l National Library  Bibliothdque nationale CANADIAN THESES THESES CANADIENNES
of Canada ~  duCanada -~ ON MICROFICHE SUR MICROFICHE - -

PEN
P

NAME OF AUTHSﬁ"/A’//OM DE?‘{&/TEUR TZER-LIN CHEN
NORMAL APPROXIMATLONS TO POSTERIOR _
DISTRIBUTIONS : |

STMoy FRASER UNIVERSTTY N

TITLE OF THESIS/TITRE DE LA THESE.

\

UNIVERSITY/UN/I VERSITE.

DEGREE FOR WHICH THESIS WAS PRESENTED/ . MASTER UF SCIEnNC _ :
GRADE POUR LEQUEL CETTE THESE FUT PRESENTEE , o

YEAR THIS DEGREE CONFERRED/ANNEE D'OBTENTION DE CE GRADE [97%
B - . O - . L P — - . .
NAME OF SUPERVISOR/NOM DU DIREC TEUR DE THESE P R FesSOR  C- VILLE GAS .

K . ’ (
. . .o +
4

Permission is hereby granted to the NATIONAL LIBRARY OF L’autorisation est, par la présente, accordée 3 la BIBLIOTHE-

CANADA to microfilm this thesis and to lend or sell .copip"’s "QUE NATIONALE DU CANADA de microfilmer.cette thése et

of the film, . o . de préter ou de vendre des exemplaires du film.
The author reserves other pubiication rig‘hts, and nei;her the L’auteur se réserve les autres droits de publication; ni la
thesis nor extensive extracts from it may be printed or dther- thése ni de longs extraits de celle-ci ne doivent étre imprimés

{

wise reproduced without the author’s written permission. @tmment reproduits sans I'autorisation dcrite de ["auteur.

APRIL 21, 1978

DATED/DATE

SIGNED/SIGNE e :

PERMANENT ADDRESS/RESIDENCE FF:

TTONL-91 (3-74) . ) -
: i . } . e



I* National Library of Canada -

Cataloguing Branch
Canadian Theses D|V|S|on

Ottawa, Canada '
K1A ON4 , -

. NOTICE,

P

The quality of this microfiche is heavily dependent upon
the quality of the original thesis submitted for microfilm-
ing. Every effort has been made to ensure the .highest
quality of reproduction possible. :

If pages are missing, contact the university which
granted the degree.

Some pages may have mdnstmct prmt especnal!y if
the original pages were typed with a poor typewriter
ribbon or if the university sent us a poor photocopy-

Pr'eviously' copyrighted maferials (journal articles,
published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed

by the Canadian Copyright Act, R.S.C. 1970, c. C-30.
1970, ¢. C-30. Veuillez prendre Cdnnanssar)ce des for-

Piease read the authorization forms whnch accompany
this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339 (3/77)

Bibliotheque nationale du Canada

@

Direction du catalogage o
Division des theses canadiennes Lo

- .t .o
RS b3

AVIS

.o
+

La qualité de cette microfiche dépend grandement de la
qualité de la these soumise au microfilmage. Nous avons
tout fait pour assurer une qua.hi&supeneure de repro-, -~
duction.

'S'il manque des pages, veuillez communiquer avec
I'université qui a conféré le grade.

La qualité d'impression de certaines pages peut
laisser a désirer, surtout si les pages originales ont été
dactylographiées al'aide d'un ruban usé ou sii’'université
nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui fo'nt deja 'objet d’ un droit d'au-

teur (articles de revue, examens pubhes etc }ne sont pas

microfilmés.

-La reproduction, méme partielle, de ce microfilm est
soumise a la Loi canadienne sur le droit d’auteur, SRC

mules ‘d autorisation qui accompagnent cette thése.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE



F
NORMAL APPROXIMATIONS TO POSTERIOR DISTRIBUTIONS

T by ’
, ;
o Tzer-Lin Chen ) . L

: M. A., Villanova University, 1972 s

¥ B - -
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF . = * -
THE REQUIREMENTS FOR THE DEGREE OF
. MASTER OF SCIENCE
.in the Department - .

<

\‘k% ’ , | ?f

Mathematics

(C) TZER-LIN CHEN 1978 ., -
“SIMONEFRASER UNIVERSITY

February 1978

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy or
other means, without permission of the author.

Q



Name: Tzer-Lin Chen

"Degree: Master of Science

_TPitle of Thesis: fNormal:ApproximatiOns’ to Posterior Distrilbuti‘ons
Examining Committee:. ,
Chairpérson:_ Dr. A. H. ‘LachAlan } .

©

=4

— .4 - .
_ ProfessorT. Villegas S ‘
-Senior Supervisor - ‘ : o -

By

Dr.MG. Bojadziev o ) _— -

Y Lad

Dr. D. M. Eaves,‘ ' ’ .

Dr. P. de Jong. o
External Examiner

_____Date Approved: _ . April 20, 1978.

. ’ -

ii



“PARTIAL COPYRIGHT LICENSE ~© =

a
L
v, .

. I hereby grant to Simon Fraser University the-right~to lend

, my thes1ingﬁ§§sserta}1on (the title of which is shown below) to users.

of the Simon Fraser. Un1vers1ty/k1brary, and to make part1a1 or single

f‘cop1es only for ,such. users or*in response to a request from the 11brar¥

of any other un1vers1ty, or other educational’ institution, on its” own

"beha1f?0r for one of 1ts users. T fUrther agree “that perm1ss1on 1 for

mu1t1p1e copy1ng of th1s thesis for scholarly purposes may be granted :

by me or the Dean of .Graduate Studies. It is understood that copying

~ or publication of this thesis for financial gain shall ndt be allowed

without'my written permfission.

- | e S
Title of Thesis/Dissertation: - o : :
NORMAL _APPROX mA\TroMs TO PoSTERIOR '

DLSTRLBUTIONS* - , *f'“”””f”****25”4"9”"“4£

Author: . |
. ‘ (s1gnature) T
TZLR LIN CHEN‘
(name) ~

o ——fprr'&f—fr—:}{:Tffﬁi—g&; { — £

o *_ (date) L

s



. . . ; a o . L v 4
L dlstributions.,.fe/éifer four propositions which survey the basic

-~ "'ABSTRACT -

Scheffé's Theorem and the-Lebesgue Dominated Convergence f, .

. -

Py
'Iheore? are J.mportant tools in the derivation of normal approx:LmatJ.ons

v ~ - ve
7 .

d to posterior distributions DeGroot first introduced the deflnition of

E

eupercohtinuity and used the definition to provide normal approximations

. to-poste r—i:.or*diAst_r—ibutiionein;thewcaseﬂof -one unknown . parameter.. .The

purpose of this thesis is to review an alternatfye approach; based on

the lectures of Professor C. Villegas, which is-apﬁiicable whenever

the relative likelihood-function has a spec1al form ' ‘ .

The thesis is divided into five chapters, the first presenting.

1

the basic theory.

(_ In Cﬁepter 2 we give,ah alternative proof of Scheffé'svTheorem

_Convergence Theorem.- Also we pffer a

Scheffé's Theorem. _ oL . ,

In Chapter 3 we discuse a\conceptﬂof supercontinuity that_%as »

R

introduced by DeGroot to derive normal approximaticns to pgsterior

properties.of sﬁpercontinuity. We elso illustrate DeGroot's npﬁhod.by

fiVe,practical example.
. -'In Chapter 4 we review an alternatibe approach based on the

lectures of Professorrc.-Villegas. We &also elUCidate this alternative

approech'by ooggiéerinérfiverorgctical'examples.

3
-

iii



Finally in Chapter 5 we consider some problems Which arise in
¢ . < . o _
the application of the ve-mentjoned methods in time series analysis.

) >

We illustrate the normal approximation to the distributions of the.

a
. . s

parameters of autoregressive processes by conéideripg one practical

3

hY

egample.
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INTRODUCTION

.

. If a random variable x ., has a probability density f (x | @)

which depends on a single unknown real valued parameter a, and II(a) is
the prior’ density for a, then the pdsterior density of -&f given x is

. e —ape

' proportibnéi to f(x Ia)H(a). In other words, the posterior.density is -

proportioﬁ;l to the product of the likelihéod function and the prior -

density.

.
1

Normal:approximétions to posterior distributions are available

13

in many important cases. In the derivation of these approximations,.

-

DeGroot (1970) uses a concept of supercdntinuity. In Chapter 3 we review

DeGroot’s‘approach and discuss the .concept of supercontinﬁity.
B N ) c : \ s ) :
In Chapter 4 we review - an alternative approach based on. the

lectures of Professor C. Villegés,’which is‘applicablé whrgﬁrﬂrﬁr
likelihood function has a simple speciai form. In both Chaptérs 3 and 4

* the methods are illustrated by several examples.

I

" When the‘obsérved values constitute an autoregressive process, - 7 ; .
additional problems-arises because of the lack-ofvindependence.' Some of

! s t ~
L]

these problemS‘are‘discuSSed in ﬁhépter 5.

oo

The” following definitibns'are used throughoutithis thesis.

Definition"1.1.1. The function Ly defined by .

~

- -

§ T * e -

(1.1)  ° Ly(@) = f(x|a)- ‘

¢
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v

is called the likelihood function, and its value for any .4 is called

the likelihood of a.

~ .

Definition 1.1.2. Let a denote an arbitrary parameter and let the
likelihood function be such that Ly(a) = £(x|a). If & is a possible

, . - . \ :
lue of a and @& is the maximum likelihood estimator, then the

. \
likelihood ratio - IR A . ; - e
. . - 3 ' _. 
| o 'QE:;“\ . : R
«1.2) Ld§)¢ f R L s
@ '
is called the relative likelihood of &..
. A
.
- +
»
!
4 = .
— ; .

. R
E
|
A - N
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. "“, ‘ 4 N 7 { ’ R
2.2 - A Proposition on the General Lebesgue Integral

/ ; . . ,( ) : i L. . R
L - L S
‘;’:’ B @ : : ’ T
S — - — — - R S
' CHAPTER II a R , .
i : P )
.. WEAK CONVERGENCE .
o 2.1 Introductjion - ,-4&_,‘, -
s i SRR o

The purpgde of this Chapter i§ to present a new propdsition - e
which giyes an alternative proof of Scheffé's‘Theorem";hd an S
alpernatiVe”proof of the geheraiization of the'Lebesgue Déminated

B

Convergence Theorem.' e , - ,
h : : . : AT B

-

The chapter is divided into three sections, the first presébtingf'

_the introduction.

F

TFhe second section presents a new proposition on the £

ﬁGengral‘Lebesgue Integral and explores the relation of this to the“.

geneéralization of the Lebesgué Dominated-Convergence,Theorém.

. The last seétibﬁigi@éghanfilféfhatiVé‘pf66f'Of”Séhéffé‘s“‘*?***”f*"‘*ﬁ*

Theorém by ’means of the pew;prdposition and offers an,originaiv
counterexample to the converse of Scheﬁfé“é Theorem.
. ) BN

st

- . “ . T L
. : »

e ', In ordgr to give an alternative proof of Scheffg's Theorem, we

. . * . RS - . LI 7 : ' l -
find the following new.proposition. by using the generalization of

the Lebesgue DomiﬁéteQ'CényérgéqgeiTQeé;e@. This. proposition also gives ' -

an alternative prqof of the generaIiZatién of the LebesguevDominated
. ., - R 3 . o - o R _ 7:"7‘

) : % S
Conrvergence Theorem.

~

AN
~

Proposition 2.2.1. If - e, ' ' S




S

, T S
1) £, > £, 9,79, G, > G - a.e. - 4}
(ii) gy = f, £ G, for all n a.e.
; (iii) [ gn->f g and [Gn%f G with [ g and [ G finite,
then [ £, >/ £ and [ f is finite.
Proof
s . :
. 0sSfp-gp=>0=f-g and 055Gy - f,=0=56G-f a.e. E
»
From Fatou's lemma and 1lim sup (- Xp) = - lim inf Xn R ‘ ~
- lim inf X, + lim inf Y, £ lim inf(Xy + Yp) = 1lim inf Xp
.+ lim sup Y,
TG -/ f=/ lim inf(Gy - £n) S lim inf [ (Gy - fp).
= .1im inf(f G, + [ - fp)
élj_msuprn+liminff-fn=fG-limsupffn.
Hence
(2.1) lim sup [ £y = [ f.
. Similarly, ;
. y
©(2.2) S £ = lim inf [ £, .




ek

s )
From (2.1) and (2.2) ‘ ' . _ :

lim sup [ £, = J £ = lim inf [ £, .

_:2’9

Thus

J £,~>J £ and J £ 1is finite.

.- 4

Theorem 2,2.1 (Generalization'of the Lebesgue Dominated ConVergence
‘Theorem). Let {g,'} be a sequence of intedrable functions:which
converge almost evexywhere to an integrable function g'. Let {fn} be"

1A

a sequence of measurable functions such that Ifnl g,' and {f_}

converges to f almost everywhere. If

S g' = 1lim [ g,
then

[ £ = 1lim [ £,
For the standard proof see Royden (1968, p. 89). Theéggoof that follows

utilizes Proposition 2.2.1.

Suppose the condition of groposition 2.2.1 holds and let {gn‘}
be a sequence of integrablé functions which converge almost every%here
to an integrable function g'. Let {fn} be a sequence of'measurable
functions such that |fn| s.g,' and {fn} cbnverges to f almost

everywhere.



" If [ g'-= lim [ ' ~then _[ g.' = fdgu',;m;,,Jt,g'ifis_ﬁnitﬁ,w,g_”i
9n n 7

We define G, and g, by G, = - g, =9g,'. Hence - .
, o, i
gy = £h £ G, for all n a.e.
i
f‘gn = f - gn' e f - g' and f - g' is finite.

(.
@
u

fgnt >/ g and [ g' is finite. .
n . .

Now from Proposition 2.2.1
J f,~>J £ and [ f is finite then [ f = lim [ £, ‘

q

which completes the proof.

2.3 Convergence in Distribution

We apply both the notion of convergence in distribution and Scheffe's
Theorem in Chapter 3, Chapter 4 and Chapter 5. This section givesjan alternative
proof of Sgheffé's Theorem by means of Proposition 2.2.1. This section

also offers an original counterexample to the converse of Scheffé's Theorem.

=

Definition 2.3.1. A sequence {F,} of distribution functions is said

to converge weakly to F if : ' B

F, (x) ~ F(x)



at all continuity points x of F.

Definition 2.3.2. We say a sequehce {X,} of random variables Converges

in distribution to the random variable X, and we write

if the distributions F, of the X, converge weakly to the distribution

F of X.

o

At
L5 -

.Theorem 2.3.1. A sequenée, {Fn} of distribution func¢tions converges

t - S ) -
weakly to F if and only if for every bounded continuous real function h

J hdF, - [ haF.

Y

Proof. See Kingman (1966, pp. 315-317).

Theorem 2.3.2. If a sequence {X,} of random variables converges in

- N

distribution to the random variable X and if f is a continuous

function, then {f(X,)} convérges in distribution to f(X).

#

Proof. See Billingsley (1968, p. 31).

Theorem 2.3.3 (Scheffé's Theorem):. If {f,} is a sequence of probability

densities in a Euclidean space and if ﬁn - f ‘a.e., then the sequence {Fn}

of distribution functions converges weakly to F.

Proof.



-

J fn=1 and [ £=1
Ifn;- £] +0  a.e.
0= |£, - £| = |£,] + |£] = £, + £ > 2f a.e.

J O->0=0 is finite

S (£, + £) > J 2f = 2 is finite.

It follows from Proposition 2.2.1 that

-

J |, - £] > S0 =o0.

Let h be any bounded continuous real-valued function on the.

-

Euclidean space on which the f,, and f are defined.

Hence

Thus

- There exists M~

IA

ch that h(x) = M for every x.

|h(£, - £)]

oy
g
:j!'h
|
\
=
H
N
=
=
!
o
A
\

1A
=

|/ nf, - [ hf] - 0.

[ hfy - hE.

J £, - £| > M0

\6\



.‘,th‘l{‘ ; . ..
: » e e
. e
o :
. 7
It follows from Theorem 2.3.1 that {F,} converges weakly to F. B
- . . e 4
Remark 2.3.1. The cghVérse of Theorem 2.3.3 is not true, as is shown by
: . : v
o e *“;L
the fot}éging countexexample
3 - ~ l‘ .
{{,‘Y - :{3
g,
/
S 5

Figure 2.1 ~

In Figufe 2.1, Fn(x) -+ F(x), the derivatives of F, at points except
jump points are zero, but the derivatives of F, at jump points do not
exist. In words, a sequence of distribution functions without probability

densities can converge weakly to a distribution function with a probability

density.

wmw.mmmma;v..«w.4‘ ca

e Al ot v i
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CHAPTER III

DEGROOT'S NORMAL APPROXIMATIONS TO POSTERIOR DISTRIBUTIONS

3.1 Introduction _ R

The definition of supercontinuity was first introduced by

s

_'DeGroot (1970).  If 4, is an unknown parameter, observations

X1, - . - +Xp form a large random sample from the probability density

4

CE(e

ao), the prior density of a is positive and continuous in the
neighbourhood, supercontinuity assumptions and regularity assumptiohs

are satisfied, DeGroof (1970) has shown the validity of normal

’ -

app;oximafion to thé posterior distribution of d when a 1s scalar.

The purposo of'this chapter is to present four propositions
which scrutinize the basic properties of supercontinuity and to
elucidate DeGroot's normal approximéfions to tho posterior distributions
of one unknown parametervby studying five practical examples.

The chapter is divided into five'Sections; the first prosentiné
the introduction. The second section offers four new propositions which’
survey the basic properties of supercontinuity. The third section deals
wikh‘solutions of the likelihood equation when the observations
Xir o - & ;anorm,a large‘random sample from the probability density
£(* |a05. Section 4 illustrates DeGroot's normal approximations to the
posterior distfibutions in the case of one unknown parameter. The last
section studies five practical examples which exp}ain DeGroot's normai
approximations to the posterio; distributions in the case of one unknown

parameter.



3.2 Supercontinuity

DeGroot (1970) first introduced the definition of supercontinuity.
. o Lo ' ' =9
Supercontinuity is equivalent to the ordinary continuity under a
. | _ o -,
condition which will Be illustrated in Remark 3.2.1. This section also -

presents four new propositions in supercontinuity.. These propositions

survey the basiq”properties of sppe?ff%tinuityy'

Definition 3.2.1. Following DeGroot (1970) a real-valued function g =

is supercontinuous at the value aj € & if

lim E[ éup ]g(x,a) - g(X,qO)l] =0 .
60  a€N(ay,8) ' ' L

and g(X,a) is specified at every point (x,a) of the product space

S x %, where S 1is the éample space of a single observation X, & is .

an open interval of the real line and N(ay,8) is the interval around
ag containing every point in & whose distance from a, is less than
&, and the expectation is computed assuming that the random variable

X has the distribution indexed by ag

Remark 3.2.1. If E[ sup |g(x,a) - g(x,ay)|] exists for all
. - OZGN(Go,G) )
sufficigntly small values of &, then supercontinuity of the function

0

g at ap is equivalent to ordinary continuity of the function g(x,*)
at ay for all values of x € S except on a subset T of S whose

B

probability is O.

The following four new propositions survey the basic properties



of - supercontinuity. B 7 . o - §A7 -
-~

and h are supercontinuous at the value

X

Proposition 3.2.1. If g-

€ R, then g + h is sﬁpercontinuous at the value a5 € Q.

%o
Pfoof.
~ 0= lim Bl sup | (g 4 p) (x,0) - (g + h) (xya0) ]

&0 = a€N(ag,d) , -

~—~—

(

T,

lim E{ . sup ;ILg(x,a) - g(x,ao)|i+ |hx,a) ~ h(x,ao)!}i'

550 . a€N(ag,5) |

W

lim E[‘f sup lg(x,a) f.g(X}do)l] +
&0 a€N(agy,d) S

e . . #1limE[ sup  |h(x,0) - hx,qp)]]

1
o
+
e
Il
o

Hence, g + h 1is supercontinuous at the value an € Q.

Proposition 3.2.2. If g and h are supercoﬂtinubus at the value

I
=

a, € £, and there exists M > 0 such that Max(lg(x,a)|,lh(x,ao)|) =

0

for all values of a € N(ao,ﬁ) and for all values of x ¢ é, then gh

»

is supercontinuous at the value - Qy € Q.

Proof. s

02 1limE[ sup |g(x,0)h(x,a) - g(x,aph(x,q) ]
&0 aEN(aO,G)



A

50  afN(ag,d) |

" a€N (CIO',6)

et

tiA

M{lim E[ sup |h(x,a) - hfx?po)]
50  aé€N(ay,8) '

50  a€N(ay,8).

M{0 + 0} = 0. ’

'

Hence, gh 1is supercontinuous at the value To €

Proposition 3.2.3///If h is éupercgntinuous at the value a

o

dim E{ sup  lg(x,a)]|h(x,a) - h(x,ao)l‘

_ a{+ sup  |h(x,a0)||g(x,a) - gx;ap) [T

T

2

r
-

+ lim El  sup Ig(x;a) - g(x,ao)}]}

¢

‘9{.

. ’ )
O'E 9{'.and>

there exists K/> 0 such that |h(x,a)| 2 X for all values of

a € N(ao,é) and for all values of x € S, then

at the value ag € Q.

1, Lo
H 1s supercontinuous

1
o

Proof.
. ' 1 1
0= limE[ sup | - - ﬂ

50 a€N(agy,b) hix,a) h (x, &)

= —%—lim E[ sup lh(x,a) - h(x,ao)l] . B
K A

50 aEN(aO,é)
¥

_f0} o

K2
,—,/_\_‘/‘\':

. /?



[S

Hence, %— is supercontinuous at ‘the value ao € Q.

<

Remark 3.2.2. Cramer (1946, pp. 67-68) has stated the following result:

-

If for almost every value of x € S ‘and for a fixed value aq of a;'

the following conditions are satisfied:

. o - . . . - a .
' (i) The partial derivative {EQ§§L—L} exists,
' : a=a,

{lg(x,a + h) - g(x,qa)

(ii) we have n l} i < G{x). for
a=a, )

/“\L

0 < lhl < hy, where hy is independent of x, and G is an intégrable,"

function over S with .respect to pfobability density £(x |a0) and 'S

is the sample space, then

- & 3 .

{52 Jg g, aflx faglau} = {[g —%—’C‘L—ﬂ £(x | ag)au(x)} -
i .oa=a : .

=%

ot

RN - - - - ) ¥ Ll

i

ks : F

»*Propositioh 3.2.4. If (ii) in Remark 3.2.2 is true,*then g is

supercontinuous at the value ay -

-

Proof.

]g‘x,ax - g(x,ao)[ < la - aolG‘x?'

" sup ;_lg(x,a) - g(x,d%)! < sup '1a - aOlG(xf = hG(x
a€N{ag,h) | ‘  a€N(ay,h) B

a=ao .



N ) ) A

: E[  sup - |g(x,a) - glx,a5)|] < hE[G(x)]
y a€N (ag,h) - ,

lim EI sup 'lg(x,a) - g(x,ab)J] = 0.
0 a€N(ay,h)- : ,

.

Hence, g is supercontinuous at the value ag - N X

i RS t&.ki‘nb‘(r)_a Yot ol
L .

nir

L s o

3.3 Solutions of the Likelihood Equation

y

o : '
We now proceed to.find the solutions of the likelihood

equation when the observations X,, .. ,X. form a large random sample
qu ) ! 1 n .

“r

from the probability density f(-| ao).

We fi¥kst make the following assumptions (primes indicate

differentiatioﬁﬂaétp respect to a only):

Assumption Lj . The second-order derivatives " (x !a) exist for all

values of % € S and all values of a in some neighbourhood N(GO,S) ~

of dO , where & > 0.

. .

Assumption L, . fs'f'(x |a0)du(x)-= 0 and fS £ (x lao)du(x) = 0.

Assumption L3 . For any values of x € S and a € N(ayp,8), it is

assumed that . f(x |a) > 0. Furtherﬁore, if X(x|raJ is defined by

(3.1) Ax |a) = log £(x | @)

. - . ) <t
& . . i

it is assumed that functions X\, A' and A" are supercontinuous at E




)

ED'(x |a)] and EM\"(x }a)] are finite, where

da B 302

’ '; a2y
(x| a) = O\ (x Q)‘i e Ia) 9N (x la)

- .

ag -, and for-all values of a € N(ao,ﬁ),:ntherexpectatidhsv

' Assumption L4ff For-any values a E_N(@e,ﬁ), let I(a) -be defined

follows:

.20 1@ =S, @1 £ ] manto.

K]

+

néighbourhood N(ao,é).

Theorem 3.3.1. If Qg is an unknown parameter, Qbservations

The YQESEESB I is pbsitive and contjinuous throughout the

X1, - - « +Xp form-a random sample from thg}prq?ability denfity

- L A
STy A B

£(* |a0), and Assumptions. L; to Lg are satisfied, then, with

pfobability l; there will exist an integer ng such that for each value

of nzng, the likelihood equation

(3.3)

log £(x | a)
has a solution / . « - +Xp) and lim &n(xl,

n—»e

Proof. See DeGroot (1970, pp. 209-210).

. ’Xn) = CI-O

EfN(x | a)];
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L]

If a, is an unknown-parameter, observations X3, o - . 4Xp
form a large random sample‘from the probability density -f(- ay), the

prior density of a 1is positive and continuous in the neighbourhcod

N(ap,8), and Assumptions L{ to- Ly are satisfied, DeGroot 11970)

has shown that the posterior distribution of a is approximately @ o
) . . . . i ‘ . L1 - -

normal distribution with mean. an anqrvarlance ETTEET , Where

\

&ngxl, . . . }Xn) denote solutions of the likelihéod equation (3.3) "and

Clim @p(Xy, . ). L %p) = ag . -
e o .

3.5 Examples ) : '

%

This section illustrates DeGroot's normal approximations to the

o

posteA)ior distributions by considering five practical examples.

Xn is a random sample from a

Example 3:5.1. Suppose thaf Xy, -
Bernoulli distribution witﬁ an unknown-value of the paraﬁeter a
(0 < a< 1). , _ . | ’ ,
It can be checked that'Assuﬁptions Ly to Ly4- afe satisfied
and . : E ~ ‘ N

1 - x 1

i-a '@ zmoa -

X

A a) = = -
x |a) =2

3 7 7 P .

It also can be checked that the normal approximation to- the °*

‘éfmétgrior distribution of a is a normal distribution with mean x

P .

-



o
Lo . )

'and variance x(l - x) .
n

*

Example 3.5.2. ‘Suppose'that Xl' <« . X, 1is a random sample -from a
binomial distribution with an unknown value of the paraﬁeter a

(0D< a< 1)
fx o) = @a®a -a)™*,

It can be cheEfed that Assumption$ Li to Ly are satisfied and
- } ' N

_g_m-x - m : .

Aix|a) = a 1-qg @ L1l@-= al =)

It also can be checked that the normal approximation to the

posterior distribution of a is a normal distribution with mean -%% and

N X(m - X)
variance ———3— .
B . o e
- * ) ~ .
Example 3.5.3.  Suppose that X;, . . . ,X, is a random sample from a

+

Poisson distribution with an unknown value of the mean av(a > 0).

It can be checked that Assumptions L to L, are satisfied and

A (x| a) =x;a p I(a)'=é.

It also can be checked that the normal approximation to the

posterior distribution of a is a normal distribution with mean x and

|

variance T -

Example 3.5.4. Suppose that X;, . . . ,Xp is a random sample from a




normal distribution With an unknown value of the mean a

(- » < a <'w) 'aqd a specified value of the variance 02.

It can be checked that Assumptions L, to L, are satisfied and

(x| o) =(x—o}—a’—, @ = .

It also can be checked that the normal approximation to the

posterior distribution of '@ is a normal distribution with mean X
; ‘ 5 | | .
and variance QH . This is also the posterior distribution itself if

8

the prior for a is uniform.

o

Example 3.5.5. Suppose that X14 - + . X, 1is a random sample from a

normal distribution with a specified value of the mean I and an
unknown value of the standard deviation a (a > 0).

It can be checked that Assumptions L; to Lg are satisfied and

c

: N2 .
Vo s -2 1w -

wlm

It also can be checked that the normal approximation to the

posterior distribution of a is a normal distribution with mean s and
s2 h
variance E;-, where s 1is the sample standard deviation.

3.6 Conclusions

In this chapter we have presented four propositions which




scrutinize the basic properties of supercontinuity and we elucidated
DeGroot's normal approximations to the posterior distribution of one

unknown parameter by studyihg five practical examples.

- 4§ Sihdise s
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CHAPTER IV

AN ALTERNATIVE APPROACH

4,1 Introduction’ .

In the présent chapter we review an alternative appfdach to
the problem of finding normal aéproximations to posterior distri-
butions‘that was developéd in the ' lectures of Professor C.
Y;llegas, We assume tbat the unknown parameter a is'a column. vector
"gé;onging to a known open sét ¢ in a p;dimehsional space.‘ The basic
assumptionvis that, for sufficiently large n,, the relative likelihood
function has the special form expl- ne(d,u,(Xy, .+ - +Xp)) 1, where

¢ is a known function of two arguments, a parameter §.€ % and a

vector up, which is a known function of the observations. We assume

also that, with probability 1, there is,. for a sufficiently large sample ST
size 'n, a uniquely defined maximum likelihood estimate é' which

converges to the true parameter g when n increases indefinitely. ‘ -

Finally, we assume that ¢ is a twice-differentiable function of &

when Xi, : . . ,X, are fixed, and that, with probability 1,
un(Xl, « o« +Xp) convé%ggs to an unknown vector u.

- -

The purpose of this chapter is to review an alternative ,
approach, under Professor C. Villegas's assumptions. These normal
approximations to posterior distributions are cobtained by applying

the Taylor expansion technigue, the strong law of large numbers and




Scheffé's Theorem fespectivéiy:tO'a special form of relative iikelihbédf””Iﬁ
the alternative approach we do not apply DeGropt's supercontinuity notion.

‘This chapter is divided into thre€ sections, the first

presenting the introduction. The second section reviews an alternative
approach of normal approximations to posterior distributions under

Professor C. Villegas's assumptions. The last section elucidates these normal

approximations to posterior distributions by considering five practical

examples.

4.2 Normal Approximations to Posterior Distributions

Suppose these assumptions in 4.1 hold. It follows from

Definition 1.1.2 that

©expl- 09 @,uy(Xy, . . . ,Xp))] = 1. -
Ynt |
7
Hence
®(@,un(Xy, . . . ,Ey)) = 0.
Maximizing expl(- n@(é,uh(xl, .« . 4%y))] is equivalent to
minimizing w(ﬁjgn}xl, .« . ,X)), it follows that
(P'(élu,n(xl' - -« /X)) =0,
3¢ (A, upn (X, . « . X))
where o¢'(G,u, (X, . . . ,Xp)) = — 1 ~

%




and

=t

- A second-order Taylor expansion gives, assuming that

é_ are column vectofs, /) -
0@, un(Xy, « - . X)) = @ - 3) "9, - §)/2.

The prime denotes transposition and ¢, is the matrix whose 1i,j-th

entry is @ij(§_+ 6@ - a), up(Xy, . . . ,Xy)) =

82¢(§_+ 9(§;— §),un(xl, . « « +Xp)) for some 6 in the interval

0< 08 < 1.
We define A, to be the upper triangular matrix with positive

diagonal elements which is uniquely defined by
AI’.TAI'I = {(plj (é,un(Xl, « s . ,Xn) )} = $.
For fixeg vector T, suppose-that §_ is specified by the egquation

s

* VoA (@E -

e
1l
14

Hence

Let II(a) be the prior for the parameter Q. Since the Jacobian
J = |{%%}| is constant, the prior for T will be proportional to

H(§_+ An-l v%). Assuming that with probability 1, é_*_g," it follows

;LZ‘L‘*H\“‘}& PRI

R R

C e
w




x
=

24

that the prior density for I_ converges to a constant. We also have,

with probability 1,

d)n > ¢ = {CPj_j (EIE)} ' .

and

A A where A'A = ¢.

n

Therefore, for any fixed <=, Aﬁ_l¢nAn‘l converges to the identity matrix

with probability 1. Hence

expl- ng(&,un(Xy, - - . ,Xp))] = exp|- {n(& - & "¢, (& - @_)}]
T . L 2

-
= eXp - (IfAﬁ—l¢nAn_lI)]
. . s 4

converges, with propbability 1, to . L

.'exp [—(I"II)] = .'expl:- _(;t_%_r__)_]

RS

This provides an approximation to the relative likelihodd for large -
values of n, ' ' X
The normal approximation to the posterior distribution of é

is thus a normal.distribution with mean vector d and covariance matrix

671
n - o



4.3 Examgles

We illustrate the normal approximations to posterior

distributions by considering five practical examples.

a
Example 4.3.1. Suppose that Xy, « -« . 4X, 1is a random sample from a
» - .
normal probability -distribution. )
exp |- (x - al)z
2a 2
f (x Ial,Aaz) = 2 . | . .

V2ﬂa2

The maximum likelihood estimates are

The relative likelihood is

ot

a

{exp[{- nfs? + (;— a1)2]/2a22}

.R(alraz Xll . = . ’Xn)

+ n/2] }s%/ay"

expl- no(ay,ay,%,s)},

vhere

>

a1)2]/2a22} -"1/2 - log s + log a .

CP(CIII(IZI;"S) = {[52 + (;

It is well known that, with probability 1,



B

x > Elxj] = o

S—>Cr2.

-,
»

A

It can be checked that the matrix ¢ is

i;l_ O.. .
s2
. ¢ = ,
2
0 - .
L s2 _
It is obvious that
— .M
52 0
T
(171 =
0 s :
L 2n |

It is clear that the relative likelihood is approximately the density

) . . . . . X Lo-oa=1
of a normal distribution with mean zero and covariance matrix ¢ = .

e

S . n
In other words, the normal approximation to the posterior distribution

of (aj,ap) 1is a normal distribution with mean vector (;ls) and

. . A_l
covariance matrix [n¢] .

Example 4.3.2. Suppose that X;, . . . ,X; is a random sample from a

Rayleigh distribution



27- .
{exp[- x2/2a2]}x/a? for 'x zZ 0
fx Ia) = ////////
;////O//'/ otherwise. )

The maximum likelihood estimate is

1

n 72

a=1|71 x°
i=1

2n
It can be checked that

P (alun (Xl ’

Xp)) = Ezn(xl, ... ,xn)] -1
. CL2

@

- log un(Xl, ... +Xp) + 2log a

n -7
é%here up (X9, o« .« ,Xp) = ) Xi2 ‘ ‘
L=t |
2n .
It is well known that
&
un (Xl ’

with probability 1. It also can be checked that

;Wwdmm~

EEENEY S



(D"(arun(xll = s e I.Xn)) = 46—2

where o¢"(a,u,(X;, . . . ,Xp)) = 32¢(a;un(xl, . .. ,Xn)) . -
} 8a2
It is clear that the relative likelihood is approximately a normal
. Can |
distribution with mean O and variance QZ . In othér words, the normal
approximatibn to the posterior distribution of d 1is a normal
: "2 . v
distribution with mean & and variance %; .
Example 4.3.3. Suppose that X1r ¢+« « )Xy is a random samplégfrom a
Poissoﬁ distribution
fx|a = (Fe™ ; x=0,1,2, ...
Xl
The maximum likelihood estimate is
a=x
It can be check&d that
(D(a,un(xl, « s e 'Xn)) = - un(x]_, . 4 . ,Xn)log a+ a
~u (X3, « « - ,¥p)
5 !
.Qs:-.‘” + un(Xl, P ,Xn)log un(Xl, .« « +Xn)



- distribution with mean 0 and variance. Xx.

n
() x3:1 -
i=1
n

where uj,(X;, . . +Xn)

It is well known that

un(Xlr
i=1
It»also can be checked that
"(d ' 1
[0} (a,un(xl, . . /Xp)) ==
: X

i

where ¢"(a,un(xl} . -« 4Xp)) = 32¢(a,un(X1, ..

. n o
-« X)) =1 z_ Xj]l > E[X;] = @ with probability 1.

. Xp)

’

It is clear that the relative likelihood is

approximation to the posterior distribution

distribution with mean x and variance jin
- 3

Example 4.3.4. Suppose that Xir « -« - +Xp
Bernoulli distribution -

f(x | a) = a®(1 - @) 1% for x =

-

The maximum likelihood estimate is

3a2

approximately a normal

In other words, the normal

of @ is a normal

/7

:il
{

is a r7ﬁdom sample from a



It can be'checked that

¢

@@ uy (X7, - - « sXp)) = - up(X3, - .

where up,(Xj, . . . ,Xp) = Xx.

©

+ [un (Xl’ .

+ un,(Xl, . .

- +Xp)log a

.+ ,Xp) - 1llog(l - a)

L=

+Xn)1log up (X1, . . . +Xn) Ty

+ [1 - un(xl, .« .. ,Xn),]

logl - un (X7, - - - Xp)lo
.« o9 n'4l n

. It is well known that. .

un (X3, - .

It also can be checked

w“(&,un(xl, . .;. Xp)) =-

where ¢"(a,u,(X;,

4

,Xp) = x > E[X3] = @ with probability 1.

that

X(1 - %)

X)) = 320 (a,up (X1,

3a2
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It is clear that the relative likelihood is approximately a normal 3
: . B B " ‘ | ]
distribution with mean 0 and variance x(1 -~ x). In other words, the %
normal approximation to the posteriqg distribution of a 1is a normal g
distribution with mean x and variance x(1 - x) . :
‘ 3 . n ' ’ k{
‘Example 4.3.5. Suppose that Xl’ . . Xn is a random sample from an ;
~ exponential density e
g - X
{exp(——1}
- for- x =2 0
a -
0 " . otherwise.
\_ .
The maximum likelihood estimate is
” a = x. -
/S
It can be checked that :
p(x,un (X1, - . - ,Xp)) = [?n(xl, e e ,Xn)] -1
, a
- log u, (X3, . . . ,Xp) + log a. ’
where wup (X3, . --. ,Xp) = %.- - N — B
It is well anWn that ' S - R el

un(X1, . . . ,Xp) =




k4

It also can be checked that

-

o"(a,up(Xy, « - - Xp)) =

. 2 V :
where o¢"(a,u,(Xy, . . . Xn)) = 9 elauy Xy, . . . Xn)) |
da? )

It is clear that the relative likelihood is approximately a normal

. . . : . =2
distribution with mean O and variance (x) . In other words, the
normal approximation to.the posterior distribution of a is a normal

. - L — 2
distribution with mean X% and variance (x) .
n

'

4.4 Conclusions

In this chapter we review an alternative approach under

Professor C. Villegas's assumptions. 1In the alternative approach

we did not apply DeGroot's supercontinuity notion.
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CHAPTER V

NORMAL APPROXIMATIONS TO THE DISTRIBUTIONS OF THE‘

PARAMETERS OF AUTOREGRESSIVE PROCESSES

5.1 Introduction

In this chapter we consider the problem of finding'asymptotic

approximations to the posteriorldistributions of the parameters of
autoregressive processes. in the examples of Chapter 3-and'4 we applied
the ordinary strong iawléf large numbers, but the ordinary strong:iaw of
large numbers does not apply torauéoregreséive processes, and a ?érsion
of the strong law of large numbers valid for autoregressive processes
should be used instead.

The purpose of this chapter is to elucidate the normal
approximations to the distributions of the paradmeters of autoregressive
Vprocesses by studying one practical example. The normal approximationé
towthevdistributions of the parameters of autoregressive pro;esses are
obtained by applying strong 1a§ of large numbers to the
conditional relative likelihood.

This chapter is divided into three sections, the first
introducing the topic. The second section states two strong
laws of large numbers. The -last section considers one practical
example which describes the normél approxiﬁations to thé"diéfributiGHS'

of - the parameters of autoregressive processes.



5.2 Two Strong Laws of Large Numbers in Autoregréssive Processes

Now we shall state two strong laws of large numbers.

*

We shall use the following definition. ‘ ' o

o~ ) N

O

Definition 5.2.1. We call the following equation the first-order.

p-component vector autoregressive process. - *

(5.1 Xg + & X1 = Ve o | v’//

where . T el

X1t Vit
Xot Vot
i L Ve T
X v )
Pt L_pt_.

Z.

It

a is a p x p matrix of coefficients, E[Vy] =0, E[V¢V{]
s

Theorem 5.2.1. If. Xy is defined by (5.1), t=1,2, . ... , with - g

having eigenvalues less than 1 in absolute value, and if Vi's are

s

independently and identically-‘distributed with E[V¢] = 0 and

E[VeVi] = 2, then with probability 1 ' ok

——

. n n L
(5.2) lm [ 2 %Xx{] = lim [ 2 X__ X' ;] = E[XX{] =D
e t=1 T e t=l '
n n




Proof. See Anderson (1971, p. 195).

Theorem 5.2.2. Under the conditions of Theorem 5.2.1 and if D vis-

3

positive definite, then with probability 1

(5.3) lim & = a
e
(5.4) lim 2 =
‘l
where
. n 7
a = - t=1 — ¢
n
- Z xt 1X{1
e ag=] ————
i £ v B s T VRS
,?w% n ; ' ' '
[ 2 (X¢ + a K- D) (X + a Xp-1 1) ]
g — t=1 —
n

Proof. See Anderson (1971, p. 196).

5.3 Exam Ele - ' e

We illustrate the normal approximations to the distributions

of the parameters of autoregressive processes by considering the following

1

simple example:

1l

Let X; denote the autoregressive process satisfying the



Xi=

where o is unknown, V; is normal (0,1).

The conditional density of X; given XO is

expl:~ (Xl - CIXo) 2:| .
v 2 )
20 :

Vo o

and similarly for the conditional density of Xj given

X ...X such that, for example the conditional density

3-1"%5-27" 1 :

£ i D P i
(o) Xn given 30 51’ ’anl S

exp(; (Xp - aXn_l)z

20

2 O » '

/

It can be checked that the joint conditional density of

Xys « . - +Xp given X5 is



n . ; ,
exp|- 2 (Xi - GXiil)z " : .
i=1 : )

20°

(V2m) B ]

Upon substituting the actual values of Xor « « «.,Xp we
obtain a function of the parameters a,o which will be called the

conditional likelihood function. The values

v 1

n . i n o 2 _2

2 XX 1 |2 ®jo= aXy_q)

i=1 8 =|i=1

a = - ’ :

g x2 , : ' J
i-1 :

i=1

maximize the conditional légg;;hooérfunction and will be called the

" (conditional) maximum likelihood estimates.

n n

n ;
Zo(xg ~ax;P’= 3%y -axg_ P2+ (@ - 22 x2_)
’ L=l ' i=1 i=1
-2 2 (Xi - &Xi_l)(a - &)Xi_l
i=1
El
n n
= 2 (X3 —"&Xi»_l)? + (a- &2z xi_l)
. i=1 i=1
. 3 - - 2,77-77 X *

- 2(a - 4) T (X{ -a%;_17%{2,
i=1



n . n )
= 2 (x5 -ax_ P2+ @-H22 x¥ )
0T S, i-1
i=1 i=1
. n’ 5
- . ,- - - 2((1 bl 0'.) 'Z (XiXi_l - CLXi_l)
. i=1
2 2 2 2 2
= 2 (X3 -aX; )7+ la-a)° (2 X{_,)
X i=1 i=1
2
£
a2 2, 0 2
=n8° + (a - Q)°(2 X5 .).
. i-1
- i=1
Hence the conditional likelihood is proportional to
22 2, 0 2 ~,
exp|—14n8° + (a - aA)°( 2 X%..)
-1
- { i=1
25° . :
(V2m) st .
It follows thatrthe'conditional_relative likelihood is equal £0,1
exp[~ np(&,5,un(Xy, . . . ,Xy))1, where
0(&,5,u (X1, « . . ;Xp)) = - log(-g-) + .
+LB% - 8Y) + (@ -8 Xy, - . . X
252 .

Here we have set



39 :
‘ 2
- — _ — o g
no e 1
— o
un(Xl~, . e e ,Xn)' = (2 xi—l) - : ’(‘:
i=1 %
- F
) n . ; i
It follows from Theorem 5.2.1 that ' ‘ ;?
& . v " p '
‘ ) n 2 2
u, X1, .« - Xp) = (.2 Xi_l),%-E[Xi_l] with probability 1.
i=1
n

It follows from Theorem 5.2.2 that

@ > a with probability 1

8 - 0 with probability 1.

A posterior distribution-of. the parameters a and o may. be

! ~g

derived by multiplying the conditional likelihood function by a prior
"density, and we can find an approximation to thisvposterior distribution
using the apprbach developed in the previous chapter. The results‘are
formally the same as in simple regression. In this approximation to the
posterior distribution of a and ’6, these parameters are igdépendent,

a has a normal distribution with mean &- and variance n

: . . N ’ ' B
and o0 has a normal distribution with mean & and ”

2 .
variance

91




5.4 Conclusions-

The normal approximations to the distributions of the

g B

parameters of autoregressive procesées are obtained by applying the

&

strong law of large numbers to the conditional relative likelihood.

X
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