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Abstract - P

I

In this tﬁesis we give the major additive results for Schnirelmann
and asymptotic density. A concise proof of the o + B Theorem (Mann's
Theorem), which deals with finding a lower bound for the Schnirelmann -
density of the sum of two sets, appears in Chapter 2. However, the
majority of the thesis is de?oted to the development and proof of the
theorem of M. Kneser. Kneser's result deals with finding a lower
bound for the asymptotic density of the sum of two sets. In both
the proof of the o + B Theorem end Kneser's Theorem we rely heaviiy
on the use of T-transformations:. The T—transformatiens are similar
to'tﬁe transformations used by F. Dyson. They are used to modify fhe

sets being added in such a way that certain additive and density

properties remain invariant.
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Introduction

In this thesis we will present the major additivity theorems
for Schnirelmanh-andfagymptotic density.

Let I denote the:set‘of éll integers and IO denote the set

of al; nonnegative integers. The sum A + B of two sets A and

B is the set of all integers of the form a + b, where a € A"~

and b € B. A(n) .will denote the number of positive integers belong-

ing to A which are less than or equal to n.

The Schnirelmann density, d(A), of A is defined by

A(n)
d(a) = glb - -

n=1l
In 1931, E. Landau and L. Schnirelmann (see [5]) conjectured

that for any A,B C I, if 0 €ANB and d(A) +d(B) 1, then

- -

d(A+B) = d4d(a) + 4(B),

but were unable to prove the conjecture. Early in.l932,A. Khintchin
[6] proved the conjecture true for the special case when d(A) = d(B).
This problem attained the s£ature of a famous unsolved problem known
as the ia + 8 conjecture. Finally, in 1942, H.B. Mdnn [8] proved
the conjepture was true for all sets A and B which satisfy tﬁé
hypothesis. Later,Dyson [2] was able to give a simpler and clearer
proof than H.B. Mann [8], which lgant itsélf more readily to generali-

zations.




The asymptotic density, G6(B), of A is defined by N
, hY
. . A
§(a) = 1lim inf Aln) . -
n>« n

For asymptotic density &(A+B) = §(A) + 8(B) is not neces- .
sarily true. For example, if A =B = {0,2,4,...}, . then

§(A+B) = % ,

while 6(a) + 8(B) = 1. BHowever, M. Kneser [7] in
1953 proved what might be called the analog to the“a + B Théorem
for asymptotic density. Kneser proved that if- A,B'C I and

S@A) + §B) = 12 tﬂen §(a+B) = 6(A)7+ §(B), except that, when A
and B are ass;;iated with a union of residue classes modulo g,

in a way that will be described in detail in Chapter 3, we get the

following weaker inequality holding,

§(a+B) = §(A) + &(B) - é— .
. : 1 1 1
In the above example g = 2 and G§(A+B) = 5 §(a) + &(B) - E-= 5 -
/’_~£;; In Chapter 1 we state and prove some of the elementary properties

of Schnirelmann and -asymptotic density for éubsets of IO. "Many of
these elementary properties will be useful in later chapters. 1In
Chapter 2 we define T-transformations and state and prove their

useful propertieé. The T-transformations are used éxtensively in hes
the proof of the o + B Theorem and Kneser's Theorem. We concludé
Chapter 2 with an elegant proof of the o + f Theorem using
T-transformations. In Chapter 3 we prove Kneser's remarkable theorem.

Although the proof is 40 pages long, each step is of an elementary

nature. I have attempted and,I beldieve, succeeded in giving a



/‘\/ ) . - ~
clearer proof than any found in the literature. 1In Chapter 4 we | |
show that Kneser's Theorem implies the previous rqsults,qoncerned
with finding lower bounds for the asymptetic density of the sum of
two sets of integers. |

We introduce the following notation and definitions which we
will use extensively throughout this thesis. In‘the first two : ; =
chapters, the le;ters A,B,C,... denote subset of IO ; the letters;

a;b,c,... denote the elements of A,B,C,... respectively. However

in Chapter 3,we allow A,B,C,... to be subsets of I. For any set

A and integer t,

t +a= {t+ta | a€a} ,

is referred to as the translation of A by t. For any subsets A,B
of I, A 1is said to be equivalent to B  (denoted by A ~ B), if

there exists an integer N such that

v

AN{n | n2N=8BN1{n| nzn}.
If m,n are nonnégative integers such that m = n, we denote by
A[m,n}, the number of elements a of A satisfying m < a < n.

Then A[l,n}] = A(n), and

A[l,n] = A[l,m] + A[m+l,n], if 1 < m < n.

For convenience we will redefine both Schnirelmann and asymptotic

density in Chapter 1.
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Chapter 1.
Schnirelmann and Asymptotic Density
"§1. Schnirelmann Density :
Let A(n) denote the Counting‘function of the;poéitive part of ?
A, that is, ' ) _ L
A(n) = L 1, » ) s
T 1=a<n ‘ g
is the number of positive integers in A not exceeding n. i
We define the Schnirelmann density, d(A), of A by E
A(n) e e .
d(a) = glb{ -?r——[n=l,2,3;...}. To help familiarize the reader with
n : . . -
Schnirelmann density we shall state and prove a few of the elementary
properties of this definition.
-
Q
1.1.1 Proposition. If A C IO , then 0 = 4(a) = 1.

Proof. Follows clearly from the fact that 0 = ééEL

=1 for all n.

1.1.2 Proposition. If o = d(A), then A(n) = on for all - -n

(n=1,2,3,...).

A(n)

Proof. This result follows from the fact that o = 0 for
all n. _
1.1.3 Proposition. If 1 £ A, then d(a) = O. a
Proof. If 1 £ A, then Ail) = 0, so that d(a) = glb { A(n) 1 =o.

n>1
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1.1.4 Proposition. If 0o = d(A), them o =1 if and only if

A=1I, or A= IO\{Q}.

- .-
b=

"A(n)

s 1 for all n, :which implies

Proof. Assume o = 1, then

that A=1I_ or A = 1,\{0}. aAssume a =1  or A =1 \{0},

0 0

A (n)

then =1 for all n and therefore o = 1.

; 3

The couﬁting function plays an important role, in the theory of

I

density. The following result about counting functions is very useful
in that it gives a bound of the sum of the counting functions at n,

of two sets if the integer n does not belong ‘to the sum of the two - ) t>

sets.

1.1.5 Proposition. If 0 € ANB and n £ A + B, then A(n) + B(n) <
n - 1.

Proof. Si;ce} nfA+B and 0 €A B, thén n £ A and
n £ B. Let O0< a; < ;2'< cee <A =n be all the elemeﬁts'belonging
to A 'which are less than or equal to n,” so that A(n) = k. For
each i, (i=1,2,....,k) n - a, € {1,2,...,n-1} and n - a; £ B, for

if n - ai,E B, then a, + Kn—ai) =n € A + B, contradicting our

hypothesis. Since there are k elements of the form n - a; and

s

since n £ B, then B(n) =n - (k+1). So.it follows that A(n) + B(n) <

k +n-.(k+l) = n =~ 1.

The following proposition is an early résult in the development of

the theory of density.



1.1.6 Proposition. If A,B C IO , 0€ANB and d4(a) + 4(B) =1,

then A + B = IO'

Proof. ‘Let o = d(A) and B = d(B). Assume that A + B # I

0 14

=3 T - - L. P
then there exists an . n € IO such that n £ A + B. Then by Prop?sl_
tions 1.1.2 and 1.1.5 we have the following LT e

e .
lEOI.+BSA(n) +B(n)=A(n) +YB(n)<n~l
n n ) n n

<1,

which is a contradiction. Therefore A + B = Iof

‘L. Schnirelmann (see [5]) asked the quesFion: To Qhat extent
is the density of the sum of several sequences determined solely by
the densify of the summands, irrespective of their arith@eticai
nature. We shall be intere in this guestion as it pertains to
two sets only. E. Landau and L. hnirelﬁann (see [5]) proved thé

following remarkable inequality:

g

If 0 €ANB, then d(A+B) = d(A) + d(B) - d(a)a(B).

This was the first tool for estimating the density of a sum of twd

sets from the densities of the summands. A.S. Besicovitch (11,

defining d'(B) = glb { T (n=1,2,...) was able to prove the

n
following:

F)
If 1€A and O € B, then d(a+B) = d4(A) + 4'(B).
P. Erdos (3] wasxgglg,to improve on this fesult ‘when he wasfable

2

to show that:

s, o el

.

b b

R T Lo N Y VN SN S e




If 1 €A and O € B, then, d(A+B) = d(A) + d*(B),

. : [ ' ;
where d*(B) = glb { Bln) }, {1,2,...,k} ¢B, but k + 1 £ B.
n +1 3
n>k .
It is clear from the definitionsthat for any set B, d*(B) = d'(B).

As mentioned in the introduction,E. Landau and L. Schnirelmann

conjectured that:
if 0 €ANB, d(a) +d(B) =1, then Ad(A+B) = d(A) + a(B),

but it was not until eleven years later that the conjecture was proven

1

true by H.B. Mann [8]. However,the result by A.S. Besicovitch is not

superseded by*"the a +  Theorem, since O € A 1is not stipulated.

Eyes




§2. Asymptotic Density

We define the asymptdtic density, &(a),  of Af by §(a) =

A(n)

lim inf (n=1,2,...). Thus, by contrast with Schnirelﬁann

n-oe _ :
density, the early elements of A ~do not have a disproportionately
important effect on the value of &(A). We shall now state a few

elementary results about asymptotic density.

- -

then 0 = §(a) =< 1.

1.2.1 Proposition. If A C IO ’
— o
Proof. The result follows clearly from the fagt that
A
0 < én) <1 for all n.
1.2.2 Proposition. If A C I then d(a) = &(a).
A(n) .
Proof. Let Iy = glb{ —;f—-[ n >k} (k=1,2,...). Since
< < < < <
9, = g2 =93 = -0 29 __L;;é“we have that,
o L A(n) * - 0 :
d(a) = 9, < lim 9, = lim inf = §(n).

ko n->o

1.2.3 Proposition. If A,B C I_ with A € B, then 6&(a) = §(B).

0]
Proof. Since A C B, then A(n) <'B(n) for all n (h=l,2,...).
A(n) B(n)

So that = , "and §(A) = lim inf < lim inf
n n / n-»o n-e

A(n)

B | sm).
n

1.2.4 Proposition. Let A C IO and x be any positive integer,

i) if B=A + x, then &(a) = §(B),

ii) if B =2A - x, then (&) = 8(B).

Pr . = < < < ... < = < <. ...
roof Let Q _5(A) and O a; a, a n a1

< 3 1x be the first k + x positive integers belonging to A.
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s 1\
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Y o
Proof of (i). Since B = A + x, then .A(n) - x < A(n-x) =
Pt
B(n) < a(n). Result (i) follows from the fact that,
. - . . . _ A
¢ = lim inf éiﬂl——jifilim inf‘B(n) = 1lim inf —iEl = Q.
n->co n n-> n-—>o n
.. . _ _ < < +
Proof of (ii). Since B A X, ax <=.x and ak+x n X,

then
A(n) - x S B(n) < A(n+x) < A(n) + x.

Our result follows again from the fact that,

- +
o = lim inf fﬁlﬂ;;——5-f lim inf Bé“) < ]Aéf inf 5133;;—35:= a.

e,

" n—>o n>xo oo

1.2.5 Proposition. If AB€ I ,, 0€ANB and §(a) + 8(B) > 1,

then A + B N'IO

Proof. Let € = §(A) + 6(B) - 1. By the definition of lim inf

n

€
there exists an N such that n > N implies Aén) > §(a) - y and
Eﬁgl—z S(B) - §—~ Now suppose n >N and n £ A + B, then by
Proposition 1.1.5, 1 + §-= §(p) + §(B) - %-E A(n) + B(n) < n-l <

n

n

which is a contradiction. Therefore (A + B)N {n l n > N} =

1N {n l n >N}, or A+ B~ IO.

The strict inequality in the hypothesis of Proposition 1.2.5 is

1

L and therefore &6(A) + 6(B) =1, but A + B =

S s
necessary. Consider the case when A =B = {0,2,4,6,..

§{(A) = §(B)

2

{0,2,4,6,...}. So when Proposition 1.2.5 is compared with Proposition

l.1.6,we find that the hypothesis and conclusions are both weaker in

\

then

S rny, s

I\
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Proposition 1.2.5.

1.2.6 Proposition. If A,B C IO

and A ~ B, then &(A) = §(B).
B .

Proof. Since A ~ B then there exists a k € IO such that

AN {n ] n=>k}=BN{n ] n > k}. From this we can conclude that ) %

- ¥ E
A(n) - k < B(n) < A(n) + k. Thus 2pizk B _ Aln)+k and =
n n n i
our result follows from : g
' lim ing BITK < ggp gne B < gyp g RREK L
n-r-x n n—oee n no>o n
and the fact that ;
, I

lim inf 513%—5-= lim inf éiﬁ%—5-= §(a).

— B n-

1.2.7 Proposition. If A C IO and n 1is any positive fixed integer
and

§'(a) = 1im inf %é%ﬂl

k —vop

, then &) = §'(a).

such that
A(kn) _ A(x)

Proof. For x € IO there exists a k € IO

kn £ x < (k+1)n and A(kn) = A(x) < A((k+1)n). Thus

(k+1)n — - x

A((k+1)n) k ., _A(kn) _ A(x) Al(k+1)n) _ (k+1) .

kn poSoLthat o N T T < T km (k+1) Which
implies that

k . A(kn) _ A(x) k+l . A((k+l)n)
k+1 kn =~ x  k (k+1)n :
Thérefore, lim inf — ¢ 5%531-5 lim inf 20 < 1yp ne KL, ALGHDD) -
K 50 k n X K300 k (k+1)n

and we get that &§'(a) =< §(a) =.6'(a).
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1.2.8 Proposition. If 0-= a; < a, < ... < a are incongruent

modulo g and A = {ai +ng | i=1,2,...,k, n € IO},_ then

§(a) = k .
g

| : | ke[ % 1-C

Proof. The result follows from the fact that - =
A(n) k| 1 1+k
- < for all n € IO , Where C = max {ai} . Thus

n . : ~ 1=isk
: ke[ = 1-C . ke[ = 1+k
K - 1lim inf g < 1im inf 22 < 3y ipe —F X
g 3o n oo n n g
ys

The readgr should note thét if we allow A to contain the
negativerpért of each congruénce class,the conclusion will still
remaih the same since A(n) only céunts the positive integers of
A that are léssvthan o;‘equal to n.

In Chapter 1 we have presented the definitions and some of the
elementary properties of both Schnirelmann and asymptotic density.
The reader should now be better prepared to understand the develop-

3

ment and proof of the 0 + f Theorem and Kneser's Theorem.
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Chapter 2.

T-transformations and the o + B Theorem.
- A\

\
The major result used in the proof of Kheserxg theorem requires

the systematic use of T-transformations. Given two sets A and B,

we shall construct two new sets A'' and B', the T-transforms

of A and B, by removing certain positive elements from B giving

B' and placing additional elements into A giving A'. The

transformation T will depend only on the choice of a particular

et

element aO of A. . ﬁLﬁH’/

2.1.1 Definition. The strong union A v B of two sets A and B

each containing 0, is defined to be the aggregate of the elements

of A and B; each element being counted according to its multiplicity,

except that 0 1is counted only once.

The distinction between union and strong union is required for
counting purposes only; we may régard the two as identical except
in the one respect that the elements of the latter are weighted for
counting purposes. If A = {0,1,2,4,6,10} and B = {0,2,4,7,8,10},
then avB-={0,1,2,2,4,4,6,7,8,10,10}. From the example it becomes

clear that (A v B)(n) = A(n) + B(n), and in particular if 0 € B,

then (A v B)[0,n] = A[O,n] + B[l,n]. With this in mind we define
(A v B) (n)

§(A v B) = lim inf ———n 4
n>o //

2.1.2 Definition. Let <A,B> be a given system of sets. If

. T T T -
aO € A, then we define the new system <A,B> = <A ,B > , where

-
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T = T(ao) by;

BY =B N (a-a ) ,
o)
and we define . )
T T T
C=A+B, C =A +B ,
T
and VvV=A4aveB, VT = A Vv BT

2.1.3 Theorem. The transformation T has the foliowing properties:
T
i) aca’, B' ¢ B,
ii) ctcc,
iii) a + Bl cacal,
iv) If O €A, then 0 € A' and if 0 € B, then 0 €B' ,
T
v) S(v) =38V . ]
The proofs of (i), (iii) and (iv) are obvious.
. T T
Proof of (ii). We need to show that A + B C A + B. Let
y E-At‘+ BT, then y = x + bT where x € AT and bT € BT. First
consider the case where x = a € A, so that y = x + bT = a + bT CA+B
by (i). Now consider the case where x .= a + b, a € A and
T T T
b € B, so that y=x+b = (ao+b) + b = (ao+b ) +b CA+B by

(iii).

Proof of (v). Since AT =AU (aO+B) and BT =B N (A—ao),
we define B' = {b | b € B and b # a - ag for any a € A}. The
system <A,B>T can be described by: the set B' has been reﬁoved

Za . T - .
from! B leaving B and ao + B' has been'included in A, thus

.J [
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T
making up A . Therefore V(n) and VT(n) differ at most by the
number of integérs of B' 1lying in the interval [ﬁ—aé+l,n], that
is, V{(n) - ]aol = VT(n) = V(n) for all n and therefore ' .

S(vV) = 8(vhy. ' w

12 1 1

&, - T.T T T T2
' When we write <a,B> =<A ,B > we shall mean that

st oo

T.T
1 . .
<a,B> is derived from <A,B> by first applying Tl to <a,B>

, by means of some elemént a, € A and then by applying T2 to

T T T
1 1
<a "~ ,B > by means of some element al €A l. We shall represent

.. . : . T
a finite sequence of T-transformations by T, and write <a,B>

T.T.,...T
r | T R
for <a,B> 12 if <a,B> is the result of applying Tl to

' T T » !
1 o R c R
<A,B>, T2 to <a 7,B l>, .»., and finally, Tr to . e

T,T....T : T, T,...T
r

- ~ : T
<A 12 1, B 12 r 1>. We shall refer to <a,B> as a

system derived from <A,B>, or as a deriyétion of <A,B>, A

L . T T.T . T T . ’ . . TT'
derivation <a",B > of" <A",B™> 1is also a derivation <a,B>
of <aA,B>. &
. Ty T ‘
2.1.4 Theorem. Any derived system <A,B> of <A,B> has the
following properties: . é
. T -
i) A C AT, B CB,
T ' ’ »

ii) ¢ cc, : o
T . T
iii) If O €A, then 0 €A and if 0 € B, then 0 € B  ,

iv)  8(VD) = 8(V).

All of these properties are obvious consequences of Theorem 2.1.3.
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We are now in a position to use T-transformations to prove
a theorem, which is_é combinaﬁion,oﬁ a theorem by'Dyson (2] and a
theorem by van der Corput [10]. From this theorem,with very little
difficulty we shall be able.to prove the a + B ‘Theofem, and later

we shall use this theorem in the proof of Kneser's result.

2.1.5 Theorem. Let 0 <y =1 and n be any positive integer.
Also let A and B be two sets, each containing 0 and lying
entirely within the interval [0,n]. Denote by V and C the strong

union and sum, respectively, of A and B. If ©6 =0 or 1, then

i) vI[0,m] > y(m-06+1) {m=06,0+1,...,n) ,

implies ii) C[9,m] = Y(mf6+l) - (m=0,6+1,...,n)

Proof. We suppose on the contrary that the result is false, and
that n 1is the least positive integer for which there exists a pair’
of sets contained in [0,n] for which (i) is true and (ii) is false.
Among all such pairs of sets wé choose A .and B with thé additional
property that B{0O,n] is minimal. We may suppose.that B contains
at least one positive element, for if 0 is the only elemeht of B,

the statements (i) and (ii) are identical.

We shall obtain a contradiction in the following manner. We
shall construct two new sets A' and B', by using T-trans¥ormations,

with the following properties:
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iii) v'[(8,m] = y(m-0+1) (m=0,06+1,...,n),
iv) c' < ¢,

v) B'[0,n] < B[O,n].

Properties (iii) and (iv) imply that the pair A!'! and B’
satisfy (i) but not (ii) and property (v) contradicts the minimai
property of B[O,n].

Let ‘a* Dbe the least among the elements a € A for which . .
a+ B¢ZA., The element‘ a* - exists, fdr since B contains %.pésitive
element, the lérgest element of A + ﬁ is certainly not in‘ A. We
will show that,/i;V a* > 0 and r is any integer satisfying
0 = r < a*, then

vi) b +(A N [0,r])C A for every b € B,
from which it immediately follows that,

vii) if A[O,r] = y(r+l), then Afb,b+r] = A[O,r] = Y(r+l) for every

b € B.

Proof of (vi). Let x € b +(A N [0,r]). Then x =Db + a for
some a €A and b + a < r < a* which implies that a < a*.@ By /////

the definition of a*, a + B C A and hence x=a +b € A.
We shall require the following fact:

2.1.6 If a* > 0, then for every r satisfying 0 =< r < a*,

AlO,r] = v(r+l).



Proof af 2{1.6. Suppose there exist r satisfying 0 = r < a*
for which‘ A[O,r] < y(r+l), and }et r' be fhe least sucﬁ r.
Since 0 € A a Y =1, it follows thatr“.zyl and/so
A[l;f‘] < yr'. n::j:zfore A[B,r') <var‘—9+1). Hawever, by (i),
v[O,r'1 > Y(t'-6+i),: and therefore 6,r'] must coﬁtain a positive’
element bO EJB since V[O,r'] = A[B,r'] + B[l,r']. Now, by the
minimal property of ', A[O,bé-—l]lZ_Ybo while A[0,r'] < Y(’r"+l).
Thus Atbo,r'] < Y(rl—bd+l) and, by kvii) (with r=r' - bo),

A[O,r'—bo] < Y(r'-bo+l). Since bO is positive, this contradicts

the definition of r' and 2.1.6 is proved.

" Recall that a* € A. Define B" = {b I b € B, a* + b £ A} .-

B" is nonempty, since a* satisfied the condition that a* + B ¢ A.
=1 .

Let T = T(a*) and thus

AT = A U (a*+B)

it

@aU (a*+B") ,

and BT

i

B\B".

[l

BN (A—é*)

T . . . T : :

The set B satisfies property (v) since B = BN\B" and B" 1is

~nonempty. Property (iv) is true by (ii) of Theorem 2.1.3.

It remains to confirm (iii). If a* = 0, then V' and V
. . . . T T ' .

are identical (since the difference between A , B and A, B is
that some of the elements of B have been placed in’A).A In this

case (i) and (iii) are the same.

We may assume that a* > 0. Considering (iii) for a particular

m = n, the translation of B" causes only those elements b of B"
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=

in the interval [m-a*+l,m] to fall outside of [0,m]. . Hence-

“

% it
vV'[O,m] = V[O,m] - B[m-a*+1l,m] for all m = n. Therefore fo confirm "%3%
(iii), it will be'sufficigﬁt to prove fhat, for each m,
VI[O,m] -‘Btm—é*+l,m] > y(m-6+1) . |

_Let' bl be the least positive b § B in the interval

there is nothing to prove).

[m~a*+1,m] (if there is nolsuch bl

Let m = bl + r so that 0 < r < a*, Then V[@,bl—l] > Y(bl—e).‘ )

Since VI[6,m] - B[m-a*+l,m] = V[G,bl—l] + Atblm], then
A[bl,m] > Y(m—bl+l) is all that remains to be prdved. A[0,r] = y(r+l)

+r] = y(x+l) is

is true bX 2.1.6 and therefore A[bl,m] = A[bl,bl

true by (vii). This establishes (iii), and so the proof of Theofem
2.1.5 is‘completeﬂ

The restriction, in Theorem 2.1.5, that both A &and B be
contained in the interval [0,n] is made only for the purpose of
simplifying the notation in the préofi The following corollary

is an immediate consequence of .Theorem 2.1.5.

2.1.7 Corollary. Let 0 <y = 1. If 6 =0o0or 1 and O € AN B,
then
V[B,m] = y(m-0+1) (m=0,6+1,...) ,

implies C[6,m] = Y (m-6+1) (m=6,6+1,...)

The o + B Theorem is one of the most outstanding results in

the theory of density. The original proof by H.B. Mann [8]‘in 1942

-

was very complicated. We are now in a position to give a quick proof {

using Corollary 2.1.7 with 6 = 1.

- ) o



2.1.8 o + B Theorem. If ‘A,BC I, and O €A N B, then

d(A+B) > min(1,d(A)+d(B)) .
Proof. Let « = d(a) and B = da(B). - : -
Case 1. Assume O + B » I, then by Proposition 1.1.86, A+B-= IO

and the result follows immediately.

Case 2. Assume/;d + B < 1. 'V[l,ni = y(n) ?~A(h) + B(n) = (a+6)n

for n =1,2,3,... DBy Proposition 1.1.2. By Corollary 2.1.7, with

-
-

8 =1 and Y =0a + B, we have that C(n) "> Yn = (a+B)n- (n=1,2,3,...).
' . e

This completes the proof of the o + é Theorem.
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Chapter 3.

Kneser's Theorem

§1. Kneser's Theorem

Kneser's theorem deals with the problem of, given a system

of two iets <A,B>, obtaining a lower bound for & (A+B) in terms

. +
of 1lim inf 2®)_* B(n)
n—e ' n

It will be convenient to permit A ahd B to contain negative

integers. ThiS/éllowance makes no essential differéﬁéeglgvfinding

a lower bound for & (A+B), since .only the positive integers are
pounted in A(n) and B(n).

We shall begin with some preparato;y remarks and definitions.
The sum and strong union of the system <A,B> will be denoted A . !
respectively by C and V. Since V(n) = A(n) + B(n), our problem . / -
now wi11~bg FO bbtain‘a lower bound for &(C) in terms of 6(V)t'
We will be ablg to reélace, aé will be clear 1ate;, the system .
. '<A,B> by any system <A',B'> which satisfies the following two

conditions:
] - ijf’

i) ACA' and B C B',

ii) c¢c' ~ cC. - .

3.1.1 Definition. If two systems <A,B> and <A',B'> satisfy

Y 8

conditions (i) and (ii), we 'say that <A',B'> is a worse system
4 . AN ' 5
than <a,B>.
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3.1.2 Lemma. Let a, b be any integers. If we define a new system

<A',B'> from the system <A,B> by,

A' = A - a," —
and : _ B' = B - Db,
then &(C) = 8(C') and 8(V) = 8(V').

v . .
‘Proof. Both results are obvious consequences of Proposition 1.2.4.

3.1.3 Definition. Let- 0 =r <r_ < .., < I < g and’

1 2 K
< < < < E =
0=s <s,=<... Sp'< 9 If A 'U {ng + r, | n € 1} and
i=1
- R .
B= U{ng+ s, | n € 1}, then we say that the system <A,B> is
i=) » : '

degenerate modulo 4.

The reader will note that A and B -are the union of entire

congruence classes modulo g. If we say that the system <A,B2 is

-

éﬁegenerate, we mean that it is degenerate modulo g, for some g.
The following example will show that the inequality. ‘
$(C) -> min(1,8(V)) .suggested by a direct analogy to the a + B
Theorem is false; and that,for systems <A,B> which are degenerate
modulo g, we cannot prove more than

iii) 6(C) = §(V) - . }'

1
’ g . - -

kN

Qe

If A=8B-={n | n = 0,1 modulo g}, then 6&(C) = g-aand S(v) =
The inequality (iii) does not hold in 'general, unless g is

minimal in some sense. For if <A,B> 1is degenerate modulo g, it
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is also degenerate modulo mg for any integer m > l; and if

<A,B> is chosen to satisfy &(C) = §(V) ~ é:ﬂ then (iii) is false

when g 1is replace mg. We will find that the minimal condition

for g is thereare no systems  <A',B'> worse than <a,B>

that are degenerate t3 a modulus less than g. We shall eventually

prove the following theorem due to M. Kneser [7 ].

3.1.4 Theorem. If the system <a,B> is degenerate modulo g,
then there exists a divisor .g' of g and a system <aA',B'>,

degenerate modulo g¥, such that <A',B'> is worse than <a,B> ~and

/ SC') Sv) - L
P 7.()?() = -

’ h
By Proposition 1.2.6 and Proposition 1.2.3, it folléws that
§{c) = 6(C;) 2v6(V') - 37-2 (V) —‘ér and Theorem 3.1.4 gives an
answer to our pioblemffgfthe case when <A,B> is degenerate modulo
g- The following theorem gives an answer to our problem in the case

when <A,B> 1is any system such that there exists a system <aA',B'>

degenerate modulo g' which is worse than <AaA,B>.

3.1.5 Theorem. Let <A,B> be any system. If there exists a
system <A',B'> degenerate modulo g*' and worse than <A,B>,
then there exists a divisor g" of g' and a system <a",B">

such that <A",B"> is worse than <A',B'> and

§(c) = &(v) ——l—— s
g* ‘
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Proof. By Theorem 3.1.4, &(c") = §(v") - é:—. " Since ?
§(C) =68(c') = &(c™) and &(V") = §(V') = §(V) (by Proposition
1

1.2.3 and Proposition 1.2.6) we have that 6(C) = 6(V) - 5;- -
A degenerate system <A,B> may become non-degenerate when

some of the elements are removec'frbm A and/or B. This will

happen when a sihglé‘ZTEment is removed, which clearlyﬁhas no effect

on our degeneraté case. As a result of Theorem 3.1.5,we include \\\\)

in the degenerate case syétems <A,B> which are not degenerate

themselves, but corresponding to which there is a worse system which

is degenerate.

3
For the remaining systems not covered by Theorem 3.1.5,we will

}
1
g,»

eventually prove the following remarkable theorem also due to M. Kneser

4

[71.

- ) ) . §
3.1.6 Theorem. If no system worse than <A,B> 1is degenerate,

then ¢&(C) = §(V).

If the conclusion of Theorem 3.1.6 is false for a given system
<A,B>, then there must exist a natural number g¢g' and a system .
<A',B'> degenerate modulo g', such tha£ <A',B'> 1is worse than
<A,B>. Then by Theorem 3.ll4,there exists a natural number g" and

a system <A",B"> degenerate modulo g", such that <A",B"> is N

p
L

worse than <A',B'> (also worse than <a,B> and &(C") > 6(V")u?'éw .
We may therefore combine Theorem 3.1.5 and Theorem 3.1.6 to give

Kneser's theorem.
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3.1.7 Theorem (M. Kneser [7]). For any given system <A,B>,
either &§(C) = §(V) or there exists a natural number g' and a

system ~<A',B'> degenerate modulo g' such that <A',B'> is worse

'l—'

than <a,B> and &(C') = &§(v') -

[ “\\

To help the reader follow the proof of Kneser's Theorem we have

Q

added a flowchart following the bibliography, %n Appendix II.

Y



§2. Intermediate Results

As we mentioned in ChaéterIZ% T-transformations . -
play an imporfgnt role in the prﬁbf of Kneser's theorem. In this
section we present a lemma and a theorem, both requiring T-transfor-
mations, that we will use in proving Theorem 3.2.4. Theorem 3.2.4

is the major step used in proving Kneser's theorem 3.1.7 and uses

in its proof the principal ideas of Kneser's argument .

3.2.1 Lemma. If F is a finite subset of A and 0O € B, then

. . . T
there exists a derivation <a,B> of <A,B> such that

T
F + BT C A

Proof. Suppose that F = {al,az,...,an}. Ifé Tl = Tl(al) is

a T-transformation applied to <A,B>, then by (iii) of Theorem 2.1.3,

1 1
+ B C A
%
1, = T2(a2) is applied to <A ",B ">, then by (iii) of Theorem
T, T, ' l .
2.1.3 again, a2 + B C A -~ Since by (i) of Theorem 2.1.3
T.T T T T. T T.T ,
B 12 C B 1 and A 1 C A 1 2, we have that al + B 12 C al +
T T T, T
B . C A . C A L2 and hence
T, T T. T
12 12
+ C A .
{al,az} B

. .. _th . . .
At the r stage of this process, we show in the same way that if
=3

R
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- E
2

. E 1 -1 1 r-1 .
Tr = Tr(ar) is applied to <a , B >, then
r' ' Tyes-T, T --eTy ,
a + B and {al,...,a 1} + B each are contained in
. -
T .’..T
1
A r’ and hence . -
T,...T T,e..T
3 1 r 1
{al'a2""'ar}+ B cAa .
Writing T = T1T2...Tn , We arrive after n steps at a derivation

T T

T - .
. <A,B> of <AaA,B> for which F + B~ € A",

3.2.2 Theorem. If 0 € AN B, if A contains m consecutive

integers, and if §(C) < —EL-G(V), then. -C ~ I.
mt+l

This Theorem is remarkable in that the hypothesis §&(C) <-§%1 §(v)

.

requires that C be small and yet the conclusion of ‘the théorem is

that C 1is large.

«

Proof. Suppose A contains the m consecutive integers

’

a,a+l,...,a+m—1; We define the system <A',B'> by A' =A - a !

and B' = B. Then 0 € A' N B' and by Lemma 3.1.2, 6(C) = s(c")
and (V) = 8(V'). Since the system " <A',B'> satisfies the hypothesis
of Theorem 3.2.2, we may*assume without loss of,generqlity that

{0,1,2,...,m-1} < A. We may even suppose that

i) {o,1,2,...,m-1} + B Cc A.

l
N

For by Lemma 3.2.1, (i) is certainly true for some derivation of <A,B>,

and-the'hypothesis of Theorem 3.2.2 holds fbr every derivation of <A,B>.

by Theorem 2.1.4.

o
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e

. . T : i
If we can prove, for some derivation T, that C, ~ I, then since
CT c C, we have that C~ I. Note by hypothesis of Theorem 3.2.2

that &(v) > 0.
Let Y be a positive number satisfying
ii) ¥ < §(W)

such that

m+ 1

S(v) >1 .

‘s m
iii) vy = —— i

We have then, in any case,

iv) n+1 Y <1 .

”

Inequality (ii) implies the existence of a positive integer X, = xO(Y)

 such that o
v)  A(X) + B(x) > vx (x = xo) ’

and we choosé xd* tor.be the least positive integér for which (v)

is true., Our choice of. io implies that

vi) A(xo—l) +_B(xo—12 < Y(xo—l) , )

and if we subtract this inequaliff from (v) and replace x by x + X,

we arrive at

Yii)‘ A[xb,xo+x] + B[xo,xo+§] > Y(x+l{ (x=0,1,2,...)

«



28.

e,

Letting x = 0 in (vii) we have that A[xo,xO] + B[xo,xO] >y,

which implies that X € A or X € B. By (i), B C A and there-

fore x € A. Let x
(o) 1

equal to X, - Define

=
il

I

and o B'

so that O € A' N B'.

viii) v'[0,x] = —=

H

By the definition

contain exactly one element respectively of A and B,

A'(x) =

and ' B'(x) =

m +

be the least element of B greater than or

the new 'system <A',B'> by

(a-x ) N-[0,°) ,
O .
(B_xl) n [O,oo) r -

We shall prove that

7 Y(x+l) (x=0,1,2,...) .

of Xy X4

+ + = + -
A[xo l,xo x] A[xo,xo x] 1

+x]

I

B[xl+l,xl B[xl,xl

It now follows using (vii) that

V' [0,x]

= A'[0,x] + B'[1,x]

Il

1 + A'(x) + B'(x)

=1+ Alx ,x +x] + B[x ,x +x] - 2
(o] (o] (0] (o]

Z y(x+l) -1

m : .
T 1 Y(x+1) provided x =

v

m

r

m

m+ 1

so that

nf

the intervals [xo,xO], [Xo’xl]

+x] - 1 > B[x ,x +x] - 1.
“To'"o
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m+ 1 : v - m
Y - 1, we have that V'[0,x] = m+ 1

So, if x = (x+1). To

complete the\proof of (viii) it is sufficient to show that (viii)
. i L]

. 41 . N
is true for x < & - 1. e
] Y : |
If 0=x«< X "X then the interval [xo,xo+x] contains no *

elements of B so that, by (vii)

i ' ' = = >
ix) V,[O'X] ; A'[0,x] A[xo'xo+x] A[xo,xo+x] + B[xo,xo+x] > y(x+1l), :
m :
1 > + .
and therefore V'[0,x] = —— Y(x+1)
- < - i -
If xl xO = x< xl xO + m, then since xl € B we have by

(i), that =x. + {0,1,2,...,m~1} <Cc A. Thus the interval [x -xo,x]

1 1

is entirely contained in A' and we have by (ix), that

1

] —_ - L P
A'[0,x X 1] + a [xl xo,x]

v'[0,x] > A'[0,x] )

Y

Y(xl-xo) + (x-x +xo+l) -

1

v

. m
+x + —_— vy <
xO 1) since " Y 1

m m
m+1 Y(xl--xo) * m+1 Y(X—xl

m
= ey Y{x+1) .

m+ 1 o,
Next suppose that x, - x +m=< x < - 1. The interval

1 o Y
[0,x] contains m eleﬁents of A' and m > a-}—f Y(x+1l) since

m+ 1 m

< - 1. '[o, ‘[0, > >
X Y 1 Therefore V'[0,x] > A'[0,%x] 2 m —— Y (x+1)
and this completes the proof of (viii). -

m
+ 1

Since V'[0,x] = - Y(x+1) for x = 0,1,2,... , then by

Corollary 2.1.7 with © = 0 we have that

o

m
m+ 1

x) C'[0,x] = Y(x+l) for x = 0,1,2,...
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We will now show that the cpnclusion of Theorem 3.2.2 follows

m m

3 '> . ; < .
from (x). We may suppose that ——] §(v) 1. For{1f —— Sw) =1,

then (x) implies that &(C) = &§(C*) =

{

§(V), and therefore &(C) =

hypothesis.

Suppose then, that

m
m+ 1

Y for any Y 1ess than

o §(V) which contradicts. our
m+ 1 E

m
m+ 1

y=1

s m
S(v) > 1. By (iii), S

and by (x) we have that C'[qu] > x + 1. Therefore for each

x=0,1,2,..., all the integers of [0,x] 1lie in C'; in other

words C' = IO' But.

=

= D ' ' = ' ‘ ~
C=A + B (A +xo) + (B +xl) c' + (xo+x1% '

so that C ~ I.

We now state “and prove the following very useful corollary.

3.2.3 Corollary.
and §(C) < §(V).

numbers ml,mé,...

and a sequence of c

Let the system <A,B> be such that 0 € A1 B

Then if there exists an infinite sequence of natural

such that

T T2

orresponding derivations <A,B> °, <A,B> ,...

of <A&,B> such that

T,

i . , . .
2) A contains m, consecutive integers (i=1,2,...), then

:
i
K
X
3



el

2

m, :
Proof. S$ince = i T>1 as i>® and §(c) < 8(v), there
exists an integer r such that §(C) < ﬁ“’?fi's(V)‘, Then by (ii)
o r
and (iv) of Theorem 2.1.4, we have
T, « m_ ‘ m_ ' T,
= < — = ——
s(c ) =80 o+ 1 S (V) n_+ 1 S(v ),

S . T
. _ r.
and by Theorem 3.2.2, C t I. Since C .€ C we have that C ~ I.

-

To proﬁé Theorem 3.1.7 it will be sufficient to prove Theorem

i

3.1.5 and Thedrem 3.1.6. Both of these theorems will be seen later
to follow from Theorem 3.2.5. Before stating Theorem 3.2.5 we need °’

the following important definition.
)

3.2.4 Definition. For a given set A and a givern natural number

g9

g, Wwe denote by A the set of all numbers of the form a + gn

where a € A and n € I.

g9

The reader will note that A is the smallest set containing

A which is degenerate modulo g.

.

3.2.5 Theorem.. If <A,B> 1is such - that 0 € A1 B and §&(C) < §(V), -
there exists a subset E of C, containing O, énd a natural number

g, such that

i) E~ EY,
and -

ii) S(E) = S(V) - i—.
g
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We will not preve Theorem 3.2.5 directly, but prdve Theorem

'
P rl

3.3.7 which in turn implies Theorem 3.3.9, which we will show implies

Theorem 3.2.5.
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§3. Proof-of Theorem 3.2.5 v éki ' .

?

Throughout this section we will assume

and - - T8 8 .
. : &

The prpof of Theorem 3.2,5 is very long and in places is rather

4

involved. The reader is reminded of the flow chart following the biblio-

graphy. I have attemptgd to present the proof as clearly as possible\
[ . - )

It will be helpful to introduce the following two set functions and

.o

their useful properties.

3.3.1 Definition. Let A be any set. We define  £f(A) to be the

%gast element of the set of positive-différences of'pairs of elements

Bl

of A;

f(A) =  min la—a'l . -
a,a'
ata'

3.3.2 Definition. For any given set A, let g(A) denote the

highest common factor of the elements of A. ; '

Clearly g(A) 1is a divisor of £(A) and, in particular,

g(A) < £(A) )

L4

T, - T ’ . . .
The values f(B"), g(B') _ corresponding to the derivation <A,B>T

of <A,B> play a vital part in the following argument.
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3.3.3 Lemma. If each set of the system <A,B> contains O, then

T

" for every derivation <a,B>",

i) 8(c) = &§(v) ~ lT ,
£(B")
and i) 8@ehH = s(vh) - -—17;— i
o g(B")

T T ..
Proof. For every derivation <A,B>, 0 € B by (#ii) of Theorem

th L T
_ positive element of B,

2.1.4. Put b =0 and let fior be

b <b. < ...<b < ... . Then

. - .
o 1 r (bn—bn_l) > rf(B) and,

. T o
taking br to be the la!!est element of B not exceeding x,

) : . - T
we obtain BT(x) = XT This follows from the fact that rf(B")
£(B") o

' T . T x N
=b =x and B (x) = r. Since. B (x) - = 0, we therefore
r T,,
£(B ) .
have' . .
§(cT) > 8(AT) > lim inf L {AT(x) + BT (x) - —X— }
. X T
. -0 £(B")
T 1
= (S(V ) - T '
£(B")

so that (i) follows from the fact that cT C C and 6(VT) = §(V),

and (ii) follows from the fact that £(B)> g(B').

If the set of numbers f(BT) corresponding to all possible
. . : T . . . . .
derivations <a,B> is unbounded, (i) implies that d&(C) = §(V).
But this is not consistent with our hypothesis for this section,

so that wé may assume from now on:

PEUFESSTES. R
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)

G T
1) the set {f(B‘LL<A;B> is a derivation of <A,B>}
3.3.4 is bounded,
. T T ,
2) the set {g(B')|<a,B> is a derivation of <A,B>}
is bounded, '

(where (2) follows from (1) and the fact that g(B') < £(B1)). ILet

=

T
3.3.5 g = max g(B) ,
<A,B>T

where the max is taken over all derivations of <A,B>.

T

. . L : T y
3.3.6 Lemma. If <A ,BT> is a derivation of <A,B>, then £f(B) = £(B)

and g(B") = g(B).

T . . . - .
Proof. 1If <A,B> is a derivation of <a,B>, we have, by (i)

of Theorem 2.1.4, that BT c B, and the lemma follows from the
@

Definmitions 3.3.1 and 3.3.2.
T T .
Let <aA,B> be any derivation such that g = g(B") 1is @axfﬁal.

. . . o T
is anY‘deffﬁatlon of <A3j , (and

By Lemma 3.3.6,if (<A,B>0)"
TT' T .
therefore also of <a,B>), then g(B ) = g(B') = g. If for the
system <A,B>, g(f) = g 1is maximal, then for any derivation
T : |
<A ,B> of <a,B>, g(BT) = g.
With the properties of the set functions f and g in mind.

we begin our proof of Theorem 3.2.5 by first proving the following

theorem which later we will show implies-Theorem 3.2.5.

3.3.7 Theorem. Let <A,B> be a system with the following properties;
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i) o €aNBs,
ii) d§(c) < 8w,
res T c T T
iii) g(B") = g(B) = g for every derivation <A,B>",
iv) A contains g consecutive integers.

Then C ~ I.

The proof of Theorem 3.3.7 requires the following lemma.

3.3.8 Lemma. Let '<A,B> satisfy conditions (i) and (iii) of Theorem
3.3.7. If F is a finite subset of A, then there exists an integer

. . T
y and a derivation <A,B> of <A,B> such that

1)  (y+F) U (y+g+F) € AL,

Before giving the proof, we shall use Lemma 3.3.8 to prove
Theorem 3.3.7. Let = {ao,ao+l,...,ao+g-l} be the set of g
consecutive integers of A. Applying Lemma 3.3.8, (1)

states that AT contains the sef
LT=={ao+y,ao+y+l,...,ao+y+g—l,ao+y+g,ao+y+g+l,...,ao+y+2g—l}_

®
consisting of 2g consecutive integers. By (iii) of Theorem 2.1.4 and
T _T / .
Lemma 3.3.6,the system <A ,B > satisfy the hypothesis of our lemma.

Therefore applying the lemma to <AT,BT>, there exists a further

] Ty 3 ‘
derivation <A ,B > for which A contains 3g consecutive

)

integers, and so on. Therefore we have an infinite sequence of
derivations of <A,B> satisfying the hypothesis of Corollary 3.2.3
with mi = igqg, (i=1,2,3,...), and Theorem 3.3.7 follows from .

&

this corollary.

R
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Proof of Lemma 3.3.8. Let f=max f(BT) and ‘let
<a,B> ’

P = {<A,B>T I f(BT) = f}. It follows from the definition of f and
Lemma 3.3.6 that P is closed under the operation of derivations.

We' choose from the set P of all derivations of <A,B> one system,

T . .
call it < A,B> l, for which the number of residue classes modulo f

N

T
with representatives in B is minimal. Let pl,pz,...,pk (mod f£)

be these residue classes. Also let Q be the set of all derivations

of <Aa,B> . Thus for every derivation (<A,B> 7) of <a,B> 7, é

e

T T "
l F -
B is repreéented by the same residue classes pl,pz,...,pk (mod f£).

T T
Otherwise, by (i) of Theorem 2.1.4, B 1 CB and any fewer residue

. T
. . T
classes would contradict our choice of <A,B> ~. All elements <Aa,B>

of @ satisfy the following properties: .

a) g(") =g(B) =g,

T T )
b) £f(B) =f and B contains at least two elements whose

a

difference is f,
N T ) = )
c) B intersects exactly the residue classes pl’p2""’pk (mod f£),

d) ©Q 1is closed under derivations.

1
o

By the definition of g and property (a), g can be expressed

. s . , T
as a linear combination of a finite number of elements of B . By

,n ,...,nk such that

property (c), there exist integers n,.n,

k .
g= I n,p. (mod f). This congruence can be expressed in the following
i=1

more convenient form



38.

k
2) g= X Oj (mod f) , .

B

"= n_+n_+...+ O ,ee. O onsists of the inte
where Kk n,+n, n, and Oy« 57 k' © gers

pl,pz,...,pk , each 'pi occurring with multiplicity n, for

i=1,2,...,k.

T .
We can now prove (l). Let <A,B> € Q. Since F C A, then

T T ° .
F ¢ A . Thus, applying Lemma 3.2.1 to <a,B> and. using property

T
. . , 1 - T - .
(d), there exists a derivation <a,B> of <a,B> such that

1

T T T T : ~
1 1 1 . -
F+ B ca and <a,B> € 0. B contains an element X, = Ol

. ‘ T
(mod f), by property (c) so that F +.x. C A l. Since the system

1
Tl
<A,B> satisfies the hypothesis of our lemma, then applying the

T

. . T
same procedure with <a,B> 1 in place of <A,B> and Fl =F + x

T T
2 1

in place of F, We arrive at aderivation <A,B> € Q0 of <a,B> 7,

such that

T

(xl+x2) + F = x2'+ Fl C A 2 .X, = 02 (mod f).

T
. . . . . . k!
Continuing in this manner,we arrive at a derivation <A,B> €.0
<

such that

. N 7 'I;k L ," * -~
X +x +...+ + F.C A . " j
( 1772 X r

I
Q
(-]
&
S
o
i
=
-
N
~

By (2), X1+X2+"’+xk' = g + nf for soﬁe integer n, and since

T . . . 3

k
Fcaca , we have that

_ T |
3) F U (F+g+nf) C A k . ] ,//

i S B

il
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If %?= 0, (3) implies (1) with y =20 ~and we are done.

Tk' Tk'
Assume that -n # 0. Since 0 € A B , we can apply

‘ <
Lemma 3.2.1 with F U (F+g+nf) in place of F, and obtain a deriva-

T

. ’ T
tion <a,B> of <a,B> k such that

4y {F U (F+g+nf)} + BT' c ATl .

Tl

T .
<A,B> € QO by property (d) and there exist elements u', u' + £ € B

by property (b). Since u', u' + f € BT , then (4) implies the

following two.conditions:

LY

i) (F+u') U (F+u'+g+nf) C AT' ’

ii) (F+u'+f) U (F+u'+g'(n+l)f) C AT' .

fFoo. ' — o
If n< 0, welet F'=F+ u', and by the first part of condition '

(i) and the second part of condition (ii) we get the following condi-

tion that

N\
'

iii) F' U (F'+g+(n+1)f) c AT .

If n>0, we let F' =F + u' + £ and by the second half of

(i) and the first half of (ii) we get the following condition that

iv) F' U (F'+g+(n-1)£) C AT

Depending on whether n < 0 or n > 0 conditions (iii) and (iv)

are similar to (3) with F' in place of F, T' in place of T
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and the coefficient of £ 'di?inished By 1l 1in absolute value.

Repeating this procedure In] times, we arrive at a system
*
<A,B>T € Q, a set F* and an integer y such that F* = F +.y
and v k¥ . =
. =
T* %
F* U (F*+g) C A 3
( .
This completes the proof of (1) and Lemma 3.3.8 as well as Theorem 3
3.3.7. "
To show that Theorem 3.3.7 implies Theorem 3.2.5, we will show f?
. N
that Theorem 3.3.7 implies Theorem 3.3.9 (below) which in turn we
show implies Theorem 3.2.5. i
3.3.9 Theorem. Given.the system <A,B> with 0 € A {1 B, if
. T . . 7 T
§(c) < §(v) and if g(B") = g(B) = g for every derivation <A,B> .

pe .
of <A,B>, then C ~ C2. (cf. definition 3.2.4).

The only difference between Theorem 3.3.7 and Theorem 3.3.9
is that in Theorem 3.3.7 £he system <A,B> has the additional
property that A' contains g consecutive integers. If A contains
g9

g consecutive integers, then C° ~ I and therefore we note that

Theorem 3.3,9 implies Theorem 3.3.7.

Before beginning our proof that Theorem-3.3.7 implies Theorem
3.3.9,we will devote the next several pages to defining a mapping
F, which maps a union of k entire congruence classes modulo  n,

*
to a union of Kk entire congruence classes modulo n . Then we
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shall state and prove those relevant properties of E which we
will use in proving Theorem 3.3.7 implies Theorem 3.3.9.

Let n "be any natural number and let po’pl""’Pk—l be

k * incofigruent integers moduiQ n., We define the set

-
4

: Y n
P (P sPy,-+-sPy_y) = {po,pl,...pk_l}

The reader will recall that {po,pl,...,pk}n " is the smallest set

containing the integers Po’pl""’Pk which is degenerate modulo n.

(Definition 3.2.4).

* % *
), P *'(PO ’,Pl 7. "'Pk_»l)
~ n :
. %k - . . ke
such that P, = Py 0, “we defined a mapping, F, of Pn(po,pl,...,pk_l) o

Given the two sets: Pn(po,pl,...,pk_l

onto P , (p ,pr * ) by
n* Polpll"'lpk_l y

* *
F(pi+tn) = pi + tn .

* * *
In particular, F(pi) = pi//and since p_ = p, = 0, F(n) =n so

that we may adopt, without inconsistency, the notation

*
F(x) = x

/ é

* * * * |

where x € Pn(Po'Pl"7"Pk—l) and x ¢ Pn*(po,pi,...,pk_l).\ 1f£

*
X C - : L
Pn(po’pl’l"pkflL then F(3% U {rx)} X so that | ‘

X €X
* * Kk * . 'y
X cp *(po'pl""'pk—l)' Since 'F is a one to one and onto, the
_ n '7 -1 x % * *
inverse mapping F of Pn*(po'pl""’pk—l) onto Pn(po,pl,ac.,pk_l) B
exists.

The mapping F has the following properties:
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: -1 *‘—l' *
1) If X C Pn(O), then n "g(X) = (n) "g(Xx ).
- . N *
Proof. ‘Since X C Pn(O), then X C P ,{(0). Let g(X) = tn
* n *
and g(X ) = t'n for ¢t,t' € IO. Since tn” € X , then by the
i * B * : ’
definition of t'n , t'n l tn and thus t' | t. Also since

t'n € X, then by the definition of +tn, +tn I t'n and thus t,l t'.

* * -1 -1 * _] *
tn, g(X ) =tn and n g(X) =n (tn) =(n ) " {(tn)

i

Therefore g(X)
* _ * N

= (n ) lg(X ).
* » * * *
2) If a is defined and x ¢ Pn(O), then (atx) = a + x .

>

Proof. Let a = pi + tn for some i, i = 0,1,...,h-1 and
integer t. Since x € Pn(O), x = t'n for some integer t'. So
we have that

* * * * _*'* * * . x
(a+x) = [pi+(t+t')n] = Qi + (t+t')n = (pi+tn ) +t'n =a +x .

*
3) If a,x € Pn(pi) for some i, 1i=0,1,...,h-1, .then (x-a) =

-

Proof. Let x = pi + tn for some integer t and let

a=p, + t'n for some integer t¥. So that
i

* * * * * * *
(x-a ) = [(t-t")n] = (t-t")n = (p;*tn ) - (pi+t'n ) =x - a.
Suppose now that a system <A,B> satisfies ‘A C Pn(po,pl,...,pk_l)
and B C Pn(O). We consider <A,B>T arising from the transformation

T = T(ao), arising from Definition 2.1.2. We shall show that
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T* **T * *
(<a,B>') =<aA.,B > where T = T(ao) .
By property (2)
. . *
T* * * * * * ok .*T

(A7) =1([aU (a+B)] = A U (a_+B) =A U (a_+B ) = (&) ,

-

and by property (3)

*
*

T : * * . * * * * * T
(B) = [B‘ﬂ (A-ao)] =B M (A—ao) =B N (A —a)) = (B)

since every element x € A satisfying x - a, € B C Pn(O) must

satisfy x € Pn(pj) where j 1is defined by a € Pn(pj).

3.3.10 Lemma. If <A,B> is any system such that A € P_ (p_ ,p,s---sP )
N * n o1 h-1

T ont * *
and B C Pn(O), then F maps <A,B> nte <A ,B > where <a,B>
. 5
* * *

. : . v T . . *
is a derivation of <A,B> “and <A ,B > - 1is a derivation of <A ,B >.

Also, it is clear that as T ranges over all derivations of <a,B>,
* ’ " * * ’

T ranges over all derivations of <A ,B >.

Proof. Let T = TyTyeeeTy - If k =1, then the lemma is true

by our preceeding discussion. Assume the lemma is true for n =k - 1.

By our induction hypothesis we have fhat
* ok - -

T TyereTp g * x ox T Tyeee T

(<A,B> ) = <A ,B >

We shall now show that the lemma holds when n = k.
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T.Toe..T T.T....T T Toe..T T
. 2 * 2 - 12 - k. *
(<A,B>l k) =(<Al kl,B k-1 )
*
T.T T T.T.e..T T
12 k-1 * 12 k-1 *_ 'k
= <(A ) » (B ) >
T T T .
* ] . - * e -
= <A 2 kl’ B 12 kl>k
* % *
T TaeesT
_ <A*,B 5 172 k )
Since B ¢ Pn(O) we have by property (2) that
* * * *
C = (A+B) =A + B ,
* * N %
and it is clear that V = A V B
3.3.11 Lemma. If <A,B> is any system .such that A C Pﬁ(po’pl""’ph-l) ‘d%

’ T . .
and B C Pn(O), and <A,B> is any derivation of <aA,B>, then

* * . \
i) né() =n’8y , \\\\\

i) né(V) =n' 8wy ,

. *
ii1) n lg3Y) = ") LT )

Proof'of (i). If x EIC, then there exists an i, 1i=0,1,2,...,h-1

and t € I such that x = pi + tn . Thus l %-— ﬁ;-l =
* K * 1;1 B
.+ .t . : .
Pitt, Py tn Pi Py Py Py -
I — - I = I - - ——-, = max I —_ - —;-I = k . Since
n * n * . n o
’ . n n 0=i=<h-1 n
| % - 5: =k, + for all x € C0 [1,tn], we have that, (for
n * '
. | - n * n *
suitable constants k.,), 1 <x=<-—Xx +k, =>=-—<x +k_ =
J * 1 n , 2
n
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z

n - * . -
—& X -k =X = tn =

L. -k <x =k,<x. On the othey hand o
n = . 1 B ) B

]

* * - . i N -
X = tn + k2. Therefore.we have that x € [l,tn] implies that “

xf € [£3, tn*+k2]. From this we conclude that ) ) ' =
c(tn) = ") + [ky| + k= chen®) 4 k0

, ) -1
Using the same argument and F we can show that
c* (tn™) = cltn) + k".
. * * . * *
Since C (tn ) - k" = C(tn) = C (tn ) + k', we have that

-

% <. * *

¢’ (tn)-k" _ C(tn) _ C (tn')+k’

) * - * T * '

tnn ’ tnn tnn G
and therefore A ' . ’ , ' ?;
1 ¢ (en")-k" _ 1 C(tn) _ 1 C*etn )4k
= 1im inf SRR < 2 1imoinf =l < 2 1im inf =TS
. * n . n
't—)co ] tn +->00 . R o0 tn

By Propositioh 1.2.7 wé have that % G(C*) = l;—~6(C) = %-G(C*) and
. n .
therefore nﬁkc) = n*G(Cf) follows immediately. '
The proéf of (ii) is similér‘to,the proof of (i):and (iii) follows
from property (1) of the mapping F andALemma 3.3.{0. |
Proof that Theorem 3.3.7 implies Tﬁeorem 3.3.9.
Suppose that a given system <A,B> satisfies the hypothesis

of Theorem 3.3.9. Let h be the maximum number of elements that

can be chosen from A so as to be incongruent modulo g. It is
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possible to choose elements P rPyre--1B_, Of A 'so that ‘ 5
C [ R I J ’ ‘ v ‘ V s ?T!

A Pg(po,pl Pp_q) , 4 F

. - g g . '
r 7 eeoyg = A EAl R
(actually Pg(pO Py ph—l) )‘ and since O we may take

P, = 0. Since g(BT)V= g(B).i g (a hypothesis of Theorem 3.3.9),

’ T
then B C B C Pg(O).

We now take F to be the mapp%ng of Pg(po,pl,...,ph_l) onto |
, : . v
Ph(O,l,2,...,h—l) = I. The set A contains the h consecutive 4R

B : * * . :
integers 0,1,2,...,h-1 and hence the system <A ,B > satisfies

the hypothesis of Theorem 3.3.7, with h in place of g, by Lemma
3.3.11. Therefore the conclusion of Theorem 3.3.7 holds, that is,

* . - * .
C ~I= Ph(O,l,Z,...,h—l). On applying F 1 to C we get C and

. -1 :
applying F to Ph(0,1,2,...,h-l) = 1 we get Pg(po’pl'f"'ph—l) = B

Cg, since Cg = Ag + Bg = Ag. ‘Now it remains for us to show that

C ~ Cg. . B
. * . ‘
Since C ~ I, then there exists an N such that N = toh .
* . )
for some to € IO and Cc N '[N,®) = N,®). Let p, = max P, -
_ ‘OSiSh—l
We claim that C 0 [pj+t0g,m) =c9n [pj+tog,w). Since C C Cg,
' g # g
cn .+ ,°) € n .+ ;). .+ 1) .,
then [pj t g ) C [pj t.9 ) Let x € C ﬂ[pj tog o)
= + > + . -
thus x = Pi tg = Pj- tog and t = tO We have that
* . * * _
x =F(x) =1+ th=0+ toh and hence x € C . Since the mapping
. _ . ‘
F is one-to-one and onto and F maps C to C , 'then x € C

'and hence c9 N [pj+tog,w) ccn [pj+tog,w); Therefore C ~ c9

and this Eompletes the proof that Theorem 3.3.7 implies Theorem 3.3.9.
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Having shown that Theorem 3.3.7 implies Theorem 3.3.9, it remains
for us to show that Theorem 3.3.9 implies Theorem 3.2.5.

Theorem 3.2.5 says that if the system <A,B> 1is éﬁch‘that -
0O €EANB’ and 6(C) < 8(V), there exists ; subset E, containing O,

‘ ) . S
of C and a natural number g, such.that E ~ E5 and 8(V) > 8(V) - 5;%///

"It is clear from (ii), (iii) and (iv) of Theorem 2.1.4 thatdgyeaﬂf/f

derivation of <A,B> satisfies the hypothesig,ofﬁTﬁégrem 3.2.5, and N,

i he conclusions of Theorem 3.2.5 hold for some” derivation of <A,B>,

they also hold for the system <a,B>.

3.3.12. Theorem. If each set of <A,B> contains 0, if §&(C) < G(V),
- . -
then there exists an integer g and a derivation <A,B> of <A,B>
\ T T
with g(B') = g such that C ~ (CT)g.

Vs

Proof. Let . g = max g(B"), and hence there exists a derivation
<aA,B>

. T . . .
<A,B>  of <A,B> with g(BY) = g. By (ii), (iii) of Theorem 2.1.4

and Lemma 3.3;5;the hypotheses of Theorem 3.3.9 are satisfied by

&
T ;
<A,B>" and thus C?/V (CT)g.

Theorem 3.2.5 follows immediately from Theorem 3.3.12. If we.

let g = max T g{B") and E = CT where <A,B>T is a derivation
<A,B>" .
- .. T i . T, . T
of <A,B> for which g(B") = g. By Lemma 3.3.3, §(C) = §(V') -
e . . il

Q [+

By Theorem 2.1.4, E = CT cc, 0c¢€ AT N BT and G(VT) = §(V) and

N

this proves Theorem 3.2.5 for a particular derivation of <A,B>

and by our previous femarks,Theorem 3.2.5 is also true for <A,B>.

N
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§4. Proof-of Theorem 3.1.6.
. - . L . 3
The hypothesis O € Al B of Theorem 3.2.5 is necessary . -for

»
the effective use of T-transformations. However, for us to prove
b 4 L]

Theorem 3.1.6 we need a theorem similar to Theorem 3.2.5 in which

the hypothesis 0 ¢ 2 B does not necessarily hold. Before

we state and preve this theoréem we need the following lemma. e

3.4.1 BEEEE: Let E be a set. If E~ EJ and c¢ 1is any integer,
thgn E + c mf(E+c)g.'

2

Proofff By Definition 3.2.4, E+ c C (E+¢)?. For all large N
&

X+ c+mg € (E+c)g, we have x + mg € E9 is large and so by

PN e

hypOthesis,,x +mg € E and hence x + ¢ + mg € E + c. Therefore

E+ c ~'¥E+c)g.

-

3.4.2 Theorem. If the system <A,B> is such that 6(C) < 6(V),

there exists, cqéfesponding ¥$7eqch element c of C, a subset

¢

Ec of C which contains ¢, 'and a natural number gc ’ Asuch that

g'C

) ~E , so
c
and

1
6(Ec);2 S (V) i.gz

Proof. The given eiqment ¢ of C can be expressed in the
form ¢ =a+b where a €A and b € B. lLet <a',B'> be the

system defined by A' = A-a ad B' =B -Db, so that C' =¢ - c,

0 €' NB' and, by Lemma 3.1.2

.

&
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§(c') =_8(c) and (V') = §(V). -

We can now apply Theorem.3.2.5 to <A',B'>, so that there exists

a subset E' - of C' containing 0, and a natural number g = 9. -

. g
sucq that E' ~ (E') ¢ .

and S§(E') = §(v') - 1 . By Lemma 3.4.1
< . . g .

and Proposition 1.2.4,the set Ecw= E' + ¢ satisfies the require-
ments of Theorem 3.4.2.
Using Theorem 3.4.2 we will prove Theorem 3.4.3 (below) which

in turn,we will show implies Theorem 3.1.6.

&
3.4.3 Theorem. If the'system <A,B> satisfies &(C) < &(V),

there exists a natural ndmber' g- 'such that C~ Cg.

Proof. The set of numbers 9. - whose existence is established
by Theogga 3.4.2, is bounded. For if< heY'are not, then the

inequality 5(Ec) = §(w) - é—- hoids for arbitrarily large gc
c

o
and therefore, combined with the fact that € 2 Ec for all c,

implies that &(C) = §(V), which contradicts our hypothesis.

Let g be the(least common multiple of the finite set of
values taken by 9. - By Theorem 3.4.2, C ocontains, with each
element ¢, all integers of the form ;c + mg from some point
onward, and since gc/g, C contains also all sufficiently large
integers of the form c + ng. Theréfore all large ¢ + ng in c9

are in C. Since C C Cg, we have C ~ Cg.
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We proceed to show that Theorem 3.4.3 implies Theorem 3.1.6.

We first require the followind lemma.

g

3.4.4 Lemma. If C=A +B, then c2 =29 + B9,

Proof. Let x ¢ Cg, then

X = ¢ + gn
= (atb) + gn where a €A, b €B
. =.a + (b+gn)!.
Since a € Ag and b + gn € Bg, we have x € Ag + Bg‘ and f
cd cad + BY. Let x € a9 + BY and a, b, n, n' be defined
£

appropriately, then

1
x = (atgn) + (b+gn')
-
= (at+b) + g(n+n')
- 2 ’ *
- = Cc + gnm. -

9 9 g9

Thus x € Cg, cC” 2 A + B and therefore Cg = Ag + Bg.

We are now able to prove Theorem 3.1.6, ph ely, that if no system

worse than -<a,B> is degeqérqte, then &(C) = 8(v).

Proof. It will be sufficient té show that if &(C) < &(V) there

-eXists a system <A',B'> degenerate g', such that <a‘',B'> is

!

worse than <A,B>. By Lemma 3.4.4 and Theorem 3.4.3, the system

<Ag,Bg> is degenerate modulo g and is worse than <A)B>'ywhere g

"is defined by -Theorem 3.4.3. This completes the proof of Theorem 3.1.6.

kY
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§5. Proof of Theorem 3.1.4. ’ > )

We shdll bégin our final section of Chapter 3 by proving Theorem
3.5.1 which is a generaliéapion of Theorem 3.4.2. . Then we shall use
Theorem 3.5.1.in provinngheorem 3.1.4. "

3.5.1 Theorem. If the,system <A,B> is such that §(C) < §(V), ®then
there exists, corresponding to éach finite subset {cl,cé,;.;,cn} f of
C, a subset E_ of C containing cl,c2,...,cn', and a natural number

g, such that

and

§(E) > S(vV) - & .
El

Proof. The proof is by induction on® n. If n =1, the theorem
is the same as Theorem 3.4.2 and is therefore true. Suppose then that
n > 1, and assume the theorem is true for the subset {Cl’c2""’cn-l}

of C. Then by our induction hypothesis, there exists a El ccC

1
c ~
and a natural number 9, such that {Cl’c2""’cn—1} E, + B ~E
1
and G(El) = §(v) - 3. By Theorem 3.4.2,there exists a set E,
.o 1 : ¢ g
and a natural number g2 such that cn € E2 c C, E2'~ E22 and
L v
- = = i C EC
§(E)) Z 8(V) g - Let E ElUE2, then {cl,c2,...,cn} E C C.
. 92
Case 1. If El c E2 , Wwe choose g = 9, and we have that

9 2
= = ~ C
E (E1 U E2) E2 E2 E,




.

and'sinée E C Eg it follows that

E ~ E and §(E)
9
C
Case 2. 1If E2 El , wWe
we can show that
Eg'w E and

Case 3. We assume that‘ E

1

and E contains an element not

2
g

proper subset of both E1

rand

pages long. Let g = lcm{gl,g2},

g 91

g
ECE (FllUEz) C(E1

so that E7 ~ E, and all that remains to be proven is S (E)

To simplify notation we let

of X and Y we have that

i) E~ xUY),”
ii)
xNy

iii)

Since E ~ (X U Y), it is sufficient to prove that. (ii) and (iii)

imply

I
o)

and in the safie manner

Z(S(E)Z(S(V)-L.
2 g
choqse g = 9,
5
> 8(v) - =.
S(E) =2 §(V) p

contains an element not in E

g

E)

Eg2
, o

Thus E

in 1

¥

then

9,,
U E2 )~ (E1 U E2)

°)
1
X=E
1

f

9;

52.

Bpdioi

S’

¥

b
I3

9
2

2

2

N

The proof of Case 3 is several

5

-

and Y = E

is a proper subset of X and Y.

= E
A
\ .
}

9
2

1 . 1
vy - —, s = T
§(X) = §(v) 7 S(y) =2 6(V) g,



&
Rl

o

IS

1) §xUY) =68 - <. ' .
g .,

. 2 . -
—

-
Let X be the union of the complete residue classEs xl,x2,.,.,xr

\ .
(mod gl) and Y the union of the complete residue classes Yyr¥yreeer¥
(mod g2)._ Since XM Y is a proper subset of X and of Y,

l1=r= gl-l, l1=s= 92-1 and by Proposition 1.2.8, -

§(X) =, 8§(v) = >,

It is clear that §(X U Y) = §(X) + 6(Y) - (XN ¥) and if G(X-ﬁ Yy =0

we have, by (ii), that

.
S UY)Y =6 + 8§(Y)
R > max (8§ (V) - L §—-, § (V) —.l—-ffE"-)
‘ S99, 9, -9
>68(V) +max (-1 L _ L1,
953 9 97 9,
= §(v) ..

[

S(x Uy) = 8§(v) implies &(x U ¥)-=8(v) - é- and we are done. We

now suppose that

§(x Ny > o,

Define 4 = gcd{gl,g2} and let 9, = lld, g, = mld so that

= = = . L= .+ n
g =42,9, =9m , where g lcm{gl,gz} Let Rj, {xJ ng, | n € 1}

where j =1,2,...,r and S, = {yk + ng, | n € 1} where k = 1,2,...,s.

We partition both X and Y into d mutually exclusive sets in the

S .
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following way:

d - N
X= U X, where "X, = U R. '
i ; i . j
i=1 J.
’ x.%1 mod d -
and v
- . d
Y= U Y, where Y, = U s. .
. J s R K k
j=1 . .
ykEj mod d ‘ - ]

Let ri denote the number of congruenbe classes Rj of X in Xi

and similarly et sj denote the number of congruence classes Sk

- . . - . < ) ’ .
of 'Y in Yj' Since 9 Zld, then 0 = r, =% and since

= << << - —_
9, m. d, the? 0 = sj < m. . If r, 2

1 1 1

we say that Xi' is full )

énd-similarly, if sj = m, -we say that Yj is full. From elementary

congruence theory, Xi Nn Yj is empty unless i = j, and

/ r.s, _ - .
G(Xi N Yi) = = (a proof of these results will be found in Appendix
+I). Thus, since we are dealing with entire congruence classes,
d r.s;
2) SxNy) = r =,
) i=1
and therefore, since §(X U ¥) = §(X) *+ &8(Y) - 8(x N Y), &(x) = —
. i gl
and 8(Y) = >—
g2 4
- S " d . 1 d
3) §(xUY) =8(X) += Zs,(8.-r.) =8(Y) += L r,(m-s.) .
g9 i1 T 11 . 9,1 1 i

We shall show that it is alright to assume that

i\—ﬁ\}

iv) Xi,Yi are not both full for any i,. 1 =i = 4.

Supggié}that X 'Y contains exactly t entire congruence classes



modulo 4. Let. X' = %\{ U,_Xi} and Y' =¥Y\{ U Yj}. Now it -

1 - 3 -
: ri?£l . . sj=mi |
is clear thaF S( ‘u ki) = §( u Yj),é g— and X',Y' satisfy condiﬁio?s
i ) g 0 i e )
‘ri=zl _ Sj=ml' -

(ii) (wifﬁ S = §wW) -/g- in piace of &(V)), (iii) and also (iv). . '

<

Clearly,to prove (1) it is sufficient to prove that &(X' U Y') =

1
S(vr)y ~ =,
g9
: . d risi -
Since §(X N ¥) = & > 0, there exists i, 1 =i =4
' i=1 :

such that r, si > 1, that is, r, >1 and s =1, and by
: o "o . ) : o o

condition (iv) ,either

a) one of Xi ’ Yi \(but not both) is full,

o o)
or
b) neither Xi or Y, is full.
" "o 1o
Considering alternative (a) first, suppose that r. ='Ql and
1
1= si -< ml. By (3) and condition (ii), &
o
1 1 1 Rl
S(XU Y)Y 268(V) ~=—+ =r, (m-s, )28(V) -=—+—=§(W),
' 9, 9 i, 1 i, 92

which implies inequality (1). The case when- s, =m and 1 = ri <@
: 1 Ay
also implies inequality (1) in a similar ﬁ&nner.
&

Considering alternative (b), we have that 1

IA
H
A
=
[si}
o]
Q,

1l = s. < m . By (3)1
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. i ) T k ‘ N r,
SXUY) 2 6(V) - T+ max(E - i+ 2@ -r; )T - =+ —2m-s, ),
9 g 9 9 i,'9 9, 9 .
and inequality (1) follows if we can show that 1
N S-1 ri ’
1 1
) (oL i 2 oy (—-—+~—°(ml—s )) = 0
g 9, 9 L 9, o

After multiplying "through by g, the left-hand side of (4) becomes

1 -4 @) +1 -4 (m-s, )
1 i i 1 1

gl lo (o) 2 o) o)
® -

s, (8 -r..) +r, (m-s, ) = Ll - m + é

1

i 1 i i .1 7 o 1
o o o o ;
. . N - A -

=0.(s, -1) + m,(r, 1) - 2r, s, + 2

1 1 - 1731 i i

o - o - o o
> (r., +1) (s, +1) + (s, +1)(r, =~1) - 2r, s, + 2
- i i i i it
. o o : o o o o

=0

‘ ' - 1
so that (4) is true. This completes the proof that §(X U vy = §(V) - p

and of Theoreﬁ‘3.5.l.

~ We shall use Theorem3.5.1 to pfove Theorem 3.5.4 which we shall
show implies Theorem 3.1.4. However, before stating and provingﬁ %

Theorem”3.5.4, we require the following two simple lemmas.

3.5.2 Lemma. If A CI and g, h natural numbers, then (Ag)h =.Ad

where d = gcd{g,h}.

Proof. Since_ d = gcd{g,h} then, from elementary divisibiiity
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" theory, there exist integers r, s such that d = rg +.sh. Let
x € Ad, then
X =a + dn where a €A
= a ¥ (rng +.snh)
= (a + rng) + snbr N
§ el h
so that a + rng € Ag, x € (Ag)h and hence A C (Ag) . Let
X € (Ag)h, then
x = a' + hn where a' G,Ag_
\-QI ) = (a + gn') +'hn .
= a + (gn' '+ hn)
= a + dn" N
) U ' , a
so that x € Ad which implies (Ag)h c Ad and thus (Ag)h = A .
9; g, 9y } .
3.5.3 Lemma. If A = A = ... = A, then each set is equal to "
.a ' : ) . ;
A where d ?'gcd{gl,qz,...,gk}.‘
Proof. Proof is by induction on k. If k = 2, the ;esult is. ‘.
"9, 9, 9549 g
. - d
true by Lemma 3.5.2 since - A = (A l) 2 . (A 2) 2. A 2 and
9., 9 g, g g . _ |
Ad = (A 2) 1 = (A l) 1 = A 1_ Suppose for k > 2 that each
* g9 g9 g - v
“set A 1,A 2,....a k-1 4 equal to 2" where a' = gcd{glqu,...,gk_l}n
. ) 4a’ gk R
Thus 4 = gcd{d',gk} and if a = A, then applying the:case ~
] gk A

k = 2, we obtain A = A = A and our proof is complete.
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3.5.4 Theorem. If the system <A,B> is degenerate modulo g, .then
] . : . -
there exists a divisor g' of g such that Cg ~ C and

6(cg') = (3(Ag' VBg‘) - %,—.

Proof. Since <A,B> is degenerate modulo g, then C = Cg.

‘ 3
Let g' be the least natural number such that C = Cg ;, by Lemma

) ¥ T ]
3.5.3, g' 1is a factor of g and by Lemma 3.4.4, Cg = Ag +,Bg‘,

' ] ' :
- We may assume that (S(Cg ) < G(Ag \ Bg ), otherwise there is nething

to. prove.

Let cl.,cz;...,cn be a _set of representaﬁi&es ofralI the distinct
o ‘ ' ] .
residue classes (mod g§') which occur-in c9 , and apply Theorem

: 1 ] ® ' ..
3.5.1 to the system <Ag ,Bg >. By Theqrem 3.5.1, there exists a
gl < g 1 -gl
subset E of . C which contains cl'c2""'9n’~ so that E = C~ ,
- : " . PR
~“and a natural number g", such that- E? ~ E and {(E) = ) -
’ K] ' ‘ . - ' : ’
G(Ag v Bg') - é; - Let d = gcd{g',g"}f. By Lemma 3.5.2, ’ ‘ .
a ' " | " " ] ' " } .
C fw(qg )3 = (Eg )g - (EG )g =:E9 - Cg , 1

3

e

so that by the minimal property of g', d = g'. Hence g" = g'

and, therefore -

8¢9y =69 = 6m > 6%y 89 '-é?

v
o
B
qQ
<
w
e
I
@lh

proving Theorem 3.5.4.

: A
We are now able to prove Theorem 3.1.4; namely, that if the systeyf

/
/

<A,B> 1is degenerate modulo g, there exists a divisor g' of g



and a system <A',B'>, degenerate modulo g¢g', such that <a',B'>

. : . 1
is worse-than .<a,B> and &(C') 2 §(V') - Pl o
) g' g’ ' : '
Proof. The system <A- ,B~ > by Theorem 3.5.4 is worse than
. - | I B ] P | oy v ’
Za,B> since A cA?;, Bc B and c=c%, ana <a? ,B9 > satisfies

the conclusion of Theoreﬁ“3.1.4.

Thus we have proven Theorem 3.1.4, Theorem 3.1.6 and have shown

that Theorem 3.1.4 implies Theorem 3.1.5 and hence have finally proven

Kneser's Theorem.

s
e
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Conclusion

‘In this chapter ‘we shall show that Kneser's result implies

the earlier:resu{ts concerned-with finding a lower bound for the

asymptotic density of the sum of twoisets. In-1941,P. Erdos [3]

proved,

.. 1)y if o €a, 0,1 €B, 8§(B) =68@), &) + 8§(B) =1,

-

then &(A+B) = §(A) + % § (B)
)

By Lemma 3.1.2;the hypothesis that 0 € A, 0,1 € B can be replaced
by,"if B contains . 2 consécutiveﬁintegers". Then (l)'cangbe restated

‘to say that, if B. ‘contains 2 consecutive integers, §(B) = §(a),

6-(A)A +8(B) =1, then & (a+B) > S(A) + —;— §(B). This result was

generalized by H. Ostmann [9] in 1949 wheh he proved that, if B

»contains m conéecutive‘integers and §(A V B) < 1, then

§(A+B) > 8(a) + mm;l 8(B) . Ty s

L

-Given the system <A,B>, if there does not exist a system worse e

than <A,B> which is degenerate, and B contains m consecutive

k]

integers, then Kneser proﬁed~that §(c) = §(V) = S(A) + S§(B). It
, N

+ ’ ‘
is clear that &(a) + &8(B) = §(a) + r—n;I—]:-(S(B) and,in this case,Kneser's

result implies Ostmann's result.

Now assume there exists a system <A',B'> degenerate modulo g

which is worse than <A,B>, where B contains m consecutive integers.



£ . -
: ) ) -
A Ed - o N . - 24,
) H ' 3 o © (23
R p , N
>~ Pl e . L4
. . B . R
B . . B _ “ kY
3 ¢ ' & = « 5
. - - <
: - e Lows v
R B . o, ; & “ o <
. - ~ -
- . <
- . 3 % R s e b e > "Bk -
- R ‘ B a
2 " [ B
. A _ v « . :
e B AT . e
, . K B
- = Lo Y e 3 .
- Q v
. . . N S % . . .
_ . . - L= . PR v = v <
MA Foa 1 o 9 N

: 27 R L 20 - ;5
By Definition 3.1.1, B € B' and xB'f‘i*\the unloﬂ of say, K entire .. . )

f A » N € T o , TN L
e - > . - ~ P [ « % T o ;\ . N
. dohgruence classes modulo g In thls case,KneSer proved that L e T e
8(c) =2 6(A ) + 6(B Y T4 -+ To show that'Knéser's result implies co” o

. Ogtmann s result we w111 con51aer the follow1ng £wo ‘cases.{ s * L

a "
, sy v B P

. < LR . ~ .
- A - - - ¢ N &7 i .o L.
- N N R— . . - S oo &g - . I . N

N . - . ® . M E 3 oo
B B . . < B . . . . £
v ] -7 = o€ . ¢ < <

Case 1{’ éS‘SﬁIﬁe ;g.<«,9ﬁ\' 5 . -‘ ‘ \-.\\ “ \

Lo N L \ .

o : o - A & b, . o

. - R . . . LU co o ¥ P ot . . (=N L)
N . B B s = o A

The fact that g <’ almplles B' = I. Thus cAﬁ +. B' = A' + ; A'C ! -
N . s
and 5(Q)t=’11 Therefore 5(C) 1 =3 G(A) + 5(B) S(A) + EL_.a(B) . S

=5 “

s . Ve N B ‘
since’ 0.(R) S(B) = 1 by hypothesxs. X L. et : « .
S R . - . “ - S : "ol ' @ v .
. ] - o o, ¢ ST e , - : ¢ ) ¢ \u;;
- Case 2.  Assume that. g = m. -~ R _ R S %
Ed ‘A,‘, 4 ) ) = . : - L X ’;.‘Hc R l ’ D.c.i . ) B " i .,
R i 0:;7 . g e ! k’ - U b',L l i . 5,“
° We'have that k'z m -and "68(B');= = by Proposition 1.2.8. T
. ) = i o H . - o i ’ g1 L “;- - ) B LoE E ‘ 0t e
i - - \ % B .
‘Therefore, B ‘ ’ o .
T S ; . ‘.
. ! ' oy e A L N
) o G(C) > (S(AD) + 6(13 ) o L e Ty
o o Y . - Y - -
% L e
: Y -8 €.
. . T . o, =
~ : L “ *s oo o
- . T e”
N . “/7 . '> - Q '
] e w1 = Loy,
; N ~ L cu .
r E3 .
N *.
' : . oot e, e )
ahd this completes the proof,“\ﬁ Loe . ?A\“ LT e N
We conclude by giv1ng an example cf a~nbn—degenerate system 5
7 ,ﬂ\ ! " - . o . 3 PR Vi¢
- 3 R
<A,B> such that there does no;_ex1st a degenerate system <A'~B'> oo P
5 R . ] . I -
—which'is worse than ©<A,B>. By~Knéser&we Kave ‘that 5(G9:Z(G(V)'Z T
. ) g . ‘ > R S e ) . ~
Sy + &()y. . e P P R o
. e T . - oy T i -
- . > . R -0 « “
- . R B \"‘- . £ . © .
. ‘ . . T . o
i, N * ) 7 -
- i ¢ - : _ e . ’a
= - :)a R ~ -
. . W - s ’

oo

B
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Y

We partition the positive integers into ;?e following intervals

v [o0]

: - 1
{(nt, (n+1)!-1] for n=1,2,3,... . Let A=B= U hﬂ,znm]

LI n=1 o )
where n!n is the number of integers in the interval I[n!, (n+l)!-1}.

Thus for any k € 1, A =B will eventually contain k consecutive

. . , . . 1
ihtegers since the number of integers 1;§the interval ({[n!, Z—n!n] > ©

A(n!)
n!

=

as n * «, Since for all n € I_,

0 n = A(n) and blim

e

we have that &(a) = §(B) = %—.

We shall proceed to show that there does not exist a system ’

<a',B'> degenerate modulo g which is worse than <A,B>. )

Assume there exists a system <A',B'> degenerate modulo g

3@
g

—i

‘which is worse than <ap,B>, then A' + B' =1 since A and B

R

contain g consecutive intege¥s. For all n > 4, (n+l)! - 1 £ A, ‘ o

(n+1)! -1 £B and (n+l)! - 1 £ A + B. It is clear from the S

ot
K

definition of A and B that (n+l)! - £ A and B. Since the . . L
largest integer belonging to A and B 1less than - (n+l)! -1
is n! + %-n!n and the fact that 2(n! + %—n!n) < (n+l)! -1 - -

shows that (n+l)! -1 £ A + B. Thus A + B # I, and since <a',B'>

is worse than <A,B>, we have ’ ¢
I=A'"+B'~A+B»yI,

which is a contradiction. We therefore conclude that theretdoes not

exist a system <aA',B'> gegenerate modulo g which is worse than

<A,B>. Thus by Kneser we have that : ' ’ ) .

»~

§(C) = §(V) = 8(a) + S(B) =%.
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An example of a degenerate system is given in Chapter 3 page 21.

;
P
B e b, sl 4
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Appendix I

In Chapter 3, section. 5 we omitted the proof of a problem from

elementary congruence theory so as not to disrupt our trend of thought
in the proof of Theorem 3.5.1. Before presenting the proof,we shall

restate the problem.

Let x b be incongruent modulo gl and yl,yz,...,y

X yees
1’727 "“r s

be incongruent modulo g2.' Let Rj = {xj * ng, | n € 1} for

j=1,2,...,r and let S, = {y + mg; | m€ I} for k = 1,2,...,s.

k k

We define
and

We partition both X and Y into d = gcd{gl,gz} mutually exclusive

| o4
" sets in the following manner:
g
g
X= U X, where X. = U R.
) i i X 3
i=1 J
iji(mod d)
and
d -
Y= U Y, where Y, = U s, .
iq ] J k \
=1 ) k
yk:] (mod d)

Let r, denote the number of congruence classes Rj of X in Xi

and similarly let sj denote the number of congruence classes Sk

of Y in Yj.' - !

T et

e iy

R IR s Y

Y VRN SURRE
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Iemma 1. If i # j, then Xi N Yj = ¢. - ‘ ‘

Proof. Let x € Xi n Yj. Since X € Xi , X =1 (mod 4) and

e -

since x € Yj , X I 3 (mod d) which is a contradiction since i 3
. (mod d) . ~Therefore Xi N Yj = ¢. - .

We have that X; n Yi = U rR.N S, - If (3,k) # (3,k")
' J.k .
; , ' xj:ykzl(m?d 4d)
then (Rj N Sk) n (Rj, N's ,) = ¢ and hence X N Y, is a union of
' - ' Y. S,
The fact that &8(X. N Y,) = == -
i i g

kl
" the r.s, disjoint sets R, N S .

ii : i k
where g = lcm {gl,gz} follows immediately from Proposi;ion 1.2.8

and Lemma 2 (below), since this shows that Rj n Sk is an entire

-

congruence class modulo g-.

Lemma 2. Let A = {a + ng; | n € 1} and B = {b+ mg, | m € 1}.

b (mod d) where d = gcd{gl,gz}, then there exists an

&I}

If a

integer ¢ such that A 1 B = {c + ng l n € I} where g = lcm{gl,gz}.

Proof. Since a = b (mod d), there exists k € I such that

v

a=Db+ kd. Thus, A = {b + kd + ng, | n € 1} and B = {b + mg, | m € 1}.

If there exists n,m € I such that kd + n = mg_, then there exists
. g 1 2 -

an integer ¢ such that ¢ € Al B. Let

Q g
1 2
3 - 21 3 c m, and fr?m elementary number theory gcd{ll,ml}— 1,

and so there exists integers p, q such that pll + am, = 1. Thus,

e

i
!
‘?‘,
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‘

kdpl. + kdqmi = kd

1
. kpql + kqg2~= kd

kd + kpgl = -kqu .

Letting n = kp, m = -kg we have a solution to kd + ng, = mg,.
Therefore there exists a c € A 1 B and we have that

g, + ng =

{c + ng I n €1} cANB. (Proof. c+ ng=a+ n,

a + (nl+pml)gl € A and similarly ¢ + ng € B.)

[

To show that AN B = {c + ng l n € I} it is sufficient to show

that if r,s € A1 B then r

Assume r,s € A {1 B, then

i

s (mod g). -

191

r =b+ kd + i =b + jlgl for some il,jl-E I

s P——

and .
. Ec ’ i
= + + i = j 3 i_,3
S b kd 1291 b + 3,9, for some 12,32 € I.
Therefore r-s= (;lﬁlz)gl = (Jl—jz)g2 and sO both gl,92 are

factors of r - s, whence g = lcm{gl,éz} is also a factor of r - s.

Hence r = s (mod g) and we are done.

~J



Appendix II

Flowchart. of ‘Kneser's Theorem and the a + 8 Theorem.
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