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ABSTRACT'

Iet Y be a graph wifh P edées and let k. be a positive

A,

integer; The°'(Y,k)-énti-ramsey number, denoted by ér(Y,k), is the

-

';%x léast m such'that every4éom§lete graph on m vertices whose edges are

coioured uéing no colour more than k times contains a subgraphr

‘isomorphic tor>Y whose edges are coloured witb\ p. distinct colours.w
Therexistence of ar(Y,k) is prdvén along wifﬁ’upper and lower bounds
_for ar (K, ,k) and some exact values of ar (Kp,k) are given (Chapter IV).
Thé ;estriéted problém of finding 'ar(Kl,n,k) is invé;tigated“ d exact
values given for n or _k equal to 1, 2 or 3 together with upper
and {pwer bounds for ér(Klrn,k) (Chapter III). Related;problems and
conjectures are mentioned in Chapter V. . ///
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I. INTRODUCTION

-

In the beginning there was the Advanced Problem 6034 proposed

) by4Fred Galvin in the May 1975 issue of the American Mathemafical

Monthly: q:j

Sﬁbposevthe edges of the complete graph onh n vertices
are coloured so that no colour is used more than k times.

(1) If n=Zk + 2, show that there is a triangle no
two of whose edges have the same colour.

~ P
(2) Show that this is not necessarily so if n = k + 1.

(1)

After a solution was found some generalizations began to emerge. 1In

view of (1) it is clear that - n =k + 2 is theismallest such that the
conélusion'of (2) holds.® Is there such a minimum if_instead of
triangles we consider cgycles of length greater than’three? What if one
looks at complete graphs on m ‘points, m> 3 ? Can a minimum n be
found so that it is impqésible to colour the edges of K, using each
colour at mo§t k times and guarantée tha£ every .m—star (i.e;J Kl,m)
ha; two edges of the same colour? W?at are the minima, if they exis£?
Some of these questions are rgifsiggly easy to énsQer, others seem’té be

rather difficult. A few were answered by B. Alsgech, M. Gerson, G.

and P. Hell and reported in [H3]. These and some mdxe_are

of the present work.

€
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"II. DEFINITIONS AND EASY OBSERVATIONS‘
. ey —

[2]

Let A be a sef. We will denote by A the set of

unordered°pairs of elements 6f A and by ]A] the cardinality of A.
(2) (3 -

A graph X is a finite'®*’ nén-empty set V(X) of points

. ‘ [21 (4) L
of V(X)) f . W t
together with a §Ub§et, E(X)awg (X) . © edges- e write
X = (V(X),E(X)). The vertex set V(X) of a bipartite graph X is the

union of two disjoint sets V, and V, while E(x) n (v;12] pv,[2]y =
v 1 2 ; 1y V2 ,

@. A graph Y 1is a subgraph of the graph X (or-+is contained in X)

if V(YY) € Vv(X}) and E(Y) € E(X). We write Y C X.

<

When |[V(X)| =m and E(X) = vx) 2] we say that x is the

gomplete graph on m points and denote it by Kp . Similarly, we denote 7/

by Km’g the complete bipartite graph on m + n Vértices—ahere
IV1| = m, ]V2| =n and E(Km,n) = (vq U V2)[2] _ Vl[2] _ V2[2]. In

particular, we call Ky an m-star. If e € E(X) consists of the
. . r — ® .

m

points u and v we write e = uv. It is sometimes convenient to
consider edges as sets and say, for example,.that u € uv and that I

eif = g .if e,f € E(X).

Intuitively, a graph iiﬂisggx\gf_pggnts joined by edges. Hence,-

we say that the vértices ‘u and v of X are adjacent if uv € E(X)

\

and that the edges e and f of X are adjacent if eNf # g and e # f.

We also say that the edge uv is incident with the .points u and v.

The degree d(v) of a vertex v‘)is the number of edges incident with

(5)

it. If there isa d €N such that d(v) =\é/ for each v € V(X) oo {/ff

we say that X 1is regular of degree d; K, , then, is regular of degree i\

e

m- 1.

3
3
i
3
3

o




A path in a graph X 1is a sequence of distinct points
Uprly, - .. puy (usually written just ujuy.... u,) with every pair
qf consecutive vertices joined by an edge. A cycle is a path with the
additional edge uu, . A u-v path is one whose first and last
points are u and v respectively. A graph X is connected if it
contains a u - v path for every pair of points u and v. An equivalent
and sometimes useful way of defining a connected graph is to say that for
any nontrivial partition of V(X) into V1 and V2 there are vertices vl € V1 ,
vy, € V, with ViV, € E(x). Each maximal connected subgraph of X is a
comEénent of it. A subgraph Y of X obtained by taking a subset V(Y)
of V(X) (or a subset E(Y) of E(X)) together with all the edges of
X incident only with vertices in V(Y) (or all the vertices incident
with the gdges in E(Y)) is said to be induced by V(Y) (or E(Y)).

If, given graphs X and Y, there is a bijective map
f : V(X) > Vv(Y) such that £(u)f(v) € E(Y) exactly when uv € E(X) for
any u,v € V(X), we say that X and Y are isomorphic. It is trivial
to verify that isomorphism is an equivalence relation on the set of
graphs and we will henceforth use the name X to denote any element of
the equivalence class containing X.

Let C = {ci I i <« w} be a set of colours and for each k € N
and each set A let Fk(A) be the set of functions
{f : A ~>C | Vi «< w(if—l(ci)] < k)} where If_l(ci)| is the cardinality
of the pre-image of «¢; . When no confusion might arise we will write
.simply Fk for Fk(A); in particular, for a graph X we write F

k

for Fk(E(X)). An edge-colouring of a graph X is a function f from




b

. R

Cor

E(X) into C, an edge—k-colduring is a function f € Fk(E(X)}, " Given
a graph X and an f € Fk' we say that the subgraph <Y of X is

) -~
monochromatic if !f(E(Y))l =1 and that it is a rainbow(6) if £ | E(Y)

is one~to-one. For a given graph Y aifunction f € Fk(E(X)) is a

(Y,k) -colouring of X if no Y € X is a rainbow. A graph X admits a

)},k)—colouriggr(is (Y,k)-colourable) if there is a (Y,k)-colouring of

N - s - ;
Pt. _We will think of an edge-colouring of X as just that and, hence,

will talk about aﬁ edge coloured c; or having a colour ¢; , an X

[

being (Y,k)-coloured, etc.

Let X be coloured by some f € Fk . We say that the colour

ci and the vertex v € V(X) are incident (with each other) if there is

a u € V(X) with f(u,v) = c; . The colour degree c(v) of v € V(X)

is the number of colours incident with it. Denote by C* the image of
E(X) under £ " and,without loss of generality,assume

C* = {cl, -« - scp} for some p. The set of edges coloured ci

incident with. v will be denoted by Ei(v). The colour structure s(v)
of v is a vector of length p with 's;(v) = lEi(v)l. The condensed
co%gﬁi structure s(v) is obtained from s(v) by omitting all zero ?,

entries; it has, therefore, length c(v).

Ah edge uv colourgd c; 1is single at v if E;(v) = {uv},

is single if it is single at either u or v and is totally single if

it is single at both u and. v. The single degree t(v) of v is the

number of single edges incident with it and the single in-degree r(v)

is the number of edges single at v. The single out-degree of(v) is

given by



o(v) = t(v) - r(v) + o(v)

where o (v) 1is the number of totally single edges incident with v. The

single in-degree and out-degree of X are, respectively,

r(x) = ) )
vEV (X)
and
o(x) = ) olw
VEV (X)

and we observe that o(X) = r(X).

Since we are dealing with discrete structures it is useful to
introduce the function symbols L J and {'1. ‘Leé y be a real number.
Then |y|, called the floor of y, is the integer a such that
a g.yﬁ< a+ 1l and [Y], called the ceiling of vy, 1is the integer b

such that b - 1 <y =b. We can now make the main definition.

DEFINITION 2.1: Let Y be a graph and %k a positive integer. The

(Y,k)-anti-ramsey number ar(Y,k) is the least m such that

K, does not admit a (Y,k)~colouring.

It will be shown in Chapter IV that ar(X,,k) exists for all n and k.
To see that the definition makes sense for all Y we note that if

Y ¢ K, then any (Y,k)-colouring is also a (K,,k)~colouring and, hence,
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3

ar(Y,k)vﬁ ar (K,,k). It is a trivial observation that for any Y there
is an. n such that Y ¢ K, . One might have expected the definition of

artY,k) to be

DEFINITION 2.2: Let Y be a graph and k a positive dinteger. The

(Y,k) ~anti-ramsey humber ar (Y¥,k) is the least m' such that
there is a graph X with [V(X)| = m' which does not admit a
(Y,k)—qglouring.

A little thought; however, shows the two definitions to be eéuivalent.

g e
L %

Let m and m' be ar(Y,k) as defined in Definitiopns 2.1 and 2.2,
respectively. Clearly, m' =m. If X .is a graph on m' vertices

x

which is not (Y:k)-colourable, then, since X ¢ Kml » Ky does not
admit a (Y,k)hcolouring eitﬁer. Thus, m' = m. 1In view of this, we
shall adopt Definition 2.1.

The problem, of course, is that of finding ar(Y,k), given Y

and k. In general, this seems rather difficult although some easy

observations are at hand. We now 1ii;r4 few.

OBSERVATION 2.1: - ar(y,k) = |v(Y)|

since K, ‘contains no Y for n < |V(Y)].
?.L

e

OBSERVATION-2.2:

1+ V1l + 8k
2

ar (Y,k) > [—————-—J

®

since K, can be coloured with only# one colour when (g)f k,

which yields n = [%_i;AQZEZEEQ.

2



OBSERVATION 2.3: ar (¥,1) = |v(Y) |

which follows from Observation 2.1 and the fact that each

colour can be used only once.

OBSERVATION 2.4: ar(¥,k) < ar(R,,k) for n = |v(Y)|

as was already mentioned.

Considering the difficulty of the general case, it is natural to
concentrate on some special cases. The first to come to mind is, as might
be expected, the case of ar(K,,k). At present it secems that even this is
not easy and apart from the sparse results of Chapter IV not much is known.
The most approachable special case is that of n-stars which is the subject
of the following chapter.

A word about the name "anti-ramsey number." In 1930 F. P. Ramsey
proved in [R2] a theorem now bearing his name. 1In the language of graphs
theorem states the following: Every infinite complete graph whose edges
are colodred with k colours contains a complete monochromatic subgraph
on ::O vertices. It follows from this that for any pair of positive
integers m and n there is a least r € N such that every complete
graph on r vertices whose edges are coloured with two colours contains

either a monochromatic or a monochromatic K, . This r is denoted
n

by r(m,n) and is called a ramsey number. Thus, with ramsey numbers one

is looking for the minimum r such that in any edge-colouring of K,

(with two colours) there is a monochromatic subgraph while with

anti-ramsey numbers the minimum m sought is such that in any



3

edgércolouring of Km (using each coiour,no,more than k times). there
is a ggig@gg’subgraph. |

It is intefésting to note, however,lthat despite the similarity
between r(m,n} and ar(Y,k) the latter problem is more related to one

of Turan. We will say more about this in Chapter V.

o
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ITI. STAR-NUMBERS

& : ~ =

“f We have already defined Ky n + "An n-star consists of a
= 4
centre u of degree n and’' n points of degree one all adjacent to u.

‘ . A
If such a gréph.is not a rainbow under an edge-colouring then there arse.. g
two edges of the same colour which are both incidené\yith the centre. - i

This is a very useful piece of information. With any_othéf(7) S0 qploured

connected graph one has no idea just where the two edges of the same

/4‘_’\5\ K

colour might lie. This is due to the fact that there are at least two

vertices of degree at least two in a connected non~star. Thus, with

n—stsng one can make use of the pigeon-hole priﬁciple(a) which makes

a

k) a natural choice for consideration. This is not-to say,

3

ar(Kl‘,n’

however, that the "star numbers” are easy to find.

We will begin with a few observations.

»

OBSERVATION 3.1: ar(Kl n,k) > n +"1
’ o

L

which follows directly from Observation 2.1.

\

OBSERVATION 3.2: A graph X is (Kl n,k)vcol'oured by -f if\?ﬁd only
14 .

if f € F (E(X)) and for each v € V(x), 1 < c(v) E:r}— 1.

OBSERVATION 3.3: If K, is (Kl'n,k)-coloured:fhen : 5
’
(a) for each v ¢ V(Km){ clv) = [ﬁ ; I] > m4i~l ’
. = ’ —\'\‘
(b)) n=1+ max c(v) =1 + DI ; 1

vev (Ky,) . ' .

() ar(Kl’n,k) < (n -1k + 2

- [ I o
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and we note that (c) is a cahsequence of (b).

We can now state our first two propositions.

[
[\§]

PROPOSITION 3.1: (a) ar(Kl l,k)
14

(b) ar(Kl,n;;) =n+ 1. .

Proof: From Observations 3.1 and 3.3(c).

* k%

PROPOSITION 3.2: ar (K] ,,k) = [%;i_!%_i_§%J
Proof: From Observation 3.2 we have c(v) =1 for each v € V(K,)

whenever K, is (Kllz,k)—coloured. Hence,'only one colour
is uéed in such a colouring and, thus, (g]s k. The result
then follows by solving the inequality for m. |
» ‘ ' k%
Our next task will be to try for an improvement on the upper bound for

ar(K) ,.k)." We assume, until the end of proof of Proposition 3.3 k > I,

LEMMA 3.1: Let K, be (Kl’h,k)—coloured by £ apd let £(E(Kp)) =
{Cl’CZ' ... ,cp}. Let a be a non-negative integer
and let v € V(Ki?. For each 1 =i = p, if si(v) >k - a

then at least k - 3a edges in Ei(v) are single.

Proof: Consider the component Y containing v of the subgraph of K
. -1 '
induced by f “(c3). ¥ ‘has a subgraph Kl,si(v) and
A
l,sigv)) has at most a elements~s Since each

edge in E is incident with no more than two vertices of

E =E(Y) - E(K

il e v e

P LY

S T2 e B e T
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Kl s. (v) (and is not incident with v) it follows that no
14 J‘_ N -
more than 2a vertices other than v of K T have
l,Si ( V)
degrees greater than one.That is,at least k - a - 2a
, o B . k-1 ‘ -
edges are single. Note that k - 3a 2 1 if a = > -
: *%k %k
A
IEMMA 3.2: Let a, b and a; i=1,2, .. . ,a be integers such - _
that
1 a
i=1 -
ﬁ“\ Then .
/ a
' ! @-pm=20
i=1
Proof: Easy manipulation. i
ok k

~LEMMA 3.3: If, in an edge— k-coloured graph X, a vertex v has

condensed colour structure such that

S

1 c(v) _ )
ey L ?i“’)fk-[k—i—J ' | ‘
i=1 . ‘ \\
(L

then r(v) < o(v).

Proof: Let b =k - LF ; {J and for i =1, . . . ,c(v) let

a; = Ei(v) - b. Using Lemma 3.2 we then have P

c(v)

o T oa; - ¥ lagl=-) a2 =zo.° o .

a;=0 ai<0 i=1

RTINS I

2
i
|
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- : k-1 .
Now a; = 0 means s;(v) =2k - 3 and so, by Lemma 3.1,
Ei(v) contains k - 3b; single edgeé, where b; = k -lgi(v).

Since
— k-1 k-1
+ 1<k - 3bi

we have

o(v) 2 ) (k=-3by) > ) a;.
a;=z0 a;=0

5

Also, r(v) = Z 1= 2 Iail ahd, hence,

a£<0 ai<0 _

o(v) > Z\\,ai > ) ,lail 2 r(v).
a;=0 a;<0 '
. *kk

Y

-

PROPOSITION 3.3: ar(Ky,n,k) Zk(m-1) +n for n>1, k > 1. :

-

_2 | : "
If m= 3 k(n - 1) + n and K, is (Kl’n,k)—CQloured then

for each v € V(Ky,) . we have

c(v) .
1 - 1 - ’ 1 2
I3 Z 85 (v) z_n — l(m -1) = — 1(3' k+1(n-~-1

i=1
k-1 -
>k - . .
Sl e C

. Hence, by Lemma 3.3, o(v) > r(v)- Thus,

o(Ky) > r(Kp),

a contradiction.
*kk




13

Comparing this new upper bound with that of Observation 3.3(c) we see

that

whenever

provide an improvement.

(n—l)k+22§—(n—l’)k+n

n>1 and k 2 3 and thus Proposition 3.3 does, indeed,

We now turn to more specific results.

: \ ' _ n+ 2
PROPOSITION ;.4: . ar (Kl ’n,2), -— n + LTJ

Proof: A. For n <4 note Obs. 3.1 and Propositions 3.1(a) and 3.2.0therwise

edges Vv;v

- 1
3

: n
let m = n + and V(Km) = {vo,...,vm_l}. Also, let

c! =‘{Cij.l i-= o, . « . ,m-1; j = lr . v 'l?_g;ij} C q.
y

We define f : E(Ky) > C as follows: for each - -

i=0, ... m-1 and 3 =1, . .. ,L ; %J put

o

f(ViVi+2j_1) = f(ViVi+2j) = Cij with i + 23 - 1" and i + 2j
taken modulo m. This assigns, for each i, colours to
i+s

%J. Since
n-1

s,s' =< ZL 3 J gmplies s + s' <n+ l? ; J, no edge is

for s =1, . . . ,2[? ;

coloured twice. The remaining edges can be coloured with
arbitrary colours distinct from one another and from those in
C'. For every v we then have

clv) = t? ; lJ + m-1- ZEligjj) =n -1 since Lﬁg’{J

colours from C' and m - 1 - 2[? ;

li other colours were

used. Thus, f is a (Kl n,2)--colouring of K, and, hence,

LB o e L e

Nt b Ry
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.

ar(Ry _,2) 2 n + l_n—gi_l

-

. . n+ 2
B. Suppose now Ky is (Kl’n,z)—coloured with m 2 n + L 3 J_

Let v € V(Ky). Then

1J)

&
by Observations 3.2 and 3.3(a). Consider the condensed colour

1 n -
- > > 4
n 12 c(v) = 2(n + L 3

structure s(v). It is a vector consisting of n; 1's and

n, 2's and we have
n -1
2n2'+ nlyz-n + L_ 3 J ‘
LY _J‘r

and

c(v).= n, + n, <n-1, ' k,
Hence,

n+l_n—3—l-_J5n—1+n2,
that is

e
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Now . — . .
o(v) Z 2n, > n; = r(v)
for an arbitfary v € V(K,) and so

o(Km)l> r (Ky)

an impossible, situation. Hence, -

ar(Kl;n;2) =n+ L?s; %J.

*kk
hY

Figures ii and 2 show (K n,2)—colourings of K 4
‘ n

1, +Ln-l_l for n =
and 9 respectively. .
: )

Before proceeding to the next case’ (ar(Kl,n,B)) we digress a-

little to recall a few facts of combinatorics. A Steiner triple system .
(8TS) of order v 1is a set of three-element subsets of a set X with

IXI = v such that every pair of elements of X appears in exactly one

(9)

triple. It can be shown that an STS of order  v. exists if and

only if v 1 or 3 (mod 6). Consider a complete-graph X on

v=1 or 3 {(mod 6) vertices. A Steiner triple system on V(X) is a
partition of E(X) into triangles--a pair of elements of V(X)

correépondé to an edge and a triple correéponds to a cycle of length

three, or a triangle. With this we state

PROPOSITION 3.5: 2n if n £ 0 (mod 3)

ar(Kl,n'3) =

2n - 1 if n 0 (mod 3)
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* >

N

(Kl’4_,2)—<,:/olouring of Xg .

A

Figure 3.

i



17

[ BN

)
,,/\ ) «
o @
> >
S RRARARAINALS *
****W .m;
***** o 2 2 .
. * \
k¥ & 2 \
2 2 \
e ? 2 )
.\_ )
2 \\!
2 _ \\!
2 !
2 \
2 |
N
4
//
~
.
~
- //
//
S~
/
~
AN
~
N
. ~N
AN
N
e
Y
. : ™
>
3

\
W
W
A\
N
W
\
W

v

11 -

NS

(Kl ’9,2)—colouring of .

Part of a

Figure 2.

(
{

Y e,



18-

Proof: A. We have™ n # 0 (mod 3) if and only if 2n - 1= 1 or 3

1

(mod 6), at is, exactly when an STS of order 2n - 1 exists.

Thus, E(K2n—i) can be partitioﬁed into triangles. Colouring

each triangﬁe a’giézlnct colour we obtain an edge-3-colouring

! 2n - 2
of K, -, with; cl{v) = 'I%r——'= n -1 for each v € V(Ky ).

1

Hence, this is a (K n,3)—colouring'and
. L 7 .

N
~

ar( 3) = 2n

K1,n' -

when n £ 0 (mod .3). Also, n = 0 (mod 3) if and only if

i

2n - 2 = 4 (mod 6), 1in which case anAsis of order 2n - 3

exists. Hence, there is an edge-3-colouring of Kopn-3 2as in
the previous case, with c¢c(v) = n - 2. Since 2n - 3 is
divisible by three when n = 0 (mod 3), the vertex set of

K can be partitioned into triples each of which can be

2n-3
joined by edges of the same colour to a new vertex u. If the

edges from distinct triples have distinct colours this will

result in

4

i

c(v) n-1 for v G‘V(KZn—3)

2n - 3
S

c (u) <n-1.

h]
Therefore, ~$
?7 K 3) 22n - 1
ar { 1,0’ ) n

when n = 0 (mod 3).

~
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. B. Now let m< ar(Kl’n,3) and suppose’ K, is

(Ky pr3)-coloured. Let v € V(Ky) and consider the condensed

colour structure gkv). This vector consists of nl(v) 1l's,

~[/9 ' n,(v) 2's and ny(v) 3's and we observe that r(v) = ny (v)
and o(v) = 3n4y(v). We then obtain, writing n; for ni(v),'
i=12,3,

Z | | ,
3n3 + 2n2 +n)=m -~ 1
and

n-1=c(v) = n, +n, + p3

énd, thus,

clv) - n) - ng .

+ 2¢(v) = n., -

- n 3 nl+2(n-l).

1
Now, if m = 2n then

2n - 1 < ny - n; + 2(n - 1)

or, VAl

and from this

o(vl 2 3ny >n; =r(v).

g g ARG e Rt T L e

AT 0 b el T AR, o i L1
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Therefore,
o(Kzn) > r(KZn)'
B a contradiction., If m=2n -1 and n = Q0 (mod 3) then
S
ms=5 (mod 6) and we get
Q\
2n - 2 < ny - n; + 2(n - 1)
or,
n,y = n3 = 3n3 .
Thus
. w‘(;(v)wz 3n3 > ny = r(v).
J
Now of(Ky) = r(Ky,) and so the inequalities in

oKy 23 ] ngv) = L ngw) = ) nv)
vEV(Ky) VEV (Kp) VEV(Ky)

= r(Ky,) " -

are eqﬁalities. Thus, n3(v) = nj(v) =:0. Then clv) - n, (v)
and s(v) consists entirely of 2's. Since no colour appears
more than three times this implies the existence of an STS of
order én -1 =5 (mod 6), an impossibility.
k%
Figures 3 and 4 show (Kl,3’3)_ and (Kl,4,3)—colourings of K, and

K respectively. We now have the values of ar(Kl n'k) whenever n or
14

D

N AN 8 St e e
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Figure 3. A (I(1 3,3)—colouring of K,
14
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k is equal to 1, or 2 and for k = 3. The results have not been

-

complicated but the proofs, though elementary, have been.getting longer.

Kl 3,k) is simple and in keeping with the progression
’ ¥

i

so far established the proof will be the sole.objective of the remainder

The value of ar(

of thisAchapter. Before embarking on the sequence of le,,as leading toq
the main result let us make a few remarks. First, recall Observation
3

3.2. In the case of a ( k)-coloured graph it says that the colour

K
1,3’
degree of any vertex is at most two. Second, for the purposes of proving

Lemma 3.4, we will say that in an edge-coloured graph X. the colours

ci and cj meet if there is a vertex in V(X) incident with both of

them. BN

-
We can now begin the sequence with the surprising Lemma 3.4.

LEMMA 3.4: If m< ar(Kl 3,k) then there is a (K +k)-colouring f

1,3
of K_ with [£(E(K))]| = 3.
m - m

Proof: Let p be the least integer such that K ~can be

(Kl’3,k)—goloured ?y some g with g(E(Km)) = —{co’f .- ey cp}.
For 1i=0, .. . ,p let Xi be the subgraph induced by the 4 S
: I\
. 3
edges coloured c, and let ni'= [V(Xi)l. We will show

() If p > 2 then, without loss of generality, for 1 # Jj ,

i,j=1, ... p, V(Xi) n V(Xj)’= @ and all the edges

between Xi and Xj Aare coloured co.

(B) If the conclusion of (A) holds then for any partition of

{1, . . ., p}dinto T UJ we have

1+ V1 + 8k,
T

K .

min { 2 n, , Zn., }<
ier v ojeg L

SNRC

nndiie,
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HA

(<) o) 2.

We begin with the last claim, assuming (A) and (B). Recall

+ V 1+ 8k
2

. 1 .
that if n = l_ then Kn can be coloured with only

one colour. Now, if p> 2 then it follows from (A) and

(B) that

2 P
min { 2 n, , 2 n,
i=1 i=3

} < l} +V ; ¥_§%J

and, hence, at least one colour can be eliminated.

Proof of (A) : If every two colours meet then there are

vertices u and v , u incident with q and S v with

c2 and c3 . The edge uv cannot, then, be coloured with

any colour without increasing the colour degree of at least
one of u and v to three. We may, therefore, assume that,

without loss of generality, cy and c, do not meet. It is

clear that V(Xl) N V(X2) =@ . Let uiE V(Xi), i=1,2.

Since g(uluz) # c.,c. we may also assume, without loss of

1" 2

generality, that is coloured c¢.. Let v be any point

%1% 0
of ‘X2. Then g(ulv) = <, since since u,v is coloured

neither ¢y nor C, s ul is incident with <, and ¢y and

c(ul) = 2. Similarly, g(u2W) = c for any w € V(Xl). Thus,

0]

all the edges between Xl and X2 are coloured cqe In fact,

all vertices of Km are incident with 4 since for any point

v the edges between v and Xl or those between v and X2

are coloured co. It is now clear that for all 1i # 3,

i=1,...,p V)N V(Xi) = @ and all the edges

between Xi and Xj are coloured with o
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Proof of (B) : Assume tQat the conclusion of (A)

. ’ T
holds and that for some I and J

e

" ol }>L1+V?_8ﬂ
> | -

min { Z n; 7 n,
ier j€g ?

L

Clearly, the numbérfof‘gdges coloured c0 is at_most _k

and at ieast

.‘/“

. ( Zn,) *( Zn.)
jer * jeg

,/\ ‘ .

) .
. [
which, with the above assumption, implies that

K > |-1+\/1+'8kJ2
> R

~ - : ®

Let us write now v -

=l+\/1+8k
2

: . 3
and L s J =s-r. Since 0<r <1l and s> 1 we obtain

k > (s - r)2 > (s - 1)2ﬁ3 ;(s -1) =k
which is impossible.
This completes the proof.
- o . . L kkX

N

An obvious consequence of Lemma 3.4 is the following :



j\j i

LEMMA 3.5:

ar (K Ky < l_3 + V1 ¥ 24x
1,3 = >

Proof: All we need to do is solve the inequality implied by Lemma 3.4,
namely'(g) < 3k whenefer m< ar(Kl 3,k).’ : , \
I ' . *kk

The conjecture at hand{/;i;: is, ar(Kl 3,k) = Lf t+ 'Z s 21%J, will
i ! -

turn out to be true except when k = 2 or 7. In order to prove it we

need two more lefmmas.

LEMMA 3.6: * For every non-negative integer k there are unique

non-negative integers n and i such that i =< 3n and

2
. 3n“ - n .
k_\-__-2——+ 1.

-
s

2 v
Proof: It is easy to verify that 3" *+n i oan integer for each

a2
- n € N. Let k € N. The set S, = {n ’ 22——:—2-5 k} has:a .

<« 2
’ . .3nk2 - nkg
largest element, say n. . We set i, = k - —— ‘and
notice that
3n,2 - n 3(n +l)2 - (n, + 1)
k k k k

2

i.e., iy = 3n otherwise ny was not largest. If .

2
k = 22"5:_2 +1 with i =3n for n < ny then
2 - 2 2
3n“" -n . _3n" -n -3+ 1)° - (n+1)
s+ i S =+ 3n = -1

[ 4

2
ae -2
L/gg—n—-—k —
~ 2
\___

il R s

el e,

“
A A B s L e s



that is sk <« k. Thus, the pair (nk,ikr

' 2
LEMMA 3.7: For k = 3R_ - D 4 i, i = 3n, we have

27

is unique.

*k%

2
3n if 0=si<n
1 +Vv1 + 24k|_ 3n+1 if n=1i=<2n
2 J ‘ -
; 3 2 if 2n< i = 3n.

n +
e ‘“/Lﬁﬁf

Proof: We have

VI + 28K = V36n® - 12n + 24i + 1

" and we consider the three cases.
(a) 0=i<n

Then

6n - 1 <V36n2 - 12n + 24i + 1 < V36n% + 12n + 1 = 6n + 1

and 2

3n < 1+ “; + 24k < 3n + 1.
(b) n=<1i =2n
Then

6n + 1 <V36n° - 12n + 241 + 1 < V36n® + 36n + 9 = 6y + 3

and ’ '

>

In + 1< 1+ V1 + 24k
2

< 3n + 2.

]

R ey
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(c) 2n< i < 3n.

Then

6n + 3 < V36n° - 12n + 24i + 1 < V36nZ + 60n + 25 = 6n +'5
/ ’

o

‘and

1 + V1 + 24k
> < 3(n + 1).

3n + 2 <

. & k&
.- .

We are now almost ready for a'proof of our conjecture. The missing link

»

is Lemma 3.8 which _we shall assume for the moment.

P

R

PROPOSITION 3.6: ar(K; 3,k) = t+ V; + 24k—l
I4

except that

ar(K1’3,2) = 4 .

and‘

ar(K1'3,7)‘= 7.
Proof: Let us dispose of the exceptions first. From Proposition 3.4
we have ar(K; 3,2) = 4. From Lemma 3.8 we will see that
Tar(Ki'3,7) =<.7 and Figure 5 shows ar(Kl 3,»7) > 7. In -the

2
general case--k # 2,7--write k = EE_EZ_E.+ i as in Lemma 3.6

\ . 3
»J and consider the three cases of Lemma 3.7. In each one we wilkl

show that the complete graph on L}:+ ‘é s 24k_1 vertices is

( yk)-colourable by exhibiting such a colouring.

K
1,3

(@) 0<i<n

Bt T TR
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Figure 5.

" A

(xy )3 y7)=-colouring of

29
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. C

Then Lf + V1 + 24%J,= 3n and we let V(K3n)
2

Vo UVvy U V2'U {v} where |V0| = |V2| = ]Vl]‘

s

i=0,1,2 we colour with c¢;

on V. and the edges between

modulo 3. The edges from v

0 and those from v to V;
colours all the edges of K3p
3n2 - n

2

'schema of the colouring.

\
i =

(b) n=1i=2

n
Then L} ha % ks 24#J =3n + 1.

(k = 2,7)

1

1]

+

the edges of the complete graph

Vi and Vif"l , taking i +

’fo V0 will be coloured with

and V2 yith cq - This

30

1 .= n. For

1

and each colour is used exdé;Jy

-

we assume that n = 3.

Let V(Kg ,1) =Vo UV, UV, UV U {u} U {v} with

In view of the special cases

= k times as is easily checked.thiguré 6 (a) shows. a

Vol = [Va| = [v4] £3 =n, |v| =2. For i=0,1,2, colour

with c;

the edgeF of the complete gragﬁ on V; and the

edges from Viu/fér Vi+1 » taking i + 1 modulo 3. Colour
/ . .

with Cp

V0 U vy UV plus the edge in

to V

Co the edges from v 0

the edges between V and V

0
the graph on V. Colour with

and with

edges. It is not difficult to check that all the edges of

times. Figure 6 (b) shows the

. ?
(¢) 2n< i =3n

Then L} + “z +'24%J =3n + 2

2

schema of the colouring.

4

We let V(K3n+2) =

]Vi[ =n for i

A}

and between u-fand.
c; all the rgmaining

. 2
K3n+l are coloured and that each colour is used 3n” +n =k

0,1,2 and

R v T

Tt gl iRk

emabEint
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colour c:

; the edges of the complete graph on vy plus the

edges between Vi and Vil o+ taking i + 1 modulo 3. Also, ] !
colour with o the edges from u to VO'U V1 and with Cy

those from v to Vg U V2 . The remaining edges will be

B PN
coloured with dl . Then each colour appears at most
3n” -0 4, on 41 <k times. Figure 6 (c) shows the' schema. .

Clearly, in each case each vertex has colour degree two and so

we have constructed (Kl 3,k)-colourings.
N ’

* k%

We now provide the missing link. Since ar(K1 n,k) exists for all n
' } .

and k there is a maximum number of c¢olours that are necessary to

(Klln,k)—colour any ¥; when m< ar(Kl’n,k). Let this maximum be

P(nlk) .

< [
LEMMA 3.8: If m< ar(K1 n,k) and (?) =k - p(n,k) then, letting
= 2.8 , , )

_ I"1 + VI +'§k“| '
q = I

- 2k(n -.1) :
m _'[:———E;———J + 1.

Procf: For simplicity we let p = p(ﬁ,k). Let m be as in the
statement of the i;rna. Then any (K1 n,k)-colouring of Kn - ;
’ H

S.

‘must use p colo Let f be such a colouring. For each,

i=1,...,p let X; be the monochromatic subgraph of K;

induced by the edges coloured cir. Since f is a U §

(Ky ,nrk)-colouring no point of Ky 1lies in more than n - 1

of the X;'s. Letting a = ﬁinlv(xi)l";e observe that
, i : '

14
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Figure © (a). The colouring scheme for a (K1 3,k)—colouring of Ky, .
14

Counting the edges by colour:
: 2
n 3 -
cy ¢ () f n +nin - 1) = —E—y—ll
‘ ’> ” 2
cl=[(nzl)+(n"1)+n]+n(n-1)=3rl a
2 _ 3n2 - n

v, (n
c-(2)+n 7



. -
Figure 6 (b). The colouring scheme for a (Kl 3,k)—colouring of Kapn+1 -
. r

Countingbthe edges by colour: ) _ P

, - : <202 L
co * [(’2‘)+n(n-3)+n+2n]+(n-43)‘+é+1=-3“_2-+-_n

¢y : I(M > 3 4+ (n - 3)n + (n - 3)+ 2(n - 3)] + [2n + n + n] +

3n2 + n

+ 24+ 1=
+1 2

: 2,
cy 2 1 + n2] + n = 22—7-—11

-

-

S S
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Figure 6 (¢). The colouring scheme for a- (Kl 3,k)—colouring of Ky .o - .
r - .

Counting the edges by colour:

2 .

. n 2 _3n“ - n ,‘

cg: [(3) #n” + nl +n="—5—+2n

2 _

Cl : [(121) + n2 + n] + [n + l] = .3£_.2.__I_1_ +2n + 1 1

2 f?

n 2 3n - n :

CH + n + + = Z———©— + 2n :
5 I[(y) n] + n 5

G T AN

¢
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or,

Since each colour appears k times, (g] >

l‘ 1

o
v

Thus,

+ VIT 8 k—] _
e e I

- l_2k(n - 1)J
m =< “"?{"“ + 1

since m 1is an integ

We close this chapter with two

CONJECTURE 3.1: ar (K k)

1l,n’
>
To justify this, let

g

th

er.

conjectures.

<‘n;1(-1+vr+—m+z

35

k, that is,

*k%k

2 _
a=VI+B8k. Then 2k =2-"1 ang it

en

n-1 @G- @ -1Dh-1 .
e 2(a + 1) - atl
4G—)
2

a

with equality when a

known star numbers.

a + 1

> e 1)l '-Zk(n - 1)J

»
is an (odd) integer.

Consider now the

D

\.
\J
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(a) For n =1 we have

ar(k, k) =2=22LC 1 +vITER + 2.
L4

(b) For n = 2

___l‘3+\,/f1+8k—|<3+V1+8k=
2 - 2

n51(-1+\/+8k)+2

with equality when V1 + 8k 1is an integer.

(c)v For n =3

- [? + V1 + 245J'< 2 + V4 + 32k _
= —3 < =

ar(Kl,n'k) 5

i

n-1
—2—-(— 1 +‘V1 + 8k) + 2.

(d) For k=1

ar(Ki’n,k) =n+1l=2 ——=+ 2=

Aol vTEER + 2. ,
(e) For k =2
_ n+2| dn + 2 _ 3(n - 1)
ar(Kl'n,k) =n + 3 < 3 = 5 + 2 <

5“51(-1+,\/1+8k) + 2.

(f) For k =3 : ' i

n -1

ar(Kl,n'k) < 2n = _T-(— 1 + V1 + 8k) + 2.

et




k!

So the upper bound ié achievable and is good for.all the known star

numbers. Conjecture 3.1 is an improvement on a prewious one:

CONJECTURE 3.2: ar (K; k) =< lfl‘_(_g_,_____-l);l
14
where q' = Ll_+_2~ MkJ
2k(n -~ 1) o _2k{n ~ 1) n -1 .
= ang - = - + .
For clearly, g T+ Vst — (- 1 VI_I_§E) But, of
2
course, both conjectures - are open.

TR A L SR

i o B b i

BB il
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IV. COMPLETE NUMBERS (10)

In this chapter we turn our attention to ar(Xh,k). We will
prove the existence of ar(X,,k) for all n, k and, thus, justify the
statements made previously about the existence of anti-ramsey numbers.

Furthermore, we will state and prove most of the sparse results known at

this point. First, a lemma.

LEMMA 4.1: If O0=mj =. . .= mp < k are integers and

p
Z m; = ak + b, 0 = b < k, then
i=1 .
p
(a) Z mi2 = ak2 + b2
i=1 _ -
my ¥ , () k=1 ¥
(b) 5] = a\l +(2< 5 Zm. -
. i
i=1 i=1
Proof: (a) Since for i > j
2 7 2 2 2
(mj + 1) +(mj"l) =mj" + my +2(mi—mj+l)
L2
> m” +mye,
B2
the sum ‘2 m;” is maximized whgn mp =My = ... =My o] =0,

i=1
Myeg = b and my a4y = ... = my = k. Thus, (a) holds.

(b) The first inequality follows directly from (a). For the

second inequality we have

a(k) + (15} ak (k - 1)2+ b(b - 1) _ (k - 1)2(ak +b)

b
k-1

= m,

2 iZl i

*kk

2
b
3
kY
¥
El

e A R D b e

b W ko et LB
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OBSERVATION 4.1: ¢ ar(Ky,k) = 2

which is a trivial re-statement of Proposition 3.1(a).

OBSERVATION 4,2: ar (K; ;k} = 1,

vacuously.

The second part of the following proposition together with Observations
2.3, 4.1 and 4.2 and Propoéition 4.2 shows that ar (K, ,k) always exists

and, hence, so does ar(Y¥,k).

PROPOSITION 4.1: If n=4 and k =Z 2 then

(@) ar(X,,k) 2 k(n - 1) +1
(b) ar(ky,k) < gnn -1 - 2)(k-1) + 2,

Proof: (a) Consider the complete graph on the vertex set L x M where
L=4{1,2, ...,k} and M= {1,2, . . . ,n - 1}, Let

D={0, ..., 1J} and let C* = | i €L, § €m,

{ci,j,r
r € D}. We can assume C* C C, Let e be the edge between

(i,3) and (i',j') and suppose, without loss of generality,

that j' - J =z r (mod n - 1) with r € D.

If r =0, colour e with cmin(i,i'),j,r .

n-1 ' st .
If O<«<r <,L—1r—j, colour e 'with ci,j,r
n-1

If r whenever n is even

colour e with c.: &
! _ i,3j.,r

or n is odd and j < IL%};L..
This colours all the edges and no colour appears more than k

times. Suppose now that this edge-coloured graph contains a

rainbow K, . Then V(K,) intersects each L x.{j} in at most
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7\

two vertices. Further, thete is-a j € M such that L x {j}

contains two vertices of Kn and, hencé,
V(k,) N L x {j -1} =@ (taking L x {n - 1} when j =1).

Thus there is a j' # 3 with L x {j'} cohtaining two points
- of K, . Without loss of generality, J' - 3 svr {(mod n - 1),
r ¢ D and, hence, the edges between either of the two poiﬁfs

in L x {3} and the two points in L x {j'} have the same

colour. This is a contradiction.

(b) Let K, be (Kn,k)—coloured by f and let f(E(Kﬁ))H=
{cl, . . . ,cp}. Let m; be the number of edges coloured

p .
c; - There a;e .legl} pairs of edges of the same colour in
l=

this edge-coloured graph, each appearing in at most (ﬂ : g)

sets of n vertices (since (ﬂ Z %) fd (ﬂ - 3) and each such

paif appears in (ﬁ :"g) sets if the edges are adjacent and
in (ﬂ - 2) sets if they are disjoint). Now K, contains

(g) complete graphs on n points each of which must contain

a‘pair of edges of the same colour. Thus,
m. ‘
E-3if-@.
i=1
Also, for each i =1, .. . ,p m;, <k and

o _ .
Z m; = (g} - (1)

Writing @} =ak +b with 0=<b < k we get,by Lemma 4.1,

~

mL e

Ll
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or,

k-1 m - 2
4 n(n in - 2) .

Hence,

ol -D@-2k-1 ,,

m

4
which .proves .the result.
‘ *kk
L 4
For the next two results put N(v) = {u € V(X) ] uv € E(X)}.
PROPOSITION 4.2: ar(Ksy,k) = k + 2.

Proof: Consider the complete graph on the vertex set
v={l, ... ,k+ 1} Colour the edge ij with colour

-

C_: 42+ Cleariy, no colour is used more than Kk times and -
min(i,Jj)

if V(K3) = {m,n,p} €V with m<n<p then the edges mn

and mp have the same colour., Thus,
ar(K3,k) >k + 2,

Suppose now that m > k + 2 and that K, is (Ké,k)-coloured
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by £f. Let 'd Dbe the ﬁaximym number of edges of the #ame
colour incident with the same vertex ard let v be such a
Vertex with the d edges coloured c. Let
U = {u é V(Kg) | f(uv) = ¢} and V = n(v) - U. Clearly,
neither is empty ana we can fiﬁd, w GVV with f(vw)v= c' # c.
Now for each u€U, f(uw) = ¢ or c¢' and siﬁce a is

s v
maximal there is a wu' € U with f(wu') = c¢. Thus, there are
at least d + (m-d -1) =m -~ 1>k edges coloured c, .a

contradiction. P

el kK
’_/ 1

The following observation is due to Pavol Hell.

¥

LEMMA 4.2: If Kyt is (K3,k)—coloured and k > 3 then there is a

LY

vertex which is the centre of a monochromatic k-star.

Proof: The argument of the second part of the proof of Proposition 4.2

will be used twice.

et k>3 and let f be a (Kj,k)-colouring of Kk+l . Let
d, v, U, V, w, ¢, ¢' be as in part (b) of the proof of
Proposition 4.2, If d < k, neither U nor V is empty and
U contains at least two points. Again, for each w' € V there

is a u' €U with f(u'w') = c. 1In fact, since no colour

appears more than k times, the u' is unique with respect to

P

w' and no edges within U. or V are coloured c. Thus, w

is incident with d edges coloured c¢' and we can apply the

same argument to the sets

skttt e e

o bRk i

g b
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u' = {ZAE'VCKk+1) | £(wz) = c'}, V' =N(w) - U'.

In particuléf, if u € U is the unique vertex joined to W
by ag edge coloﬁred ¢, then u € V' and ail bﬁt one edge
from u to U' are coloured c. This is a contradiction
unlé;s U, has only two elements. Then IVI > 2. Let

U = {u,u‘}. Then,siﬁce f(u&) = ¢ and f(u'w)’= c', the
edge uu' 1is coloured <c'. VBy the maximality of d we have
f(ww') # ¢' for all w' € V and since f 1is a

(K3 ,k)-colouring, f(vw') = c"= fluw'). Using the maximality
of 4 again, we see that IVI = 2,° Thus k = 4. But we have
already the colour c" on the edges uu', vw, vw', wu' and
uw', a contradiction.

k%

Figure 7 may help in  understanding i the above proof.

o

Let us now consider two particular cases. We shall show that
ar(K4,2) = 7 and VarkK5,2) =z 10. The value of ar(K4,2) shows that
the upper bound of Proposition 4.1 is sharp. This, of course, stems
from the fact that in the proof of the propqsition we considered each
subgraph K, as containing exactly one pair of edges of the same colour.

Clearly, this is hardly the case as n grows large.

LEMMA 4.3: ar(K4,2) = 7,
Proof: Consider Kg with vertices 0, . . . ,5. For i = 0,1,2 colour

the edges from 2i to 2i + 1 and 2i + 2 with Cyhy and the

/
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Figure 7. An aid to the proof of Lemma 4.2.
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h

edges from 2i + 1 to 2i + 3 and 2i +4 with o, ,

P i+l
addition taken modulo 6. It is routine to verify that any
completion of this coloﬁring to an edge-2-colouring will result
in a’,(K4,2)—coloured graph. Thﬁs, ‘ar(K4,2)‘2 7. .
Suppose now that K, is (K4,2)—coloured by f. Since K,
has 21 edges, no more than ten colours appear twice and no

generality is lost by assuming exactly ten colours occur twice

each. Each pair of adjacent edges lies in four K,'s and each

-
I

pair of non—adjacént edges in one Ky Letting p Eand a be
the numbers of éhirs‘of adjacent and non-adjacent edges of the i
same colour, respectively, and observing that there are 35
K4'§'in K% we obtain

4p + g = 35

T

Wi

p-f-q:lO.'

Since p and g are integers it follows that q = 1.
Let us call an occurrence of a pair of edges of the same colour

in a K4’/;I§eady containing one such pair a waste. Also, let

Vus say that an edje is redundant if it does not lie in a

monochromatic K1,2 . Now, consider a pair of edgés uv, uw

of the same colour such that vw is not redundant. Then there
is a unique 2z such that--without loss of generality--the edges
v& and vz have the same colour'and:xhe complete graph on
{u,v,w,z} cont#iné'a waste. In fact, any khree such pairs

determine three wasteé<nnless they form a triple, that is, a
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K, on {u,v,w,2} with each of the pairs (uv,uw), (vw,vz),
(wz,uz) coloured one colour (see Figures 8). If the number

of triples is r, then the number of wastes is at least

~

(10 - gq) - (2g+1) ~r =9 - 3q - r. Toke 3

Id

This is because therg are lO}L q monochfomatic 2-stars,

2g + 1 redﬁndant edges and every triple contains two wasteé.
Furthermore, r = 2 since two triples have at most one pointl
in éommon and, hence, three triples require at least nine
vertices. Thus, the number of wastes is at least 1‘— 2qg.
ﬁhen g = 0, no more than forty K4'§ contain pairs of edges
of the same colour and, hence, no more than five wastes are

-

possible. Similarly, when g = 1 only two wastes are alloWéa.

Each case yields a contradiction., Thus, ar(K4,2) = 7. ' Y?

% J J V

Y :

The following construction is due to Brian Alspach. ' :
LEMMA 4.4: ar (Kg,2) = 10. . i

Proof: Consider the complete graph on the vertex set V = I X I with

- N

i,j,r € I}:Aand colour the

= * = {c. . :
I1=1{0,1,2}. Let C {cl’J,r :
.o lé

edge (i,j)(i',j')--with labels taken modulo 3--by é
' i

(a) i,5,0 if i=13i' and j < 3'; %
. . . . . 3

®) ci,j,1 if i*'=i+ 1 and j f j'i %
Sy Cal * Tt = % = 41 = ':‘W: N ) gﬁ
(c) i,5,2 %f it=3i+1 ‘and j =3j'=1i; . .

EY

- [ . e e
(d) any other golour not already used if the edge is not




Pigure 8 (a). A waste determined (uniquely) by (uv,uw).
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o

A triple.

Figure 8(b).
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This exhausts the present results on ar (K, ,k).

49

coloured by any of (a), (b), (c).

It remains to show that any Kg contained in this Kq
containsg two edges of the same colour. Consider any Kg . If
three of its veftices lie in i X I for some i, we are done
by (a). If not then there are distinct i, i' such that
ixI, i' X i contain two vertices of the K5 each. Without

loss of generalityrassume that i' =i + 1 and that Ege four

points are (i,j;), (i,3), (i',37"), (i',3,"). If

g # 31'43" or 3, #31',3" we are done by (b). 'No

generality is lost by assuming now that j1 = il' and +
j2 = j 2', The fifth vertex,must be (i + 2,7) an§ if

j# jl,j2 we are dong by (b) again. If, without loss of

generality, j = j; then two of the edges of the triangle on

{3, + 1,0, + 2,3,)} have the same colour by (c).

* &k
&

v oot S

ey

s e
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V. SOME RELATED PROBLEMS )

A

As was already mentioned in the introduction, in the beginning
was a problem proposed by Fred Galvin. A more general version of it was

communicated in [Gl]. He begins with a modification of the.partition

(11)

symbol "' a > (b); )

r

DEFINITION 5.1: a :'(b)k if and only if for any colduring of the
r-element subsets of an a-element set such’ that no colour is
used more than k times there is a b-element subset in which

all the r-element subsets have different colours.-

Denote by *(b)i the least a such that a :.(b)i . If we
define, similarly, (b)i to be the least a such that a 4-(b)£ we see

that
r v r
* <
®), = (),

and the question, of course, is what are these numbers given b and k.

Clearly, af(Kn,k) = *(n)i .

DEFINITION 5.2: Let M be a set of cardinality m and define the

- r ’
Turan number Tn(m) as

T (n) = min|{s ¢ M) | Vx € (D3I € s ¥ C x}| : -

N

where () = {acm | |a| =r} and m=n zr.
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Galvin's results.ihclude:
1 1
(1) *(m + 1)k =mk + 1= (m+ 1)

(2) mk+ 1% (m+2)7 | .

(3) .*(3)ﬁ =k + 2

I
~

@ @2 =

(5) 10 = *(5)2 = 12

(6) r=23=1r + 2< *(r + 1); B «
+1 k -1 * r
(7) Ti (m) > 3 (?) = m - (n)k

(8 *m)f < L(k - 1% (r +—1L(r£31)_l +r+1 .,

Some of these are recognizable as results also derived in this work.

None have been published_xﬁe’nor has the improvement of (8) by P. Erdos

to

(9) *(n); < cnt for n sufficiently large, with ¢ a

constant depending on r and Kk. ]

A result of Richard Wilson ([Wl]) is worth mentioning. % It states that
for a given graph Y, K; can be partitioned into edge disjoint subgraphs
all isomorphic to Y, if and only if m is sufficienfly large and

(a) m@m - 1) is divisible by |E(Y)]:

(b)) m ~ 1 is divisible by the greatest common divisor of the

degrees of the vertices of Y.
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CONJECTURE 5;1; If, given n and k, K, can be decomposed into

edge—disjoint Ky's with (g)_=lkgf§ﬁa““m\:/i5§“4p\; 1)(n - 1)

then ar(Ki,n,k) =m+ 1.

L

QUESTION 5.1: There is, for each n and k, a number p(Kl n,k) such
. . . - r B
that no (Kl n,k)—colouring uses more than p(Kl n,k) colours.
’ . r
What is it? What is the corresponding p(K,,k)? And what are

p(Y,k), given Y and k?

QUESTION 5.2: What is the relationship between ar(Y,k) and p(Y,k)?

UESTION 5.3: We saw that any (x /k)-colourable graph can be. so
Q 113 B

coloured using at most three colours. For a fixed n,' is there

a number p(K, _) such that any (Klln,k)—colourable graph

1l,n

can bg/éo coloured using at most (p(Klln) colours? Whaf about
p(Y) for a fixed Y?

P .
. A
Note that for a.fixed k the number of colours necessaréito ’ (Y¥,k)-colour
. .

.

a graph may be arbitrarily large. \%\\\

1 . \
Let d =<aj, . . . ,ap> be a sequence of non-negative
\
1

integers. We say that d is graphical if there is a graph Y with 4
as its degree sequence, that is, V(Y) = {vl, « « « ,vq} and d(vy) = a; ,

i=1], ... ,n. Let X be a graph with an edge~colouring f. Let, as

usual, f(EX)) = C* = {c1, « - . ,cp}. A colour matrix A(X,f) of X
under f is a IV(X)[xIC*I matrix with By,ci = |E; (v)|. It is easy to
see that a Vth row of A is the colour structure of v and Ehat'a cith

column of A 1is the degree sequence of a monochromatic subgraph of X




induced by the edges coloured Cy. Conversely, we say that an m X p
matrix is graphical ifrit is a éblour matrix of K, under some f with
lf(E(Km))| = p. Clearly, any product_of a graphical matrix with a
permutatiép matrix is again’graphical} Also, if f € #k(E(Km)) then

,2 AV é- < 2k. We can ask several related questions:
VEV(Ky) 1 '

QUESTION 5.4: When is a matrix graphical?

QUESTION 5.5: When is a graphical matrix a colour matrix'of a

(Y,k)—colouréd graph, for a given Y?

QUESTION 5.6: If a matrix is graphical, ¢an we reconstruct th%fco;ppring

of the graéh? T -

e

:These lead to the following:

'QUESTION,5.7: Is a graph determined(by a set of its edge-disjoint

subgraphs? ‘If so, when is it determined uniquely?

o

‘QUESTION 5.8: Given two graphical sequéndes d; and d, such that
d; - 4, is again graphical (if 4; = <ali, -« e 431,90 and -
d, = <azy,r . - BRL"e then 4, - d, =
<aL1 —~a21, e v ’aln - a2n>,~‘when is it true that scme>graph
with degree sequence d, contains edgé—disjoint subgraphs with

respective degree sequences d2 and dl - d2 ?

-
This last question is related to Questibn 5.4 in the sense that a

necessary condition for a matrix to be graphical is that the sum of any

i of its columns be graphical, 0 = i = p. - A partial answer can be found

< P
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in some papers by S. Kundu ([K1],[K2], [K3]).
For some results on infinite anti-ramsey . theory and related

problems see [El] and [E2].

with this we end the present'work.
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N

NOTES g

(1) Galvin knew the answer. The proof given in Prépos%;ion 4.2
is due to Pavol Hell. ‘
(2) Although éhe definition can be extended to infinite sets,
we only consider (finite) graphs here. See [H1], pp. 8, 16.

(3) Also called vertices or nodes. See, e.g., [H1], p;fg_

(4) Also called lines or arcs. See, e.qg., [H1], p. 9.

+

(5) N denotes the set of non-negative integers, as usual.
(6) In [E1l] a graph whose edges are coloured with distinct

colours is called totally multicoloured.

(7) "other" means "not n-star for any n.

(8) If n objects are distributed among m < n pigeon-holes

at least one hole contains at least two objects. ’ ‘

(9) See, e.g., [H2], pp. 237-241,

(10) This chapter. consists mostly of the contents of [H3].

(11) The symbol a —> (b)i means that for any partition into
k equivalence classes of the r-element subsets of an a-element set
there is a b—element subset all of whoée r—-element suﬁsets be1§ng to
one equivalence class; For example, Ramsey's theorem states that

r . s . . .
a - (oa)k for any infinite ordinal a; in our special case r = 2.

Yo
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