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S B ABSTRACT ) o

A valuat1on operator is developed that prices risky ‘
income streams when no opportunltles for arbltrage proflts N
ex1st.r The . prop;rtles ﬂf fhe valuatlon dperator are 1nvest1-
gated dhder alterna;e narket environments.

It is shown that when firm values follow a diffusion
process, the equ111br1um valuation operator can be express&d
as a un1que.funct10n of the present and future firm values,
and the t1me. Thls allows for the determinatlon of the pr1cea

T s
of a w1de var1ety of f1nanc1a1 1nstruments cont1ngent upon the °

present firm values. L o

When the firm yalues are endogenous, “it is further shown

. that, 1f f1nanc1a1 markets are capable of exhaust1ng the gains

from exchange, the valuation Operator is re1ated to future

aggregate resource cons traints ;h a simple manner such that

it permits the—develOpngnt'of explicit expéessidns/for the

operatbr associate@ with many of the diacréte tiue hodela that

appear in the iiteratureJef-financial theory. i | |
Finally,- it is ahawn that,;wheﬂ'beliefs.are eontingent on

prevai}ing priees, the continuous time capital-asaet pricing

model emerges. -
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Introductlon

Pareto Eff1c1ent Capltal Markets ~ | .

In an Arrow-Debreu world any»eff1c1ent (1'e;fPafeto-0ptima1v

-

&

allocatlon of r1sk bearlng can be achleved by a system of o

-

compet1t1ve markets 1n clalms on state contlngent commodltzes

;the claims’ be1ng tréded are (1gon claa) contracts for the {;Lff‘
e ;

v}dellvery of edcH and every commodlty in éach and every futurer‘

e

state of the world. If individuals maxlmlze.expected.utlllty
the same allocatlon can be ach1eved by competitive exchange,
,?first in a complete securltles uarket and then in the (spot)
cBmmodlty markets of whatever future state of the world occurs
(Arrow 1964): The securltlés are c1a1ms to moﬁby, the amount

dependlng on whlch state of thé world: actually occurs In

N

general, it is required,(for eff1c1ency)Athat there-be as
many linearly independent securities as .there are states of
nature and also that the money prices of commodities in each
. state are knbwn'to thehindividuais purchasing the securities;; ..
The 51gn1f1cance of securities is that they allow for
economlzlng on markets, but in the absence of any costs'
assoc1ated with openlng and operatlng markets secur1t1es
play no essential role since any des;red allocation tan be
achieved in the market for contingent commedity claims alone.
Furthermore, the requirement, for the efficiency of security
.markets, that individuals correctly;foresee future spot
'ebnnodity prices, is so stringent, we can be sure that .in

practice a security market in combination with future spot
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markets is not equivalent to a market for contingent commodity
claims.

However, abstracting from the diversity of commodities,
and assuming that utility depends only on wealth [or on
consumption for lifetime decision makers] in each state of
nature, then security markets can accomplish the same
allocations as contingent commodity markets, provided the
security market is complete.

While, under the conditions stated in the last paragraph,
a complete security market is sufficient to guarantee a Pareto
optimal allocation of risk bearing, it is not necessary, there
being the well known cases when only two securities, one |
riskless the other risky, are required for efficiency:

a) The case where investors have homogeneous otherwise
arbitrary beliefs, and have utility functions belonging to the
same linear risk tolerance class;

b) The case where investors have homogeneous Gaussian
beliefs and arbitrary utility functions [so long as the utility
functions are compatible with Gaussian beliefs, i.e. as long
as expected utility is defined]l.

In these cases all desired pattefns of returns across
future states of the world can be constructed from securities
issued by firms, which are claims to the wealthAgenerated by

the firms. Such securities are called primary securities.

1There is also the (probably less well known) case of homogeneous
separating distributions of Ross [1975].
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However, in general, Pareto eff1c1ent allocetiens cannot

~ ' 1Y i B

be ach1eved in the primary secur1ty‘larkets alone. 1f this
. ’

is the case, markets in secpndary»secur1t1es,zlssued by

- e - - .‘ - “- »‘ ° ’
. individuals or financ1a1‘1nterned1ar1es, can be expected to

open up. In the absence of costs assoc1ated w1th opening and

operating markets" second ecur1t1es can. be expected to-
8 C %}Y

proliferate<unti1 the ga# rom issuing thenm hpve been.

exhaus ted. | - e

F

Perhaps the nost investigated of any secondary secur1ty
A

1s tﬁe option " The role of the opf'dn in atta1n1ng eff1c1ency

1n secur1ty markets has been studied. by Ross [1976] 'ev"t

[ a !

return on an option depends upon the return on the under1y1ng

o

primary secur1t1es, and optiofis are capable of dlstlnguishlng

- two states of the world if the returns. on the pt1nary assets

are d1fferent 1n the two states. In fact, Ross [1976]‘has

1]

shown that, prov1ded,the‘pattern of~returns on primary assets-,-

are not 1dent1ca1 in any two states of ‘the world a fullf
eff1c1ent market can’ be’ ach1eved by suppIe-entlng the primary
secur1t1es w1th a s1-p1e call option written on a s1ng1e
portfollo of primary secur1t1es. d ,

In general, 1dent1fy1ng-the part1eu1ar portfol1o of in-

‘terest is not a simple nanner, but it is poss1b1e to identify

the conditions under which, for ‘example, the'-arket portfol1o .

plays this role.

Thus, in a one period;lodel if the levels of aggregate
social wealth are d1fferent in_ each future state of the world,

then .a full set of (simple) call options written on the larket



portfolio can distinguish a11’staiesz.u.On'the‘qther_hand,
. if aggregate wealth is the same in some future states, options -
written on the market portfolio cannot distinguish these

'states. However; if all individuals‘desire the, sane payoffs N

N

«

in those states with the same aggregate pealth then the
inability to distinguish the states is not important.

Hakansson [1978] shows ,that this is the case when individuais
beliefs, conditionaltnlaggregate wealth are homogeneous. In

this case opt;ons written on theiparket portfdlio, or super- -
. shares, (securities which pay one dollar contingent on a given
level of aggregate ﬁealth,'zero‘otherwise), together with

AN

riskless borrowing and lending are sufficient to ensure a

Pareto efficient ﬁJ} et. An 7analagous result holds

when ntility is defined on consunption, for the lifetime decision
maker, andjoptions are written on aggregatetconsunptiontwith |
exercise prices equal to the various possible levels of aggregate
consumption, Breeden and Litzenberger‘[1978]:

Pricing of Securities-

Valuation of the primary assets 1nvolves solv1ng the

aggregation problen, which according to Rubinstein }1974], is
. "the chief difficulty befouling the ana ysis of securities.

-arket«equilibriui"’ On_ the other hand the valuation of «
"secondary securixies need not involve the aggregation probien

. provided that-prinary security prices be_takengas given, as for’

- - ' 7 : ; . . ) i @
2, Choose. the exercise prices of the options to correspond to
the vatious levels ok’ aggregate wealth. ‘

A ]

- . . s : ’
.- LA 2 .
. . - - . - . ) - -
. Py . S R
r . S .
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example, is the case with the bption pricing formula of Black-
Scholes [1971].

Models which value the primary assets are classified into

&

two types,-diécrete time and continuous time models, and this
distinction is generally viewed as being an import;ntéone.

On ihé other hand, secondary securities in discrete time aré,
under certain conditions, priced according to the Black-Scholes
option pricing formula, (Rubinstein [1976], Breeden and \/,
Litzenberger [1978]), despite the fact thai if was initially
derived in a continubus time framework.

Furthermore, it has recently been claimed by Garman
[1977],'that within the continuous fime framework it'is
possible to value primary securities without solving fhe
aggregation problem. In féct, it is claimed that no expected
utility maxipization is required. (See Chapter II.)

In this»thesi§=]3 present a unified approach for the ‘
valuation of securities based on the "Single Price Law‘of.
Markets'", Rubgzgie;n [1976]. This.law implies the existence
of a linear operator or discount factor that prices ail
sécurities. '

In Chapters I and II we consider the problem of pricing»
secondary secufities cpntihgent'onrprimary security prices.
‘The chapters develop the foilowing idea} Cox, Ross and.
Rubinstein‘[1978]'reduée the uﬁcertainty in the primary
securities 10 discrete binomial névenents. In so doing they
observe that the d1scount rates for the.two states are

deterl1ned in terms of the probabilities for the two outcomes.



s

-6 - ' - .

.Th1s motivates us to ask the following questio’ ‘having
spec1f1eﬂ the stochastlc process for the pr1mary securities are 3
the discount rates‘determlned for all times in terms of the ‘
parameters of the process;"Thefanswer is yeg under cér;aiﬁ ’

N

conditions.

In Chapfer I we show hGw the valuation operator, or
discount factor, can be explicitly cons£}uctéd for allrtimes;
from the basic two step process that leads to a lqg normal
distribution of security prices_ét.time t, given tyeir values
at time zero. | |

In Chapter II we éeneralize the reéulps to the case of
general diffusibn.processes. We discuss the connection betwqen

- our approach aﬂd thaf.of Garman, deriving his eduation, and

_—

show that it is not possible to price the primary securities .
without more information. A

In Chapter III we find the linear‘opérator that prices
the primary as%ets when capital markets are'Pareto‘efficient
We show how, by u‘{ng Pareto optimal sharing rules, the valua-
tion operator can be obtained for linear rlsk tolerance )
economies,in continuous or discrete time, and how the
Black-Scholes option bricing formula can result iﬁ'either
case.

Finally; we show hou} when beliefs are contingéﬁt on
present pr1ces, the contlnuous time cap1ta1 asset pr1cing

nodel energes.



.
Chapter I

The Discount Factogkin Continuous Time: Some Basic Ideas

*Récently new insights have been obtained in.fhe theory’qf'
option pricing by assuming that the price of the:asset on ' -
which the option is written follows a binomial stochastic | 7
process through time (Cox, Ross and Rubinstein [1978]). fn
this chapter we use this approach to iﬁ&estigate the'pfopérties
of a random variable, called q'discount faétor, which can be
used to price contingent tlaims written'on ;he asset.

In section 1 we use a moment generating function to show
that if the price of aﬂ asset follows a binomial stochastic -
process then its price at time t, contingenf}on its price at
time zero, is log normally distributed. ﬂ

In section 2 we introduce a random discount factor that
réla;es the price of tpe aéZet at time t, to its_price at time
ze}d.' We show that if the aéset price is log normaily
diétributéd at time t, then the discount factor is also log
normally distributed. This result allows us to derive an
éxplicig-expressiog for the discount factor.

In section 3 we utilize this expfession for the discount

factor to price a simple call option written on an asset which

has the stochastic propérties discussed in section’'2. We

obtai;\}he Biaqk-Scholes optionvpricing fdrnula. _ N ' o

Finally, in section 4, we derive the distount factor ?Q{;;‘;//)’
‘tﬁé nultiple asset case dﬁd.dénbnét;ate thatlfhé_érice ofa
simplé call option wirtten on a single asset is’still'given

by the Black-Scholes formula. -



—

.\v

p(1 + 3) where A is a binomial random variable.

< 8 -

1. Use 3£~the Moment Generﬁtiﬁg Fuﬁcfion to Describe e
// a Binomial Stochastic Process ” |

. Consider one-step of .the discréte, binomia1,~sto§hastic
process illustrated in figure I. Let p be .the beginﬁing of

the period price. Denote the end of the period price by

A = +A with probability q

= - A with probability 1 - q

and A > 0.

FIGURE 1

Let the period bQ_b 'length . If we imagine smail
anges ;n.price, taking place in small intervals of time, then
a series of discrete stepshsuch as‘that shown in Figure I;,i
can be converted into a continuous process by taking the limit
as the interval of time goes to zero. In particular;~we

choose A and q such that as t + Ov% is



distributed log normal with!
E {1og E%—}} (a - 7 o] )t
Var{log g%%%} = ozt .

This is the distribution considered by Merton [1971,41973]

7

LY

where the asset follows a random walk with return per unit of
time a, and variance per unit of time o2
Beginning at time :zero, the asset price at time t, after

n periods of the type shown in figure I, is
!," l

n R
p(t) = p(0) w1+ A ] (1)
i=1

where t = n T.

- *
1 -

Consider the moment generating function of log (p(t)/p(0))

| ry: .
. E{e—e 1og(pct)/p(0))} . g )0 teeld “}

{ n -6 log(l + A )}
= E me
=1

E

Dy
DT e

i

£ -

The choices nade by C6x, Ross and Rubinstein [1978] are such )
that p(t)]p(O) is distributed log normally with mean at
and varlancezo t. That is, the return per unit of time
is @ + 1/2 ¢“. This does not affect the option pricing
formula since it is independent of the return per unit of .
time on the stock. ‘
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Fy
-

In obtaining equation (2) wé have used equ@iion (1) and‘ _
assumed that the price cﬁanges are independenf and identically

distributed in-each period se that Xi = & for all i. Now
\

since K, is the binomial Tandom variable. illustrated in

figure I, we ha&e from equation (2) that

n

E {e-e log(p(t)/P(O))} = [4(1+Af-6+ (1—q)(1-A)_e]

]

n
(1-0)"% q-((1+A)’-°(1-A)'°)]

- (3)
Choose
A =0 V1 ’ (4)
', = 1 1 +iﬁ - (5)
Q=7 ] | _
so that ) _
1+8) %= 1 z0a + HE A2 o) (6)°

where the remainder is 0(Tt). Our choice of A in (4) implies
that the remainder has thé property that lim 0(t)/t = 0.

Substituting equations (4), (5) and (6) into equation

¢,
(3) we obtain
B ' 2 .22 t/t
E {e-e 10,8.(p(t)/p(0))}. {‘1-9('0. gy e 00 om}
(N

since t =,nt.



In the 1limit as Tt =+ 0 (n + » so that t = nt is finite)

we have from equation (7)

iim 'E {e-e 1°2(P(t)/P(0)}

T+0 _
‘ 02' 6202 e/
= lim [1 - 8(a - 77)1 e T 0(T)
70 2
_ 0 1 ,2.2
_ e[‘e(a —2—) + Vi 6%0 ] t

(8)

using the definition of e. The expression (8) is the moment °

generating function for a normally distributed variable with

1 2 - 2. 2
mean ‘(o - 5 0 )t and variance o°t.

2Cox, Ross and Rubinstein [1978] choose the end of theApgriod

price to be p eOJ? with probability q and p e-O/? with

probability 1-q. Substituting these into the expression

4

for the moment gener;ting function we obtain ‘ t/t
lim E e ® 10o8(@(t)/p(0)) . lim‘[qe_GOJ?*'(I-Q)eGOJF]
+0 . -0 i
[ : t/1
= lim [1 - [ae +*%ezoz]r +.0(71)
+0 ' . .

'[-ae + % 6202] t
= e (9)
which is the moment generating function for a normally
distributed variable with mean at and variance oztj(sée

footnote 1).



2. The Discount Factor

¥ Cox, Ross and Rubinstein [1978] give a "éomplete‘ﬁarkets"3
interpretation to the binomial approach 6f section 1. They
introduce staté-contihgenq discount rates m, and n_, where m,
is the current}price of one dollar received at the end of
the period, of iength 7, if and only if the + state occurs
(see figure I). Using these discount rates, the beginning
and end of the period prices are related by

p = m p, * 1P ' ' » (10)

However, we are more interested in the 'discount factors'

Z, and Z_ which are defined in terms of the discount rates

as follows _ \'
q zZ, = m, (11)
(1-q) z_ = m . (12)

In terms of the diSSSumt factors, the beginning and end

of the period prices are related by (from (10), (11) and (12))

P =~ ai,p, + (1-q) Z_p_ (13)

> b » hd

3 The term "cdnplete markets" as used by Cox, Ross and
Rubinstein in this context has nothing to do with

effi:j;pcy. .
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Moreover, if we assume the existence o a riskless rate of

'interést, r per unit of time, then

s

Solving for Z, and Z_ and using equations (4) and\(5) we
L] \\

obtain
i =1+ (22} .7+ o’ _ra +0 ' (15)
: )T\ r)r e |
and’
T-a ' az TO
Z_=1'(7>ft-'+ —Z‘T'T,T*O(T) (16)
» 0’ 0’ - . -

Consider the two steps of the binomial process shown in

figure 11

4

(1-q)

FIGURE II

1=q2Z,(1+r1)+ (1-QZ_(1 + r7) C 14) |

<
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Using the 'complete markets' interpretation we can introduce’

the four discount factors Z z // Z_ _, where present .

++? +-2 .2

‘prices, and two period later prices are related by

2
p=q2Z,,pP,, * a(l-q)Z, p,_
‘ 2

+.(1-q)qZ_,p_, *+ (1-a)°z__p__ - an

where we use the notion of figure II. However, we also have

qQz,p,, *+ (1-qQ)Z_p,_ ' (18)

o
+
]

p. = aiz,p_, * (1-q)Z_p__ (19)
- where Z, and Z_are given by equations (15) and (16).

Substituting (18) and (19) into

P = qzp, *+ (1-q)Z_p_ A\ (20)
we obtain

2.2

P = Q°Z,p,, ¥ a(l-9)Z,Zp,.
. ' 2 z -
. + (1-q)qZ_Z,p., *+ (1-@)%27p__ . (21)
Comparing equations (17) and (21) we notice that Z++ -'Z3,
z,. =% ,=111,and Z__ = Z%., Hence, we conclude:

oo i,
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if there exists a time invariant riskless rate of interest
then Z follows a discrese independerntly distgibuted binomial
procgss‘wﬁenever p does. This conclusion sugéests that we

use the qethod of Sectio’ﬁ_l to construcf the moment generating

Afunction‘for Z.
o ) ..t/
E%e 6 ‘logZ(t)} . [qzﬁ . (1-q)z_9] | (22)
Substituting (15) and (16) into equation (22) and using our
choice of q given by equation (5), we have for the moment

generating function of Z

. %e-e logZ(t)} i { . +_e[r‘+ 1 (I;g)z] o
¢ c
2 2 t/t ;
+ 92-— (r_—_a) T + 0(1’)} (23)
- |

Taking the limit of (23) as t + 0, converts the discrete

process into a continuous process and yields:

b)) ()]

lim IE{ e © logZ(t)} - e o o

140 ) | (24)
\ .

Expression (24) is the moment generating function for

- 2
a normally distributed variable with mean -rt - % (I%E)-t and

variance‘(zégl) t. As we shall see, however,. it is fruitful
to express- Z(t) as a function of p(t). Now, since Z(t) and-
p(t) are both log normally distributed random variables, the

most general funcfional relationship between these variables

v . 7

j
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can be written in the form
3 : ' . .

%1682(” = a+ B log p(t) : (25) -

L J

whére a and B are non random. From the moment generating

o — a

.function for Z, equation (24), we have

Ve ' 2 .
E 310g Z(t)z = rt- 3 (u) t (26)
g
and .
r-a\2 o
Var—glog Z(t) f = (———) t (27)
0 . ra - ’ )
' Substituting (25) into (27) we find that
B = = o ‘ (28)
g
Substituting (25) into (26) we obtain
a -'-rt-B[m-%-oz+%-Boz]t-Bloép(O) (29)
——— '
Thus Z(t) can be written
1 2 1 (30)

2(t) = e Tt e-B{GP’ ze et g }t[p{tﬂ ]B

where B is given by equation (28).
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-~ .- N }

3. Option Pricing - | - .
_ - ' ol _ ¢

In section 2 we found the discount figzgr Z(p(t),t) for

, Al f e

iscount

any time t. ihip was accomplished by factoriné the

into two pafts, a prqbabiliéy or belief part and a disco
factor Z, and tHen coﬁstructing the moment generating f
for Z after N’'steps of the binomial process. -By taking the
contlnuous limit of the discrete process, we developed an
exp11c1t expression for Z(p(t), t) The d1scount rate
m(p(t),t) is just the product of Z(p(t),t) and the probab111ty
(density) that the'asset price assumes the value p(t) att}ime
t, given the value at‘tjme zero; However, it is convenient’
to focus attention on the discount factor Z rather than the '
discount rate and write the price bf the asset at time zero

in terms of its price at time t as

p(0) = E}zct) p(t)z | . (31)
| \ =

~As an illustration, consider tﬁe pficing of a sinﬁie call

option which has the striking price K. The value of this
call option at time zero given that it be exercised at time

t is; o ' o ,
«C(0) = E{Z(t) (P(fl‘- K)-lp(t) 2 K‘ ' | Cf32)

Substituting for Z(t) from equation (30) .
: ‘ : {

\, o ~.’\



N

y | | o -'13-"‘

2 .
1, 2. :
_.8 a - .o_. + Bo’ t .
rt { 2 2

coy e e | o E(}g%iwff%{%}’zs{%)
e e

Using the standard integral (see for example Rubinstein

"., [1976])

su + % szo2

. \

j e3¥ f(x)dx = e F('a—;-li + os) (34)
a ~ ) - . ’
where f(x) is the normal density function, with mean u and
variance qz, and F(x) is the normal distribution function; we
can evaluate expression (33) to find . | . A\

| e

C(0) = p(0) F(a + o/t) - K ¢ "thea) T (38)

$

? . 3 ~ -
where a -‘[Iog(p(O)/K) + rtl//élf - % ovt (36)
Expression (35) is the Black-Scholes option pricing

formula. The preéent approach is compared with that of

Black-Scholes in appendix A.

0
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4. The Discount ‘Factor in the Multiple Asset Case
Consider N prima:y assets, whose values at time t

are ljr normally distributed. Assume that the discount

factoy I is log norma14. Then we have
. N , -
log Z(t) = a + 2 By log p;(t) . (37)
i=1 :
or
‘g N Bi | . | ;
Z(¢) = A T p;i(t), A=e S (38)
i=1 .

In equations (37) and (38) there are N+1 unknowns to

be. determined in terms of quantities known at time t = 0.
: i -

We have N relationships of the form

~
el

p; (0) = E\;Z(t) pi(t)i i=1,2, ... N 39

and assuming that one dollar invested at t = 0, at the
. . . >
riskless rate, grows to e't dollars at time t, we have the

additional relationship,

1 = E{Z(t) eft} | | ' (40)

4One could prove this by a method analogous to that of

sectioh 2. But this is- tedious. In any event, the result
follows f;on the more general approach of Chapter II.
M
?

M~
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The N+1 equations (39) and (40) are sufficient to determine
the N+1 unknowns A and Bi (i=1, 2, ... N). Substituting
(38) into (40) we obtain

B.
g N e (0]
pi(O) E 21 EETET (41)

i

rt
e

p—t
0
=

"3 =

i=1

Define the vectors B, with components Bi, u, with components
(o. - 05/2) and the variance covariance matrix 2,. In terms
[0 i

of these quantities

B , 1.,
z N [pi(t)} B'ut + 5 B'D Bt
E = e

T Pi(o)

(42)
i=1 ,

Equation (42) is the generalization of equation (24) to the

“multivariate case. Substituting (42) into (41) we obtain

; Blut + 3 B'IBt

~~
£~
(93]
~—

Similarly substituting (38) into the N equations (39)

we obtain

B {B'u + 2828 + [a "2311} t )

Together equations (43) and (44) imply that

“T1 + g + ). B = 0

or that




8 = - 51 (@-ry) (45)

where v 1is a column vector of ones. Putting (43) into (38)

we obtain:

‘B'[ TR 1 E:é]t N {p,(ty]*
- Tt 2 i
Z(t) e e izl E;TGT (46)

where B 1s given by (45).

Expression (46) can be used to price a wide variety of
contingent claims on the primary assets. In particular, one
can use 1t to price a simple call option written on a single
asset. A cursory examination of (46) suggests that the price
of this call option depends upon the covariance of the under-
'lying asset with other assets (through.§: ). Surﬁrisingly,
however, this is not the case.

th

The price of a simple call option on the i asset with

striking price K is

C. = E %Z(pi - K) { p; 2K 2 (47)

Substituting (46) into (47) and making use of the fact that
B.+1

B.
pi(t)] ' [p-ct)] )

E 111 i
{Piio) j#1 Pj(o)

CREEIXIE oL Z:B]itF(ln P3 (0)/K+[urdopl;t
g/t |
+ 0y ) (48)

p; (1) K
p; (0) ~ p;(0)

= e
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(equation 48) is a generalization of (34) to the multivariate

case), we obtain upon substituting for.B. from (45),‘the
. i~ ;

Black-Scholes formula. This implies, of course, that the

price of the option does not depend upon the covariance of

the underlying asset returns with other assets'returns;

(N
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APPENDIX I
Black-Scholes Approach to Option Pricing

Black-Scholes [1973] assumed that the price of an option

is a function of the underlying asset price,

z C = C(p,t) ' (1)
»
%

Hence, if the price of the primary asset follows a binary

stochastic process then so does the option with

(@]
1

C(p + Ap, t + 1) with probability q (2)
and

C(p - Ap, t + t) with probability 1-q (3)

(@]
i

Moreover, if we assume that expression (1) is differentiable,

then from (2) and (3) we obtain

_ oC 1 3°C ,2_2 oC
C, = C(p,t) + ) Ap + 5 g;j APT + = T + 0(71) (4)
and
¢ = cue) - 2 ap 137,22, 20 Loy (5
-7 (p,t) op P ) sz P 5t

We can evaluate the expected value of the call after time T,

i using (4) and (5)
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E- = qC, + (1-q) C_

C +
,,,C+,1f32c,,22 L B30 L 2C Ly ony - 6)
AR S-SR ahs ARt LELL A

Hence, the expected return per unit of time on the call

option is-

CE.-C
ac = lim b3 ;%T—
140
= 1 o€ , € , 1 02 2 aZC X ‘(7j
= Tl®*P at, Z°P apz
Al ' :

Similarly we can ‘¢valuate the variance of the call option

. -2 ,
_ 2.2 ]aC . .
VC = op [53] T + 0(T1) : : (8)
and hence the variance of the call option, per dollar, per unit

of time, using (8),

=

2 aC
= g —_— (9)
& [5] -

,Finally,\the covariance Bgtween the price of the call and the

price of the asset’

Cov(é,p) = ozpz %% T + 0(71) (10)

«

—— *



and thus the covariance between the option and the asset per

unit of time 1is

pc >0

Hence, we obtain thé crucial result that the returns per
dollar invested, per unit of time on the option and on the
asset are perfectly correlated. This implies that it is pos-
sible to construct a risk free asset from a linear combination
- of the risky asset and its associated bption (see for example
Fama and Miller [1972]) see figure (AI).

From figure (AI) we see that the risk free rate of interest
is given by the intersection of the straight line joining

(a,0) with (a C)'and the vertical axis. From consideration

c’°
of the slope of this line

o .-T ,
a-T _ C . (11)

o (ag500)

(a,0)

FIGURE AI
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Sﬁbstituting‘for aé.and Oc in (11) from (7) and (9) we

have
« wr L [gpac, 00,1 2 20% N/ ey
_ a CPp Tt TzZOP 5 2 P 3
N
i oo .
\\_E;ﬁp11fy1ng we obtain
aC / aC 1 22 BZC
33 * TP 3 r C+ 5 0p. ;;7_ = 0 | (13)
Given the boundary condition that at time t, N
~C(p,t) = p-K P 2K
Clp,t) =.0 P <K

.
then the value of the option at time zero is given by
equation (36) (Chapter I).

To summarize: according to\{he Black-Scholes approach,
equation (1) imples the exis%en;;'of a riskless rate of
interest. However, according to the approach<:90pted here the
assumpt1on of a risklesp rate imples a log normal1 discount
factor which in turn implies a functional relat1qnsﬁip between

the option price and the underlying asset price of the form

(1).

Py

1 When the underlying asset price is distributed log normal.
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 CHAPTER 11 | -,

2

Development of a The of the Discount Factor

When Asset Prices Follow a DiffusionAProcesS

In Chgﬁter I we derived an expression for the discount
factor when asset prices follow a particular diffusion pfocess
known as gcometric'Brownian motion. In this chapter we-.
generalize these results .and develop the theory of the discount
factor when asset prices follow any diffusion process. |

By definition diffusion processes are those for which
the probability density function of asset priceé at time t,
contingent on their prices at time zero, obeys the Fokker-Planck;
'equation. This partial differential equapion, together with
the assumption that riskless arbitrage opportunities are
absent, implies that the discount factor obeys a-sét of partial
di?ferentiél equations. When' there exists a riskless raEe
of in;;rést there are enough equations to determine the
discount factor contingent on time zero primary asset prices.

In section 1, we show that the abseﬁge of riskless
arbitrage opportunities imﬁlies the existence of~a linear
operator, that prices all risky cash flows. We sh;w thg
relationship~of this operator to the discouﬁt factor Z. In
section 2 we develop the general theory of the discount
factor. Finally, in section 3, we-compare'the theory of

asset valuation under diffusion processes presented here,

with that presented by Garman [1977].
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1. - Zero Arbitrage .and the Valuation Operator

| The fact that the zere riskless arbitrage condition

\\“‘“x, implies the existence of a linearVOperator‘which prices

all risky assets was utilized by Beja [1970], Rupinstein
[1976];§Garman [1977], and by others. Ross proved it in
[1978]u Here we outline .the proof and develop. some
notation.

*‘Consider an economy consisting of N firms, end facing S
pessible"final states of the world. Assume that to each final
state i = 1, 2, ... S there corresponds a realization of the
vector of firm values. Consider an N dimensional Euclidean
space spanned by a Cartesian co-ordinate system. Along one .
..J///\ " of the axes plot the possible realizations of the end of
| the period values of the first firm, pi, i=1, ... S. Along
a second axis plot those for }he second firm. Continue this
process for all N firms._ Then construct the S vectors,
pi i =1, ... S in the N dimensional space. Each vector

ends at a point representing a poéeible realization of'firm
-values in some future state of the werld. Assume that all
of these points lie inAthe‘positive qrthant1{

Assume that p{imary assets are issued by the firms and
no riskle;s arbitrage pfofit; can be made from dealing in
these assets. Then no portfolio of primary_assets will have
a price <0.

Let p(0) represent the vector of firm values. Then a

necessary condition for the absence of riskless arbifrage

LThis is not an essential condition, e.g. see footnote 2.
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opportunities is that there does not exist a vector X in the

N ' - 29 -
N dimensional spéce (1'X = 1) such that_
X'p(0) <0 and X'p* 2 0 for all i - (1)
According to the Farkes-Minkowski lemma (c.f. Takayama
[1974]); given S points p' and a vector p # 0°'in RN, then
either there exists a vector X in RN s;tiéfying (1) or p(0) -
is a positive linear combination»of the vectors'pl, but not

bothz. Since by hypothesis there does not exist an X

satisfying (1) we have
| S . :
p(0) = -21 a;pt ' (2)
1=

(3)

vV
o

where a

Now, even though the state dependent firm values are
disctete pofints in price space, we would like to treat theﬁ
as ‘being distributed continuously in the-N dimensional space.
For this purpose we introduce the density function F(p)'%ucﬁ
that T'(p)dQ, is the number of possible realizations of end
of the period firm values contained in an N dimensional volume

which encloses the point p and is of size dQ,;

4

2 |
If we allow for the possibility that end of period values' may

be,negativg'labsence of limited liability)] then we can state
a zero arbitrage condition as: a portfolio whose payoffs ,
are zero or ITess in each fyture state cannot sedd for a positive

price. This also implies (2). R



dPi (4)

enclosing the point p. HenceufF(p)dQ is the number of possible
realizations of the end of the period firm values contained

in whatever volume of price space is integrated over. The
density is actually discrete (for the purposes of proving the
Farkas-Minkowski lemma) so that T'(p) is zero everywhere except

i
hor " = ThavwaLfawra T
W T 11ICTCTO0YC |1

(p) can be expressed with the help of

cr

| the § function3 as follows:

S . . .
re) - X 8(p1-P1)S8 (P, Py) ++. 8(PyPy) (5)
e

Equation (5) can be written more compactly as

s .
r(p) = 2 8(p-p") (6)

1=1

Integrating (6) over all price space we obtain,

3 The § function is defined as follows: 6(X) = 0 for all non-
zero values of X. §(X) = when X = 0 in such a way

that [ dXs(X) = 1.

The § function can be manipulated algebraically [except
for dividing] as if it were a normal function. It is
however only well defined underneath the integral sign where
its properties can be derived from its definition. Its most
imporant property 1is

[ feosax = £(0).
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- S . [
: f"rd‘n = iz=:1 §(p-phada )
all space all space ' :
S ' .. g
= 2. from the definition of (X) :
i=1 ' '
- s o NOE

Consider the normalized density function

-

-

= I'(p) . . ‘ (8)

so that _/( p(p)dp = 1. | - \ \

all space

We éssume that each realizafion-of the vector of future
firm values has an equalilikeiihobd of;occufring. Then p(p)
as defined by equation (8) is the probability density function
for a_parFiculgr rea{ization of end of the periéd firm valﬁes.A
We further define the "discount rate"

np) = 2a; §(p-pv) ©(9)
i ' .
Using (9) we can rewrite equation (2) as fQIlow$:

p(0) = f-(p)pdn» | S . (10)
| : ¢ -

4 ,
where we have integrated over all of price space. Substituting

(9) into (10) and using the properties of the § function (c.f.



| —

__=32_ ,. v .

footnote 3) we obtain equation (2).
With the aid:of the probabiiity densitf function we can
‘define the diséﬁunt factor Z(p): =~ - ‘m\\\,,_§

Z2(p) p(p) \ = n(p) ‘v\\

and rewrite equation (10) as
L}

p(0) = fp(p)Z(p.)p da

. ,E.{Z(p)p} : e an

} ]
which defines the expected value operator.

-

In the price space'thét we have constructed the 9aluatign
operator is an ihtegral oi)eratof fdﬁﬂ(p); as in Chaptel"» I,
we splitm into two parts ,Iiﬁiaig:z(p); " In the next
section, #éain as in Chapter 1, we postulate a partitqlar form

of p and find a particular form for Z.

2. General Theory of Discount Kactor ‘ )

We consider the clagszof stochastic péocesseslf;r which
the probabifity‘d;psity function. for the distribution of firm -
values at time t, contingéﬁt on their values at tiie zero,

, € , - .
denoteg by p(p,t, p(0),0), obeys the Fokker-Planck equation

W

<

3
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P,y 3 ")+lZ 32»( ) =0 . (12) -
ot &~op;%iPif) T 7 T3 ;P PiP;%i;° 3 |

where the a; and 05 j are in the most general case functions of

the prices and time. Equation (12) is first order in time,

and we can write the required initial condition using the &

function =

p(p,t;“?p(O),O) eval.uated at t =0

et = o(p‘,O;p(O)(0)¢= 8 (p-p(0)) . (13)
-

Recall that we are assuming that no diQidendS are paid
so that equation (li)holds for all time t > 0. Hence,
\

p(0) = [ dmp ztp, )5 (1)

where t 2 0. In particular when t = 0 we can substitute (13)
into (14) to othin N

P(0) = z(p(0),00p(0) | (1)

which implies

S p(0),0) =1 T - (16)

x

Now for. a11 t1-es t, the right hand 51de of equat1on (14)

is a constantt D1ffbrent1at1ng equat1on (14) wlth respect to

* ..
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time | ' -
« i

0 = fdnpa—atzp , | (a7

and since p is a vector (17) represents N equations. Assuming

a riskless rate of interest so that one dollar invested at time
N 1 4

zero grows with certainty to R(t) dollars at time t, we obtain

N

‘ . from (11)
1 = fda z,t)e(p,tp(0),00R() (18)

Differentiating (18) with‘respect to time
= A 9 y
0 = fdn 2. (ZoR) (19)
It is shown in appéndix.IIA that when p obeys the
Fokker-Planck equation (12), as well as appropfiéte boundary
conditions, then equation (17) implies that Z obeys the foIlow-

ing equations:

?-.—: .
az ‘ Y/
—— Z + .+ — s .
at % 2; (GJ o j)pJ P
//‘ J . J
+ 1 Z Z ._3_2_Z._ p.p . = 0 i
J

"i=1... N - (20)




< Further, equation (19) implies

2
3z 1 -
ap.+7}j:zk: kppkspﬁp _

it

o1
°’|=u
P1

=0 : (21)

'Equation (21) can be used to simplif; the N equations (20).
Substituting (21) into (20) we obtain

/‘f

: .1 3R 9Z_
(%i R t) 2+ 2; 01J j BpJ 0

i=1...N | (22)

\
/

Multiplying (22) by the inverse of the variance covariance

matrix, 2:'1 we obtain the N first order partiai differential

equations satisfied by 2
p; 55— = B;Z, i=1, ... N (23)
where Bi are the elements of the vector

- -1 1 dR | |
B - ¥ (a-i;ﬁx) (24) -
The N equationé’(Zs) determine Z as a function of the price
vector p, except for a constant of integration. -The constant
of intégration [meaning a funcfion independeht of prices] is

a function of time and is determined by equation (21) using'



the initial condition (16).

Example 1: Geometric Brownian Motion.

Firm values are growing '"exponentially'" but stochasticly
with time. By analogy we choose R(t) = e"t. In this case >
and o are both constants, independent of p and t. In appendix

IIB Z is obtained by integrating the N+1 .equations (21) and

(23). As expected, the expression for Z(p,t) obtained in this

fashion is identical to that iven hv equation

(46) of chapter
Example 2: Arithmetic Brownian Motion.
3 Firm values, in this case, grow "linearly' but stochasticly
with time. By analogy we choose R(t) =1 + rt. If, instead,
we choose R(t) = ert there is no solution for Z (see appendix
- IIC). Assuming only one risky asset, we have for arithmetic
Brownian motion o = ao/p and 02 = og/p where o and o, are
constants independent of price and time. It is shown in
appendix IIB, by integrating equations (21) and (23) that

Z(p,t) is given by

Z(p,t) ) 1/ro2 5
3 agfogt - Hyag@p(0) - HBe - )]
1 %
= ———————-—7—— e c
[1+rt]3 2

(25)

In the case of arithmetic Brownian motion, the probability

density function is
2
12 [p -p(0) - aot]
1 Zoot

p(p,t) = ——— e 26)
P Y21 oVt (
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From (25) and (26) we obtain the result that the discount

.i v :

rate

m(p,t) = Z(p,t)e(p,t)
is independent of the return on the asset, - Hence,
arithmetic Brownian motion in continuous time gives rise to

what Brennan [1978] has termed a risk neutral valuation
relationship. Brennan [1978] investigated these-relationships-
in'discrgte time.
3. Comparison with the Apﬁroéch'of Garman

Garman [1977] preseﬁted "A General Theory gf Asset
Valuation under Diffusion S%Ate Processes'. His.approach has
mény formal similaritaes to the theory presented in this
"chapter. There are, however, significant d;fferences.

Garman states that his theory implies the exisfeﬁce of
"... a single partlal dlfferentlal equation which ;s’satlsf1ed
by all ex1st1ng marketable assets in a world governed by
diffusion state processes'. < '

The differential eqﬁation referred to by Garman is written
in terms of prevailing market prices (as is the.différential
equation of Black-Scholes). In this chapter, however, the
differential equations hold for a11 pofnts in price space
for all times t > 0. At t = 0, setting i %B = r, with

p = p(0), equation (22) becomes

-r)+Zop(0) =0 C(27)
Jt\ pT j = Pj(0) i=1, ... N
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Equa}ions (27) are identical, ignoring differences in .
~ notation, with Garman's differential equations for primary ﬁy;>
assets (c.f. Garman [1977] equations (11)). Garman calls
(27) the capital asset pricing model.
Equations (22) are satisfied by Z at all points p of
price space to 't > 0; We cannot "solve"'k22)>for the prices,
we solve it for Z(p,t) contingent on p = p(0) at t < 0.
* Thus the t =‘0 form of (22), equation (27), is not the
Capital Asset Pricing Model.
Suppose, however; we have an alternate theory for‘Z.
If, for examplé, ai'in Chaptér III, we solve the aggregatizn
problem, and obtain an expression for Z indépendent of
prevailing p}ices, tﬁén when beliefs are described by a
continuous diffusion process, the Z thus obtained must satisfy
(27). In this way we can obtain the C.A.P.M. (see Chapter
I11). » - . ‘

-Garman also states thaf "one convenience of the diffusion
‘assumptiom turns out to_be that (given the diffugion belief)
exactly three quantities completely determine all asset priteé.
These quantitiés are séen to be identifiable via Simplé

linear regression against the current interest rate'.

The three determinants of prices referred to by Garman

are 2 9L and aZZ all evai ated at revailin ket
> 3t 3p ;;7 ’ u pre g marke .

prices (t = 0). We have shown however that whenever the risk-
less term strugture is given, specification of diffusion

beliefs determines Z, and hence the three quantities.r
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APPENDIX IIA
Partial Differential Equations for 2

Rewriting equation (17) of chapter II

3z 9P - g '
, fdﬂpip 3t fdgpiz 3t 0 |
) i=1, ... N (1)

Consider the second term of equath®on (1). Substituting

for %%'from'equation 12, Chapter iI, we obtain

3p
dap; 2 3%
2
= B PP 9
—J’dﬂplz{ ?apl (alplp) + Vi § zJ:aplapJ PIPJUIJO}
(2)

We can evaluate the first term in (2) by integrating -by
parts, and assuming that p vanishes at the“boundary of integra-
tion. For example, when the possible realization of price

values lie_in the positive orthant the boundéry of integration
is the surface of the.N dimensional cube bounding the positive
orthant. Hhen‘prices are log normally distributed, p vanishes
on this boundary. Other‘boundary conditions can be chosen to
suit the economics of the situation.

Hence, since by assumption vanishes on the boundary of

integration



: ‘
faap; 2 { % e (alplp)}
97 '
f‘mppi["iz + % 5P ; 3pJ] (3)

Similarly, we can evaluate the second term in (2) by integrating
by parts twice, and assuming p and its derivatives vanish on,
the boundary. Substituting the resulting expressions into

equation (1) we obtain

o
: 3z |
Jaapi0 0 tip00),0) {ﬁ + a2
) 92 “ 3z 1 327 }
+ Taps gooat L 93P ppo * pr
IR R T R S I T k%jk 3p;9py
=0 : (4)

.Since equation (4) holds for arbitrary choices of the
vector p(0) and thus for the corresponding choices of p, we must

have

2z , 3z 3z
22, ., 2 a. 2.4+ Yo .p.
at * % 4 7 ZJ: P;% 3y * 5713P5 Ip;
2 E
L $F ppog; 2l = 0 SRR ON
13 i¥j71j apiapj

Equation (5) is identical with equationl(zd) of Chapter II. 1In

a sinilar'fashion equation (21) can be obtained from equation (19).
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APPENDIX TIB
Derivation of Z in Specific Cases
Geometric Brownian Motion:

Tt

With 2: and o constants and R(t) = e =, we can easily

integrate the N first order partial differential equations to

obtain A

| B '
Z(p,t) = A(t) m p.J (1)
‘ [
where A(t) is an unknown function of time. Substituting (1)

into (21) weg,obtain

Bla 2(t) + 7 8'S 8 Z(t) - 7 8' X Z(1)
+ g—tZ: +1 72 = 0 ' (2)

where we have used the fact that -

" Yoap & = z(t) Toa.8 = I(t) B'a (3)

j 37 apj j 3] .

and

1 327 1,05 . 1

e, = 1 ) - ]
H] Zk PiPx%jk 3B, 9P, 7B 4B - 78 Eo]z (4)
\;

where - . L ‘

a column vector with elements og i=1, ... N/

37
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B.
Dividing equation (2) by ? ij we obtain

g~‘:+{r+8'[a-%ED+%—EBl}A-.O | (5)
Thud o ' N
B'[(a - 3 Zp) + 7 LBt
A(t) = A(0) e Tte ' (6)
_But since
. .
Z(p(0),0) = 1 = A(0) m p;’(0) (7) -

J

we obtain using (1), (6) and (7)

8'[(a - 37X, *+ 3Xalt

' J
P. ,
Z(t) = e:rte = ] (®).
| J{rdn

Arithmetic Brownian Motion:
Assuming a = ao/p and g = oo/p and the compatible
choice (see appendix IIC) R(t) = 1 + rt we obtain using (22)

and assuming the existence of a single asset

. _ _r 2 37
(ao' ok *rt) Z + o % = 0 O

L

The solution of (9) is

- _12’ [“p i %ri-rrt] , (10)
5 | |

Z(p,t) = A(t) e
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where A(t) is an unknown function of time.- Substituting (10)

into (21) of Chapter II and rearranging terms we obééin

2
a : .
.10 A(t) + 3 :f A(t) + BA(Y) . (11)
2 02 2 r+rt At
)
| 1 2,,2 ]
2z aotfoo -1 : :
A = A(0 . 12) -
(t) (0) e }I:;23377 (12)

using the condition that

Z(p(0),0) = 1

we obtain equation (25) of Chaﬁter IT.

‘ \ t



- 44 -
APPENDIX IIC
Example of éondit;ons Under Which Zip,t) Does Not Exist
Assume a riskless dollar grows expongntially and the riskf
asset grOwsllinegrly with time.‘ Substituting equation (1) from

appendix IIB, into equation (21) of Chapter II we»obtqin'

~J i

2

1@ 11 .22 dA .

-Z—%A(t)+rA(t)+-z--—2rp A(t) + 23 =0 (1)
% ' %

Now, since g%'= 0, equation (1) has an acceptable solution when

2

-1—‘2’ %\—zp - g(1) (2)
95 .

Qhere g(t) is a pure function of time (i.e. %% = 0). But this

implies a determinate value for p from equation (2), which

. . ' LN .
violates the assumption of the existence of a risky asset.
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Chapter III

The Valuation Operator for Efficient Capital Markets

In the first two chapters we treated the problem of findiné'
the discbunt factor contingent on the present prices of the
primary securities. In this chapter we consider the ﬁ}oblem
of finding the discount factor that prices the pfimary
securities.themsélves.

The approach is based on the .following considerations.
_If we assume that financial markets are-éapable of exhausting
gains from exchange then each individual's opportunity set is -
governed by the market discouﬁt factor 2 and.hi§ choices are
Pareto optimal. As a result, individual choices, which -
depend on Z, wilI correspond to some Pareto optimal allocatijon
which depends on aggregate resource constraints,_but not on Z.
Hence, we‘would expect that Z could be expressed.as a function
of tastes, beliefs and‘aggregate resource conftraints, in such
a market. -

In section 1 we show how this idea can be épplied to a
one period ;odel using Pareto optimal sharing rules (Wilson
[1968]). In section 2 we apply the results.of section 1 to the =~
one period linear risk tolerance econdmies investigated by
Rubinstein [1974]. 1In section 3 we obtain the discount factor
for an economy comprised of lifetime decision makers. The
interesting result q:brges that the expression for Z does not

depend in any important way on whether the problen i{jJ

formulated in discrete or continuous time.
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1. The Discount Factor for an Efficient Market”ﬁith a One
- Period‘Horizon; | | )
Let p be a possible realization'ofithe vector of end of
the péribd ﬁalueé of the firms an; W be the end ofvthe period
aggregate social weglth:

¥ o= a'p L~ )

C

Let S, (B) be the amount received by the kth individual when
k .

a state corresponding to the outcome p occurs.
25 ®) = W o ~ (2)

Assuming that individuals maximize the expected utilify

of endk 9f the period wealth, a Péretovoptinal allocation Sk(p)

f dQ Z lkuk(sk (p) fktl,’) - A (P) {Z Sk (p) - .' }] . (3) '
e Lk ‘ S k ‘ .
’ - -’ A

probibility density for the occurrernice of a state'poirespondiﬁé

cto the realization p - while Ui is the:utdlixy function of the. .
.9 . » - * - .- -

oo { | -
"Jlfh individual. The qpndit}ons}for 3 maximum are (;.f. W{lson-

e

[1968]) ' 3

14

Ly RE) - a@ -0 @]

- .
>
- ’ . S o 1]
-
- .- - -
. . =

for some positive v&iues of lk“ In (3) fk(p) 1s-the subjectivg

)
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Solving (4) we obtain the sharing’rulev R “\\\U) B
s;(p) = u?! A B (5)
k7 . k| "lkfk‘pj

~The A(p)'s are the Lagrange multiplieré for the yealth‘cqn-
- straint associated with évery possible realization of the
- vector p:j_Applying the conSfraint (2) to equatioﬂ (5) we
obtéin B ‘ ‘
. , - \
W = U 6
Tut w0 ©

From (6) we obtains A - (perhaps impliciti?) as a functioﬁ

=

of p and . Denote the function thus obtained by
n ) n

At = A(p,W) ‘ | N )

Substituting (7) into (5) we obtain the Pareto optimal

sharing rule for a given set of lk;

o W -1 [
Si(P.W.lk) = Uy [1‘;{;@)—] . (8) -,

The Individuai's Problem ¢

Having'lbokeﬂ at the allééation_problen from ehé:poinf

- of view of t is socially optimal, consider the problem from
. therpéi of view of an individual in a market in which there

, A
is ap #bSence of riskless arbitrage opportunities. Assume thal

g;capital market provides sufficient exchange obporfunities

< | N
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(for a discussion of this point see appendix IIIA) to ensure
that for any realization of the end of the period vector of
firm values, the individual can choose an end of the period
wealth Wk(p). Because of the absence of riskless aribtrage
opportunities the initial wealth of the kth individual is

given by
= E{Z Wy (9)

where the expectation operator is defined in section 1, Chapter
II, and Z is the discount factor. The kth individual chooses

Wk(p) that maximizes
Jao [ v an) - G zen - v, )] (10)
For a maximum we require

£,V (W) - Ae(@IZ(P) = 0 (11)

or

1.1 Akp(p)z(p)
where Ak is determined by
Jam@zomg = W, (13)
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Assuming thati the capital markets are capable of exhausting

gainsi from\gjhange €12) must correspond to one/ of" 't}ie possible

Pareto opti éllocatfbns given by (8). Hence, th%jg exists
a set of 1, such that  f'
WAR) = SA(R,1.,W) . ' (14)
k" k *7k? K\ d
~— )
Fro} equations (8), ng) and (14) we have:
10, p(PIZ(P) = A%(p,W) ~ (15)

>

)
{

Since p(p), Z and * are market quantities -independnet of %k, _

lkAk.is indgpendent of k. Choose lk’ such that lkxk = 1. . Then

p(P)Z(p,N) = A*(p,W) : | (16)

-
. N »

Thus the discount factor in an efficient market is directly
proportionalifq the marginal social evaluation of an extra
dollar of aggregate future wealth,

Homogeneous Beliefs - \

]

With homogenéous beliefs £, (p) = £(p) for all k. Then

from equation (6) we obtain

/

R p e

If we solve (17) for )/f(p) we see that



T v (W) (18)

where v is a function of W alone, and not p separately.

Together (16) and (18) imply
P(P)Z(P,W) = £(p)V(W) (19)

Making the natural identification

p(p) = £(p)
we obtain
Z(W) = V(W) (20)

With homogeneous beliefs Z is a function of aggregate wealth

alone.

2. The Discount Factor for Single Period Linear Risk
Tolerance Economy. | |

Exponential Utility

For the case of investors who have exponential utility

functions we obtain from (16) and appendix IITA (equation (6)),

A /A
] K/ -W/A (21

p(p)Z(p,w) = E [lkfk(p)
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when there are homogeneous beliéfs, we make the natural

identification
p(p) = £(p) Co(22)

where fk = f for all k. Then from (21) and (22) we obtain’

| A/A -
Z(W) = %E 1, X WA | (23)

Power Utility

From appendix IIIA (equation :(10)), and equation (16) we

obtain
p(P)Z(p,W) = {Zk: [1kfk(p)]B}l/B [A + BWI-I/B (24)
3With hoxlnogene-oﬁs beli.efs we have
Z(W) = {ZkI 12} Y a iy~ 1/B | | | (25)

Example

In this example, we assume homogeneous normal probability
assessments and neggtive exponential utility functions. We
use Z to price the‘prinary securities. This enables us to
elﬁninate taste parameters from the expression for Z and obtain
the price of a siiple call option written on'a primary security,
contingent on primary security prices.

- Assuming homogeneous normal beliefs
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£, = N(P,C) , (26)

where p is the vector of expected values of end of the period

firm prices and C is the variance covariance matrix. Assuming
: . . P
riskless borrowing and lending

1 -
I+rf = E{Z | , (27)

-where Z is given by (243). From (23) and.(279we obtain

1 . AJ/A -1/Ar'p + 172a% vrcu ég
or, - 0 W e | (28) -
f k . ' .
/A -
Solving for n.li and substituting into (23) we obtain
k
% v'p - iLz t'Ct

Z(p) = I{%T e 2A e W/A (29)

-

The vector of beginning of the period values of the firms,

Py» is, using (29), (and results of ‘appendix IIIB)

p, = E{z(p)p}

. 1 f—= '.
- o [P 4] ) | (30)
f \ . ‘ /

which is the well known result.

The price of a call option wfth,striking'price ki,onlthe

ith firm is given by

-

- ~
[ .
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,E{chj [p; - X;1 |0y 2% b 6D

From appendix IIIB we obtain

i
1'p 1 .
- + _2- I'CI _K + 5. _ l I'C
1 e 2A F i b A (32)
1+rf C
ii
and
, - 1
-K. + p. -5 11'C
- i i A
E{zp; [p; 2K} =p;OF
ii .
— 1 'C
-K + P: -
1- i i A
*Tar VG f —
~~ i1 ,
' (33)

Substituting, (32) and (33) into (31) and makihg use of
(30) we obtain the call option price, contingent on present
prices

R \/
K. -K. + (1+1.)pos

1 i f/rox
[Pi(O)'T_;—rf-] F -

ii
:Ki + (1+rf)poi . » ]
f - , . (34)

. |
1+rf Vi _
Vcii

Equation (34) was obtained by Brenhan, by a somewhat different




~approach, [1979].

. In the absence of transactions costs options are redundant

for the economy discussed above since the efficient allegations
‘ 3

of future wealth can be-achieved in the primary security

markets albne, Rubinstein [1974], (c.f. appendix IIIA).

3. The Discount Factor for an Efficient Market with Lifetimé

" Decision Makers.

Parewo Optimal Allocations
In continuous time the Pareto optimal consumption

alloéatiqns Ck(p,t) maximize

o

fm dtfdn[Ek lkUk{Ck(p,t)} £,(p,t)
- A(p,t){%ck'(p,t) - C(p,t)}] 6

Where Uk(Ck(p,t)) is the utility per unit of time of the

kth

individual, from consuming Ck(p}t)'dollars worthwyf goods
per unit of time, in state p at time t. For simplicity we
assume that individuals are infinitely long lived and their

utility functions do not depend explicitly on the state or the

time. _ _ v /i&

In a discrete time framework the Pareto optimal consumption"

allocations Cz(p,t) maximize

2 Jaad2 1y CIRNI EACER

- 2%t {Z CE(p.t) -Ceml] e
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where Uk k(p t) 1is the utility of the kth individuélvfrom'
consumlng Ck(p t) dollars worth of goods in state p at time t

The continuous time formalism deals with flows while the
discrete time formalism deals with stocksl. The Pareyg‘optimal
allocations in continuous time satisfy

< | | R

—~

LUG .0} (.0 = et N IR

while in discrete time they satisfy

up {cpp. 00} fk(p.t)@x%p,t‘) ey

Thus. the discrete and continuous time approaches are
formally identical and there is nd need to develop them

separately. From.(37)

' -1 x(;z,t) . ‘
C st = Uy 39
where 1 is determined by

The two approaches can be related by use of the § function
as follows .

)ccp,t) - X Ot t.)
1 -
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A

2 Clp,t) = C(p,t)
k
. rul S | (40)
kK X Kk(Pst B |
Equation (40) gives A (implicitly or explicitly), as a function
of C(p,t), p, and t l

At = A(C(P.t),D,t) o (41)

Substituting (41) into ¥%9) we obtain the optimal consumption

%1locations

. 't_1 _ A* ) . |
Cg(p,C(p,t),t) Uk {I;T;Tijfy} (42)

‘ . 1

Restrictions on Beliefs

With homogeneous beliefs, fk = f for ali k, equation (40)~
determines X/f as a function of aggregate consumption-alone,
ang not of W and p separately. Thusvx/f = y(C), where v(C) is

implied by (40), which gives the sharing rule

crcc,e) - vl {.1@1} o (437

k

o f

When beliefs contingent‘on aggrqtate‘consumption are
honogeneous [i.e. fk(p,t) = h(p/C)ﬁi(C)] then equation (40)
determines A/h(p/C) as a function of C(p,t) alome, i.e.,

A/h(b/C) = n(C), which gives the sharing rule

»
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cg(c,t) = u]'('l ’Tﬁ%‘ | (44)

Once again the shqging rule is a function of 'aggregate *
consumption alone andgyﬁence, Pareto optimal allocations éan
be aéhieved with the aid‘of finanéial.instrumqpts which
distinguish these states, such as~call options,‘written on
aggregaté consumption, Breeden and Litzenberger [1978], or

gupershares-Hakansson [1978].

The Individuals Problem

With a rich enough capital market structure so that the
individual can choose Ck(p,t), then in the absence of riskless

arbitrage opportunities Ck(p,ﬁ) maximizes

f dtfdsz Uk{Ck(p,t)}fk(p,t)

o
- >‘k [£ dtfdQ Z(p,t)C(p,t)p(p,t) - Wok] (45)

where W_ is the initial wealth of the k! individual. From

(45) we obtain

. '.1 xk- Z(p,t)p(p,t)

There is an anﬁlagous discrete time expression obtained by
replacing the flow variable by stock variables. In a market
where the gains from exchange are'exhagsted, ghq choices (46),

correspond to one of the Pareto optinai allocations (42). Thus

-~
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c¢hoosing lklk = 1, we obtain from (42) and (46)

Z(p,t)p(p,t) = A*(C(P,t),p,t) (47)
. ’ -
When beliefs are homogeneous we make the identification

o(p,t) = £(p,t), and obtain from (43) and (46)

Z(€) = v((p,t)) , (48)

pe .

Equations similar to (47) and (48) hold in a discrete time
frameﬁork, theionly difference being th#t the flow variable
C(p,t) is replacé& by the stock variable Co(p,t). Hence, the
valuation formula for discrete-ﬁnd continuous time framework,
are for a}l,practicai purposes identiéél, when markets exhaust
-gains from exchange. B

In thé multiperiod_discretevtime approach as typified by
the work of RuBinstein'[1974, 1976]. Breeden and Litzenberger
[1978] anq Hakansson [1978], C(b,t) is exogenous, i.e. either
aggregate consumption in each state, or its distribution are
] exogenously given. J

For example, Rubiﬁstein [1976] and Breeden and Litzenbergér
[19781 consider the cas; of a market where individuals have
“identical relativé risk ;version ind homogeneous be{iefs. In-
this case from (48) and appendix IIIA

’ 1/B

. _ -1/B .-1/B - |
260) = X nd" B e L (49)
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From (49) when C is log normal, Z(C) is log normal. This is
analagous to the situation in Chdpters I and II'whe;e'log
normal firm values and log normal Z lead to the Black-Scholes
option pricing f?rnula. in a similar fashion (48) leads.to

- the Black-Scholes formula for optiéns Qritten on aggregate’

consumption when C is log normalz.

As a further example, consider the case of individuals
with exponential utility functions in consumption and

homogenedag beliefs. From appendix IIIA we obtain

A /A , ’
JORENE NN R ' ¢ (50)

Assuming C(p,t) to be exogenous, choose it such that

: - N .
C(p,t) =. 2> 8; Inp, ) (51)

i=1
1%

where"ﬁi are as yet unknown constints. Substituting (51) into

(50) we obtain

A/A N B
z o= (] mop; - (52)
k i=1
Equation (52) has the same form as equation-(38) of Chapter I,.
and thus leads to the same form for Z‘contingent on present firm
values, equation (46) Chapter I. $Thus ﬁhen'p. are log normal.

i
Isince beliefs are hoipgeneous, a market in these options,
together with riskless borrowing and lending lead to a

Pareto optimal allocation of risk bearing.
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(52) leads to the Black Scholes forlula for opt1ons wratten

on the f1rn.' Thls result 1s 1ndependent of whether or not
the problen is for-ulated in d1screte or cqnt1nuous time.

, Connectzon with the Model of Merton’ *

Desgltq_th continuous time character of most of this
-thésis, the'E;;:;ach is closer in sp1r1t to the discrete
multiperiod models- of finance, rather than to the continuous
time,model of Merton [1971, 1973]. This is because of the
"fbrvard looking" natﬁre 6f}the analysis. The differential
equations'bf Chapter I1 hqld for all future time and all of
price space; In this chapte:‘individuals afe (explicitly)
concerned with making choices for all fdture times.

In Merton's model, individuals are indirectly éoncerned
'about the future through the induced ?r derived utility of
wealtb fundt1on. The partial dlfferé;t1al equatlons for this
functio ~Q;e in terms of prevailing larket Prices and the
present [time, ‘as are the d1ff¢rent1a1 equations of Garman
and Black- Scholes (c. f discussion at the end of Chapter II. ),
Slnilarly,_theilto doscript1on of the diffusion process
involves derivatives eyllunted at prevailing market prices
only. . As a result this approach does mot appear to be
‘néﬁful’for obfaigiqg—thc differential equations of Chapter II.

In Merton's model, (this is the important point) beliefs
are contingent on prtvtiling‘iirkctipt%cii.l In this rospoct .
tho priqnxy asset valuatien model hnl selothing 1n co |

-

Chapter II; at ﬁ-ﬂ. y A satisfics'

-
- . . - -
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1 3R ' oy 3 S
[“i R 3?] + L o;5p5(0) ;| -0 - (33)
) p;=p; (0)

, ~
Assuming homogeneous beliefs, Z is a function of aggregate

consumption alone. Assuming a constant propensity to

consume out of wealth, C = aW we have

\I%zﬁﬁ?p_jz-aﬁ (3

:Sﬁbstituting (54) into (53) we obtain

. 1 -1 1 9R\ )
p(o) = 3z > ‘(a - R 5?> (55)
) 3C(0) )
Choosing % %% = r, equation (55) has an obvious resemblance

to the pricing formg}a of Merton [1973b]. If a 5%%5?"’ andf:

are all independent of prices, then (55) is an explicit expres-'
sion for prevailing market prices. Otherwise (55) represents
N equations that must be solved for N market prices. L;
From (55) it follows that the vector of weights on the

market portfolio is .

1 -1 . B
w = _ (@ - 1) (56)
v Y e za - | |

Equation (56) implies the capital asset pricing model (c.f.
Merton [1973b] for example).



- 62 - ,
| APPENDIX III[\)

Sharing Rules for Linear Risk Tolerance yfziity Functions
Sharin%vrules for linear risk tolerdé&e/tuility functions
in a completé_garket context have been developed by Rubinstein

[1974]. We develop the sharing ¥u1es here without recourse

- to the idea of a complete market; the approach is'similar to

—that of Wilson [1968].

In section 1 of Chapter III we obtained the Pareto optimal

\

'S, (p,W,1,) = U1l At (1)
kW27 tk k kaklpi

sharing rules as

where A¥* is a function of p and W determined by the constraint

1

- 2Sy, = W (2)
K K |

Ke assume that for the kth investor

aU -S, /A, P
U = 55 = e KK | (3)
or .
: ' “1/By
Up = (A + BSY) B # 0 (4

Exponential Utility

e}

Substituting (3) into (1) we obtain

3 ) . -



- 63 -

L fy

Sk = Ak 1n X% . ) (S)
Using the constraint\(Zj we obtain

-W/A k
AR = e ™ [1,f,] . _ (6)

-l

-

where A = ZAk f) a (7)
' k

Substituting (6) into (5) we obtain the Pareto optimal

sharing rule

fk(P)
Ak[A

Sk(P:wylk)

[
>
w
—
=
*‘i
+
>
w
—
=]

m1 m £ (p)
. kK K kK K

;,‘ (8)
J
QRH interpretation 6f the terms in (8) has been given by
Wilson and Ruﬂinstein. We outline 'this interpretatiod
briefly here.
| The first térm in €8) is called a side payment; it is
independent of p and W and v;nrshes when summed over all
individuéls. ‘'The allocations correéponding to this term can be
achieved by a market for riskless borrowing and lendiﬁg.
The second term in (8) is called™a side ﬁet; the amount of
- the péylenq depends on which realization of‘p‘occurs, and

Yanishes whén'sunned over all individuals. When beliefs are

not homogeneous the allocation corresponding to the” term cannot
b .
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in general be achieved by\a market in primary securitiés .
[Opportunities forVside bets are not required when beliefs
are homogeneous.]

The last term in (8) is called a dividend,‘and the
allocation correéponding to this term can be achieved by the
market for primary secﬁri?ies.

.When individuals:have homogeneous beliefs we can see
from (8) that only two markets are required to achieve a Pareto
otpimal allocatipn of claims to future wealth. A market. for
riskléss borrowing and lending, and one for the shares of a
mutual fund that owns the market portfolio.

However, with heterogeneous beliefs, riskless borrowing
and lending, together with the markets for primary securities
are, in general, incapable of securing the allocativbon (8).

In this case if markets are costless to open and operate,
markets in secondary securities will open up. As long as the
allocation (8) has not beén achieved there still remains

unexploited gains from exhange and secondary securities

coatinue to proliferate until .gains have been exhausted.

. Substituting (4) into (1) we, obtain

1 An exception occurs when probability assessments are

multivariate normal, with disagreement about the expected
value of p, but agreement about the variance covariance
matrix. -



A

k o
k 1 A :
Sy - E *t i |l , o (9) -

Assuming B, = B for all k yé can use the constraint (2)

to show for

1/B 1/B
At = ; z:[lkfk3B$ _ [A + BW] | (10)
K

Substituting (10) into (9) we obtain

) T
k B
| B

. Z:[lifi(p)]

1

B
A [1,. £, (p)]
Sy (p,W,1 = -k K’k P [% + é] (11)

~——

Equation (11) can be given an 'interpretation similar to that

given to (8). With homogeneous beliefs we obtain the sharing

rule ' ' -
Ay A IEB' liB |
Sk(w’lk) = "3 B =B ' w Y (12)
21, 21,7
1 1
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 APPENDIX IICB

A- Useful Integral

e

Let the vector X ~ N(u, ") and let h(X) be the joint

. density function for X.

To obtain

;oD [ -] B"x
f X, dX; f m o dXse® “h(X)

. = i#i -
CH o ¥

differentiate (1) with respect to B, and divide by B -

§§

(1)
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CHAPTER 1V

Conclusion

We have presented a unified approach to security valuation
based on a linear operator. We have found that when capital
markets are capable of exhausting gains from exchange the
valuation operator that prices all securities is related in
a simple fashion to aggregate resource constraints, and that

+i1innchin
CLULtoaldp

i o fccandlgl o _
the re in any essentiai way on

1A -
L Sy 1

oes not depend
whether the problem is formulated in discrete or continuous
time. We have derived explicit forms of the operator for
linear risk tolerance economies, and shown how the Black-
Scholes option pricing formula for secondary securities might
arise.

We further demonstrated that when primary asset prices
follow a diffusion process, the valuation operator contingent
on present market prices is determined by the parameters of
the stochastic process.

Finaliy, when beliefs are contingent on prevailing market
prices, we have shown how the two approaches to the valuation
operator can be combined to produce the Capital Asset Pricing

Model in continuous time.

Observations

We have been able to reproduce many of the models of
financial theory within a ﬁnified framework that assumes
aggregate resource constraints at time t can be exogenously
specified. However, consumption today, affects the amount

available tomorrow; the models should be extended to endogenize



the aggregate constraints.

The valuation operator contiﬁgent on present prices can
be used to price a wide variety of secondary securities. The
analysis of Chapéer II has to be extended in some of these
cases to include the effects of boundary terms (see Aﬁbendix
11A). '

Finally, beliefs do not emerge from a vacuun, énd we have

‘deft upanalyzed the discrete time model that prices primary
sééurities when beliefs are contingent on present prices. In
the discrete time, cohtinhous time debate, it seems that it is

only this model that can be called the competitor of the

continuous time C.A.P.M.
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