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ABSTRACT 

This thesis examines the theoretical and practical useful- 

ness of rotated solutions in can0 ical analysis. A brief de- 'P 
i 

scription of the theory of canonical analysis shows that a ratio- 

nale can be established for rotating sets of canonical variates 

nonidentically, i.e., applying orthonormal transformations to 

both sets of canonical variates, where the two transformations 

are not necessarily the same. Some theory regarding a 'number 

of factors1 ardogue in canonical analysis is also discussed, 

in particular with respect to the eff'ect, on a rotated solution, 

of any decision regarding the rimer of canonical 
\ 

different from zero. Basic relations concerning xotation of 

canonical variates are described; it is seen that many overall 

scalar-valued measures of relationship between two variable sets 

are left unchanged when rotated variate sets are considered. A 

pair of rotation criteria are derived which employ a variant of 

fhe Varimax' (Kaiser, 1958) criterion. . The first of these, the 
I 

'raw' criterion, analogous to 'raw1 Varimax; the second, the 

'normalized' criterion, is like the familiar 'normal' Varimax 

in that each element of the loading matrix to be rotated is 

scaled by its row sum of squares before rotation takes place. 

Five numerical examples are presented;, .Two of these are 

drawn from the educational research literature, two are drawn 

iii 



studies using personality ieasures, an8 'one examines some ori- 

ginal material involving two kinds of measures of community crime. 

In all cases, rotation of canonical variates is seen to produce 
J', 

1 

'cleaner ' results, Le., results more in keeping with* the heu- 

ristic principles of 'simple structure'. A few of the zot.ations 

yielded striking improvements in the intuitive appeal of the re- 

sults. Examination of the matrices of correlations between rota- 

ted canonical variates shows that 'normalized' rotation affects 

C 
the between-set correlation structure less than does 'raw' ro- 

tation. That 'normalized' rotation leads to just as intuitively 

simple interpretation of results as does 'raw' rotation indicates a 

certain economy in rotations to this criterion. 

Certain avenues for further research, especially regarding 

the 'number of'factors' problem in cananical analysis, are indi- 

cated. 
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f 1. INTROD&ION 

2 

1 
Psychologists are often interested in describing the 

correlational relationship between two sets of variables. For 

example, an investigator may be interested in the relationship 

between intelligence and creativity, where each construct is 

measured by an entire battery of psychological .tests. Canonical 

'analysis, or canonical correlation, is a,multivariate tech- 

nique developed by Hotelling (1935, 1936) to treat this problem. 

Due to its computational complexity, canonical analysis lay 

virtually dormant for decades. Recently, with the advent of 

widely-available computer routines, it has assumed greater 

importance in the data-analytic repertoire. 

- Along with the renewed interest in canonical analysis, . 

however, came the rather serious problem of interpreting its 

results. Many researchers find that the nature of any multi- 

variate relationships found by canonical analysis can be 
'-*' 

disappointingly obscure. Tatsuoka (1971), while he does not 

deal with this problem in direct terms, alludes to it when he 

comforts : 

... the dimensions of one domain (such as personality) 
that are strongly associated with those of another 
domain (such as academic achievement) are not necessarily 
susceptible to 'meaningful' verbal descriptions within 
the framew63?k of our intuitive, everyday concepts. It 
may be that subsequent research will show that precisely 
these 'nonintuitive' dimensions represented by the 
canonical variates are of greater scientific import. 

- To help researchers make sense of canonical analysis, 



many recent methodology texts' (e.g., Cooley and ~ohnes, 1971; 

Harris, 1975; Tatsuoka, 1971; Van De Geer, 1971) have called 

attention to the similarities between canonic21 analysis and 

single-set techniques such as factor analysis and component 

analysis. In fact, Cooley and Lohnes (1971, chap. 6) go so 

far as to' refer to 'canonical factors', and Tatsuoka (1971, 

pp. 183, 190) calls canonical analysis 'a double-barrelled 

component analysis.' To be sure, all three types of analysis 

belong to the family of multivariate techniques which atlsympt 
.' ..'( 

to suinmarize the relevant information in a (large) set of 

observed variables with a (small) set of hypothetical variables 

which,form an orthonormal basis for a subspace of the ~riginal 

variable space. This basis is positioned arbitrarily, however, 

and a user of component,analysis or factor analysis typically 

rotates an initial component or factor solution to a position 

where the basis vectors are easier to interpret in terms of 

observed variables. A user of canonical analysis, however, 

is generally left to interpret an unrotated solution. 
-- 

Cliff and Krus (1976) have presented a canonical analysis 

in which they transform, or mtate, the two sets of canonical 

variate vectors to some advantage in interpreting their results. 

They propose, and use, a single orthonormal transformation 

which rotates egch set of variates identically. This paper 

describes a rationale for considering nonidentically rotated 

canonical variate sets, and adapts a derivative of the Varimax 

method (Kaiser, 1958) to the concerns of canonicalanalysis as 



a means of obtaining appropriate transformations. It is,shogd. 
& 

v 

that nonidentical rotations leave unchanged many important 
P*? law 

measures of the overall=''correlational similarity between two 

sets of variables. Also, rotations performed on actualexampl-es 
d . , 

of canonical analysis from the behavioural science literature 

demonstrate that canonical analysis can in fact make good 

intuitive sense when nonidentical transformations are admitted. 



2. SOME THEORY FROM 

4 :  

"11 . 

THE STATISTICAL LITERATURE 

2.1 What is Canonical Analysis? 

Canonical analysis is a generalization of bivariate linear 

correlation developed by Hotelling (1935, 1936) . In ( h i s  

technique, a linear combination, or weighted sum, of each of 

two collections of-observed variables is obtained: the weights 

used to determine these 'canonical variates' are chosen so that 

the bivariate linear correlation, or 'canonical correlation', 

between the two combinations is a maximum. The process can 
lz- 

continue: A further linear combination can be obtained from 

each variable set, subject to the same maximum inter-set corre- 

lation constraint, but with the further restriction that each 

new variate is orthogonal to the first two derived variates. 
.r, 

As many pairs of canonical variates as there are observed 
\ 

variables in the smaller of the two sets can be obtained in 

this way; each successively-derived variate is orthogonal to 

all previously-derived variates, and correlates maximally with 

its 'sister' variate in the other set. 

The theory underlying canonical analysis is well described 

in many texts intended for practicing researchers, notably 

those by Bock (1975), Cooley and Lohnes (1971), Harris (19751, 

Morrison (19761, Press (1972), Tatsuoka (1971), and Van De Geer 

(1971). More mathematical treatments of the subject can be 

found in Anderson (l958), Dempster (l969),   end all (l96l), and 
- .. 

Rao (1965), as well as in a primary reference by ~otelling (1936). 



This chapter presents some of the basic equations of the tech- 

nique, to establish notation and clarify the nature of the 

quantities with which the rest of the paper deals. It also 

considers an interesting analogue, due to Rao (1965), of the 

'number of factors' problem in factor analysis, and motivates 

the discussion of the rotation of canonical variates with a 

geometric representation of canonical analysis, much of which 

is drawn from Dempster (1969) . 

2.2 Basic equations 

The raw data for canonical analysis is a partitioned matrix 

X:Nxn = [X ,X ] wherea X :Nxn and X2:Nxn contain the data 1 2  1 1 2 c 

for two distinct sets of nl+n2 = n variables. Following 

Morrison (1976), this discussion assumes that the N data (row) 

vectors constituting X have been drawn from4an-enrdimensional 

population with covariance matrix L = Ell ~ 1 2 1  , ;here,'. 
21 22 

1 

I21 = C12 . For convenience, and without losing generality, 

we can also assume that the data is mean-corrected, that is, 

that all column sums of X are zero, and that nl 5 n2 . 
The sample covariance matrix of X -is then given by 

L "- 

where C is partitioned the same way as L , Cll:nlxnl and 

C22:n2~n2. are symmetric within-set covariance matrices, and 

n xn = cil 5 2 :  1 2 is a between-set covariance matrix. We further 



l i 

assume that C is positive definite. The inithl approach 

to relating X1 and X2 involves coefficients - wl:nlxl and 

w2:n2x1 such that the linear combinations yl = Xlwl and 
* 

Y2 = X2w2 are maximally correlated. The estimate of the 

covariance matrix of these linear compounds is 

I I 

(note that wlC12w2 = w ~ C ~ ~  W ) I  and the estimate of their 

squared correl'ation is 

We wish to determine values of w and w2 which maximize 1 
2 

' 

The solution to this problem involves so1ving.a 

system of equations in wl and w2 . "FQ obtain a unique., 

solution, we impose the following~constraint on the scales of 

y g =  Xlwl and y2 = X2w2 : 

Using Lagrange multipliers p1 and we can incorporate 

this constraint into a function to be minimized by writing 

1 2 I I 

f (w1,w2) = (W 1 C 12 w 2 ) - p1 (wlCllwl-l) - lJ2 ( w ~ C ~ ~ W ~ - ~ )  

Taking derivatives of f with respeEt to wl and w2 , and 

setting these derivatives equal to zero, we obtain the following 



where 0 and 0 ' are zero vectors of appropriate dimen- 
--TJ ; .; -2 h 

1 

sionality. :Premultiplying the first equation of (1) by wl 
I 

and the second by w2 , yields 
7 

Solving for ul in the first equation and p2 in the second 

yields 1 

w )  
2 

P1 = v2 = h1C12 2 

2 If we substitute X = p1 = p2 , 

the matrix equations (1) can be, written 

1 

If C12 = {O) then w1C12w2 = 0 for any choice of W1 
and 



fowever, (2) has a nontrivial solution only if 1 ~ 1  = 0 , 

ults concerning the determinant of a partitioned matrix 
- 

- - 

. - 
(see, for example, Morrison, 1976, pp. 67-68), as well as.,the 

fact that since C is positive definite, 5 1  . and C22 rnus t 

also be, yield that I 

' -. 
1 

Simplifying, 

. -  
The largest eigenvalue of c;~c~~c;:c~~ , or equivalently of 

c ; ~ c ~ ~ c ; ~ c ~ ~  , as these two matriqes are cyclic permutations- 

of 'one another, is the maximum value of r: over all values 

of w1 'and . w2 . Moreover, Anderson-(1958) shows that the 

coefficient vector wl is the appropriately-scaledPigenvector 
/- 

associated with the largest eigenvalue of c;:c~~c;&~~ , 
and that the coefficient vector w2 is given by 



Thus we-have found the-largest canonical correlatfon and-the - - 

weight vectors, or canonical coefficients, used to form its 

associated canonical variates. 
35 

If n1 5 n2 is greater than 1, however, it becomes of 

interest to consider any further combinations of X1 and X2 

which are maximally correlated, subject to the restriction 
V 

that each be uncorrelated with.the first canonical variates 

and 

and 

denote these first canonical variates (and their associated 

canonical coefficients), the new linear'combinations can be 

written 

and 

(2 is another canonical correlation, and yl and , Y2 (2) are 

its associated canonical variates. Once again, 'to obtain a 

unique solution, we choose w (2) and w2 1 ( 2 )  ^so that 



(2) ' (2)) = 1 . If x 1  and X2 are each var (yl ) = var (y2 

composed of linearly independent columns, it w6uld seem 

possible to obtain nl orthogonal variates from X1 , each 

maximally correlated with a similar variate obtained from 

X2 --,in other words, to extract 2nl , orthogonal canonical 
(i (i) and y2 variates yl , i = 1, ... ,nl , such that 

(i) ' (i) constitute the set of canonical and where the ri = gryl ,- y2 
correlations betwepn"-X1 and X2 . Anderson (1958) gives 

I 4 

detailed proof that it is in fact possible to do so, and that 

this is equivalent to finding the nl /nonzero eigenvalues of 

C;?C~~C;:C~ 1 and a set of associated eigenvectors. 

As such, I 

where Wl is the matrix of coefficients for combining 

the Xl variables to form the y l  (i) , and h2 is a- diagonal 

matrix of sqpared canonical correlations between' X1 -and X2 . 
If we adopt the convention 

L-D 

(i then yl = Xlwl (i) , where (i) i s  now the ith c o l m  of W1 

W1 . (3) can be generalized to solve for the matrix W2 : 



then 

and 
1 (if' (i) 
i? Y1 Y2 

= r  - 
i - hi . 

In summary, 

Y2 = X2W2 5 -  3 - 
, &, 

%%, , 
(*F\ where the respective ith columns of Y1 and Y2 are yl 

a i 
%k $% '- 

(i) , the ith pair of canonical variates. Also, and Y2 

I 

the diagonal rkatrix of canonical correlations, ordered largest 

to smallest. The hi are the square roots of the nl nonzero - 

eigenvalues of c;:c~~c;~c~~ . Further, 
6 - 

that is, the canonical variates are uncorrelated with one 
F 

another within-sets. 

2.3 The 'number of factors' problem in canonical analysis 

Rao (1965) has presented an interesting conceptualization 

of canonical analysis which provides some insight for the 

common finding that not all of the canonical variates obtained 
1 



using the method of section 2.2 are actually meaningful in 

describing between-set relatianships. This situation finds- 

its single-set analogue in the classical 'number of factors' 

problem'in factor analysis (Harman, 1966; Lawley and Maxwell, 

1971; Mulaik, 1972). This section sketches Rao's argument. 
h 

Rao suggests that a'model for canonical analysis can be 

drawn up as follows: 

where F:Nxm is a matrix of scores on a hypothetical, un- 

observed set of m 'common factors' which contribute to 

both X1 and X2 ; S :Nxn and S :NXn2 are matrices of 1 1 2 

scores on two hypothetical unobserved sets of 'specific factors' 

which contribute to either Xl or S2 , but not both; and 
P :n xm and P -n xm are matrices of 'common-factor' loadings. 1 1  2' 2 

F , Sl , and S2 are here assumed to be column mean-corrected. 

Rao includes the following restrictions in his definition of 
- 

.the model : 

and 

that is, the 'common factors' are uncorrelated with one anothp 

and with the 'specific factors1, and factors 'specific' to XI 

are uncorrelated with those 'specific' to X2 . 



Note that the use of 'common' and 'specific' here 

from the tr tional use of these terms in the con~ext f i  
differs 

of . 
factor analysis. With this in mind, the quotation marks 

around these terms can be omitted. 
. .  

The partitioned matrix C is redefined: 

= ~ ( F P  +S ) (FP +S ) = 
5 1  N 1 a 1 1  

where Dl is the covariance matrix of S1 . Similarly, 

where D2 is the covariance matrix of S2 . On the other 

hand, ' 

This relation shows that any association between X1 and X 
2P. 

can be attributed solely to common factors, while within-set 
- - 

relationships involve contributions from common and specific 

factors. 



It now becomes of interest to determine the  umber of 
C 

common factors, that is, the number of columns of F . Rao 

equates a quantity called the 'effective number of common 

fac rs' with the rank of C12 f , the popuiation analogue of 
- 

I 

CsZ 
. Not surprisingly, this quantity is equal to the number 

-1 -1 of nonzero eigenvalues of CllC12C22C21 . Since we necessarily 

deAl with sample estimates of Lhese population matrices, however, 
-1 

it will happen that the rank of C12 is equ4 to nl ( 5  n2 , 

by convention), even when the rank of C12 is equal to a - 

smaller value. Since ;any of the eigenvalues of c;:c~~c;&~~ 

may be close to zero, however, one approach to determining the 

effective number of common factors is to test the hypothesis 

that these eigenvalues are in fact identically zero. An 

approximate test of this hypothesis, due to Bartlett (1941,. 

1947), is discussed in section 2.5. 

Rao suggests that, under ideal circumstances,'an even 

smaller number of 'dominant common factors' will account for 

the nontrivial information about the relationship between X1 

and X, . He allows, however, that since the inferential 

machinery to 

factors does 

basedwn the 
> .. 

estimate the number of these dominant common 

not exist, - less mathematically rigorous methods, 

relative magnitudes of the eigenvalues of *. 
5 

, may be appropriate. The Bartlett method of 

section 2.5 provides one way to settle on a value of m, the 1 
number of common factors, using an approximate statistical 

test. Notably, though, studies into the most acceptable number 



\of common factors in canonical analysis are not available, 

and the problem is far from solved. 

Common factors are typically not estimated in canonical 

apa'lysis. As a later section of this paper discusses, however, 
) ,  

some results reported by Carroll (1968), in the context of 

generalizing canonical.analysis to more than two sets of 

A observed variables, bear on the notion of common factors. 
I 

2.4 A geometric representation of canonical analysis 

Dempster (1969) provides a geometric description of 
f 

canonical analysis in which the technique becomes a means of 

describing the system-of angles between particular orthonokmal 

bases.of two subspaces of the variable space defined by the 

columns of X . Let U denote the space spanned by all 

columns of X .   hen U1 and U2 are two complementary 

subspaces of U: U1 the space spanned by X1 , and U2 the 

space spanned by X2 . The bases Y1 = XIWl and Y2 = X2W2 

form sets of orthogonal basis vectors for U1 and U2 , 

respectively, with the property that each vector in Y1 is d 

'best linear predictor' of a vector in Y2 , and viceversa. 

Note that Y2 actually spans an nl-dimensional subspace of U2 : 

f 
call this subspace u2 (1) 

. The (n2 - nl) remaining 

dimensions of U2 are orthogonal to U1 , in that no linear 

predictor can be formed in U1 which will make an angle 

different from n/2 with any vector formed in this 'lejtover' 

vector =ace. The cosines of the angles between the vectors in 



y1 and those in Y / ,  which become the elements of the matrix 
2- 

A (from (4)) are the nonzero canonical correlations on the 

diagonal of A and zero elsewhere. These canonical correlations 

are interpreted as measures of similarity between pairs of basis 

vectors in U1 and U2 (1) , and hence, jointly, as a measure 

of overall similarity between the two subspaces of U . 
The dimensionality, "1 , of both U1 and U 

2 (1) 
is 

equated with the number of nonzero canonical correlations, which 

is also the rank of C12 . Note that since U1 and U2(~) 

are linearly independent, although correlated, we need a space 

of at least 2nl dimensions to represent both subspaces 

simultaneously. Also, m becomes the dimensionality of even 
* * 

smaller subspaces U1 and U2(1) whichsare spanned by basis 

vectors summarizing all the nontrivial information about the 

relationship between Xl and X2 . 

2.5 Estimation and significance testing I 

If X is assumed drawn from an n-dimensional multivariate 

normal population with arbitrary mean vector p and covariance 

matrix C , Anderson (1958) shows.that the method of section 

2.2 leads to maximum likelihood estimates of the populatipn 

canonical correlations and canonical variates. Moreover, the 

largest eigenvalue of c;:c~~c;:c~~ (the largest squared 

canonical correlation) follows the greatest characteristic 

root distribution and can be used to test the hypothesis that 

all such eigenvalues are zero, that is, there is no relation- 



ship between x and x 1 2 .. 
"% 

4 As the results of sections 2.3 have shown, however, the 

number of nonzero eigenvalues of c ; ~ c ~ ~ c ; ~ c ~ ~  will give an 

idea of the number of statistically important dimensions by 

which X1 and X2 are related. Bartlett (1941, 1947) has 

proposed an approximate, farge-sample method for testing the 

simultaneous difference of a subset of these eigenvalues from 

zero, based on a distribution which is, asymptotically, an 

approximate chi-square. Bartlett's technique is used popularly 

in applications of canonical analysis. Harris (1975) argues 

on logical grounds that this technique is never appropriate, 

and suggests using the greatest characteristic ~ o o t  test, 

with a modified degree of freedom parameter, to test the 

2 significance of all the Ai . He mentions, however, that 

2 
such tests may be conservative for all but the largest Ai 

and offers no sampling-theory justification for using such 

a method. 



3. ROTATION OF CANONICAL VARIATES 

3.1 Basic relations 

This chapter treats the problem of rotating canonical 

variates to improve their interpretability. Our-task will 

be to find a canonical-analysis analogue of 'simple structureJ 

(Thurstone, 1947) iri matrices of correlations between th& 

bases Y1 and' Y2 , and the observations X1 and X 2  . 
We assume that the value of m has been determined, and 

rede-fine Y1 and Y2 to be of dimensions Nxm and Nxm , 
respectively. 

Consider two orthonormal matrices T :mxm and T :mxm , 1. 2 

where T1 and T2 are not necessarily the same. The , 

expression 

represents the orthogonal rotation of the m basis vectors 

similarly represents an orthogonal rotation of the basis 
* 

vectors of 
*2 (1) 

. Z1 and Z 2  are then alternative bases 

for these subspaces. Put another way, Z1 and Z2 are sets 

of rotated canonical variates. -\ 
> 

Since Y1 = XIWl and Y2 = X W - , we observe that 2 2 

and 



where V1 = WITl and V2 = W2T2 are matrices of coefficients i 

for obtaining Zl and Z2 from Xl and X2 . Moreover, 
- 2 

then 1 1 ' 
Bl = (x;zl) = g (X Y T ) = A 2 1 1 1  1 1  

and 

are matrices of structure correlations between Z1 and Z2 

and-the observed matrices from which these variat'es are derived.. 

The transformations T1 and ~4 can thus be applied to either 
the coefficient matrices W1 and W2 or directly to the 

structure matrices Al and A2 in obtaining results from the 

rotated solution. ' 

3 . 2  The effect of rotation on measures of between-set relationship 
\ i 
Importantly, various scalar-valued measures\pf the relation- 

ship between X1 and X2 remain unchanged und'kr the ortho- 
4 

gonal rotations T1 and T2 . Originally, Hotelling (1936; 
b 

see alsa Anderson, 1958, pp. 244-45) proposed a 'vector coef- 

ficient of alienation' 

and a corresponding 'vector correlation coefficient.' 



based on the rlotion of 'generalized variance' (Wilks, h932), 
C 

as multivariate%halogues of the coefficients of alienation 
/ 

and (simple or multiple) correlation in regression situations . L - -- --- fi 

with a single dependent variable. lfsince Hotelling's measures 
1 0 

depend only on C and its submatrices, their values and 
S L - L .  

\ 
interpretation will not change whether the canonical variates, 

which are merely linear combinations of X1 and X2 , are 

obtained using 'coefficient matrices Wl and W2 or V1 andw---. 
J 

v2 
m \ 2 

Note that ( S ) ,  which is equal to il 1 -  , and (6), C 

i=l 
2 which is equal to il ri , s 

1 
the disadvantage that they 

i=l . 
can each go to zero based on t lue of only a single 

(typically nonrepresentative) canonical correlation. In - -3 

- 

particular, ( 5 )  is near-zero if any of the canonical correl- 

ations is near-perfect. A more likely result, however, is 

that one or more of the canonical correlations is near-zero. 

In such a case, (6) becomes very small, even if some of the 
. 

canonical correlations are very large. 

Another type of scalar-valued measure is found in various 

additive functions.of the squared correlations between the 

basis vectors of one set with either the basis vectors or the 

original variables of the other set. One such function is -- - .  m 2 
simply the sum of the squared canonical correlations, C rk , 

k=l 



or in matrix notation, tr A . But consider the matrix pd - 
I 

correlations between rotated variates Zl and Z 2  : I 
I .  i 1 

..th This,matrix contdins, in its 1 row, the correlations between 
2 

the rotate3 variate z1 (i) and all the variates Z2 . Since 

the canonical variates are uncorrelated within sets, the sum 

of squares in the ith row of L is the squared multiple cor- 

relation between zl (i) and z 2  ( 3 )  , j' = 1, m . . 1n matrix 
notation, the diagonal of 

will contain all m of these squared multiple correlations. 

Clearly, the eigenvalues of S are the r: , so that 

In other words, the sum of the individual squared multiple 

correlations between each rotated canonical variate in Z1 I 

and all the rotated canonical variates in Z 2  is simply the 

sum of the squared canonical correlations. - 

This relationship holds if we interchange the roles of 

Z1 and Z2 . . To see this, note that the jth diagonal 



element  of  

i s  t h e  squared m u l t i p l e  c o r r e l a t i o n  of  z2 ( I )  w i t h  t h e  zl (i 

But 

* 
Thus tr S and tr  S a r e  equa l  t o  one ano the r  and t o  t r  A  2 

and as such a r e  i n v a r i a n t  under cho ice  of  

T2  . ( I n  t h e  s p e c i a l  c a s e  T 1 = T 2 = I ,  

A measure which i s  s i m i l a r  t o  tr  A 2 

t h e  'redundancy index '  (S tewar t  and Love, 

or thonormal  T1 Bnd 
* 

t hen  S =  S = A ~ . )  

i n  many r e s p e c t s  i s  

1968; M i l l e r  and F a r r ,  
n 

1971) .  The redundancy of  X1 i n  X2 , o r  -L 

R 2 . 1  , i s  d e f i n e d ,  

u s i n g  p r e s e n t  n o t a t i o n ,  a s  

sd 
The redundandy of  X 2  i n  X1 i s  de f ined  i n t e r c h a n g i n g t h e  

i 
va r i ab l e - sed  s u b s c r i p t s  1 and 2. M i l l e r  (1975) shows t h a t  

-2 
R2.1  i s  simply t h e  ave rage ,  over  v a r i a b l e s ,  of t h e  squared 

\ 
\ 

m u l t i p l e  c o r r e l a t i o n s  between t h e  rn columns i n  Y1 and t h e  

n2 columns of  o b s e r v a t i o n s  i n  X 2  . I n  doing s o ,  however, . 

-2 he  a l s o  shows t h a t  R2.1 i s  equa l '  t o  
* 

where Rll R12 1 and R21 are Cll t C12 , and 4 

C 2 1  r e s c a l e d  t o  c o r r e l a t i o n  ma t r i ce s .  U l t i m a t e l y ,  t h e n ,  t h e  
\ 

redundancy index ,  l i k e  H o t e l l i n g ' s  index,  does  n o t  depend okfis , 

* * 
t h e  o r i e n t a t i o n  of t h e  bases  of  U1 and U2(1)  , t h a t  i s ,  a, 



whether canonical variates are.rotated or not. 

3.3 Identical vs. nonidentical transformations 
4 

Cliff and Kruss (1976) have proposed rotating canonical 

variates using a single orthonormal transformation T =, 

which is applied to Y1 and Y2 simultaneously. They ergue, 

as this paper does, that certain properties of the canonical 

solution do not change under such a transformation, but do 

not offer a rationale for choosing the transformation they 

1 eventually perform. The major difference between the Cliff 

and Krus approach and the one presented here concerns the 

matrix 
I 

L = T1AT2 , 
* 

L is not synnnetaric; an L definedaas 

as Cliff and Krus have proposed,- would be. But this symmetry 
# * 

implies a m a t  the ith row sum bf squares of L , which is the 
squared multiple correlation between (i) and all the =EI 
columns of Z2 , is equal to the ith column sum of squares, 
which is the squared multiple correlation between z2  and 

all the columns of Z1 . There is no a priori reason why - 
this should be so, nor can any apparent interpretive utility 

be derived from this relation. 
4 



In fact, the requirement that thpe transformation matrices 

bs identical may place an unnecessary burden on our search 
for some kind of 'simple structure' in B1 and B2 simul- 

taneously. ~ a c h  variable set will have a unique canonical 
c 

variate stracture, and the initial canonical solution may 

yield'a more ideally placed basis in one subspace or the other. 

Hence, it will be advantageous to be able to rotate B1 and 

'B2 uniquely. 

3.4 The rotation criterion 

The problem.thus becomes one of finding suitable ortho- 

normal transformations. One starting point is provided by 

Hakstian (1976). who demonstrates simultaneous rotati~n of 
'\ 

two loading matrices which are assumed to represent the same , - 
number of factors, Z s b  a two-matrix extension of the general 

Orthomax rotation criterion (Harris and Kaiser, 1964). 

Hakstian does not apply his technique to canonical analysis 
X 

in which two or more_loading matrices are considered at the 

same time. Like Cliff and Krus, he seeks a single trans- 
-. 

0 

formation matrix, but one which will maximize the following 

function: 



where bijk is the j , kth element of the ith rotated loading 

matrix, i = 1,2; m is the number of factors (a value 

common to both sets); n is the number of variables in the i 

ith loading matrix; and w is the weighting factor which, 

when considering a single matrix, determines the special case 

of the Orthomax criterion. u = 1 yields a generalization 

of Varimax (Kaiser, 1958). If we make this substitution, (8) 

can be rewritten: 

This criterion seeks to maximize the Varimax criterion computed 

within matrices, then pooled between matrices. The basic 

advantage of this method lies in its search for a simple 7 
/- 

structurk solution within two matrices simultaneously. An 

alternative method, which would apply to Varimax criterion to 

the supermatrix /-- 

= Pi] 
could-conceivably lead to small loadings in one mat ix and large f 
loadings in the other. This would clearly be an pnacceptable 

u 
solution. 

If we relax the requirement that both matrices B1 and 
IC 

B2 be transformed identically, (9) declines in usefulness, 4 
/ 



since a'varimax rotation performed on each matrix separately 

would achieve the same result. At this point, however, we 
i 

can recognize the emphasis in canonical analysis on the 

correspondence between certain canonical variates, namely the 

(i) - (i) and z 2  variate pairs zl , i = 1 . .  m . - In loose 

language, we can try to make a pair of variates 'predict one 

another' by keeping the diagonal elements of L (from ( 7 ) )  

large, and hence the off-diagonals of L small. Canonical 

variates can then be interpreted not only in terms of' structure 

,correlations with the observed variables from which each was - 
- obtained, but also in terms of a representative variate 'from 

the other set. '   he ideal solution, in .which some semblance 

of simple structure is achieved in both B1 and B2 , and 
e 

/' 

. yet L is still dominated by its diagonal elements, would 

permit particularly meaningful choices of subsets of the 

observed variables with which to describe interbatter$ , 

relationships. % r 
With this in mind, this paper proposes weighting the 

2 kth term of the outer sum in (9) by lkk , the kth squared 

diagonal element of L . The function to be maximized then 

becomes 



A variant of this criterion is an analogue of 'normalized' 

Varimax (Kaiser, 1958). In the normalized case, the function 

to be maximized is 
/ 

where 

and 

3 .5  Implementation of the rotation procedure - 
Standard treatments of analytic rotation (e.g., Kaiser, 

1958) have taken advantage of the fact that in a single plane, 

say the plane defined by factors (or components) and s , 

elements of the rotated matrix are related to elements of 
w 

the unrotated matrix in the following way: 

where 9 is'the angle of rotation in the r, plane. By 

treating the individual loadings in the rotated matrix as 



linear combinations of loadings in the unrotated matrix, with 

functions of 8 as coefficients, the rotation criterion can 
-. . 

be rewritten as an expression involvinif 8 . The single- 

plane rotation problem is usually solved by taking the 

derivative of the rewritten function with respect to 8 , 

setting this derivative equal to zero, and solving for 8 . 
,- -1 

In the present situation, such a procedure proves to be 

unweildy. Since the transformations T1 and T2 are not 

assumed to be identical, two angles of rotation -- call them 
el and e 2  -- enter (10) in the single plane. Moreover, 

2 \  the presence of the lkk further complicates (10) even though 

2 it is possible in principle to express the post-rotation lkk 
2 as linear functions of the pre-rotation Ak . To simplify 

the maximization  process^,. a simple trial-and-error search 

procedure is used wherein for each (Blj, BZj), i.e., for 

the j th pair of variates in zl and the pair corresppnding 

to it in z2 , the (el j, 8 ) plane is searched unth,$he 
2j 

point is found at which (10) is a maximum. 

In cases where there are more than two columns each in 

z and z , the same iterative procedure is followed as 1 2 
t 

is customary with other applications of analytic dofation. 
w 

One- complete iteration is finished when the search algorithm, 
i 

working plane-by-plane, has dsermined an initial approximation 
/' d' 

to t ? ~  ultimate rotation in all pos 
9 

pairs of planes). Iteration contin 

orientation of the rotated variates are smaller than some 

prespecified value, i.e., until the process converges. 



4. NUMERICAL EXAMPLES 

4.1 A note on the presentation of results 

This chapter presents five examples of canonical analysis, 

four •’rom published studies in Psychology or Education, and 

one involving some unpublished data. For each study, results 

are considered from the unrotated canonical solution and two 

rotated canonical solutions -- a 'raw1 rotation to the cri- 
terion of (11) in section 3.4, and a 'normalized1 rotation to 

the criterion of (12). The appendices contain three matrices 

for each solution: two loading matrices containing the 

structure correlations between the observed variable and the 

(rotated or unrotated) canonical variates, and matrices of 

between-set canonical variate intercorrelations. In an un- 

rotated case, this latter matrix will be simply a collection 

of canonical correlations. Also, the loading matrices are 
< ' 

represented by a series af two-dimensional plots, in which 

two orthogonal canonical variates are drawn as co-ordinate 
/ 

axes, and orthogonal projections of observed variables into 

the plane spanned by these two variates are drawn as vectors 

(arrows). In the plots, projections of observed variables 

are drawn as light-lined arrows, and are marked by arabic 

numerals; the variables can be identified by reference to 

whatever matrix is being plotted. Co-ordinate axes, and 

projections of canonical variates 'from the other set', are 

drawn as heavy-lined arrows, and are marked by roman numerals- 



followed by a (1) or (2) . A (1) means that the marked variate 
. 

arises from variable set 1; a (2) indicates that it arises 

from set 2. 

This chapter describes canonical variates in terms of 

these abbreviations. For example, 'variate II(1)' will mean 

'canonical variate I1 from set l', and so on. Note that 
7' 

( 2 )  in the notation from variate II(1) is the same as zl 

previous chapters. This change will make it easier to iden- 

tify variates in the plots, and is consistent with usual 

factor-analytic practice of labelling plotted factors with 

roman numerals. 

All loading matrices present canonical loadings rounded 

to two decimal places. Loadings greater than .30 in magnitude 

are marked by a (+) , and those greater than .70 by a (++). 

Similarly, loadings less-than -.30 are marked by (-),and 

those less than -.70'by - -  1s will often be advantageous 
to pay particularly close attention to 'double-plus' or 

'double-minus' loadings. 

Most of the studies discussed here have used the Bartlett 

chi-square approximation in choosing m, the number of 'sig- 

nificant' canonical correlations. This chapter presents 

some evidence that doing so may lead to 'over-factoring', 

that is, keeping more dimensions than are actually of scientific 

interest. 



4.2 Ability tests vs. achievement tests (see Appendix A) 

Lohnes and Gray (1972) report a study in which they 

compare a component analysis and a canopical analysis of some 

/" 
data from the United States Office oyEducation Co-operative 

Reading Studies (Dykstra, 1968). One set of variables 

consists of eight tests used to assess reading readiness; 

the other consists of a battery of Stanford Achievement Tests. 

Lohnes and Gray first treat both sets of variables as a 

single matrix and run a component analysis of this larger 

variable set. They report a substantial 'general fastor' 

on which all tests, ability and acMevement, load very I )  highly, 

and a smaller second component (see Table A-I)< They go on 

to use the results of a canonical analysis between the ability 

and achievement tests to reaffirm the exisFence of this 

'general factor'. 
. . 

Close scrutiny of their component analysis results, 

however, reveals that Lohnes and Gray report a loading matrix 

obtained from unrotated components. Table A-I1 shows the "l 
Lohnes and Gray loading matrix after if has been rotated to 

the normalized ~arimax criterion. As might be expected, the 

rotated solution shows components substantially related to 

'ability' and 'achievement'. Note, however, that the largest 

loadings of ability tests on the 'achievement' component 

(I) are from the' Murphy-Durrell Phonemes and Letter Names , 

tests; the largest loading of an achievement test on the 

'ability' plnponent (11) is from the-Stanford Achievement Test 



i n  Vocabulary. 

The r e s u l t s  of t h e  Lohnes and Gray canon ica l  a n a l y s i s  

a r e  reproduced i n  Table  A - 1 1 1 ,  and p l o t s  of t h e s e  components 

a r e  shown i n  F igu re  A-1 .  The 'genera2 f a c t o r '  i n t e r p r e t a t i o n  

i s  appa ren t .  The r e s u l t s  o f  a raw r o t a t i o n  o f  t h e  canon ica l  
6 

v a r i a t e s  a r e  p re sen ted  i n  Tables  A-IV and A-V; t h e  a s s o c i a t e d  

p l o t  i s  F igu re  A-2.  The r o t a t e d  v a r i a t e  q t s  show an i n t e r e s t i n g  

c o n t r a s t  t o  t h e  u n r o t a t e d  v a r i a t e s .  For one t h i n g ,  t h e  

r o t a t i o n  procedure  p l a c e s  each v a r i a b l e  v e c t o r  i n  t h e  f i r s t  

quadran t  of  whatever v a r i a t e  p l ane  it i s  p r o j e c t e d  i n t o .  

While much of t h e  ' g e n e r a l - f a c t o r  ' .appearance of t h e  a n a l y s i s  

i s  s t i l l  p r e s e n t ,  t h e  'double -p lus '  l oad ings  show t h a t  v a r i a t e  

I (1)  i s  most s i m i l a r  t o  t h e  P i n t n e r  General  A b i l i t i e s  and 

Met ropol i t an  Word Meaning tes ts ,  and t h a t  v a r i a t e  I ( 2 ) ,  wh icF  

c o r r e l a t e s  .56  w i t h  I ( l ) ,  i s  most s i m i l a r  t o  t h e  S t an fo rd  

Achievement T e s t  i n  Vocabulary. Moreover, v a r i a t e  II(1) i s  

most s i m i l a r  t o  t h e  Murphy-Durrell L e t t e r  Names tes t ;  

v a r i a t e  I I ( 2 ) ,  which c o r r e l a t e s  .55 wi th  i t ,  i s  most s i m i l a r  

t o  t h e  s t a n f o r d  Achievement T e s t s  i n  Word ~ e a d i n g  (grade  l), 

Paragraph Meaning (grade l ) ,  S p e l l i n g  (grades  1 and 2 1 ,  and 

Word Study s k i i l s  (grade 1) . T h i s ,  a long  wi th  t h e  p a t t e r n  

of t h e  r o t a t e d  component l oad ings ,  sugges t s  t h a t  a meaningful 

l a b e l l i n g  of t h e  f i r s t  dimension which c o n t r i b u t e s  t o  t h e  

between-set r e l a t i o n s h i p  might be ' vocabu la ry ' ,  and an , 

a p p r o p r i a t e  name f o r  the. second dimension might be  ' s p e l l i n g ' .  

The r e s u l t s  of  t h e  normalized r o t a t i o n  a r e  p re sen ted  i n  



, Tables A-VI and A-VII and in Figure A - 3 ,  and show a pattern 

very similar to that produced by the raw-rotation. 
f - 

correlations between I(1) and I(2) and between I1 (1) and 

II(2), however, are closer in magnitude to the original 

canonLcal correla,tions. Thi's phenomenon is common to a$l the 

rotations presented in this paper. 

e 

4.3 Ability and achievement tests vs. school grades 
Z 

(See Appendix B )  
7 

In a similar study, Lohnes and-Marshall (1965) report a 

canonical an~lysis relating a series of educational tests to 

recorded grades in junior high school. These data were also 

used by Stewart and Love (1968) in demonstrating the redundancy 

index. 

Lohnes and Marshall report only two pairs of canonical 

variates. Stewart and Love report all eight pairs. This 

paper reports three pairs, largely bbcause to do so provides 

a good demonstration that a 'general factor' situation exists 

in this analysis as well, but is apparent in three dimensions 

instead of two. Axes from this analysis were rotated sub- 
< 

stantially within-sets without disturbing the between-set 

correlation situation as dramatically as in the Lohnes and 

Gray study of section 4.2. Moreover, it is interesting to 

work from the double-plus loadings in Tables B-I1 and B-IV 
1 

and relate tests from variable set 1 with school subjess from 

set 2. Curiously, I(2) turns out to be similar to Arithmetic ,' 



' grages, while II(2) is similar to nglish grades. A more 2 
intuitively satisfying result would have interchanged the 

roles of these variates., 

4.4 16 Personality Factors vs. Vocational Preference Inventory 

(See Appendix C )  

C 

Williams and Williams (1973) report a canonical-analysis 

relating the 16 Personality, Factors test (Cattell, Eber, and 

Tatsuoka, 1970) to the 11 scales of the Vocational Preference 

f Inventory (Holland, 1965). Tables C-I to C-V and ~igures 

C-3 to C-6 show the results of the Williams study, and the 

results of a raw and a normalized rotation of the canonical 

variates. Rotation yields a dramatic increase in the number 
0 

of very small loadings. Also, the first two variates in each 

set bear an intuitively simple interpretation after rotation. 

Variates I11 (1) and I11 (2) are oriented somewhat differently 

by the normalized rotastion than by the raw rotation. Note, 

however, that the canonical correlation associated with these 

variates is substantially smaller than the largest two canonical 

correlations. We may, in fact, be trying to rotate one too 

many variate pairs. Either rotation scheme leaves the earlier 

two pairs of variates open to much the same interpretation. 

The plot of the normalized-rotated loadings shows that 

this rotation method was able to achieve as much of a sense 

of 'simple structure' as was the raw rotation, while not 

affecting the system of variate intercorrelations as much. 



4 . 5  Reca l led  p a r e n t a l  behaviour  v s .  M.M.P.I. s c a l e s  

(See Appendix D )  

Burger,  Armentrout ,  and Rapfogel (1975) r e p o r t  s e v e r a l  

canon ica l  a n a l y s e s  between t h e  C h i l d ' s  .Report o f  P a r e n t a l  

\ +  Behaviour Inventory  (Schaefer ,  1965) and v a r i o u s  o b j e c t i v e  
rc. 

p e r s o n a l i t y  measures.  The s u b j e c t s  f o r  t h e  p a r t  o f  t h e i r  

s tudy  which i s  reproduced h e r e  are 8 3  m a l g s - r e c a l l i n g  t h e i r  

f a t h e r  ' s behaviour , a n ?  who tbok  t h e  Minnesota Mul t iphas i c  
# 

P e r s o n a l i t y  Inventory  (Hathaway and McKinley, 1951) .  This  

p a r t i c u l a r  canon ica l  Hialysis i s  t h e  on ly  one performed 

i n  t h e  Burger s tudy  which y i e l d e d  mwe than  one s t a t i s t i c a l l y  

s i g n i f i c a n t  canon ica l  c o r r e l a t i o n  (u s ing  t h e  B a r t l e t t  t e s t ) ,  

and hence f o r  which more than  one canon ica l  v a r i a t e  p a i r  w a s  

r e p o r t e d .  The m a t r i c e s  from t h i s  s tudy  a r e  i n  Tables  D - I  t o  

D-V and t h e  a s s o c i a t e d  p l o t s  a r e  i n  F i g u r e s  D-3 t o  D-6. 

Ro ta t ion  had much l e s s  e f f e c t  'on t h i s  d a t a  set  than  on 
. - 

o t h e r s  c6n"s:idered i n  t h i s  c h a p t e r .  The b $ s t ,  and s i m p l e s t ,  

r eason  f o r  t h i s  l a c k  of e f f e c t  i s  t h a t  good ' s imple  s t r u c t u r e '  

could no t  be found i n  the d a t a ,  and a  scdn of  t h e  p l o t s  of  t h e  
\ 

l oad ing  m a t r i c e s  b e a r s  t h i s  a s s e r t i o n  o u t  somewhat. One 

n o t i c e a b l e  r e s u l t ,  however, i s  t h e  ' c l e a n i n g  up ,  of v a r i a t e  

II(1).  The l a r g e  l o a d i n g s  on t h e  u n r o t a t e d  I I ( l ) ,  however, 

s e e m  t o  have been s h i f t e d  t o  I ( 1 )  and I I I ( l ) ,  which bo th  

beg in  t o  have t h e  appearance of  ' gene ra l  f a c t o r s . '  Also,  

t h e  M . M . P . I .  s c a l e s  s e e m  t o  be somewhat more amenable t o  , 

r o t a t i o n  than  t h e  r e c a l l e d  p a r e n t a l  behaviour s c a l e s .  

-- 



4.6 ~rime'rates frbm victimization studies vs. crime rates 

from police sources (See Appendix E )  

Scott (1977) reports ,a canonical analysis relating a 
.." 

set of seven crime rates obtained from National Crime Panel 

victimization surveys in 26 American cities with seven crime .- 
rates derived from those reported by the United States. Federal 

Bureau of Investigation in its Uniform Crim series. 

The results of this analysis are reproduced 
\ 

E-V and' Figures E-3 to E-6. 

Rotation lends considerable interpretability to the 

results of this study. Variates I(1) and I(2) define a pair 

of correlated dimensions distinctly related to Robbery and . 

Auto Theft, apparently two 'validly' measured crime categories. 

11 (1) and I1 (2) demonstrate the peculiar result that the two 

methods of reporting crime lead to negatively correlated 

results when considering the incidence of violent crimes such 

as murder,.yape, and assault. III(1) and III(2) are positioned 

a bit differently by normalized rotation than by raw rotation, 

but, as before, this may only be an indication that m, the 

1 number of variate pairs, is too large. Notably, the first 

two pairs of variates are positioned virtually identically 

regardless of the rotation method used. 



,- -u 5. DISCUSSION 
- ' r c  

A -  - - .  

In most cases considered in chapter 4, rotation of 

canonical variates leads to a more,intuitively sensible in- 
+ 

terpretation of the results of a canonical analysis. Notably, 
t 

normalized rotation leads to an acceptable degree of inter- 

pretability while permitting the between-set correlation 

structure tb remain closer to that from the unrotated solution. 

This latter result indicates a certain economy in normalized 

rotation, in that it maintains the optimizing properties of 

the unrotated solution to a greater degree than does raw 

rotation. 
/- 

?" 

Common factors in the sense provided-by Rao (1965) are 
1 .* 

usually not estimated in canonical analysis. Carroll (1968), d-.+ 

however, has described a situation, similar to that described dP 

by Rao, in which a single set of orthogonal variates is derived 

in canonical analysis. Carroll's approach permits easy t 

generalization to canonical analysis of more than two variable 

sets: Regardless of the number of sets, the between-set 

relationships are always described with reference to a single 

set of canonical variates. 

In taking seriously the common-factor approach to canonical 

analysis, one must recognize the introduction of a concrete 

rationale for considering identical transformations of matrices 

of structure correlations between the observed variables and 

the common factos. In such a case, not the matrices Al and 



% but the matrices P1 and P2 of section 2.3 would be 
t, 

rotated; moreover, a rotation scheme such as Hakstian's (1976) 

would be more appropriate, since there would no longer be 

- any need to consider canonical correlations in performing 

the rotations. For the reasons discussed in section 3.3, 

however, simple structure may be all-the more difficult to 
- 

obtain when the ,two structure matrices are constrained to be F' 

rotated identically. 

The 'number of factors' problem deserves some further 
a 

study. The rotational inconsistencies noted in sections 4.4 

and 4.6 may be the result of faulty judgment in setting the 

value of m, or they may be simply an artifact of a fitation 

scheme which plays variate correletion against a blind search 

for 'simple structure'. In particular, a type of rotatibn 

different from that considered in this paper may lead to a 
Ct 

different notion of the proper number of variate pairs to 

rotate. In any event, this entire problem would provide a 

challenging, and potentially useful, avenue for further. 

research. 
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A p p e n d i x  A 

Data  frcm L 9 h n i . s  a n d  G r a y  (1972)  

~ b i l i t y  t q s t s  v s .  3 c h i e v 2 m n n t  t e s t s  



Tab12 A - 1  

Data f r r n  L o h n e s  a n d  G r a y  ( 1 9 7 2 )  

D n r o t a t e d  l o a d i n g s  f r o m  c o m p o n e n t  a n 8 l y s i s  of 
a b l l i t y  a n d  a c h i e v z m e n t  t lsts 

O b s s r v 2 d .  v a r i a b l ? ~  

S e t  31-15 ( a b i l i t y  tests) 

1 .  P i n t n e r - C u n n i n q h a  m G ~ n e r a l  
A b i l i t i e s  

2 .  M u r p h y - D u r r e l l  P h o n ~ m ? r  
3. f i u r p h y - D u r r e l l  L e t t e r  Names 
4: f i u r p h p - D u r r e l l  L e a r n i n g   at& . 
5. T h u r s t o n ?  P a t t e r n  c o p y  
6.  T h u r s t o n e  I d s n t i c a l  F o r m s  
7 .  ? l a t r o p o l i t a n  Word H e a n i n g  
5 .  M n t r o p o l i t a z  L i s t e n i n g  

S 3 t  two ( S t a n f o r d  Achievement Tes t s )  

1 .  Hord R e a d i n g ,  G r a d e  1 
2.  Word R ? a d i n g ,  G r a d e  2 ' 

3.' P a r a g r a p h  Rsaning, G r a d e  1 
4. P a r a g r a p h  H e a n L n g ,  G r a d e  2 
5 .  vocabulary,  grad^ 1 
6 .   ellin in'^, Grade  1 
7.  Spilling, Grado  2 
5. Wsrd S t u d y  Skllls, Grade 1 
3. W3rd S t u d y  S k i l l s ,  G r a d ?  2 
10 .  L a n g u a g l ,  G r a d e  2 
11 .  A r i t h m s t i c  Computation, G r a d e  2 

C o a p o n e n t -  l o a d i n g s  



T a b l e  A - 1 1  

* 
D3t3 from L o h n n s  a n d  G r a y  ( 1 3 7 2 )  

Varimax r o t  z t ~ d  l o a d i n g s  f r o m  c o m p o n 2 n t  a n a l y s i s  o f  
a b i l i t y  a n d  a c h i s v e t n e n t  t e s t s  

Dbserv?d v a r i a b l r s  C o m p o n e n t  l o a d i n g s  

I ~ 3 t  ane ( a b i l i t y  t?sts) I1 

1, ~ i n t n s r - C u n n i n g h a  D Gensr31 
A b i l i t i l s  

2 .  Y u r p h y - D u r r 2 l l  Phonem2s 
3 .  M u r ~ h y - D u ~ r 3 1 1  L e t t s r  N a m l s  
4 .  f l u r p h y - D u r r ~ l l  L e a r n i n g  Rate 
5. P h u r s t o n e  Pattern Copy 
6 .  T n u r s t o n e  I d o n t i c 3 1  Forms 
7.  f l e t r o p o l l t a n  U o r d  H e a n i n g  
3 ,  H a t r o p o l i t a n  L i s t e n i n g  

S e t  t w o  ( S t a ~ f o r d  A c h i e v e m 3 n t  T S S ~ S )  

1 .  W9rd P s a d i n g ,  Grade  1 
2 .  Wor$L$eadlng, Gre d e  2 
3 .  p a f a g r a p h  H e a n i s g ,  G r a d e  1 
O. P 3 r 3 g r a p h  M e z n i c g ,  Grade 2 
5. V c c a b u l x y ,  Grade 1 
5. S ~ e l l i n g ,  G r a d e  1 
7. S p ~ l f i r q ,  Grade  2 
3.  Word S t u d y  S k i l l s ,  G r a d e  1 
9 .  H ~ r d  S t u d y  S k f l l s ,  Grade 2 
10. L 3 n g u a g e .  Grade 2 
11.  Ari t h a s t i c  C o ~ p u t a t i 3 n ,  G r a d e  2 



Table A - 1 1 1  

Data frcm L o h n s s  a n d  Gray (1972) 

U n r 9 t a t ~ d  l o a d i n g s  f r o n  c a n o " n c a 1  a n a l y s i s  of 
a b i l i t y  -&gd a c h i e y e m a n t  t e s t s  

-G@ 

O h s s r  v%d v a r i a u l s s  C a n o n i c a l  l o a d i n g s  / 

S = t  OF? , ( a  h i l i t 7  +as  ts) I ( 1 )  

1 .  P F n t n n r - C u n n i n u h a  a C a n e r a 1  
A b i l i t i e s  

2 .  M u r p h y - D u r r z l l  P h o n e m s s  
3. Y u r p h y - D u r r ~ l l  L e t t - ? r  Names 
4 .  M u r p h y - D u r r 2 l l  L e a r n i n g  R a t e  
5. T h u r s t o n ?  P a t t e r n  C ~ p y  
6 .  T h u r s t o n e  Idsnticd Forms 
7 .  B ~ t r o p o l i t a c  Wcrd H e a n i n g  
9. B ~ t r o p o l i t a n  L i s t e n i n g  

S 3 t  two ( S t a n f o r d  A c h i e v e m e n t  T e s t s )  r(2) 

1. Word R e a d i n g ,  G r a d e  1 
2 .  Wnrd Z a a d i n g ,  Grade  2 
3 ,  P a r a g r a p h  M e a n i n g ,  G r a d e  
4 ,  P a r a g r a p h  R n a n i f i q ,  G r a d e  
5. V o c a b u l a r y ,  Grade  1 
6 .  S p ? l $ i n g b  Grade  1  
7. S p ~ l l i n g ,  Grade 2 
8 .  Hord S t u d y  S k i l l s ,  Grade 
9 .  Word S t u d y  S ~ i l l s ,  Grade  
10.  L a n g u a g e ,  \Grade 2 
11.  A r i t h m q t i c  Cgnpu t a t i ~ n ,  

Canoc ic31  c o r r s l z t i o n s  



Figure A-1 

P l o t  of Table A-I11 



4 4  

T a b 1 2  A-IV 

D a t a  f rom L o h n e s  a n d  G r 3 1  ( 1 9 7 2 )  

3aw r 3 t a t i o n  o f  l o a d i n g s  f r o m  c a n o n i c a l  a n a l y s i g ~  of -,--I,3- 4 

a b i l i t y  a n d  a c h i e v e m e n t  t ~ s t s  

S 3 t  o n ?  ( a b i l i t y  t e s t s )  

1. ~ i n t n 2 r - c u n n i  n g h a ~  G e n e r a l  
A b i l i t i . 3 ~  

2. M u r p h y - D u r r e l l  P h o n e m ? ~  
3 .  H u r p h y - D u r r e l l  L 2 t t e r  Names 
4 .  M u r p h y - D u r r e l l  L e a r n i n g  Ratt? 
5 .  T h u r s t o n e  P a t t e r n  C o p y  
6 .  T h u r s t o n e  I d r n t i c a l  F o r m s  
7 .  P l 3 t r o p o l i t a n  Word M e a n i n g  
8 .  H e t r o p o l i t a n  L i s t n n i n q  

C a n o n i c a l  l o s d i n g s  

S ? t  t w o  ( S t a n f o r d  A c h i s v e m s n t  T e s t s )  I f 2 1  

1 .  Word R e a d i n g ,  G r a d e  1 
2 .  Word R l a d i n g ,   grad^ 2 
3 .  P s r d g r a p h  M e a n i n g ,  G r a d e  1  
4 .  P a r a g r a p h  I s a n i n g ,  Grade  2  
5. v o c a b u l a r y ,  Grade  1  
6 .  S ~ ~ l l i n q ,  G r a d e  1 
7 .  S ~ e l l i r g ,  Grad; 2 
5 .  Word S t u d y  S k i l l s ,  G r a d e  1 
9 .  Wgrd S t u d y  S k i l l s ,  G r a d s  2 
10 .  L a n g u a g e ,  G r a d e  2 
1 1 .  Arithmetic C o m p u t a t i o n ,  Grade 2 



T a b l  A - V  

Data from Lohnes a n d  G r a y  (1972)  

V a r i a t e  int+rcorr+lations from c a n o n i c a l  a n 3 l y s i s  o f  
a b i l i t y  and  achievement tests 

Raw r o t a t i o n  
.- 

d 

Achiovem&nt t e s t  
v a r i a t e s  

A b i l i t y  tlst 
v a r i a t ~ s  



Figure A-2 

Plot of Tables A-IV and A-V 



T a b 1 9  A - V I  

D3t3 f r o m  L o h n e s  3 n d  G r a y  ( 1 9 7 2 )  

3 o r a z l i z e d  r o t a t l o r .  s f r o m  canonical a n a l y s i s  of 

\ t e s t s  

/ 

1 
O b s e r v e d  v a r i a b l 2 s  Z a n o r i i c a l  l o 2 d i n g s :  

\ 
S 2 t  c n 2  ( a b i l i t y  t s s t s )  I I 1 )  

P i n t n s r - C u n n i n g h a m  G e r r a r a l  
A b i l i t i s s  

Y u r p h y - D u r r e l l  P h o n a m ? ~  
M u r p h y - D u r r e l l  Litter Nam<?s 
H u r p h y - D u r r e l l  L ~ a r n i n g  Rats 
T h u r s t o n e  P a t t e r n  Copy l- 

T h u r s t o n ~  I d s n t i c 3 1  F o r m s  
C c t r o p o l i t a n  Word M e a n i n g  
M ? t r o p o l i t a n  L i s t z n i n g  

S+t tw? ( S t 3 n f o r d  A c h i  2voment T e s t s )  1 [ 2 )  
s 

1 .  a o r d  Reading, G r a d e  1 . 4 5  (+) 
2 .  R?rd  R e s d i n g ,  G r a d e  2 . 5 7  (+) 
3 .  P 3 r a g r a p h  M e a n i n g ,  G rad9  1 49 ( + )  
4 .  P 3 r a g r a p h  Maanirig, G r a d e  2 .6'1 (+) 
5. V o c a b u l a r y ,  Grade  1 . 88 (++)  
6 .  S p e l l i n g ,  G r a d e  1 . 2 7  
7.  S p q l l i n g ,  G r a d e  2  . 27  
3. n o r d  S t u d y  S k i l l s ,  G r a d e  1 . 5 5  (+) 
9 .  # ~ r d  S t u d y  S k i l i s ,  G r a d e  2 . 58 (+) 
10. L a n g u a g e ,  G rade  2 . 56 (+ )  
11.  Ari t h m s t i c  C o f ~ p u  t a t i o n ,  Grade  2 , 45  (+) 



D3t.a from L o h n e s  a c d  G r a y  (1972 )  

~ 3 r i a t e  i n t e r c o r r s l a t i o n s  frBm canon ica l  a n a l y s i s  o f  
a b i l i t y  a n d  a c h i e v e m 2 n t  t e s t s  

A b L l i t y  t e s t  
v a r i a t e s  

Ncrmaliz2d r o t a t i o n  

Achievement tsst 
v a r i a t s s  



- - -  - 

Figure A-3 

Plot of T a 6 I e s  A-VI and A - V 7  - -  



A p p e n d i x  B . 

Data  from L o h n e s  and  M a r s h a l l  (1965) 

Ability a n d  achievemant  t e s t s  
vs, j u n i o r  h i g h  s choo l  g r a d s s  

4 



D a t a  frcm L c h n a s  ~ n d  M a r s h a l l  (1965)  

u n r o t a t e d  l o a d i n q s  f r o m  c a n o n i c a l  a n a l y s i s  
o f  a b i l i t y  a n d  a c h i e v e m s n t  tssts 

-.nd j u n i o r  h i g h  s c h o o l  q r a d ~ s  

C, O b s e r v s d  v a r i a b l ~ s  C a n o n i c a l  l o 3 d i n  gs  

5 %  one  ( a b i l i t y ,  3 c h i e v s r n . i n t  t e s t s )  I (1 )  11 (1)  I11 (1)  

1 .  PGAr V e r b 2 1  
2. PGAT Rqasonizg  
3. PGAT Number 
4. MAT Word ~ n o w l i d ~ s  
5.  MAT a e a d i n g  
6 .  B A T  S p e l l i n g  
7. MAT Language  
8 .  VAT S t u d y  Skills - l a n g u a g s  
3 .  H ~ T  A r i t h m e t i c  C o m p u t a t i o n  
10. MAT A r i t h m e t i c  P r o b l 3 m s  
1 1 .  B A T  S o c i a l  S t u d i e s  
12. MAT S t u d y  S k i l l s  - 

S o c i a l  s t u a i c s  
13. MAT Sciencs 

s + t  two ( j u n i o r  h .  s. g r a d e s )  

1 .  7 t h  G r a d e  
2. 8 t h  Grade 
3 .  7 t h  Grado 
4 .  8 t h  Grade 
5.. 7 t h  G r a d e  
6 .  8 t h  G r a d e  
7. 7 t h  G r a d e  
8.  8 t h  G r a d e  

E n g l i s h  
E n g l i s h  
A r i t h m e t i c  
Br i th rne  t i c  
S o c i a l  S t u d i e s  
S o c i a l  S t u d i e s  
Sc ience  
S c i e n c e  

C a n o n i c a l  c o r r s l a t i c n s  



8 
~ i ~ & r e  B-1 - 

i 
P l o t  ok Table B - I  



Figure B - 1  (cont'd) 



Data from L c h n ~ s  a n d  B a r s h a l l  ( 1 9 6 5 )  

R ~ w  r ~ t a t i o n  of l o a d i n g s  f r o m  c a n o n i c a l  a n a l y s i s  
o f  a b i l i t y  a n d  a c h i z v e m a n t  t e s t s  

a n d  j u n i o r  h i g h  s c h o o l  g r a d e s  

C a n o n i c a l  l o a d i n g s  

1. PGAT v e r b 2 1  
2 .  PGAT R e a s o n i n g  
3 ,  PGAT Numbsr 
4 .  Y A T  3 o r d  P n o w l a a g ~  
5.  RAT Readicg 
6 .  MAT S p e l l i n q  
7, MAT ~ a n g ' u a g l  ' 

8 .  RAT s t u d y  S k i l l s  - l a n g u a g e  
9 .  HAT A t i t h m e t i c  C o m p u t a t i o n  
1 0 .  AAT A r i t h m e t i c  P r o b l e m s  
1 1 .  RAT S o c i a l  S t u d i ~ s  
1 2 .  MAT S t u d y  S k i l l s  7 

S o c i 3 1  s t u d i e s  
13 .  MAT S c i e n c e  

Set t w o  ( j u n i o r  h .  s. g r a d e s )  

G r a d e  
G r a d s  
G r a d e  
Grad2 
Grade 
Grade 
G r a d e  
~ r a d e  

E n g l i s h  
E n g l i s h  
~ r i t h m e t i c  
~ r i t h ~ e t i c  
S o c i a l  S t u d i e s  
S o c i a l  S t u d i e s  
S c i e n c e  
S c i a n c e  



Data from L o h n s s  and B a r s h a l l  (1965) 

Va r i a t ? '  int=.rccrr  alations from canonical a n a l y s i s  
of 3 b i l i t y  an,d achievement t e s t s  

z n d  j u n i o r  h i g h  s c h o o l  g r a d e s  

Raw r ~ t a t i o n  

J u n i o r  h .  s. grade  
v a r i a t e s  



Figure B-2 

Plot of Tables B-I1 and B-111 

L-- 



Figure 



T a b l o  B - I V  

D a t a  from L o h n s s  a n d  M a r s h a l l  ( 1 9 6 5 )  

Normaliz=d r c t a t i o r .  ?f l o a d i n g s  f rcm c a n o n i c a l  a n a l y s i s  
o f  a b i l i t y  a n d  a c h l e v e m 2 n t  t o s t s  

a n d  j u n i o r  h i g h  s c h o o l  g r a d e s  

0 h s < r v 4  v a r i a b l e s  " C a n o n i c a l  l o a d i n g s  
J 

S2t o n e  ( a b i l i t y ,  a c h i e v - . m e n t  t e s t s )  I (1) 11 f 1) 111j1) 

1.  PGAT V e r b a l  
2. PGAT R e a s o c i n g  
3.' PGAT Number 
4 .  3AT word Knowlodge 
5 .  HAT R e a d i n g  
6 .  MAT S p e l l i n g  
7 .  MAT L a n g u a g e  
9 .  MAT S t u d y  S k i l l s  - l a n g u a g a  
9 .  BAT A r i t h m e t i c  C o m p u t a t i o n  
1 0 .  HAT A r i t h m e t i c  P r o ~ l o ~ s  
11 .  HAT S o c i a l  S t u d i ? s  
1 2 .  HAT S t u d y  s k i l l s  - 

S 9 c i a l  s t u d i e s  
17 .  BAT S c i e n c e  

- -- 

S e t  two ( j u n i o r  h .  s. qrades )  
e 

G r a d o  
G r a d e  
Grade 
G r a d e  
G r a d e  
G r a d e  
~ r a d e  
G r a d e  

E n g l i s h  
E n g l i s h  
A r i t h m e t i c  
A r i t h m e t i c  
S o c i a l  S t u d i e s  
S o c i a l  S t u d i e s  
S c i e n c e  
S c i 3 n c e  



j 
Data f rom L c h w s  and Marsha l l  (1965)  

5 9 
q. 

T a b l e  B-V 

V a r i a t ?  i c t ? r c o r r e l a t i o n s  from c a n o n i c a l  a n a l y s i s  
of a b i l i t y  a n d  achievzment  tests 

and j u n i o r  h i g h  s c h o o l  g r a d ~ s  

+ Normalized r o t a t i o n  
# e 

% A b i l i t y ,  
a c h i e v e m e n t  test 

v a r i a t e s  

J u n i o r  h. s .  grade  -,s 

variates 
9 

I(2) 11 ( 2 )  111 ( 2 )  - 
I(') .79 . 1 3  .07 



P l o t  of Tables B-IV and 
d 

B-V . , 



Figure  B-3 (cont'd) 



Data from wi l l i ams  a n d  Williams (1973) . 

1 6  P e r s o n a l i t y  F a c t o r  Q u e s t i o n n a i r e  
v s .  V o c a t i o n a l  P r s f ~ r e n c a  Inventory 



T a b 1 2  C - I  

D a t a  f r o m  Williams a n d  W i l l i a m s  ( 1 9 7 3 )  
P 

U n r o t a t e d  l c a d i  ngs f r o m  c a n o n i c a l  a n a l y s i s  o f  
t h e  1 6  P s r s o n a l i t y  F a c t o r  Q u e s t i o n n a i r e  
a n d  t h 2  V o c a t i o n a l  P r e f e r e n c e  I n v e n t o r y  

q b s s r v e d  v a r i a b l e s  

S 2 t  on"  ( 1 6  P.  F . )  

1 ,  c y c l o t h y m i a  ( S o c i a b l e )  
2 .  Intelligence (Rriqkt) 
3. E m o t i o n a l  S t a b i l i t y  ( M a t u r e )  
4 .  Dominance  ( A g g r e s s i v e )  
5 .  S u r g z n c y  ( E n t h u s i a s t i c )  
6 .  S u p e r - e g o  S t r e n g t h  ( P + r s i s t ? n t )  
7 ,  Parmia  ( A d v ~ n t u r o u s )  
8. Pr2msi.a ( E f f ~ m i n a  t e )  
9 .  P 3 r a n o i d  T ~ n d s n c y  ( S u s p e c t i n g )  
1 0 .  A u t i a  ( I n t r c v e r t 4 )  
1 1 .  S h r  +wdr,ess  ( S c ~ h i s t i c a t e d )  
1 2 .  ~ u i l t  P r o c e n 3 s s  ( I n s ~ c u r ? )  
1 .  R a d i c a l i s m  ( Q I )  
1 4 .  S ~ l f - s u f f i c i e n c y  ( Q 2 )  
15. Hiq9 S e l f - s e n t i m s n t  ( Q 3 )  
1 6 .  E r g i c  T e n s i o n  (Q4)  

S + t  t w o  (V. P .  I . )  

1. R 9 a l i s t i c  
2.  I n t e l l e + c t u a l  (Inves t i q a t i v ? )  
3,  S o c i a l  
4 .  C o n v 2 n t i o n a l  / 

P') 

5.  E n t e r p r i s i n g  
5 .  Artis t ic  

- 

7 ,  C o n t r o l  - J 

3 .  H a l e - P s m a l e  
9 .  S t a t u s  
1 0 .  I n f  r s q u l n c y  
1 1 .  A c q u i e s c e n c e  

C a n o n i c a l  co r r ? l3 t i oc s  

C a n o n i c a l .  l o a d i n g $  - ,  



F i g u r e  C - 1  

P l o t  of Table C-I 



Figure C-1 (cont'd) 



D a t a  from H i l l i a m s  a n d  W i l l i a m s  ( 1 9 7 3 )  

yaw r o t a t i o n  o f  l o a d i n g s  from c a n o n i c a l  a n a l y s i s  o f  
t h a  1 6  P e r s o n a l i t y  F a c t o r  ~ u e s t i o n n a i r e  
a n d  t h 3  V o c a t i o n a l  Preference I n v e n t o r y  

O b s ? r v ? d  v a r i a b l e s  C a n o n i c a l  l o a d i n g s  

S 3 t  o n 2  ( 1 6  P .  F.)  I ( 1 )  I1 (1)  ' I11 (1) 
- 

1.  c y c l o t h y m i a  ( S o c i a b l e )  . 0 3  .85  (++)  - 0 0 6  
2. T n t n l l i g e n c e  ( R r i g h  t) . I 0  - 0 1 4  . 14  
3. Emot l o n a l  S t a b i l i t y  (Mature)  -, 09  - 0 8  - 1 2  
4 .  Domi n a n c e  ( A g g r e s s i v e )  -. 02 . I 6  - . 4 6  (-1 
5. ~ u r g e p ~ n t h u s i a s t i c )  -. 12 .54 {+) -.41 4.-) 
6.' S u p e r  o S t r e n g t h  ( P e r s i s t e n t )  -. 17  . 2 2  + . 4 2  (+) 
7.  p a r m i d  ( A d v e n t u r o u s )  .06 . 4 8  (+) - . 2 6  
8 .  P r ~ m s i a  ( E f f e m i n a t e )  . 8 3  (++) . 2 3  - 0 6  
9. p a r a n o i d - ~ e n d s n c y  ( S u s p e c t i n g )  -. 1 3  

%a 
-. 1 5  . 1 0  

10 .  A u t i a  ( I n  v e r t e d )  . 6 5  (+)  -. 1 8  - . I 5  
1  1. S h r  ~ w d n s s s  ( S o p h i s t i c a t e d )  -. 1 2  -. 0 7  -. 23 
1 2 .  G u i l t  P r o n e n 2 s s  ( I n s c c u r s )  -.04 -.05 .08 
13. H a d i c a l i s ~  (Q1) . 2 0  -. 2 5  - . I 3  
14.  ~ ? l f - s u f f i c i e ? n c y  ( Q 2 )  . 1 9  - .62 (-) - 3 1  (+) 
15. H i g h  S s l f  - s e n t i m e n  t (Q3) -. 13 - . 0 6  02 
16.  Ergic T e n s i n n  ( Q 4 )  . 1 8  - . 09  . 1 4  

1 .  ~ s a l i s t i c  -, 27 
- 2 . J n t e l l c l c t u a l  ( I n v e s t i g a t i v e )  - - ; 06  

3. S o c i a l  . 09  
4 .  C o n v a n t i o n a l  . -.47 
5. E n t e r p r i s i n g  -, 3 1  
6 .  Ar t i s t ic  .75 
7.  C o n t r o l  . 1 9  
8.  W a l e - F e m a l e  -. 55 
9 .  S t a t u s  .I4 
10.  I n f r e q u e n c y  

lx 
t . 0 5  

11 .  A c q u i e s c e n c e  -. 04 



Data from w i i l i a m s  e n d  W i l l i a m s  (1973) 

V a r i a t e  i n t ? r c o r r e l a t i o n s  from c a n o n i c a l  analysis 
o f  t h e  16  P e r s o n a l i t y  Factor Q u e s t i o n n a i r e  

2 n d  th* Vocational preference I n v e n t o r y  a 

R a w  r o t a t i o n  

1 6  P . F .  
v a r i a t ~ s  

V. P. 1 . 5  v a r i a t e s .  





#, * 
- -- -- 

6 a*) 

Figure 



T a b l e  C - I V  

D a t a  f r o m  W i l l i a m s  a n d  W i l l i a m s  ( 1 9 7 3 )  

Normalized rot?t,,&n of l o a d i n g s  f r o m  c a n o n i c a l  a n a l y s i s  
o f  t h e  16  P e r s o n a l i t y  F a c t o r  Q u e s t i o n n a i r s  

a n d  t h e  V - a c a t i c n a l  Preference I n v e n t o r y  
# 

O b s ? r v + d  v a r i a b l e s  C a n o n i c a l  . l o a d i n g s  

S e t  one ( 1 6  P. F.)  .- 1 (1) 11 (1 )  I11 (1 )  

1. C y c l o t h y m i a  [ S o c i a b l e )  .09 - 7 8  (++)  . 3 4  (+) 
2. T n t 2 l l i g e n c t  ( B r i g h t )  * . 1 0  - . I 9  05 . 
3 .  E m o t i o n a l  S t a b i l i t y  ( I S a t u r e )  -. 08 . 0 2  .15  
4 .  Doml n a n c e  { A g g r a s s i v e )  -. 03 . 3 6  (+) - . 3 3  ( -1  
5. S u r g 9 n c y  ( E o t h u s i a s t i c )  -. 10 - 6 7  (+ )  - . l o  
6. S u p e r - e q o  S t r e n g t h  ( P s r s i s t l n t )  - . I 3  .O1 . 4 9  (+) 
7.  Parmla (Adv?c t"Urous)  .08/ .55  (+)  - . 0 1  
8.  ~ r s m s i a  ( E f f e m i n a t e )  .W (++)  . 1 4  09-' 
9 .  P a r a n o i d  T e n d 2 n c y  ( S u s p e c t i n g )  . -, 14 -, 1 7  . 0 3  
10.  A u t i a  ( I n t r c v e r t e d )  - 6 2  (+) -. 1 2  - . 26  
11 .  S h r e w d n ? s s  { S o p h i s t i c a t e d )  -. 14 . 0 5  - . 2 3  
12 .  G u i l t  P r o n e n s s s  (Insscur3) - . 0 4  -. 08 . 0 5  
13.  R a d i c a l i s m  (171) . 17 -, 1 7  - . 2 4  
1 4 .  S e l f - s u f f i c i e n c y  ( Q 2 )  . 1 6  -.70 - -  - . 0 3  
15 .  H i g h  S ; 3 l f - s e n t i m ~ n t  (Q3) - . I 3  - .06  . O O  
1 6 .  E r g i c  T e n s i o n  (Q4) . 18 -. 1 5  . 0-7 

S?t t u o  (V. P. I.) 

1. R a a l l s t i c  
2 ,  I n t ? l l e c t u a L  (I n v ~ s  t i g a t i v ? )  
3. S o c i 3 l  
4.  C o o v a n t L o n a l  
5 .  E n t e r p r i s i n g  
6. Ar t i s t i c  

/ 
7. C g n t r o l  
8. Ra1e;Female  
9. S t a t u s  
10.  I n f r e q u e n c y  
11 ,  A c q u i e s c e n c s  



J 

T a b l s  C-V 

Data f r ~ m  Will iams 3 n d  W i l f i a m s  ( 1 9 7 3 )  

v a r i a t e  i n t e r c o r r e l a t i o n s  from c a n o n i c a l  a n a l y s i s  
of  t h e  16 P e r s o n a l i t y  F a c t o r  Q u a s t i o n n a i r o  . 

a n d  th- V o c a t i o n a l  Preference I n v e n t o r y  

Normal'lzed r o t a t i o n  

1 6  P.F. - I ( 1 )  
v a r i a t e s  

Y- P. I. variates 



t"" 

Figure C-3 
; \ 

P l o t  of Tables C-IV and C-V 



Figure  C-3 (cont'd) 

.. 



A p p e n d i x  D \ 

Data from Burge r ,  Arrnon'trou t, a n d  Rapfog21  ( 1  975) 
- 

C h i l d ' s  E e p c r t  of P a r e n t a l  B s h a v i o r  I n v e n t o r y  
v s .  M i n n e s o t a  ! f u l t i p h a s i c  P 3 r s o n a l i . t ~  I n v s n t o r y  



Table D'-I 

/ D a t a  f r o m  B u r g e r ,  A r m e n t r o u t ,  a n d  R a p f o g e l  ( 1 9 7 5 )  
/ 
/ U n r o t  a t e d  l o a d i n g s  f r o m  c a n o n i c a l  a n a l y s i s  of 

C h i l d ' s  F e p o r t  o f  P a r e n t a l  Behav io r  I n v e n t o r y  a n d  
H i n n ~ s o t 3  ~ u l t i p h a s i c  d p ~ r s o n a l i t y  I n v e n t o r y  

O b s e r v e d  v a r i a b l 2 s  c a n o n i c a l  l o a d i n g s  

1 .  A c c 2 p t a n c f  
2.  C n i l d c c n t r e d c + s s  
3.  P o s s ~ s s i v s c ? s s  
4 .  R e j s c t i o n  
5. C o n t r o l  
6 .  e ~ f o r c s m ? n t  
7 .  P q s i t i v c  I n v o l v e m ~ n t  
5. I n t r u s i v e n e s s  
3 .  C o n t r o l  T h r o u g h  G u i l t  ' 

1 0 .  H o s t i l ?  C o n t r o l  
11. f n c ~ n s i s t 3 ' f i t  D i s c l ~ l i n ?  
1 2 .  Non5n forccacn t 
1 3 .  Accsptancc o f  I n d L v i d u a t i o n  
1 4 .  L a x  D F s c i p l i n ?  
15. I n s t i l l i n q  P + r s i s t e r t  

A n x i e t y  
16. R ~ s t i l ?  D e t a c h m e n t  
17 .  W l t h d r a w l  of  Fska*icns 
1 8 .  E x t r a m ?  Autonsmcy' 

1 .  i Sc31e .89  (++) 
2.  F S c a l q  . 6 1  (+ )  
3. K S c 3 l e  . 0 5  
4 .  t f y p o c h g n d r i 3 s i s  (Hs) .55 (+) 
5 .  D e p r + s s i o n  (U) - . 2 6  
6 .  H y s t = r F a  ( H y )  - . 3 3  ( - 1  

,7 ~ s y c h o p a t n i c  D e v i a t e  (Pa)  . 6 4  (+ )  
5.  H a s c u l i n i t p - P s m i n i n i t y  (Hf) -.45 ( - )  
9. P a r a n o i a  (P3) .07 
10. Psychasthenia (Pt) . 0 7  
11. Schizophrenia ( S c )  - . 2 0  
1 2 .  H y p o a a n i 3  (R3) - . 4 3  (-) 
4 3 .  S o c i a l .  I fn t rcvers ion-  

E x t r o v a r s i ~ n  .34 (+)  

C a n o n i c a l  c o r r e l a t i o n s  .98  .81 



Figure D-1 

P l o t  of Table D-I 



Figure D-1 (cont'd) 



~ 3 t 3  f r o m  B u r g e r ,  A r m e n t r o u t ,  a n d  Rapfoqe l  ( 1 9 7 5 )  . 

F a w  r o t a t i o n  o f  l o a d i n g s  from q a n o n i c a l  a n a l y s i s  o f  
C h i - l d t s  Repor t  o f  P a r ~ n t a l  , B s h a v i o r  I n v e n t o r y  a n d  

Minnesota M u l t i p h a s i c  P e r s o n a l i t y  I n v e n t o r y  

O b s 2 , r v e d  v a r j a b l ~ q  C a n o n i c a l  l o a d i n g s  

S ? t  on2 ( p a r e n t a l  b s h a v i o r )  I (1 )  11 (1)  I11 ( 1 )  

1 .  A c c s p t a n c s  
2. C h i l d c e n t r e d n 2 s s  
3. P o s s s s s i v e n e s s  
4 .  R + j ? c t i o n  
5. C o n t r o l  
6 .  E n f o r c e m e n t  
7 .  P n s i t t v c  I n v o l v + m ~ n t  
9 .  I n t r u s i v ~ n ~ s s  
9. C o n t r o l  T h r o u g h  G u i l t  
1 0 .  H o s t i l ~  C o n t r o l  
1 1 .  I n c o n s i s t e n t  D i s c i p l i n s  
1 2 .  N o n e n f o r c e m e n t  
1 7 .  A c c e p t a n c e  o f  ~ n d i v i d u a t i o n  
1 4 .  t a x  D i s c i p l i n e  
15. I n 5 t i l l i n g  P a r s i s t e n t  

A??xipty 
1 6 .  H o s t i l e  Detachmeat 
17. W i t h d r a w l  o f  R ~ l a t i o n s  
1 8 .  E x t r e m ?  Autonomy 

two ( M .  H .  P. I.) n 
1. 2 S C ? I ~ ?  
2 .  P S c a l e  

, 3. K S c 3 l s  
4 .  ~ y p o c h o n d r i a s i s  ( H s )  
5. D + p r ~ s s i o n  ( D )  
6 H y s t ~ r i a  (Hy) 
7 .  p s y c h o p a t h i c  D o v i a t l  ( P d )  
3 .  ~ a s c u l i n i  t y - P 2 m i n i n i t y  (Hf) 
9 .  P a r a n o i a  ( P a )  
10. ~ s y c i r a s t h e n i a  (Ft) 
1 1 .  S , c h F z o p h r e n i a  (SC)  
12, B y p m a n i a  (!%a) 
1 3 ;  S o c i a l  I n t r o v e r s i o n -  

E x t  reversion 



D3ta from Burger ,  Armentrou t ,  a n d  Rapfogel  (1975) 

V a r i a t s  i n t a r c o r r e l a t i o n s  from canonical a n a l y s i s  d f  
chilm\ R e p o r t  of P 2 r e n t a l  B e h a v i o r  I n v e  o r y  a n d  sBs P l i n n z s o t a  M u l t i p h a s i c  P e r s o n a l i t y  I n v e n t o r y  

I(2) 
-7 

P a r 2 n t a l  f(1) .95 
b e h a v i o r  

' v a r i a t e s  II(1) . l l  

H. N. P. I. 
v a r i a t e s  

11 (2) 

-; 19 

.80 

. 0 3  



P l o t  of ~a b l e s  D-I1 and h-111 



Figure D-2 (cont'd) 



Data from B u r g e r ,  ' A r m e n t r o u t ,  a n d  R a p f o g e l  ( 1  9 7 5 )  

' ~ o r m q l i z e d  & t a t i o n  cf loap inqs"  from c a n o n i c a l  a n a l y s i s  of 
" chiIdts R e p o r t  of p a r e n t a l  . B e h a v i o r  I n v e n t o r y  a n d  

~ l i n n e s o t a ~  P l u l i i p h a , s i c  P e r s o n a l i t y  I n v a n t o r y  

o b s s r l v e ?  v a r ' i a b  l e s  
- 1  

S 5 t  o n 2  ( p a r e n t a l  h e h a v i o  ) , 1; 
1 ; A c c a p t a n c a  
2 .  C h i l d c e n t  r edness  
3 .  P o s s a s s i v e n o s s  
4. ' R S  j i ? c t i o n  
5 ,  C m t r o l  
6. E n f o r c e m e n t  
7 ,  P q s i t i v ~ ~  I g v o l v e m e n t  

- 9.. I r ! t r u s i v e n e s s  
9 . '  C o n & r o l  T h r o u g h  G u i l t  
10. . H o s t i l e  C o n t r o l  
1 1 ,  I n c q n s i s t e n t  D i s c i p l i n e  

, 12 .  N o n ~ n f o r c e m ~ n t  ' 
, 1 3 .  Accc?p tdnce  of  ~ n d i v i d u a - t i o n  

14.  Lax D i s c i p l i n z  
15. I n s t i l l i n g  P e r s i s t a n t  

A n x i e t y  
1 6 ,  H o s t i l e  D e t a c h m e n t  

R 1 7 .  W i t h d r a w l  of  R ~ l a t i o n s  
18 .  Er t t rorno Autonomy ' 

F - 

1'. L S c a l d  
2 . '  F Stake 
3 ,  k S c a l e  

/ 
/' 

. 4 .  H y p o c h o n d  r i a s i s  ( H s )  
5. D s p r ~ s s i o n  (D) , 
6 .  B g s t s r i a  (Hy) ' 
7. P s y c h o p a t h i c  Dlviate (Pd)  
5. H a s c u l i n i t y - P e f a i n i n i t y  @ f )  
3.  ' P a r a n ~ i d  ( P a )  

- - 

10. ~ s y c h s t h ~ n ~ a  { P q  - 
11.  S c h i z o p h r e n i a  (Sc)  
12, ~ y p b r w ~ i a  @*) 
1 3 .  S o c i a l  f n t r o v 2 r s i o n -  

F E x t r o v e r s i c n  

C a n o n i c a l  l o a d i n g s  
1 



T a b 1 3  D-V 

V a r i a t s  i n t s r c a r r ? l a t i o n s  from c & o n i c a i n a & i  of 
C h i l d ' s  R e p q r t  of Parents1 ~ e h a b i o r  Inventory a n d  

H i n n c s o t 2  Y u l t i p h a s i c  P + r s o n a l i t y  1 n v & t o r y  

N o r m a l i z e d  r o t a t i o n  

-- f ( 2 )  
-. 

M r e n t a l  I(1) . 9 h  
behavior 
v a r i a t e s  IT (1) -13 

M. M .  P. I. 
v a r i a t e s  



Figure D-3 

Plot of Tables D-IV and D-V 

it. 



F i g u r e  D-3 (cont'd) 



2 a t a  frcm S c o t t  (1977) 
Y 

C r i m e  r a  t=.s fr3m v i c t i m i z a t i o n  s u r v 2 y s  
vs. crime r a t e s  frdm p o l i c e  s o u r c s s  



Tab* E - I  

D a t a  f r cm , S c o t t  ( 1 9 7 7 )  

U n r o t  a t ~ d  l o a d i n g s  from c a n o n i c a l  a n a l y s i s  
of  crirn? r a t e s  f rom victimization s u r v e y s  

3 ~ d  c r i m ~  r a t e s  f r c w  p o l i c e  s o u r c e s  

7 .  ?ape 
2 .  Robbery  
3. Aggrava t ed  a s s ~ u l  t 
q ,  O t h e r  a s s a u l t  
5. B u r g l a r y  
6 .  L 3 r c e ~ y  
7 .  A u t q  t h e f t  

T ? t  t w 3  ( P o l i c e  r 2 t e s )  

7 .  g a p e  
2 .  RobS3ry 
3.  A g g r a v a t e d  a s s a u l t  
U.  B u r g l a r y  
5. L s r c e n y  
5 .  Auto t h 2 f t  
7 .  Y u r d s r  

C a n o n i c a l  l o a d i n g s  



F i g u r e  E-1 

Plot of Table E-I 



Figure E-1 (cont'd) 



Data frcm Scott (1977) 

Raw r o t a t 2 0 n  of l c a d i n g s  from c a n o n i c a l  a n a l y s i s  
o f  crime rates frcm v i c t i m i z a t i o n  s u r v e y s  

3 c d  crLm2 r a t ~ s  from ' p o l i c e  s o u r c z s  

O b s s r v c d  v a r i a h l c s  C a n o n i c a l  l o a d i n g s  

S s - t  ?n= ( v i c t i m i z 3 t i o n  r a t e s )  I ( 1 )  11 ( 1 )  , 111 (1) 

83p? 
R o b b s r y  
A g g r a v a t e d  a s s a u l t  
O t h s r .  a s s a u l t  
B u r q l a r y  
L a r c ~ n y  
Allto t h s f t  

S + t  two ' ( P o l i c e  ri l tes) 

1 .  Rap2 
2 .  R c b b 3 r y  
3. A 3 a r a v a t e d  a s s a u l t  
4 ,  B u r q l a r y  
5. L 3 r c c n y  
6 .  Auto t h s f t  
7 .  M u r d e r  



- Data  f rcm S c o t t  ( 1  977)  

V a r i 3 t ~  i n t ~ r c o r r + l i t i o n s  from canonical a n a l y s i s  of 
crime r a t ~ s  frcm v i c t i m i z a t i o n  s u r v e y s  a n d  

crime r a t e s  from p o l i c e  sources 

R 3 w  r o t a t i o n  3 

Police 
v a r i a t e s  



F i g u r e  E-2 

P l o t  of Tables E-I1 and E-I11 



i f '  

Figure E-2 (cont'd) 



-. . b 

T a b l e  E-IV 

.Data f r o .  5cot ; t  (1977) 

Normal ized  r o t a t i o n  of loadings fro@ c a n o n i z a l  a n a l y s i s  
of crime r a t e s  from v i c t i m i z a t i o h  surveys . 

a n d  crime r a t e s  f rom p o l i c e  sourcss  
9 

0 bse rved  v a r i a b l e s  C a n ~ n i c a l  l o a d i n g s  

Szt- ona ( v i c t i m i z a t i o n  rates) I(1) 11 (1) 111 (1) 
0 

.f 

1.  Rape -07 .66 (+) .19 
2. R o b b l r y  .32 ( + )  -. 59 (-) - .49  (+) . 
3. Aggra va t s d  a s s a u l t  -14 .81 (++) -36 (+) 
4. Other a s s a u l t  -002 . 88  (++) -.05 - - 
5. S u r g l a r y  - 1 3  , 17 . 6 2  (+) 
6 .  Larcany -.01 - 8 7  (++) . 2 4  ' 
7.  A u t o  t h e f t  . 9 6  (++ )  , -13 -15 

-. 
S e t  two ( P o l i c e  rates) I ( 2 )  LII (2 )  111 (2) 

1. Rape 
2 .  Robb?ry 
3. Aggravated a s s a h l t  
4. B u r q l a r y  
5.  Larceny  
6 .  Auto t h e f t  
7 .  H u r d a r  



I a b l ?  E-V 

Data frcm S c o t t  (1977) 

V 2 r i ~ t 2  i n t ~ r c ~ r r ; l a t i o n s  from c a n o n i c a l  a n a i y s j s  o f  
c r i m ~  r a t = s  frcrr: v i c t i m i z a t i o n  s u r v a y s  an* 

crime q t e s  f r o a  p o l i c e  squrccs  \ 

Pol lcs 
v a r i a t n s  

V i c t i m i z a t i o n  r ( 1 )  .93 -. 0 3  .02 
v a r i a t 2 s  

11 ( 1 )  ' . 08  . 9 1- -.01 
- .  



Figure E-3 

Plot of Tables E-IV and E-V 



Figure E-3  (cont'd) 
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