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ABSTRACT

Certain perturbation methods are used to analyse

©

- some problems of non-linear mechanics. A comparison is made

of the periodic solutions obtained by the two methods of
Poincaré and Krylov-Bogoliubov for systems of ordinéry

.
S

p . - 7 ‘
differential equations and it is shown .that the solutions

obtained:bx the two methods .coincide ﬁerm4by term. VThe*results
. . : . : . o

are then extended to mono-frequent periodic solutions of
. S e : . o~ B
oscillatory systems governed by weakly non-linear hyperbolic

partial differential equations.

x

. Fre Krylov-Bogoliybov-Mitropolskii (K-B=M) asymptotic
D b np

<

“method was used :o'investigate tHé foliowing problems:

o

. a) »The res?bnse~of a non—liné@r vibrator Under-the time-

dependent (peqiodic or non—periodic) external force is

i
-

Ainvestigated. _The'aﬁalysis‘&s.ekteqde& to non-Ilinear

jﬁibrators governed by partial differential equations.
B . . a : = .\ - L

i

b) The -effects of kinematical non-linearities on the

vibratjon frequencies of undamped and damped strings are

N

-investigated;andnit’is shown that in the case of undamped

stting, the natural frequencies-‘are increased by a term-

which In’ylowest order irs. préportional to the square of the

A~

amplitude of vibration. The same is true  for natural

e

ffequencies in the case of a damped string, for

times which are small compared with the decay time.

-
¢
o

(iii)
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c) The asymptotic solutions are obtained for a class :of

#

f;hypérbolic p;rtial differéntial~equation“with’élowly'

varying cqefficiénts. "The resulté*éré applié@jto two

7dimensional vibrations of a damped - stretched stiing.; e

The nature of> plane shock waves. in a viscoelastic

J

media displaying cubic elasticity is alse imvestigated, by
. * f & .

using the two-time expansion., The non-linearity is taken to. .-

o —_——
—— -

occur in the form of terms in the stress-strain relation which

B

are’ quadratic and cubic in strain and the viscoela;&icity is

s - ¢

- taken as a_ functional term in the stress-strain relation. . .

Approximate solutions are obtained in ‘the case when the
viscoelastic effects,are significant oaly within the shock-

-

lavers which develep.

s
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(23
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INTRODUCTIGN - =~
g Voo
With the advance of ‘séienge and technology every
day the study‘qf oscillation theory is becoming more and
. . A M R ! o.

more important becayse of its application$fin’vatious
bfanches,of non-linear mechaﬁiés,_phySics and ‘engineering.

The oscillatory processes like vibrations of plants and

~machinery, electro—magnétic dscillatigns’in radio and ~

‘electrical engimeering, automatic oscillations in control

systems, sonic and ultra-sonic oscillations etc. all come

under the heading of general oscillatioﬁ theory.

TheRorigin of ‘the science of oscillations can easi-

- F—

ly be traced in phe classical mechanics of the motioﬁ of'~
a pendulum duriqg the times of Galileo and Newton. In the

beginning, the theory of oscillations was confined to

3

linear oscillations, because the theory of non-linear

-

differential equations governing.the oscillatory system

was not developed. Simply these equations were linearized

-to differential equations with constant coefficients and

o

solved. Though the linearizétionuoften leads to quanti;af.

tive as well as qualitative errors, it was only-in a few
cases that linearization was not adopted and non-linear
oscillations were examined as such. (For example

4
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- This method was worked by the astronomers fqr studylng

<L . -~

-treated‘as}sufgicientlyﬂclagﬁ;w
to‘ 1near one when the governing non-linear differential

equatioﬁ“contains a  small parameter € and for € QﬂD, this

M #

equation reduces to a linear differential equation with e
constant coefficients. To find the solutioen of such non-

L - - ’ o R . <

llnear systems, one generally seeks approxlmate solutions. L:

. Y . 7;"

SR

The most commonly used method is the perturbatlon method Y
--*; ‘T-;’C’ e Lo

. i
planetary motion. The earliest technique to solve a non-
ok come T ’ . ’ o :
linear differential equation was tp express -the solution
e 3
sought u(t €) as a power serles in . g: . e,
=7 \\\r*;(\_4 B “3"" .
i [e ) T
Toge 4 e r L
u(t,g) = I e u_(t). -7 . s -
- T S 4 e ,
- , r=0 = o =

- '

s - £ S o 3 P’

%gubstitgtfng u(t,e) in the given non-linear differential .

. ,
equation and equating the various powers of € gives linear

differential equations for each.ur whichfcan easily be.

solved. However such a solution.generally involves
. - m o, m
secular terms of the type t sin-oat and t  cos at

(m > 1, o =",constant) which makes the sdlution valid only

B }Qf small intervals of time. Such a solution becomes in-- .

>

* valid for- large times. ) Z' o

=
-

y
T
e




. In the development‘of the-theory of nonjliheaf

oscillations, various methodsbhaVe been‘suggeStea from

- w

o . \ B )
time to6 time to overcome.-the difficdulty caused by the
appearance of secular terms in the solutions.  All these

meéthods have been based on power series expansions.
. B o . Y o 4 s R

- e . Py

- ,;’

Although as a rule, the series %}verge, the

BT

5

approximate formulae>iound by takingwthe‘first»few'terms

i

are q%;te suitable for practical‘calculations,: In fact,

these series are asympiotic in the sense»that"themefror

' : X 1
in the 'n-th approxrmation is proportional Epwfﬁ» and as

~

such can Be made&as small as we please,bfﬂtaklng €
safficiently small. In otheriﬁords, the error,committed
inltronca;ing the series solution after o terms is
n;merically less than the firsp neglected term,‘thap is,

-

(d+lfth term. é&gce‘it becomes too complicated to cal-

Vi s

chlate highertapproximations, in general one resorts to

first and second approx1mations for most practical purposes.

The asymptotic methods were found to be, very
effective in celestial mechanics by various astronomers
. . e ] . L .

such as Lindstedt (1882), Bohlim (1889), Poincare (1892)

and Gyldén (1893). - The fundamental idea in Lindstedt -

"Poincaré approach was based on the observation thaé\thﬁ“

non-linearities in the equation

X + wéx‘= ef(x,%) . _ : (1)

-~
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'y

-4""""/‘ )
- ) 4
T 0 'a
alter the frequency wg of the linear system (£=0) td- *
w(e). They made the chﬁnée in the independent variable
N 0 - o PR
t to T =fwt/andféX§anded/x and wzin power series of g - "
- RS2 R ; - ’ »
ag: e o - o .
"X = x, (T)‘ + ex,(t) + EZX'(T>=‘+ .o N
. 0~ 1 VAR
. ‘ ,
) ; . . (2)
=, + + e o : ' . : '
. W wg Ewl,_ £ W, B R
The choice of W (r=1,2,...) was made in such.a wayias to
avoid thevappea}énCe of secular terms. Various forms of
this .idea have been utilizedjtb obtain approximate
‘'solutions to problems in physics andkéngineering. :
Ia 1926, VandéEfPol suggested.a method of
finding the approximate solutions of((l) with
f(x,x%) ='(l—x2)k. The solution was represented by e
. X = a cos wot + b sin wot S ‘<i>
% = -w.a sin w.t + w.b cos w,t N | . (3
o 0 0 0 Yo T , :
. - \\\/“ - ‘ ‘ k,,
where a .and’b were assumed to be slowly varying functions
of time to be determined from the eﬁuations o <:>
~ ’1.: L - : - ‘ ﬁy{
) I
i = - & Féﬁfb’t) sin w.t , o
w \ : 0 :
. 0 ) v ’
. ~E //_
. ) : ' 4
b = & F(a,b,t) cos w,t , ( >
w 0 :
O . - S ¢



"&?‘frf

) & o )
5 =
e R N SR
e . g§” i ;wh re F(a,b,t) =vf(a cos wotf+ b sin Wyt 7*'<u§* ~r
By S ’ B ' - awo sin Wyt + bw, cos w t) R '
~oT The eQUéfions for & and b ‘were furxher s;fa/fffgg/;;
- , ' g
. . " £ R . . g ; §-
sa = - o Fo(a,b) , b = ET G (a b) : .o L
: 0 .~ : 0 . ‘-
4 ‘j'g\ - o v . ‘ v
"~ .by-averaging the equatTons (4) over the time interval
Pl , _— :
, ﬁ"»[t,'t+T], during which a and b change very little and
v hence can .be taken to be constants on the right-side
. &
. - of equations_ (4). Here T = ZW/wb,vis the.period of the

" terms on the right side of equations (4). This methoq%ﬁ
gives only the first approximation .amnd fé}pot suifabléﬁ

for higher appfoximatioﬁs. A matheméticalijﬁstificﬁﬁion

of this method was gkven by Fatou (1928) and Mende%§téﬁ,

and Papaleksi (1934).

On_thg.baéis of the methodjbf Yander—Pol} Kfylo&,
Bogoliubov . -and Mitr&bolskii (K—ﬁ~ﬁ) deVelqpegégﬁv
asymptotic method for solvingqnon—linear pféglems in o

mechanics whichlapar; from being suitable for higher o0

appioxim%?&ons, gives'idential solutions to those found
73 ~by Vander-Pol method for first approximati:ﬁé.' The K~B-M

method was‘léter‘generalized to the so-called method of

averaging. According to K-B-M method, the asymptotic

solution of (1) is sought in the form

IlM8‘

Erur(g,w) ) : 7 (5)

x = ,a cos Y +

r=1




.
-
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A -
JER
N
T
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-
g
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5

_to find periodid'§¢¥uﬁ10pé:of#(l)kif*ﬁe take 4 = 0 or

where u_ are JA~periodic in ¥ and a,y are determined
from the differential equations : .

a = EAl(%%§+’E A2(§%1+ Qe ‘

o= @y *+ By (a) +'észl<'a)' P (6)

It is aéSumed that ur(a,w),‘f=l;2,... are free of first

‘harmonics<fn Y. ‘The functionsﬁAr;VBr and u are to be

“that the éoluti;h (5)-(6) satisfies (1)

so determing;

., to each order dﬁ;e, The K-B-M method gan élso be ugsed .

)

- TR e - I U
a = constant. R T P

<

3
©

tngfime method, first in

function of tho times T and n deflhed Ey

3 : M-1 .
T=et o, | n = (l+€w2¥7€w3 ++e wy) t

N

where wf,areAconstants, and is expressedfin‘the form
CoaL A M-1 | " '
x(t,e) = x(t,n,e) = I ex (t,n) + 0(e). = -

r=0. .

Each x_ is determined in such a way that the splutﬁon

s

-

is uniformly vaLid,'i,g.’xr/gr;l is of 0(l) as t »=,




x—

In other words, each X£eis no more singular for large

t than the preceeding term X This réquires that

-1

the seculaf»tefg§ in each xr should be elim{nated.,‘THIs’

requirement of secular tgrms din each X determined the

constants wr;f/faéu, T . , = .
5 S ' ,, - Q
This two-time method can be generalized to_ the
method of multiple scales.. In-this case, we seek the

solution as a function of o o

LR

t, . Tl= ét,‘ ):[' =: e,<t»\’: « e n ot"i?o:t T“o J—_" E»;t :

ST, ? ) R N - - v - : o . e
and.express it as ., o . Y » S T L

n+l

x(t ,781.)"“’=v ).

f'"' %5,; - : ;1./,
A N A U

S oy i =]

r

£

Thélmethods ofFfindiné=périodic and asymp%ptic

.o

solutions of partial diffegentiai eqﬁatidns of the hype-'fl’;igh'ﬂ’

bolic type were recently developéd bf many authors like: '

M}tfopoiskii and Mosénkeév;r[Q], Fodchuk _[13], o .

’

. L j?‘ o i B
Chikwendu and Kevorkian [15], Eckhaus [16], Fink,

(3 RN

. N . . ’ 3
Hall and Hatgrath {17] and Bojadziev and Lardner . h

110,11,12].

Morrison [19] established the equiVéJente of o

o

the method of averaging and two time method, for second < -
order ordinary differential equationsaéﬁ'the type (1)
where as for partial differential equations, ‘the same

has been éstablished by Lardnzf [20]. These results
o . , . . | .

o
1



ESN

—j‘g', - “‘é‘l - N . . l . ) ) ‘,;-,my

Y

e

a; ﬂgfgnificant bécquse of the rigorous foﬁndation‘of
the a&efége method est;biiShed by Bogol;uboﬁ [ 47,

which therefore indirectly providesfa'justificationrof“
the two tiée method.

3

In this. thesis, we make use of some of these

perturbation methods to analyse certain non-linear©

=1

.

problems in mechanics.

<

'in Chapter 1, we have compare&ff@e periodic

solutions_dbtainedkby the methods of Poinéaré:ahd Krylov-

Eogoliubbv'fépzéystems of ordinary diffeféhtial
; -2 . | al

equations. Théfméfhod has been extended to monofrequent

periodic solutioﬁ&quioscillapéry systems governed by

weaklywnoﬁ¥linear hypérbblic partial differential

equations. = @ o e————. s

e e =
In Chapter 2, we have investigated the response
of a non-linear vibrator governed by a second order

ordinary differential equati

undé; the influence: of a

time-dependent external force. \The method is also ex-

tended to partial differential uations in such a case.

In Chapter 3, the effects of kinemetical non- 

N Ry

linearities on the vibration frequencies ‘of an un-

damped and a damped string are investigatédl'

KN

¥
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In Chapter 4, the asymptotic solutions for %g
. : | S

certain partial differential equations of hyperbolic
N 7 , R

type‘with slowly varying coefficients are‘investigatéd.,

In ‘Chapter 5, two-~time expansion is used to

investigate the nature of %ﬁ&ne shock waves in visco-

elastic media dfsplaying cibic elasticity.
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CHAPTER 1
B ).

ON THE PERIODIC SOLUTIONS OF DIFFERENTIAL
EQUATIONS OBTAINED BY THE METHODS OF PQINCARE AND

KRYLOV-BOGOLIUBOV. )

1. INTRODUCTION.

| As is well khown, Poiﬁéaré-Method-[l]'in the
theof§ of non;linéa% vibrations ailows us to find the
periodic solutions df weakly nén—linear'systems of.
ordihary differéﬁtial‘equations. The.Poincgré method

can be extended to find the monpo-frequent periodic

Vv

oscillations of a’meéhanical system governed by second -

order non—linearwﬁygzrbolic autonomous partial dif-
ferential equations. The method can equally well be
-.used for the non-autonomous partiél differential

equations,

The asfmptotic method of Krylov-Bogoliutov
3] devéloped’by.Bogéliubov~aéd Mitropolskii [4] is
used for studying nqn—stationary vibrations gqvéfged
by ordinary éifferential equations with smail non-
linearities. ‘Lagér this ‘method w%s‘devgloped by ﬁ'
'Mitropoiskii and M;senk§§ (91, Bbj;hZiev‘and Lardﬁer
flb,ll}ig] and qghers[lé,lﬁ,i5;16,17] for f{ndingiiﬁé
hQn—stationary regime of vibrationsaof mechanical énd

© . Secrr
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electrical systems governed by partial differential
"equations. . In particular the K-B-M method is also’

applicable to periodic vibrations.

ProsRurjakov [6] has compared the periodic

¢
-

solutions by the two methods of the autonomous dif-

- ferential equation

%+ wlx = ef(x,%) , k= —j—’f . (1)

where € is a small positive parameter'and f(x,%) is
anélytip in ¥, x in some domain. It is concluded after
long computation that the firgt threékapproximate
sglutionshébtaingd by both methods coincide ‘entirely.
Later on Proskurjakov mentions that in the case of the
main resonance, the same conclusion holds for second-

order non-autonomous differential equations.

‘In this chapter, we provide an exposition of
‘the methods of Poincaré and Krylov-Bogoliubov—
Mitropolskii as applied to periodic solutions of (d)..%

In particular we shall reconsidérAsomé of the results

of Préskurjakov [6] on the comparison of~thé,two methods,

avoiding'long calculations. This we do in sectionkZa

s -

In section 3, we give analogogs resultss for a second-

order non-autonomous ordinary differential equation in -

e
both the resonance and non-resomance case. We



generalize these results to autonomous and non-

autonomous systems of ordinary differential equations.
This is done in sections 4 and 5. .

4

In section 6, we extend the investigation to
compare monofrequent periodic oscillations governed by

”

-autonomous non-linear partial differential,equations.\\\\

In section 7, we give analogous results for non-

w

autonomous partial differential equations in "both

resonance and non-resonance cases.

In all these sections, the importance of the
so-called improved 'n-th approximation in the K-B-M

method is demonstrated-when the periodié‘éplutions are

being sought.
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2, Second-Order Autonomous Equation.
Let us consider equation (1). According to

o

Poincaré's method we can seek the periodic solutions of

(1) in the form
x = x. (% + ex, (1) + ezx (1) + | ‘ (72)
0 1 . 2 R
where the functions {XS(T)} are 27 periodic in T and

(1 + Ehl + € h2 + ...) . (3)

T
It
g |~

The constants {hs} have to be determined. U#ually the
solution x(t) of (1) is sought under the condition
%(0) = 0, which implies . . ~

vdxs(O)
dt

-0, s = 0,1,evn, o (4)

The function XO(T) is a solution of the genefating

equation dzxo/dr2 + Xg = 0. Taking into account (4) one

gets

xO(T) = M cos T . (5)

4

_ Substituting (2) into (1), making use of (3), and

. . 2 v
equating the coefficients of €,e ,... , we have for

* Sections 2-5 are published in UTILITAS MATHEMATICA

Vol.3, (1973) pp.49-64 (with BOJADZIEV and LARDNER).

\
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the equations

2
d Xy 1 oo .
+ x, = — f(M cos T, - w M sin 1) - 2h, M cos T, -
d 2 1 2 1
T w .
(6)
d2X2 1 ' ' ' '
+ x. = — |2h, f(M cos T, - w M sin T)
2 2 2 1 A
dt w : .
_ dx . X
\ + x of + w i + h. w M sin'T) @;
. 1 9x dt 1 9%
0 . o4
(7)
¥ 2 -
- (hi + 2h2) M cos T - Zhlxl
Since f(M cos T, - W M sin 1) = fO(M,T) is a 2T

periodic function in T, we can expand it as a Fourier

series.

. P - 7
_ 0 : )
fO(M,T) = 5 + nil (Pn cos nT + Qn sin nT) - (8)

Substituting (8) into (6)V;nd equating to zero the co-
effiéients of_sin T and cos T, to get rid of the secula{
terms, oné obtains the ampliﬁudé equation |

2m

Q, = 0 7 or ! fO(M,T)Sin tdt =0 , : (9)
g o L _
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and an equation for hl‘ : _

+

2m: v
1 : ' 1 “ |
—= - 2hM =0 or h, = —7— S £ . (M,T) cos TdT . (10)
2 1 1 2 0 5
w 2TMw” .0
e - . fsﬁ

Equétionk(9) determiﬁés the amplitude M .

The, solution of (6) under condition (4) is -

. - PO
xl('l.') = Ml cos T + ;D—Z-
’ (11)
© P ¢cos nT + Q sin nT - nQ_ sin T '
n n : n ,
+ I, )
n=2 (1-n")w™

where Ml is a constant to be determined from ®wquation

(7). Then the solution (2) of (1) in the first

ko .
approximation according to (5) and (l1) is
X =M cos T :
(12)
P cos nT + Q_sin nT - nQ_sin T
n n n

f> + EEH cos T + EQ— ; ; - J'
_ 1 2 _ : T

’ 27 Tn=2 (l-nz)w2 R

Using (3) and (10) the solution (12) can be-wriﬁggﬁ“ﬁith

respect to t

Now let us apply the (K-B) method to equation.

(L). The solution is sought in the form

x = a cos U+ eul(a,w) + ezuz(a,w) + .., (13)

r . ‘ - -
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o
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whe%e the fdncfions {us(a,W)} are 27 periodic in ¢ and

a

a and ¥ are functions of t which satisfy the equations

a = ea (a) + ezAz(a5 oo,
. : : ' __Y\ \ .
, (14)

>

¢C+ =3, (2) + '8, (a) SIE

The.functionsV{Aé(a),aBS(a)} and {us(a,w)} are to be
- . ‘

found from,théhréqui%@ﬁédt that x satisfies (1). For

. gLy :
example, the formulas forfAl(a) and Bl(a) are [3]
’ - N . -
‘i’??, [
f: o l 27 ) -
A (a) = - Z‘é_’,fo fo(a,y) sin Ydy .,
:ya . ;:’.,;“h v ) v
o | - o (15) -
By (a) = -.Zawﬂ'% £,(a,¥) cos ydy .
» =

Tp'find the periodic solution of (1) one sets

A =0, @-= const = w + #B. + €°B, + ... , (16)

iwhere {stvarexépnstapﬁs to be determined. From (l6)

we get”
a = apg= const, U = (w + EBl + 6232 + ...)t, if ¥ (0) =0
" : (17)
From (14) and‘(lﬁ), a4 = 0 implies Alﬁali=70 or
2- | ) - / |
é £,(ay¥) sin Wdy = 0, Tvew (18)

N

b
=
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.which determines the amplitude a . Thé equation (18) j%%

:és identical with (9) which shows thaf a = M provided

we consider the corresponding roots in the two:equations.

- - (S
A}

The solution (13) can be_yritten iﬁyihe'form"
(2), where

xg(0) = e cos b, x (1) = u(a,¥), s = 1,2,

By the uniqueness theorem for piriodic solutions, the
two solutions (2) and (13) must be the same, provided
that -the initial conditions (4) are used for the K-B

method as well as for the Poincaré method. We obsérve

. . -
that in the solution (2), x is 27 periodic .in T .,

(S

©

defined in (3), while in the solution (13), x is 27

periodic in y defined by (17). It follows that the

[

- ratio of Y and T must be rational. But ¥ gnd T are

0 .
expressible as power series in & whose zero-order terms s
are .identical, so that they must therefore be equal.

The two sets of coefficients in (3) and (18) are

related by equations such as .

N 2
Bl = - W hl’ B2 =W (hl - h2),...

Since T = ¥ in the two solutions (2) and (13) j-

we must have term-by-term equality of these power series —= .

-




B

g

he

nk

in € , provided that the initial conditions (4) are
used for the Poincaré method as well as for.fhe K-B
method. Hence we conclude that for periodic solutions

the solution according to the K-B method is identical

term by term(with the solution according to the Poincaré

method.

v

That is why the usual‘formula‘fon ul(a,w) [3?
coincides with (ll) if we omit the terms in cos w'and
sin ¢ , for in K-B method it is uéuaily supposed that
ul(a,W) doesrnot contain thégkifst harmonics} In the
case of periodic solutions we do not make sgch an assumption,

but introduce the initial conditions (4) instead.

Let us note that according to the K-B method,

by the hth approximation is usually meant the sum of the

first n terms in (13). For example, the solution in the
first apprdximation‘is Xx = a cos Yy , where a = eAl(a)
and ¥ = w +'EBl(a) . For the same & and @ sometimes

Xx = a cos Y + sul(a,w) is called the imprdved fitrst approxi-

mation.

In the case ofhperiodic solutions, the improved
. ?

3

first approximate $olutiomn of (1) is (12). This shows

that the first appfoximation found by Poincaré's method

O



y . -‘ - \ L : 7 " B ; . ] ;\

coincides with the improved first approximation found-

by theQK—B method with respect - to both ¥ and T .

"In genérai’the nth‘approximation found by

. » . : > ) . - th
Poincaré's method is the ‘'same as the improved n

-

approximation: found by the K-B method,ri.e. if we take
(n+1) tefmsrand*nﬁp n terms in (13). This remark is

important‘because4in'fhe general case when one applies‘///

the K-B method to find -nonstationary vibrations,‘the

‘ . . Co g : ‘ th
recommendation given is to take n terms for the n.

3 N

approximation.

i~
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Second-Order Non-autonomods3Equation.

3.

Consider now the non-autonomous differential

equation
- v ‘l . ) .
. 2 oy : ’
X+ w'x = ef(vt,x,x) 5 . (19)
’ /

where € > 0 is a small parameter and f(vt,x,%) is 2m

periodic in vt of the form
in : .
e vtfn(x,x)

© N
f(vt,x,%) = z

E]

The coefficients f;(x,i) in this finite sum are required

to be polynomial in x- and X

a

-
Nonresonance case.- Assume that for any integers
© :

m, 0,
DO :

nv + mw # w or VvV ¢ 1, (p, q any integers).

o

Let us apply Poincaré's method for finding

periodic solutions with period 2m/v in t (or with
period 2m in vt) of the differential equation (19).

We can write the solution as a series
(20)

x(e) = xg(t) + ex (©) + ezxz(t) o,

. &
where the functions {xs(t)} are 27 periodic in wvt.

£

-— :

¥
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After substituting (20) into (19) we get

' 2x0(t) = 0 and Xl(t) is to be found from 4 .

ﬁl + wle = f(vt,0,0). To solve this equation we ex;\

pand the function f(vt,0,0) in a Fourfer series- and

get .
27 .
xl(t) - 1 Z( 5 cos nf S £(6,0,0) cos n6do
m 2
n‘tw” - (nv) 0
sin nbo 27 - | )
+ n / £(8,0,0) sin nede), 8 = vt .
2 2
w” - (nv) 0

s ,f/ | *

Hence the ¥irst approximation of the periodic solution

of (19) is x(t) = exl(t) . In the same manner one can

v

find the nth»approximation.” “

According to the K-B method [3] the solution of

&

equation (19) in the nonresonance case is sought in the

form ?

X = a cos Y + Eul(a,w,vt) + Ezuz(a,w,vt) e, (21)

where the functions {us(a,w,vté} are 2m periodic in Y
and vt . The amplityde a and the phase y are given by
(14) . h\Eaere again by the nth approximation is under-

stood the sum of the first n terms in (21).
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Substitufing (21) iﬁto (19), using (l4)kand
equating the coefficients of 8,62,... enables .us to@%s
find uS(a,w,e),,.As(a),_ Bs(a), s = ;,2,... and'theﬁgﬁ
fore the solution of (19) in the nonsfétionary reg;ﬁe;

i

" To find the periodic solution-of (19) with

_period 2m/v in t, we set a = 61 p = 0 in (21). This

.means. the functions {us} depend on'eignly and equations

"(14) no longér appear. Then (21) becomes
~ @ -

x = cu (0,0,0) + €2u2(0,0,9) ., (22)

R L. . ) ) N ‘\ )
\>§here {uS(O,O,e)} are 2m .periodic in 6.

. , . : ‘\
If we ‘let uS(O;O,vt) = xé(t) » 8 = 1,2,...,

[

then the sought solution (22) coincides with (20) .

3

The conclusioﬁ i@ that the periodic solutions

found by both methods are the same in every approxi-s

- . Qj Na
: . > th 3 . 7
mation. Qf course, we compare the ‘n approx1mat10n/

in Poincaré's method with the improved nth approxi13%“’

. L

£y

mation in the K-B method.

‘(b) Resonance case. Here we assume that for certain

pairs of integers m, n

aV + mw = W or Vv = % W =(p,qA integers)

i
3
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a

To.simplify the considerations let'ug/ponsiﬁgg

t@g case of exact main reéonanée, w = v, i.e, p = q = I..
T ‘ o ‘ ; *

- ©

‘According to Poincaré's method we seek. the

.

periodic solutions!of?(IQ)nin the‘ﬁdfmn(Zos W

i

e
The solution of the generating equationl %ﬁ

0+ vix_ =0 Co(23)

c . 0

is 5

xo(t) = M cos vt +. N sin vt , (24)

N
E)

which is 2w/Vv periodic in t. The constants M and N are .

to be determined. For thefunctionxl(t) we get the

equation

% _+V X, = fO(\)t,M,N) s . (25)

where

fo(vt,M,N) = f(vte,M cos vt + N sin vt,

-Mv sin vt + Nv cos Vvt) . (26)

To solve (25) we develop (26) in a Fourier series

£, (VE,M,N) = T fn(c’)(M,N)einVt ,
n

27 (27)

ey = 5 o5 (ve,M,m)e TV (ue)
n 27 0 0

£
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id .the secular termé;in‘the solution of (25) we

RS

To a

e - ey A
o TR N N

gf](.O)(M’N) = \O,fE:(L)) (M,N) =0 R (28)

From the equations (28) , called amplitude equations;

" we can find M and N

The periodic solution of (25) then¥is

S ‘

x,(t) = M, cos vt + N, sin vﬁ :
1 1 1 (29)

2T
invt
+ z ; > S fO(Vt,M,N)e
ng+tl 2n7v-(1l-n") O

-invt

d(ve)

where Ml and Nl are to be determined under the condition

that the function xz(t) from the second approximation

>

should not contain secular terms.

Now let us apply the K-B method. The solution
of (19) in the ngnstationary regime is sought in the

: | p 2
X = a cos (%’6 + Y) + eul(a,6,z 8 + y) + ez..., 5 = vt,

(30)

where the functions“{us(a,e,%’e + Wj} are 27 periodic

'

in 6 and % 6 + y . The quantities a and Yy are given by
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2 £ -
the equations G J BN C ;--‘» . - [ < '
~ ’ o [ : 4 -4

LT oL Y-y tﬁig% . . . . e 2” . P s - v ';2"‘* :
;‘—]ff'\\'fi 9< 3 =€Ali§,W);f.§ T wf—a;v + sBl(azw) + e .0,

¢ A, 7 .
‘ ) , (31)
. . ‘ ‘ | P v
According to KfBlmethod_[f? , Al\and Bl are to
bé determined by the equation
: ‘ : ‘A" ' ~
N _ R 1 _ : P
5 , o [UU T g V) 3 ZawBl ]cos (q 8 + )
| 9B _ . .
_,_%w - ﬁ v)a Bwl + ZwAlJ sin (% e,+,W)' . | (32)
o Y P . : ‘
A i (— i
- 5 f(S);(aQe“1Kq6+w)e1Kmil)¢ ;
ng+p (m¥1)=0 " .
. where Y
7 . Zn_12n .
£$9¢) - L s £7(e,a cos Ee+ ), 3
: 4m° 0 0 4

:—1{ne+m(§e+¢)}

- av 5in(§ 6 +w)> e ded(g 8 + y)

hY

In the case of main resonance p =-q = 1



N v T
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) o
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o

& - czé
To find the 2m/v periodic solutions in t of (19) £ .-
we set ., 5w

L ok

4 =0; ¢y 20, i.e. a = a_ = const, Y = wo = const. (34)
) =0, Bs(aoiwo) =0, s =1,2,.."

ihls 1mp11e$ As(aOwa

and we do not need equations (31) . Thenr(30) becomes

2

X = a

(35)

0 cgg(e + w0)~+ eul(ao,e,e + wo) + e

. The terryn\u0 = a, cos (9 +‘w0) is a solution of

2 —
d u
2 0 2 v ,
v + viu, = 0 . ,
. d62 0 . (36)
¢
The equations (23) and (36) é:e the same, hence

their solutions xo and uo'coincide; i.e. ° ' ,f
M cos vt + N sin Vvt = ag cos (6 + wo) , B = vt, ’

or - %
M = ag cos'woi N = - ag sin wo . » (37)

According to the uniqueness theorem for péri&ﬁ%c
solutions, the two solutions (20) and (35) coincide term

by term in the power series in ¢



o

One can show that the amplitude equations (28)
coincide with the corresponding. equations in the K-B

method. Froﬁ‘(BZ) , taking into account that

Pp=4q=1,. .4 =B, = 0 , we get

(0) . ing
n=il fﬂ (’aoswo)e 0 ’ =
& . 2T . ‘ . . ‘

féo)(ao,wo) = %? [ f[o, aocos(8+w0), evaosin(6+wo)]e_lnede,

. . - 0 X

L (38)

or’ -~

S5 P =0 1P g =0 (39)

From (26), (27), (37), and (38) it is seen that

the amplitu&e equations- (28) ‘coincide with the equations

= -
o .

(39). Hence we fimnd égain the same result as in sec;lgii~
2 and 3a. - : , P S
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4, Systems of Autonomous Differenfial Equations.
C%ﬁsidér the nqn—lénear sygtem
R Y | (40)
where € > 0 ﬁé a small pagameéer?'x-= (gl;..;,xn) ,
f =,<£i""?fn) are n vectors and w = diag(&{f/7 ,wn)

is a diagohal matrix. We assume that f is an analytic

.;functﬁon of\;;x, in a domain containing the solution of

v

/ ) -

which corresponds to the frequencyAwl}

that Wy F KW K is any integer, i = 2,...,n .

12’

According to Poincaré's method we seek the

solution in the form

- I

i

x{T) xO(T)V+ éx(liﬁi)/*"ézx(zy(T) + e

Fa—

SRRNE
1

whg;e~X” .,xés)) are 2T perioﬂic in T

rt
it

T 2
5 (1 + ehy + e"h, + cee) .
1
Using (41) and (42) in (40) and equating the
various powers of € , we have equations for x(s}(T),

s = O;l,...

!vthe generating system (e-= 0) . We are interested in
. the periodic solhtions of (40) with périod Zﬁ/wl + 0(e)

We also assume

(41)

and

(42)

pel
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. We seek the solutions of these equations under |

the conditions

L (s) . : | |
dx "7 (0) 0 s = 0,1,... . (43)
dT SR o

- - R ‘ .

The .2m-periodic solutions of the'generating system

]

L 42.(0) S _
w2 Q_E___ + wzxo = 0 ‘using (43) are
1 2 ,
dt
xio? =M cos T , x(o) =0, k= 2,...,0. " (44)

k .

The amplitude M and the constant h, are

1
determined by (9) and (10) but instead'of,f0 we have
flO , the first component of the vector function 7
fO = f(x(o), k(o)) .’ Analogous formulas ton(ll)band

(12) but in vector form are found for x(l)(r) and 'x T

Let us now apply the K-B method to find the
periddic solutions of (40) which correspond to the

frequency wl . Here we seek the solution iﬁ the form

x = 0 G, + e, + 2P @, + .., 45

where U(S)la’w) N (UES)""’uiS)j 2 -8 = 031,000, aré';
2n .periodic in ¥, uiO)(a,w)v= a cos U , u£0)(a,W) 0,

k = 2,...,0 ,
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. s 2 ‘ :
a =0, =wp *eB(a) +eBy(a) + ol L (46)

From (46) we have

a = a, = const, |,

0 | | |
, . - YS!
Vo= [w; + eBi(ay) + EZFZKaO) + f.‘]'t , if ¥(0) =0,

+

where a, and (Bs}tare to be found.

0

?vsolution (45) can bé written in the form (41),

"
©

where ag = M . As in section 2 one can see that' T giveén
.

-

by (42) and ¥ by (47) are the same; i.e. T =‘w , and we

have the same relations between {Bs} and {hs}, except

. -y
that w is replaced by Wy

©

-

Hence, in the case of periodic solutions, the

- R . &};‘ .
solution (45) fer the K-B method reduces to the form (41)

an{ the results obtained are the same.
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S

5. Systems of Non-autonomous Differential Equations.

Consider the system of non-autonomous differential

-

equations

£+ wix = e£(0,x,%) , 8= e, (48)
where x =.(xl,...,xn) and f = (fl’f"’fn? are n—vgcto;s,
w = diag(wl,...,wn) . The function fiis 27 periodic in

| N in®
8 of the form £ = L e o

where @n is polynomial in

X,X

Let us apply Poincaré's method to find 27

perio&ic solution in 6 of the equation (48) in the non-

resonance case. We can write the solution in tfie form
x(t) = x0¢e) + ex P ey + 2Py .., (49)
(s) . -
where x (¢), s = 1,2,... are n-vectors.
N

\\\;‘As in section 3 we get X(O)Qt) = Q and x(l)(t)

is to be Jetermined from the equation

1 4 W2 2 £e,0,0
According to K-B method [4], where more general 'x\ o
systems are considered, it is supposed that: - (§) the , "?

generating system has vibrations with-freQuency wl of

@
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the form x, = a, cos(wlt + wo) » X, = 0 , k= 2,...,0 ,
which depend on two arbitrary constants aO and wo
(b) The set of values {le . Kk =1,2...} never equal any
of the frequencies w2’f"wn

Coﬁsider the nonresonance case‘v # % wl (p;g are
integers). Under these assumptions the system (48) has

an asymptotic solution.of the form.

X = u(o)(a,w,G) + Eu(l)(a,w,ﬁ) + €% L. , ' (50)

uio)(a,w,e) = a cos VY, uéo)(a,w,ﬁs é'o, k = 2,...,n ;

Qhere u(s)(a,w,e)'= (uis),.(.:ués))are 2m periodic in ¥
and 8 , ; = 1,2,..., and a and § are given by (14)~.

By the ;ntegration of the equatioas (14) one introduces
two constants. Hence (50) is not the general';olution of
(48) But only a two—paraﬁéter solﬁtion which corresponds

to 'the frequency wy o ‘ : - .

To -find the 27 periodic solution in 6 we set, as
in section 3, a = 0, Y = 0 .  Then u(o9 =0 and (50)
réduces to

ea P (0,0,0) + ¢2u'? (0,0,8) -

+

which ceincides with the solution (49)



1Here again w¢ have the same result as in sections-
2, 3 and 4.

«

case VvV = W

1

has also been made and the reéwy. is the same.-

An identical result holds for the more general

system
A¥X + Bx = ef(6,x,%x,c) , 8 = vt ,

where x and f are vectors, A and B are nXn constant

matrices.
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6. SECOND ORDER AUTONOMOUS PARTIAL DEFFERENTIAL EQUATION.

Consider the equation

-

2 . a
d u _ 9 rp du, _ du du
p(x) S 2 = ax[K(X) ax] u + EF(x,u,ax, e €)' (51)

where € is a small ﬁarameter. We suppose that u(x,t)
must sqtisfy a pair of linear boundary conditions
ﬁj(u) =0, (j=1,2) which involve the values of u and

u at the end points x = 0 and x = &

First of all consider the g%nerating equation

32u.

-0 — a__ . ___._0 - - : = 7 =
PG —3% = 55 KGO G300 = wg o Bylag) = 0, 5= 12
T | ) 2

; . (52)

o

This has a complete set of separable solutions of the

e
R

forms ‘ °

an¢n(x) cos (wnt + an) , 'n=1,2,,.. (53?

where an and an are constants.

R

The set of functions {¢n(x)} satisfy the

differential equations - ‘

L RG]+ wle pGx) = ¢ (x) = 0 (54)
and the boundary conditions‘ﬁj(¢ﬁ) =0 , 3 o =1,2.



These boundary conditions determine the aliowed
set of eigeﬁ—frequencies’ {wn}. If therboﬁndaryv
conditions éa;jsfy the usual self—adjoiﬁiness condition
of S-L théory, then .the se& of functions {én(x)} are
complete and oréhogggﬁl w.T.L. the weight functioﬁ

p(x). By suitably normaliZing the ¢n(x), we can thus

achieve the result

P

f D(X)qbn(X)qu(X)dx =6 (55)

nm

o

-
S

where 6nm is Kroneker delta.

The solution (53) of the generating system (52)

is periodic with period ZTr/u)n for n = 1,2,3,... .

We shall find the ﬁeriodic solution of (51)
corresponding to the frequency Wy of the generatingr

system, i.e. corresponding to
uO(x’t) = A cos (wlt + ) ¢1(X)

o = o, = constant.

where A = a i

l b

We require this solution to satisfy

u(x, t + 2ﬂ/w1)= u(x,t) (56)

0 -



We shall'also'assume that wnris'not an integral
multiple of Wy for n # 1. m

According :to Poincaré's method, we make the

following transformation

. t=l—(lf+€h +€2h + .0.) (57)
.U..)l 1 2 L 7 R
and let_
u(x,T) = uo(x,T) + eru‘(x,T) (58)
' r=1 r e .

where now in viéw of (56) and'(57), u(x,T) or ur(x,T) s

r = 0,1,2,... are-2m periodic in T

Because of the time translation arbitrariﬁggsfx?f

’ T - - I

in the autonomous system, we/ggleet”fhéﬁarigin of T such

that® o C r
o 2, a . )

Joe(x) 52 (x,0) ¢, (x)dx = 0

0o t C
ot

p(x) (x,0) ¢, (x)dx = 0, « =0,1,2,...

S -

r
3‘T
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This is the corresponding con&itiqn to (4) in case of

ordinary autonomous differential equation.

The function uo(x,T) is the solution of the

.~

generating equation

2 3 ‘ o
p(xwy uy o= 37 [K&E)ug T -ruy

Taking into account (59), the solution ds

UO(X’T) =M ¢l(x) cos T - ,,/fiﬁdyf////x

where ¢l(x) satisfies/(77775,4,,)/ﬂf'o”'i'/Vifrl/ﬂ= 1.

" Substituting (58) into (51), making use of (57)

and equating coefficients of €,€2,.... , we have for

u the equations:

IELTIEEE

p(x)wiu - %; [K(x)ul#] + u

1Tt 1

= 2hM (3= (KG)$]G)) - 6,1 cos T

+ Fo(x,M,T) (61)

S




-

2 9 ' .
p(x)wlu2TT - 3= [K(X)UZX] + u,
2 - 3 ' '
1 *9x ‘ -
/gggi//// s
’ ! 4 — <0
+ 2hl,FO(x,M,T)2t/rE,1/?JQTx,M,T) UL T
o 0 : <Ox
BFO
+ (u - h,u. ) .
1t 1 0T auOT (62)
where ‘ /gi
- ) t — ‘ o ‘ A
Fo(x,M,T) = F(x,M¢l(x) cos T, M¢l(x) cos T, wlM¢l(x) sin T

To solve (6l1), we expand ql(x,T) in terms of

known eigenfunctions, {¢n(x)} given by (54):

: % ‘ <
Ul(X,T) = I ¢m(x)<Vm(T) | (63)

: m=1

Im view of (55) and (59), (63) waplies :
' 3
Vl (0) 0 . _ | (64)
Using (63) in (61), multiplying both sides by ¢n(x),
integrgting from 0 to % and usipg (55), we get
w2V (1) + WiV o(t) = - 2n.M6.  cos T + F_(M,7T) (65)
1 n n n 1 "1n n" 7 -



/ //,///L/
| R
‘ e o §
heié///,/,/,
£ . N | v ’ ‘
Fn(M’JT) : fo FO(X,IIQT)¢D(X)dX . (66)

Since Fn(M,T) are 2T periodit in T, we can expand them

as Fourier series

_Pé.“)(M)
F(M,7) = ——5—— +

7 {PEHX(M) cos r1 + Qin)(M) sin r7}

W™~ o8

(67)

A\
\

Substituting (67) in (65) and taking n = 1, equating the
coefficients of sin T and cos T to zero to get rid of the

secular terms, we obtain the amplitude equation:

27

-

Qil)(M) = 0 or I Fl(M,T) sin T dT = 0 (68)
. 0 .

and an equation‘foﬁ hl

(3

Dy Lo 1L 2T |
- 2Mhl + Pl ;(M) =0 or hl = TH S Fl‘M,T) cos TVfT
e o . (69)

-

‘hﬁquétion (68) determines the amplitude M. The solution

for V, (1) under the condition (64) is

: P(l) @ P‘l)cos rtv + Q(l)sin rT —‘rQEl&in T
V.(t) = M, cos T + D z - ¥
1 . 1 5 2 2, . 2
Zwl r=2 wl(l - r ) ‘



and for n # 1, . "

W)
P(n) @ﬂ Pﬁn) cos + Qﬁn) sin rT
Vn (1) = » 5 + o 3 27
2w r=1 w- - r wl

n n

Thus from (63), the solution for ul(x,T) is

40

sy
&

o
ul(x,T) = ¢l(x) [Ml cos T + —
2w
1
w0 P(l) cos r1 + Q(l) sin r1 - rQ(l) sin T .
T : r r
Iz 2 2 J
r=2 wi; (1 - r7)
1
® Pép) © Pin) cos r1 + Q(n) sin rT
+ I ¢_(x) + -z L -
: n 2 2 2 2
n=2 A 2w r=1 W - rw
S o . n 1
(70)
This solution has one unknown constant Mljghich is
determined from the solution of UZ@ %

Now let -us apply K-B~M method to find a mono-
frequent solution of equation (51) correspoﬁding to the
frequency Wy The solution is ggught in the form

[ o] . :
u(x,t) = a¢l(x) cos Y + L Ervr(x,a,W) (Zl)
r=1 B

)

b,
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-
-

N
where {urﬂx,a,W)} are 2T periodic in-¢ and a,P are given

by the differential equations

e
Il

. ) .
eAl(a) + € Az(a) +‘ .....

@ = w; + eBl(a) + ezﬁz(a) + ..., : (72)

The functions {v}(k,a,w), Ar(a), Br(a)} are to be foﬁndt

from the requirement that u satisfies (51) to each ordem

of ¢. For'example, thé formulas for Al(a) and Bl(a) are
‘1ol e
27
- 1 .
Al(a) = - 4“,‘-0 R f Fl(a,w) sin w dw
-1 0 .
27
- 1 .
Bl(a) = < 4Tam S Fl(a,w) cos Y dy (73)
1 0 .
where . i
2
F_(a.p) = S Fy(x,a,0)6_ (x) dx
0 .
and

Fo(x,a,W) = F(x,a¢l(x) cos VY, a¢i(x);cos v,

wla¢i(x) sinfﬁ) .-
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To find the periodic solution of (51), one sets

. . . 2 -
a==0, Y = consFant Wy + eBl + ErBZ +

where {Br} are the constants to be determined.

These equations imply that

a = ao = CQ?sfant,

b= (W + eBy + €By ¥ ...t Af P(0) = 0. (74)
"From (72) and (73), &4 = O‘implies Ai(a) = 0 or

27 ' - S » ’

I Fl(a,w).sin p dyp.= 0 . ” . IR ) N

o . ‘ ' ) , (75)
. et

which determines the amplitude a. The equation (75) 1is

identical with (68)'which shows that a = M, prdvided we

consider the corresponding roots in the two equations.

3

. I
The second equation (73) shows that Bl = - hl/wl and hence

°

to first order, Yy = T.

The solution (71) can™~be written in the fofmi(SS),

where

@uo(au@§)= a¢l(x)'cos v, u?(x,a,W) = Vr(xsaksz r Efi,Z,...

As in section 2, we have T = Y and

= , L_ _]_- 2
Bl = _Ohl/wl ’ B2 W (hl - h

)
. . 1 2



-y

If the periodic solution 1is assumed to be .unique, the two
solutions.(58) and (71) must:berséme term term,
prdvided that the same initial conditions (59) are used

for both methods. Of course we comﬁare thernth approxi-.

N . . - . . th
mation of7P01ncarefsimethod with. the improved n

-

approximation of the K-B~-M method. - .
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7. ' SECOND ORDER NON-AUTONOMOUS PARTIAL DIFFERENTIAL Cal
e ° B o 2;1 T . _ ’ & o el
- EQUATION. . s, ' . , S
- \.Consider the_nén—&utonomqus partial differe&piél'

equation . - o - : SN
: S _ 3 : : : s
. : . ve 07, St o o e o E

©
—~
»
N
e
[ 2
it

— o — . + - K e ~ . Y B - RN
: < 5% £KCx)ux19 & _e?(ﬁ,g,u,#x,ut,E), 6C="vt

e el -
. . «
N . v . L . (‘ 6(’ [
.- N . < . [ [ e
4 . - . bl ~ T .
. . . . ) ¢ S
tog .

> o . - 2 ~

. ) g oi6or N n o
under the same boundary’ conditions (52). F is supposed to*

-

(/] avé»period»Qﬂfv.iﬁ t,‘i.é.fZW pﬁfiodi

the form « : : | ' : 2

. A N '
- ) in6 S . o
F(9,x,u,u_,u _,e) = L e%@, F (x,uysm s C e
. X t . . n. . - ~ . JERC R
- . n==-N . : < - . - T :
R . . , ‘ . ) N » @ | ‘. . »
. - X - , . ® s e ' o - ‘ ) 3 . i‘:‘,,,/ . ﬁr .
The coefficients Fn(x,u,ux,ut;e) in this finite sum, are = o
e ; S S -
required to be polynomial in their darguments. - R
=, ' ‘{: . L . ;,’F”':' » o
Here two aéses arise. ' e o : ‘ : L :
(a) = NON-RESONANCE CASE. : , R
“Assume that for all fntegers m and n, ‘
B : . L ]
nytome 4 W, o W ¢(p/qh> (p,q any integers)’
for any integer r. - : S o T ; =
-The geﬁerating equation Qf"(76)‘ié (52) and the fofﬁulagﬁ
(53)-(55) still hold. : ﬁ I
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Let us appiy‘PQincaré's m Yhod for finding the
periodic solutions with period 2m/v in t (or 2T periodic
. in 8 = vt) of4the'differentia} equation (76). We can
write the solution as a series
u(x,t) = 2 e'u_(x,£) . )
r o
r=0 - 7 o -
where®the functions {uf(x,t)} are 2T periodic in Vt.
3 - . ' After substituting (77) into (76), we get/
. ) ‘ . uo(x,t)_:\@.> ul(kgt) is to. be found froun
= - - + B, 78
; Qm\\ p(x)ultt % [K(x)ulx] LUy F(6,x,0,0,0,0) . (78)
To solve this, we expand ul(x,t) as
4 .
® /1. CD'
ul(x;t)‘= ril ¢r(X)Vr(9)‘; E :

substitute in'(78), muigiply by ¢n(x), integrate w.r.t.

x from 0 to & , use (54) and (55) to get

2 2 o
v Vn(G) + wnvnfe.) = Fn(e)

g ) ] . . ) .

_ where . §% : I , o ~ ' B ii

Fn( ) =4_g 'F(@,x;0}0{0,0)¢n§x)?x .

) . _ , . . A
-, Y . - . . .
) .



Since Fn(e) is 2w periodic in 6, we can expand’
it in Fourier series and get a 2m periodic solution in

A
Sl

8 for Vn and thus for wu, as

) ) 1
ot .

) - 2T
1 r ¢ _(x) cos rb ;
u. (x,t) = - L z [ n I
1 . T p=1 r=0 2 o 2 Fn(e) cos rb ?6

’ w- - Vr 0 ,
n .

, A . 2 h

T : ‘ A \§in rd ¢n(x) S F () sin 8 d@](79)'
| + 2 2 2 0 n -
~ ’ Wy - VT

According to the K-B-M méthod [10] the solution

of (76) is sought‘iﬂ the form

v
. ‘ '”:\m ' |
G(x,t) = T a6 (x) cos b + evy(xila d,(y T ©)
n - ; .
refvy G da e b0 4
BN . (80)

where {Vr} are 27 periodic in ¥ (n=1,2,...) and also

2T periodic in ©

N
7

{an} and {wn} satisfy the differential equations

[N

én = I erﬁﬁn)({ap}} o ;
N r=1 %

. _ o0 r (n) 4 <

voo=w_ + E e B ({ap})

1 R (81) ..



47

3

Substituting (80) into (76), u}ing (81) and equating co-

9 . , )
efficients of €, ¢, ... enables us to find

VG (a b, (1,00, 4 (e b, E‘;gan}i, T = 1,2,...

and therefore tHe solution of (76) in the non—stationary 4

———
regime. )
To find the periodic .solution of (76) with period
2m/v  in t, we set a = 0, n=1,2,... in (80) and‘

assume that {vr} are independent of {wn}. This means that
{Yr},depend on x and 6 only and.equations (81) no longer

appear. .Then (80) becomes
u(x,t) = svl(x,0,0,e),+ ézvz(x,0,0,&) + .. - (82)

If we let vr(x;0,0,e) = u?(x,t) R T = 1,2,0.4.

then the sought solution (82) coincides .with (77).

The conclusion is that the periodic solution found

<

by both methods are the same in every approximation. Of
\-

course, weuﬂggi:re the nth-approximation,of Poincaréfs
method with the~improved nth approiimatiqn in the K-B-M

¢

method.



or

\

(b) RESONANCE CASE.

@

Let us now assume that there are some pairs of

integers m and n such that there is one frequency, call

1

it wl for which

nv + mw, = W or w, = g v (p,q integers).

11 1

To simplify the considerations, let us consider the case

of exact main resonance,t w;, =V, i.e. p =q =1 .<:;\

According to Poincaré' method, we seek the
g ,

2

~periodic solutions of (76) in the form (77). The solution

©

of the generating equation

¥
S o(x)u.. . = 2 [K(x)u. ] - u |
S ott 0x 0x 0. - (82")

which is 27 periodic im Vt or wlt is

(=
[

a¢fx) cos (wit + a)

c
1

(M cos Vvt + N sin Vt}¢1(x)r , (83)

where M and N are constants to be determined and ¢l(x)

satisfies (54).

r g
£

For the function ul(x,t), we get the equation

r

=
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9
Plxuy = 5x [KMu T+ uy
1 .
= F(e,x3¢l(x)(M cos Vvt + N sin vt),
¢l(x)(— Mv sin vt + Nv cos vt),0).
Te , . (84)
To solve this, we expand uy in termsxof.{dn(x)}
. - ’
as
e .
ul(x,t) = I ¢r(x)Vr(6) (85)
r=1 )
o ,

-Substituting (85) in (84), using (54), multiplying by

¢n(x), integrating from 0 to 2 and using (55), we have

2

2 | ~ | .
v Vn(e) + ann(e) = Fn(e,M,N) (86) -
whete
‘ % B ‘
F>n(63M9N) = fo ?(esxsuox)l‘}otyo)q)n(x)dx
To solve (86), we expand_Fn(G,M5N) in Fourier series:
| - (n) .7 ir6 .
F_(8,M,N) = i,hFr (M N)e (87)
where
' o o 2m :
(n) 1 _ -ir@
F o7 (M,N) o Jb F_(6,M;N)e de
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* To avoid secular terms in the solution of (86) (when

‘n=1), we set

Fil)(M,N) =0 , ffi)(M,ﬁ) =0 oy (88)

From equations (88), called the amplitude equétioné, we

deterﬁihe M and N. The periodic solution of (86) then is

(1) (1)

Vl(e)‘= M "’cos vt + N' " ’sin vt .
. eir@ , 2m : —ir®
+ In 5 5 S ‘Fl(B,M,N)e - d8
r#+xl1 27y (1l=-r"7) §]
Xy
and. )
Vn(e) = M(n)cos vtl+ N(F)sin vt\
) ) 2T
_— § ird
+ I - S F_(8,M,Nye 1P
. 2 2 2 . n
kﬁﬁ( r 2p(wn - vr) 0 , 7 \
(n#1)
-(89)
where M(n);-N(p?‘, n=1,2,.... are to be determined under

the condition that the function uz(x,t) from the second

-approximation should‘ﬂot contain secular terms,
- ) ~
© o s ; ;
Substituting (89) into (85), ul(x,t) is known.

"Now let usqaﬁply the K-B-M method. The solution

‘of (75) in the non-stationary regime is sought -in the form

y -

N
A
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. \ .
u(x,t) = ¢l(x)a cos Y + evl(ﬁ,a,w,e) + €2V2(x,a,w,6) + ...
. ! ‘ v o

rd

(90)

E a

o

where Vr(x,a,w,e) are 2m periodic in ¥ and 8. The

functions a and Yy are now given by the equations

A= I €e%A (a,9) P : -
r=1 r.ﬂ -%) . . \\\

.é = @, - p/é v + €B,(a,¢) + 22 ;Y o= b |
1 €8y (e, S .

Wher; {Ar(a,¢), Br(a,¢)} are 27 periodic in ¢

According to the K-B-M method [10], Al(a,¢)\§nd

Bl(a,¢) are determined from the equation

dJA. T ‘ 331

[(wy, - p/a v)sai - ZéwlBllcos Yy - [é(wl_‘p/g v)sa— + 2w Aplsin ¥

o

F(1)(.&)ei(n6+m1\b)
nm -

(mtl) p+ng=0 (92)(
where
Lo2m 2T . S

(r) } 1 ‘ ~1i(A0+my)
F_o (a) = —5 [ J  F _(a,y,6)e 7 dedy (93)

nm 4ﬁ2 0 0 r
and N 2 - ‘
F_(a,y,0) = [F(9,x,¢,(x)a cos U,0!(x)a cos Y,

r 0 1 1

- ¢l(x)awlsinﬂy;0)¢r(x)dx

(94)

(91)



In the case of the main resonance, p=q=1 . -
3 ' '

To find 2n/v periodic solutions in t of (76),

>

g

A = o, é =0, ”i.e. a =.a, = constant, ¢ = ¢O= const.

Th}s implies Ar(a0,¢0) = 0, Br(a0,¢0) =0, r=1,2,....

and we do not require equations (91). Then (90) becdmes
: 2
u(x,t) = ¢l(x)a0cos(6+¢0) + eyl(x,%o,e+¢0,6) + ...
(95)
The term Vo = ¢l(x)a0cos(6+¢0) is the solution of
w2y = KRGovo ] - v -
006 9x 0x 0 (96)

The equations (96) and (82') are the same, hence théir

7

solutions V., and u, coincide, 1i.e.

0 0
M cos Qt + N sin vt ='ao cos (6 + ¢d) ,
or ‘M = a, cos ¢0 s N = —ag sin ¢0 - ,(97)

Assuming the periodic solution to be unique, -the two
solutions (85) and (95) coincide term by term in the poWer

series'in €.
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il? It is easy to show that the amplitude equations

(88) coincide with the corresponding equatioﬁs in the
[ Ca . o .

-+

* K-B-M methdd; From (92), taking into account

b =a=1, A =B =20, we haves:

1 - -
Z F](;:ILI.) (ao) ei(nle'f'mw‘) - O | ‘,_‘,.
(m+n)il=0 ’
, - im¢ »
1) i(m+n)6 - o _ ..
°F (m:;)=+anm (a')e ¢ " —”0 ¥
l ’ .
ot  I. Frgno,¢o)eire =0 (98)
‘r=%1 o _ ’ .

where - A . - -?
i ' . 2T, L : ’ )

N SR . " -ir6 ~ L ‘
Fv (ao,¢o) = o0 é _Fl(aQ,ﬁ+¢o,6)e de‘ .. (99)
' The equatia; (98) when éxpanaed,gives e
I, -i8 "
e (1) . (1) -
Slnée %_ (a0,¢0)— (a0,¢0) -0 o

. : ) o,
These equations coin@ide with equations' (88) in view of

T (86'), (94) and (99). o



7 o ef

Hence the periodic solution found by K-B-M

method coincides with the one found by Poincaré's

method, provided we consider the impfoved approxi-

o

mation in the K-B-M method.
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CHAPTER 2

RESPONSE OF A NON-LINEAR VIBRATOR UNDER THE
5 : -

INFLUENCE OF A EIME—DEPENDENT EXTERNAL FORCE.

INTRODUCTION.

&

The asymptotic solutions of the autonomous

differential equation

2

d™x 2

dt2

where € is a small parameter have been investigated in

4 XL 0%k = ef(x,dx/dt) - ‘ (1)

detail by Krylov, Bogoliubov and Mitropolskii [3,4].

In this chapter, we study the influence of an

IS

external excitation force (periodic or non-periodic)

-

on the oscillatory system. For systems governed by

. -

ﬁordinary’differential equations, this p%odess canabe

a

modeled by';n

equation of the type

2

% +.0lx = ef(x,%) + e0(t) ()

-

where ®(t) may ofrmay not be periodic function of time.

The case when

@(f) is 2m periodic in t has been investi-

‘
g o

- gated’ by Bogoliubov and Mitropolskii t4] in great detail.

-

In fact:in [4], a more general case is studied wh%ﬁ the

i /
& . 7

N
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~damping force is presenf.' L . is
, . v -

56

}ight hand side of equation (2);being a 2T periodic - ‘ -

in t is a finite sum of terms of the type

.. ' .., _int - L

eF(t,x,x) = ¢ X Fn(x,x)e Here Fn—are polynomials
D < :

in their arguments and clearly F(t,x,%) is 27 periodic

in t.

We place no such restriction on ¢(t), but

L4

assume that it is a well-behaved function for t > 0 and

bounded as t » « , 4

In section I, we deal with non-linear non-resonant
vibrators governed by érdinary differential equations of

type (2) and the results are extended when a sigﬁificdnt“

.

-

i

In section II, the method is extended to Vibratory‘,

systems governed by partfal differential equations of the

hyperbolic type. S . e | —
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SECTION I (SYSTEM GOVERNED BY ORDINARY DIFF. EQUAZION)

.THE ASYMPTOTIC SOLUTION

i

}%En perturbihg forces are\compfetely'absent
- - - ' S s

K3

(e 0) oscillations Yill evidently be purely harmonic,.

0 acosy, dxo/dt = awsiny, with a constant amplitude

and a uniformly increasing phase ahgle;fi.e. da/dt = 0,

bdw/dt = Ww.

e

~ The solution of (2) accqrdinglto the K-B-M

method is sought fn theﬂ}orm
X = acosy + éul(a,w,t) + szuz(a,w,t) + ... . (3)

Here the functions u,, k = 1,2,.

£ k’

periodic in variable Y (in [4] they are 27 periodic in

» : sed 2T
are supPo ed

'Y and t) and a and ¥ are determined by the .differential

~equations

£

7

da _ 2 .
e ~€Alfa) + e Az(a) o,
(4)
day _ ‘ 2
at ,9 + sBl(a) + € Bz(a) +

»

i

* V Vw B - 77 V B o . ' * o
E?is work has been published in INTERNATIONAL JOURNAL:
OF CONTROi, APRIL'(1975), Pp.233-34 (with Bojadziev

~and Farooqui).



Substituting (3) and (4) in equation (2) and
equating the coefficients of various powers of €, we °

get partial differential equations for ul;;uz";"

as féllows" ' I . ’ }

,zazul ' azul azul 2 L :
w T * ZQBwat + 7 Towiuy = 0 (t) +’f06a;w)‘ .

R T at S .

+ ZwAl sin¥ + ZawBl,cosw s fo(a,w) = %(acosw, awsiny) -,
g .A (s
azu' Y 82u ' 82u . af
2 2 2 2 2 - 0 w2t

v s T L2 T Y Y T g

3y v 3t | 0
+ (A,cosy - aB. siny + 3u1 +.auljafo; |
; 1 1 Y3y ERETR
+ Zw(A2 siny +7a32‘cosw); : : / L

. . : /
> dA, S ARy e
+ (aBlf— Al da)cogw + (aAl 12 +.fAlB%xs;nw | ‘
_agu | ‘azul ‘Ezu / . 32ui , \
" ZwBy 502 2A15a0c © 2%%15aay T 2BuEgae 0 ot (6)
- ; ) Gl S
R R e e

8 T - ! ',‘1/ N . ' . - .. - o
The equation (5) is a linear partial differedtial

right hand side 'as sum of a function of
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o - ) . . ! ' P <N
t alone and-a function of Y alone. This motivates us
i “to seek the solution of (5)‘in the form. .
ul(a,w,t) = Vl(a,w) +‘wl(t) (7)
T : . . Substituting (7) in (5), we find that vy and LA
satisfy the following differeftial equations -
) 28,2v - 9 . ,
e w” + wv f . (a,y) + 20A, siny + 2awB. cosy, (8)
8 2 1 0 1 awsy :
oY ’ : .
= a%y o -
ﬁ 5t wﬁwl = & (t) = (9)-
. . The equation (8) isJexgcﬁly the same as in the autonomous -
case (1), which leads‘to\thé'solutiqn [3]&
: » 7 . : ) _Q" ) ¢
g.(a)- ©- g (a)cosny + h'(a)sinny A
0 1 n. . n - Y
~v_(a,yP) = + = I , ~(10)
1% 2 ... 2 . 2 . e
- o - W w n=2 1.- n" . .
. ! /\..C » ‘
) ' N
‘ where -
oo2m , 1 27
g (a) = 5= [ f,(a,¥)cosnypdy, h (a) = - / £g(a,y)sinnpdy - -
| S0 : o - ‘
and  to the following valugs for A, and B, :
A= = =i fz7T ' 1npd " N
‘1 . 270 0 fo(a:w)s van ll) H -
1 o ' T (11)
B, = - ZTaw .(f)e fo(ar.w)‘coswdw‘ :



“to asspmé{a solution of ,equation (6) of the form

where ﬁa/dt

’m"\)
60
The solutioﬁrof equatioq'(9) can be fqund siraight
forw‘ard‘." _ = k
~Thus the solution of'equat;on (2) uds to first
- improved approximation is ,
7x = acosy + elv (a,¥) + w (£)] , . (12)
= €A, and dy/dt = o + €B

1 1 -

]

Consider now thggédhapionr(6)“;;2ts>rightAhaqd ;:12

. ™

side consists of a function of § alone, a fungfi§q\g£é£,

.

alone and also the~£¢rMS which are products df'tfigonoi\f

metric functions of ¥ and functions of t. - This leads us’

uy(a,¥he) = v, (aa0) + wy(e) + P ()8 (e)cosnl,

. o o (13)"
4 Q ()Y (e)sinny],

EVER

where tHefnature'qf'¢é(f) and,wn(t}/kill depend on the

nature of thé-givgn fuﬁctiQhAQ(t),.andfthe number of

" terms in the;sﬁmhatfgﬁ*are'finite,' Leo-

Subsﬁituting:of~(l3)'into (6) leads- to differentiai’

. . oo - N v OB . . )
,eqpationsrfpr vf(éfw) and.wzﬁt) awd algebraic equations

for Tﬁ(a)vagd Q;(a).' THé solution vz(d,wT’ﬁBInCi&éélwith'

K
) T q‘



~.

f\ahe case of an external actiqg_nonperiodic fotce

61

‘the solution of the autonomous case [4] and the same is

4

true for Az(a)‘and Bz(a).

Knowing uz(é;wgﬁ),,Az,and‘BZ,'the solution of

(2) up to the second improved approximation is

R <

X = acosy + €ulﬂa,w,t)+ ezuz(a,w,t)! (14)

» N " ) - -5
where " ] A B e
‘ )\F . | _ . . » -
da/dt =.§Al + ezAz s dw/dtf= w‘+»eBl + eZBz . (15)

This is illustrated‘byithe following example.

VAN DER POL'S EQUATION

Consider the equation of Van der Pol's type in’

-

’

i '97§"+ w?x = E(l—xz)%%r+ eEe PYsinve . - (16)
dt” x‘{ »

Making use/o?iormulas (11), (10) and solving

~equatioﬁs,(9) we obtain

3
-a
32w

sin3y , wl(b),= (asinvt + Bcosvt)e-pg,

, <
=
! ~
o
<
N
|
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¢

4 \~
@ .
where
8
o = E§p2+w%-v?l . g ~ 2pVE - C oy
(p?+w2—v2)2 + 4p2v2 (p?+u2fv2>2'+,4p2v2 '
Thus to the first order of -¢ the Soiﬁtion of
(16) 1is
a3 - -Dt :
X = acosy + e[—32w‘sin3w + (asinvt +gcosvt)e Phy , . €18)
where a and y are dg;ermine& by .
o i : E {
da _ é =2 dY _ ’ ,
dt. 7%, §¥1 27 g T e

and o and B are given by (17).°

Let us find the second approximate solution of

(16). The partial différentiél equation (6) now reduces

to : ,
: 82u ' 82u BZu : W -
w2 + 2 2 4 2 4 42 R
Ty “over Ty 4.2 Y
o a a3r 5 |
(Za”Bzv+ 4 "% 128
2 - 2 3" -
. a - 3a Sa .=
+ 33 (=3 + 5a + =5 - ) cos3w
Sas -‘
#»IE? cos5yp + ZwAZSInw
- : - &
, 9 - _

—'EE{(av-gp)cosvt-ﬂ (By + ap)Sinvt}e—Pté052¢

v pe
+ azw(asiqvt + Bcosvt)e P sin2y

2 R B
+ (1—33)[(av~8p)cosbt - (Bv + ap)SiﬁYt]e—Pt . (19)




S .

Aébording to (i3)lwe seek a solution of (19) of.

the form

uz(a,w,t) = vz(a,@) + W2(t) + (klsinvt +}k2

+ (k3sinvt +'k4cosvt)e—chb32w

. . . R
the terms involving Y alone and t alonre and the coefficients

of e_chosvt and e

pt

2 2

cosvt)e_ptsinZw

(20)

Substituting (20) into equation (1Y) and equating

“sinvt gives two éiﬁferential equations

for v, and w, and a systém,éf four linear algébraic\

.. equations for ki, i = 1, ...,.4.

Assuming as usual -in K-B-M method that uz(a,w,t)'

]

does not contain the first harmonics siny and cosy and ¢ .

solving the equations for v, and Qz we get

V2
. 4
S , S _ 2 _‘7a
Ay =0, By =g L ra 37)
. \s. -
- a3 a2 5a5 '
v,(a,P) - (2-= )cos3y - cos5y,
2 256 4 , 307 202
| a z -pt
w,y(t) = (1-3 ) (Pcosyt-Qsinvt)e Pt

where

P = %[(uz—sz)y—ZQBP],‘Q = % [(a?-8%)p + 208V]

B

r—~ (21)

(22)

]
et



i

AN

the first approximation (18) and u

N

SR s - <’ 64 :

»

. Al
From the algebraic system one can obtain easily |

onstants kl, k2, k3 and k,4 bepause theydeterm1nant»

f\\he system is 16[(p2—v2—3w ) - (4vw)2]2; hence

diff\}ent from zero.

Thus the second improved approximate soiutiog of

o

(16) is.given by (1l4), where-the first two terms present

is given byv(ZD);

2
The functions v, and wéfin\(ZO) aré found by (21) and (22).
» . < : . .
The amplitﬁde a and the phése Y in (l4) are determined by -
: -~ . : . /
(15), where Al, Bl,'A2 and 32 are already obtained. - ' . .\x‘
SIGNIFICANT DAMPING FORCE . R : .

The K-B-M method was devéloped by Popov [7] for

the équation

2 ' ' , :
4% apdXE 4 2x - ef(x,9%), % > b2, - (23)
dt2 Sdt o dt . . : S

which models the motion of a material system with one

degree of freedom with large damping. Equatfoné_of that. Ty
N -._ .- - i‘ .

type are important in the theory Qf’automatic control.

" Here we extend the results discussed above : L.

for the equation
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2 ) )
dx o oopdx 20 L oer(x,dE) 4 oeo(y , C2e)
dt2 dt . dt :

i ' . B o,
where ®(t) is the same function as introduced in -

equation (2) and b > 0.

For ¢ ='b the unperturbed equation of (24) has

déCaying solution of the type x = acosy, where da/dt = ~ba
and dyp/dt = w. -

According ‘to [7] the- solution of equation (23)

"is sought in the form (3), btut in tE&s case a‘and-b as
3 o g .
functions of t are given by the differential equations

f —

(2
[N

& il —ba_+‘eAl(a) + e? ceen
5 S ‘ (25)
ay e ' -
o -wt ;Bl(a)‘+f€ cees | -
C , ' &
The equation for u, now is : ST,
T LS ST S S ORI PO I T
a. b 2.2 twgpz Y Teee T 2u5yne T 28benyn
82u | du 'Bu | éu ‘ '
271 1 1 2
2abataa - ab 5 + 2bw 3y +—2Pat + c ?l;
A : ‘ 9B .
= iab;—i -~ bA, + 2awB_.)cosy + (2wA~‘-’a2b l)Sinw
Ba 1 1 S Ba’ SRV

=

P

+ fo(é,w) +i®(t)z, ‘ R (26)



where fo(a,w)>= f(acosw,‘— abcqsw—awsinw) .
‘ \” & .
We seek a solution of (26) of the type (7). _For

vl(a,w) and wl(t)’we obtain

| B
2 L2 N
S0V L0V _ 3 v a0V, T - BV, . .
a2b2 vl * wz L 2abw—~—l - ab?' L + wa——l + czv
2 v 2 oYda - "~ da oY 1
da” QY :
(27)
AV - ‘ 2aB
= (ab - bA, + ZawBl)cosw + (2wAi - )sinw + f (a, w)
] y

-

To ‘solve (27). we develop the functiods yl(a,W)‘
and fb(a,w} in Fourier series in Y. As gsually'wéiiequire
that vl(aiﬁ) does not contain the first hérmonigs which

imply the ﬁollowing differéntiql gquations‘for Al énd B1

dA . : 27

1 - 4 1 o
-—ab—3o t bAlv.‘:ZawBl = f. fo(a,w)cos{dw .
- O - » V}'
. 29)
. - s B
2, 483 1 fz'TT - o T
a’b —a ZwAl =5 0 fo(a,w)31nwdw«. oo o
g . R "
Eliminafing\zz\from (29) gives for B, 2 seeeﬂ&’ .
order Euler's dlfferentlal equatlon whlch can be solved

T b7 : ) . : L < (28 )
‘.dt\z dt» -1 e "'(Z)JB



o

L.osY . ’ "-r - =
easiiy. For ..the Fourier's coeffictents of the function:

& = b e .

V (a &) we get chond order coupled differential’:
eguataons.also ofﬁ%?ler s typea -

-

N

2

A

T The dlfferential equation (28) is linear and can

’
v @ N

g

ée solved stralght forward Thus up to the first:

1mproved approximation the solution of (24) is found.

in the process of flnding the second approximation a .

lot ‘of diffigulties of numerical character;are involved.
" -HoweveTr usuaily‘in aﬁplieations the first a%ﬁroximation

@
=

is -enough. *~ -~ . ) L ‘ :
A . el v . B o v .

~ : - ' : . ‘ P
§ , : .

Let us ,(illustrate in brief ‘the case of significant

damping by the eduétion'bf Van‘der Ro%”s typej

~

2 N . . x>

2 A ' 2 .
. 4 x 2 ‘+ QbQ% + c2x = (l x ¢ )—— + gEe ptsinvtgnr’ (30) -
dt - ,

For the functions fo(a;W) and ¢ (t) we have now
_A ’ a2. ' . . ’ ‘ )
£,(a, ) = -a(1-5-)(bcosy + wsiny) o ;

4 . [
. .

3 - - ' . -
y + %-r[b(COSBw + cosy) + w(sin3y - simp)] , (31)
, - 9(t) = Be Pisinve .- | . (32)
. e

7



'Ihen°the system (29) has the following éblpt%on

1 N . A

Capt e
2,21 I Y
b +w’ y - -

< A.(a) = 2[1 52(1 +
La)y =301 -5

. 2w 4(b2+w2) 1 . - -
‘aSubspituting (33) in the @ifferentiai eauatidns 7 e
da dy - ' oA .
=2 - -pa + = w + S
at ba + ea;(a), gy = w + B (a)
"we -can find a and b. »Torfind the first imﬁféyed-‘_‘
solution x = acosy + e[vl(a,w) + wl(t)] we need to _f» s
‘determine:vl and LA by solving equations éf'the,&ypém
(27) and (28) with E (a,V) and ®(t) given‘by'(By) §§ﬁagi'°ﬁ
(32). ' | , o
n“v‘, (;b
\:\ ~ \A ﬁ L3 I3

NG
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' SECTION II .(SYSTEM GOVERNED BY PARTIAL DIFF. EQUATION)
,1In this case, the Nlbratlng process can be modeled
- T £ v ; b \'.
by an equatlon of the type T . S . "
T 5\ Lo * % 7] - - ) .ylud ! «'v‘, i' ':. . i
P(X)utt - ax[k(x)ux].+.u 7'€F(x u, u q ) + E@(t)y M-j(iizf.
. . o . A % --o;} - avﬁz}' ‘\"
where € is a sma’ll parameter, F is analyti€ in ‘its L

.arguments and ®(t) as in sectidn I is ﬁssubed‘to;be'a
N '-1 ~ -
. well behaved function for t > 0O and bounded as t + %

@(t) may or may not be periodic in t. A mong &eneral'

¢
o . «
i R

case of the above equaqion, when tht'right side is of the

3.

fotb-F(x,u,ux,ut,t) where F 1i's 2ﬂ perlodic ine t has been

étqdied by Keller [21], andeojadZiev and Lardner’ [lO]

P 3
. T -
& . 5 P .

. : . - . s . .
We also suppose that. u(x,t) satisfies a pair of
xboundaryxéonditions. B (u) = Ggfj-= f 2,vwbere ij»invoiveé

the values of u and u at ‘the enﬁs x = Oilx'= L

3 ° )
ASYMPTOTIC SOLUTIONS P T T

For € = 0, the generatingiequation;of (34) is

ES

e 5 . S NP . A
p,(k)utt - ‘8— k(x)u ] + u = O , (Bj(u) := 0 R k| =‘v ]_’2_ «Hr
= - : % ',‘_.‘:-:}‘l ‘ L : (35) ) f
This equafioh bae'e comp;etergef‘of separable-.solutions -

-

Gn

. of ‘the férm engn(x)cos(@nte+;a&) } n.=1,2,... " wherer

> s

. . N s - ' . b
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a_ and aﬁ are arbit;ary constants. The set of gigen

-functions f{¢ﬁ(x)} satisfy the differeﬁtial equation

RGO ] * wip()e G0 = e () =0 (36)

and the boundary conditions ﬁj(¢n) = 0 , which determine

t;e alloweé set of eigen frequencies {wn}: By’suitably <

-normalizing the {¢n(x)}, we card write -

. . ) 2' - , ' . ’ ,v B - T ‘\r.
\_,fk i p(X)q’n(X)q’m(x)dX':}&nm/ | ' (37)"

€

* .corresponds toYthe frequency w

are 2m periodic in Y and t).

" satisfy the diffefential equation o

where 6 = 1 if n = m and § = 0 .if n #m.
‘ nm - nm .

We wish to find the mono-frequent. solution of (34) which -

l ‘.

-

Accordlng to K- B M method and[lO], we seek the

g | -

asympqotic solutlons of (34) in the form yﬂ..' - . d 
. . "%/ L _. 2 ‘H*' ’
‘u(x,t) = a¢l(x)cosw f Eul(x;a,w,t) + € (x?a,w,;) ool
Co(38)
where-ui (r=1,2,...) are 2m periodic in ¢ (in [10], they S

Thg functions a and Y




.

 Hare A_ , B‘;, ur are to be determined from the require~

.

" have:
[ 32ul ' Bzul Bzul Ty Bul
Q(X) + . 2w, = + ] - — [k(x) ] u
@y awz 1 39a¢t o2 4 7 8% “1
= Fo(a;w,x)’+'2wl¢l(A siny + aBlcosw) + d(t) . (40)
2 82u2 32u2 ’ Bzuz 4 du, -
o(x) [w — + 2w + J— -— [k(x) ]+ u
o 1 g2 1 3yot 2.2 o% | 2
3F du oF Ju du .
_ 2! 0 1 1
" Y13, 2+ 5u,, [wl 59t Thc T 9p(Ac0sv
T s X | - .
, GFO ' o
. 3 1 :
_,aB131n¢)auO - + ¢l-62wlA2 +’2A131.+ aAlBl)sinw
. . H - . -
| Y I S R
N (Zawle + aB] - AlAl)coséy 24 (wl 7 aw + aaat)
, 32ul 8 uy .
- ,ZBl,(wl —= + W | (é_‘l)"

71

[

ea;(a) + ezgzga) + , |
U o (39)

b= wy e (a) e’8,(a) +

mept that u satisfies (34) to each order of E;\

Substituting (38) into (34), making use of (39)

Iy . i 2 P - 3/ )
and comparing coefficients of €, € - on both sides, we

Ay



* / het
] /
\ i A
o ‘ 72, :
o . ‘ T : 3‘(“ e L ,/
L Her o x) = F ; Lh T - b 514 o »
Here Fo(a,wfx) F(52g¢lcosw,a¢lcosw, 7awl¢lsinw?. 7 o //
Let us first sconsider equation (40). The function i
ui(x?a,w,t) may be expanded in terms of the eigen- _' 2/
functions {¢n(x)} as o
. [++} . .‘ ) = L. ’ » v
Cuy(xsasy,t) = IV, (a,y, )¢, (x) S € B L
_ - . e e T - L R
Substituting (42) into (40), mulfiplying both sides by
» @r(x), integrating from,O‘to £ aﬁd’using (36) and (37); o
gives Y
, 3%V 2%v_ 8l | |
W + 2w = + + w.V. =F + c ¢(t)
1 awZ 1 oyot at2 1'r A gt
Slr(Alsinw + aBlcosw) ,  | '(93)
"where _ A
- c
- r -
B R \ N e K
L . - oo A
Fr(a’,w)A = 6[ ) Fo(x',a,IP)c)br(x),c.ix : 1 . 74;3: 2
The equation (43) is a linear partial differential - ‘ -
equation’ﬁith'theiright'ﬁaﬁd Sidé’ég‘é'%ﬁm”df”é fuﬂgfipn'lﬁ'”f” T
- -of {&,$}~aﬁd~a—fﬁﬁtf%xﬁrf&;f—aiﬁ%ef——¥hisfmetiyé%es “si
A - N
5 ' L.
: ! - » - \\\

‘
i fnd -
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v N
to $eek:the solﬁ;ion 6f‘(433 in the form-.
Ve(asy,t) = Pl(a,y) +Q () . , (44)
Using this in (43), Qgégbtain N
. , . % s
2‘82Pr 2 o
wy aw2'+»uerPr =-Fr(a,w) + 2wl&lr(Alsin¢.+ a?lcosw) (45)
. S ) ,
v
and g
Q" " wlq = c o(t) . | L (46;‘
r r°r r . i ’
The solution of’(éSj'can be found by expaﬁding\Pr,and L
Fr‘in Fourier éeries:j e 7 } o , o Alﬁi
B 4 _ f_l_ - . - - ‘ ) ,v'.) .
Er(a,w) = ZAOr(a)‘f hii [An}(a)cosnw + an(§)31n§w] -
- . (47)
,Ff(a,w? = EPOf(a),+;n£l [Pnf(a)cpsnw + anfa)sipnwl
. . ¢ . Yl .
‘Subétitutingv(ﬁl) in (45%, we get {
. , A . .
12 o 2 22, . SU -
2 Wghor T E (0pm mwpy(a,cosny & By sinng)
- A :
=1 P ;t ; (f‘ cosny +;Q éinnw)
2 " 0Or ; nr Frar T
n=1 . ,
V . e “/ - N
.’f Zwlélr(Alsinw'f aBlgosy)

- 4 - B N -
/, N \ = s
s
/ B . N -



n’;} - v B kS ' . ¥

This gives for r # 1,

Pnr . IQnr : : o Por
Aar = A 7 and Ay = T
w. - n"w wo. - nw i W
1 T 1 r
Thevcoefficien;s Ail-and»Bll remain'undeﬁermined. *Thus,‘

we assume, as it is custom¥dry in the K-B-M method, that
. ¢ ‘ N : . A, : - : )
'Pr(a,w)'does,not contain the first harmonics in Y.

Hence'Pf(a,w) are completely determined.

- Fl(a,w)sianw s

(48)

I Fl(é,W)coswdwv.
0 ,

P

Th@~equatidn (46)1can’be eaéily solved by elementéry

cmethods. ' f//’;;,,’aefiJ/z : ' .

»

Thus the solution of (34) up to the first improved approxi-
' . ' A
Vmationvis

. ) 43@, T
P ey + @ ()19 ()

u(x,t) = a&i(i)cosw + g 7 )
- S (49)

a = . i = -+
where a eAl , ,,W wq €B
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P
- L4

As an iiluétratiog;'let us consider again an

equation of‘theAVander Pdl type. -

fu = el - u¥)u 4 epePtein |
U ‘uxxv+ u = (1 - u )gt +.£Eé sinvt , »(50)

where E, p,V aré'positive’constants.u Let the boundary

conditions be -
u(0,t) = u‘(,Q,,t)~=’ 0o . : I '»-(51),
: . |
in this gase, the orthonormél-eigen functions {¢ﬁ(x-)}~ .’ R
- ! L f 4 ) L

and the eigenfreqlencies {wn} are given by- ‘ ‘
: : o ' P K

’ o 2 ;2n2‘ ’ :

¢n = /2 51n(—zx) s w = 1 +'——§— . (52)

2

-

T whefeas, for Fo(x,a,w) and ?(t), we have:

—'awl[l - Zazsinz(l%)coszw] - Y2 sin(%z)sinw

Fo(x,a,W)

Td(t) = Ee—ptsinvt ”
Then the system (48) ﬁas the soiqtion
_ at 2 _ ’ ' N .//
Al = 16 (8 - 3a ) . - Bl = 0 . (53)
The equations (45) lead to the solutiohs L
;;f; e o T - - — s e e R - . e N E R St L




=3

~

2 " S0 36 . . . ’ b
N a’f . v ; o L
Pilaw) = -3 G sindy L R (a,0) =0, forx f 1,3
' a 2 . f '
and - P_(a,y) = - ! [ _— siny + —1 sin3y]
‘ 377 B 8 2 2 2 - 9w2 f
e . w3v wy o w4 1 |

F ' :
The equations (48) lead to the solutions

' CN 2 2. |
: 9/2 8E -pt (p&+ w,_ - Y )_sin\)tv+ -2pvco$v]:
Q (v) = S o P 77 22 ]
' ’,_(pn+wr—\))v+4p'\)'
LN @ -}f”r is jeven

0 if r is .odd.

Substitutihg these values in (49), we get the fipet.

improved approximation for the equation (50).

—
-~



CHAPTER 3 : ' - K

c

THE EFFECT OF KINEMATICAL NONLINEARITIES ON

4

THE VIBRATION FREQUENCIES OF A STRETCHED STRING.

. . . .
"INTRODUCTION, M ' oo .

Q

In the usual ‘'elementary discussion of the
transverse vibrattons of a stretched string, it 1is
assumed that the motion of the particles is entirely

transverse and that the g@?dient of the transverse

o ;&

displacement remains small. With these approximationsy,
the governing equatibn is shown to;reducg’toftheewavé'
‘equation. In a more complete treatment; there is a

non-linear coupling between the tfansverse and -
longitudinal modes.of vibration arising from purely

-

kinematical sources. So, in this chapter we examine

3

the effect of this nonlinearity on the natural
- 7 )

frequencies of transverse vibration (i) when no damping -

// .
is present (ii) when the transverse damping is there.
" 3 . 7 _ v

In section I, we investigafe the case when there is no

.

damping and in section/fI we investigate the case when

-

,dampfng isfpreseht.//

.//A)




SECTION I ' , : .
- . B rd ~

a

WHEN NO DAMPING IS PRESENT S

..
Leﬁ x be a ;oordina;e along thé string and t be,
tipeiand let u(x,t) and v(x,t) be respectiﬁély the longi—
tudinal and transverse displacemEnts‘of the string (éee
Fig. 1). Consider an element (x, x+dg) of tﬁe string,

which at time t has length a4 giﬁen by

-

1/2

N X

\ 2
dL = gz[(l + ux) +~Vx]

[x + dx + U(Mx,t) A. v(x+dx,t)]

[x + ulx,t), v(x,t))

x0T Guax0)
Hﬁkli,

(Here and in the future we use suffices to indicate

partial,diffgrentiation). If dxo,is the:unstrgtched

2

—

A

* n ' i
This work has been puplished in UT?LITAS MATHEMATICA

Vol.6(1974) pp.307-320 (with R. LARDNER) .

e

-

4
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©

length of the element dx , then ‘the constant imitial 6 .

3

'strain e is given by 1 + ey ~ dx/d%oy; and the strain .
. R . - . v A . ,‘
at time t , e(x,t) , is given by - - ’ o
d% - dx R ' L
T 0 _ : : oy 2- 2.1/2 :
e(x,t) = = = (1. + eo)[(l + gx) -+ VX] 1. .

0 | R

The potentialiand kinetic‘energy densities of the

string are then respectively:

-

! o1 2 2
- W = 5 re” , T = 3 p(ut + Vt) , -

s

where A is the elastic modulus and p the mass per unit’

- 4

length of the, string. T 1t is apparent fiom fhe first Oi’

these equations that we are assuming the string to obey
. - ) o i : .

Rooke's Law - we are‘igéluding-no nonlinearities of

2 v

material behaviour. Usipg these energies, tﬁe‘Lagrénge

equations of motion become

E]

!

d

=

3 8T _ 3
3t ¢ aut) = 3% ¢

I
l

"8 3T 38 oW
)oooar Lav ) Tax () e
X - t X

Q
Q
<

-u

P

After expanding_w apd'keeping only terms up to fburth ofdep

n u, and vx',-these equations of motion become

3 -
—

- R Pl
' 2 T R s R Tl

u .- c.u = c (vrv = u Vv, - 2 u vy
tt 1 xx ~X XX XX X X X Xx' % o

. (1)

2 .2 - . - o

v - eV = ¢c“(u v+ Uuv -2 uwvVvu -uv: 3 .2 .

tt 2 xx XX X X XX. X x xXx X xx+ 3 vaix)'



; 80 N
Here we have introduced the definitions K “
' 2. -1 2 iy -1 2 2. 2 2 '
A(lL + e = + = = - .
( eg) P Cl,’Ler({ .egle ¢y © el <)
ci‘and ¢, are the usual velocities of Iongitudinai andg .
trahsverse wave propogation on the string. . )
_ We intend to use a perturbation method for the
; ‘ . ' ™
solution of equations (1), and to make it easier to 'keep
track of the various orders, we shéll‘replace u and v
by €u and ev , where € is a small parameter, Equainns'f v
(1) then take the form. . ’
u - ézu = ¢F(u v O £)
tt 1 xx x’® "x' “xx’ “xx? )
: ) e
- , o (2)
2 L : .
VeeT “2Vxx T EG(ux’ Vit Yxx Vxx? €)
where .
» N 2 ! '
F =c¢c¢v v_ - €4 - 2€cu v .v_)
X XX XX X X X XX
. 7 ‘
AP ' o 2 2 T
G = cz(u v +u v -2 e€euvu =~ euv__+ 3 evv._ )
) XX . X X XX X X XX X Xx 2 X XxX7. ok

3 - -

. e - ’ ‘ - 2
0f course we have already omitted some terms of order ¢

-and higher from F and G , but since we shall be finding the

s 2 . — . .
solution only to order € these terms do not matter.

P - - ¥ Ty
v

ey

T RPRETINREE F LAY

“
|
Bgbauiba: s pomte i G
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2

L S

\ L

: - In‘addition to the partial differential equationé\

(2) , u and v each satisfy -a pair of boundary conditions
L s - P . - A

g
a

»
. . ) .y . . .
_with réspect to x at the two ends x = 0 and x = & of

S . . -

the string.v‘W¢ shali_wfite fhese conditions in the

©

s

L4 ) ~s . n y N . -‘ ‘i-’ . T
involving their values and the yalues of their derivatives

stbélic form l§i)(uzg= o, réi>(v)*c'o (i F'i,Z}:., N

e »
I3

solutions of the form

.
. N

u(x,t) = Anén(x)‘cos(ﬂht + Tn),i

~ , . - s
. ) co t + - (3)
v(x,t) : an¢n(xr) cobis(wn wn) | . ’
R ] . | ,
wherk A, a , ¥ and y_are constants and where the eigen
n’ n n -~ Tn. o .
functions satisfy fhe differential equations -~ _ -
200 4+ 25 .o 2 . 2, _
“Qnén + clén ’O s wn¢n f c2¢n 0 .. . ~A4)
, . . P

\

oy (1) (2) o
The b?undagy conditions ,6 i (Qn) 0:, ¢ﬁ'i (¢n) O‘,

(i = 1;2) , enable the set of allowed efgenfunctions and
o R . . . - S "

&éigenfrequencies {Qn, mn} to Be determined. It is a well-

Known result that if the boundary conditions are unmixeéd,

o . -

If we set ¢ = 0 in equations (2) we obtain the
’ , . i . it Jtions, u .- ¢ =
correspondlng generating equat qn ) et 1% x ,
2 ’ ’ ' :
V. - X,V = . These equations possess sets of separable -
Tttt 2 XX~ 0. < au P - - pal



i " . ) ¥
® - - .

the éigenﬁuﬂcgioné fgfmvqoﬁpiétg“érthogona;‘s ts, andi
by suitéble norﬁaiisatioﬁ'We caﬁ’arraﬁge thgpfr
. % ) 2 | ‘ QI v ’ . | P
‘; b ()6, () dx "=’ ; '@n(‘}i);‘?»n{(x)‘ dx = 8., - | ‘-.(5)'1

3

. We wish,tO'fiﬁd solutions of the nonlinear system

-

(2)/which are close to the normal‘mdde’éolufigné (3). of
" 'the getterating system. In particular, we afé_ingefested
"in the solution which is close to the basic mode of
\ ) . N -

-

-transverse vibration,

WGt = 0, v(x,t) = ag (0 cos(ugt +¥) . (6)

.

We shall seek the solution using an extension of the

\

Krylov-Bogoliubov-Mitropolskii asymptotic method.

The asymptotic solution

The asymptotic method of Krylov, Bogolidbov and

L

, Mit:opolskii [3,4]rha; been extended to paiéigi‘diffgrential,
equations’by Mitropolskii and Mﬁéeenkov [9] aﬁaxBajad;iev
‘and Lardner [lO,ll,lZJ.r The method may readily be eﬁ—
tended further to systems of paftial differenfial equa-

tionis such as equations (2). In accordance with this

method, we seek the soXYution in the form



b

\‘ " .' 2 o 0] -‘ ,V"'.L' ! s v - i
E3 S [ -~
.- -u(x,t) = I .¢€ us(~x,a,\P)~‘,' ' < (7) :
‘ ‘S=kl~ ) "~./ . -: \ . '~;
T . ¢ . . ‘ -
. " » . . S 3.00 - .» . . . -
s . ; s . -
;v(x,p) =‘a¢lﬁx) cos’Yy + L~ E«vs(x,a,W) s 5. (8)
- Yo ST s=1 R : Co v
£ IR Co T . o
" where“the fuﬁctiqﬁS°{uS , vs} are abspmed to be X2m. - o

peribd19 fuh6tions dﬁfw'amd'whefe a émﬂ m‘are ﬁqnctioﬁs~
. . B [ R - . - ‘»ﬁy,.ue ‘ B

4

¥ . R > °

of -t assumed to safisfyagifféreﬁtiai equations.. of the
~ form ’ ' T
- .
-' da’ m S ﬂ . ‘ ot S .A > . o N
— = = ) + R to - : ]
v I € As(a) » dt . wy | z EABS(a)‘ (9)
o os=1 . s=1. , N

The functions {As(a), Bs(é),‘us(x;a,w), vs(x,a,wy}'are
f . . N - ) .
to be determined from the requirement that the solutions '

(7) Aﬂd (8) sﬁould gatisfy equatioqs (Z)ﬂ

¢

Iy

It should be noted that if we set- € = 0-.in
equations (7) - (9), the assumed solution reduces. to .4
the basic mode (6) of transverse vibration. -

‘Subépituging equations (7) - (9) into equations

(2) aﬁﬁ.comparihg the coefficients of successive powers

K

of € , we obtain a hierarchy of equations for the functions

{u_, vs}. The terms of zero order in €& cancel idepti-"  #°
S £

Do v . I 2 o
cally, while the terms of orders € and €& give the



~ftollowing four equations.

-

84
T -
; 2 " " ’:k~ 2 “‘27 .
c'¢l(x)¢l(x) a cis Y  (10)
% A r . »aﬁzvl o 3{71}
= t bt o ;
= c a COS' w [¢1(X) Qa 2 + ¢1 (.X“) 3X VL
 i32ul ' ,Baul o
2 w,A -2 w. B . (11)
Y171 Fa9v ! 1§ Ly, -
= 2 wldﬁrl(x) ‘(>Alsin~ v o+ aBlcosA‘w') ' (12)
=,¢l(x)(2 wlAzsin Y } ZawlecQs Y
o aa, , e
| -.Al ia co§w +IQAlBlsin y
| dB, )
+ aAl 13 sin Y + aBlcos P) ) |
. 2 7 )  °’
: . 0 u,. : du
2 g .1 C 1
+ c¢c“a cosy [pl(x) : 5 + ¢l(x) e } .
o 3x < . .
3 [ e e
3 2.3 3 2, '
+ 5 cTa"cos %—Ql(x) ¢7 (x). - -
. 82vl B?Vl
- 2w (A —= '+ B._ . ) (13).
171 3a?d 1 2 T A =
; Yooty o
- } s



Trespect to x and Y

|
EEIN

u_(x,a,9) = I [3
: k=1
ey 1
+ T
n=1
(x,a,y), z
k=1
+ T
) yI1I= l

(s=1,2).

(10) -

-caéfficients of ¢ (x) or ¢ (x) in these equations wé obtain

©

in the forms
(s)( )

( é )(a)cos nw + B(S)(a)31n me-] k(xj

7 ( (i)(a) cos ny + D

In solving equations (lb) - (13) we expand each

of the four functions ul,‘uz, Vi Y, in double series with

(14)

(S) (a)sin nw>]¢ <:e)

(15)

Substituting these expansions into equations

(13) and using the conditions (5) to compare the

3

a series of algebraic equatlons for the quantities-

{A(S) (S), C(S), (S)} Writing down first of all the
nk' nk nk \ » , g : ,
results de%ived from -equations (10) and (lZXVfor uy and yl_g
. . .
we have . .
1 .2 (i) ' > 2 B ( ) (l;'ﬂ”' o
E le;% + ,,Z,’, (Qk,:' n U-) ) QA COS Q,w + B sin DUJ)
: n=1
= % gzc?Kk(l‘+'cos wau‘ (1l6)

-



e,
v

.. 8%

[ ) LY
o - @ S ')7
L wzc(l) + I (wzr n w )(C(l)cos Yy + D(l)51n ny)
2 "kT0k -~k
- n=1
. g i= 2 wlékl(A sin w + aBlcos-w)
(17).

where'ékﬁ is the Krdhecker delta and where the constaﬁts
Kk*are defined by -

o

SR ,
Kk = f ¢1(X) ¢ (X) o} (x) dx L l?,‘ . (i8)
0 | S

From eduations.(l7), considering the case k=1 , comparing
the coeff1c1ents of cos Y and sin w shows that Al Bl=,0.
For all other -pairs of values of k and. 'n , we see that

o (1) (1)_ : ‘ (L 1)
nk = an_— o . We may.also assume that Cll__ ll =0,

7-since any terms such as C(l)¢ (x) cos w ‘and

(l)¢k(x) sin ¥ in v,

. in ‘the solutldﬁ (8);f,From equation (16), comparing the

different coefficiéhts'of cos nY and sin nyY , we see that

all the coeffic1ents B( ) are zero, and all the A(l) are
zero except A L ‘ _ N

- .22 : 2 -2 .

(1) _ a’c Kk 7 (l) _ ac Kk - »
AT = ——— = - . = (19)

0k Q2 2k -42(92 _ 4w2)
k i 2k S - .

Since Al = Bl = v, %?Q , equation (11) for u, has

a zero right hand side and we readily;see after making use

-

chld be.1ncluded 1n,the first term



87
of the, expansion (14) that U, is also 1dentically zero.
The rlght hand Slde of equatlon (13) is also considerably
931mp11f1ed, and after substituting»the expansion (15) we

obtain that

N C N (2) (2)_,
,2 k 0k ﬁzl(wk' n w )(C Nk cos nw + D 0k gln’nw) - o
:= 2w 6 (A, sin V + aB.cos ) +“é c2a3a (3cosw ¥ cost)C
S1Pk1 2SR b oToaB, 8 %
. . J i
+ ac2 Z Bkﬁ[é Aéi)cos v + ~nA(l)(cos w-*eis Bw)} ”tg )
- : (2o
where N S & -
~ ,
2 ) \
= - [ 2 1" . t o
ak - f ‘q)l(X) cbl(x) q)k(X) dX ’n‘ :., .- N )
0 ) g ) . o ~
2/ . . 7 - N . .
o A T  n ; " e - ) -
Brep = T L0100 0p(x) + 07 (x) 0;(x) 10, (x)dx . 1y o
0 a T e : ’ . = .
Again comparing the terms for which k = n = 1 we obtain
Aé = 0 and
2 2 2 } )
- _ 32 a_c lc™ (1) (l) g :
Bo m - T8 Tg %~y on Io(Agy oA, )Blz (22) -
- , 1 3 1 2. 8
B | ‘ : R <

As before we may assume that C(Z) = D(z) = 0»} Compéring

11 11
(2
an

the other terms in (20) then shows that all the are



.

. C

N 88
zero and all Cii) are zero except for -
.‘ 'V 'v .. B V ) A R : V - -
(2) ___1- .9 .2.3 12 (1), , ()., U
Clk = 3 [8,c a“a, + 7 ac z (AOQ + A22 )Bkl] (k#1) .

W, - W : o ) ‘ L
“k 1

and ' . . Lo T T N \(23) _
kz) - 15& ' 3 23 12 (1) . |
3 = —E-*—~—§’[§ c a ak,+ 5 ac z AZ% BkR] (all k)'f N

oWy T 9wl £ -

Substituting’the results (19) into (22) we obtain -

thaf'B = Eaz where

2 )
2 , . 392 - 8wl ;
E = - P wz [9@1.+ be i ZQZ(QQI_ sz)/Kk Blk‘]' (24)
| . ' k "k 7 . .
Sincé A and A havé'both been SHown to vanish, 7 ‘;L

: 1 2
it follows:fiom the first of equatdons (9) tha;'a is

2 . ' o y .
constant to order €  , which is an expected result in a

L4
system which involves no damping. The second_?f equations
(9) may therefore be integrated, giving, to order
2 2 2 . : o ) R
g™, ¥ = (w1,+ € lea Yt + %O . }
Thus to order €2 , the solution becomes
. V u °
u(x,t) = Eul(x,t)»-,° o
a . i ] ’ ,,z: ’ 2 2 L ‘ ,2 ' oo I J‘u%
v(x,8) = a¢,;(x)cos[w t(l + e"Ea™) + Yol + v, (x,¢t) S

s
o
e

£
g



. with u, and ¥

1 being given by equati%ns>(l4) and (15)

2

; s : . . ' . g . e
in which the pon-zero coefficients are given by equatiomns

(19) and (23). Béaring in mind thatvihe physical‘
transverse displadement is ev(x,t) , we seew%ﬁst one effect

]

of the kinematdcal nonlinearities is to jlncrease the

natural frequency of the basic mode from its linear value - .

of w

1 by a factd6ér which is one plus E times the square. of

the‘ampl}tude of the vibration- *
5 / . [y N

o Finally, we note that our analysis of equations o

such as’ (16), (17), and (20) is valid‘oh;y if (Qi - nzmz)

1
2 2 2 : . . e S
and (wk - n wl) never vdnish for any pairs of values J6f n

and k (except of course for k = n =1 for‘the second of
these Quantitie§)x This condition is generally fdund to

be ne@essai&sﬁhen the KBM method;is‘appiied to éontinudus l . 
systeés/[Q,lO] . When it is violatea, fhe system is said ¥
go display internal resonance, and fhe extension of thexv
KB&jigthod tp such\sys;ems [ll] involves considgr;bly\more_7a

complexities -than the method as used here.’

fe

A partiéular example

or =7

e

Let us choose units of length in such a way that

o P

i
the ends of the sttring are at x = 0 and/x = 1 . _ We:

2
o

. consider the case when the'Poundafy conditiong on-u and Vv

< ) c



are of the form

u(0,t) = u(l,t) = .0

v(0,£) = 0 , hv (Ll,£) + v{l,t) = 0,

~where h is some constant. This corresponds to having
. ' " ) LR )
the ends of the string fixed except for the end x = 1

] -

which is held by some elastic fixture in the‘transversé

direction. The-normalised eigenfunctions and eigen-

-

values satisfying equations (4), (5) and the boundary

conditions are .therefore ’ ’

® (x). = Y2 sin nmx , = nme, .}

* n - - n ) 1
: L= oS

?n(x) = Hn sin qnx s wn =:9nC2"

where ‘ : - : :
2 ) 7 .‘ 2 2 P*.! N

H° = 2{1 + h(1 + hiq%)"~ e (25)

. 'n - o e n - . i .
and an(n = 1,2,...) are the''roots 6f’the equation

2. 9

tan q'+,hq =0 . - (26)

1‘Usin§ theée:eigenfuncticnsfigfthe définit}ons
(18) and (21) we obtain that, N

Q@ . = o
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(-1)"nmHiq}"
1 iy
. K, = >~ sin 2q,
< /Z(n T - 4ql)
: H4q4  - sin 4q N
SRR 3 S 1,
1 3'8 4ql B
(- 1) anZ (n 2p2 2q2) ,
l l : 1%
Bfn = - — sin_2q;- .
) ' /Z(n ﬂ - 4ql)

Substitutlng these into equatlon (24), the sum over k ’
14 . . @ . ‘

» ‘may be performéd using the result that . ’

[=¢] .
1 1 T '
r . = - — cat TwO , .
n=1 n2 - az 2a2 20 ’
and after some simplification we obtain that -~
H§q1 . - -
E = 256z {4ql(3tr)(l:r) —jr(4—3r)'31n 4ql& —_ .
' C 2. . -1 2 , |
- 2 sin 2ql[ql (1-r) +/?(l—2r)cot(2ql/?)]} .
where r = cz/c2 = e,/ (1+e,) i
2° 71 0" " .70

Observing that ql is the smallest root of equation

1]

(26) and that H, is given by equation (25) we see that E

1

depends only on the two parameters r and h - that'is on

.



e T

the initial strain in the string and _on the-elasticity of
. . ) ‘ 0 R v L
o . ‘ ) o . o -
the end fixture at x=1. Curves of E against h for—
] . ) L
. . o |

different values of r are shown in Fig. .2. ~

-

It can be seen that E becomes infinite when
qu/; =;kﬂ for any integer k . In'Figﬂ‘Qifth;svig seen . -

to occur -on the curve for R;=,O.% at.a prdximately h = 0.3.

This condition is.equivalpn¢~fovﬂk = Zwi and so

o o R . ¥ oo i LW o
corresponds to anligterngl resondnce .betwe'en the basic

5

transverse mode and one of the longitudinal modes. As
remarked . on page 89, the above derivation -

becomes invalid for intewnal resonances, and‘theréfore;

o -

.

the'xeaults-féf E are not ﬂéaniﬁgf@% in the neighbourhoods

. of such asymptotes. <:ﬁ
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*
SECTION I1I

™~

' DAMPING PRESENT . o .

.If vy denotes the coefficient of transverse damping,
then as in (2) the equations of motion of the string in

- °

this case are

2
* - = s
Yet C1%x. E:F(uz‘t’v;‘(’uxx’Vxx’g)
- . . o o Gn .
4 + §¥v ; c2V ,; EG(Q v _,u V. ,E)

tt - t 27 xx x’ x’7xx’ Xx

o . < ’ a
If we set € = 0 in (27), we obtain the corresponding

LY
generating equations

|

tt 1 xx i .
“ 4 <
| o ol
(0) (0) _ 2. (OYg_ (2) 5,0y _
Ve + 2yvt - S,V é;— o, ‘Bg? (v ) =0

K ) ’

The problem (28) possesses sets of separable

solutions for,u(o) and v(q) which can be written as
* L
4!----«9 . . " S 7_ . *

This work has been accepted for publication in ACTA

°
%

MECHANICA. .




W ,e) = ae () cos (2t + wn> o
o~ n-= 1,2,3,...
. ) 3
-yt . (29)
v(o)(x,t) = an¢n(x) e cos(wnt + ?n)

~where s oas Wn, wnrare arbitrary constants and where

the éigenfunctions satisfy the differehtial.eqﬁatioﬁs

2 " 2 P . ‘ 2 " 2 iy =
cl®n(x) + QnQn(f) = Q, c2¢n(x) + An¢n(x) 0 .
B » (30)

o 2 2., .2 |
vwhere An»— wn + v (n = l,2,..:)

-

We sh;{} assume that the damping is less than érifical;

i.e., v < An for all n, which means that all wifare

.positive.

‘.

The bdundary conhitioné ‘£§l>(Q%) = 0 and -
iZ)(¢n> =0 (i-= 1,2), enable the set of allowed,

eigenfunctions and eigenfrequencies {Qn,wn} to be
Y %
determined. - If the self-adjointness criteria are ¥

“w

<
oy

satisfied by the boundary conditions, then the setéﬁbf

functions {@n(x)} and {¢n(x)} form a Sturm-Liouville
2 -

4gy$tem and they have the property'that besides being

_complete, they are orthogonal.

By suitably normaliéing @n(x)'and ¢n(x), these

functions- can be made to satisfy equations (5).
. . .



The general solution of the generating system

(28) can be found as the sum of these separable solutions.

We aré interested in finding the solutions of fhe
nonlinear system (27) which are close to'thernormél mode
solutions 229) of fhe generating system. in pgrticuiar,
we are interested in the ;olutioﬁ which’ is cIﬁse to the

basic mode of transverse vibration:-

u(o)gx,tf4=-0,~v(o)(x,t) f aoe_yt¢l(k)lg§séwit + wl) (31)

. 5,0 . . R :
. < . - P . s . . o

. s o ,
General asymptotic solution. : - T -

As in [12],we seek tfe solution of (27) in the . <::—i

; u(x,t) = 0 + ¢ e%u (x,a,¥) (32)
s=1 s ,

_-Y(_x . *® AS o

v(x,t) = e ¢l(x) cos ¥ + L € vs(x,a,W) (33)

where o and Y- are functions of t satisfying the

differential equations .

: da _ 2
3t - 1 f eAl(a) + € Az(a) + . . . .
R . R | (34)
4y 24
qt wy + aBl(a) + € Bz(a) f P .

This approach is a modification of Popov's method [7].

LY



"of the transverse vibration.

e
The functions4d_,v_} are assumed to be 2T periodic
in Y. The functibns {Ag(a),Bﬁ(a),un(x,d,w)“vn(x,a,w)} are

to be determined from the gﬁquirement that‘h(x;tf,’ﬁ(x,t);

L3

satisfy (27)‘t6 each order of e. . o - ~
.,,q-,‘ﬂf? R A
In addition, we also assume that w: (n # 1) is not
) . - g 2 L n - 7
an integral multiple of wi';&i.egg.wnz# pw, , for p any
integer and n > 2; o o
It should ‘be noted that for € = 0, the SOldtibﬁ$<

-

(32), (33) of equations (27) reduce to the basic mode (31)

Substituting (32)—(34) iﬁto equgtions (27) and
comparingbthe coefficiénts of sucéessive powers’of £, we
obtain a hierarbﬁy of differential equatioﬁs fpr'{us,v;}{
The terms of zero order in & cancel identiéally,'while‘r
the termsvofqdrdg} é and Ez.give the followiﬁg four

-

equations.

82u 82u >52u 32u -
1 + 2w l‘+.w L - c2 1
40,2 1 300y 152 17,2 '
C Tl ol e M %eos? y L (35)

.



- ' . ) ;“%'
S S
. ‘s .. A 7_ | {t " . . . . o . . . ‘
BZﬁV?‘;Jn“ 82u fazu ‘Bgu
2 w9 Uy 29 Y 2 2%
27+ 2(1.):1 + UJl 5 Cl 3 .
oo : aqaw\ oY - 9x
2 - o ‘ | SZQ v, -
= ce %cos ] [¢'(i) 1 n 1 -
v 19—k ) = |
‘ ' dx . x
Co <A L T S T 32u1>
o L + B + A w, ==, + w,B ]
. : N Baz 1 9oy ‘ {’l aaaw 1 l.‘awz
da oa da Y o L ’ e
3%y . 3%y 5%y 3%y v Ry
— ot 2wy a/al + “i -5% - Cg g + ZY( 3 - Wi D l)
Ba” 2ov 3y ox? N Y

and

32y : 32y ’ 82v_ B/V v ov

—=2 4 2p, 2 4 gt 2 2 2 4 oy [—2 4y, —2 2)
542 1. 303y 1 a}pz 2 5.2 ( da. 1 JY

= d)l(x)e_Yo“[Y daz cosy + o " siny + 'ZL’UI(- ,YA,zjﬁin;p,:;t'Btzclosjp;)

2 9 _ 34 dA
-y Al cgs‘w,— ZYAlBl sin ¢ f;yAl 3o C°s Y
+ A dBl sin ¥ + 32 cés [

1 da: 1 - ' -
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. , |
au d u o
(2e71 | 5L 07 (o) + Lot cir] cod¥ - 2 e 3“Y°‘<¢

90X l: ~— . v . }

.

(x))?

> » dA., ov, ~dB 9v ’ 3°v : BV
o 3.1 %y M1y 0 21 1E -
P1(x) cosT ¥ - T3 THe T Tde oy - A1 ol Z‘A_lwl ErE
Bzvl - ,gﬂvl ‘e;,kA BvlL Bvl
- 2By Faay 2w By o’ -2y (Al ot By N ) (38)‘ .

o

In solv1ng equatlonsﬁ(BS) (38) we eﬁpand each of
"

Fhe fouf functions ul uzia 1° anas dou le Fogrlgn se#ies |
in Y and. x using the harmonic basis foxr/y and theibééésih o
ién(x)}, {¢n(x)} for x: ‘
u (x,0,9) = I {1/2 A(k)(a) + 1 1A% cos Ry
r=1 n=1 0T //
. B (k)\'::i . ‘ . - . *
. o - _ 1 f B . (a) sin nW]}@r(x) (39)
o {‘4;5 L
v (x,0,0) = = {1/2 ¢ ) + 2 1% (a) cos nu .-
k -r=1 Oz n=1 nr. g -

+ @ (@) sin nplle ) (40)
(k = 1,2).

Substituting these expansions into equafions

IR - -~

ok

(3%}:(28) and using the conditions {30)~to compare the

coefficients of & (x) or ¢E1x) in thes® equatlgm5+ we. -

(k) (k)

obtain a series of differentlal equmlons for A

nr
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e -
Céi) and D(k) . We write: down ffrstro$ all the results
‘derived from equations-(35) énq “37) for'ul_and Vl -
which give: : ’ ) o »
} bﬁ
1 ' ' - 1 1
1 ér) ‘ (1) 2 d Aér) dBéri
2 ——2—— + Q AOr ] z - + -2'nwl —d—'— o
da® T ~ n=1lt dao @
+ (D nzwz) A(l)] cos ny -+ ; [dz éi) - 2nw dAéi)
‘n=1l 2 1l da
do , v
/‘“\_ S
/ 2 P
»~‘/ ~%E o
+ (Qz - zwz) B(l) ] sin nw = % c2Kre YOL(lc.,,+ cos 2y)
. (41)
201 (1)
1 or 0 2.,(1)
2 [ >t Y g A5 Cor L
do ~
. 2 (L) (1) (1)
+ ; [ nr_, , dcC + 1 nr + (02 - )C(l)
e 2 ¥ Tda “1 Tdo
n=1 . de 3
(1) J
‘ + 2nwlyD - cos ny
LD e
o+ I [ > + 2{y qo nwl 1o
n=1 da
; 2 2 2. (1) ( )}
+ (A - n wl) n ? wlyq sin ¥
—yo dAl h dBl
=\61re [y e + Zw ) cos w + ( - 2Y“1A1) sin V]
- (42)
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where the constants Kr are defined by
-2 . ) : i .
= f 1" p L :
’\> Kr ‘f ¢l(x) ¢l(x),¢rgk)¢§xw. (43)
0 ' T
From equation (&iﬁt éonsidering the case r = 1,

comparing the coefficients of cos*@ and sin ¥, we find

that Al = Bl>= 0. For all other pairs of vilues of n and
r (except n = r = 1), we have C(l) = D(l) = 0.
- ¢ ] : nr nr :
The constants Cii) and Dfi) remain undetermined.
L « (1) _ (1) _
Returning to (33), we see that we may take Cll = Dll = 0

4

since any terms in vl(x,t) proportional to ¢l(x) cos Y and,
¢l(x) sin ¥ can be included with the first term in the

) Y
expansion.

From equation (42), comparing the different co-

"efficients of cdsjnw and sin nYy, we see that all Aﬁi) and .
'ﬁ(k)vare zZero eXcepf ‘ C o F . ' - - -
nr R . .
1) _ ‘27 -ya 2 2.
AOr. = c Kre (Qr 4y7) .
(44)
(1) _ _ (1) py _\2 2, 2 2
Ay " , By /(SY‘*’l) = &R K /12(P] + 64y w])]

o
2 2 2'.

where Pr = er+ 4y _—_4w1




»ul(x,a:w2\=72 (1/2'Aéi) + A(f$ co?“éw +VB§i)sin ZW),ér(X>
_ T -~ . . . . : ’
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Mhus from (39)'and (QQ}, we have

2
‘\K (45)
: vy (x,0,9) = 0
/- ' '
LW (D (1) .
where AOr' ’}AZr and B2r are g}venlby (@4)_ 
Since Al = Bl =v, = 0, equation (36) for u, has

2

a zero right-hand side and after making use of~expansion

(39), we readily find that u, is also identically zero.

2

The equation (38) for vz'is also considerably simplified

to:
2%, olv, 8%, , 8%, 3, 3,
+ 2w + W -~ ¢ + Zy(—— + W —)
8&2? 1 daay 1. alp2 ,2 ax2 2a 109
-YaQ dA2 d32' o
= ¢l(x)e [Y do :cosw + aa siny + 2y (= + Bzcosw)]

Se0u Bzu _3va B '
eV (41 ()

2 ""{O.[ l 11 2
+ c e — o' (x) +
4 ax 1 Bﬂ%

1

¢i(x)J cos¢ —"% c

Qi(x) cos3 (/. S

o]

2

After substituting the expansion (40). for Vo s this

gives:




P
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a2c(2) B (2)
% gr + 2y dOr + )\ C(rZ)
) da [} : \
+ - 2 + 2y “T‘da_‘ + 21}0,)1 P . | L
n=1 do . : & . |
; o \ _
2 2 n2u2y 4D 2 ]
+ ()\r - n wl) Cnr + 2nvyw.D cos ny
@4 2 (2) (2) ' (2)
+ I [———Efzf:fzy DIL o ar
n=1l 4a? da 1 da
J .
S O -t D(z) - IYC( ) ] sin ny

-Ya da,. L . dB,
- §,.¢ »[é'aaf + 2w B >cos‘w + (E&' - 2w1Y52> sin W}

2

+ ¢

wher

g

2

e

kr

-

e—YOL

sl

2k

r

=
0

" [2 éi) cos ¥ +'% A;i) (cos 3y + cos V)
k _ ‘ :
(sim 3y + sin W)J.Bkr + % cze_3YGa£(cos3w:+‘3cosw)
(46)
2’ r B
foeen? 8160 ¢ (0 ax
"0
(47)

[0 ) ¢1(x) + 8L (x) U (016 _(x) dx



(2) _ (2) . >
ll) ='Dll >f;0' .

Comparing the terms for which n- = r = 1, we

As before we may assume C

obtain the followiﬁg'differentiél equations:fqr A2 and

Bat o o
dA B 52 . - ) . »
2 . _ <2 (1, (), .  _9 2 -2va
T qa T8y T m g PG AN By T e e :
dB
P |
F R R 2

These' simultaneous differ ntial equations on

solving yield:

_ -2Y0. _oa=2yo . o
A, = Re » B, Qe - : . -
where
Q‘; - EE{- 9(.Dlal + 4c2 5 ( 1 ; Pk 4 >K 8 ] =
16], 2 2 © 2 2 2 2 2. ) k"k1|
| (y"™ + wl) 1l k Qkf 4y 2(Pk+ 64y wl) -
. (48)
- E KieBra |
“1 k (P%ii‘EEVwa)

Comparing the other terms in (46), we find that all

C(Z) and D(z) are zero except
nr nr
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- € : -3v0,
(2) - Cze ye. Z (A + A(l) ar,e
lr B 2 ) kr
o Z(w - W ) k 8(5 + 16y W )*
{r # 1)
, - 0.2 -3ya

5(2) cle YO (1) 9cywa e o

. “r “1 Tor 1Y

F

(2) _ cfe Y (1) 3c’a Q4 ™3V
C3:7° 7 2 2 2 Aok Bkr 5 (all r)

Z(wr l) k , 8(Q + 144Y W )

”'% Cye ‘9@2 w0 e_3ya' . v/”

(2) cde” s g Y 1r™ : ‘s
Dqy 2 2 Bok Byxr - 75 Wfall )

2(w & 9w)) kK . 2(Q + 144y wy) 7

- (49)
where T a
_ 2 2 2
Sp T oW, o~ Wy + 4y
>

/2 2 CQ

.2
Qr = wrjgwl + 4y . A

Thus from (39) ani‘(40) te have

uz(x,Ot,IP) =0

(50)

vz(x,@,w) = I (éii) cos ¢-+ Dii) sin ¥) ¢r($)

+ E (C;i) cos 3y + Bgi) sin 3w)f$r(x)
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(2) D(z)' C(z) and D(z) a;e

~ wher the constants C . ;
€ 1r > "1r ° 3r 3r .

determined by (49). _ o , ‘ : X A o=
Hence to the/order“of Ez, thé.solution becomes

w(x,t) = eu (x,a59) J o B
o : ( 51) I

P

vix,t) = efYa¢l(x) cos w'+v€2v2(x,a,ﬁ)‘

“where ul(x,a,w) and vz(x{a,w) are given by (45) and (50) .

and o, Y by

da _ g 4 g2ReT2YY
dt -
oL -

(52)

$e= g+ efqe

and Q, R by equations (48).
The equations (52) may be integrated to give
eZYa = Ce2Yt - EZR <
(53) ¢
Y =}(wl + €2Qe 2YOL) t + wo -

L4

where C'and\wO are constants of integration.
£liminating o from equations in (53), we have

2yt

v o= wit +_€2Q£/(Ce - EZR) + wO . 7‘ ‘ (54)

*




107

¥
’

As a particular éase,(when YE,<< 1, from (51), »
: . : o <

(53), and (54) we have
amplitude qf v & YY

1
. VT

@

and

1 + €2Q (amplitudej2

»

Bearing in mind that the physical transverse

- displacement is ev(x,t), we see that one effect of the _
. . —

L

kinematical noglinearities is to increase the initial
natural frequency of the basic mode from its linear value

wj by an amount equal to Q times the square of the

amplitude of vibration. This result is consistent with

the one described in the previous section, when the

damping force is absent.

~ Also for large times, 1.e., vyt >> 1, (54) implies

~w,t o+ ‘which is as expected, because after a'large
0 : = = .

1

time interval the amplitudebof vibration decays, the non-

linear effects become negligible and the string returns

+4
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to its natural frequency of vibration.

A particular exémple.

Let us choose the units of length in such a way

that the ends of the string are at x = 0 and x = 1. We
¢ .

consider the case with fixed-énd'boundary conditions;

that is,

cu{l,t) =0 <\<’

v(l,t) = 0 . | \\\

In this case, thegnormalized eigenfunctioﬁs and

“u(0,t)

v(0,t)

’ H
eigenvalues satisfying equations (30) and (5) are

@n(x) = V2 sin(nmx), Qn =4n1Tcl
. N ‘ -
‘ " 2 272, 2
¢n(3) = V2 éin{nﬂx), w, = oo %2 - Y.

A ’ : ‘ ;
Using these eigenfunctions in the definitions

(43) and (47), we obtain

N

ok _ =3
-7 /2,”8kl = V2 ﬂgdkz

where 6k is the Kronecker delta symbol.

o Substituting these into equations (48), summing’



EEN

where r = cé/c

: | L - foy

over k and rescaling Yy _as y? = ﬂzcgn,_we have

+ o

2, - sy |
8_ == B;r_ : [9'— i : ; (l T +‘lv—'r +22rﬂ F&)J
1 . . n (1 - r)" + 4Tn

ﬂz l - r 1 l T 2 .. 1 - 3r + 41
Ro= P I Sl ST N2 .
: (1- - r)‘ + 41n

2 N
1 | ’\_/
.The graph of Q/wl'against the damping factor n

is shown in the figure for different values of r.

o
s
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CHAPTER & - | - ' . .

. A
ASEMPTOTIC SOLUTION OF A NONLINEAR HYPERBOLIC

DIFFERENTIAL EQUATION WITH SLOWLY VARYING COEFFICIENTS.

//'\.._L

1. INTRODUCTION.

+

: K . w0
In recent years, Mitropolskii-Mosenkeev [9],

‘Bojadziév‘aﬁd Lardner [10,11,12] and others have
_extended the asymptotic method of Krylov-Bogoliubov- o
g N = -

Mitropolskii (K~B~M) to solve a numbep'of second order

A ~

. partial differeﬁtial equations ofvhyperbolit'typ;. We
use this method to find the monofreqﬁent oscillations
of érl—dihensional continuum which ié subjectéqyto
slowly varying damping and is aléo elastically agiﬁg'
with time. The visrations of spch a médium are~fake%f

to be described by the“partialrdifferentiai eqﬁafion:

PG ug, + 2v(Du] - cz(T)%Ig(x)uxj = EF(x,u,u_,u ,..)

Y
4

()

. where € is a small parameter, T ='€t ia a slowly

L

varying time and p(x), K(x) are given positive fuhc&ian‘ﬁ

=3

of x on 0 < x < £. <9The function F is some given non-

linear function defined on the same interval 0 < x < £,

e—
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4an¢n(x)e

RN
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‘ - ~<;‘/ ’ )
o r/a : ‘ ' .
and is assumed to have a sufficient number of derivativeés
: tic 1um! : .

" with respect to its arguments. The terés Y(1) and c(1) in

thezeqﬁation appear because of slowly varying damping and

-slowly vgryiﬁg.elastic property of the medium. We further

aSsumg fhat‘u also satiéfies a set of homogeneous boundary
conditions ,35(0) = 0, j = 1,2 which involve u and d; at
2 N

the end- points x = 0, x = L. <’

ER

Setting € = 0, T = To in (1), the generéting ~

egation ) 7 R

2)+ ZY(QPUEO)F" cz(TO)%;[K(x)uiq)];= 0, 'Bj(u(o))=0

(2)

’ Ny ., i

has an infinite set of separable solutions of the form

N

‘Y(To)tc&s(wn<r§‘t'+ v . o= 1,2, (3)

P

where an’~wn are constants and ¢n(x) satisfy the

differential équation

k@] + Xt ee ) =0 e
. : - W (4)-».,

KE(TO) = wi(Toj + YZ(TO} . gj(¢n)s= 0, j =1,2™=

Fra
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We shall aséuﬁe‘that the damping is less than:critical,

that is Yy < A_ for all n or wz > 0.
S Tn 7 n

It is well known that if the boundary Eonditiqns

satisfy the self-adjointness criteria, the eigenfunctions
{¢n(x)} form a, complete set of orthogonal functions.

After suitable normalization, we have:

~

L o , :
a Tooe (0o (x)dx = & | (5)
0.
where & =1 if n = m and & = 0 if n # m;
nm nm ,

-

We seek the monofreduent solutions of (1) which

for £ = 0 correspond to n = 1 in (4), that is .

. u(o)(x;t) = aoeij(TO)t¢l(X)C°5(wl(}o t+ ¥i> < (6)
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2. ASYMPTOTIC SOLUTION.

According to K-B-M method, we seek the solution

of'nonrfgear equation (1) in the form

we,t) = 6 e Peosy + oeu (T,0,0,10 + efu, (1,0,,%)

| (7) A
+‘ ----- . ) h& ‘ )
. : ) , - 4 4
where v = y(T) and ur(T,a,w,x) are 27 periodic in Y for
. ) -
each r = 1,2,... . The parametets o and Y are functions

of time t and are given by the differential equations

da 2 ’
el l + eAl(T,a) + ¢ Az(r,a) R N
v _ . 2 '
at wl(T) + EBl(T,a) + ¢ BZ(T,a) +
We assume the truth of equations (2) and (4) when To is -
replaced by T . The functions ¢n(x) are independent of T :
- , r

— -

Therfunctions'{Ar(T,a), Br(T;G), Ur(T,stsx)}‘

are to .be determined from the requirement that the solution

Y
<

(7)-(8) should satisfy the equétion ().
It should be ﬁoted that for € = 0, the spﬁution
- (7)-(8) reduces to the solutidn (6) of the‘generaging

equation. ~ We shall restrict ouw investigation to the

g ke artim. e an s
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. first approximation only.

Substitufing (7)—(8) into (1) and equating the
coefficients of ¢ oh both sides, we have:
32 524 T2, du 3u
i 1 2 1 1 1

| 1 ‘1
p(x)[aaz 20y Faay T 01 T2 f 2 ogg o 2vey 5yl

dA 0B

= . -Ya 1 , 1 1
—.p(x)¢l(x)e [(y 5a + 2w1B1v+ 2y )c'sw + 7 ZywlAl

- éay'wl + wi)éin¢] + FO(X,a,w)
(9)

TR A -
where Y aT wl, ac and

Fo(x,a,w) = F x,¢l(x)e-Yacosw, ¢i(x)e-Yacosw,

- ¢l(x)efya(Ycosw'+ wlsinw))

To solve this, we expand ul(T,a,w,x) in terms of eigen-

functions 1¢ (x)} as ' . . s
Iy n

. 4 . .

—

) ul(r,d,w,x) - 1 v_o(t,a,9)¢_(x) (10)

. Y
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Substituting (10) into (9), multiplying both sides by
¢n(x), integrating from 0 to £ with respect to x., and

using (4) and (5), we have:

22V _ v, 8%y 3V _ v,
+ 2w + w + 2y — + 2yw, ——= + ATV
Bu% 1 dady 1 awZ a0 1 9y n n
R '—Ya aAl
- —_ T\
= 61ne [ (v T + ZwlBl + 2y') cos VY
3B ' L , .
_ 1 1 - ’
+ (35— 2ywlAl 2oy wy t wl) sin Y] + Fn(a,w) | (11)
where =g

Fn(OL,IP) = é FO(,XN}sw) ¢n(x)dx

Since Vn(T,a,w) and Fn(a,w) are both 27 periodic.

W

in Y, we can expand them in Fourier series as

I
N =
It ™ 8

Vn(r,a,w) Ano(r,a) f {A;r(r,a)cgéfw + Bnr(T’a)éiﬂ'éw},

r=1

- : N '(12)

-

.‘g

Fn(d,w) = % Cno(a)_¥;/ {Eﬁr(u) cos rwr+ Dnrég) sin ry}

r=1

e

Using (lZTfin (1) implies
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2 , . ’
3°A -3A .
1 “"n0 0. 2 '
5 ( X > + 2y 5 + A Ano)
a
e aZAnr aBnr aAnr 2 ‘ é 2 ’
+ I (————— - 2rw + 27 - = + (A7 - ruw YA
=1 [ 8&2 1 2Jda da n -'l pr
+ erlYBn§> cos rw'
328 . 2A "~ 3B

t nr r nr 2 2 2
+ ( 3a2 - erl 5 + 2y vl (Xn -r wl)Bﬁr

- erlYAnn> sin w-}

JA S oB

- Yo, 1 ’ ' 1
= 6lne, [ (y T + ZwlBl + 2y') cos Y + ( Yo 2ywlAl
. . — 17 e o]
_ ' ' = ‘
Zawly + wl) sin Y] + > CnO + E (Cnr cos ry

«. ﬁ‘ . "
, + Dnr sin ry) = (13)

i

We also assume that uy is independent of first harmonics

in Y which in turn means that Vn are iﬁdependent of cos Y

and sin Y. This implies that‘the summation on the left

of (1l3) starts at r = 2 (and not r = 1) when n = 1.

i
For n = 1, r = 1, comparing the coefficients of cos P and
sin Yy in (13), we get -
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9hy ' Yo

————— - ' = -—
Y S + ZmlBl + 2y Clle

(14)
0B . ,
1 _ - 1 R T Yo
o 2ywlA Zawly + wl | Dlle
s “
These equations determine Al and Bl'

Comparing the coefficients of cos ry and gih Py in (43),

we get
82’/AnO ' aAnO ) 2
—nY > = >
y t 2 0. XnAnO €no (n > 1)

0a, .

2
o Anr aan. aAnr : 2 2 2
—;;3— + erl o f 2y 5o (Xn -r wl)Anr+ aninnr= C .
. 2 . o
9 Bnr~ aAnr' aBnr 2 2 2 :

aaz - erl Lxo T2y 3o * (Xn - T wl)Bnr_ anlyénr= Dnr

The last two equations hold for all n and r except when

n=1, r = 1. The coeffici%nts A and B are determined

. . nr nr .

from these uations. 5
. = - . < /

1

(From (12) Vn are determined and then.from (1Q)

ul(T,a,w,x) is determined. Theref&;e the oluEion of (1)

upto first improved approximation is




R

Fé

where

and ‘A

l’
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= ¢l(x)e_Ya cos Y + Eul(T,a,w,x)
da _ - | a
at - 1 + eAl(T,a) s at . wl(r) + eBlST,q),
. S .
BI are‘détermined by the differential equationg.
- .‘.,/
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3. IWO-DIMENSIONAL VIBRATIONS OF A STRING. g

Althbugh ?e havebinveétiéafed thevéslatign of a
Qibréting medium in one=dimension, the method Can-ﬁé
,exténded tora pair:pf coupléd'equations representing the
coupled transverse and‘loﬁgitudingi vibrations of a =

- | r , - S
stretched string. As in Chapter 3, section II, the

equations of -a vibrating string with transverse damping,
_ . vEe: :

in this case will be
! ' \

o
2 2 .
U cl(T)uXX = g¢ (T)vxvXX
(15)
. . 2 ~ 2 , o ’ .
Vet + Zy(r)vt - CZ(T)VXX = gc (.T)(uxxvX + uxvxx)

where we have neglectéd the terms of order €2 and highér
because we shall be restricting ourselves to find the
solution upto order ep In these ;quations, u, v
represent respectively the longitudinal and transverse

displaceménts, are the velocities of longitudinal

“1° -2
. ' ‘ . -2 2 2
- and transverse wave propagation, and ¢ = c; = ¢,

Gi’ Cys € are functions of T because of the elastically

aging property of the string and Y ='Y(T) because damping

slowly varies with time.

; ol
For € = 0, 1T = TO’ the generating equations are



(0) © L5, © | 0 2, oy
Uil T (T I Ugy = O VT F ZY(T )v - ey (T )V, "= 0
q (16)

(BJ (u(O)) = {BJ(V(O)) =0 s J = 1,2

¢

,ThHese eq%7E10ns possess a Seﬁwpf'sépafablé9591uti9hs for

0 ) S S , S
- 4 méWLHaﬁd v( ) whlch cam. bp written_as . oL w0

Lk

RPN . i B .. Jun
B . . o

2.

W0 = a8 (x) cos (@_(1y) + ¥)

. » " (17)
V(O)(X,t)_= 5n¢n(x)e_Y(TO2tcos (wn(fo)t +an)
ﬁiﬁ;ﬁfan, an; Wn, wn a?e cbnsténfs and @h(x), ¢n(x)
sétisff the equations | ‘
20c yor(x) + 22(x )0 (x) = 0
= %l TO n'* n TO n "
2 , 2 N | o
CZ(TO)¢H(X) + AQ(TO)¢n(X),= o, - o : (18)
2, 2 2
%Xn(To) = wn(TO) + Y (fo) .
. Q . .
The_iguations correéfonding to (5) in this case are
g 2 |
é @n(x)Qm(x)dx = é ¢n(x)¢m(x)dx ='6nm (19)

)

We seek the particular solution of (15) which is close

to the basic mode of transverse vibration:

%



u(o)(x,t) =

n
o
‘-

20

v

V§02‘3’9) E 97Y(T02t¢i(x)'§65 (@l(fb)£v¥ wl)fi\~

According to the KBM méthod, we seek the solution of

LS
(15) in the form

u = Eul(T,afw,x) + €2 ..... .
, : (21)
v.= e_Y(T)a¢l(x) cos Y + EVl(I,a,w,x) + 82....
where o and y are functions of t given by
.da ‘ 2. - -
£ - ' + .
it 1+ EAl(af?) e . ,
(22)
dy _ o r 2 |
at Ql(T) + EBl(a,T) + e

We also assume that wn_# pw, for p any integer and- n > 2

1
and as before we assume the validity of equations (16) an
(18) when Cp1s Coqo Qn’ An are functions of T, , not constants.

We also assume tﬁat ¢n(x) a @n(x

are independent of .T.

> Substitutingi(Zl)-(ZZ) i (15), and equating the

coefficients of € on both sides, Wwe obtain the following

equations for uy and Vl:

B e



123

82u _ 82u' 32y ' azu L
1420 L, w2 L2 1 ; E
R R 'L P | :
. ’ - o . . m
- ézéﬁz’\{acbi(x)cb'l'(x)’ cos er . ‘
and . ' : *\ﬁ_.q\//” R o
. , . . o B ?fg:yn : ‘}.ﬁ:ﬁ:ﬂ
32V 3%v. . 3%y 3V - 3V LSRR
L + 2w, - L + wz 1 + 2vw —1 + 2y L _ 2. L
Baz 1. 300y 1 awZ 1 9y - 90 2 sz
Yo ' aAi :
= - 1 . L . a
¢l(x)e [(ZY + ZwlBl + 20yy' +.y 5 ) cos w
aBl - _ S
[} = _ — ot .
B A+’(wl;+ 3 2ywlAl ‘ ZawlY ) sin Y l‘ (24)

To-solveA(ZB)f(24), We’ekpand Ul V1 as double Fourier

series in Y and x‘using the harmonic basis for Y and the

Bgses ?@n(x)}, {¢n(£)} for x : L

— - l, ) é . - mrhy )

u, (1,0,9,%) L[58y, (1,00 + 2 {A  (1,0) cos nd i
. r=1 ’ . p;l . .
+ Bnr(T,a) sip nW}]@n(x) (25)

s irce e 1o \\\.,

vio(t,a,9,x) = L[5 Cy (T,0)°+ 2 {c_,(r,0) cos ny
r=1 n=1
,(‘*

+ Dnr(T,a)\sin ny}]¢n(x) A(26)

o
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 Substituting (25) idto (23), making use of

gonditions_(lS)-(l9) and then comparing'coefficients of

cqs'nw, sin nyY on both sides,,wa find that all Anr’ Bnr'

are zero‘excépt'fhét

2 —2va, .2 2
Aor>- c’K_e /(R + 4Y7)
(27)
Bor 2 2 2 2 2
Ay = - TN = c,PrKn/{Z"(Pr + 64y wl)} _
22 2 SR
where.Pr _,Qr + 4y7 - Wy : -
N 2 N 'l i’“
= f ' " :
and Kr . ¢l(x)¢l(g)®r(x)dx
R ~
;hus,
o ﬂ . ) I35 i ) ) . . .
ul(T,a,w?x),r-ril(z Aor~+ A2r cos Zw‘+ BZr 31n.2w)®r(§)
(28)
where A, A, » B, ~are givén’by 27). .

Substituting (26) in (24), making usé of
conditions (18)~(19) and then comparing the coefficients
of cos nY and sin ﬁw , "We get a series of following

differential equations for C s D
, ] . nr nr

."’

S
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S Chr Vacn aan 2 2 2 o
aaz f 2(y 5 +7nwl 5o ) .+ (Xr - n wl)Cn + 2nywan
—vo BAl :
__ - ) ] ]
dlrdlne ‘(29131 ? Y 35 + 2ayvy' + ?Y'),
~ £(29)
rBanr aDnr o nr 2 2
aaz + 2 (Y a nw; 3o ) + (A = n wl)D - 2nywlcnr
vo BBl
= - —_— v 1
. 6“,6lne (ZwlyAl 3 + ZawlY (:)l)

We seek particular solutions of the system (29).
Now (29)(i) impliés-that Cg_ = 0 and (29)(ii) and (iii)
imply that

C =D = 0 for n

=}
[
=}
o]
Vv

—— and c,_ =D =0 for r # 1.

-

Also for n =1, r = 1, equations (29)(ii),(iii) lead to

differential equations for Alf”Bl
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BAI ;
_—= 1 =
J ZwlBl + ¥ a + 2v' (1 + qy) 0
ﬁ.’ B | aBl . ’ -4
o — v - | I
2 leAl Y + 2y awl wl 0 :

These equations for A, , B, lead to the solutions

1 1
b= =L (wwl vyt = 2ev'ed) L B o= X (1 20v) | (30)
1 "2 171 ] ‘ 172 1 2w § = .
2yw 1
- l‘ B
In‘(2§), Cll and Dll remain qndetermined and wé~assumq
that C,, = D = 0, .

110 1l : o L

Thus from. (26); vy
@ .

Therefore upto first impfoved.apprOXimation, the sMution

of (15) is )
u = Eul(T,uuw,x) R vV = ¢l(x)eL cos .y (31)
~ ' . . . . )
.da _ ~ oy 4v | ‘ :
_wherg T T + EAl(L,J),.d{ ‘fwl(T) +';B1(T,a)

and Al ,,Bi'agd u, are given by (30) and (28).
The differential equations forta and Y in (31)

can be integrated in particular cases.

¢ Substituting (30) into (31), we haver

~

13

iy
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. _%% =1 4 £ (wjw] +yy' - 2ay'wi)
Zyw .
_igﬁ € l‘ l»' Y' a
or EdT'l+ 2(w1w1+yy)—g—y-fa
ZY,L”
N
Therefore,
.da dyy _ _e 4 2 . 2
e(¥gr Togy) =t ERE (wy + 77 |
w
d_ = _£e_4d 2 2y {
or e gy (ay) = v + Ak (wy +¥7) L -
w :
. 1
(32) °
dy _ y'
and ¢ w; T e - (1 + 2ay)

¥

Let us consider the particular case in which Y is constant

-

and An(T) =fknc2(T) where An’are constants.

Then using (18), the equations (32)(iii). reduce to

W

da £ 2
EY =— = Y + . AJc ec!
dt 22 2 12 2
Z(Alc2 - YD)
%
dv _
and qt wl

Integrating the first equation between'O‘and T and the

second equation with respect to t , we have: .

e



-

%

(e~
. 1 Afcg(T) - Y2
. or YQIT = ya| + vyt +'Z in [ 7 7. 2
0 rxléz(o) -y
- (33) i
t
and ¢y = [ w, dt ,
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CHAPTER 5 , | ‘k\\////
, : ' ' £

: s . )
PLANE SHOCK WAVES IN VISCOELASEIC MEDIA

DISPLAYING CUBIC ELASTICITY. )

1. INTRODUCTION. .

hY

In this chapter we -consider the plane vibrations

of a medium which is predominantly‘linearly elastic but

which displays in addition small nonlinear elastic and

linear viscoelastic-behaviour. The nohlinearity in

elastici:2/13 supposed to ocgur in the form of terms in

e

the stresft-strain relation which are quadratic and cubic

in strain and the viscoelasticity is taken as a fungtional
term in the stfess—strain»relafion. The case‘ﬁhen”the‘
stress-strain relation contains only nonlinearbquadratic
term in strain in addition to linear term haé beeh
investigated by Lardner [22] and‘it‘has'been<showp that
the solution of any non-trivial initial value problem

for such a medium develops a singularity in the.form‘of

a shock-wave after a finite.ipterval of time. In [22];

‘the structure of the“shock layer has also heen investi-

gated.

L
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The consideration of the case when the stress-

strain relation contains quadratic as well as cubic terms

.

dince for many materials it can be

in strain is ’ant
expected that the n“fé is an odd function of strain
measured from its natural state. In such a case the

departure from linearity can be expected to be cubic and

not quadratic in strain.

-
>

Simifgf problems have been investigated earlier
by Mortell and Varley [23], Mortel and Seymour [24,25],
Kruskal and Zabusky [26], Keller and Kogelman [27] aﬁd
’Chukwendu and Kevorkian [15]. The m;thods of approxi-
mation used ;ere the averaging method or ciosely related

Krylov-Bogoliubov:Mitropolskii (K2B-M) method, method of

s

-

strained co~ordinates or the two time method. In [24-27],
the two-time:method was used to find the solution in the 
form of an expansion in spatial e}genfuﬁctions. \The
system of equatibns for the timedependent amplitudes
obtained by the two-~time method is the same as dbtained

by the averéging_method. In" fact a compgrison of two-
time and averaging methods [20] has shown that’in'their

lowest approximations, these two methods are formally

equivalent for a wide class of hyperbolic partial
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, .' / ., / o
differential equatioms with small nonlinearities. ¢« How-
e

ever, it has been pointed out by Nayfeh [28], that for
certain nonlinear wave equations, a direct use of the -

two-time method without an eigenfunction expansion
. : R

allows the solution to be generated more directly than <.

through the averaging method. The 9roblem‘to_be in-

vestigated in this chapter falls under this categor§.

- I’
The equations describing ghe physical model are
- .
written down in section 2, where we show that they lead

to a certaim nonlinear wave equation for longitudinal

displacement of the column.

»

In section 3, the solution is obtained by using

two-time expansion. The solution to the lowest order

consists of the superposition of two modgléig&viga

Pas

dispersed travelling waves, one travelling to the right

.

and the other to the left. Unlike the case of quadratic "\
elasticity, the two waves in this case are not quite
uncoupled and a term proportional to the total energy

contained in one wave appeérs in the differential equa-

tion which describes the propagationrof the other wave

! v

and vice versa.
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&

In section 4, we examine the case of a purely

elastic regimerwhen‘dissipatior can be ignored and the

<

energy in each of the two wavesf-is constant., When
shocks form in the solution, tRe dissipation becomes
significant and the coupling between the two waves

becomes less trivial. .

In the remaining sections, we examine the
structure ofﬁshock—waveﬁwhen the predominant dissipaé

. =

ion

tive mechanism is viscoelastic in nature. I
5, we consider the Voigt model, when the viscoelast¥

occurs as a small term in the stress-strain relation

-

proportional to the strain rate. The complete solution

involving the shock-wave is found by means of a matching

I

technique.

- In section 6, we examine the case of general

viscoelastic relaxation function. In this case we find

-
A

an integral equation for the inner solution within the
shq;k—layer and obtain the condition for the shock-

velocity.

In section 7, we investigate a particular
case when the relaxation function is of exponential

nature and derive the explicit solution for the integral

equation of section 6. W o -

™ o T
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2. THE PHYSICAL MODEL.

We shall consider the plane vibrations of a

~ viscoelastic slab. Let x by a cobrdinate through the

slab and let u(x,t) denote the displacement in the
x-direction at time t of the cross-section of the slab
which -occupies the position x in the natural state.

Then the longitudinal strain e(x,t) and particle

velocity v(x,t) are defined by

e =u_ ,vo=u_, (1)

subscripts denoting partial differentiation. The equa-

tion of motion takes the form

pu, . =0 | , (2)

where o(x,t) is the longitudinal stress and p the

density.

We shall supﬁose that the constitutive law rela-

ting stress and strain for the material of which the slab

e —

is composed takes the form

b

o(x,t) = E{e(x,t) + ule(x,0)1% 3 vletx,0)1° + 0(ehH}

wi

- ,l?c> Gl(s)ie(x,t - s) - e(x,t)]}ds.

0
(3)
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Here E répresents the long-time plane extensional
modulus and the u,~ and v—térms provide contributions
to the stress réspectively quadratic and cubic in ‘the
strain. We shall assume that these two terms which
produce the dgviation from linearity of materiél
behaviour are sﬁall compared to the leading term in
edn. (3). However, we shall‘not assume that the cubic

term is necessarily of smaller order than the quadratic

term,

The final term in eqn. (3) is the viscoelastic
congribution to the stress, Gl(s) being the relaxation
modulus., We shall assuﬁe tha# this term in never ﬁére
significant than the nonlinear elastic ter;s. Later on,
in deriving explicit soluﬁions,vwe_shall make the further
restriction that the visCoélastic term is significant
only within the shock layers which dévelop'in the’

solution- that is, only within regions in which the

strain is varying rapidly.

It is useful in keeping note of the different:
. 0 . P~ .
orders of magnitude® to introduce a re-scaled strain
e*(x,t) which is of order unity and to write

e(x,t) = Ve e*({x,t) (e << 1). Thé other variabies;afe

N .
- :\\/:
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similarly re-scaled: u = ve& u*, v = Ye v*, 0 = Ve O, &

eEG(s), so that the

We also write ul = ve U and El(s)
stress—-strain relation in terms of the new. variables’

takes the form ) .o

o (x,t)/E = e*(x,t) + elulk*ex,t)]% + % vie*(x,t)]>

00 ’
- f G(s)[e*(x,t - s) - e*(x,t)]ds} + 0(e2).
o | |

. . (4)
Equations (1) and (2) remain unchaﬁged in terms of the

re-scaled variables.

From now on, we shall drop the *'s, writing

simply u for the re-scaled displacement u*, and so on. ¥

, Equations (1), (2) and (4) can be combined into

a single eQuation for u(x,t) which takes the form

. [=e]
s : 2 -
Uy~ U S e{2uuxuxx+ 2\)uxuxx g\ G(s)[uxx(x,t s)
‘ - uxx(x’t)]ds} (5)
where units have been chosen in such a way that E/p = 1. ;

¢ ' 3 —
-The viscoelastic relaxation funetion G(s) is

assumed to decay to zero as s > ® with a characteristic
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decay tiﬁe which is denoted by §. If it haﬁpens thét
the strain chanées slowly relative to the time scale S,
the strain e(x,t - s) in thé’relaxatia1term‘in eqn. (4)
may be expanded in a Taylor expan§ion-about s = 0, and

we obtain the approximate result that:

¥

2
3

a
<

o(x,t)/E = e(x,t) + E{u.[E(rx, )1+ = \)[e(x,t)]3'+ ket(x,t)}"

+ 0(8,2) (6)

where k = [ sG(s)ds. We shall refer to this expression

as the Voigt approximation. Within this approximation,

eqn. (5) is replaced by the equation

U, T QXX‘F S(Zuuxuxg+ 2vuiuxx + kuxxt).. (7)
In addition to these field equations if is

necessary to impose inifial and boundary conditions on

the system. We shall supﬁose'thét the slab occupies

the fegion O‘< x < i and that the f;ces x =0 an x = 1

aré held fixed. Then the b&undéry &ondition; téEe the

form

“u(0,t) = u(l,t) = 0.
As initial conditions we shall assume that the initial

S

displacemenﬁ and velocity, u(x,0) and v(x,0) = ut(x,O),




are both prescribed.

initial strain e(x,0)

o

A

It follows therefofe that the

= ux(x,O) is also known.

137
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3. APPROXIMATE SOLUTION USING TWO~TIME METHOD.

o
g

Both' eqns. (5) dand (7) are speéiél examples of

the general nonlinear wave equation B

u -u = ed{u} - , . | — ,(8)

2

where & is some nonlinear functional of u. We:.shall

study the solution of equations’ of this type using a

—

two-time method. According to this method, we introduce

the slow time variable T = ¢t and seek the solution in

the form of an expansion - j .

™2

u(x,t) = uo(x,t,T) + éul(x,t,Tfi+ Q(Ez)il ) | (9) 

»

In order that the 'lowest order solution-u = uo(x,t;T)
Kl

' . . . . - =1
remain a valid approximation for times giforder €,
we must impose the ,requirement that uy should not contain
secular terms growing in proportion to t. .

®
After substituting the expansion (9) into eqn.

(8) and com#aring terms of different orders of € we

obtain the follbwing equations forvuO and ups -
Ed
uO,tt _'uO,xx =0
. { } \
ul,tt— Y1,xx 2u05tT+ ¢ Upg’e

Here the subscripts after the comma indicate partial'
ﬁlfferentiation.’ » 4 "y

a

e
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The sqlutiqn for ﬁO may be written down
immediately, and is of the form
uy(x,t,7) = Fla,7) + G(B,T) L | (10)
" where o = t + x, B =t - 2, and F and G are two as yet
arbitrary functions. ﬂTHe equation for ul'thus becomes
= - : + )] + + .
T ] N CRO IR ) IR T CICR R R
(11)
18

The requirement that dl should not contain secular terms

will- turn out to impose conditions on F and G. Although

it is possible to write down these conditions for a _
génerai functional . ®, iﬁ'is more convenient in the
"present case to examine thé“particular forms for ¢ in

eqns: (5) and (7) individually.

P

In the~caéerof the Voigt approximation, eﬁn. (11)

A

takes the form

-

= - %(FaT + GBT) + ZU(Fa - GB)(Fa + G,_,.)

491 uB a BB
' ’ . - Qc{l",
2 , ' (12)
+ 2v(Fa - GB) (Faa + GBB) + k(Faaa + GBBB)'

The general solution of this egquation 1is
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_ 1 2 2 3 ,
uy = 7B [2F_ TAuFa»+ 3 VF + qua>

1 - _ 2 2 3 ’
+ 7 a.(ZG MGy + 5 vG85+kGBB)
I ' 1 (. ;2 N 2 2
+ zp(FGB - Fac),+ zv[gsfFada + Fafgsde - FlG - FGBJ
+ Fl(q,r) + Gl(B{T) © 0 (13)

where Fl and Gl are arbitrary functioné of the indicated
. o {

.variables.

The g%cular terms in uy arise from the terms

proportional to o and B and also from the two terms din-

volving integrals. If we'usé the notation
1 T . ' o o
<f> = lim = J £(8,71)d® . - : -
Trw L 0 - (14)

to denote the long-time average of a geneial functioh £
(where © is to be identified with either o or B, as

appropriate) ;then we can write

-8

G szda = a<F2>G + non-secudar term
B a 64 B -~ T \
) 5
2 2. : | O
FafGBdB ='B<GB>Fd + non-secular term,t\
) ) 7;77'7”’7%\;:‘;777' o

The secular terms in eqmn. (13) will vanish therefore if

/.
~
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we impose the followyng'conditions on F and G: *
i
2F_ = sz + 2 VF3 + kF + 2v<G2>F
T o 3 o ao B "o
: , / (15)
26_ = - uG2 + = vG3 + kG + 2v<F2>GVy
T B 3 B Bg T a B’
Let us now examine the case’ where the full
functional form for the viscoelastic term is taken,
eqn. (5). In this case the differential equation for
ui"is the same as eqn.°(12)jexcept that the k-term is
replaced by the expressiof : S //}4\\\.
“xm R ‘.' . R :
- é G(S)[Faa(a - s, T -*€s) - Fua(a3r)

—_

;T GBB(B - s, T - ss)‘¥ GBS<BTT)]dS'

By

G(s) decays to zero within an interval § which can be

-1 .
assumed to be small compared to € ~, so that to a good

"~ approximatton.we may replace the argumernts T - €s by T

in this integral. Cogsequently in the solution (13) for

Cuy the k-merm is replaced by

1
AR ECON LRI RO I
Sl G(s) {G(B‘- 5,T) = G,(B ‘T‘)Td?" :
4 0 | . B \ ’ B ] J —J
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‘where F and G satisfy eqns. (15) in Ehé Voigt approximation

and eqns. (fﬁ) when the full functional viséoelasticity is

used. It is expected that "this solution will remain valid

to within ag error which is 0(e) up to values of time which.

are of order e-{. SRR R
+ % YN )
Before proceeding to solve these equations for F
L - A S . .
and G, let us observe the effects on these functions of the

» - - e

fixed-end boundary conditions. Putting x = 0 and x = & in

@

; . ™
Both of these terms are secular, so that the final equa-
tions obtained for F and G, in pléca of eqn. (15), are

2 2 3 2
= - < >
.‘2FT uFa + 3 VFa + 2v GB Fa-
@ - ”
- % G(s) [Fa(a—s,T) -~ Fa(a,r)]ds
2 (16)
2 2 3 2.0
2G_= -uG, + = vG, + 2V<F_>G -
Hog 3 B a B B
N . [ . N
-/ G(s) [G (B - s,T7) - G (B;T)]ds
o LTt i v
The conclusion is therefore that the sblution is
given in lowest order‘by
u(x,t) = F(a,Tt) + G(B,T) + 0(e) - o . (17)
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eqn. (17) we obtain the conditions that

]

F(t,T) +'G(t,T).= 0, F(t + 2,7) + G(t - &,1) 0 (1 = gt).

i (18)
The first of these conditions is satisfied . if we take
G(B,t) = - F(8,7) for any E?%i of arguments (8,T). Under
. 8 v
this identification, the two equations (l15) become
: . . ’ J,

identical, as also do the two eqns. (16). -~ Thus consistency
is achieved by taking the solution in the form
u(x,t) = F(a,t) - F(B,71) + 0(¢e) ' . (19)
in this case, where F(8,T) satisfies the equation
2F = uFé + 2 vFB + 2v<F2>F + kF . (20)

L : -

3 8 6 8 .66

in the case of the Voigt approximation, and more generally

satisfies

C el 2 2 | |
2FT = qu +/3 vFe + 2v<F6>F5 . ‘ &a
- S G(s)|F.(8 - s,T) - F (e,r)].ds. (21)
. 8 - Fy

oy
—

,‘Simil%fly,\the second of the'bounaary conditions
(18) is met by éssuming that F is periodic in its first

argument with period 22 : F(6 + ZQ,T) = F(6,T). This

. .

R
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condition is consistent with the differéntial equations

-

(20) or (21). ”

It is convenient to introduce f(6,T7) = Fe(O,T);
"After differentiatioﬁ with respect tqye? eqns. (20) and

21) then take the form

§= Lufa‘+‘\)f2 s ve(n) [ £, + 3 kf g . (20")
7/ ) -
£ = [uf + il + vc(r)] fo - 2 Z c(s)[}e(e-- s,T)
-'fe(e,r)]ds, <\(21')’
| c(t) = <t% = 5% Q;Z [ﬁ(@,r)]éde. @ - 3 (22)

>

2y
L

In this last equation we have made use of the periodicity
of £f(6,T) in 6 in changing from the infinite average in
the original definition (14) to the average over one period

in eqn?i(22).

\

" The strain and velocity are expressible, to lowest

=~

order, in terms of the function £(8,1), -for, upon @iffe?
e~ - ) . .

rentiating eqn. (19) with respect to x and t in turn, we

obtain that
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W

e(x,t) = £(a,T) + £(B,T) + 0(e)

. (23)

v(x,t) = f(a.T) - £(B,T) + 0(e).

“w®

- From the initial values of e and v, the following

initial values of £(6,T) are obtained:

-

£0,0) = 3[e(0,0) + v(8,00] , £(-0,0) [0 - ve,0

(0 < 6 < ). - (24)

.\
N

Consequently the values f(é,O) are known for -2 < 8 < %.
In view of the periodicity of £(6,T) in 6, it follows

therefore that the values f(e;O) are known for all values

of 6,

For values of t which are o(e-l), T is small and

may be replaced by zero in the solution (17). The solution

then may be interpreted as consisting of two waves, an

a-wave with amplitude F travelling to the left and a B-wave
AN -

Tacle

with amplitudé G travelling to the'fight. For value&lof T
significanfly different from‘zero this intgrpretation

breaks down becaﬁse of the f—dependence of F'and‘G (although,
a; we shall see in the next sectioﬂ, an interprgtation.in

terms of simple waves is 'still possible in the purely &
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i

elastic case). Over time-~scales of orde unity, the F

and G parts of the solution still appear approximately
\ as waves propagating in each difection, but the
;V\?kdependence of these functions inﬁroduces a slow

%H;%persion and modulation of the two waves.

When v = 0, the two eqmns. (15) become entirely
decoupled, indicating that the two parts F and G of the |
solution propagate indepehﬂentf@ oflone anothér; This
feature of quadratic elastic materials has beern noted
previously in slightly different confex9§ by Mortell and
Varley [23] and Mortell and Seymour [24}55]. ‘For the
case of cubic elasticity (v # 0) the two waves do not
propagate independently:"lthough the coupling between
them only arises through the average values <F§> and

<G2>,

B " | )
T; When v = 0 , egn. (20') reduces to Burgers'

equation, as has been shown elsewhere [23].

~
0



4., THE ELASTIC SOLUTION.‘

In-this section we shall e aming-the solution of

eqn. (20') or (21') in the cas when the viscoelastic

terms arefabsent. In tha ase the equation for f(o,1)

\k

is the quasi-linear firgt order equation

£ = [uf + vE? C(T;/ o ' (2"5\)

which may ‘read be solved by Lagrange's method. The

solution may be written in the form ‘ \\g
£0,5) = B0 4 (26)
’ ‘ 2
6, = 0 + [”H(el) + VH(8,) ]T + vy (1) (27)
T
c,(t) = J c(r')dr'.

.0

The variable 91 représents a characteristic variable for

the differentiaiﬂequation‘(25);
= —
The strain and ocity are obtainéd'from eqn., (23)
to be -
\
e(x,t) = H(a,) + H(B)), v(xyt) = H(a,) - H(B) @8

where o and Bl are defined by eqn. (27) in which © is

oy
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replaced respectively by o and £ and 91 respectively by

ana 5

o . v
1 1 ’
J
In the xt—plané there are two Eamilies of characte-~
ristic curves cozresponding to al = constant and to
Bl constants Along any curve of the a-family, the -

"signal™ H(al) is constant while along any cu;ve ofvthe
B—f;mil;, the signal H(Bl) is c;nstant; If through a ., °*
Point (x,t) there passes just one curvelfrom each family,
carrying the signals H(di) ande(Bl) respectively, then
the‘strai&/and velocity at (x,t) are_obtained by combining

iV

those two%y signals in accordance with eqps. (28).

Thus we may speak of the'signal‘H(al) propagating : .

along the characteristic o; = constant, Réplacing 0 by

! - 1
a =t rx,in eqn. (27), we obtain the velocity of propa-
gation to be o ) : : K;\k
dx . ) 2 o v
Ll = -1 - efuE(a) + VE@D? 4 \)c(T,)]. , (29)
t o N A 1 ] :

1

o

A similar expression is obtained for the velocity of

propagation along a B-characteristic. We see that the

ST S TP IR

velocity of propagation on any characteristic depends on
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the amplitude of the signal carried by that characteristic.

The amplitudes H(Gl) are completely determined by
the initial strain and velocity in the medium. Setting
t =0 (t = 0) in eqn. (27) we see that Gl = 0 dinitially,

" and hence from eqns. (26) and (24),

v

() = [e(s,0) + v(8,00], H(-8) ~[e6,0) - v(8,0)]
(0 <8 < 2). (30)

(Nofe that, from eqns. (26) and (27), H(Gl) is periodic
in 61 with period 2%, so that eqms. (30) determine H(8)

for all ﬁalues of 0.)

Let us now determine C(t). In the definition
(22) we substitute the solution (26) and change to 61 as

integration variable using eqn. (27) thus obtaining

_ 28 | |
c(r) = yﬁ- J H\,(el)z[l - (u + 2VH(91)>TH'(91)J e, . (31)
0 ‘ »

Since H(Gl) is ﬁeriodic in Gl with period 2%, the terms in

eqn. (31) involving the factor H'(Gl) vanish, leaving

i

4 24 )

c(t) = > f H(Gl) del . ‘ ' (32)
- 0 ) .

bha
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It is clear therefore that C(t) is-in fact a

)

—

_constant, independent of T. This fact can actually be
verified directly from the differential equation (25), .
but we have kept C(T) variable up to this point for

future use.

.

Since C is constant, it follows that the velocity.

of propagation of the characteristics are constant (c.f.

ki \
Tt Y .

eqn.‘(29)). In the xt-plane, the a- and B—charaétefisticé

form two families of straight lines.

Substifuting eqn. (30) into eqn. (32) we obtain
the result that
~ : 2," “ .
c =4—ié [g'(e,o)z + v(8,0%Jas, - -
showing that, apart from a constant factor, C is equal
to the energy in the initial state’qf'strain-and'motion

of the slab (up to terms.of order g).

Equationé (26) and 627) provide a solution of
eqn. (25) only if eqn. (27) can be ;olved for ﬁl for
given (06,1). .This amounts Lo requiring ;hat oniy'one
characteristic from each family passes threugh each, point
in thé (x,t)(plane. Now in fact, the family of lines

defined by eqn. (22) does have an envelope -which there- - ;—

-~ %

A
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fore must provide a bouhdary beyond which the solution

we have found becomes iqvalid.

\

If We‘ﬁrite P(Ql) =*“H€él) + vIH(Gl)2 + C],
eqn., (27) takes the form 61 = 6 + TP(Gl). The‘envelopg
is obtained by differeptiating wiFh respect ta 61 ,
which gives TP'(Gi) =1, and‘so is given parametrically

by the equations
A

@

= ' Sht | - ' | '
T = (' (8,)] : 6 = 8, - P(6,)/R'(8))

If we denote by em the value of el at which P“(ei) is

a maximum, then the smallest value of T on the envelope

is givén by
= ' -
Te [B' (8 )]

Thus for 1T < Te s the solution (26), (27) is wvalid for

all values of 0, while for T 3 Te it becomes invalid for

at least some éet of values of_e. Since P(@l) is periodic,
provided that it is not identically Eonstant, there 1is

always some value of 6, at which P'(el) > O,_sorthatya

1

finite value of T

f,always exists.

e
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For 1 > Tg , 1t 1s necessary. to include a shock

: qQ ,
wave in the solutionf-and in the following sections we

shall investigate'ghe nature, of "the shock layer in the

case when the material displays a small degreé'of

-

viscoelasticity. . ' .
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5. SOLUTION IN THE VOIGT APPROXIMATION. !

s

“In this section we shall examine the solution.of
eqn, (20") in the case when the constant k is small. This
4 ’ . .

amounts to assuming that f%g viscoelastic contribution o
to the stress in eqn. (6) is small compared to The contri-
bution of the nonlinear elastic terms except 1n regions’

where the strain is rapidly varying. . In particular, the

viscoelastic terms are significant within the neighbodr-

-hood of any shock ‘wave qhich may develop in the solution.

Under these conditions, ‘as long as the initial

values of the strain and velocity gradients are not large,

the elastic solution found in Section 4 will provide a
”® .

good appfoximation, within 0(k) of "the correct solution
~of eqn. (20'), up to times at which a shock forms.

Furthermore, even for T > Te the last term in eqn. (20')

can be ignored'for‘poihts which afé‘dutsiderthe shock
Jlayer,'and at such points the solution 1s given approki-

mately by eqn. (26) and (27). We shall refer to this

approximation as the outer soldtion. We note however that

there is one distinction between the outer solution for

T > Tf and the elastic approximétiop for 1< Tf , namely
that in the former c{t) is no leﬂgeP—eens%aﬂef—ukhysicaLLy_ffAf”,

we may regard this as a result of absorption of energy by
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fhe viscoelastic mechanisms which are brought into piay

by the rapid changes occyrring in the shock layer.
We shall investigate the inner solution, thet is
\qgv;.‘;"_ B : . - e - .

the apprOXfmate soiﬁt%on/witﬁin the shock layer. Let

B = 08 (T) repredent the path of the shock,waﬁe iﬁ'thé
'y . Y . ,
6t~-plane, and let us introduce the 1nner variable

' 13 QLkﬂ\Ie 0 (T)] Then eqn. (20 ) becbnes' “ | 7~ _

2
fre +ﬁqf + Yf

o

+ Eé(T)lfg = kf_ | (33)

‘where we have introduced the abbreviation
6, (1) = 6,(1) + ve, (7). | o (34)

~ . In tﬁe lowest appfoximation, thé,r}ght—hang side
of eqn. (33) may be replaced by zero. The fesulting equa-
tion may then be integrated, and after the first integration
e ‘ . ’ ‘
~We obtain

) 2V

E= T3 (F - £)(f - £,)(f - £

3) ’ B : ~ (35)

where fI , fz',’fB,are the three roots of the equation =

f3 + (311/2\))f2 + (3§é/v)f + a =0,



a(t) being a "constant" of integration. Ln partikular,

{fi} satisfy the conditions

£ = - ’ : = —-'a ) |
f. + £, + £ (3u/2v), f,lfz + f2f3‘+ jf3fl 7 ;368(1‘)/\).

RED)

As 8 Varies”frdm values below es(r) to values

_ 5. - . . 8 _ -
above es(%), £ varies from large negative to large S \\\~\“/

ol

pbsitive values. Any solution of eqn. (35) tends!to one

of the values fl , f2 , fjvas £ » too, and we shall
. . \\

arbitrarily denote by f2 and f3 the roots which gkve

the limiting values of f as £ > - and § + + res#ective—

ly. For any finite value of &, the solution of eqn. (35)°

- °

then lies betWeen f. and f , and is given explicjfly by
s 2 3 , 1
- : G

£ + b(t) = —allnlf - flL + azgn]f'-!fzf -}a3ln|fv—'f3|  it

\ - o

b S | L 37)

S B T .

i

where b(T) is a constant of integgation and al', df , Ay

«

are three constants given by

s s

ap = 3/020(E,)" = £1) (£ = £1)1, a, = 3/[2VA(F, - f
ag = 3/[2vA(f3 7Tfllj
where A = f. -~ f_. measures the jump across thémgﬁockig

3 2
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b

Since, according to the definition of fz‘and f3,

a, and a., must be positive, it follows that the third

2 3

1 1s less than both f, and f3 when vA > 0 and is

greater than both f2 and f3 when vA < 0. The sién of

is then seen to be the same as that of v. |

robt f

val

a a

1’ 727 73

succimctly if we introduce the notation

The constants a can be written more

i

L =f, + £, , E, = u + VI #

.uﬂH

VA, - (38)

Then after using the first of conditions (36) it is found

that ”%'\'
- s

- -1 -1 -1 _ =1

a; = (AE_) - (AE+)‘ ; a, = (AEf) , A, 3= (AE+) . :(39)

2. 3

We shall choose b(t) in such a way that the centre

of the shock la&er f = /2 occurs when £ = 0. From the

solution‘(37) therefore it follows that/

b(1) = a;2n]va/3(n + vI) |,

~

It can be expected that this value of b would have to be

modified in higﬁer-approximations, but at the present

Ed

level it suffices.

In expressing the form of the inner solution, it
. 5. )

is convenient to introducé the dimensionless variable r(G)/}



(37) for £ changes from the value f
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by means of the definition O\\\

£8) = L[I + Br(8)]. . T sy

(Y[

As O varies from below to above the shock layer, f varies -

from f2 to f3 , whence r changes from -1 to +1. It is

v

given by the relagion

9 - e 3

s _ ' 1
k = azln(l + r) §32n(; - r) - alﬁnll +‘

Vi / (U+vI) |

_(41)

On croo®ing the shock layer, the inner solution

5, at points well below

the layer to f, at points above the layer. These limiting

3

values must be determined by.matching with the outer

solution at points just below and just above the shock.

At any point 6 = GS(T) on the shock, there are

two values of 81 for which eqn. (27) is satigfied, whicﬁ
we denote by 6;. - |
This means that

the two character-
istics with para-

méters 6, = 8. and

)
81 = fo;;th pass .- _

through'fhe_point

[BS(T),T] (see %23.1),

the first arriyﬁng at
/
./‘

/ ) V>_;@— N Fig' l
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i

the'lowerfside of the shock, the cond at the upper side.

The limiting values f2 and f3 of the inner solution must

thereforé coincide with the signals carried on these two

characteristics. Consequently, we arrive at the matching
conditions.

£ = H(8T), £, = H(8)) | : (42)
2 17 3 17" : :

<

quuation'(27j for the two characteristics takes

the forms

o

= ES(T3 + Euﬁ(ei) + vH(ei)z]T. ' \ (43)

-

In addition, eqns. (36) must be satisfied, and after

eliminating fl the f%lldwihg condition relating f2 and

f. is obtained:

N l ) . _'_z 2 : N 2
8l o=~ F ulf, ¥+ £5) - 5V, + £,6, + f

; ,Eq F £3). (44)

After substituting for fz'and f3 from éqns. (42), eqn.

(44)‘tqgether with eqns. (43) provide three equations

for the three quéntitieS'GI , GI and_gs. .
- # | | |
In the case when v = 0, these three equations

N

can be shown [22] to lead to what is cal;edrthgregq;quFeas

rule [29,30,31] by means of which the shock path can be

L

RS RS

bl e
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determined through a certain geometrical construction.

A similar constructive method does not appear to be

feagihif_zben v # 0. ; b

We Bbs- ve that, in order for the situation

illustrated in fcoure 1 to be realized, the slopes of

the two characteristics must satisfy the conditio%s

(de/dT)+ < (d8/dt)_ . But from eqn. (27),

(de/d'r)ir = —[uH(eji) + \)H(eilr)2 + \)C(T)],

>

so that the following condition is obtained after using =

eqns. (42):
Ay + vId > 0. ' C(45)

This condition relates the sign of the jump across the-
- , T LA
shock to the quadratic-and cubic elastic constants and

to the average value of f at the centre of the shock.

(z/2).

The three equétions (43); (44) determine gs(t),

but the shock path GS(T) can be obtained from eqn. (34)
only when C(tT) has been found. With the presence of a

shock, C(t) is no longer constant, In order to obtain

an expression for C(1), let us‘multiply eqn., (20') by
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o ' - . ~

f(e,rfﬁand integrate over 6 from 0 to 22. 1In view of

[~ R
g
the periodicity of f, several of the intégrals vanish,

and the end result is

28 28

. . =L
;& ‘ g £f_d8 5 k g ££,040. )

-

$\\ From the definition (22) of C(1) therefore,

24

S ff° do.
0 09

d

(@}

|

T 2

(2}
=l

-

a 3
@

’AIh the absence of a shock wave, the right-han8.
side here is;sm511K>of order k. Herver,vwhen the shock
is Present, a contribution of order unity to this right-
hané side is made by the shock layer its;lf. To evaluate

the contribution. of the layer, the inner variable £ may . .

N -

- be. used, in which case we can write

- -

-

eqn. (33) in which k is set equal to zero. After substi-

. tuting and performing the integration over &, we obtain

~

therefore

oo .
dc _ _1 . . : ,
ar - 2% f_Oo ffggdg. _ ,/// ,
ow the value of fEE in the inner solution 1is "given by

0 g e S L



ala
ala
I
1
S
—
Wik
~
Hh
Lo
+
|
<
Hh
£~
c 4+
\%Egj ,
|
[\
ﬁ——“
8

3.3 1 4o 4 1 —=,,.2 .2
B H g v(Ey = £)) + 5 8I(E] - fz)J;

n
1
ol
Lreamn
W=
~~
Fh
o

After substitution of 5; from eqn. (44), this takes the

form

dc . _ _L_,3
dt - 124 AT (u + \)Z)', l . (46)

R o

It follo%s from the condition (45)that C(1) is a decreasing

function of T. o ?

‘ - +
After solving eqns. (43) and (44) for 61 , I

and f3 can be found from eqns. BZZ), so that eqn. (46)

can be integrated, in ﬁrihciple, to get C(T).

By virtue of eqns. (23), the shock at § = BS(T)
. : in £(8,T) leads to shocks at positions x = i[t'-'GS(T)]
in/e(x,t) and #(x,t): The shock velocities in the

xt-plane are *[1 =~ é@;(T)]; At a fixed value of t, the

\\//njlimit g + -» corresponds to a valuévof X, ahead of each
shock and § =+ +» corresponds to a value of x behind the

shock. Thus the value f = fi measures the state of strain

at the leading side of the shock layer and f = f3'the

-

state of strain at the trailing side (apart from the

contribution of the other wave to the strain). hen



A= £y - £, > 0 we therefore have a rarefaction wave

in which the me@ium}dilates_as the shock passes while

when A < 0 we have a compression wave. Which of these

two types of shock is possible is determined by‘the
condition (45).

162

v
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6. FUNCTIONAL VISCOELASTICITY.
In Section 2, the Voigt approximation %as
, .
derived on the assumption that the viscoelastic decay
\ -

time 8 is short compared to the time scale for changes

~

in strain. When shocks occur in the medium, this require-

ent betomes a very restfgctive one, since within the
. . -1

shock l&?%% the strain rate is large- of order k ™.

To avoid this weakness of the Voigt model, it is necessa-

4

ry to ret;rn to the functiona%jform for the viscoelasti-
city, that is, to eqn.’(5) and the resultipg lowest
order approximation given by eqns. (21') and (23). We
sha%l exaﬁine the solution of eqn+ (21') under the
cond;tion that thﬂyiscoelastic term is'only’significant,
: )
within shock layers, which corresponds to the assumption

k << 1 which we made in the last section. We *shall also
. v

’ . . ’_/
decay time § is short compared
5 " o

L

-continue to assume that’® the
to>the time gggle for_c@anggs in tHe'outer solution, so\
that the Voligt approgiﬁation‘is valid ;utside the shock)-
. , N , - P
layers. . ’ L . ‘ o S
"Under ﬁhéSe aésumptions, the solution for T élrﬁ
+ and ogtslde t@e Shock lgyé} for't >;Tf Eoﬁ;in;e§ to ‘be
;fven by the purely elasfic solution (26)ténd (27). . For

i

. } , R s
T < 1., C{T) = const. ' e T

f‘lr V \;e
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For T » Tg » We must obtain an inner solution
of eqn. (21') holding within the shock layefQ; For ‘ -
6 - OS(T) small, we may make the approximate replacé-

L 4

men; 3f/dT = -e;(r) 0f/96 since, within the ‘shock

layer, rates of change across the layer dominate rates

[ue + ve J£o - 27 6(s)[Eg(8 - ) - £4(0)]ds = 0
, 0 v
Y
wherelgS is defined in eqn. (34). .The f—depeqdence has

been suppressed throughout this equation,' since T appears

«1in it only as a parameter.

" Now first of all let us take 6 and 6+ to be points

’ Let us intégrﬁte eqn. (47) from 6 to 6+:
. e+ o - . )
L2 + L o83+ 50 -1 e [f(6+— s) - f(6+)]ds +
2 3 s {g~ 2. :

-+ % S G(s) [f(e— - s) - f(e_)]ds = 0.
0 . : 7 -,

(48)

below and above the shock layer. Then the Voigt approxi-

mation may be used for each of the integra

7

LT
N
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-5 |

PTG [£067 < ) - £(8D) Jas = - kg (8]), | (49)
& i ) V - -
Since k << 1, the%e-integrals_afe therefgre both small.
Consequently, with such a choice for 6" and 6+,
e .
l l —[ -~ N -
[2 HE® + 3 viT + 6 f] =0 | (50)
The inner solution satisfying eqn. (47) must be
matched to the outer solution (26) and (27), and the
appropriate matching conditions are that'f(6+) = H(GI),
- b - + '

£(6 ) = H(Gl), where 61 are the characteristic para-
meters for the two characteristics reaching the shock
‘at time‘f, as 1llustrated in Figure 1. Consequently,

eqn. (50) gives the result
1 2

Y ='_;_i I 2
8l (m) 5 ML - 75 V(31T + 4»)

— + ' —_
+H(8)), & = H(B)) - H(B ). .

Thié is'identical witﬁ eqn. (44). BEduatioﬁs (43%)
"continue to apply, since fhéy simply refer fb the two
'éharéctefisﬁics;regch?ng the point [eS(T)’?]%ﬁff tht‘
:tﬁe soiutiop‘ﬁor'E;(T) is the same for_therggnera}

functional'viscoelasticity as in the Voigt approximation.
s - * —

‘, . . . ‘ > "" \\‘a,__/
L ' AN

%
@
B
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The'strucfure of the inner sofution can,
however, be entirely different ffoﬁ thag ivén'by
“éqn. (41) in tﬁé Voigt apprqxgmation. In eqn. (48) | - -
let ﬁsvagain takeve— to be wéli below thé shock layer,

so that the éécon&'iﬁtegral is again very small | .
according to éqn.‘(49), but let us take 8% = B o be | -
a generél poiﬁt within thé.layerl Then after - LE
substituting for 5; from eqn.~(%i2,¢tﬁe>f0119Wing .

equation for f(8) within -the layer is pbfained

' [f- H(ei)][ﬁ(ez) - f][%u + % V(£ + z)]- |

[+

. . G(s)[f(e - s) - £()]ds =0 (52)

This equation becomes a little simpler if we

introduce the dimensionless quantity'r(e) defined in

T

eqn. (A0). We obtain
' @1‘ r(e)?][p-+~vzf%,vAfke)]gy““v

Y

-

+ 2071 g G(s)[r(e - 8) - r(e)]ds 0. (53)
0 - | ,

" For a general relaxation funmction, this mom=—""—" "~~~ """ 3

linear integral equation cannot be solved in closed form, - .
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althoﬁgh numerical éplutions could be obtained in any ib
particular case, Inithe next section we shall examine

the solution for the special case of an exponential
R . | !
relaxation function, for which an explicit solution.

can be found. -
1

Equation (46) continues to hold for a general

relaxation function, provided that viscoelastic

w

" dissipation is significéﬁ% only within the shock layer.

1

For froﬁ eqns. (21'") and (22) it follows tﬂ!t

dc

£ £(9) ﬁ G(s)[fﬁ(e - s) - fe(e)]dsde.

I §
- zzf

v

v

If the 6 integral is festricted to the shock layer, eqn.
(47) may be used with. the result that
+ ’ .
dc 1 8 ras 2 =
L2 o s@fur@ +vi@? + 510 fe(0)de.
dt 2 6~ _ : s 6

After evaluating this integral, eqn. (46). is obtained.



7. EXPONENTIAL RELAXATION FUNCTION.

@

We shall now examine the case when the rela-

-s/8
e

xation function has the form G(s) = d , characte~-

ristic of a Maxwell-Voigt material. In this case
- -

k = /¢ sG(s)ds = d6°, and eqn. (53) takes the form

S s/¢ (67- s)ds
. :
, L
- sre) - A5 [1 - r@ 2 [u+ve+ 2oaro]e G0

Diﬁferentiq}ing with respect to 9, integrating by parts

and then using eqn. (54) to eliminate the integral térm'

which results, we obtain the followingrdifferentiél

equation for r(6): .

|

fa
~
-
N
=
=

-3 Vb + 2(u + VI)r 4 var? |

[N
D
g
og

=57 1 - 2y o+ vz + % vAr) .

This equation is readily integrated, to.give

6 - 6 -
S = T -— -—
= . dZQé(l + r) d32§(1 7?27

e

- d12n<%+%MALLLu>tM£)},Ljﬁlg‘ﬁ



where the‘constanﬁ'cf integration has been chosen

1 X :
H

in

such a way that the Centré‘of tﬁq éhock (r = 0) Occurs .
. \ -0 . ; . ) ) .
at 8 = 06 - ,_and - Co . 7.
. 8 : - .. ~
o 1, 1 o 1 R
¢. = (AE )"~ - (AE,) ~ + &/k, d, = (AE ) - 8/k, L
1 - +) 2 - é -
, o . . (56)
. ! A P e
dg = (AE+), f §/k, <

E, being definediéhfeqns; (38)
, . ‘ I - - - : ‘ ‘ ] ‘;A :
It is interesting to note that the solution (55) -

A v : _ Lo
onential relaxation function has the

for a general exp

same qualitative form as fhat found in eqn. (41) under

!

Ce -

the more restrictive ass@mptioﬁsvof the Voigt approxi- 3

mation. This'contrasts with the result found for the
quadratic elastic case, v = 0. 1In that case, the solution

for the Voigt model becomes.

(8 -,GS)/k = (2/uA)tanb;lr—

oo

whiEh means that r 1is antisymmeffic'aboutlfhé.cenfre,'
oo : LA . . . - ) .
B = GS of the shock layer; the solution for the ex-
hand does -
B oo T T

ponential relaxation function on the other

not show this symmetry about: its centre- thé leading

PN
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side of the layér is>compressed relative to the trailing
side. When cubic elasticity 1is significant, the structure

of the shock layer loses its symmetry about the centre

even for the Voigt appfoximation.

il .

An estimate of the width of the leading

the shock layer (i.e., the side of which f ~ £,

obtained by setting r = -1 + 1/N with N some suitably
. large number. We then obtain that 6 - 6, % - ka,&nN for
D T
the voigt approximation and 6 - es - deRnN for the

exponential relaxation function. For the trailing side

of the layer, we can set r = 1 -y1/N, obtaining

D
i
D
2

ka32nN for the Voigt appyoximation and

D
A

D
124

< kd3£nN from eqn. (55)% Ike topal:width of the

shock is obtained 8y adding thegé/two half-widths together,

giving the values k(a, + a3)£nN'and k(d2 + d3)£nN for the

2

two solutions. ,But comparing eqns. (39) and (56)ﬁwe see
H

- t
.that these two expressions are identical, so thatj%he

total width of the shock layer is given correctly by the

Voigt approximation..

i
§ o o K
" Since a, > a, for v > 0, it follows fhat in the

Vpigt approximation the trailing side of the layer is

1

compressed relative to therléadiné'side when tpe"éubic

Ml o SR R b s i

\
[T E RV, 1 G N Y

PRIt N
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» - - ’ g 3 . - 3
213§ticity is of a "hardening" nature. Conversely when
the cubic“elasticity is "softening" (i.e., v < 0), in the .
Voigt approximation the leading side of the shock is

e

compressed in comparison to the trailing side.

uIn this latter case (v < 0) it follows from eqns;
(56) that d2 < d3 so. that with exponential relaxation the

leading side of the shock is compressed relative. to the

trailing side, just as in the Voigt. approximation. .In

the case v > 0 however the two effectsbcompete, the cubic

elasticity tending to compress the txailing side while
|

the effect of the non-zero relaxation time is to compress -

¥ N .
the ledding side of the shock. The leading side is the
9 B

shorter if

1 g | | :
268/k > ECL - ELL Y S -
- + o
~§u£omparison of the two solutions (41) and (55)
allows us'to derive the precise conditions under which
the Voigt model may be applied. We see that d1 z'ai 

(1 = 1,2,3) when the two conditions

5/k << (AE+)'1 o . L - (57)
are met, and in this‘evéntuality, the solutions (41) . .and
W T b.
Ry ond
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(55) become approximately the same. These conditions

-

could be derived in a qpalifative sense from the solution

~

(41) aioné,4since an intuitive condition for the validity
. @

of the Voigt approximatiSn is that the decay time 8§ should

[ v

be much smaller. than the widths of the two sides of the
shock layer. Thus we are led to the conditions & << ka2

_and 6v§<'kaa.which are 1dentical with conditions ‘i{{.

] : ¢

HE

-
-

The solutiom (41) always satisfies the boundary - fﬁl

" are EjjiiiZi;;/Hégéver_while the.condition r > +1 as
(6 - Gs)/kw+ +o is alyéys met.by solution (55), the = \\

conditions r *ﬁil\as (6 -'es)/k,+ te since a, and as

second boundary conditi&q is onmiy iﬁﬁiﬁiiﬁd provided that

.
A

d2 > 0. This condition may be rewritten in the form

Alu + v2~_,% VA) < k/é. b‘\j‘ ‘,,—%“’T” (58)

-

Unless .this condition is met, eqn. (54) s no solution
,satisfyiﬂg'thejrequired boundary conditi¥on,
R .71. / . -

When v = 0, the inequalit

an‘upper\iiiii—j:hﬁéa%?e jump i

, AN

For stronger 'gshocks than satisffly th¥s bound, no quothn , S T
, / ' \

solution of ~eqn+(54) exists.%ﬂew

-

provides simply .

\

').across\phe shock.

e

5 it—is intehesting - - - -

that when v # 0, condition (SSK\does ot provi merely an



— 7T

S

upper bound on A. If we set Am = 3(u + vI)/v and

K =1 - le/vGAi then the conditions on A arising from

the inequality (58) can be summarised as follows. (In

deriving the conditions which follow we have made use
of the restriction (45) and also of the condition

IA/AmI < 1 which is necessary- in order that the third

+

logarithm in eqn., (55) should-not Be singular for

]r] < 1.) PFor v»g 0, it-is necessary that

i.

0 < —,‘(.A’/Am) ¢ min (1,%(./?- 1‘)).
&

. For v > 0 and « > 0, it 1is necessafy that

either 0 < (A/A) < 3(1 - /&) or 2(1 + /x) < (4/8) < 1.

- P : »
-
-~ B
~ ..

For v > 0 and k <0, the only condition IEMD“S (A/Am)‘< 1.
Thus when v and Kk are both positive, besides a band of
weak shocks there also exists a band of stronger shocks

for which a smooth solution of‘eqn.‘(54)”exiéts.
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