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ABSTRACT 

Let Y be a graph with p edges and l e t  k be a p o s i t i v e  

in tege r .  The (Y,  k) -anti-ramsey number, denoted by & (Y , k) , i s  the  

I l e a s t  m such t h a t  every comp'lete graph on m v e r t i c e s  who~e.~edges a r e  

coloured using no colour more 

isomorphic t o  Y whose e d g ~ s  

The exis tence  of  ar(Y,k) i s  

for  ar (G, k) and some exact  

than k times contains a subgraph 

c* 

are coloured with p d i s t i n c t  colours.  

proven along with upper and lower bounds 

values of ar (Kn ,k) a r e  given (Chapter Iv) . 
The r e s t r i c t e d  problem of f inding ar(K ,k) i s  

1 ,n 
h 

values given f o r  n o r  k equal t o  1, 2 o r  3 together  with upper 

and lower bounds f o r  a r  ( K  , k) (Chapter 111). Related problems and 
1 In 

conjec tures  a r e  mentioned i n ' c h a p t e r  V. 

, , 

iii 
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I. INTRODUCTION 

I n  t h e  beginning the re  was the  Advanced Problem 6034 proposed 

by Fred Galvin i n  the  May 1975 i s sue  of the  American Mathematical 

Monthly: - 
s u b s .  t h e  edges of t h e  complete graph oil n v e r t i c e s  
a r e  coloured s o  tha't no colour is  used more than k times. 

0 

(1) I f  n 2 k + 2 ,  show t h a t  the re  is a t r i a n g l e  no 
two of whose edges have' the  same colour. 

A 

(2) Show t h a t  t h i s  i s  not  necessar i ly  s o  i f  n = k + 1. 

Rf te r  a solution") was found some generall 'zations began t o  emeye.  In  

view of (1) it i s  c l e a r  t h a t  n = k + 2 i s  t h e ' s m a l l e s t  such t h a t  t h e  

condlusion of  (2) holds. " Is t h e r e  such a Ginimum i f  ins t ead  of . 

t r i a n g k s  we consider cyc les  of length g rea te r  than three?  What i f  one 

looks a t  complete graphs on m p o i n t s ,  m > 3 ? Can a minimum n be 

found so  t h a t  it i s  impossible t o  colour the  edges of using each 
r, 

colour a t  most k times and guarantee t h a t  every m-star i . .  K ) . .  l , m  

has two edges of t h e  same colour? What a r e  t h e  minima, i f  they e x i s t ?  
,' 

Some of these  quest ions a r e  r e l a  lve ly  easy t o  zinswer, o t h e r s  seemzto be 3" 
r a t h e r  d i f f i c u l t .  A few were answered by B. A1 ach,  M. G e r s o n , y h n  

y., 
and P. H e l l  and reported i n  [H3]. These and some 

of the present  work. 



11. DEFINITIONS .AM) EASY OBSERVATIONS 
\ 

Let A be  a s e t .  We w i l l  denote by A r21  t h e  set of 

unorderedQpairs  of elements df A and by t h e  cakd ina l i ty  of A.  

(3') 4 

A graph X i s  a f i n i t e " )  non-empty set V ( X I  of p o i n t s  

together  with a subset  E(X)  of  VCX) r21 of we write 
i - 
Ad -- 

X = (V ( X )  ,E  ( X )  ) . The ve r t ex  s e t  V ( X )  of a b i p a r t i t e  graph X is  t h e  

union of two d i s j o i n t  s e t s  Vl and V2 while E ( X )  fl (v1.12] !J v212] ) = 
L 

a. A graph Y is a subgraph of  the  graph X ( o r s i s  contained i n  X )  

ig V ( Y )  c V(X) and E(Y) C E(X). We w r i t e  Y G X. 
4 d 

When / V  ( X )  I = m and E ( X )  = V a) 12]. we say t h a t  X is  t h q  
L 

i/J 
mmplete graph on m p o i n t s  and denote it by K, . Similar ly ,  we denote 

by , the  complete b i p a r t i t e  graph on m + n vert ices--here 
.- 

Ivl / = m, Iv2 / = n and E (K,,,) = (V1 '1 V2) 12] - VL [21 - v2 121 . In  

p a r t i d u l a r ,  we c a l l  K an m - s t a r .  If e € E(X) c o n s i s t s  of the  
l , m  

p o i n t s  u and v we w r i t e  e = uv. I t  i s  sometimes convenie i t  t o  

consider  edges a s  sets and say,  f o r  e q l e , . t h a t  u € uv and t h a t  

enf = . i f  e , f  C E ( X ) .  

joined by edges. Hence, 

i f  uv E E(X) 

# 9 and e # f. 

W e  a l s o  say t h a t  t h e  edge uv i s  inc ident  with the .points  u and v. 
1 - ' 

The degree d (v) of a v e r t e x  v ) i s  t h e  number of edges inc iden t  wi th  

it. I f  the re  i s  a d F N ' ~ )  such t h a t  d (v) yl, f o r  each v C-V(X)  

we say  t h a t  X i s  regu la r  of degree 5; %, , then,  i s  regu la r  of degree - 



A pa th  i n  a  graph X is  a  sequence of d i s t i n c t  p o i n t s  

u1,u2, . . . ,un (usual ly  w r i t t e n  j u s t  ulu2 .... u,) with every p a i r  

of consecutive v e r t i c e s  joined by an edge. A cycle  i s  a  path with the  

add i t iona l  edge unul . A u  - v  path  is one whose f i r s t  and l a s t  -- 
po in t s  a r e  u  and v  respect ive ly .  A graph X i s  connected i f  it 

conta ins  a  u  - v pa th  f o r  every p a i r  of po in t s  u  and v.  An equivalent  

and sometimes useful  way of def in ing a  connected graph is  t o  say t h a t  f o r  

any n o n t r i v i a l  p a r t i t i o n  of V ( X )  i n t o  V and V the re  a r e  v e r t i c e s  v  1 2  1 
c v1 I 

v2 E V2  with vlv2 C E(X). Each maximal connected subgraph of X is  a  

component of it. A subgraph Y of X obtained by taking a  subset  V ( Y )  

of V ( X )  (o r  a  subset  E(Y) of E ( X )  together  with a l l  t h e  edges of 

X inc iden t  only with v e r t i c e s  i n  V ( Y )  (or  a l l  t he  v e r t i c e s  inc iden t  

with t h e  edges i n  E  (Y) i s  s a i d  t o  be induced by V ( Y )  (or  E ( Y )  ) . 
I f ,  given graphs X and Y ,  t he re  is a b i j e c t i v e  map 

f  : V ( X )  -+ V (Y) such t h a t  f  (u) f  (v) E E ( Y )  exac t ly  when uv E E  ( X )  f o r  

any u,v C V ( X ) ,  we say t h a t  X and Y a r e  isomorphic. I t  is  t r i v i a l  

t o  v e r i f y  t h a t  isomorphism i s  an equivalence r e l a t i o n  on the  s e t  of 

graphs and we w i l l  henceforth use the  name X t o  denote any element of 

t h e  equivalence c l a s s  containing X .  

Let C = (ci I i < w]  be a  s e t  of colours and f o r  each k E N 

and each s e t  A l e t  F k ( ~ )  be t h e  s e t  of funct ions  

1 - 1 
i f  : A -+ C I 'di r w (  1 f- (ci) 1 5 k) where If (ci)  I i s  t h e  c a r d i n a l i t y  

of the  pre-image of ci . When no confusion might a r i s e  we w i l l  w r i t e  

simply Fk f o r  Fk(A)  ; i n  p a r t i c u l a r ,  f o r  a  graph X w e  w r i t e  Fk 

f o r  F k ( ~ ( x ) ) .  An edge-colouring of a  graph X i s  a  funct ion  f  from 



E (XI  i n to  C ,  an edge-k-colouring is  a function f E Fk (E (x) 8 ,  - Given 

a graph X and an f € Fk we say t h a t  the subgraph =Y of X i s  . 

monochromatic i f  If ( E ( Y ) )  I = 1 and t h a t  it is  a rainbow(6) i f  f A 1 E ( Y )  

i s  one-to-one. For a given graph Y a funct'ion f € Fk (E ( X )  ) is a . 
% 

(Y,k)-colourinq of X i f  no . Y G X i s  a rainbow. A graph X admits - a 

9, - k) -colouring (is CY, k) -colourable) i f  there i s  a ( Y ,  k) -colouring of 

f 
bt. ,\$e w i l l  think of an edge-colouring of X as  -&st t h a t  and,hence, - 
w i l l  t a l k  about an edge coloured ci o r  having a colour ci , an X 

a 

being (Y,  k) -coloured , e t c  . 
Let X be coloured by some f € Fk . We say t h a t  the  colour 

ci and the vertex v € V(X)  a r e  incident (with each other)  i f  there is 

a u € V ( X )  with f (u,v) = ci . The colour degree c (v) of v € V(X)  

is  the  number of colours incident with it. Denote by C* the image of 

E ( X )  under f and ,without loss  of generali ty ,assume 

C* = {el, . . . ,cp) for  some p. The s e t  of edges coloured c i  

incident with v w i l l  be denoted by Ei (v) . The colour s t ruc ture  s (v) 

of v i s  a vector of length p with s i  (v) = 1~~ (v) 1 . The condensed 

- 
cologr s t ructure  s ( v )  is obtained from s ( v )  by omitting a l l  zero 

L 
ent r ies ;  it has, t h e r e a r e ,  length c (v) .  

An edge uv coloured ci i s  s ingle  - a t  - v i f  Ei (v) = {uv), 

i s  s ingle  i f  it is  s ingle  a t  e i t he r  u o r  v and i s  t o t a l l y  s ingle  i f  

it is single a t  both u and v.  The single degree t ( v )  of v is  the 

number of s ingle  edges incident with it and the s ingle  in-degree r ( v )  

i s  the  number of edges s ingle  a t  v. The single out-degree oCvJ is  

given by 



where o ( v )  i s  :he ntunher of t o t a l l y  s i n g l e  edges inc ident  with v.  The 

s i n g l e  in-degree and out-degree of X a r e ,  respect ive ly ,  

and 

and we observe t h a t  o ( X )  = r ( X I  . 
Since we are deai ing  with d i s c r e t e  s t r u c t u r e s  it i s  useful  t o  

introduce t h e  function symbols 1 ] and 1 .  Let y be a r e a l  number. 

Then ly 1 ,  c a l l e d  the  f l o o r  of y ,  i s  t h e  in tege r  a such t h a t  

a 5 y < a + 1 and r7'1 , c a l l e d  the  c e i l i n g  of y ,  i s  t h e  in tege r  b 

such t h a t  b - 1 < y 5 b. We can now make the  main d e f i n i t i o n .  

DEFINITION 2.1: Let  Y be a graph and k a p o s i t i v e  in tege r .  The - 
(Y ,k)  -anti-ramsey number a r  ( ~ , k )  i s  the  l e a s t  m such t h a t  

EZ, does not  admit a (Y,k) -colouring. 

It  w i l l  be shown i n  Chapter I V  t h a t  a r  (Kn,k) e x i s t s  for a l l  n and k. 

To see  t h a t  t h e  def inxt ion  makes sense f o r  a l l  Y we note t h a t  i f  

Y 51 Kn then any ( Y  ,I:) -colouring i s  a l s o  a (K,, k) -colouring and, hence, 



\ 

a r  (Y ,k)  5 a r  (G, k) . It  i s  a t r i v i a l  observa t ion  thak f o r  aky Y t h e r e  

is an n such t h a t  Y C K, . One might have expected t h e  d e f i n i t i o n  of 

DEFINITION 2.2: L e t  Y be a graph and k a p o s i t i v e  - in teger .  The 

(Y ,kl -anti-ramse; fiumber ar (Y ,k )  is  t h e  l e a s t  m'  such ' t h a t  

t h e r e  is a graph X w i t h  I V  (x) I = m'  which does not  admit a 

A l i t t l e  thought ,  however, shows t h e  two d e f i n i t i o n s  t o  be equiva len t .  
?. "'L 

Let  m and m' be ar (Y,k)  a s  def ined  i n  ~ e f i n i t i d ~  2.1 and 2.2,  

r e spec t ive ly .  C lea r ly ,  m '  5 m. I f  X i s  a graph on m '  v e r t i c e s  

' T d 

which i s  n o t  (Y,k)-colourable,  t hen ,  s i n c e  X E Kml , does n o t  

admit a (Y,k)-colouring e i t h e r .  Thus, m '  2 m. I n  view of t h i s ,  we 
A 

s h a l l  adopt D e f i n i t i o n  2.1. 

The problem, of course,  i s  t h a t  of f i n d i n g  ar(Y,k) ,  given Y 

and k. I n  gene ra l ,  t h i s  seems r a t h e r  d i f f i c u l t  a l though some easy  

observa t ions  a r e  a t  hand. W e  now l is t  few. P 
OBSERVATION 2 .l: - ar(Y,k)  2 I v ( Y )  1 

. 
s i n c e  X, con ta ins  no Y f o r  n c I V  (Y)  1 . 

?& 

2 

OBSERVATION 2.2: 
, 

+since K, can be  co loured  wi th  o n l q a n e  co lour  when (;)5 k, 

which y i e l d s  n 5 + lh 
2 



OBSERVATION 2.3: a r ( Y , l )  = I v ( Y )  

which follows from Observation 2 

colour can Ee used only once. 

1 

.1 and the  f a c t  t h a t  each 

OBSERVATION 2.4 : a r  (T , k) 5 a r  (Kn, k) f o r  

a s  was a l ready mentioned. 

Considering the  d i f f i c u l t y  of the  general  case ,  it i s  n a t u r a l  t o  

concentrate on some spec ia l  cases.  The f i r s t  t o  come t o  mind i s ,  a s  might 

be expected, t h e  case of ar(I$,,k). A t  p resent  it seems t h a t  even t h i s  i s  

no t  easy and a p a r t  from t h e  sparse  r e s u l t s  of Chapter I V  not  much is known. 

The most approachable spec ia l  case i s  t h a t  of n-s tars  which i s  the  sub jec t  

of the  following chapter.  

A word about the  name "anti-ramsey number." In  1930 F. P. Ramsey 

proved i n  [ ~ 2 ]  a theorem now bearing h i s  name. I n  t h e  language of graphs 

theorem s t a t e s  the  following: Every i n f i n i t e  complete graph whose edges 

a r e  coloured with k colours conta ins  a complete monochromatic subgraph 

t .  on . a O  v e r t i c e s .  It  follows from t h i s  t h a t  f o r  any p a i r  of p o s i t i v e  

in tege r s  m and n the re  is  a l e a s t  r C r\T such t h a t  every complete 

graph on r v e r t i c e s  whose edges a r e  coloured with two colours conta ins  

e i t h e r  a monochromatic o r  a monochromatic Kn , This r i s  denoted 

by r(m,n) and i s  ca l l ed  a ramsey number. Thus, with ramsey numbers one 

i s  looking f o r  t h e  minimum r such t h a t  i n  any edge-colouring of Kr 

(with two colours)  t h e r e  i s  a mmo_chrgm&i_c subgraph while with 

anti-ramsey numbers the  minimum m sought i s  such t h a t  i n  any 



edge-colouring of (using each colour no more than k t i m e s )  t he re  

i s  a rainbow subgraph. 

It i s  i n t e r e s t i n g  t o  note,  however, t h a t  desp i t e  the  s i m i l a r i t y  

between r(m,n) and arCY,k) t h e  l a t t e r  problem is  more r e l a t e d  t o  one 

of ~ u r h .  We w i l l  say more about t h i s  i n  Chapter V .  



-. 
I I I. STAR-NUMBERS 

We have already defined K l t n  . A n  n-star consis ts+of  a +. I. 
,% 

centre u of degree n and' n points of degree one a l l  adjacent t o  u. 
f~ 

I f  such a gr$ph is not a rainbow under an edge-colouring then there 
/ 

two edges- of the same &lour which a re  both incident with the centre. 
" j 

k 

This is a very useful piece of information. With any ~ t h ~ r ( ~ )  so coloured 
7: 

- -  

connected graph one h a s  no idea jus t  where the two edges of the same ': 'r . . 

colour might l i e .  This is  due t o  the f a c t  t ha t  there a r e  a t  l ea s t  two 
k '  

ver t ices  of degree a t  l ea s t  two i n  a connected non-star. Thus, with 

n-star one can make use of the pigeon-hole which makes 3 
d 

ar(KIIn,k) a natural  choice f o r  consideration. This is  not t o  say, 
, 

however, tha t  the " s t a r  numbers" a r e  easy t o  find.  

We w i l l  begin with a few observations. 

+ .. 
OBSERVATION 3.1 : ar(KIIn,k) > - n +";I, 

. \ 

which follows d i r ec t ly  fram Observation 2.1. 
c 

\ 

OBSERVATION 3 .2 :  A graph X i s  (KIIn,k)-coloured by 4 i k n d  only 

i f  f E F k ( E ( X ) )  and for  each v F V(X), 1 I c(v)  5 n - 1. 
,-J 

OBSERVATION 3 . 3 :  I f  K, i s  (Kl In,k) -coloured then > I  



. <. 

5 

-- 
and we note t h a t  (c)  i s  a c>nsequence of b) . 

W e  can now s t a t e  our f i r s t  two proposi t ions.  

Proof: From Observations 3.1 and 3 . 3 ( c ) .  

PROPOSITION 3.2: 

Proof: ~ r o m  Observation 3.2 we have c (v) = 1 f o r  each v € V (K,) 

whenever is  (K1,2,k)-coloured. Hence, only one colour 

.-. 
is  used i n  such a colouring and, thus ,  (:)E k .  The r e s u l t  

then follows by solving the  inequal i ty  f o r  m.  

Our next  task  w i l l  be t o  t r y  f o r  an improvement on the  upper bound f o r  

ar (Kl ,-,,k) . - We assume, u n t i l  t he  end of proof of proposi t ion 3.3 k > lh 

, LEMMA 3.1: Let be (Kl In ,k )  -coloured by I and l e t  f (E (&) ) = 

{c1,c2, . . . ,cp3. L e t  a be a n ~ n ~ n e g a t i v e  in tege r  
, 

and l e t  v C V(%?. For each 1 5  i.5 p, i f  s . ( v )  2 k - a ,- 
i n 1 

/. - 9" 

then a t  l e a s t  k - 3a edges i n  Ei(v) a r e  s ing le .  

Proof: Consider the  component Y containing v of t h e  subgraph of 

-1 induced by f (ci). Y has a subgraph Kl tg i  (V)  and 
- 

E = E(Y) ih 
- E(Kl.si!v) 1 has a t  most a elements& Since each 

edge i n  E is  inc ident  with no more than two v e r t i c e s  of 



Cand is no t  inc ident  with v )  it fol lows t h a t  no 
K1, Si (vl 

more than Za v e r t i c e s  o t h e r  t h a n  v o f  Kl  , si ( v) * h a v e  

d e g r e e s  g r e a t e r  t h a n  o n e . T h a t  i s , a t  l e a s t  k - a - 2a  

k - 1  
e d g e s  a r e  s i n g l e .  Note t h a t  k - 3a I 1 i f  a 5 - 2 - 

*** 
g 

LEMMA 3.2: Let  a ,  b and a , i = 1 2 ,  . . . a be in tege r s  such 

t h a t  

-\ Then 
i a 

1 (ai - b) 5 O. 
i=l 

Proof: Easy manipulation. 

-LEMMA 3 . 3 :  I f ,  i n  an edge- k-coloured graph X ,  a ve r t ex  v has 

condensed colour s t r u c t u r e  such t h a t  

then r (v) < o (v) . 

Proof: Let b = k - 1 - 1  arid f a r  i = 1 . . . c v l e t  

- 
ai = s i (v)  - b. Using Lemma 3 .2  w e  then have 



- 
NOW a i 2 0  means s i (v)  I k -  - ; '1 and so. by Lemma 3.1, 

- 
Ei(v) contains k  - 3bi single edges, where bi = k - s i ( v ) .  

Since 

we have 

Also, r ( v )  s l  1 5  1 / a i /  and,hence, 
ai<O aicO 

, \ 
2 PROPOSITION 3.3: ar(Kl,,,k) 5 - k ( n  - 1) + n for  n  > 1 k > 1. 
3 h 

2 oof: I f  m = - k(n 
3 

- 1) + n and $ i s  (Kl ,n,k)-coloured then 

for  each v E V(IC, )  we have 

Hence, by Lema 3.3, o(v)  > r ( v ) .  Thus,  



Comparing t h i s  new upper bound with t h a t  of Observation 3.3(c)  we s e e  

t h a t  
e 

whenever n 7 1 and k 2 3 and thus Proposi t ion 3.3 does, indeed, 

provide an improvement. 

We now t u r n  t o  more s p e c i f i c  r e s u l t s .  

proof: A. For n <4 note  Obs . 3.1 and Proposi t ions 3.1 (a) and 3.2 .Otherwise 

n - 1  
l e t  m =  n + - 3 and V(Km) = Ivo , . .  . ,v 1. Also, l e t  m- 1 

C '  = {cij. I i =  0. . . .m - 1; j = 1, . . . ,p+j} c c. 
1 * .  

We def ine  f : E (I$,-,) -+ C  a s  follows: f o r  each-  

taken modulo m. This a s s igns ,  f o r  each i, colours t o  

coloured twice. The remaining edges can be coloured with 

a r b i t r a r y  w l o u r s  d i s t i n c t  from one another aqd from those i n  

C ' .  FDr eveky v we then have 

colours from C '  and m - 1 - 21-1 other  colours  were 

used. Thus, f is a (Kl nr2)-colouring of  K, and, hence, 

4.- 



B. Suppose now is (KlIn,2)-coloured with m 2 n + - ln : 2J- 
Let v C v(%). Then 

*. 
by Observations 3.2 and 3.3(a). Consider the condensed colour 

- 
structure s(v). It is a vector consisting of nl 1's and 

.- - -  

n2 2's and we have 

and 

Hence, 

that is 

.-"- 
Thus, 

A 

But then  



Now . 

- 

o (v) 1 2n2 > nl = r (v) .- . 

for  an arbi t rary v E v(%) and so 
. . 

an impossible,situation. Hence, - 

Figures 16 and 2 show ( K l t n , 2 )  -colourings of K for  n  = 4 * n+ L+J 
and 9 respectively. O 

I 

Before proceding t o  the'next case a r K l n 3  we digress a  

l i t t l e  t o  reca l l  a  few fac t s  of combinatorics. A Steiner t r i p l e  system 

(STS) of order v  i s  a  s e t  of three-element subsets of a  s e t  X w i t h  

1x1 = v such tha t  every pair of elements of X appears i n  exactly one 

t r ip l e .  It can be shown tha t  an STS of order v . exis t s  i f  and 
I 

only i f  v  E 1 or 3 (mod 6) . Consider a  complete graph X on 

v = 1 or 3 (mod 6) vertices.  A Steiner t r i p l e  system on V ( X )  is a 

par t i t ion  of E ( X )  into triangles--a.pair of elements of V ( X )  . 

corresponds t o  an edge and a  t r i p l e  corresponds t o  a  cycle of length 

three, or a  tr iangle.  With t h i s  we s t a t e  

PROPOSITION 3.5: i" i f  n + 0 (mod 3) 

a ar(KlIn13) = 

' ? 

2n - 1 i f  n  z 0 (mod 3)  . 



Figure 1. A (Kl , 4., 2 1 -colouring of Kg . 
/ 



Figure 2 . Part of a (K1, 9, 2) -colouring of -911 

I 



proof: A. We h a v 8 n  f 

(mod61, 

0 (mod 3) i f  and only i f  

i s ,  exac t ly  when an STS of order  2n - 1 e x i s t s .  

"Z 
~ h u s ,  E ( K ~ ~ - ~ )  can be pa r t i t ioned  i n t o  t r i a n g l e s .  Colouring 

- sd each t r i a n g l e  a  s t i n c t  colour we obta in  an edge-3-colouring *' 

i 2n - 2 
of K2n-l with;  c  (v) = = n - 1 f o r  each v C V (K2n-1) . 
Hence, t h i s  is  a (Kl,n,3)-colouring and 

't 

when n f 0 (mod .3) . Also, n r 0 (mod 3) i f  and only i f  
, 

4 

2n - 2 s 4 (mod 6 ) ,  i n  which case an STS of order  2n - 3 

e x i s t s .  Hence, the re  is an edge-3-colouring of K2n-3 a s  i n  

t h e  previous case ,  with c ( v )  = n - 2. Since 2n - 3 i s  

d i v i s i b l e  by t h r e e  when n z 0 Onod 3)', t h e  ve r t ex  s e t  of 

K2n-3. can be p a r t i t i o n e d  i n t o  t r i p l e s  each of which can be 

joined by edges of the  same colour t o  a  new ver t ex  u. If  the  ' 

edges from d i s t i n c t  t r i p l e s  have d i s t i n c t  colours t h i s  w i l l  

r e s u l t  i n  

1 

C(V) = n - 1 f o r  v E V(K2n,3) 

3 

Theref o re ,  '* 

when n 0 (mod 3) . 



B. Now l e t  m < a r  (K ,3) and suppose % i s  
l , n  

(Kl,n,3)-coloured. Let V € V&,) and consider  t h e  condensed 

- 
colour s t r u c t u r e  s ( v ) .  This vector  cons i s t s  of nl(v) l ' s ,  

n2 (v) 2 ' s  and n3 (v) 3 ' s  and we observe t h a t  r (v) = n (v) 
1 

and o(v)  E 3n3(v). We then obta in ,  wr i t ing  ni f o r  n i (v ) ,  

i = 1 ,2 ,3 ,  

and 

and, thus ,  
i- 

Hence, 

Now, i f  m = 2n then 

and frcan t h i s  . 



Therefore, 

a contradiction. If m = 2n - 1 and n s 0 (mod 3) then 
/-LU. 

m s 5 (mod 6) and we get 

Thus 

o (v) 2 3n3 Z nl = r (v) . 

Now 0 1  = r ( 1  and so the inequalitiks in 

are equalities. Thus, n3 (v) = nl (v) = L O .  Then c (v) = n2 (v) 

- 
and s(v) consists entirely of 2 ' s .  Since no colour appears 

more than three times this implies the existence of an STS of 

order 2n - 1 r 5 (mod 6),  an impossibility. 

Figures 3 and 4 show K , 3 - and (K1 ,4.3)-colourings of K4 and + 

K7 respectively. We now have the values of ar(K *k) whenever n or 
1, n 

3 



Figure 3 .  A (5, 3 ,  3 )  -colouring of K4 . 



Figure .4. A (K ,3) - colouring of K 
1,4 7 



1 .  

k i s  equal t o  1 , o r  2 and f o r  k = 3. The r e s u l t s  have not  been 
-r 

complicated but  t h e  proofs ,  though elementary, - have been .ge t t ing  longer. 

The value of ar(Kl13 ,k )  i s  simple and i n  keeping with t h e  progression 

so  f a r  es tabl i shed t h e  proof w i l l  be t h e  so le  ob jec t ive  of t h e  remainder 

of  t h i s  chapter.  Before embarking on t h e  sequence of l e , , a s  leading to t  

t h e  main r e s u l t  l e t  us make a few remarks. F i rs t , reca l l  observation 

3.2. In  the  case of  a (K1, 3 
,k)-coloured graph it says t h a t  t h e  colour 

degree of any ver tex  i s  a t  most two. Second,for the  purposes of proving 

Lemma 3.4, we w i l l  say t h a t  i n  an edge-coloured graph X t h e  colours 

c and c meet i f  t h e r e  is a ver tex  i n  V ( X )  inc ident  with both of 
i j - 

them. +. 
4. 

We can now begin t h e  sequence with t h e  su rp r i s ing  Lemma 3.4. 

with / • ’ ( E ( E ) )  I 5 3- 

Proof: Let p be t h e  l e a s t  in t ege r  such t h a t  Km can be 

(K1, 3 
,k)-coloured by some g with g(E(K,) 1 = {col .  . , c P 1-  

For i = 0 , .  . . , p l e t  Xi be the  subgraph induced by t h e  \ 
\ $  

edges coloured c i and l e t  ni = I v ( x ~ )  / . We w i l l  show 

(A)  I f  p 7 2 then,  without l o s s  of genera l i ty ,  f o r  i f j , 

i , j  = 1, . . '. , p ,  V ( X . )  n V ( X . 1  = and a l l  t h e  edges 
1 I 

2 - 
between Xi and X are coloured co. 

j 

(B) I f  t h e  conclusion of (A) holds then f o r  any p a r t i t i o n  C of 

{I,  . . . , p )  i n t o  'I U J we have - 
j . > 

m i n  E ni , ~ n .  1 <L1 + ' 2 8 k ~ .  
it1 ~ C J  



We begin wi th  t h e  l a s t  c laim,  assuming (A) and ( B ) .  Reca l l  

t h a t  i f  n S t hen  K can be coloured wi th  only  
n 

one co lour .  Now, i f  p >  2 then  it fo l lows  from (A)  and 

(B) t h a t  

and, hence, a t  l e a s t  one co lour  can be e l imina ted .  

Proof o f  ( A )  : I f  every two co lou r s  meet then  t h e r e  a r e  -------------- 
v e r t i c e s  u and v , u i n c i d e n t  w i th  c and c l  , v 

0 
w i t h  

c and c . The edge uv cannot ,  then ,  be coloured wi th  2 3 

any co lour  without  i nc reas ing  t h e ' c o l o u r  degree of a t  l e a s t  

one of u and v t o  t h r e e .  We may, t h e r e f o r e ,  assume t h a t ,  

without  l o s s  of g e n e r a l i t y ,  c and c do n o t  meet. It i s  
1 2 

c l e a r  t h a t  V ( X  ) n V ( X  ) = fl . Let  uiC V ( X i ) ,  i = 1 ,2 .  
1 2 

Since g (ulu2) # c1,c2 we may a l s o  assume, wi thout  l o s s  of 

g e n e r a l i t y ,  t h a t  u u i s  coloured c 
0' 

Let  v be any p o i n t  
1 2  

o f  X2.  Then g ( u  v )  = c s i n c e  s i n c e  u v i s  coloured 
1 0 1 

n e i t h e r  c 
c2 , i s  i n c i d e n t  wi th  c and c and 

1 0 1 

c (U ) = 2. S imi l a r ly ,  g (u2w) = c f o r  any w t V(X1). Thus, 
1 0 

a l l  t h e  edges between XI and X a r e  coloured c In  f a c t ,  2 0 

a l l  v e r t i c e s  of  K a r e  i n c i d e n t  with c s i n c e  f o r  any p o i n t  
m 0 

v t h e  edges between v and X o r  t hose  between v and X 
1 2 

a r e  coloured c I t  i s  now c l e a r  t h a t  f o r  a l l  i # j, 
0- 

i, j = 1 . . . , p ,  V ( X i )  n V ( x  . ) = fl and a l l  t h e  edges 
7 

between Xi and X a r e  coloured wi th  c 
j 0' 



holds and t h a t  fo r  some I and 
". 

', & 
m i n { Z n  , Z n . ) ?  

i t r  j t ~  - 

Clearly, the nu@&-of d g e s  coloured c is  a t -  most Ir 
0 

and a t  Least 

. ? 

-\ 
I '  

which, with the above assumption, implies t h a t  

- Let u s  write now '., 

L 

3 
and 1 s J = s - r. Since 0 5 r <  1 and s l  1 we obtain . 

2 

which i s  impossible. 

This completes the proof. 

'4 
An obvious consequence of Lemma 3.4 i s  the following : 



LEMMA 3.5: 

Proof: A l l  we need t o  do is so lve  t h e  i n e q u a l i t y  implied by Lemma 3 .4 ,  

.i 

The con jec tu re  a t  hand i s ,  ar(Kl13,k) = '+-\: + 24k_], w i l l  

t u r n  o u t  t o  be t r u e  except  when k = 2 o r  7. In  o rde r  t o  prove it we 

need two more lemnias. 

LEMMA 3.6: . For every non-negative i n t e g e r  k t h e r e  a r e  unique 

non-negative i n t e g e r s  n and i s u ~ h  t h a t  i 5 3n and 
6 - 

2 
Proof: It i s  easy t o  v e r i f y  tha t  3n + i s  an i n t e g e r  f o r  each 

2 . - 
- n E N .  Le t  k E N .  T h e s e t  S k = { n  I 3nL - n 5 k )  has la 

r' 2 3 

. 3 n k = n k  and 
l a r g e s t  element,  s ay  nk . We s e t  ik = k - . - 2 

n o t i c e  t h a t  

i . e . ,  ik 5 3nk o therwise  nk w a s  n o t  l a r g e s t .  I f  

2  
k = 3n - + i wi th  i 5 3n f o r  n  c nk then  

2 



- 

that is k < k. Thus, the pair (nk,ik)- is unique. 

LEMMA 3.7: For k = 3nL - + i, i 5 3n, we have 

Proof: We have 

' and we consider the three cases. 

Then 

Then 

and 



and 

* *** 

We a r e  now almost ready f o r  a proof of our conjecture.  The missing l ink  

PROPOSITION 3.6: 

i s  Lemma 3 . 8  which we s h a l l  assume f o r  the  moment. 
rS' 

except t h a t  

and 

D 

Proof: Let us  dispose of the  exceptions f i r s t .  Frm Proposi t ton 3 . 4  

we have ar(K1,3,2) = 4. From Lemma 3.8 we w i l l  s ee  t h a t .  

a r  ( K l r 3  ,7) 5 7 and Figure 5 

general  case--k # 2,7--write 

2 and consider the  t h r e e  cases 

show t h a t  t h e  complete graph 

of Lemma 3.7. In  

1 7. In  the  

a s  i n  Lemma 3.6 

each one we w i l l ,  

on C + -1 v e r t i c e s  i s  
2 

(Kl,3,k)-colourable by exhibi t ing  such a colouring. 





3 0 

Then = 3n and we l e t  V (K3,) = + 

2 

Vo U V1 U V2 U {v} where lvOl = lv21 = lvll + 1 .=  n. For 

i = 0,1,2 we colour with ci the  edges of t h e  complete graph 

on Vi and t h e  edges between Vi and v i+l  . taking i + 1 - 
modulo 3 .  The edges from v : t o  Vo w i l l  be coloured with 

cO and those  from v t o  V1. and V2 with cl . This 
- -4 

colours a l l  t h e  edges of  K3, and each colour  i s  used ex- r. 

f i  3n2 - 5 k times as  is e a s i l y  checked. ~ i ~ u r e  6 (a)  shows. a 2 
# =@ / 
schema of the colourlng.  

b 

Then L = 3n + 1. I n  view of t h e  s p e c i a l  case? 

(k = 2,7) w e  assume t h a t  n 2 3. 

Let V(K3n+l) = Vo U V1 U V2 U V U {u) U {v) with 
.-, 

Iv0l = Iv21 = Ivll 5 3  = n, I v I  = 2. For i = 0,1,2,  colour 

B with ci t h e  edge( of  the  complete graph on Vi and t h e  

edges from V i  taking i + 1 modulo 3. Colour 

with co  t h e  edges between V and Vo and between u d a n d  

Vo U V1 U V p lus  t h e  edge i n  t h e  graph on V. Colour with 

c 2  t h e  edges from v t o  Vo and with c l  a l l  the remaining 

edges. It i s  not  d i f f i c u l t  t o  check t h a t  a l l  t h e  edges of i 
- "  

2 
K3n+l a r e  coloured and t h a t  each colour  i s  used 3n + n 5 k  

2 

times. Figure 6 (b) shows t h e  schema of the  colouring. 
7- 

P 

(c) 2n < i I 3n % 

1 
4 

Then + Wk = 3n + 2. we l e t  V ( K ~ , + ~ )  = 
2 



colour c i  the  edges of t h e  complete graph on Vi p lus  the  

edges between Vi and Vi+l , taking i + 1 modulo 3. Also, 1 

colour wi th  co t h e  edges from u t o  vO' U V1 and with c2  

those from v t o  Vo U v2 . The remaining edges w i l l  be 
n 

coloured wi th  c', . Then each colour appears a t  most 
L 

2 
3n - ' + 2n + 1 5 k t i m e s .  Figure 6 (c)  shows the2 schema. u 

2 

Clearly,  i n  each case each ver tex  has colour degree two and s o  

w e  have constructed (K1, ,k) -colourings. 

W e  now provide t h e  missing l i n k .  Since ,k) e x i s t s  f o r  a l l  n 

and k the re  i s  a maximum number of Colours t h a t  a r e  necessary t o  

( ~ ~ , ~ , k ) - c o l o u r  any 1% when m i a r  (Kl ,n ,k) .  Let t h i s  maximum be 

F 

LEMMA 3.8: I f  m < a r  (Kl ,n .k) and (7) = k - p ( n . k )  then, l e t t i n g  . - 

Proof: For s impl ic i ty  we l e t  p = p ( n , k ) .  Let m be  a s  i n  t h e  

statement of the a .  Then any (Kl,n,k)-colouring of - 

must use p colo  Let  f be such a colouring. For each, 

i = - I , . .  . ,p l e t  Xi be t h e  monochromatic subgraph 05 %, 

induced by the edges coloured ci . Since f is a 
f 

( ~ ~ , , , k ) - c o l o u r i n g  no po in t  of l ies i n  more than n - 1 

of t h e  Xi1=.  Le t t ing  a = &in lv(xti) 1- & observe t h a t  
i 



D Figure 6 (a) . The colouring scheme f o r  a (K1, ,k) -colouring of K3, . 
counting the edges by co1ou.r: 

n 3n2 - n 
cO : (2) + n + n ( n  - 1) = y 

3n2 - n 
: [ ( n  l) + (n - 1) + nl + n ( n  - 1) =- 

3n2 - n 
C; : (1) + n2 = 



d 

Figure 6 (b ) .  The colouring scheme f o r  a (K1, 3,  k) -colouring of 

Counting the edges by colour: - < 

co : [ (q )  + n(n  - 3) + n + 2nl + (TI --3)  + 1 + 1 = 3n2 + n 
2 

c1 : I (" 5 '1 + (n - 311-1 + (n - 3) + 2(n - 311 + [2n + n  + nl + 

+ 2 + 1 =  3n2 + n 
2 



Figu re  6 ( c )  . The colouring scheme for a (K1,3,k)-colouring of K3n+2 . 
Counting the  edges by colou.:  



Since each. colour appears k times. ($1 2 k ,  , t h a t  i s ,  

I 

Thus, 

s ince  m i s  an in teger .  

We c lose  t h i s  chapter  with two conjectures.  . 

CONJECTURE 3 . 1 :  B r  (K .k) 5 "(-1 + + 2. 
1 In 2 

a 
a2 - 1 To j u s t i f y  t h i s ,  l e t  a = m k .  Then 2k  = 7 and i f  

4 = 2 
then 

k 

with equa l i ty  when a i s  an (odd) in teger .  Consider now t h e  

known star numbers. 



7 

(a) For n = 1 we have 

+. (b) For n = 2 

with equality 'when is an integer. 

(c) For n = 3 

(d) For k = 1 

(e) For k = 2 

(f) For k = 3 



.. 3 7 
a 

So t h e  upper bound i s  achievable and is  good f o r p a l l  t h e  knowh star 

numbers. Conjecture 3.1 i s  an improvement on a prevfLous one: 

where = p  + 

For c l e a r l y ,  2k(n - 1) 1 
n - 1  

9 ' 2 k ( n  - 'Ak = .T(- 1 + -1 . But, of 
l + V l +  

course, both conjec tures  a r e  open. 



IV. COMPLETE NUMBERS (10) 

In t h i s  chapter  we t u r n  our a t t e n t i o n  t o  ar(K,,k). We w i l l  

prove t h e  exis tence  of  ar &,kI f o r  a l l  n ,  k and, thus ,  j u s t i f y  the  

statements made previously about the existence of  anti-ramsey numbers. 
> 

Furthermore, we w i l l  s t a t e  and prove mst of the  sparse  r e s u l t s  known a t  

t h i s  point .  F i r s t ,  a l e m a .  - 

LEMMA 4.1: I f  0 5 ml 5 . . . 5 n$, I k a re  in tege r s  and 

! P 
1 m i  = ak + b, 0 5 b < k ,  then 
i= 1 

Proof: (a)  Since f o r  i > j 

2 - t he  sum 1 mi is  maximized when ml = m2 = . . . - mp-,-l = 0,  
i=l 

(b) The f i r s t  inequalitiy follows d i r e c t l y  from (a)  . For the  

second i n e q u a l i t y  we have 



OBSERVATION 4.1 : ar (K2,k)  = 2 

which i s  a t r i v i a l  re-statement of P ropos i t i on  3.1 (a )  . 

OBSERVATION 4.2: 

vacuously.  

The second p a r t  of  t h e  fol lowing p ropos i t i on  t oge the r  w i t h  Observat ions 

2.3, 4 . 1  and 4.2 and P ropos i t i on  4.2 shows t h a t  a r  ( s , k )  always e x i s t s  

and, hence, s o  does  a r  (Y, k)  . 

PROPOSITION 4.1: I f  n 2 4 and k 1 2 then  

Proof: 

(a) a r ( s , k )  2 k(n - 1) + 1 

1 
(b) a r (K , ,k )  5 z n ( n  - 1 ) ( n  - 2 ) ( k  - 1) + 2 .  

(a )  Consider t h e  cornflete graph on t h e  v e r t e k  set  L x M where 

L = {1,2,  . . . ,k )  and M = 1 2  . . . n - 1 .  Let  

D = {O, . . . p -  'I} and l e t  C* = { c ~ , ~ , ,  2  EL,   EM, 

r E D}. W e  can assume C* c C. Let  e be  t h e  edge between 

( i , j )  and i , j l  and suppose, wi thout  l o s s  o f  g e n e r a l i t y ,  

t h a t  j '  - j c r (mod n - 1) wi th  r E D. 
8 

I f  r = 0,  co lou r  e w i t h  c ~ ~ ~ ( ~ , ~ ~ )  
, j , r  ' 

1f 0 < r i. , colour  e w i t h  c i t j t r  . 
n - 1 I f  r = 7 , co lou r  e w i t h  ci 

t j  r r  
whenever n is  even 

n - 1  o r  n i s  odd and j 5 7. . 
Thi s  c o l o u r s  a l l  t h e  edges and -no colour appears more than  k 

t i m e s .  Suppose now t h a t  this edge-coloured graph c o n t a i n s  a 

rainbow K, . Then V(Kn) i n t e r s e c t s  each L x , { j )  i n  a t  m o s t  



two vertices.  Further, theke is  -a j  E M such tha t  L x { j )  

cpntains two vert ices  of K, and, hence, - 
& v(Kn) fl L x { j  - 1) = $3 (taking L x {n - 1) when j  = 1). 

t 

Thus there i s  a j' # j  with L x { j ' )  containing two points 

of K, . Without lo s s  of generali ty,  j  ' - j  5 r (mod n - 1) , 

r 6 D and, hence, the edges between ei ther  of the two points 

in  L x { j  ) and the two points i n  L x { j ' } have the same 

colour. This i s  a contradiction. 

(b) Let I$.,, be (K,,~c)-coloured by f  

{cl, . . . ,cp}. Let m i  be the number 
P 

ci . There a re  ) pa i rs  of edges 
i=l 

th i s  edge-coloured graph, each appearing 

and l e t  f  (E (GI ) = 

of edges coloured 

of the same colour in  

in a t  most 1 :) 
se t s  of n ver t ices  (since I 3) 2 1 1) and each such 

pair appears i n  I :) se t s  i f  the edges a r e  adjacent and 

in  ) s e t s  i f  they are d i s jo in t ) .  Now IS, contains 

) complete graphs on n points each of which must contain 

a pair  of edges of the same colour. Thus, 

Also, for  each i = 1, . . . ,p mi 5 k and 

Writing c) = ak + b with 0 C b  < k we ge t ,by  Lemma 4 .1 ,  

/ 



From t h i s  and U j  , 

k 3 (9- 

Hence, 

which,,-proves the  r e s u l t .  

For the  next two r e s u l t s  put N (v) = (u € V (X) I uv € E (X) ). 

PROPOSITION 4.2: ar(K3,k) = k + 2. 

Proof: Consider the  complete graph on the  vertex s e t  

V = 1 . . . k + 1 Colour the edge i j  with colour 

4 

C min(i ,  j l  . Clearly,  no colour i s  used more than k times and 

if VCK3) = fm,n,p) G V  with m <  n < p  then the  edges mn 

and mp have the  same colour. Thus, 

ar(K3,k) 2 k + 2. 

Suppose now t h a t  m ' I  k + 2 and t h a t  is  (Kj,k)-coloured 



by f .  Let d be the m-um number of edges of the same 

colour incident with the same vertex and l e t  v be such a 

t e r t ex  with the d edges coloured c.  Let 

u = {u E V (s)' I f (uv) = c )  and V = N (v) - U. Clearly, 

neither i s  empty and we can find w E V with f(vw) = c '  # c .  

Now for each u €  U ,  f(uw) = I= or c '  and since d is 
<-J 

maximal there is  a u' E U with f(wul)  = c. Thus, there are. 

a t  leas t  d + (m - d - 1) = m - 1 > k edges .coloured c,  .a 

contradiction. 

The following observation i s  sue t o  Pavol Hell. 

LEMMA 4.2: I•’ Kk+l i s  (Kj ,k) -coloured and k > 3 then there is  a 
h 

vertex which i s  the centre of a monochromatic k-star. 

Proof': The argument of the second par t  of the proof of Proposition 4.2 + 

w i l l  be used twice. 

Let k > 3 and l e t  

d ,  v, U, V, w, c ,  c '  

Proposition 4.2. If  

U contains a t  leas t  

f be a (Kj,k)-colouring of . Let 

be a s  i n  par t  (b) of the proof of 

d c k, neither U nor V is  empty and 

two points. Again, fo r  each w' E V there 

is a u '  E U with f (u 'wt)  = c. In f ac t ,  since no colour 

appears more than k times, the u'  is  unique with respect t o  
z' 

w' and no edges within U ,  or V are coloured c. Thus, w - 

is incident: with d edges coloured c '  and we can apply the 

same argument t o  the se t s  



In  par t i cu la r ,  i f  u € U i s  the unique vertex joined t o  w 
4 

by an edge coloured c ,  then u € V' and a l l  but  one edge 

from u t o  U t  are  coloured c .  This i s  a contradiction 

unless U, has only two elements. Then I v I  1 2. Let 

u = {u,ur}. Then,since f(u&) = c and f (u lw)  = c ' ,  the  

edge uu' i s  coloured c ' .  By the maximality of d we have 

f(wwl) # c '  f o r  a l l  w '  € V and since f is a 

(K3 ,k) -colouring, f (vw' ) = c ' = f (uw' ) . Using the maximality 

of d again, we see t h a t  I v I = 2.  Y h u s  k = 4. But we Kave 

already the  colour c '  on the edges uu ' ,  vw, vw' ,  wu' and 

uw', a contradiction.  

*** 

Figure 7 may help i n '  understanding the above proof. i - 
Let us now consider two par t icu la r  cases. We s h a l l  show tha t  

a r  (K4 , 2) = 7 and a r  (Kg, 2) 2 10. The value of a r  (K4, 2) shows t h a t  

the upper bound of Proposition 4.1 is  sharp. This, of course, stems 

from the f a c t  t h a t  i n  the  proof of the  proposition we considered each 

subgraph Kn a s  containing exactly one pair  of edges of the  same mlour .  , 

Clearly, t h i s  is  hardly the  case a s  n grows large.  

Proof: Consider Kg with ver t ices  0,  . . . ,5. For i = 0,1,2 colour 

the  edges from 2 i  t o  2 i  + 1 and 2 i  + 2 with c2i and the 



Figure 7 .  An aid to the proof o f  Lemma 4.2 .  



edges from 2 i  + 1 t o  2 i  + 3 and 2 i  + 4 with c ~ ~ + ~  , 

addit ion taken modulo 6 .  It is routine t o  ver i fy  t h a t  any 

comp$etion of this colouring t o  an edge-2-colouring w i l l  r e s u l t  

. i n  a (K4 ,2) -coloured graph. Thus, ar (K4 ,2) L 7. 

Suppose now t h a t  K7 is (K4,2)-coloured by f .  Since K7 

has 2 1  edges, no more than t en  colours appear twice and no 

general i ty  is  l o s t  by assuming exactly ten colours occur twice 

each. Each pa i r  of adjacent edges l i e s  i n  four K 4 ' s  and each 
, . I 

pair of mn-adjacent edges i n  one K4 . Letting p and q be 
\. 

the  numb-s of &irs of adjacent and non-adjacent edges 

same colour, respectively,  and observing t h a t  there are  

K 4 ' s  i n  K., we obtain 

of the 

3 5 

Since p '  and q a re  in tegers  it follows that q 5 1. 

Let us c a l l  an occurrence of a p a i r  of edges of the  s e e  colo* 
A 

i n  a K4 *%ady containing one such pa i r  a waste. Also, l e t  

us say t h a t  an e e  is  redundant i f  it does not l i e  i n  a 

monochromatic K1,2 . Now, consider a p a i r  of edges w, uw 

of the  same colour such that vw is  not redundant. Then there  

is a unique z such that--without l o s s  of generality--& edges 

w and vz ha& the same cozour an& h e  -complete graph an 

{u,v,w,z) contains a waste. In f a c t ,  any three such p a i r s  

determine three wastes ?.mless they form a triple, t h a t  is, a 



K4 on {u,v,w,z) with each of the pa i r s  (uv,uw), (vw,vz), 

(wz,uz) coloured one colour (see Figures 8)  . I f  the number 

of t r i p l e s  is  r ,  then the number of wastes is  a t  l ea s t  

This i s  because there are lob q monochromatic 2-stars, 

2q + 1 redundant edges and every t r i p l e  contains two wastes. 

Furthermore, r 5 2 since two t r i p l e s  have a t  most one point 

i n  common and, hence, three t r i p l e s  require a t  l e a s t  nine 

r e r t i ce s .  Thus, the number of wastes i s  a t  l e a s t  7,- 2q. 

When q = 0, no more than for ty  K q l s  contain pa i r s  of edges 

of the same colour and, hence, no more than f ive  wastes a re  
d 

5  ̂

possible. Similarly, when q = 1 only two wastes a re  allowed. 

Each case yields  a contradiction. Thus, a r ( ~ ~ , 2 )  5 7 .  

h 

The following construction is  due t o  Brian Alspach. 

., 
Proof: Consider the complete graph on the vertex s e t  V = I x I with 

I = I0,1,2). Let C* = Ici , j  ,r 1 i , j ,r C 1)and colour the 

edge (i, j 1 ii ' , j ' 1 --with labe ls  taken modulo 3--by 

(b) c i , j , l  i f  i' = i + 1 and j # j l ;  

L 
(dl any other @lour not already used i f  the edge is not 



Figure 8 (a) . A waste determined (uniquely) by (uv ,w). 



Figure 8 (b) . A t r iple.  



coloured by any of  (a) , (bt , ( c )  . 
It remains t o  show t h a t  any K5 contained i n  t h i s  ,Kg 

conta ins  two edges of the  same colour. Consider any K5 . I f  

th ree  of its v e r t i c e s  l i e  i n  i x I f o r  some i, we a r e  done 

by (a). r f  not  then t h e r e  a re  d i s t i n c t  i, i '  such t h a t  

i x I i x I contain two v e r t i c e s  of t h e  K5 each. Without 

l o s s  of g e n e r a l i t y  assume t h a t  i' = i + 1 and t h a t  t h e  four  
",- 

T 

po in t s  a r e  j  j i j  i 1 j 2  I•’ ; 

j l  # j l t I j 2 '  o r  j 2  # j 1 1 , j 2 '  we a r e  done by ( b ) .  NO 

genera l i ty  is l o s t  by assuming now t h a t  j l  = jgl ' and 

- j 2  - j z l .  The f i f t h  ye r t ex  must be (i + 2 , j )  and if 

j  # j lI  j2  w e  a r e  done by (b) again. I f ,  without loss 'of  

genera l i ty ,  j = jl theh two of the  edges of the  t r i a n g l e  on 

d 

' This exhausts t h e  p resen t  r e s u l t s  on a r (K, ,k ) .  
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'A- / ' 

V. SOME RELATED PROBLEMS 
i 

1 i 
\ 

A s  was al ready mentioned i n  the  in t roduct ion ,  i n  the  beginning 

was a problem proposed by Fred Galvin. A more general  vers ion  of it was 

comunicated i n  [Gl]. H e  begins with a modification of t h e . ~ a r t i t i o n  

r 
DEFINITION 5.1: a 5 (bIk if and only i f  f o r  any col&ring of the  

r-element subsets  of an a-element set such: tha t  no colour i s  

used more than k times t h e r e  is  a b-element subset  i n  which 

\ 

a l l  t h e  r-element subsets  have d i f f e r e n t  colours.  

Denote by * (b) 
* 

t h e  l e a s t  a such t h a t  a + b . If we 

de f ine ,  s imi la r ly ,  (b): t o  be t h e  l e a s t  a such t h a t  a + (b); we see  

t h a t  

and t h e  quest ion,  of course, i s  what a r e  these  numbers given b and k. 

2 Clear ly ,  a r  (ICn,k) = * (n) . 

DEFINITION 5.2: Let M be a set of c a r d i n a l i t y  m and de f ine  t h e  

r 
'Fur& number T,(IU) a s  - 

r 
Tm(n) = minl{s r ( )  I VX C (#)3~ E S Y G x)I 

where = {A G M I 1 ~ 1  = . r )  and m l n 2 r. 



Galvin 's  r e s u l t s  include:  

Some of these  a r e  recognizable a s  r e s u l t s  a l s o  derived i n  t h i s  work. 

None have been published =nor has t h e  improvement of (8)  by P. ~ r d &  

r 
(9) * (n) 9 cnr f o r  n s u f f i c i e n t l y  l a rge ,  with c a 

c o n s t ~ t  depending on r and k. ) 

A r e s u l t  of  Richard Wilsorl (IW11) is  worth mentioning. 2 It s t a t e s  t h a t  

f o r  a given graph Y, IC, can be  pa r t i t ioned  i n t o  edge d i s j o i n t  subgraphs 

al1,isomorphic t o  Y, i f  and only i f  m i s  s u f f i c i e n t l y  l a rge  and 

(a) m b  - 1 1  is d i v i s i b l e  by l ~ ( Y ) f  r 
I 

(b) m - 1 is d i v i s i b l e  by the  g r e a t e s t  common d i v i s o r  of the  

degrees of the  v e r t i c e s  of Y. 



CONJECTURE 5.1 : I f f  given n and k t  can be decomposed in to  

edge-disjoint 5 ' s  with ($1 = k - - Z ~ I T - ~ ~ ~ -  1) (n - 1) 

then arCKltnfk) = m + 1. 

QUESTION 5.1: There is. for  each n and k t  a number p(Kltnfk) such 

t h a t  no (Kltn,kl-colouring uses more than p(K ,k) colours. . 1.n 

What i s  i t ?  What i s  the corresponding p(%.k)? And what a re  

p(Y,k). given Y and k? 

QUESTION 5.2: What i s  the re la t ionship between ar(Y.k) and p(Y.k)? 

QUESTION 5.3: We saw t h a t  any (Klt3.k)-colourable graph can be so 

coloured using a t  most three colours. For a fixed n. i s  there 

, a n&er P (K such t h a t  any (Kl .,.k) -colourable graph 1.n 

can be,so coloured using a t  most p(Kltn) colours? What about . 

p ( Y )  f o r  a fixed Y? 
P 

'-'I 

Note t ha t  fo r  a f ixed k the number of c o l o ~ s  n e c e s s a d t o  ' (Y.k) -colour 
\ 

a graph may be a r b i t r a r i l y  large. "4, 
\ 

% i. Let d = <alt  . . . .an> be a sequence of non- negative',^ 
I 
I 

integers. We say t h a t  d is graphical i f  there -is a graph Y with d 

' a s  its degree sequence, t h a t  is. V(Y) = {vl. . . . ,vn] and d(vi) = a i  . 
i =  1. . . . ,n. Let X be a graph with an edge-colouring f .  Let, as 

. under f is a lv0rl( x (c* /  matrix with RvtCi = I E ~  (v) I . It is eaSy t o  

see t h a t  a vth row-of A is the colour s t ructure  of v and &at a c t h  
, i 

column of A is the degree sequence of a monochrcgnatic subgraph of X 



induced by the edges coloured ci. Conversely, we say tha t  an m x p 

matrix i s  graphical i f  it is a colour matrix of K, under some f with 

I f (E 1 I = p. Clearly, any product of a graphical matrix with a 

permutation matrix is  again graphical. Also, i f  f 6 Fk (E (K,) ) then 
'j 

5 2k. We can ask several  related questions: 
v6V 

QUESTION 5.4: When i s  a matrix graphical? 

QUESTION 5.5: When i s  a graphical matrix a colour m a t r i x  of a 

(Y,k)-coloured graph, fo r  a given Y? 

mSTION 5.6: I f  a matrix i s  graphical, can we reconstruct th'dc c o l . i n g  
F 

of the graph? j 

These lead t o  the following: 

PUESTION 5.7: Is a graph detemined<by a s e t  of i t s  edge-disjoint 

subqraphs? If so,  when is it determined uniquely? 

c- 

QUESTION 5.8: Given two graphical sequences dl and d2 such t h a t  

dl - d2 is  again graphical ( i f  dl = <al$, . . . ,alIn> and 

d2 = < a 2 ~ ,  . . . ,aa> then dl - d2 = 

Q~ - .au,  . . . - a&> , when i s  it true t h a t  s m e  graph 

with degree sqqrience dl contains edge-disjoint subgraphs with 

respective degree sequences d2 and dl - d2 ? 

\ - This l a s t  question i s  ze la ted  t o  Question 5.4 i n  the sense tha t  a 
r 

necessary condition for  a matrix t o  be graphical is  t h a t  the  sum of any 
- 

i of i t s  columns be graphical, 0 5 i 5 p. A p a r t i a l  answer can be found 



i n  some papers by S . Kundu ( [Kl I , [K2 I , [K31) . 
For some r e s u l t s  on i n f i n i t e  anti-ramsey theory and r e l a t e d  

problems see  [El] and IE21. 

With t h i s  we end the present  work. 



NOTES 

(1) Galvin knew the  answer. The proof given i n  Pr6posi t ion 4.2 - 
is due t o  Pavol H e l l .  

(2) ~ l t h o u g h  t h e  d e f i n i t i o n  can be extended t o  i n f i n i t e  s e t s ,  

we only consider ( f i n i t e )  graphs here. See [HI] , PP. 8, 16. 

(3) Also c a l l e d  v e r t i c e s  o r  nodes. See, e .g. ,  [Hll , p: 9. . 
(4)  Also ca l l ed  l i n e s  o r  a rcs .  See, e.g.,  [Hl] , p. 9. - 

, . 

(5) N denotes t h e  s e t  of non-negative i n t e g e r s ,  a s  usual .  

(6) In [Ell a graph whose edges a r e  coloured with d i s t i n c t  

colours is c a l l e d  t o t a l l y  multicoloured. 

( 7 )  "other" means "not n-s tar  f o r  any n." 

(8) I f  n ob jec t s  a r e  d i s t r i b u t e d  among m < n pigeon-holes 

a t  l e a s t  one hole  conta ins  a t  l e a s t  two objec ts .  k 

(9) See, e .g. ,  [H21, pp. 237-241. 

(10) This  chapter  c o n s i s t s  mostly of the  contents  of  [H3]. 

(11) The symbol a + (b): means t h a t  f o r  any p a r t i t i o n  i n t o  

k equivalence c l a s s e s  of the  r-element subsets  of an a-element set 

t h e r e  is a b-element subset  a l l  of whose r-element subsets  belong t o  

one equivalence c la s s .  For example, Ramsey's theorem s t a t e s  t h a t  

r a -t (wIk f o r  any i n f i n i t e  o rd ina l  a; i n  our  s p e c i a l  case r = 2. 
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