE,,SSE,
and
s ='52052A'(X'X)'1A
SSElfSSEl
‘'where
- 1 -
~2 [y-X(SSE;) ]'[y-X(SSE,;)]
e T .
So
S ) = 605 Cii
(SSEl).
i

"is the standard error of the ith SSEl where Cii is the ith

aiagonal element of A’ (X'X) 1A,

(b) For SSE

: 2
S = acE»’Cii . !
(SSEZ)i
where
a = 1+ys?(g'p) 7t
and
| * ~ 5 [y-X(SSEZ)]'[y-X(SSEZ)]
5 o] = -
€ T—N

we have in an analagous fashion to SSE;

78.



‘and Cii is the ith diagonal element of (X'X)
For the GIE we have
= 2 -1, ‘
Zé*é* =g 8.0 "s]
rr
\
_ 2 1., _ - 2.+
Sé+8+ = 9% SrQ Sr O By
rr
where ~ ~
A AL o
2 (y XBr) (y-X8.)
e T-N :
So
“ah T
r
=3 53 -1.4 +
where C,.=ith diagonal element of S_0 "S'=A_.
ii : r r'r

.

1

.

79.
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APPENDIX III

The following table contains the X'X matrices for
1=.6,.8,.9 and .95. The elements of each matrix are the

various correlations between pairs of independent variables.

Table Al. Correlation Matrices by Degree of Multicollinearity

%

u=.6
1 2 3 4 5 6
1 1.00
2 .45 1.00
3 .20 .35  1.00 P
4 © .44 .40 .33 1.00
.5 . .48 .70 .28 .54 1.00
6 .53 46 .37 .51 50 1.00
i
u=.8
1 2 3 4 5 6
1 ... 1l.00
2 70 1.00
3 .55 .63 1.00 ) - L L
4 .71 .67 .62 1.00 .
5 .72 .83 .58 .75 1.00
6 .75 .70 .64 .74 .72 1.00

/
L {
[



Table Al (continued)

wn

T
’;t

.00

.84

.76

.85

.85

.88
.82
.92

.93

.00

.80

.82

.91

.89
.91
.95

.81

.00

.80

.77

.80

.00
.89
.88

.90

u=, %5

.00

.87

.86

.00
.93
.93

.00

.85

l.00

TR




Table A2 Eigenvalues
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B
H=.6 u=.8 H=.9 u=.95
.26087 .14715 .08094 .04349
.43315 .23497 .12441 .06492
.56413 .29679 .15498 .08039
.68889 .38418 .20948 .11189
.83011 .49357 .26831 .13945
3.22283 4.44332 5.16186 5.55985
Table A3 True Coefficient Vectors .
L=.6 L=.8 h=.9 u=.95
-.03494 .05024 .06092 .06935
.62725 -.61588 -.60552 ~.59697
-.14624 .14317 .14733 .15447
R
5 .26651 -.28876 -.31179 -.33106
~-.71616 .71713 .71463 .71085
.00521 -.00368 -.00439 -.00617
-.39622 -.40819 -.40929 -.40903
-.43652 -.41746 -.41145 -.40934
) -.29873 -.36435 -.38961 -.39953
L -.41037 -.41268 -.41092 —.40966
-.45784 -.42549 -.41536 -.41139
-.43034 -.41833 -.41289 ~.41042



Table A4 Averade k Value and Average JValue.

ORElmax

83.

u 0 ORElmin ORE1l ORE2 ORE3 ORE4a/b SSEl

.1 .045 .107 .169 0.0 .002 .001 .21

.6 .5 .042 .104 .166 .010 = .058 .016 .51 .
1.0 .025 .082 .144 .038 .230 .091 .64

.10 .101 .163 .225 0.0 .002 .001 .10

.8 .5  .069 .130 .192  .008 .050 .015 .28

1.0 .030 .090 .152 .028 .165 .081 .42

.1 .056 .118 .180 0.0 .002 .001 .04

.9 .5 .032  .094 .156 .008 .049 .021°7 .20

1.0 .012 .069 .131 .022 .134 .060 .30

.1 .078 .140 .202 0.0 .002 .001 .02

.95 .5  .044 .105 .167 .008 .046 .024 .17

1.0 .033 .094 .156 .016 .096 .034 .27

.1 0.0 .026 .088 0.0 .003 .007 1.61

.6 .5  .019 .067 .129 .990 .057 .135 1.47

1.0 .053 .113 .175 .031 .185 .459 1.34

.1 0.0 .021  .083 0.0 .002  .015  1.29

.8 .5  .010 .059 121 .009 .053 .253 1.12

1.0 .100 .158 .220 .026 .156 .538 © .95

.1 0.0 .015 .077 0.0 .003 .028 1.32

.9 .5  .018 .074 .136 .008 .048 .426 2.43
1.0 .107 .168 .230 .021 124 .335 1.63

.1 0.0 .033 .100 0.0 . 003 .004 1.96

.95 .5  .041 102 .164 .007 .042 .512 1.67

1.0  .106 .168  .230 .015 .091 .163 1.52
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Table A5 Average Q Value and Number of Negative Q Values

-

Out of 50 Samples

Number of Negative

o] Average Q
- Value Q values
.1 3.715 0
.6 .5 zgias 0
1.0 .859 3
1 6.455 ' 0
.8 - .5 3.038 i 0
: \\\ 1.0 1.164 7
WLl 11.242 0
.9 .5 3.704 0
o 1.0 1.252 15
1 19.318 0
.95 .5 4.204 6
1.0 1.330 22
.1 .311 0
.6 .5 .293 0
1.0 .246 0
1 . 225 0
.8 .5 .216 0
£ 1.0 .190 - 2
1 .194 0
.9 .5 .187 o -
1.0 167 - 13 .
.1 .180 : 0
.95 .35 .175 1
1.0 158 21
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