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ABSTRACT

Employing the most general form of the strain energy function in’

bl

the'finite theory of elastic dielectrics, the simult#heous extension
and torsion of an incompressible cylindrical tube is co;sidered in the
absence of either a body force or a distributed charge. Firstlyi
the problem is investigated with the dielecﬁric displacement fiéld
prescribed in the radial direction. The same simultaneSES extension
and torsion is then studied with a prescribed axial electric field.

A law is obtained which ;elated the longitudinal force neéessary
to produce a large simple extension withﬁthe torsional modulus for
a small torsion superposed on that simple extension. The law depends
on the form of the strain energy function which is not the case in

finite elasticity theory. 1In fact, the law is independent of the stored

energy function if and only if the electric field is totally absent.
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1. INTRODUCTION

The systematic formulation of the theory governing finite deformations

of etastic dielectrics was originally put forward by Toupin {1], and then

‘ by Eringen [2]. These theories postulated the existence of a local séif‘
electric field due to polarization accompan;ed by the Maxwell field. |
Later;hsingh and Pipkin [3] considered the total stress fiéld and the
dielectric dispiacégént field directly as functions of the deformation
gradients and the total eleétric field. Based>5n these constitutive
equationg, Singh and Pipkin [3] obtained the complete family of controlf
lable states. A coﬁtrollable deformation is one in whicﬁ the deformation
and the electric fiéld are prescribed at the outset,anq\then shown that

ﬁ;gﬂgi; a state can be maintained in every homogeneous, isotropic, elastic
dielectric without the body force or charge distribution. Since'the
controllable states do not require the functional form of the stored-
energy~funé£ion, they can therefofe be employed in experimental deter-
mination of the physical properties of various elastic dielectric
materials. -

In this presentation, we consider the combined extension and toérsion
of an incompressible, homogenedus, isotropic, elastic dieléctric cylin-
drical t;be first when the radial dielectric displacenient field is pre-
scribed and then when an axial electric field is prescriﬁed} Both of
these states are shown to be controllable in {3]. Since the purpose in

[3] was only to show controllability of these states and not to solve

the problem, the precise formsof resultant longitudinal forces and couples

3 J
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required to be applied at the énds of the cylindrical tube in order to

°

maintain tﬁ}se states were not obtained. e
. —_ )

In Section 2, we present the basi® field equations of Zzntinuum

electrostatics which are independent of the composition of the material

media that may be involved. Section 3 outlines the basic equétions.

- I
governing the theory of finite deformations of elastic dielekctrics. The
constitutive relations for approximate theories valid for s 311 finite

deformations and sufficiently weak electric fields are also reproduced

in Section 4.

. Yi/ )
The stimulation in finite elasticity occurred in 1948 when Rivlin

[4] drew attention to the so-called exact solutions. Althou the exact

deformations did not require be{éii:i;d the knowledge of the strain a
N h o
energy function to satisfy equilibr without body forcess” the precise

form of surface tractions necéésary to maihtéiﬁ\such a geformation could
not be detefmined without the complete knowledge of the stragL energy .-
function for the ma;érial considered. The experimental verifiégtion of
the effecfsvof finite deformations could not be carried out. However,

in 1951, Green and Shield [5] came out with a classic result in which

« they obtained the ratio of the longitudinal force to the torsional rigid:qxf
ity for a small twist superposed on a large simple extension( This ratio
fortunately happened tozbe completely independent of the strain energy
5 - .

function and hence furnished a vehicle for testing the effects of finite
elasticity compared to those of infinitesimal theory. 1In this paper, we
set out to obtain a similar type of result for elastic dielectrics. 1In

o
Section 6, ée obtain the ratio of longitudinal force to the torsional

\) e



rigidity when the prescribed dielectric displacement field is radial.®_
In Section 7, the same ratio is obtained when there is a prescribed
electric field in the. axial direction. While the ratio in both these
states reduces to that of Green and Shield [5] when the electric field
, ) =
is zero, it is shown that the ratio ig'independent of thé stored energy
§ =, . . . . . .
furicfion if and only, if the electrlcgfleld is totally absent. In Section
- PN . .
Y

8, we hézg/investigated thg small but ginitejsimultaneous extengion and

torsion of the lindrical tube in the prese a-radial electric

is not rcontrollable if- th form of the straln energy

/ .
ly rbiErary [3]. Bw} we show that it is controllable 1f

field. This stat
function is
small finite théo' is applied. Once again; we have demonstrated thék
the ratio of longitudipal force to torsional modulys is independent of
the form of stoféé energy functidn if and onlf if electric field vanishes.
In Section 9, we considered thecombin;d extension and torsioﬁ of a
compressible, homogeneous, isotropic, elastic cylingrﬁcallfube. It has
been ﬁrovea by Singh [8&] that such a sgéte cannot be in equilibrium by
surface tfactions alone if the form of the stored energy function is
arbitrary. However, 'special forms of strain energy function can lead

to a solution of the problem.
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2. CONTINUUM ELECTROSTATICS

The electric_field in the Maxwell—Féradéy electrostatic théory is

determined by the two conditions,

{ . .
- ? E.dx. = 0 , .
. ii
c

%s Dinids =9,

and a constitutive equation between the components of the dielectric

AN

displacement flux: D, and thé electric field E; . In (L),

(1)

(2)

is any

arbitrary closed space curve while S in (2) is the boundary of an

arbitrary closed regular region R, and Q is the total free charge

contained in R such that

Q=deV+Ju)dS, : ' ‘
R S :

where ¢ and ® denote the 3blume‘density and surface densify of free

charge, respectively.

Iet V denote the region of space occupied by the dielectric and

let B denote the boundary of V. Let V denote the remainder of

0

space. We assume that the electric and flux fields are continuously

>

differentiable functions of position in each of the regions Vv and V

{
We alég assume that the fields E, and Di suffer at most a finite

d;scodtinuity at the surfaces B. Furthermore, the dielectrics that we

« \K
are intérested in have no net free charge in V and no net surface.

. .
charge in B so that 0 = 0, w = 0. With these assumptions, the law

0



(1) yields that

s (a) -the electric field Ei(§) is‘iirétational in V

- (b) the tangential component of Ei(i)

where E. and EFO)
i i

dielectric, respectively.

Di(E) 'is soleroidal:

[H

I<a

L

" and that the normal component of Dy

. A
where Di aﬂh Dio),

and V

0

(3)

is continuous across

(4)

r

B,

‘i.e.

i.e. -

denote the electric fields 1n51de and out51de the’

D=0 in V ,

(5)

(6)

is continuous across the surface

oncé again, denote the dielectric displacement

fields inside and outside the dielectric, resbectively.

\

The law (2) 1m€11es that the dlsplacement field

B:



3. THEORY OF FINITE DEFORMATIONS IN ELASTIC DIELECTRICS

o, 7

In free space, the aieiectrichisplacement field D (x) is

i
. directly proportional to the electric field strength Eio)(g) 2

20w = em® @, , (7)

where EO dendtes the physical constant for free space. Since the
. (‘v;‘/ B N
resul t electrostatic force on any region which lies outside the

dielectric is zero, we may thus represent the stress force in free space

3

by the Maxwell stress M., :

1]
c 1 4
. . '
. (0)_(0) 0 _(0)_(0)

.. = ) . - — E R

Ml] EO El /f:L’ 2 k Ek 61] (8)

S
. r '?‘ .
clearly, ? Mijn.ds = 0 for any closed surface S in free space. "

s

Inside the continuous dielectric medium, we assume tha£ the surface
forces are.described by a system of ‘stress vectors distribuéed over the
surface of any arbitrary regioén v.’ Let Ti denote the figld of stress
vectors. We also assume that tﬁg resultant force Fi and moment Gi
exerted on the material, not including gravitational or inertial forces,

can be described completely by the field of stress vectors. That is,

where S is the surface containing any arbitrary region v. The reguire-

.

/



4
q
7.
ment of static equilibrium then leads to the field equations
~
T, = 0,.n, , o (9)
i i3 3
o..=0., , ' ] (10)
1] Ja /f o
and
. .+ pf, =0, ' (11)
13,] 1 '

where Oij denotes the stress tensor, p the mass density, and fi
the body force per unit mass. At the hounding surface B of the

dielectric then, we get

T, = (O..'—M.j)nj on B, (12)
Where Ti now represents the appiied mechénical force at the boundary
B, and n, the unit outward normal to B. It is easy to observe
that the ngwell tensor Mij- satisfies equations (9) to (12) in free
space identically.
To obtain constitutive equations inside the dielectric, we assume
that the stress tensor Oij_ and the dielectric d%splacement field Di

have the forms:

3
e
955 = %50 3% r B (13)
q
D; =D, (5=/ E) (14)



V' 4

where Xi and xi;‘denote the coordinates of the same generic particle

referred to a fixed Cartesian frame in the undeformed and deformed posi-

tions, respectively.

L B
We shall confine our attention to homogeneous ang isotropic dielectrics

only. The invariance of constitutive equations (13) and {14) to rigid

rotation or translation and the symmetry imposed by the isotropy of the

material leads to the following forms [7]:

S [( + I. =—)g,. —7—g,. + I_ =— 6,
i] (I3~);’ oI 1 312 ij 312 ij 3 313 ij
oW oW
+ siz-EiEj + 315 (gjkEiEk + giKEkEj)
oW 2 2 oW
* 3T, (93B3 By + 955 BsFy) + 31, Jik 51EEL] v
(15)
and .
oW oW oW 2
Dy = 2 ( 814 aij + 815 gij + 3,16 ij)Ej . . (1e)

a

Here gij denotes the ij element of the square of the matrix gij

which is the Finger strain tensor defined by

9x. oxX.
i

= RN T

(17) .

and W stands for the stored energy function whose arguments are the

following six scalar invariants:



Ty = 945 7
I, = L[ ]
I, = Det"?ijl ,
(18)

I4 = EiEl ’
I5 = gijEiEj\’

2
I6 =g

If, in addition to being homogeneous and isotropic, the elastic dielectric
considered in incompressible also, then the strain invariant I3 is
unity in all deformations so that W is a function of the invariants

I and I_ . An afbitrary pressure p arises as

1 5’ 6

I I

1" “2" ~4’

a reaction to the constraint of no volume change. The constitutive rela-

tion (15) then assumes the form:

Oij = —p(Sij + 2{( -t I

oW oW 2 2 s
M . + 2 (g% E.E. + g EE,
oL St L (953 BBy * I BiEy)

oW :
+ ’B—IZ gikglekEl] . (19)

In some cases, it is more convenient to consider the displacement field
Di rather than electric field Ei as the independent variable in the

formulation of constitutive equations (13) and (14). If that is done,

X,



10.

then for homogeneous, isotropic, elastic dielectrics, the relations (15)

and (16) are respectively, replaéed by:

.2 oW ow W 2 oW -
O,. = [(aop + I* a5 )g.. - a5 9. + I%¥ == &
%] (Ig)% 811 1 312 ij 312 ij 3 313 ij
+ ¥ oo ~— (g..D.D + D.D.)
8Ty i3 = o1f ik k"3 T 99k ki
+ QH—-( 2 D, D, + 2 D.D, + D,D.)] (20)
31? 9ixPk°3 T 95xkx0i T Jik951 k01’ 0
and
oW . oW w 2
. = — 8, .. + Lo+ ..)D.
By 2( BIZ 61] BIE glj BIE gl])D] ! ‘ (21)

where the stored energy function W in now the function of the '§ix scalar

invariants .

* =
17 90 v s
I* =1 [g9.,.9.. - g :g 1
2 2 ii?53 ijvijt !
% = \ X
) S (22)
I* = DD, , S
1 1
r =-7 o :
I5 gijDiDj '
2
* =
1& = 915P3P5

For an incompressible dielectric, I* = 1 and relation (19) then is

replaced by



N

11.

w2 oW DD

’ oW W
R ——— * ——
Oj4 = POi5 * 200575 * 13 37x '9;5 ~ 51% 913 T 81X i3
1 2 2 4
oW D. + g,,D.D,) (23)

+ —
31% (953PxP3 * 93x°ik

w2, 2
L + . +g..9. .
" etz (953PP5 * I5xPxPi 9;%951PkP1’]



4. SMALL FINITE DEFORMATIONS

12.

If the deformation is small and the electric field sufficiently’

weak, then we can assume the stored ené;g?‘function W(I

1

1’12""’I6)

to be a polynomﬂgl in its arguments and obtain an approximation to any

\
desired order in‘the principal extensionsand powers of the electric

field by neglecting termé above an appropriate

expansion for W.

degree in the polynomial

A first approximation can be arrived at by retaining

in the polynomial expansion for W all terms involving principal exten-

sions to a lower degree than third and electric field components to a

degree lower than fourth. That is

¢

‘ 2
= + + +
W ag alJl a2J_2 + a3Jl + a4J4 a5J5 + a6J1J4 ’ (24)
. . \j)
where ,ao,al,...,a6 are material constantsf and Jl’JZ""'JS are
defined as:
Jl = Il -3
J2 = (12-3) - 2(11-3) ,
= - - - + - R
gy = (I ls) (I,-3) + (I,-3) , _ - (25)
J4 = I4 , .

Since we can take the stored energy to be zero

in the undeformed and



5/

13. —
unstressed staﬁe, a =a, = 0, so that

) . ( .
W = + .
W a2J2 + a3Jl a4J4 + a5J5 + a6J1J4 (26)

Substituting for W from (26) into (15) and (16), we obtain the consti-

tutive equation of the first order finite theory:

Oij =v2{[a + (ay+2a,)3, + ad ]g - azgzij
+ (a -a, JE, EJ + a (qg. ik kE .4g. kEkE1)} ‘ | (27)
D, = 2[(a4 5)6 jv+Aa5gij]Ej . “‘ (28)
When the dielectric'is ianmpressiblg, I3 =1, énd th?‘stored ene;gy

function W for the first order approximation assumes the form:

™~

=

= lel + b2J2 + b3J5 ’ ' . (29)

8 where bl; b2, b3 are constants of the material. With W from (29),

1 . . .
constitutive relations become

.. = ~-p8, . +C.§.. +C_E.E, +
jo) lglJ C_E.E c

i3 i EiBy ¥ C3(9, By Esta g BB o (30)

=C
D, 2Eiui C3gijEj , » (31)

—

where p is an arbitrary pressure and C's .are physical constants of .

the dielectric medium.
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R
5. INVERSE METHOD OF SOLUTIONS IN EL/Z:;T\;‘C/Z DIELECTRICS
According to this method, we prescribe at the outset an appropriate
deformation xi(xk) , and an appropriate electric field Ei which sat-
isfies the field equation (3) as well as boundary condition (45. After
obtaining gij from (17) corresponding to the prescribed deformation,
the stress field and the dielectrié displacement’are derived from (16)

and (19), respectively._ It is then verified that such a stress satisfies

equilibrium equation (11) without any body force; and the electric
displacement - Di 'méété (5) as We}i gs k6). The functional form of the
stored energy fun&tién remains arbit;ary-throuéhoutlfhe proceduré} Such
‘a combination of the érescribed‘deformation. xi(Xk) and the electric
field Ei 'ié said to constitute a solution or avcontrollable étate.
The apéropriate mechanical surface tractions to be applied(at the boundéry
of the dielectric which shall thgn maintain such ,a state invequilibrium
are furnished by (12). ]

If the deformation is small but finite and the electric field suf-
ficiently weak, then instead of the general arbitrary form of the strain
energy function we use the form giveﬁ by (29). The procedﬁre remains

* the same as outlined above." -
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6. SIMULTANEOUS EXTENSION AND TORSION OF AN INCOMPRESSIBLE CYLINDRICAL

TUBE IN A RADTAL ELECTRIC DISPLACEMENT FIELD.

Our purpose here is to employ the general theory presented in the
previous sections to investigate the simultaneous extension and torsion
of a circular cycl%ndrical tuﬂé. The body'forces and distributed charges
shall be assumgd to be zero.

The tube which has the length 20 , 1internal radius a ‘and external
’radius b in its initial unstressed and unstrained field‘free state is
elongated uniformly in the axial direction of extension rati6 A alqng

the axis and of extension ratio U along any direction perpendicular to

it. It is also twisted ‘such that planes perpendicular to the axis of the
E

tube are rotated in their own plane through an angle proportional to the

distance of the plane from one end, the constant of proportionality being

AY v .
. The deformation described is characterized by the mapping:

r =R ,
8 = @+ 0z , (32)
z = AZ

where (R,@,Z) denote the cylindrical polar coordinates of that generic
particle in the undeformed stéte wﬁich occupies the position (r,0,z)
after the deformation.

The tube is subjected to a radial dielectric displacement field

(Dr,0,0). Since the divergence of Q_'has to vanish, we get D of



l6.

the type: -
b =0. ) (33) .

ﬁe shall take this field to be inside as well as outside the dgielectric.
The condition of norﬁal Eontinuity across the curved surface of the'tube
is then satisfied. The field (33) may be produced by‘placing the tube
between the plates of a coaxial cylindrical condenser whose charge per
unit length on the interior plate is Q.

The deformation characterized by (32) leads to the following/physical

LY

components of the strain tensor g,

i3
2
9. = H .
gee = Uz + w2r2 '
5, =27, - 9
Ire = Irp =0 i
g = MOT |

A ’ * * *
With (33) and (34), the invariants Il’IZ""’I6 in 4(22) are given as:

*

Il = 2u2'+ Az + wzrz ,
* . 2 N

I2 = u4 + ZUZK -+ uzwzrz ’ )
* 4.2 “

I3 = u A, .



- the relations (32),

Ry

* 2 o
I, = ’
4 41T2r2
2 B
* 2
I H ’
2
4W2r
£ _ 4 9
I =1 .
6 2 2
am

U4A =1 or U =-3L
‘ : iy

‘

(34) and (35) respectively become:

i

r=

1
“— R,
VA

8 =0+ 92 ,

z = A2,

Q
it
>

>

17.

(35)

(36)

(37)

(38)



v
@ ,
18.
{
and
* 2 2 2 2
Il = ( y + ATY + 97",
* 1 1 .2 2
I, = (—=+ 2\) +3+o¢°r" ,
2 >\2- A 5/‘-"
*
I,=1, ‘ . |
- " (39)
* 9
177227
) ) 4T r
R 2
’ *
Gl
5 A 2 2
4m r
A . 5
* )
I
6 2 2 2
"y AT 4m°r

It may be noted here that the invariants (39) are functions of r only.

From (7), the electric field in the medium surrounding the dielectric
is given by:

g0 __e o _

- ’

U < 2ﬂ€Qr

o) =0, g0 - o, (40)
R ‘Z |}

The electric field inside the dielectric is furnished by (21):

oW 1 aw 1 W Q
N E =2( T+ 5+ 570 + — )
r BIZ A 31; >\2 BIg 27r

’

. (41)

It is'clearly apparent that the electric field in (40) or (41) is con-

servative and that the condition of continuity of the tangential component
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across the boundary of the tube is met identically. With use of (33)

and (38) in (23), we find the state of stress within the dielectric:

o ‘ ' 2.
C v ly o ly ey oLy L j{ﬁ’
Orr_P+)\\y1+2‘P2f(‘y4+)\\P5.+2‘}’6) oA !

A A 4T

. pN ] ) =
1 2 2 1 2. 22 4.4 222
Ogg = “P *+ (x+(pr)‘i’1+ ()\_2+X_(Pr + ¢ r +)\q>rt)‘{’2 ,
2 4 222 , ' :
O,, = P + A W1‘+ (A7 + A r )Wz , | (42)
_ 1, 22 2
Og, = Morl¥y + (F+¢7r" + ADY¥,1
g T Oz = 0 -
where, to simplify the writing, we have put
. N
oW oW
i Yoo=2( + I* )
J 1 o1} 1 315
W
Y= =2 ,
*
2 312
oW
¥y =2 BT% — ()
3 aw o
L Y =4
5 or* !
\\\ | 5
oW - ,
Y6 = 6 31= -
6

Note that- WI'WZ""‘WG are functions of r only. The e%uations of

static equilibrium (11), without any body forces, in cylindrical

o
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1 1
+ = + = - =
Or:t;‘,r r 0rz,z r (Orr 066) 0.
o] +}‘O' + O +£0' = Q (44)
ro,r 4 766,86 Bz,z r r6 !
(0] +£O' + g +30' = 0 .
rz,r r 6z,06 22,2 r rz

Introducing the stress field (42) in the equilibrium equations (44), we

obtain:

dr (Orr) + _-(Orr - 069) =0

(45)
% _
98 9z

The pressure p depends, therefore, only on ‘r. By integration it can

be expressed as: . o

plr) = p(rb) 4+ L(x) ., (46)
such that
»
S | 1 1 1 2
L(r) =J {X-Wi +—2‘¥5 + (‘i’"l +7‘¥§ +—2\y6') _9_2 5
Ty A A 4m°g
2 ' o
' 1 1 Q 2
-, + =Y.+ =VY) - tY
4 X 5 >\2 6 4ﬂ2€3 1
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where "prime" denotes the derivatiVe with respect to r. The state of

stress in the charge free medium surrounding the dielectric is aescrigéé

by the Maxwell stress. Then (8) yieids:

2
.G(O) = M - __Q_____,
rr rr 2 2
. 8T € r
0
) ) N S
66 66 2 2!
8m €Or
5 (48)
B T A
zZ zZ 2 2
: 8T € r
0
(0) _ _(0) (0) _
%8 - OGz =% = 9"

The surface tractions per unit area of the deformed configuration that

must be applied to maintain the prescribed state are now furnished by

(;?):
(Tr)r=r = <Orr - Oég))fér
b b
1 1 Qz Qz
= plr) + Y+ S, By H 3t ) o5 - ]
A A 4T r 8T e r
- b 0 b
(Tg) ., = (T) =0 . (49)
b o b

—

The surface tractions on the inner surface of the tube can be similarly
I

obtained:
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(T) _ =-(0__ -a'9
rir=r_ rr rr ‘r=r
) 1, 1 1 1 92 0
=p(r ) - ¥, + =¥, + (Y + ¥ + —=¥) - =]
~Ta ATl 32 2 4  A'S5 32 6 4Tr2r2 8ﬂ2€ r2,r—ra
a 0O a
-(Te)r=r = (TZ)r=r =0 . (50)
a a
We can choose one oﬁ the curved surfaces, say r = r, r as force free. TG
Equation (49) then furnishes: o
1 1 1 1 0? 0?
= + =¥ + + =Y - .
phrg) = ¥y + St + G+ 545+ 3¥) a3 2 2 lr=r 51
A A 4m Ty 8T €%y b

To support the given state, we also require normal and azimuthal surface
tractions on the plane ends of the tube.

on z = %, we have

_ _ (0 _
(Tr)z=R =0z "%, =0

I ON L, 2,2, 2
(Te)z=2 = °ez Oez = Awr[Wl + (X + rp” + A )W2] , | -(52)

2

_ _ (o) _ 2 4 22 2 o _ Q

(Tz)z=2 = ozz czz = A Wl + (A7 + ATp°r )WZ p(rb) L(r) + 2 5 -
8m Eor

The above distribution of surface tractions (52) at the plane end z = £

-

is statically equivalent to a torsional couple M about the axis of the

tube and a longitudinal force N along the axis of the tube:
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(r, (27T r .
M= | bJ Terzdrde = 2mo J Py v G’ s }\2)‘1»’2]r3dr ., (53)
r 0 r .
a a
and
r, 2T r
N=J]_D[Trdrd6 Jb[xw + o +>\(pr)‘1"—p(r)+—-9———]rdr
4’0 a . 8mTE r
0
b, 2 222 2 .
= J [A‘Pl+(k +>\cpr)‘1" —p(rb)+—-§_2]rdr
a 8mE r
0
3 2 -
+1rfrb{lw B AR S s 4 B
r X 20 ) 26 2 2
A A 4am°r
1 92 -
- Wy g+ ¥ o3 e
A AT
- [(%-+A2)®2r + ¢4r3]W2}r2dr . : (54)

SPECIAL CASES.

(i) If X =1, the torsion is unaccompanied by the simp[; extension.

The resultant couple M and the resultant longitudinal force N at the

f

end =z % reduce to

r :
M= 21 er [‘1’l + (2 + cp2r2)‘P2]r3dr ’ (55) 7 *

a //\_ﬁ—

I

N=2n('b[‘lf +(l+q> )‘P-p(r)+—9——]rdr
r 2
a ) gt €0r
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(rb 2 2
+TTJr [‘Pi+‘}’2+(‘{’4+‘}’5+‘}’6) —‘Q—zz-(‘{’4+‘}’5+‘{’6) —9——23
a - 4T r ) 4m r
Sory - (30°r + o'rhywirlar . (56)
where
.9 o
plry) = [ + ¥, + (¥ + ¥+ ¥) S - -
4T r 8T €. r b
b 0'b A=1

(ii). Suppose ¢ = 0. There is no torsion, and the resultant couple

at z = & 1is zero. The longitudinal forc® N takes the form:

2 2
a 8m Eor

: r 2
_ b 2 4, 0
N =27 Jr [A Wl + A WZ p(rb) + lrédr

(xr ) 2
+ner[%‘P R R I RS

a L A 2 A s A k 41T2r2
1 1 2 2
~ Y, + =Y +=VY) ——2——-]r dr . (57)
4 A5 2 6 2 3
A 4T r

In (57), the expressioné for Wl,Wz... do not involve the specﬁgic

twist o

(iii). Suppose ¢ 1is small. That is, the deformation consists of a

small twist superposed on a very large simple extension so that terms

* * *
containing @2 can be neglected. 1In such a case, Il,I2,...,I6 and

hence Wl,WZ,... are independenEﬁ:i—dﬁ. The resultant couple M and

the longitudinal force N are given by:

e

M
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_ b 1,2 3
M = 2T fza [Wl +b( 3 + A9) Wz]r dr (58)
b .2 4
N = 21 ( A°Y. + A7Y_ - p(r,) + ———Q———-] rdr |
Jr, 1 2 b T o2 L2
0
+ﬂ(rb[l—‘{"+—l ‘i"+(‘{“+l\i"+—l Y1) —9-———2
Jra A1 AZ 2 4 A 5 AZ 6 4Tr2r2
1 1 2 2 |
S+ Ly v Ly, @ 1.2 (59)
4 A B 2 6 2 3 .
A 4am’r

From (58) and (59), it is easily observed that the ratio of longitudinal
force N to the torsioﬂal modulus M/p 1is not independent of the
2,...,W6 . On-
the other hand, if the electrical effects are totally absent, then

stored energy function which is represented through Wl,W

r
_ - [b 2 4, '
N = 2T [r (A Wl + A Wz p(rb)]rdr , (60)
a
where
= ( Ly , 1
P(rb) = ( 3 Wl + Az Wz)
’ }
and
b 1 .2, . 3
M = 2T fra [Wl + 3t A )W2]r dr . (el)

Since Wl and Wz are constant in this case, we obtain

(62)
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The ratio (62),'which is independent of the strain energy function, was
first obtained by Green and Shield [5]. We have shown that this ratio

is not independent of the stored anergy function if the electrical effects

. are taken into account.

L2
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7. SIMULTANEOUS EXTENSION AND TORSION OF AN INCOMPRESSIBLE TUBE IN

7 TAN AXIAL ELECTRIC FIELD.

The deformation (38) described in Section 6 can also be supported

T e e

without body forces or distributed charges in the presence of a uniform
axial electric field given both within the dielectric and in the medium

surrounding it by:

E =0, E,.=0, E =H. = - (63)
r 6 2

where H is’é constant. The electric field given in (63) meets the
required condition of geing conse tive and thé tangential component
across the cylindrical surf;;;:’;§;§;l tube is continuous. With the
strain components given by (38) and the electric field by (63), it follows‘

that the invariants defined in (18) are functions of «r only:

2 2 2.2

Il =5t A ’+ pr ,
1 1 22

I2,— >+ 2) + Ter

A
I3 =1,

(64)

I, = u? '
15 = X?Hz ,

H
I

(X4 + X2¢2r2)H2 .
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The dielectric displacement field components for the inside of elastic

éielectric are found with the aid of (16) to be:

» - a};.)
D =0,
r
oW oW
De—2{)\cpral +[(—+Lpr))\cpr+)\cpr] a—IG—}H,
_ oW 2 oW oW ~
DZ = 2] giz--i' A BI + ()\ + )\ ) 8I6 1 H . (65)

From (7), the dielectric displacement field in the medium surrounding

the tube can be expressed as:

=0, D =0, D =cH. ~ (66)

Thus, the dielectric displacement field D given in (65) and (66)

satisfies the condition V D= inside and outside of the dielectric and

the normal component~of D is qoétinuous across the boundary surfaces
Substitution of étrain components (38) and
electric field (63) in (19) gives us the state of stress throughout
the dielectric:

1, L
rr ’P+X®1+>\2 2,

Q
Il

1 2 22 4 4 22 2
86 -p+()\+(pr)<b +(>\—2—+x(pr +tor +)\(pr)®2

Q
L]

+ X2¢2r2H2®6 '
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ro

where

29.

NI

2 4 2 . 12 o4 222
-p +,A @l + (AT + 2% r )@2 + H [®4 + 2A @5 + (3A7 + 22X r )@6],

A@r{?l +

1
=+

A

22 2. 2 1 2 2 2 ’
Q r’ + A )@2 + H [@5 + ( X-+ e rT + 2A )@6]} v

(64) -

231 " (65)

The stress field (64) implies that the equilibrium equations(44) are

satisfied provided p

Hence,

9
or

is such that

Nj

) ~L (0 _ -0, =0,
r

rr ee)

(66)

plr) = p(rb)»+ L(r) , , (67)
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where
| 1 2 2 2 2 2 4.3
L(r) =Jr Fop e ey - ot - fele e et el
. |
—)\2<p2F,H2<1>6]dE. (68)

. ’ ) 7/‘"',,
Introducing the above relations (67) and (68) into (64) we obtain “the
StBess-~distribution within the dielectric. The stress components evaluated

outside the dielectric, described by Maxwell stress (8) are as follows:

€
(o) _ _ 0.2
Oy = 7 B
[
(0) _ _ "0 2 )
Oee = 5 H ,
(69)
e
(0) _ "0 .2
Ozz T2 Ho
(0) 0y _ _(0) _
-O're = Orz Uez =0 .

The surface forces.per unit area which must be applied on the boundary
of the deformed body in order to maintain the required state are given
by (12). We obtain that the surface tractions acting on the curved

boundary are in- the radial direction only.. On outer surface r = r, we

have: ' ' I
(0) 1 1 €0 2
(T.) = (O -0 ) = -p(r, ) + (¢ +—=0¢ + —H)_ _ '
r r=rb rr rr =t b ATl AZ 2 2 r-rb
(Te)r=r = (Tz)r=r =0 . (70)
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-

The distribution of surface tractionswhich must be'applied on the inner

surface r =r are:

- - € '
- - _ 4(0) - y - (L 1 _0 .2
(Tr)r=r B (Orr Orr )r=r B p(ra) ( A Ql + 2 ®2 * 2 H)r=r !
a a A a
\ N
(Te)r=r Tz)r=r =0. W (71)

) If we impose that the boundary surface r = r is force. free, then we

b
1 1 0 .2

p(r) = (59 + — 0+ — HY) ' (72)

obtain: R

»>

In addition, the following surface forceslzz}t act on the plane ends of

. the tube:

™~

(Tr)z=2 =0

_ _ L0
(Te)z=2._ (Oez Oez )z=2

1 '2 2 2 2 1 2 2 2
=‘)\q>r[d>l + ( ytrer + A )<I>2] + AgrH [(I?5 +";(T+ o r” + 2}\ )<I>6],
) .

_ _ (0) ‘

(?z)z=2 B (Ozz Ozz )z=2'

_ 2 4,222 2 2
= -pl(r) + A @l + (A7 + A%r )@2 + H [®4 + 2; ®5

€
+ s 2’A2q>2r2)<1>6] - TO'HZ . ‘ - (73)
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The system c;f forces (73) are statically equ‘ivalent to a resultant couple

M and a longitudinal force N given by:

r 2T
M= J b J Terzdrde .
r .

1 2 2 2
->\—+<pr +>\)®2

r

2 (rb
TAP J {¢1 +
a

3
+ H2[¢>5 + %+ 02rs + 2>\2)cb6}r dr - (74)
B (rb 2T
N —J : Tzrdrde
r 0
a
= 27 b {)\2<I> + ()\4 + K2<p2r2)® -~ pl(r,)
: . 1 2 b
a
£
+ H2[<I)4 ¥ 2x2¢5 + s 2)\2q>2r2)<1>6] - 70 u° yrdr

r
b, 1., .1 ., 2. _ 2 2 2 2 4.3
+ T Jra { X-Ql + Az @2 0] r@l ( N o°r + ATor +or )@2

- @2A2rH2®6]r2dr . . (75)

SPECIAL CASES

-~y

(i) For a pure torsion, i.e. A =1, the totalcouple M and the
resultant force N take the form:
: Ty 2.2 2 2 2; 3
M=27T<DJ {<I>l+(2+(pr)<1>2+HL<I>5+(3v+(pr)<1>6]}rdr.

r
a
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r
, b 224
N = 27 Jra {<Dl + (1L +0¢°r )<I>2 P(ry)
. ™
2.2 ) . 22 0 .27 '
)0 ] - — ‘
+ H [®4 + 2@5 + (3 + 2? r ),6] 3 _H }rdar | ]
"y 2 2 4 2 2. .2
" ' [ - d - 0] .
+m Jr [<I>l + <I>2 ¢ r<I>l (3¢7r ¥ ¢.1)%, - ¢ rH 6]r dr (77)

a

J ' ) 1
! €
9 42

e Pl = G Gy

(ii).‘ If ¢ = 0 , the deformation (38) restricts to just an extension,

»

and the total couple M required on plane ends is zero. Also, for
s

¢ = 0, the coefficients ¢ are no longer depsndent n r. With these
. - .

Vag,sumptions, the total force N becomeé:

_ 2 1 4 1. . .2 S 52 4, . .
N=m[(A" - A)®1 + (A 2)®2Af H (®4 + 2X ®5 + 3A ®6)

A
/
- EOHZ] (r2 - r2) . . (78)
b a .
(1ii). Suppose ¢ 1is small. In the case of a.small tw'ist'superposed on

a large simple extension we obtain the following total couple M and

the total longitudinal force N: ,

4 4
_ 1,2 2 1 2 v T Fa
M= ﬂA@{@l + 5+ A )0, + H [®5>+ (5 + 2} )®6]} 3 p
. ) .
_ 2 1 4 1 2 2 4, 2.2 20"
N=m7[(A" - py )@l + Si/ AZ )@2 + H,4@4“+,2A)¢5 + 3A ®6) - EH ](rb ra).

~ -




. < M .
The ratio N/a- provides
‘ T

A2 - Ho o+ 0% - Dye. + 8% + 2%+ nte) -end 2 2
. AT 2772 4 5 6 0 r.~r
-—-&._-_2 )‘ b a
M/ 1 2 ' 2 11_ 2 4 4
, X{Ql + (X + A )@2,+ H [@6 + (X.+ 2\ )@6]} rb-ra
(79)
For zero electrical effects, we obtain the relation:
r2 - r2 :
N 1 b a
—=2A - =) —, (80)
M/ A2 r4 _ r4 -
b a

which is the same as obtained by Green and Shield {5] when the electrié.
field is not taken into account. . It is apparent that (79) is independent
of the stored evergy function if and only if there are no electrical

effects. .

2
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8. SMALL FINITE EXTENSION AND TORSION OF AN INCOMPRESSIBLE TUBE IN A
RADIAL ELECTRIC FIELD.
Here we subject the tube to a small finite deformation in a weak .

electric field. The following mapping is prescribed initially:

A r=-——r, '
)/X. s
6 =0+ o0z, ' (81)
z = AZ .

As we have shown in Section 6, the above deformation is isochoric and
e
represents a simultaneous simple extension of extension ratio }} along
" P
the a%is of the tube and a torsion of ¢ per unit length. ’

We subject the tube to a radial electric figld (Er,0,0). In view

of conditions (3) and (4), the radial field has to be of the form:

E =E (r) , E,.=E =0 inside the dielectric i (82)
1 r e z
and
0 ' .
Eé ) = Eio)(r) ’ Eéo) = E;O) = 0 in the surrounding medium (83)

The problem proposed here is to determine within the first order

approximation formulated in Section 4, the electric fields Er(r) and

E(O)v

r (r) ~and the surface tractions necessary to maintain the deformation

without mechanical body forces or distributed change. The physical

components of Finger strain are furnished by (38): g

~

S
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= L
grr !

DL, g%
gee"‘x ¢ r ,

) .

gZZ_>\ 14 (84)
ge_z':NPrr . . .
906 = Yz 0 - : =

To obtain the components of dielectric displacement field inside the

dielectric body, we substitute (82) and (84) into (31). Thus,

v}
H

1
(C, + X CIE, \ |
\ : (85)

Outside the elastic dielectric tube, the_dielectric'displacement field

follows from (7):

(0) _ (0)
D;: = eoEr :
’ (86)
D(O) -0, D(0) -0
8 z
The conditions (5) provide:
g =5, g@_L _ (87)

N
N
N
b



where X and 1L are any constants.
Since the normal component of dielectric displacement field is
continuous across the boundary surface of dielectric, the condition (6)

implies:

A~ ' J‘

1 X
L= (C2 + X—CB) ES' (88)
/‘
In place of (82) and (83), therefore, we now have:
E=E,E=E=O ' (89)
r r 6 z
»
and
(0) _ 1, . X (0)'_ _(0) _
E,. = (C2 *3 C3) er ' =E, = 0 (90)

The corre%ponding Sstresses inside the dielectric follow using (84) and

[}
.

(89) in (30), and dppear as:

2

0rr=‘p+7\'Cl‘L(Cz‘LTCfr_z'

1 22
09@ -p + ( ytoer )Cl ,
G = -p+ e, , (91) |
22z 1’ : i
Oez = X@rcl ,
o ,.=06_=0.

8  rz .
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With the stress field (81), the equations of equilib‘ium (44) become:

(22)

The last two equations in (92) give us the information that the pressure

p depends only on r. Hence, from the first equilibrium equation p/(r)

- 2
can be written as follows: N
i Y
\ )
2 e 2.2 .
p(r) = %(C2 + X-C3) ;5'- %Clw r + A< y (93)
—

where A 1is a constant of integration.
In the medium surrounding the dielectrig the stress field represented

by the Maxwell stress (8) is given by:

2
(0) _ l} K
Yr = (C2 3 c4) 2!
2 r
0 2
. ©) _ _ 1 _K
Og9 = "G * 31 C5) 7
2€or -
5 (94)
(0) _ _ l_ K
O = "Gy + X C3) 3
26 r
0
0) _ _(0) _ (o) _
Urev - Urz =0y, < 0 -

Now we determine the surface tractions which should be applied on

the boundaries of the tube to maintain the prescribed state.
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On the surface r = r, , the following forces are required;

b
(0)
(T )__ = (O -0 )
rr'—rb rr rr krb
2 2
Lg% V2o 1o, X
‘(x+l"9rb)cl+(cz+>\c3)22 (C2+>\C3)2€r2 A s
Y 0'b
‘Té)r=r = (Tz)r=r =0. - (95

b - b
Assumihg the outer surface r =r force free, the arbitrary constant

b

A can be evaluated as:

2 . . 2
oo, +7¢c)
2r2 2€ r

b

_ (L 2,2 2
A= ( 3 + % 0 rb)cl + (c2 + 3 C3)

The foj?owing surface forces then must act on the inner surface r = r_:

a
r2-r2 .

L 2,2 2 1 1, 2 b Fa 2
(T) o, =B s - xC, + L (€, + $Cy) - (G, + 5 CI—2 &,
b 0 2rr

ab
(Te)r=r - (Tz)r=r =0. (97)

Besides the forces given by expression (97), normal and azimuthal

surface tractions are required on the plane ends:

(T) g = 0
(Te)z=2 = X@rcl , ' (98)

2 1 2 2 1 k211
(T,) pmg = 7 = 500 = BI(C, + T CIKT - (Cy + 3 Cy) =105+ =)

0 r r



These last two distributions of surface tractions, (T

8)z=g 379
(Tz)z=2 + yield the resultant couple M about the axis of
the tube and the resultant longitudinal force N:
(Y, (2T 4 .
M= b T rzdrde = YTAp (r, - r4) , (100)
6 " b a
r 0
a
rb 2T
N = J J T rdrdb ,
: z
r 0
22 1 2 2
= ﬂ{(A Y )(rb - ra)Cl
2 r2 -r r
2 2 1 K b b
—[(C2+)\C3)K _(C2+>\C3)€ 1 ( > + 1n ) . (101)
. 0 2rb a

. . N . )
Once again, we observe that the ratio —— is dependent on the

M/

stored energy function. However, if electrical effects are absent, then

K =0 and we find

2,2

N _ 2(A 1 ) b a
- - = ’

M/p ¢ Xz rﬁ -.rj

which reestablishes the result of Green and Shield [5].



41.

9. EXTENSION, INFLATION AND TORSION OF A COMPRESSIBLE TUBE IN A RADIAL

DISPLACEMENT FIELD
N

Here we consider the extension, inflation and torsion of a compressible

dielectric tube. The deformation is described by the mapping:

r = r(R) ,
6 =0+ 0z, (102)
z'= AZ .

The deformable dielectric is subjected to a known radial dielectric

displacement field:

Dr= Dr(r) ’
(103)
De =0, Dz =0,
where
D = =2
r 2mr ! : .

in view of the conditions (5) and (6).

As has been mentioned in the introduction, the-state described by
(102) and (103) is not controllable. However, our purpose here is to
indicate the'procedure of findiné thé surface tractions in case some

special functional form of the stored energy is given. .



expressions:

The physical components of strain gij

> 42.

are given by the following

2
Ipr = 5 v )
= 5_)2 + 2 2
gee R ¢ r .,
2
gzzzx ’ (104)
99z ~ Aor
9o T Iz T 0
where the prime denotes differentiation with respect to R.
The six invariants defined in (22) are found to be given byr
=y ( £-)2 + $2r2 + A2
1 R !
2 2
*t} 2 .,2 r 2 2 2, r
1 \ - A —-
I, *r AT+ (3) +07 T + A0
2
* 2,2, r
= A\r! fall »
I, r (R) '
5 (105)
*
I4=%—5’
4T r
-2
I;=r'2 22 '
4T r
T S
I6 =r! >3 -
‘ 4T r
o * % *
The -invariants Il'Iz' ..,I6 are functions of r (or R) only.
N
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The electric field throughout the dielectric is furnished by relation

(21). We obtain

2 oW 2 oW 4 oW 9
E = - [ - r' + rt ] ,
r 5 2 y 2 BIZ .31; BIg 2Tr
AT T E’) "
(106)
Ee = Ez = 0. vz

£

Outside the dielectric, the electric field components follow from (7):

E(0) - _9
r 2ﬂ€or !
' (107)
® - 5@ o, ’
o) z

The tangential component of electric field is trivially continuous
across the cylindrical surfaces of £he tube. Also, V'E =0 bwithin'the
dielectric and outside it. Tﬁus, the electric field given as in (106)
and (107) meets the conditions (3) and (4).

Introducing (104), (105) and (106) in (23) we find the stress field

inside the dielectric:

2
1 2 ) 4 ' 2 V4 Q
r Tl + r Tz + T3 + [?4 + 2r TS + 3r W6]

g = '
rr 4H2r2
2 27 2 ‘
. o 2 2 r 22, r 4 4 2 2 2
oee=[(—R-)+q>r]‘{’l+[(E)+2q>r(E)+<pr +Aq>r]‘{’2+‘{’3,
N 4 222
ozz—X‘{’l+()\ +A<pr)\P2+\Y3,
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2

2 2 r
+(§)]‘P21

Awf?l + X@r[kz + ¢ r

Q
]

Bz

- - , “ S a
Ore Orz 0o, . (108)

where

2 oW * 3w
: Wl = 5% (—=+1 —;;') ]
I3 ﬁ'aIl - d 3
2 oW
Wz = - *1y I* !
I3 d 3
_ 2 * 3W
W3 Ty I3 * !
I3 813 _ ‘
‘ (109)
2 3w
W4 = %1y 3 *x 7
I3 I4 e
_ 2 JdWw
Ws - R 815 !
5
_ 2 JW
e = o 816
6

Since the stress compdnents are independent of 6 and 2z, the

egifations of equilibrium reduce to the single equation:
do (e} - O'ee

rr ry
+ = .
a 0 (110)

With stress field given by relations (108), the equation (110) can

be rewritten in. the form:

) 2 ’
r'2T' + r'4W‘ + ¥ + [¥' + 2r'2W' + 3r'4W ] L
1 2 3 4 5 6 4,"2:r2
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, 2
+ 2¥_ rr' + 4¥ r'3r" + [4r'r"¥Y_ + 12r'3r"W 1 L
1 2 5 6 2 2
: 4T r
o 4 0 1 2 r % 22
- ] 1 —_ - —_ - .
[‘{"4+2r l1{5+ 3r qJG,y 23+r{[:: (R) (pr]‘{"l
. - a1 r
4 r 2 2 2 r 2 4 4 22 2
+ [r'" = (=) =20 (=) =-o¢r =-2%°r1¥Y.}=o0. 111y
R R 2 i
If we know the dependence of Wl,Wz,...WG on r, i.e. the stored

energy W for the compresSiblerbody is known explicitly, then -the solutiOp,
if it exists, of the ordinary non-linear equation (111l) will give us the
dependence of r Von R i.e. r = r(R) . 7 | C

The stress components in the medium surrounding the dielectric follow

rfrom (7):

2
0(0) - Qo ,
rr 8ﬂ2€ r2
0
2 +*
o(o)=-——9——,
606 2 2
8T eor
5 (112)
O 98
z2 8ﬂ2€ r2
0
(©) _ _(0) _ (0
Org = Orz = Oez =0.

-

In order to support the deformation, the following forces per unit

area of the deformed configuration must be applied on the boundary:
= S O
(i) radial surface tractions on the inner surface r = ry ~and

outer surface r = rb:
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(Tr)r=r - _(Orr Orr )r=r ! (113)
a a
) = - (114)
b b
(ii) azimuthal and normal surface tractions on plane ends:
- (0) o
(TG)Z=£ - (062 - Oez )z=£ ! (115)
_ )
(T)pmg = Opp = 9y )pyg v (116)

where, assuming that r = r(R) is known, Orr’oez"' are given by

expressions (108) and (112).

RS

haY



N
\
)

REFERENCES |

-

Toupin, R.A., The Elastic Dielectric. Journal of Rational Mechanics

and Analysis, 5 849 (1956). frm

Eringen, A.C., On the foundations of electro-elastostatlcs. Intl. J.
Engr. Sci. 1, 127 (1963).

T

Singh, M. and A.C. Pipkin, Controllable States of Elastic Dielectrics.
Arch. Rational Mech. Anal. 21, 169 (1966). '

Rivlin, R.S., Large Elastic D&Egrmations of Isotropic Materials.
Phil. Trans. Roy. Soc. Lond. A. 240 459 (1948).

» .

Green, A.E. and R.T. Shield, Finite Extension and Torsion of Cylinders.
Phil. Trans. Roy. Soc. Lond. A 244, 47 (1951). -

.Singh, M., "Controllable States in Compre551ble Elastic Dlelectrlcs.

ZAMP. 17, 449 (1966) . i

Singh, M., Small Finite Deformations of Elastic Dlelectrlcs. anrterly
of Applied Mathematics. 25, 275 (1967).

S )





