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ABSTRACT

The second order elasticity theory, formulated by Rivlin
(1953), has been applied to the combined extension and torsion of a
homogeneous, isotropic, elastic cylindrical tube. With surface
tractions given at the plane ends, the displacement field and stress
distributions are determined in explicit form. The results so
obtained are compared to those of classical elasticity ;heory.

The problem of a thick sphefical'shell under uniform internal
and external pressureé is examined next in the light of Riylin's

second order elasticity theory. The displacementuénd'stress fields

are deriv%d explicitly. The following special cases are investigated:

(1) Infinite medium with spherical cavity under internal pressure
only,

(ii) Sol}d sphere under exfernal pressure,

(1ii) Stress concentration when the internal radius of a thick hollow

sphere approaches zero. .

(iii)
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"~ 1. INTRODUCTION ) ' -,

In classical elasticity, the deformation to which the body is

subjected is so small that all terms Qf second degree in the displace-

ment gradients may be neglected in comparison with those of the first

©

degree. This gssumption }eads to the linear relationship between.

a

forces or stress componentsj}o thp‘spatial derivatives of the displace-
/ ‘ § .

ment components. Consequently, it becomes unimportant whether the

applied surface tractions are specified per unit’ area of the undeformed

or deformed material. Therefore, if applied méghanical forges are

given, the displacement and stress’ fields can usually be found explicitly

Yy . X .

’ in a well formulated boundary value problem. ’ ' .

Hg@éver, this is not the case in finite ;lasticity. * The
guantities éuch as body force, éurface traction, and stress components
must be stated explicitly whether they are definéd with relation to
the undeformed body or the defofméd body. Moreovér, not only the result-
ing equations governing the theory are nonlinea¥ but the explicit
functional fofm of the strain energy function on the‘strain invariants
is not known in advance. 4 i
It is because of these reasons thatlmost of the iqterest in
finite elasticity has centered around thé so called exact or co;trollable
deformations. These problemé are solved by the inverse method. The
L.-;S.deformation is described at the outset, and it is verifiéd that the
defo}mation can be supported withoutbbody force, in everyvhomoggneous,'
isotropic, incompressible, elastic material. These e%act defgrmations

were originally discovered by\Rivlin [1]. ‘While there is a- oderately

=

A




1 - - £

T

large number of exact solutions for incompressible materials [2],

Ericksen [3] has-.shown that if the material considered is compressible,

u

then only pure homogeneous deformations Are admissible. Thus, it is

apparent that to scolve any boundary value problem involving a nonhomo-

. T s . 's
gengzngdeformation with compressible elastic materials, one must ;

: \

8

turn to approximate techniques. .

One of (he approﬁimaté techniques often employed is to

=

\

-
consider the strain energy function as a polynomial function of the

strain invariants and then retain terms in this expansion only to the

order desirehfby the formulé£ion of one's appréximation [4]. These
approximationsgare based on the‘assumétion that the principal exten—
sions are sugficiently small, but no reséricpion is imposed on the
magniﬁudes of tﬁe rotations involved. The applications of such tech-
niques, often called coﬁplete theories, are rather limited.

The other types of approximations rest on tp? assumption
that when deformations are small but‘not infinitesimal, then
perturbations based on the qlassicai theory solution,coﬁldAbe used.
The pfocesshgf such systematic approximations for problems in non-
linear'elasticity has been foqulatedﬂand applied rigorouslyvby

Murnaghan [5], Green and Spratt [6], Green and Shield [7], Green

and Aakins [8], Grioli [9], and Sheng [lO].

In 1953, Rivlin Ili] proposed an approximation technigque

-~

which he calls second order glasticity. It is founded on the assump-
. . — :

tion that.only‘termsfup to third orxder in displacement gradients be

1 . “«



retained in the poiynomialfexPaﬁsion for the strain energy function.

In other words, it is assuméd the displacement gradients are large

enough so that thé classical theory is not valid but small enough to
neglect terms of degree-higher than the second in displacement

gradients in stress components. The appropriate constitutive equations, PR

equilibrium equations, and boundary conditions are formulated to

within the framework of such a secord order theory. Through an elegant

i * ! 3 . ) .
mathemgtic?lfpresentation, Rivlin reduces_any surface traction bound-

£l

ary value problem in secondﬁordér theory for homogeneous isotropic, : X

. a
v

gomg?e%sibié, elastic materials to the solution of two boundary value
’ : 3 L . a ¥ ’

probléems id.g%assiéal theory. The proce%s is that boundary wvalue

o

144 1 . N ~
problems of cléssica} theory is golved_for the given system of forces

£ s '
" & -t o

AL . . * , _ o ‘
and-the corresponding displacement field determined. _This set of
> . . ‘ : : :
displecements is-introduced into the equations of the second order -
i . : ; O .
F EEE S . . .
theory and the fdrces required te maintain' the given displacements,

7 B .

.o - »

in additiorr to. those présciibed, are calculaﬁed. These additionaL\
%7 ) N b -: N - oL ' . - . - .
forces ake reversed ih direction and the effeétszwhich they would

- . o - +

produce inathe.undeformed body are found. Then, bz:summing'tﬁe classical

’ o W’ ! ¢ v ? P
displacement field and that obtained from the reversed forces, we

4 £ B ’ B N < - N
can sh0w~tHQt the total(resulting éﬁ?placﬁment field is a solution

>
.

in the second order elasticity theory fior the given‘problem. A1l
B LY :
" . . E -

guantities in thgrabOVefare expressed in'terhérdf the material coord- s
inates of ‘the body.. This formulation of Rivlin has been reproduced :

,! s . @

by us in Section 3.



The next section of the papér shows how this second order

-

theory éan be applied to a boundary value problem to determine second
_ 8
order effects. Rivlin [11] examined the combined extension and

torsion of a cylindricél_tube to deﬁonstrate the application of his
theory énd found that tﬁe tube, on twistihg,,undergoes a fractional
simple extension which is proportional to the square of the twist.
Besides confirming this result once again, we alsé pfeseﬁt the dis-
placement field aﬁd stress distribution, not obtained ;n Rivlin's
~ paper, complete to second.order terms for given surface forces at
the plane ends of the‘undeforﬁed tube. Also investigated are the
special cases of pure torsion ;f a rod, and that of a simple extension.
c .
On comparison with Murnaghan [5], where perturbation techniques are
used, we show that botH theories furnish identical results.

We next consider the second orderwsoldfzg;hgo the problem
of a thick spherical shell subjected to ﬁniform internal and'ﬁxtérgal
pressures. All of the additional forces, fortunately, turn out to
be radial in nature and hence facilitate the determination of second
order terms in displacement and stress fields which, are found
explicitly. The problems of an infinite medium bouﬁded internally
by a sphericél hole undeg internal pressure and the solid sphere under
external pressure, which are special cases of the general problem

ar=a also solved. The results obtained are then compared with the

corresponding ones in classical .elasticity theory.

4

|
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2.1 THEORY OF FINITE ELASTIC DEFORMATIONS

-

A continuous body occupying a region D_. + B is subjected

0 0

’

to body and surface forces. It deforms and occupies the position D + B.

The deformation is described by the?mapping:
. 4 Ei = Ei(xj) ’ | : (1)

where xi and Ei are the coordinates of the same generic particle
in BO and B, respectively//;z%erred to a fixed rectangular Cartesian
system,

We shall consider quasi-static deformations only. The equations

of equilibrium are then given by:
+ pX, =0, , (2)

where Xi is the body force per unit mass, ¢ the mass density in the
deformed state, and tij the symmetric state of stress in D.

Since our interest lies only in those problems in which the

3 _ R . N ;
tractions are prescribed all along the surface, the cbrrésponding.boundary
condtions are:

e Ti = tijnj on B, : (3)’
—

where n, is the unit normal vector to B and Ti represents the
surface force per unit area of B.
If the material is homogemeous and isotropic, then the constitu-

tive relations are furnished by:

_2 oW W
tiy = Vi, “all ! 312) 913 7 31, ik I3 %41 @




et e

~ ] "’ 6.

Here, gij denotes the Finger Strain tensor given by:
£

_ %y % (5)
gij - Bxk 8xk ! s

and W represents the strain energy which is a function of the three

invariants:

1 . -

2.2 SOLUTIONS TO PROBLEMS IN FINITE ELASTICITY

g

The problems which have aroused interest in finite elasticity
theory are the so called exact solutions. In these, the deformation is
prescribed at the outset, and then it is deﬁonstratea that such a deforma-
tion can be supported in every hpmogenéous, isotropic,_elastic material.
In other words, the relation (1) being given, the stresses calculated
from (4) satisfy the equilibrium equations (22 with body force Xi =0
no matter wﬁat the functional form of the strain energy W 1is in terms

+of the invariants I I

2!

17 and 13. The appropriate surface tractions

to support such a prescribed deformation are then calculated from (3).

In classical theory, the assumption . is made that the displacement

du, '
gradients §§£ << 1 and, therefore, the stressés are calculated on
J 8ui
the basis of neglecting powers higher than one in 3. - The equations

3
so obtained governing such a theory are linear and hence techniques to

attack boundary value problems for given applied forces can be easily

“developed. This, however, is not the case in finite elasticity theory




———

Y

where the equations are obviously nonlinear in the»displacements. ;n the
following section, we reproduce the technique developed by Rivlin [11i
which makes use of the classical infinites;mal theory as well as the
method of inversehcalculations to solve boundary value problems in the

second order theory of elasticity.

5}




3.1 RIVLIN'S SECOND ORDER THEORY S A /

For compressible, isotropic, elastic materials, Rivlin -[111]
proposed a procedure to solve surface traction problems~hhen the
deformations invloved are small but finite. ' The theory rests on

retaining terms up.to second powers in the displacement gradients. The

'

solution to a boundary value problem is reduéed to solving two problems

o

in classical theory plus an inverse calculation.

3.2. STRESS-STRAIN RELATIONS OF SECOND ORﬁER THEORY

We rewrite equation (4) as:

2 oW oW oW oW
t..==1I[9..3/— - G,. 7m— + (I, =—+ I =—)6,.1 , {7)
ij T 1]311 ij 312 3 813 2 312 1]7 _
where T = (I );5 , G.. the cofactor of g,, 1in det.g.. , and the
3 ij i3J i3j : v o,
strain energy W a function of the scalar invariants:
I, = I, =G., = Det.g,. . 8
17950 Ip 7650 I3 7 Det.gyy (8)
For convenience, we define a set of alternative -invariants:
= T - 3 = - + = - + "l.
Jl 1 & J2 12 2Il 3, J3 I3 12 Il (9)
The invariants I J2, and J. are of the first, second, and third
, du, . :
order of smallness in sgi-. Assuming the strain energy function W

to be a polynomial in its arguments, we may write: .



W= A J
aBy

o By :
z . :
1J2J3. . (10)
o,B,Y _
We may take the medium to be such that, W = 0 and that it-is pnstressed,

when undeformed. Since we are interested in formulating a theory in which

'deformations are so small that powers higher than third in displacement
du, C . , -

gradients S;i- ‘can be neglectedh equation (10) reduces to the form:
S o : -

2, 3
= + "+ + J. + 11
W alJ2 a2Jl a3JlJ2 a,J] aSJ (11)

4

3

a a a

1’ 3’
for W was .first obtained by Murnaghan [ 5].

where a and a are material constants. The fbrm (11)

27 4’

We introduce the notation :

aui du, » laui auj v C
= + =, a,. = — =L, 12
eij dx ax, ' ij 9x. ox. ' : (12)
»k ok
e.., = 2A , a.. =a, E.., = co-factor of e,. in Det.é.. R
ii- ii ij "ij ij |
and E.. = E .
ii

With use of (11) and (12), and neglecting terms of degree higher than

- ou,
secord in g;i , equation (7) assumes the form:
J ' :
= -a. + +2 + - ‘ + : .
tij 211 aleij 2(al aszaij}" {(4a2 2a3 al)Aelj
- .- - LLr o +2 + +a_)E
a0, (a aS)Elj} {(al az)a (al a3)E

(13)

-

2
+ 2(6a4+2a3-al—2a2)A }Gij] .

It may be noted here that in the expression.(l13) for tij ;0 1if we
ou,

neglect terms of degree higher than first in ——i-, we recover the
ox

iy




Sstress-strain relations of classical theory:

f. = 2[-a

i leij + 2(a +2a2)A§ij] . N - (14)

1

From (14), we get: -

A = 4(a_.+2a

(F2ay) . u= -2ag ¢ (15) -

; 1 .

* . . Pl
) \ '

where A and U are the Lamé constants of classical theory.

Furthermore, (15) allows us to infer:

< > nd - + > . :
a. 0, a2 0, and al 2a2 0 ’ (16)

> o

Cw

3.3 EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS

Suppose the deformation occurs under the body forces Xi
per unit mass and surface tractions X\)i emeasured per unit area of

the undeformed boundary BO . We write here once again the equilibrium

eguation (2):

ik, PX, = 0 - ‘ ) T an

The boundary condition (3) can be expressed as:
1
ds '
X, —=t, L - (18
Vi ds? 1]2] f ‘ (18)

1

where dS and dS' denote elements of surface area in the undeformed



{“"f

11.

and deforﬁéd states,rrespeptively, and Ri, is the unit normaL vectof
to the deformed boundary B.

We shall now like to express relations (17) and (18) in
terms of the coordinates X, which describé the undeforméd body. If

po stands for the density in the undeformed state, then:

Y

°

0
p = p (19)
With £, = x, + u 2 ~axla we get:
R T R T YA T ger
k K
) "2
3E -1 SZ 3% (20)
k 3 k) i
ox .
i
With (19) and (20), equilibrium equation (17) becomes:
dt. :
9T ik, g =0. (21)
Buk 3 01
b'4
3 (x—) ]
0X. §
If Ri denotes the unit normal to the undeformed boundary BO', then:
as oT A
Vo i : 22
~Ri as’ [ 3a. Rj] ’ - } )
3 (=) . :
ox,
J
and the boundary condition (18) therefore becomes:
oT .
= — . 23
%01 e Yitik (23)
3(_;Eg '
ox
ou, -
If the first degree terms in 5;i- on the right hand side of equation
: ) - du.
(13) are denoted.by t!. and those of second degree in 5-&- by t¥.
ij X i3

then the equilibrium equations (21) and boundary conditions (2}) can

be represented as:



TN

Buk' atii, Bt;j
(A6 55 1 5 v ax, TP T 0
j k JJ
and
Buk ,
x\)i = [(1+A)6jk —75;;-] thij + th;j

3.4 A METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS

A systematic procedure to determine the displacement

12.

(24)

(25)

field

u, when Xi and Xvi in (24) and (25) are given will be presented.

Suppose vi denotes the displacement field corresponding

to body force Xi and surface traction le

theory. ‘In other words, vy .is given by :

BTij
9x . * pOXi =0
]
and
X . =71..4.,
vi i’
where
L= - v+ + 0. .
Tij 2 alei:J 2(a1 2a2)A Glj]
and
ov, ov
[ 1 |=l|
°iy T, T, M T i
3 i

according to the classical

(26)

@7

(28)

(29)
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We shall now determine the forces which would be required by the second

- - N

, . R
. ordér fheory to maintain the displacement field v, o- That is, A

found from (26) to (29) is substituted in (24) and (25) to find forces

X' and X'.:
1 AV

8vj 3T\ 8ty ; -
A - + +. o= ,
[(1+ )6jk ox ] ox ., 9%. pOXi 0 (39[
k J J
and
. T v,
o= +A")0., - T, + .
Xvi [(1+A )6jk Szi-] zjr}k' Ekrlk (31)
Here, Tik is given by (28) and::
v = _ ] ] - 1 - - '
Tik 2[{(4a2 2a3+al)A ely aluik (Ql aS)Eik}
. ; -t
. 2
1 + LIS + o - ' .
+ {(aj+2a )0’ + (a %2 )E 2(6a,+2a;-a;-2a,) A }6ik] , (32)
where ) . )
,/' ' . -
] Bvi ka . : ~/
] = - | - ] ] — - v 5
aik 3%, 9% ' o aii ’ Eik co féctor of eik in
, i3
‘Det.e'. , and E{. = E' (33)
ik - i
From equations (26) to (33), we can now calculate the forces Xi - Xi

and X', ~ X_.,
Vi V1

forces X, and X .
1 Vi

_ . = A -] )
Po (Xi=X;) ‘[A §jk 3%, Vo T &, .

] - — [A? ___j_ Tt
Xvi Xvi (A 6jk ] ngi + QjT ..

, which are required to support : v, in additipn to the given

(34)

(35)



14.

The forces given by equations "(34) and (35).do not actually act. 1In
order to negate their effect, we now calculate the displacement field
Wy which their negatives would produce in the undeformed body accordiﬁg,

to classical theory. That is, we determine Wi ‘from;

™ '
3T'i'j : A NS
— -— 1 = [
%t PR =0, ' ‘ (36)
J .
and .
- 1] = " ,Q, ’
Xoi T %01 T Nixx , (37)
where
" —_ - vy + n§. . : ,
Tij 21 ajel 2(al 2a2)A 613] )
and : .
. oW, ow v (38)
" = 1 + J Au - _l_ ell .
eij 9X. ox .. ' 2 ii’ e
3 "
We now set:
u, = v, + wW, . : (39)

W?th u, calculated as in (39), it is easily verified that the equili-

brium equation f24) and boundary condition (25) are identically \

satisfied up to terms of the second degree in the displacement gradients.
Thus, we see that by solving two appropriaté classical theory

a

problems defined by (26) to (29) and (36) to (38) along with an inverse .

<

calculation defined by (30) to (35), we are able to obtain a solution

u, of second order theory equations (24) and (25).
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4.1 SIMULTANEOUS EXTENSION AND TORSION OF A CYLINDRICAL TUBE

Our purpose here is to employ Rivlin's theory presented in

the preceeding.section to investigate the simultaneous extension and
torsion of a cylindrical tube. The tube has internal radius b and
external radius a and is subjected to a couple M and a longitudinal

force N at its plane ends. The body forces shall be assumed to be

‘zero.

4.2 THE CLASSICAL SOLUTION . o,

The classical solution for this problem can be found by
superposing the classical solutions ¢f the simple extension and pure-

torsion problems. This well known solution is given by:

v, = —oExl - wxzx3 '

v2 = —O€x2 + WXlx3 , V(4O)
[

v3 = Ex3 ,

_where € denotes the extension parallel to the axis of the tube and
Y the amount of torsion about the axis of the tube. Here, Poisson's

ratio O can be expressed as:

W

L4
o

I ) a. + 2a
- ol S (et
- . 1 2 ’

when use is made of (15):
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As to what should be the values of € and Y corresponding
to the couple M and. the longitudinal force N given at the plane
ends, we can calculate these by.introducing the solution .(40) into the

equations of classical theory_aé follows.

Introducing (40) into (28) and (29), we get :

- -

Lal = ' = - ] = Y = ' A= -
€11 T ©2 20€ , e1, =0, ejy = Ux), ey = SUx,
eé3 = 2€ ,» A' = €(1=8g) , (42)
and
Y

= = = " = - + )
Tll le T22 0, 133‘ 8€[a2 o(al 2a2)],
T23 = 42alwxl ’ T3l = 2alwx2 . : _ (43)

!

With (43), equation (26) gives X, =0 which, of course, is to be
expected.

On the lateral shrfaces of the tube, Ql‘= xl/a , 22 = x2/a ,

and 23 = 0. With (43) in (27), we obtain :
=0 . B (4
X\)i 0 | ( 4)

On a plane end of the tube, 21 = 22 = 0, 23 = 1. Eéuation (27) then

furnighes:

X = 2allbx2 , X = —2all,bxl , X = 8€[a2 - o(a

vl V2 V3

l+2a2)] . {45)

The system of surface tractions le and ‘sz in (45) 1is equivalent
to an azimuthal surface traction ‘év given by:

@v = -Zalwr ' : , | (46)

2 2
h = + .
where r Vxl ?2

Thus, the quantities € and Y in the displacement field (40)
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v

‘which is produced by the given resultant couple M and the given

'loﬂgitudinal force N are furnished by: =~ - ?ﬁ
ma 44 o
M=/ [0Or” dr df = -ma_Pla -b") , (47)
AVER 1 -
0 b : .
and
2T a - 5 2 »5 . .
N=/ [ X _.rdr d6 = 8m€la, - o(a.+2a_)1(a"-b") . (48)
o 'b V3 , '2 1 2 ' .

4.3 SECOND ORDER FORCES REQUIRED TO MAINTAIN THE DEFORMATION v, OF
CLASSICAI, THEORY

We seek to determine here the body forces Xi - Xi and surface

forces Xbi - X\)i which would have to be applied, in addition to the

forces given, to maintain the deformation (40) within the framework

of the second order theory. These can be found from (34) and (35) after).

we have calculated the expressions for aij,inj, and T'. frbm (32) and
, i3 v

(33) Which we do now.

Introducing (40) into‘(33), we obtain:

22 22 - 22 2.2 2 2 2.2
ol = + ' =0 + 7
all OE+¢)x2. wyzz € +\pxl \pr,
al. = 62 -oa' = —1,()2 X a! = €Px. - |
33 © P12 % Tz 1
- . : 2
al, = -€x,, and a' = 20%¢? + @+ it 4 2w2x3 ’ (49)
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where

and

Y=
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P
s
~N .
2 2 b
r = xl + x2 ¢
From (42) and (33), we have:
. 2 2 2
B! o - ] = - -
11 40¢ ] X E22 -4G¢€ Y X,
] 2,2 2
'o= 407¢ o= - =
B33 r Byy = Wixgx, . Byg = 2060
By © -20€yx, , and B = -80€? - wzrg + 40?€. (50) .

Substitution of (49) and (50) into (32) gives:

' 2 2 “ ' 2 2 i
vro= -(Z2a =- + - -
Tll 27 [ (2al a5)x2 + (al+4a2)x3 (al+2a2 a3 a5)r 1 +°Y ,
', = 2w2I—(2a -a )x2J+ (a,+4a )x2 + (a_+2a_.-a_-a )r2] + Y
22 1 571 177273 177273 75 !
a2 2 2
v = 2(a._ + -— 1
Ti5. 21p/[2(al 2§2)x3 + (2a2 a3)r 1 +y',
T"‘=’2w2(2a -a_J)x_Xx
12 R N S B
“Tg = 2w€xl[(4a2-2a3) - 20(2al+4a2—2a3~a5)] ,
T3l = —2w€x2[(4a2-2a3) - 20(2al+4a2-2a3—a5)] r (51)
} ¢ .
2. 2
= + + - -a_~- + + +2
Y 2€ [g fal 4a2 l2a3+48a4) 20 ( al 4a2 lOa3 24a4 a5)

+(-a_.=2a._:
( a; 2a2+4a3+l2a4)] '

5
462[0 (-3a.-6a

1 2

f10a3+24a4+2a5) - 2O(alf4a3+l2a4) + 3(a2+2a4)]. (52)
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From equations (40) to (43), (51}, and (34), we find, with
x3‘= 0 : -

/ 2 :

{-po(xi—xl) = 2y xl(3al+4a2—2a3—3a5) ’

WJQO(Xé—Xz) = 2w2x2(3al+4§2-2a3—355) ,

'—po(x;—x3) - 0. ' (53)

The system of body forces described by equation (53) is equivalent
to a system of radial body forces =-R' per unit mass of material such

that:

2
PoR 29 r(3al+4a 2a3 3a5) . ‘ : . (54)

2

On the outer curved surface of the tube, we obtain:

‘ o2 5 X,
Xbl = le = [2Y (al+2a2—a3—a5)a + Y] .
Xy ~ Xy, = [2w2(3#+2a2-a5_a5)a2 g 25_’
Xb3 - Xv3 =0 . : | i 55)
The force system (55) is equivalent to a radial force R acting

V1

outwafﬁ@sand measured per unit area of surface in the undeformed

position:
\Ja ' ;
R ;)2w2(a +2a_-a_-a )a2 + 7
vl 174872378 Y
= ' + . ) 6
va Y (56)

Similarly, the surface force on the inner curved surface can be cal-

culated. It acts radially inwards and has magnitude sz :
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o)
i

2 2
v2 2y [al+2a2—a3—a5]b + Y

RUs + Y . ) - 67D

On the plane end of the tube Xy = 0 , we obtain: .

Ea 1 - — + —_ -
\ X X 4w€x2[( 2a a3) + O(al+4a2 2a3 a5)] .

vl Vvl 2 —

’ - = e - + | - -
sz X\)2 4w€xl[( 2a2+a3) O(al+4a2 2a3 a5)] ’
X'. ~ X = 2w2r2(2a -a,) +y' - 16062[a - 0(a,+2a )j . (58)
V3 v3 -2 3 2 1 2

7

»

The first two components in (58) combine into an azimuthal surface

traction @b: ' -

.GG = —4WEr[(—2a2+a3)-+ q(al+4a2—2a3-a5)] . (59)

The system of forces (58) are then statically equivalent to a resultant

couple M' and a longitudinal force Xb - X _ given by:

3 V3
2ma o ‘ 4 .4
M' = [ [ O'r"dr 40 = -2mp€[(-2a_+a_) + o(a.+4a_~2a_-a_)la-b’) (60)
Vv 2 3 1 2 3 5
0 b
X', - X = 2w2r2(2a -a_) +y' - 16062[a - o(a_+2a.)]
v3 T 3 2783 T 2 17°%
. _ . _ 2 _ -
N =2z + Y 160€“[a, - O(a;+2a,)] , (61)
where
2.2 ) n .
Z =2y r ‘2a2—a3) . ‘62)

-
Fhus, in addition to the given forces M and N as required by the
classical theory, we see that in order to maintain the deformation (40)

of the tube according to second order theory, we also need apply the

SO PR

BASANES Hort o s i1 e s e
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following system of forces:

(i) a set of radial body forces R' per unit mass given by (54);
(ii) on the lateral surface r = a, a radially outward force va

measured per unit area of surface in the undeformed state, given

by (56);
(iii) on the lateral surface r = b, a radially inward surface
force R measured per unit area of the undeformed surface,

given by (57);

(iv) on a plane end Xy = 0, a resultant couple M' and a

longitudinal force --“'X\)3 given by (60) and (6l) respectively.

'
XV3

CLASSICAL DISPLACEMENT FIELDS PRODUCED BY THE REVERSED ADDITIONAL

FORCES LISTED IN (i) TO (iv) OF SECTION 4.3

As illustrated in our theory in Section 3, we are not interested

in actually applying these additional forces. Instead, we can counteract

their effects by considering the actions of forces of equal magnitude

but opposite direction to those described in (i) to (iv) at the end

of the previous Section 4.3. Since the displacement field wi that

we seek here is to be obtained on the basis of classical theory, we

may split up the additional force system in any manner convenient

for algebraic calculations and then employ the Superposition Principle.

We thus make the following groupings of the additional force system:
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(A) A body force -R'r per unit mass given by (54), a surface

force -R'.r on r = a given by (56), and a surface force

vl—
—RQZE- on r=b given by (57).
(B) A surfacé force -Z acting on the plane end Xy = 0 and
given by (61).
(c) ’A resultant couple -M' acting on the plane énd x., =0 and\

3

-
2

given by (60).
(D) A surface force -Yr on r = a, a surface force -Yr on
r = b, and a surface force -Y' + 16062[a2 - O(al+2a2)]

on the plane end x3 = 0.

.

What wé need is to détermine the classical displacement fields which
correspond to the force systems (A), (B),V(C), and (D) separately and
then add them'to'get the required displacement field Wi .

First of all, we shall consider the force system (C). For conven-

ience, we write:

&

M = alFW'(a4—b4) ) (63)

where

o= ng-[(—2a2+a3) + ola,+4a,-2a-a,)] . " (ea)

Comparison of (63) with (47) and (40) yields the desired displacement

field which we call as wil):

= P'x.x, , w(l) =0 . (65)

w(l) w(l)
13 3

—
1 brroxs 2

Second, we investigate the force system (A). It should be

, and R' are independent of thewamaﬁit of

noted that Rﬁl ’ Réz

e,
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extension €. We first assume that the tube is held at constant length

—-

and that a radial displacement, which we call wéz)(r) only occurs.
Denoting the stresses so ensued by T;r , T;e ; Tée , f;z , Téz , and
T;r in a cylindrical system, we find that:
2 (2
dw( ) dwéz) wé )
1] = - - +
T = 20728 r— 4 2(at2a) (—gm—+ —— )1,
(2) (2) (2
LA dwr- W
N, = - + + +
Tgp = 2[722) 2(ay*2a)) (55 r )1
dwéz) wéz)
" = + +
T, 4(al 2a2)F P " ) .
and
" = " = 1" - . - 66
ro Bz Tzr 0 . (66)

)
AT

Introducing the above stresses into equilibrium equation (36) when the

body force is “DOR'E_' we obtain the differential equation governing
(2) . )
w :
r
2
dzwi ) 1 dwéz) wéz) : .
8a2( 3 + T 4 - 5 ) = -Kr , . (67)
dr r
where
K = 2w2(3a +4a_-2a_-3a_) . - (68)
1 2 3 5 '

Upon integration, (67) yields:

w(2) - K
6
r 4a2

r3+Ar+-f—, (69)

where A and B are arbitrary constants. Furthermore, when the stress

distribution (66) is inserted in boundary conditions (37), we get:



(t") = -R'_ = —2¢2a2(al+2a

rr’ r=a Vi agTag) o oo (70

2

and

n —_ ]! —'_.22 ”_
(t” ) = -R = =2y b (al+2a2 a

rr’'r=b V2, —aS)" - v Y

3
From (66), (69), (70), and (71), the values of the constants A

&y
and B turn out to be:

. l.[ K(al+8a2) e a2 + b2
4 l6a2 al'+ 4a2
k{a, +8a.) 2.2
2 ' 1
where ™
K' = 2¢2(a +2a_-a_-a_) ] (72)
1 2 "3 75" ° . :

But, it is gquite clear from (66) that we -have the stress component T;
which will certainly contribute to a longitudinal force at the plane

ends. We shall combine this force with the force system (B), and
= N 1

calculate the total force.: o

s

2T a . /
Ni =-f [ (t" + z)r dr 4o
0 b 2z
24 as(al+2a2) - al(al—a3+4a2)
=y (a -b ) - (73)
’ a; + 4a2 7

The force Ni gives rise to the fractional extension (or compfession)

ot
~ -

a_(a,+2a_) (al—a3+4a2)

R 2 - a .
e W22y 512 T ‘ ] (74)
8 . al(al+3a2)

(3)

The displacement field, which we denote by W due to the extension

Py -




€' i.e. due to the longitudinal force Ni , is:

r

(74")

i
o
£

Il
m~
N

(3) _ (3) (3)
w = R
r

-0¢'r, we

This field’ (74') combines with wéz)

R

(r) found alffady to givé us the e __

field corresponding to the force systems (A) and (B).
It remains to explore the force system (D), which we do’now}
To start with, we assume that the¢ tube is held at constant length and

is acted upon by surface - tractions =Y on each of the lateral surfaces.

" -~ We consider then a radial displacement field, call it wr(r)-

Denoting the stresses by Orr ' 099 ,;.. , we find:
» dwr dwr Wrﬁ
= 2[- —  + 2(a,+2 —+ 2=,
Orr 2( 2al Iz (al a2)( I ” )]
wr dwr wr'
= 2[- = + +2a )( — + —
Ogg = 2[-2a; | + 2a;+2a,))( o : 1
dwr r
Opz T AR L )
and
o} =0, = = 0 . 75
rb Bz Ozr ; (75)

d2w 1 dwr wr i -
SR Sl | (76)
dr B r- - AN
= - = -y . ‘ 77
rr'r=a Yo and (qrr)r=b - Y 77)

w =23a'r , (78)



2

o -y . .
where A' = —m—— , _ -
. " .
4(al 4a2LM

The stress distribution (75) has a component Ozz which has

1

+

to be dealt with. The total'longitudinal force to be considered is theéh:
S 27 . a : 5
"N!''== [ {fuo  + y' - 160€"[a, - O(a,+2a_)] Jrdr 48
2 0 b z2z 2 1 2

= 2ﬂ0Y(a2—b2) - mly' - 16062{a2 - o(al+2éz)}l(a2-b2) . (79)

s
~ The diéplacement field cbrresponding to the force system (D) is then

the radial field W, plus the field due to the longitudinal force (79).

It is:
(4) _ " Y
Yy = ~of'r 4(al+4a2) d .
4
we( )"= 0. Y r
w2 ey, - ' (80)
Z
where
1 (al+4a ) 5 "
€V = == e - LY - + . .
s T ey oY - Y 160€"{a, - o(a;+2a,)}] (81)
171 2
The displacement fields corresponding to the force systemsul
(8), (B), (C), and (D) are determined. By taking the sum of these

fieids, we should obtain the total field w, which corresponds to the
i

negative of the additional forces required to maintain the deformation

(40) within the formulation of second order theory.

Addition of (65), (69), (74'), and (80) yields:
BQ KI2
w, = -W'sz + (— - yx. + [A + A' - O(E'+€")]Xl '

1 3 2 64a 1
r 2

»
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2 -
B Kr
= 1 —_— - + + v 1 "
W, V] xlx3 + >~ Zaa )x2 [A + 2 o(€'+¢€ )]x2 ;
r 2
—_ l+"
w3 (€'+¢€ )x3 , (82)
where r2 = x2 + x2
1 2"

The displacement field us -which would therefore occur
acqquiné to the second order théory if the tube qonsidered is subjected
to a given twisting couple M and a given longitudinal force N is
given by vi + W

Adding (40) and (82), we obtain:

ul = Vl + wl
B Kré
= - ' —_—_ - L. ¥ 1"
(p+y )x2x3 + > cia )xl + (A + A g(E+€'+¢€ )]xl ,
r 2
u2 = V2 + w2 ¢ )
' B Kel '
= ' —_ - | B ] "
(P+yP )xlx3 + > eia )x2 + [{; + A O(€+€"+¢€ )]x2 ,
r 2
u3 = V3 + w3
= (€+€'+E")x3 . : (83)

!
/

The stress distribution corresponding to the solution (83) can be

easily obtained now by HTréég/substitution of (83) into (13)..

*
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5. SPECIAL CASES

We shall examine now the displacement field (83) of the
second order theory and compare it with that of the .classical theory.

(i) Suppose € = 0. The field (83) becomes:

2 .
, - B _Kr e
u, = wx2x3 + > eda ) xl,+ (A-0¢€ )xl ’
r 2 .
B o’ -
= (= - '
uy = P xg o+ A 2 %\) X, v (A=0€N)x,
u3 = € x3 . : ) (84)

Comparison of (40) and (84} éllows us to infer that whereas the pure
torsion of a circular tube withéut the longitudinal force is poséible
in the classical theory, that is not the case when second order effects
ére taken into account. 1In fact, the extensiop €' in (84), which
is given by (74), depends upon the square of the twist w. VIt was an
exteﬁsion_of just this:type, proportional to-the square of the twist,
which was demonstrated by denting [121] du;ing gis experiments on torsion.
However, it sho@la‘be borne in mind that in a compléfe finite elasticity
theory for incompressible materials [2 ] where Mooney's étrain'energy
form is;sometimesrusea for‘small but finite deformations, pure torsion
cannot be produced without the longitudinal force.

(ii) Suppose Y = 0. Then (83) take%Jthe form:

[t
]

- o<e+é")]xl )

[
il

[a' - 0(€+€")]X2 ’




As expected,
<
well as that

elasticity.

29.

(eremx, . - K (85)

the form of (85) is clearly ;%e same as that of (40) as

for simple €xtension in-any complete theory of finite
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6. COMPARISON WITH MURNAGHAN'S RESULTS

Using a technique which also takes the classical solution
as a starting point, Murnaghan [ 5] has obtained the second order:

solution for torsion of a circular cylindrical rod. We propose to

show now that the two theories pmodﬁce qualitatively similar results.
Setting the internal radius b of the tube equal to zero,
. ) b "
" the value of constant A in (72) reduces to:
) K(a,+8a. ). 2
1 1 2 a
A=—~[] ———=-XK'] —m————, : : (86)
. . + .
. 4 l6a2 a; 4a2 ‘

where X and K' are given by (68) and (72') respectively.

- Requiring that the diéplacemqnt field us given by (83)

‘be bounded demands that = 0. The fractional extension €' -as

obtained in (74) becomes:

+2 - A
. tﬁ o 3g(a;+2ay) - a, (a;-as+da,)

€ = a - (87)
+
8 al(al 3a2) )
The field wi in (82) then assumes the form:
2
wl = - 64a2 xl + (AfOE )xl '
2
- _ Kk P
w2 = eia x2 + (A-0€ )x2 p
- 2 .
- cix . (88
W € Xg , , ) (7 )

The above field w, in cylindrical polar coordinates can be written as:

2

J)r, w, =0, w = €'z . (89)

w_= (A - 0€" - 5 2

r ‘ 64a2
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Murnaghan shows th&t if the lateral surface of the cylindrical rod is

forcé free and if the forces acting on the plane ends reduce to a couple

whose moment is egual to the moment predicted by the classical theory

to maintain a twist Y per unit léngth of the cylinder, then in the

seéonﬁ order approximation the rod undergoes a radial contraction which

. . . . ' 3 . N .
is a linear combination of r and r and a longitudinal extension

which depends linearly on. zZ. The mUltipliqative and othe onstants

involved in the expressions depend upon the square of the twist and

the material constants. 1In view of our result (89), the behaviour

4 F=y

predicted by the theory presented is similar to that of Murnaghan's.

In particular, we have shpwn that the éffects of the second order

theory are to decrease the radius of the rod by an amount proportional

' 3 P
to wza and increase the length by an amount proportiaonal to, wzagim
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-~ 7.1 COMPRESSION OF A SPHERICAL SHELL

We now use the second order Rivlin's theory presented in
Section 3 to examine the second order effec£s produced in é spherical
shell by a state of uniform compression. The internal and external
fadii of tﬁe~shell initially are a and b réspecfively. It is
subjected to a uniform pressgfe p; on the inner surface and P,
on the outer surface. The body forces are taken to be zero. We

shall assume, of course, spherical symmetry, and employ spherical

polar coordinates (r,9,¢).

«7.2 THE CLASSICAL SOLUTION

~

The classical solution to this problem is readily obtained.-*
Assuming that any particle which was originally at a distance r  from
the centre of the shell undergoes a displacement v in the radial

direction, we can find the expressions for the components of strain

. ] 1 1] ] .
and stress. Denoting these by err’ eee ""’e¢r and Trr’ Tee, ey
d Tér respectively, we obtain:
— dv ' et = 2v
Crr ar. © g8 o0 !
i : 1 dv 2v
't = | P Ve ! = — + — —{20) -
©r e8¢ e¢r O A 2 %11 T ar ’ {903~
and - k2

T ST P .
Phas g 2 b e e e e
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3
' dv dv 2v
T = 2[-—2a1,517+ 2(a1+2a2)( =t ?-.)] '
= = o[- v dv , 2v .
Tog = Top = 20723 ¢+ 203 *23,)) ( g+ =) i,
Tre=Te¢=’L‘¢r=O. e (91)

Introducing (91) into the equations of equilibrium in polar
spherical coordinates, we find that they reduce, in the absence of =

body forces, to the ordinary differential equation:

2 .
ar :

This equation has the general solution : ‘//

v=oc.r + EZ- (93)

1 2! :
- r :
~
where 1 and c, are constants of integration to be determined from !

the boundary conditions:

-

[Ty] =P rr r=b 2

rr- r=a 1

From (91), (93), and (94) we get:

3 3
e o1 Pja - pyb
+ r
1 8(al 3a2) b3 _ a3
3,3
a b (p,-p,)
1 12 .
€27 7 B&a 3 3 . ‘ (95)
-1 b -a ' . . -
The:state of stress within the shell is found from (91) and A é

(93) to be: \,////
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8a.c :
v _ 1%, -
Ter = 8(al+3aZ)Cl * 3 !
1 r -
d4a_c
12
= = + -
- Tog = Top ~ B(313a5)e) 3
and
Tr6=T9¢=T¢r=O . (96)

/

Since the main body of the theory presented in Section 3
is ﬁprmulated in terms of a rectangular cartesian reference frame,
. v . -
it is desirable to express the preceding results in terms of cartesian

coordinates. Denoting the displacements by 2 in the cartesian

system, it follows that (93) can be written as:-

v, = (cl + —-3—-)x:.L ’ . (?7)

and the stresses (96) by:

= + - - .
Tij 8(al 3a2)c16i! = (r dij 3xixj) 598)
. , 2 2 2 2/ : ‘ ’ :
in which r = xl + x2 + x3 .

Differentiating (97) with respect to xj provides the useful relation:

3Vi c, 5 :
A = C §.. + = ("6, .-3x.x.) . (99}
x:.I 17ij r5 ij i3

7.3 SECOND ORDER FORCES REQUIRED TO MAINTAIN THE DEFORMATION PREDICTED

BY CLASSICAL THEORY

We now apply the displacement field (97) calculated for the

classical problem to the constitutive relations of the second order
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theory. This will allow us to determine thdse body forces X! - Xi
i

and surface forces ‘Xéi - X\)i which are required, in addition to the

pressures pl and p2, to maintain the deformation described by (97)

within the framework of the second order theory.

Introducing (99) into (29), we find: _g‘
2c
2 2
vo=2¢.8 — §. -
®ix T ““1%xk * 5 (X0 =3%,%)
AY = l-e' = 3c. . (100)
2 ii 1 -

From equat;gns(99) and (33):

2. -
2c.c c
2 172 2 2 2
o= K - + — +
al, = cpbiy b e (T8 Bxx ) 4 g (06, 43xx)
r r, ;
c.c c '
v = . 12 2 _ __:% 2 _
Eik 4[Cl(Sik r5 (r Gik 3xixk) r8 (2r Gik 3xixk)] ,
2c2 ’
a'=a'=3[c2+ 2]
ii 1 3) ! .
r .
and C2
2 2
[ J— [ - - = .
E B}, = 12[c] G 1. » (101)

The components T! are given from (100), (101), and (32) as:

ik
T'. = 2[2(-a.-3a_+18a_+54a +2a_)c°8
ik 1 2 3 4 5771 ik
c.c
2 12
+ - - -
+ 4(2al 6a2 3a3 a5)(r Gik 3Xixk) r5
2 2
< < IR
+ (al+12a2—12a3-8a5) ~€-6ik - 3(5al-4a5) —E-xixk]. (102)

r = r
Differéiiégiing Tik with respect to xj and then contracting on

j and . k yields:
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BTi. ‘ C; ‘
——18}{. = 36(3al—4a2+4a3) ;g X:.L . ) (103}

Also, from (98):

aT. 12 a.c
ik 172 2 2 2
= . + .+ . .- . . 1.
r xjéik r Xkéij r xl6kj 5x1xkxj] (104)

ox, 7
j r

By contracting on j and k in (104), we may observe directly that

the components Tik do satisfy the equations of equilibrium Tij 3 = 0.
’

We are now in a position to find the additional body forces‘

which must be applied to the shell to maintain the deformation (97)
) \ ) .
according to the second order theory. Substituting from equations (99),

(100), (103), and (104) into (34) and taking X, = O gives:

cz (.
—poxi = 36(al—4a2+4a3) ;g-xi . . (105)

On the outer surface of the shell r = b, so that:

alc2 12alc2
[Tik]r=b = 4[2(al+3a2)cl - 3 ]Gik + 5 X%y (106)
b b
and .\3
1 C . 2
(T3 oy = 2[2(-a,-3a +18a +54a +2a.)cid.
c.c
2 172
+ +6a_-3a._- P
4(2al 6a2 3a3 a5)(b éik 3xixk) b5
2 2
€2 €2
+ + - - S - - S .
(al l2a2 l2a3 8a5) b6 6ik 3(5al 4a5) b8 xixk] (107)

The components Ri of the outward unit normal vector to the external
surface are:

X.

= X
Ri =5 - (108)
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We are now able to determine the additional second order
forces which must be applied to the external surface of the shell
to maintain the displacement field (97). Introducing (99), (100),

and (106) to (108) into (35), we find that on the surface r = b:

2

L = + + + +
X\)i Xvi 4[(3al 9a2 l8a3 54a4 2a5)cl ,
- 4}3 -3a_-a_) “1% - (3a,-6a,+6a_-2a_) S-%-]( fi-) (109)

a,7°8374g 3 17°8,70a37edg) g b
b b

In a similar manner, on the surféce r = a:
X'. - X = 4[(3a,+9a_+18a_+54a +2a_) 2

vi  fui 17792 3 47°%5’¢ .
- 4(3a_-3a_~-a_) 1% ~ (3a,-6a_+6a_-2a_) E& 1 (~ f'j:') (110)

2 3 5 a3 71 2 3 5 a6 a -

The system of body forces described by equation (105) is

equivalent to a radial body force R', per unit mass of the material,
given by:
o R =8 % - (111)
0 7’
r
where 5
B = 36(al—4a2+4a3)c2 . (112)

The force system (109) is equivalent to a radial distribution

va , acting outward from the surface of the shell and measured per

unit area of surface in the undeformed state:
2

c.C C2
+ 83 - (113)
b

2 172
+ B2 3

b

Ry1 = Bie)

Similarly, the surface tractions on the inner surface of the shell

are equivalent to a radial distribution of amount sz:
2

c,c <, ‘
< - (114)
a -

172

3
a

2
Ry, = Byey *+ B, + By

-
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In equations (113) and (114), we have set:
Bl = ?(3al+9a2+18a3+54a4+2a5) ’ : . .
82 = —16(3a2—3a3—a5? ,
and : ; .
= - - ' -— ]
83 4(3al 6a2+6a3 2a5) . (115)

In summary, we see that in order to maintain the deformation
of the shell descrf#bed by equation (97), the second order theory
requires that the following additional system of forces be imposed:

i) a radial body force R' per unit mass of material,

given by (111);

(ii)  on the surface r = b, radial surface tractions

of amount Rv measured per unit area of surface in the

l !
undeformed state, given by (113);

(iii) on the surface r = a, radial s%;face tractions of

+ measured per unit area of surface in the

amount R
V2

~undeformed state, given by (114).

7.4 DEFORMATION OF THE SHELL PRODUCED BY THE NEGATIVE OF THE ADDITIONAL

FORCES. DETERMINED IN SECTION 7.3

We can now consider the effects which would be produced
in the undeformed shell if the additional forces do not act. These

are determined by calculating, according to classical theory, the
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displacements which would occur in the undeformed body by the action
of forces which are equal in magnitude and opposite in direction to

the body force pOR' ‘and surface tractions R

vl and Rv

5 -
The system of body forces —poﬁ' and surface tractions

—va and --R\)2 is assumed to produce a displacement field which is

radial in nature and depends-only on r. Denoting this displacement

by w, the components of stress, T;r' T;G' ceey Tér , referred

to a polar, spherical coordinate system are:

W= or_ dw dw 2w
Trr = 2 2al ar + 2(al+2a2)( 3T + r,)] ’
" — i — ' - V_V_ - éVi g‘i
Tee = T¢¢ = 2 2al - + 2(al+2a2)( i + - Yl ,
and
.T;e = Te¢ = or =0 . (116)

The equations of equilibrium with body force -pOR' become:

2
8a2[ d w + g_gy__ 2w

B _
> r dr > ] + 7 = 0, . (117
dr r

2]

~and the associated boundary conditions reduce to:

2
c.c c
. _ _ 2 12 T2 .
Telrap = "Ry = ~lBep + B 3 By &1
b
, c.¢ 2
2 12 2
" = - = - <+ + — .
el rma = "Rz [Byey + By =37+ By ¢ (118)
a a
Integration of equation (117) yields :
c
4 B 1
W = + — - —_—
c, T > " Tasa 5 (119)
r 2r
where c¢, and c, are arbitrary constants. From equations (116)
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and (119), it follows that :
< 8a_c a_ .- 3a
. 14 1 2 B
Trr = 8_(al+3a2)c3 + 3 T8a 3 (120)
r 2 r
with (120), conditions (118) furnish: ¢
S U OO S e L B
= 31
3 8(al+3a2) 11 372 18a2 a3b
N Pey32)) jas+p’ ] (121)
f €4 7 8a 2%1%2 3% 18a 3.3 -

By virtue of equation (39), we can now write down the total displace-

ment field (ur, ug s u¢). From (93) and (119):

- u- ] L8 1
u’r =u=v+ws= (cl+c3)r + (cz+c4) > 1442 T
r 2 r .
u, = u, =0 . (122)

This displacement field (122) corresponds to tﬁe problem of a épherical
shell subjected to internal pressure pl and externél pressure p2
within the framework of secénd order theory formuiated in Section 3.
The stress distribution corresponding to the solution (122) , of course,
can be readily obtained by direct substitution of (122) into (13).

In particutar, the radial and tangential stresses are:

a. - 3a -
1 1 2 R
trr = 8(al+3a2)(cl+c3) + 8al(c2+c4) r3 - 18a2 6
+ 4[(-a.~3a_+18a_+54a +2a,)c> - 4(2a.+6a.-3a.-a ) —L-2
81728,y Rag %A, T els O a;roay=lazTag
r
2
©2
+ (—7al+6a2—6a3+2a5) ry 1 3

r



2a. + 3a
_ 1 “%1 7 %2 B
= + - + —_— _—
_ teg = Blay¥3ay) (e *ey) - da (e ) =5+ —5 7 3
r 2 r
A
+ 2[2(-a.-3a_+18a.+54a +2a_)c> + 4(2a.+6a.-3 )CJLC“2
a)TRayrroagtota teagicy a,voay=2a37a, 3
: r
2
€2
+ (al+l2a2—12a3—8a5) ;g 1 . (123)

We wish to investigate here the nature of these stresses.

In the classical shell problem, the tangential stresses are
found to be monotone functiohs of r which attain their maximum
and minimum values on the surfaces of the shell. To see if tee

-

exhibits similar behaviour, we differentiate with respect to r to

obtain:
ijl—t—e—e—=[712 (c_+c ) - 24(2a.+6a.-3a_-~a_)c.c.] =
ar 81%¢7% 81708,728374570 ¢ %) 4
2a. + 3a . . )
1 2 i 2 1
- ——————— + + — -
[ 3a B 6(al 12a2 12a3 8a5)c2] 5 (124)
2 ~ r
dtgg
If tee has a relative extremum, theh e = 0 for some value

of r. This condition will be satisfied provided:

. 3
\\‘ [;2al(c2+c4) —.24(2al+6a2—3a3—a5)clc2]r

- 2a, + 3a2 -
-[ —— B + 6(a,+12a
3a2 . -1

: 2
5 12a3 8a5)c21 o . (125)

Since (125) is a cubic equation, theré does exist at least
one real value of r for which the first derivative of tee vanishes.
Thus, unlike the classical theory, the second order theory admits the

-

possibility that the tangential stress attains an extreme value in

the interior of the shell. It is clear that the value of r obtained



“from (125) will depend both on the deformation and the type of

.

material being considered, and until more is known about these, we

cannot say if this value lies in the interval a =-r =b.

e



43.

8. '~ SOLID SPHERE UNDER PRESSURE

This problem happens to be a special case of the preceding

problem when a = 0 and p, = 0. We find:

: 2
c, = P2 c‘ =0 c 8192
e — ? - r =
1 8(a;+3a,) 2 3 512 (a. +3a ‘)3 ‘
179 _
c, =0, and B=0. ' - (126)

Introducing (126) into (122) vyields:

= +
ur (c c3)r ’

1

=0 . (127)
The corresponding state of stress is found from (123):

- _ o L 2
trr = tgg = 8(al+3a2)(¢1+¢3) + 4( a; 3a2+18a3+54a4+2a5)cl . (128)
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9. ALMOST SOLID SPHERE UNDER PRESSURE

'Here, we set pl = 0" and let a - 0 -instead of being

identically zero. From equation (122):

-1 B 1
= + + - - _ .,
udy o = (eyregla+ {eyte) = - 9 5
a 2 a
Néting the forms of the constants c2, c4, and B, we see that

term on the right hand side of (129) depends on at least the firs
power of a, so that:
" lim [ur]°r=a =0
a0

Thus, the displacement field remains bounded as a tends to zero

(129)

each

t

(130) -

and its limit value agrees with the value obtained from (127) with

r = 0.

In the classical solution the tangential stress on the-
inner surface of the shell experienées a stresé concentration of
amounp - 3-92’. To determine what happens in the second order

- solution, we consider :

7 1 2al + 3a2
t = + + - + Y —
Pgelrea = 8(2733,) (0yrey) = 43y (ey¥e,) 5+ 75
it . ‘ 5 ‘ . ClC2
+ -3 - - - -
471 ( al 3a2+18a3+54a4+2a5)cl 4(2al+6a2 3a3 aS) 3
a
2
A c5 Lo 7
+ (—7al+6a2-6a3+2a5) —g'] ' :
a
where
3 3. 3
b
1 Pob 1 27 P
c, = , C. = —— '

+
1 8(al 3a2) b3 3

B

6
a

(132)



and . c c and B are respectively defined by (121) and (112).

37 T4’

On taking ‘the limit of t96 as a tends to zero, we obtain a

complicated expression which involves terms which are not found in
. f ‘ -

’ the stress field {(128). Thus, the second order solution exhibits

a tangential stress concentration beyond that which is und in

the classical solution.

\_‘*»
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10. INFINITE MEDIUM WITH

INTERNAL PRESSURE.

’A SPHERICAL CAVITY SUBJECTED TO UNIFORM

This problem, too, is a special case of the general problem

discussed in Section 7. When we put P, #xO and allow b - ®, we

1

cl =0, C
_ 18
4 8al 18a

=
I

a

3
|
1

Yg

) ,
(a;=3a,) = Byell = . (133)

(134)

From (134), it is evident that the displacements become

negligible for arbitrarily large values of r. The corresponding

radial and tangential stresses are: .

1
t —8al(c2+c4) 3 "
rr ro.

a. - 3a : c2
1 2 B 2
—_—_—— e+ - - —_—
1ea 3 4 7al+6a2 6a3+2a5) e '
2 r r

+
2a14 3a2 8

; B . , . l B _ _ ) _2 ~\
FG@ = 4al(C2+C4) 3 + + 2(al+l2a2 12a3 8a5) g - (135)

r

'18a2 fr6 ’ r

It is clear from (135) that the étresses”Wtffw,andmhtee,,bothgvanish, ,,,,, ,Agfufmgwgfg

b

at infinity, as required.
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