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ABSTRACT

This thesis examines the theoretical and practical useful-
ness of rotated solutions in canowical analysis. A brief de-
scription of the.theory of canonical analysis shows that a ratio-
nale cén be established for rotating sets of canonical variates
honidentically, i.e., épplying orthono:mal transformations to
both sets of canonical variates, where the two transformations
are not necessarily the same. Some theoryAregarding a 'number
of factors' ardlogue in canonical analysis is also discussed,
in particular with respect to the effect, oh a rotated sélution,
of any decision regarding the number of canonical co: elatiops
different from zero. Basic relations concerning rotation of
canonical variates are described; it is seen that many overali
scalar-valued measures of relatiénship between two variable sets
are left unchanged when rotated variate sets are considered. A
pair of rotation criteria are derived which employ a variant of
the Varimax (Kaiser, 1958) criterion. . The first of these, the
, ‘
'raw' criterion, Ix analogous to 'raw' Varimax; the second, the
'normalized' criterion, is like the familiar 'normal' Varimax
in that each element of the loading matrix to be rotated is
scaled by its row sum of squares before rotation takes place.

Five numerical examples are presented.. Two of theserare

drawn from the educational research literature, two are drawn

iii



studies using personalityfﬁeaéures, and ‘one examines some ori-
ginal material involvigg'twpikindé of measures of community crime.
. In all cases, rotationiof;cénon;éal variates is seen to produce
'cleaner' results, i.e., results ﬁ&re‘in;keepiﬁg withylhe heu-
ristic principles of 'simple structure'. A few Of the rotations
yielded striking improvements in the intuitive appeal of the re-
sulté.' Examination of the matrices of correlations between rota-

>

ted canonical variates shows that 'normalized' rotation affects

'raw' ro-

the betwéén—set correlation structure less than does
tation. That ‘normalizéd' rotation leads to just a; intuitively
simple interpfetation bf results as does 'raw' rotation indicates
certain economy in rotations to this criterion.

Certain avenues for further research, especially regarding
the 'number of factors' problem in cancnical analysis, are indi-

cated.
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K 1. INTRODIﬁ‘ION'*

>
Psychologists are often interested in describing the

correlational relationship between two sets of variables. For
example, an investigator may be interested in the relationship
between intelligence and creativity, where each construct is
measured by an entire battery of psychological tests. Canonical
analysis, or canonical correlation, is a multivariate tech-
nique developed by Hotelling (1935, 1936) to treat this problem.
Due to its computational complexity, canonical analysis lay
virtually dormant for decades. Recently, with the advent of
widely-available computer routines, it has assumed greater
importance in the data-analytic repertoire.
~ Along with the renewed interest in canonical analysis,
however, came the rather serious problem of interpreting its
results. Many researchers find that the nature of any multi-
variate relationships found by canonical analysis can be
disappointingly obscure. Tatsuoka (1971), while he does not
deal with this problem in direct terms, alludes to it when he
comforts:
...the dimensions of one domain (such as personality)
that are strongly associated with those of another
domain (such as academic achievement) are not necessarily
susceptible to 'meaningful' verbal descriptions within
the framewSfk of our intuitive, everyday concepts. It
may be that subsequent 'research will show that precisely
these 'nonintuitive' dimensions represented by the

canonical variates are of greater scientific import.
(p. 191) - '

-~ To help researchers make sense of canonical analysis,



many recent methodology texts (e.g., Cooley and Lohnes, 1971;
Harfis, 1975; Tatsuoka, 1971; Van De Geer, 1971) have called
attention to the similaritiesﬁbetween canonical analysis and
single-set techniques such as factor analysis and component
analysis. In fadt, Cooley and Lohnes (1971, chap. 6) go so
far aé'tbﬂrefer to 'canonical factors', and Tatsuoka (1971, e
pp. 183, 190) calls canonical analysis 'a double-barrelled
component analysis.' To be sure, all three types of analysis
belong to the family of multivariate techniques which g}&gmpt
to summarize the relevant information in a (large) sef of
observed variables with a (small) set of hypothetical'variables
which form an orthonormal basis for a subspace of the original
variable space. This basis is positioned arbitrarily, however,
and a user of component analysis or factor analysis typically
rotates an initial component or factor soiution/to a position
where the basis vectors are easier to interpret in terms of
observed variables. A user of canonical analysis, however,

is generally left to interpret an unrotated solution.

Cliff and Krus (1976) have presented a canonical anéi&sis
in which they transform, or rotate, the two sets of canonical
variate vectors to some advantage in interpreting their results.
They propose, and use, a single orthonormal transformation
which rotates each set of variates identically. This paper
describes a rationale for considering nonidentically rotated
canonical variate sets, and adapts a derivative of the Varimax

method (Kaiser, 1958) to the concerns of canonical analysis as



.

a means of obtaining appropriate transformations. It is#shdﬁﬁA*w*,

P

that nonidentical rotations leave unchanged many important

measures of the overai?g;;?relational similarity between two

sets of variables. Also, rotations performed én actuélexamples
'l -

of canonical analysis from the behaviour;i science literature

deﬁonstrate that canonical analysis can in fact make good

intuitive sense when nonidentical transformations are admitted.
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2. SOME THEORY FROM THE STATISTICAL LITERATURE

2.1 What is Canonical Analy51s°

Canonical analysis is a generallzatlon of bivariate llnear
correlation developed by Hotelling (1935, 1936). In/@his
technique, a linear combination, or weighted sum, of each of
two collections of.Observed variables is obtained: the weights
used to determine these ‘canonical variates' are chosen so that
the blvarlate linear correlation, or canonica} correlation',
between the two comblnatlons is a maximum. The process can

continue: A further linear combination can be obtained from

each variable set, subject to the same maximum inter-set corre-

lation constraint, but with the further restriction that each
new variate is orthogonal to the first two derived variates.
As many pairs of canonical variates as there are.observed
variablee in the smafler of the two sets can be obtained in
this way; each successively-derived variate is orthogonal to
all previously-~derived variates, and correlates maximally with
its 'sister' variate in the other set.

The theory underlying canonical analysis is well described
in many texts 1ntended for practicing researchers, notably
those by Bock (1975), Cooley and Lohnes (1971), Harris (1975),
Morrison (1976), Press (1972), Tatsuoka (1971), and Van De Geer
(1971) . More mathematical treatments of the subject can be

found in Anderson (1958), Dempster (1969), Kendall (léﬁl), and

Rao (1965), as well as in a primary'referehce by Hotelling (1936).



This chapter presents some of the basic equations of the tecg;ii
nique, to establish notation and clarify the nature of the
quéntities with which the rest of the paper deals. It also
considers an interesting analogue, due to Rao (1965), of the
'number of factors' problem in factor analysis, and motivates
the discussion of the rotation of canonical variates with a
geometric representation of canonical analysis, much of which

is drawn from Dempster (1969).

2.2 Basic equations

The raw data for canonical analysis is a partitioned matrix

X:Nxn =‘[X1,X2] where- Xl:Nan and X,:Nxn, contain the data

for two distinct sets of n,+n, = n variables. Following

Morrison (1976), this discussion assumes that the N data (row)

vectors constituting X have been drawn from:ansn-dimensional

population with covariance matrix I = [le 212} ; = where™
La1 P22d
, ,
221 = 212 For convenience, and without losing generality,<

we can also assume that the data is mean-corrected, that is,
that all column sums of X are zero, and that n, = n, .

The sample covariance matrix of X - is then given by

.y 1 T
1., 11X XXl 1€y Cop
C:an=ﬁXX=N—X' = lc C
2 21 722
where C is péréitioned the same way as I C piny%ny and
CopinyXn,  are symmetric within-set covariance matrices, and
‘ 1 . . . )
Clzanan = C2l is a betweenrset covariance matrix. We further



assume that C is positive definite. The init#al approach
to relating 'Xl and**'X2 involves coefficients le:anlr and

w x1 such that the linear combinations y; = X;w; and

are maximally correlated - The estimate of the.

270

Yy = %¥
covariance matrix of these llnear compounds is

1 .
Wy C[wl,wz] . W W C12w2

2 C22¥;

C11%1
Ca1%1

N - -
- -

]

. ,
(note that w,C and the estimate of their

1C12%5 = WoCo1vp )y

squared correlation is

' 2
2 (W1C12W2)

(Wl 11 1)(W2 22%2)

We wish to determine Valﬁes of Wy and W, which maximize

£2
1 -
The solution to this problem involves solving a
system of equations in wl and W oo “Fo obtain a unique

solution, we impose the following constraint on the scales of

y£}= Xlwl and y2 = X2w2

1 '
wiC11%1 = W2Cop¥p =
Using Lagrange multipliers My ~and U, Wwe can incorporate

this constraint into a function to be minimized by writing

2 A .
- -1) uz(w2C22w2-l)

£w),wy) = (Wl 12¥2) (Wl 11%1

Taking derivatives of f with respett to wy and w, , and

setting these derivatives equal to zero, we obtain the following



two matrix equations: v B

TGy 0 Ciplg) Cpo¥y = 0y

(1) . | '
(W)C1oWp) CoyWy ~UCHowWy = 0y

b

where 91 and 92° are zero vectors of appropriate dimen-
R e \ '

sionality. ‘Premultiplying the first equation of (1) by w,
]

and the second by Wo o4 yields

LI 1 - 2
THp (Wi CraWy) F (WyCppwp) T = 0y
E ' .2 ] '
) (W Cpowy) ™ —Hy (WyChowy) = 0
Solving for Hy in the first"equation and Hy in the second
yields ' 5
Hp = Hp =Wy CypWy)
. 2 v
If we substitute AT = ul = “2 '
the matrix equations (1) can be written
—A2C w, + AC = 0
11¥1 T Gt Y
AC, W, - A2C w, =0
. 2171 2272 -2
or W 0 A
, 2 T2 . ¥y
-2%c AC )
11 12 ~
M =
Aczl —AC22
)
If c;, = {0} then w;C;,w, =0 for any choice of w; and



3

However, (2) has a nontrivial solution only if . [M| = 0 .
%%gglts concerning the determinant of a partitioned matrix

(seé; for example, Morrison, 1976, pp. 67-68), asvwell as“the

fact that since C is positive definite, C;; ,and C,, ‘must

also be, yield that p
= 132 42 42 12~ 31 _
| ] | [=2%cy,[12%eyy -2 Cpp, (A7Cy) 7 €yl =0
L2 2. . .2 2 -1 _
= |- cll||—x Cyp'=A"Dyy (=27Cyq) c12| =0
!
Simplifying,
2 -1 B
[-A%eqy + €15C55C0] = 0
2 -1 o
[-A7Cop + €51C11C10) = 0 =
or >
-1 -1 2.4 _
(6116126226517 1] = 0 »
-1 -1, 2.7 _
[€32€51€11C15-2 1] = 0 . -
The largest eigenvalue of CI%C12C53C21 , or equivalently of
-1 -1, . . -
C22C21C11C12 , as these two matrices are cyclic permutations

of one another, is the maximum value of ri over all values

of w, "and *w Moreover, Anderson (1958) shows that the

1 2
coefficient vector w; is the appropriately-scaled=zeigenvector

. . . -1 -1
associated with the largest eigenvalue of CllC12022C21 '

and that the coefficient vector v, is given by

1 -1
(3) Wy = ¥ C22C1v1 -



Thus we have found theflargeStVéanonical'correlation:andgthe* S
weight vectors, or canonical coefficients, used to form its

‘associated canonical variates.

ES

If is greater than 1, however, it becomes of

n; = n, ,
interest to consider any further combinations of Xl and X2,

which are maximally correlated, subject to the restriction

3

that each be ﬁncorrelated with the first éanonical variates

Yq and Y, - If
1 1 : )
Y{ ) - Yy = Xlw{ )
and
I : 1) '
yé ) = Yo ?*X2W§ ) .

denote these first canonical variates (and their associated

_canonical coefficients), the new linear combinations can be

written
(2) _ (2)
i = X%w
and
(2) _ (2)
Yo o = Xp¥W;
where ( ' .
(2)' (1) _ _(2)' (1) _ _(2)*' (1) _ _(2)' (1) _
yl yl - yl y2 - y2 Yl — y2 Y2 =0 ’
‘ 4
1  (2)' (2) _
NYy Yy T I
is another canonical correlation, and ‘y{z) and jyéz) are

its associated canonical variates. Once again, 'to obtain a

unique solution, we choose w{z) and wéz) "so that
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var(y(z)) =,var(y(2)) =1 . If 7X and X are each

1 2 1. 2

composed of linearly independent columns, it would seem
possible to obtain ny ‘orthbgonal variates from xl , each

maximally correlated with a similar variate obtained from

X2 --.in other words, to extract 2nl:’ orthogonal canonical

variates . y(l) and y(l) , 1 =1,...,n 7 , such that
1 2 1

, O SR A R SR LS L N I

. 1 v 1 :
and where the r, = %yy{l) yél) constitute the set of canonical

correlations betwégn;\xl and X, - Anderson (1958) gives

detailed proof that it is in fact possible to do so, and that

this is équivalent to finding the ny ‘nonzero eigenvalues of

CI%ClZCE%CZl and a set of associated eigenvectors.

As such,

- —,l "l _ 2 ‘l
££17C19C05C,1 = W AWy

where Wl:nli{l is the matrix of coefficients for combining
the X, variables to form the _y{l) , and A2 is a- diagonal

1
matrix of squared canonical correlations between - Xl -and X2 .

If we adopt the convention

hd

2 2
Ai > AZ ? ces > An ’
then y{l) = Xlw{l) , Where w{l) 'is now the ith cdlﬁmn of
Wl (3) can be generalized to solve for the matrix W2 :
W, = cosc, WAt

2 7227211




then : L o : , {
and - .
1 (i) (1) _ r. = )

§Y¥1r Y2 i i
In summafy,

Y, = X, W

1 171
Y, = X,W, ; N
. .th - (), -

where the resPectlye i columns of Yl and ,Y2 are y, " u -
and yél) , the ith pair of canonical variates. Also,

a .

1, _

(4) F Y,¥, = A,

the diagonal matrix of canonical correlétions, ordered largest .

to smallest. The X\, are the square roots of the n, nonzero

i
. =1 -1 ‘
eigenvalues of C,;C;,C,5C,; o Further, ;.
1 ', _
N Y1¥1 =1
1 ! = .
N Y2Y2 =1 ‘,

that is, the canonical variates are uncorrelated with one
=

another within-sets.

2.3 The 'number of factors' problem in canonical analysis

Rao (1965) has presented an interesting conceptualization
of canonical analysis which provides some insight for the

common finding that not all of the canonical variates obtained
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usiné the method of sSection 2;2 are actually meaningfﬁl in
describing between-set relationships. This situation findST
its single-set analogue in the classical 'number of factors'
problem‘in factor analysis (Hafman, 1966; Lawley and Maxwell,
l§7l; Mulaik, 1972). This section sketches Rao's argument.
Rao suggests that a~model for canonical anaiyéis can be )

drawn upbas follows:

'
Xl = FPl + Sl T

1
X2 FP2 + 82

where F:Nxm 1is a matrix of scores on a hypothetical, un-
observed set of m 'common factors' which contribute to .

and X S. :Nxn and S

! 27 "1 1 2
scores on two hypothetical unobserved sets of 'specific factors'

both X :an2 are matrices of

which contribute to either X, or 8, , but not both; and

Pyingxm and P2:nZXm are matrices 6f,'common}factor' loadings.

1

F , 'Sl , and 82

Rao includes the following restrictions in his definition of

are here assumed to be column mean-corrected.

.the model:

and

Z—

that is, the 'common factors' are uncorrelated with one anothr
and with the 'specific factors', and factors 'specific' to Xl

are uncorrelated with those 'specific' to Xy
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Note that the use of 'common' and 'specific' here differs

from the iﬁ}éigional use of these terms in the contiext of

factor analysis. With this in mind, the quotation marks

around these terms can be omitted.

~

The partitioned matrix C 1is redefined:

’ ol ' _
Ciy = F(FP+5;) (’FPl+Sl) =
l ’ 1 [} [} L} 1] ' A
= [P F FP,+P F sl+le;>l+slsl]
l l‘ 1
= ﬁ[PlP1+SlSl]
=1 !
=X Plpl+Dl | e
where Dl is the covariance matrix~of Sl’ . Similarly,
1 - ]
C22 = 1 P2F2*P;
where D2 is the covariance matrix of 52 . On the other =
hand,
' ’ 1 ! [} '
Cip = E(FP1+Sl) (FP,+8,) =
l T ] ] 1 L} ]
. = ﬁ[PlF FP2+P1F SZ+SlFP2+ SlSZ']
-1 '
i =5 P1F»

This relation shows that any association betw_een‘Xl and X2
can be attributed solely to common factors, while within—seEy
relationshipé involve contributions from common and specific

factors.



14

It now becomes of interest to determine thefgumber of
Y
common factors, that is, the number of columns of F . Rao
equates a quantity called the 'effective number of common

, the popufation ahalogue of

Vfag;dgs' with the rank of 2,
CI& . Not surprisinéiy, this quantity is equal to the number
of nonzero eigenvalues of. zlizlzz;§221 . Since we necessariiy

degl\with sample estimates of4£hese population matrices, however,
it will happen that the rank of Ci2 is equal tq ny (= n,
by convention), even when the rank of le is equal to a
smaller value. Since many of the eigenvalues of ClicléCE%CZl
may be close to zero, however, one approach to determining the'
effective number of Eommon factors is to test the hypothegis
that these eigenvalues are in fact identically zero. An
approximate test of this hypothesis, due tg Bartlett (1941,
1947), is discussed in section 2.5. |

Rao suggests that, under ideal circumstances, an éeven
smaller number of 'dominant common factors' will account for
the nontrivial information about the ;élationship between ~Xl

and X He allows, however, that since the inferential

2
machinery to estimate the number of these dominant common

factors does not ex;st,.less mathematically rigorous methods,

based~on the relative magnitudes of the eigenvalues of ) »
) :
-1 -1 .
CllC12C22C21 , may be appropriate. The Bartlett method of
section 2.5 provides one way to settle on a value of m, the T

number of common factors, using an approximate statistical

test. Notably, though, studies into the most acceptable number
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of common factors in canonical analysis are not available,

and the problem is far from solved.

Common factors are typically not estimated in canonical

analy51s

- As a later section of thls paper discusses, however,

some results reported by Carroll (1968), in the context of

generalizing canonical analysis

observed variables, bear on the

A geometric representation

to more than two sets of

notion of common factors.

of canonical analysis

2.4
Dempster (1969) provides a
"canonical analysiS'in which the

describing the system of angles

geometric description of
technique becomes a means of

between particular orthonotmal

bases. of two subspaces of the variable space defined by the

columns of X .

columns of X Then U and

1

subspaces of U: Ul the space

space spanned by X2

Let U denoterthe space spanned/by all

U2 are two complementary

spanned by Xl , and U the

2

The bases Yl = Xlwl and Y2 = X2W2

form sets of orthogonal basis vectors for Ul and U2 ’

respectively, with the property
'best linear predictdr'
Note that Y2 actually spans an
call this subspace U2(1) .
dimensions of U2
predictor can be formed in Ul

different from 1/2

vector space.

of a vector in Y2 ’

The

are orthogonal to Ul ’

with any vector formed in this

that each vector in Yl is &

and vice versa.
nl—dimensional subspace of U2 :
remaining

(n, - n

2 l)

in that ne linear
which will make an angle

'leftover'

The cosines of the angles between the vectors in
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Yl and those in Yz“/, which become the elements of the matrix

A (from (4)) are the nonzero canonical correlations on the

. -

diagonal of A and zero elsewhere. These canonical correlations
are interpreted as measures of similarity between pairs of basis
vectors in Ul and U2(l) , and hence, jointly, as a measure
of overall similarity between the two subspaces of U

The dimensionality, ng o of both Ul and U2(l) is
equated with the number of nonzero canonical correlations, which
is aiso the rank of C12 . Note that since Ul and U2(l)
are linearly independent, although correlated, we need a space

of at least 2n dimensions to represent both subspaces

1

simultaneously. Also, m becomes the: dimensionality of even

’ * * -
smaller subspaces Ul and U2(l) which are spanned by basis

vectors summarizing all the nontrivial information about the

relationship between X4y and X, .

2.5 Estimation and significance testing

If X is assumed drawn from an n-dimensional multivariate
normal population with arbitrary mean vector u and covariance
matrix £ , Anderson (1958) shows that the method of section
2.2 leads to maximum likelihood estimates of the populatipn
canonical correlations and canoniéal variates; Moreovér, the
largest eigenyalue of CIiClZC;§C2l (the largest squared
canonical corfelation) follows the greatest characteristic

‘root distribution and can be used to test the hypothesis that

all such eigenvalues are zero, that is, there is no relation-
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ship between X, and X,

Aé the results of sections 2.3 have shown, however, the
number of nonzero eigenvalues of CIiClZCE%C2l will give an
idea of the number of statistically important dimensions by
which Xl and X2 are related. Bartlett (1941, 1947) has
proposed an approximate,“{arge—sample me thod fér testing the
simultaneous diffefence of a subset of these eigenvalues from
gefo, based on a distribution which is, asymptotically, an |
approximate ch;-square. Bartlett's technique is used popularly

in applications of canonical analysis. Harris (1975) argues

on logical grounds that this technique is never appropriate,

. and suggests using the greatest characteristic joot test,

with a modified degree of freedom parametef, to test the

significance of all the Ai . He mentions, however, that

such tests may be conservative for all but the largest Ai
and offers no sampling-theory justification for using such

a method.

N’



3. ROTATION OF CANONICAL VARIATES

3.1 Basic relations

This‘cQapter treats the problem of rotating canonical
variates to improve their interpretability. Our task will
be to find a canonical-analysis analogue of 'simple structure'
(Thurstone, 1947) in matrices of correlations between thé’
bases Yl and”’ Y2 , and the observations Xl and X2

We assume that the value of m has been determined, and

redefine Y and Y to be of dimensions Nxm and Nxm ,

1

respectively.

2

Consider two orthonormal matrices Tl;me and T2:mxm ’

where 7T and T are not necessarily the same. The ., -

“1

exXpression

2

represents the orthogonal rotation of the m basis vectors

of Ul

similarly represents an orthogonal rotation of the basis
vectors of U;(l) . Zl and 22 are then alternative bases
for these subspaces. Put another way, Zl and 22 are sets
of rotated canonical variates. ~ |

. _ _ )
Since Yl = XlWl and Y2 = X2W2‘, we observe that

1Ty = X0 Ty = X3V

and
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where Vl = WlTl and V2 = W2T2 are matrices of coefficients
for'obtaining Zl and Z2 from Xl ~and” Xz .« Moreover, -
if : 1 1
A = F (lel)
and 1 .
A, = § X;¥,)
then _ 1 ! _ 1 ' _
B) = x5 %12 =5 X7y Ty) = A0
and
B2 = A2T2 _ 2

are matrices'of structure correlations betWeen Zl and Z,

and the observed matrices from which £hese variates are derived.
The transformatiors Tl and Tgi'can thus be applied to either
the coefficient matrices le and W2_ or directly to thé

structure matrices Ay and A, in obtaining results from the

rotated solution.

3.2 The effect of rotation on measures of between-set relationship

%

Aimportantly, various scalar-valued measure§\§f the relatidn-A
ship between Xy and X, remain unchanged under the ortho- ®
gonal rotations T, and T, . Originally, Hotelling'(19?6;
éée‘alsopAnderson, 1958, pp. 244-45) proposed a 'vecto; coef-

ficient of alienation’

*

-1
(5) 1€117C12C22%n 1 Icl
' lc] leqqliey,l

and a corresponding 'vector correlation coefficient!
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-1
. €12C25C0 |
Ke

(6)
llI

based on the notion of 'generalized variance' (Wilks, 1932),

-

as multivariate ®halogues of the coefficients of alienation

i

and (simple or multiple) correlatibh'in regression situations-

. R S
e o

;/(

with a single dependent variable.\fSince Hotelling's measures
depend onl§ on C and its sgpmatrices, their values and sh\\\g
interpretation will not change whether the ganonical variates,
wﬁich are merely linear combinations of Xl and X2 , are
obtained using coefficient matrices Wy and W, or Vv, and T~

vy - | A\
m

Note that (5), which is eqgual to I (l—ri) , and (6),

the disadvantage that they

m 2
which is equal to I r, , s

can each go to zeré—éased on thg"glue of only,a single

‘(typically nonrepresentative) canopical correlation. In -
particular, (5) is near-zero if any of the canonical correl-
~ations is near-perfect. A more likely result, however, is
that one or more of the canonical correlations is near-zero.
In such a’case, (6) becomes very small, even if some of the
canonical correlations are very lérge.

Another type of scalar-valued measure is found in various
additive.functions,bf the squared correlati¢ns between the
basis vectors of one set with either the basis vectors or the
original variables of the other set. One such function is

simply the sum of the squared canonical correlations, I Ty o



T
21

A \
or in matrix notation, tr A% . But consider the matrix F&?) ‘ _
\

| X

correlationslbetween rotated variates Zl and ~Zz :

{

\\
i
3

-

_-l.l l t ot 1) k
(1) L =g 2,2, Y

= § T1¥1¥Ty = TiAT,

*
This matrix contains, in its ith row, the correlatiohs between
Ehé rotated variate z{i) and -all the variates 22 . Sipce
the canonical variates are uncbrrelated within sets, the sum
ofrsquareslin thé ith row of L is the squared multiple cor-
relation between z{i) and zéj) , j =1l,...,m . .In matrix

notation, the diagonal of

S = LL
LY
will contain all m of these squared multiple correlations.
But -~ 1~ "
) )/ ' ' 1 "2 )
S'= L’L = TlATZTZATl = TlA Tl .

Clearly, the eigenvalues of S are the ri , so that

m
trS = trA® = I r

" In other words, the sum of tﬁe individual squared multiple
correlations between each rotated canonical variate in Zq
and all the rotated canonicallvariates in 22 is simply the
sum of the squared canonical correlations.

This relationship holds if we interchange the roles of

Zl and Zz‘ . To see this, note that the jth diagonal
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element of

* t
S =L1L

is the squared multiple correlation of zéj) with the z{i)
But |
tr S = tr S’ = tr A®

Thus tr S and tr S* are equal to one another and to tr A
and as such are invariant under choice of orthonormal Tl and
T, . (in the special case’ T, =T, =1, then S =8 = A2.)

A meaéure which is similar to tr A2 in many respects is
the 'redundancy index' (Stewart and Love, 1968; Millef and Farr,
1971) . The redundancy of X; in X, , or —g 1 o+ is defined,

using present notation, as

2 2 2
1 Kogo 23k

-2 1
Ry1 = T,

¢ _—
The redundandy of X2 in Xl is defined interchanging the

variable—sej subscripts 1 and 2. Miller (1975) shows that

—2
2 1

N : .
multiple correlations between the m columns in ¥, and the

is simply the average, over variables, of the squared

n, columns of observations in X, « In doing so, however,
he also shows that ﬁg.l is equal’ to
L I
1 -1
n, "~ Ry1R11R12
where Rll ’ R12 , and R21 are Cll ’ C12 , and
C2l rescaled to correlation matrices, Ultimately, then, tpe

redundancy index, like Hotelling's index, does not depend off®

- *
the orientation of the bases of Ul and U2(l) , that is, «-
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-

whether canonical variates are .rotated or not.

3.3 1Identical vs. nonidentical transformations

Cliff and Kruss (1976) have proposed rotating canonical
variates using a single orthonormal tfansformation’ T |,
which is applied to Yl and Y2 gimultaneously. They=argue,»
as this paper does, that certain prqperties of the canonical
solutioh do not change under such a‘transformétion, but do
hot offer a rationale for choosing the transformation they
eventuall& perform. The major diffefence between the Cliff
and Krus approach and the one presented here concerns the

matrix

'
L = TlATZ ’

. ‘
L is not symmetric; an L defined as
* ]
L =T AT

as Cliff and Krus have proposed, would be. But this symmetry

th ' g

*
implies phat the i~ row sum of squares of L . which is the

squared multiple correlation between zij) and all the

éolumns of 22 , 18 equal to the ith cdlhmn sum of squares,

which is the squared multiple correlation between zél) and
all the columns of Zl- . VThere»is no a priori reason why

this should be so, nor canAany apparent interpretive utility -

be derived from this relation.
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In fact, the requirement that the transformation matrices
be identical may place an unnecessary burden on our search
for some kind of 51mple structure' in Bl and B2 simul;
tanéously. Each variable- set will have a unique canonical
variate stmucture, and the initial canonical solution may
yield a more ideally placed basis in one subspace or the other.
Hence, it will be advantageous to be able to rotate Bl and
>

‘B, uniquely.

3.4 The rotation criterion

The problém\thus becomes one of finding suitable ortho-
normal transformations. One starting’point is provided by
Hakstian (1976) who demonstrates simultaneous rotatiop of
two loading matrices which are assumed to represent the same
number of_factors,.igééé a'two—matrix éxtension of thé general
Orthomax rotation criteriOn (Harris and Kaiser, 1964).
Hakstian does not apply his technique to cénonical analysis
in which two or moréQldading matrices are cohsideréd at the
same time. Like Cliff and Krus, he seeks a single trans-
formation matrix, but one which will maximize the followiég
function: ’

' m nl ny
(8) f =1 % T b4.k +% 5 bg.k
=1["1 =1 1J 2 j=1 )

m .
- . l 21

) 2
j=1 13k n%

25k
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where bijk is the j,kth element of the ith rotated loading

matrix, i =1,2; m is the number of factors (a value

common to both sets); n is the number of variables in the
ith loading matrix; and w is the weighting factor which,
when considering a single matri#, determines the special case
of the Orthomax criterion. w =1 yields a generalizat%on

of Varimax (Kaiser, 19583. If we make this substitution, (8)

can be rewritten:

n n
mo)r Ll oa 1 1 2

(9) £f=1 - £ by., -= (X b,..)
-1 nl j= 1ik N e 1jk

1 | 2.4 1, P2 5
* A, [.E bayx ~ 5§~(j£1 b2jx! ];
This criterion seeks to maximize the Varimax criterion computed
within matrices, then pooled between matrices. The basic
' agyantage of this method lies in its search foF a simple ’ //’“?
structuryg solution within two matrices simultaneously. An

alternative method, which would apply to Varimax criterion to

the supermatrix ‘ /A

f
By \ /
B = B s ;
2 J ; /

could-bonceivably lead to small loadings in one ma;fix and large

loadings in the other. This would clearly be an ﬁnacceptable
~———

solution.

If we relax the requirement that both matrices Bl and

7

- .
B2 be transformed identically, (9) declines in usefulness, o/
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éince a 'Varimax rotation performéd on each matrix separately
-would achieve the same result. At this point, howe?er, we
can recognize the emphasis in canonical analysis on the
correspondence between certain canonical variates, namely the
variate pairs ~z{i) and zéi) , i=1,...,m . In looée
laﬁguage, we can try to make a pair of variates 'predict one
another'4by keeping thé diagonal elementé of L (from (7))
large, and hence the off—diagonals of L small. Canonical
variates can then be interpreted not ohly in terms of structure
correlations with the observed variables from which each was
obtained, b:1 also in terms of a representative variate 'from
the other set.' The ideal solutibn, in .which some semblance

of simple structure is achieved in both B, and B, K and

. yet L is still dominated by its diagonal elements;/Qould

. permit particularly meaningful choices of subsets of the

observed variables with which to describe interbattery

relationships. o /

With this in mind, this paper proposes weighting the
kth term of the outer sum in (9) by lik , the kth squared
diagonal element of L . The function to be maximized then
becomes ’

m o2 )1 | D1 4 1 2 2
(10) F= 11 o1z bl‘k - (Z bl’k) :
k=1 kk { "1{3=1 *J 1
' n n
1 2 .4 1 2.2 .2
+ = I boy.,, - =— (I bi..)
n, =1 2jk n, j=1 2ijk }
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A variant of this criterion is an analogue of 'normalized'
Varimax (Kaiser, 1958). In the normalized case, the function

to be maximized is

' 2
n b, . n, b,
v r= PRI G - 182
, k=1 103=1 17 1 =1 h;
n; b ny p2,
+;L—1 z(—-l-ik)‘l—l(z _Lgk)z
2 |4=1 2 2 j=1 nj,
where
2 m
hs.= 1 .2 .
-‘,) 1j k=1 bl]k ’ ] = l,...,nl
and
2 .2 .
h2j_ kil b2jk r ] o= l,...,n2

3.5 implementation of the rotation procedure
Standérd treatments of analytic rotation (e.g., Kaiser,

1958) have taken advantage of the fact that in a single plane,

hsay the plane defined by factors (or componentsj r and s ,

elements of the rotated matrix are related to elements of

-

the unrotated matrix in the following way:

b. = a. cos & + a._ sin b
Jr Jr Js

~

b.. = -a, sin 8 + a,_cos ©
js ir Js

where 5 is’the angle of rotation in the r, g plane. By

treating the individual loadings in the rotated matrix as
AN
e
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linear combinations of loadings in the unrotated matrix, with
functions of 6 as coefficients, the rotation criterion can
be rewritten as an expression involviﬂ§7 ® . The single-
plane rotation probiem is usually solved by taking the
derivative of the rewritten function with respect to 6 ,
setting Epis derivative equal to zero, and solving for ©
I%fthe pfesent situation, such a procedure proves to be
unweildy. Since the transformations T; and T, are not

assumed to be identical, two angles of rotation -- call them

9

and 6 -- enter (10) in the single plane. Moreover,

1 2
the presence of the lik further complicates (10) even though

it is possible in principle to express the post-rotation lik

as linear functions of the pre-rotation Ai . To simplify
the maximization process, a simple trial-and-error search
procedure is used wherein for each (elj, ezj), i.e., for

the TR

pair of variates in zq and the pair correspgnding
to it in Zy the (elj, er) plane is searched uanI\Ehe
poiht is found at which (10) is a maximum.

In cases where there are more than two columns each in
21 and Zy 4 the same iterative procedure is followed as
is customary with other applications of analytic ég#%tion.
One- complete iteration is finished when the search algorithm,
working plane-by-plane, has q%#érmined an inifial approximation
’to the ultimate rotation in all possible planes (in this case,
pairs of planes). Iteration coétinurs until all changes in
orientation of the rotated variates are smaller than some

prespecified value, i.e., until the process converges.
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4, NUMERICAL EXAMPLES

4.1 A note on the presentation of results '//)

This chapter presents five examples of canonical analysis,
fou:/from published studies in Psychology or Education, and
one involving some unpublished data. For each study, results
are considered from the unrotated canonical solution and two
rotated canonical solutions -- a 'raw' rotation to the cri-
terion of (l1) in section 3.4, and a 'normalized' rotation to
the criterion of (12). The éppendices contain three matrices
for each solution: two loading matrices containing the
structure correlations between the observed variable and the
(rotated or-unrotéted) canonical variates, and matrices of
between-set canonical variate intercorrelations. In an un-
rotated case, this latter matrix will be simply a collection
of canonical correlations. Also, the loadigg matrices are
representedvbyva series aof two-dimensional plots, in which
two orthogonal canonical variates are drawn as co-ordinate
axes, and orthogonal projections of_observed variables into
the plane spanned by these two variates are drawn as,vectors.
(arrows). In the plots, projections of observed variablesv
are drawn as light-lined arrows, and are marked by arabic
numerals; the variables can be identified by reference to
whatever matrix is being plotted. Co-ordinate axes, and
projections of canonical variates 'from the other'set', are

drawn as heavy-lined arrows, and are marked by roman numerals’
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followed by a (1) or (2). A (1) means that the marked vériate
arises from variable set 1l; a (2) indicates that it arises
from set 2.

This chapter descfibes canonical variates in terms of
these abbreviations. For example, 'variate II(1)' will mean
'‘canonical variate II from set 1', and so on. Note that

{2) in the notation from

varféte II(1) is the same as z
previous chapters. This change will make it easier to iden-
tify variates in the plots, and?is consistent with usual
factor-analytic practice of labelling plotted factors with
roman numerals.

All loading matrices present canonical loadings rounded
to two decimal places. Loadiﬁgs greatér than .30 in magnitude
are marked byya (+), and those greafer than .70 by a (++).
Similarly, loadings less -than -.30 are marked by (-), and
those less than —.70)by (--). It will often be advantageous
to pay particularly close attenfion to 'double-plus' or
'double-minus' loadings.

Most of the studies discussed here have used the Bartlett
chi-square approximation in chqosing m, the number of 'sig-
nificant' canonical correlations. This chapter presents
some evidence that doing so may lead to 'over-factoring',

that is, keeping more dimensions than are actually of scientific

interest.
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4.2 Ability tests vs. achievement tests (see Appendix A)

Lohnes and Gray (1972) report a study in which they
comparé a component analysisvand a canqyical analysis of some
data from the United States Office ogfﬁaucation Co-operative
Reading Studies (Dykstra, 1968). One set of variables |
consists of eight tests used to assess reading readiness;
the other consistsﬂof a battery of Stanford Achievement Tests.

Lohnes and Gray first treat both sets of variables as a
single matrix and run a component analysis of this larger
variable set. They report a substantial 'general fagtor'
on which all tests, ability and achievement, load very highly,
and\a smaller second component (see Table A-I)~ They go on
" to use the results of a canonical analysis between the agility
and achievement tests to reaffirm the existence of this
'general factor'.

Close scrutinyfof éh?ir component analysis results,
however, reveals that Lohnes and Gray report a_ldading matrix
obtained from unrotated components. TablenA-II shows the
Lohnes and Gray loading matrix after if has been rotated to
the normalized Variméx criteridﬂ}' As might be expected, the
rotated solution shows components substantially related to

'ability' and 'achievement'. Note, however, that the larges£
loadings of ability tests on the 'achievement' component
"(I) are from the Murphy-Durrell Phonemes and ﬁetter Names |
tests; the largest loading of an achievement test on the

'abiiify' component (II) is from the.Stanford Achievement Test
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in Vocabulary.

The results of the Lohnes and Gray cag@nical analysis
are reproduced in Table A-III, and plots of these components
are shown in Figure A-1l. The 'geﬁeral factor' interpretation
is apparent. The results of a raw rotation of the canonical
Variaées are presented in Tablés A-IV and A-V; the associated
plot is Figure A-2. The rotated Variatetggps show an interesting
contrast to the unrotated variates. For one thing, the
rotation procedure places each variable vector in the first
guadrant of whatever variate plane it is projected into.

While much of.the 'general-factor' appearance of the analysis
is still present, the 'double-plus' loadings show that variate
I(1) is most similar to the Pintner General Abilities and
Metropolitan Word Meaning tests, and that variate I(2), whic§r
correlates .56 with I(l), is most similar to the Stanford '
Achievement Test in Vocabulary. Moreover, variate II(l) is
most similar to the Murphy-Durrell Letter Names test;

variate II(2), which correlates .55 with it, is most similar
to the Stanford Achievement Iests in Word Reading (grade 1),
Paragraph Meaning (grade 1), Spelling (grades 1 and 2), and
Word Study Skills (grade 1). This, along with the pattern

of the rotated cbmponeﬁt loadinés, suggests that a meaningful
labelling of the first dimension which contributes to the
between-set relationship might be 'vocabulary', and an
appropriate name for the second dimension might be 'spelling'.

The results of the normalized rotation are presented in
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Tables A-VI and A-VII and in Figure A-3, and show a pattern
very similar to that produced by'the raw_rotation. Th$
correlations between I(l; and I(2) and b%tween II(l) and
II(2), however, are closer in magnitude to the original

canonical correlations. This phenomenon is common to all the

rotations presented in this paper.

4.3 Ability and achievement tests vs. school grades

(See Appendix B)

In a similar st;ay, Lohnes and-Marshall (1965) report a.
canonical analysis relating a series of educational tests to
recorded gradqs in junior high school. These data were also
used by Stewart and Love (1968) in demonstrating the redundancy
index.

Lohnes and Marshall report only two pairs of canonical
variates. Stewart and Love report all eight pairs. This
paper reports three pairs, largely bgcause to do so provides
a good demonstration that a 'general factor' situation exists
in this analysis as well, but is apparent in three dimensions
instead of two. Axes from this analysis were rotated sub-
stantially within-sets without disturbing the between-set
correlation situation as d?amatically as in thé Lohnes and
Gray study of section 4.2. Moreover, it is interesting to
work from the double-plus loadings in Tables B-II and B-IV

and relate tests from variable set 1 with school subjects from

set 2. Curiously, I(2) turns out to be similar to Arithmetic ~
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" grades, while II(2) is similar Eg/ﬁ;glish grades. A more

intuitively satisfying result would have interchanged the

roles of these variates.

4.4 16 Personality Pactors vs. Vocational Preference Inventory

(See Appendix C)

Williams and Williams (1973) report a canonical -analysis
relating the 16 Personality Factors test (Cattell, Eber, and
Tatsuoka, 1970) to the 11 scales of the Vocational Preference
Inventory (Holland, 1965). Tables C-I to C-V and Figures
C-3 to C-6 show the results of the Williams study, and the
results of a raw and a normalized rotation of the canonical
variates. Rotation yieldé a.dramatic increase %n the number
of very small loadings. Also, the first two variates in each
set bearlan intuitively simple interpretation after rotation.
Variates III(1l) and III(2) are oriented somewhat differently
by the normalized rotation than by the raw rotation. Note,
however, that the canonical correlation associated with these
variates is substantially smaller than the largest two canonical
correlations. We may, in fact, be trying to rotate one too
many variate pairs. Either rotation scheme leaves the earlier
two pairs of variates open to much the same interpretation.

The plot of the normalized-rotated loadings shows that
this rotation method was able to achieve as much of a sense
of 'simple structure' as was the raw rotation, while not

affecting the system of variate intercorrelations as much.
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4.5 Recalled parental behaviour vs. M.M.P.I. scales

(See Appendix D)

Burger, Armenﬁrout, and Rapfogél (1975) report several
canonical analyses between the Child's Report of Parental
Behaviour &n%entory (Schaefer, 1965) and various objective
personality measures. The subjects for the part of their
study which is reproduced here are 83 malds-recalling their
father'é behaviour, and. who took the Minnesota Multiphasic
Personality Inventory (Hathaway and McKinley, 1951). This
particular canonical analysis is the only one pé¥formed
in the’Burger study which yielded more than one statistically
significant canohical correlation (using the Bartlett test),
and henFe for which more than one canonical variate pair was
reported. The matrices from this study are in Tables D-I to
D-V and the associated plots are in Figures D-3 to D-6.

V | rRotation had much less effect on this data set than on
others congidered in this chapter. The beést, and simplest,
reason for this lack of effect is that good 'simple structure'
could not be found in the data, and a scin of the plots of the
loading matrices bears this assertion oug\gomewhat. One
noticéable result, however, is the 'cléaning up'! of variate
II(1). The large loadings on the unrotated II(l), however,
seem to have been shifted to I(1) and III(1l), which both

begin to have the appearance of ‘general factors.' Also,

the M.M.P.I. scales seem to be somewhat more amenable to -

rotation than the recalled parental behaviour scales.

A
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4.6 Crime’rates friom victimization studies vs. crime rates

from police sources (See Appendix E)

Scott (1977) reports a canonical analysis relating a 
set of seven crime rates obtained from National Crime Panel
victimization surveys in 26 American citiestith seven crime
rates derived from those reported by the United States. Federal
Bureaquf Investigatioﬁ in its Uniform Crim§k§iports series.
The results of this analysis are reproduced in~Tables E-I to
E:V and Figures E-3 to E-6.

Rotation lends considerable interpretability to the
- results of this study. Variates I(l) and I(2) define a pair
of correlated dimensions distinctly related to Rdbbery and
Auto Theft, apparently two 'validly' measured crime categories.

II(1) and II(2) demonstrate the peculiar result that the two

methods of reporting crime lead to negatively correlated

results when considering the incidence of violent crimes such
as murder,\{?pe, and assault. III(1l) and III(2) are positioned
a bit differently by normalized rotation than by raw rotation,
but, as before, this may only be an indication that m, the
number of variate pairs, is too large. Notably, the first

two pairs of variates are positioned virtuaily identically

regardless of the rotation method used.
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~ 5, DISCUSSION

In most'cases considered in chapter 4, rotation of
~ canonical variates leads to a moré\intuitively sensiblé in-
terpretation of the results of a canonical an;lysis. Notabl%,
normalized rotation leads to an acceptable degree of inter-
pretability while permitting the between-set correlation
'structure to remain closer to that from the unrotated solution.
This latter result indicates a certain economy in normalized
rotation, in that it maintains the optimizing properties of

the unrotated solution to a greater degree than does raw

rotation.

-

/
4

Common factors in the sense providedtBy Rao (1965) are
usually not estimated in canonical analysis. Carroll (i968),
however, has described a situation, similar to that described
by Rao, in which a single set of orthogonal variates is derived
in canonical analysis. Carroll's approach permits easy
generalization to canonical anaiysis ofvﬁore than two variable
sets: Regardless of the number of sets, the between-set
relationships are always described with reference to a single
set of canonical variates. ‘

In taking seriously the common-factor approach to canonical
analysis, one must recognize the introduction of a concrete
rationale for considering identical trénsform;tions of matriceé
of stfucture correlations between the observed variables qu

the common factos. 1In such a case, not the matrices Ay and

e
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A but the matrices Pl _and P2 of’section 2.3 wquld be
rotated; ;B}eover, a rotation schemé such as Hakstian's (1976)
would be more appropriate, since there would no longer be
any need to consider canonical corrélations in performing

the rotations. For the reasons discussed in section 3.3,

however, simple structure may be all -the more difficult to

obtain when the two structure matrices are constrained to be

-

rotated identically.

fhe 'numbeg of factors' problem deserves some further
study. The.rotational inconsistencies noted in sections 4.4
and 4.6 may be the result of faulty judgment in setting the
value of m, or they may be simply an artifact of a f3tation
scheme which plays variate correldtion against a,blind search
for 'simple structure'. In pafticular, a type of rotatién ;
different from that considered in this paper may lead to a
diE%Erent notion of the proper number of variate pairs to
rotate. 1In any event, this entire problem would provide a

challenging, and potentially useful, avenue for furthere.

research,
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‘Appendix A
Data from Lohnes and Gray (1972)

Ability tests vs. achisvamant tests
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Tabl= A-1I

Unrotated lcadings from component analysis of

Data frecm Lohnes and Gray (1972)

ability and achievament t=asts

Observ=d variabl=ss
Set on= {ability t=sts)

1. Pintner-Cunningham General
Abilities )
Murphy-Durr=1ll Phonem=as :
Murphy-Durrell Letter Nanm=s
Murphy-Durr=ll Learning Raté
Thurston= Pattern Copy
Thurstone Idsntical Foras
Matropolitan Word Meaning
Metropolitar Listening

. e

W NV E W
-

52t two (Stanford Achievement Tests)

1. Word Reading, Grade 1

2. Word R=ading, Grade 2

3." Paragraph M=aning, Grade
4, Paraqraph Meaning, Grades 2
5. Vocabulary, Grade 1

6, Spelling, Grade 1

7. Sp=2illing, Grade 2
8
9
1
1

-

—

. Word Study Skills, Grade V1

. Word Study Skills, Grades 2

0. Languag=, Grads 2

1. Arithm=tic Computation, Grade 2

.73
.71
.72
.55
.54
L4
.57
.49

. 85
. 84
. 86
.87
. 76
.75
.79
. 84
. 81
.79
.64

Component loadings

I

(++)
(++)
(++)
(+)
(+)
(+)
(+)
(+)

(++)
(++)
(++)
(+4)
(++)

(++).

(++)
(+4)
(++)
(++)

(+)

11

-.38
~-.19
-.10
-.28
-.33
-.39
~.45
-.51

.21
.22
.20
.17
-.18
.26
.36
.17
.18
.16
.08

(=)

g g —
)

(+)
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Table A-1I1I
Data from Lohnes and Gray (1972)

varimax rotated loadings from compon=nt analysis of
ability and achievement tests

Observed variables Component loadings
Szt one (ability t=sts) I . I1
1. Pintner-Cunningham Genaral

abilitiss « 37 (%) T (+4)
2. Murphy-Durr=211 Phonemss .51 (+) T .54 (+)
3. Murphy-Durr=11l Lettar Namas .55 (+) U7 (+)
4., Murphy-Durr=1ll Learning Rate . 34 (+) «53 (+)
5. Thurstone Pattarn Copy . .30 () <54 (+)
6. Thurstone Identical Forms <11 .53 (%)
7. M=tropolitan Word Meaning .22 .60 (+)
8, H=tropolitan Listening <11 A (++)

[¥5]

et two (Starford Achiev=amant Tests)

7. Word Reading, Grade 1 .82 (++) .29
2. Worg Reading, Grade 2 82 (++) .27
3. Parfagraph Meaning, Grade 1 .85 (++) .28
4, Paragraph Meaning, Grade 2 .82 (++) .33 (+)
5. Vccabulary, Grade 1 i .55 (+) . .54 (+)
6. Spelling, Grads 1 76 (++) .21
7. 3p=zlling, Grads 2 ) . 86 (++) o .14
3. ®Word Study Skills, Grads 1 .82 (+4) .29
3, Werd Study Skills, Grade 2 .78 (++) N .31 (+)
10, LTanguage, Grade 2 715 {+%) 31 (%)
11. Arithmstic Computation, Grade 2 .57 (#+) <30 (+)
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Table A-III

Unrotat=d loadings from canohical analysis of

Data frcm Lohnes and Gray (1972)

abilig%ggnd achiesvement tests

Obs=2rvad variaplas
Set one'(ability t=sts)

1. Pintner-Cunningham Ganeral
Abiliti=ss
Murphy-Durr=l]l Phonemas
Murphy-Durr=ll Lettar Names
Murphy-Durr=1l Learning Rate
Thurstona Pattern Copy
Thurstone Identical Forms
Metropolitan Wecrd Meaning
Metropolitan Listening

. »

QX OV E W

Set two (Stanford Achizavement Tests)

Rord Reading, Grade 1
Word Reading, Grade 2
Paragraph Meaning, Grade
Paragraph HMeaning, Grade 2
Vocabulary, Grade 1

Spallingy Grade 1

Spalling, Grade 2

Word Study Skills, Grade 1

. Word Study Skills, Grade 2 '
10. Language, Grade 2 '

11. Arithmetic Computation, Grade 2

- >

3

- -
—

LI

WO N U R Wt

Canonical corrzslations

I

.84 -

. B1
.79
.57
.60
. 44
.67
. 54

I

. 84
. 80
. 84
.85
. 87
.71
.69
. 84
.79
.76
.64

Canonical loadings

(n

(++)
(++)
{+4)
(+)
(+)
(+)
(+)

(+)

(2)

(++)
(++)
(++)
(++)
(++)
(++)
(++)
(++)
(++)
(++)

(+)

.81

A%\(

ITI(1)

'019
.02
.48
.34

-.06

-.06

Co=.h4

-.39

(+)
(+)

(=)
()

II(2)

.36
11
.38
.12
o~ 31
.50
247
.20
.09
.08

ST

.31

(+)
(+)
(-)

(+)

(+)

~



FigurérA—lw.

Plot of Table A-III

30)
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Tablz AR-1IV

Data from Lohnes and Gray (1972)

Raw rotation of loadings from canonical analysiiof --« .5

ability and achievement tests

Nhsarvad variablzs

S=2t on=2 (ability tests)

—
.

-

@ NN £ wio
.

Sétrtwo (Stanford Achievement Tests)

.

.

DNV E W
- »

9.
10.
1.

Pintnar-cCunningham General
Abilitiss

Murphy~Durrell Phonem=as
Murphy-Durrell Lztter Names

-

‘Murphy-Durrell Learning Rate

Thurstone Pattern Copy
Thurstone Id=ntical Forms
M=2tropolitan Word M=saning

Metropolitan Listening

Word Readirg, Grade 1

Word R=ading, Grade 2

Paragraph Meaning, Grade 1

Paragraph Meaning, Grade 2

Vocabulary, Grade 1

Spelling, Grade 1

Spelling, Grade 2

Word Study Skills, Grade 1

Word Study Skills, Grade 2
Language, Grade 2 ' i}
Arithmetic Computation, Grade 2

I

.72
.55
. 20
.15
46
.35
.78
.66

I

.37
.51
.36
.54
.85
.18
.19
.48
.52
-« 50
. 40

o -

Canonical loadings

(n

(++)

(+)

(+)
(+)

(++) .

(+)
(2)

(+)
(+)
(+)
(+)

(++)

(+)
(+)
(+)
(+)

II(1)

47 (+)
.60 ()
.90 (++)
.65 (+)
.39 (%)
w28

18

1I(2)

.83 (++)
.62 (+)

.B5 (++)
.66 (+)

.36 (+)

.85 (++)-
.81 (++) .
JT2 {(+4) .
.60 (+)
.57 (%)
«51 (+)
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Tabla A-V
Data from Lohnes and Gray (1972)

variate intzarcorr=lations from canonical analysis of
ability and achievement tests

Raw rotation

Achisevemznt test

variates
I(2) 11(2)
Abhility test I(1) .56 .22
variates
II(1) .28 .55



Figure A-2

Plot of Tables A-IV and A-V
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2 A-VI

Data §rom Lohnes and Gray (1972)

Nnrmzlized rotatiorn cf Joadi
ability and a

Obs=rved variablezss

32t cn=2 (ability tasts)

1.

WO ~d NN F oo

5=t two (Stanford Achizvement Tests)

1
2
3
4,
5.
6.
7.
3.
9.

10.
11.

Pintner-Cunningham Gemsra
Abiliti=s

Murphy-Durrell Phonsmes

Murphy-Durrell L=tter Nam
Murphy-burr=ll Learning R

C

1

25
ate

Thurstone Pattern Copy ¢

Thurstone Id=ntical Forms
Metropolitan Word Meaning
M=tropolitan Listening

Aord Reading, Grade 1
Word R=ading, Grade 2
Paragraph Meaning, Grade
Paragraph Meaning, Grade
Vocabulary, Grade 1
Spelling, Grade 1
Spzlling, Grade 2
Wword Study Skills,
Word Study Skills,
language, Grads 2 ,
Arithmetic Computation,

Grade
Grade

1
2

Grade 2

I

.75
.59
. 27
. 20
.49
. 37
.79
.66

I

.45
.57
4l
. 67
.88
.27
.27
.55
.58
.56
.45

ngs from canonical analysis of
ievement tests

;
i

Canonical loadings’
\

(1) 11 (1
(++) J42 M+)
(+) .56 (+)
.89 (++)
.63 (+)

(+) .36 (+)

(+) .25

(++) « 12

(+) .072\\_4\

(2) II(2)
(+) 79 (++)
(+) « 57 (+)
(+) 81 (++4)
(+) 61 (+)
(++) .28

.83 (++)

.79 (++)
(+) .66 (+)
(+) 55 (*)
(+) .52 (+)
(+) A7 (#)
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Table A-VII
Data frcm Lohnes and Gray (1372)

variate intercorr=slations frdm canonical analysis of
ability and achievem=nt tests

Necrmaliz=2d4 rotation

Achisvement tast

variates
I(2) IT(2)
Ability tast I1{(1) , .61 .20
variates . . ~
II (1) .29 « 51

\

ar



Figure A-3

Plot of Tables A-VI

and A~VI

=

i R G
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Appendix B
Data from Lochnes and Marshall (1965)

Ability and achievement tests
vs., junior high school grades
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Tabla B-1

Data frcm Lchn=s

and Marshail

{1965)

Unrotated loadings from cancnical analysis

of ability and achievemesnt tasts
and junior high school grades

Obsarved variables

Canonical loadings-

2t one (ability, achievzment tests) I(1)
1. PGAT Verbal 79 (++)
2. PGAT Reasoning .83 (++)
3. PGAT Number ) ST (+4)
4., MAT Word Knowledge B0 (++)
5. MAT Reading .82 {(++)
6. MAT Spelling .89 (++)
7. MAT Language ’ 92 (+4)
8. MAT Study Skills - "languags L84 (++)
9. MAT Arithmetic Computation .90 (++)
10, MAT Arithmatic Problams L84 (++)
11. MAT Social Studies 75 (++)
12, MAT Study Skills -

Social studies .80 (++)
13. MAT Science .73 {++)
S2t two (junioer h. s. grades) I(2)
1. 7th Grade English .85 (++)
2. 8th Grade English L80 (+4)
3. 7th Grades Arithmetic .95 (++4)
4. Bth Grade Arithmetic .88 (++)
9. 7th Grade Social Studies .90 (+4)
h. 8th Grade Social Studies T4 (+4)
7. 7th Grads Science .80 (++)
8. 8th Grade Science LT3 (++)
Canonical corralaticns .90

IT (1)

-.06
.16
.46
.03

-.06

-. 19

-.12
.07
. 21
.35

-.05

.36
.19

(+)

(+)

(+)

IT(2)

.32
. 45
-. 14
-.24
-.13
.00
-.03
.08

.66

(+)
(+)

ITII(1)

~.08
.02
.01
.18
.17
-.10
- =.06

.09

-.09

.02

ISB

14
W22

)

ITT(2)

-.07
-.01
. 01
-.01
32
.54
.09
.21

.‘50

(+)
(+)
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Figg}e B-1 _

;-
Plot of Table B-I




L 53 ¢1;M
8 *1““
, r -

L~
-
o

. “g_A_“ -
\ .
|
N )
S—
: Figure B-1 (cont'd)' .



fo oI Be LN 2 I N U I o
. @

Szt

1.
2.
3.
4.
5.
b
7.
8.«
9.
10.
1.
12,

13.

¥}
1]
o

L]

‘Data from Lchnes and. Marshall

(1965)

Raw rotatlon of loadings from canonical analysis
of abi lhty and achievemant tests
and junior high school gradss

Obs

onse

PGAT
PGAT
PGAT
MAT
MAT
MAT
MAT
MAT
MAT

arvad variables:

(ability, achievament tzsts)
Verbal
Reasoning
Numb=ar
Jord Knowledg=
Reading ‘
Spelling.
Language'’
Study Skills - language
Atithmetic Computation

MAT Arithmetic Problems
MAT Sccial Studi=ss

MAT Study Skills -
Social studies

MAT Science

7th
8th
7th
8th
7th
8th
7th
8+h

- two (junior h. s,

Grade
Grad=
Grade
Grade
Grade
Grade
Grade
Grade

grades)

English
English
Arithmetic

Arithmetic

Social Studies
Social Studies
Science
Sci=nce

Canonical loadings

1(1)

.67
.55
.28
.57
.63
. 82
. 80
.59
. 60
.45
.48

.38
.41

(+)
(*)

(+)
{+)
(++)

(*+)

(+)
(+).
(+)
(+)

(*)
(+)

1{2)

.48
.35
.82
.83
<72
.49
.62
.48

(+)
(+)
(++)
(++)
(++)°
(+)
(+)
)

I1(1)

. 41
.60
.77
.45
.39
.36
43
.51
.70
ST76
. 31

.73
IS“

{+)
(+)
(++)
(+)
(+)
(+)
(+)
(+)
(++)
(++)
(+)

(++)

(+)

IT{(2)-

.76
.82
.44
.32
.36
.33
42
U4

(++)
(++)
(+)
(*+)
(+)
(+)
(+)

(+) .

ITI (1)

.13
.2“
.19

.38

.38
.15
.19
.31
.15
.23
.76

03”
1“0

(+) -
(+)

(+)
(++)

(+)
(+)

I1I(2)

.16

C .20

.24
20

.52
71
.28

.39

(+)

(++) .

(+)
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Table B-III
Data from Lohnes and Marshall (1965)

Vvariat=2 int=arcerrelations from canonical analysis
of ability and achievement tests
" and junior high school grades

rs

Raw rotation

Eéu

Junior h. s. grads

variates
I(2) II1(2) III(2)
Ability, I(N . 80 . .12 .05
achisvament test
variatss, i II(1) .08 .74 .08
III() .11 .04 .53

e
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Figure B-2

Plot of Tables B-II and B-III




Figure B-2 (cont’'d)
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Table B-IV

Data from Lohn=s and Marshall

{1965)

Normalizsd rctation o2f loadings frcm canonical analysis
of ability and achievem=nt tests
and junior high school grades

Ohssrved variables

™ Canonical loadings

e

52t one (ability, achievam=nt tests) I
i. PGAT Verbal . 66
2., PGAT Reasoning . 54
3. PGAT Number . 27
4. MAT ¥Word Knowledgse . 56
5. MAT Reading .63
6. MAT Spelling .82
7. MAT Language w79
8. MAT Study Skills - language +59
3. MAT Arithmetic Computation . 60
10, MAT Arithmetic Problzms . 4y
11. MAT Social Studi=s - .47
12. MAT Study Skills -

Social studies ' .37
13, MAT Science .40
Set two (juniog h. s. grades) I
1" 7th Grad= English .46
2. B8th Grade English .33
3. 7th Grad= Arithmetic . 81
4, 8th Grade Arithmetic .82
5. 7th Grade Social Studies .70
6. Bth Grade Social Studies .45
7. 7th Grade Science .61
8. Bth Grade Sciance . 46

(1) I1(1) I1I4(Y)
{(+) LU (4) .13
() .61 (+) .23

. (++) .17
{+) LU6 (+) .38 (+)
(+) LU0 (+) .38 (+)
(+4) « 37 (#+) .16 ‘
(++) LU4 (+) .20 )
(+) .52 (+) .31 (#)
(+) .70 (++4) .15
{+) W17 (++) .22
(+) <33 (+) 76 (+4)
{+) <74 (+4) <33 (+)
(+) «55 (#) <39 (%)
(2) I1(2) I1I(2)
(+) 717 (+4) .17
(+) .82 (++) +20
(+1) JU5 (+) .27
(++) .33 (#) W22
(+4+) .38 (+) .55 (+)
{+) .35 (+) .72 (++)
(+) LUl (+) .30
{+) L46 (+) L40. (4

/
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Table B-V {\
: 3
Data from Lchnes and Marshall (1965)
. Variate intarcorrelations from canonical analysis
"of ability and achievement t25ts —we s
and junior high school grades

\ Normalized rotation

Junior h. 5. grade -

variates
: h
I (2) II(2) IIT(2)
Ability, I(1) .79 .13 737
achievement test : \
variates CII(1), .08 .74 .09
ITI(Y) .11 .03 .53

oy

3

i
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Appendix C
Data from Williams and Williams (1973)

16 Parsonality Factor Questionnaire
vs. Vocational Praferencs Inventory
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Tablsa C-1

Data from Williams and Williams (1973)

-

Unrotated lcadings from canonical analysis of

the 16 Parsonality Pactor Questionnaire

and th=

Nbsarved variables

(16 P. F.)
Cyclothymia (Sociable)
Intalligence (Bright) .
Fmrotional Stability (Mature)
Dominance (Aggressive)
Surg2ancy {(Enthusiastic) _
Super-ego Strength (P=rsist=ant)
Parmia (Adventurous)
Premsia (Effeminate)
Paranoid Tendeancy (Suspecting)
Autia (Intrcvert=d)

Shrewdnesss (Scphisticated)
Guilt Pronen=2ss (Insscur=2)
Eadicalism (91)
Szlf-sufficiency (0Q2)

High Self-sentiment (Q3)

Ergic Tension (Q4)

two (V. P. I.)

R=zalistic
Intellactual (Invastigative) ,
Social ’ ,/#
Convantional /
Enterprising =
Artistic ,
Control ' o
Male-Female

Status

Infrequancy

Acgjulescence

Canonical corrz2latiors

I

.63

- -,02
.00

. 07

. 28
.07

. 37
.74
-.19
.31
.15
.06
.05
.29
.13
.07

I

-.33
-.29
.72
-, 16
.18

. 45

. 37
.47
.33
.07

.81

Vocational Preference Inventory

Canonical lonading

(1)

.58
-.19
.10
.21
«53

(+)

.20

.34
-. 43
-.03
-.55

.08
-.02
-.29
~.62

.04
-.21

(+)

(++)

(+)

(2)
(=)

(++)
.39
.60

-.56
.10
.26

(+)
(+)
(=)
{+)
(+) .20
.04

.73

-003 .
-.32
LU0

.28

II(1)

(+)

(+)

(-)

I1(2)

(=)
(+)

(+)

(+)
(=)

ITXR( )

.00
.11
.14
-.44
- 34
46
-.23
-.07
.11
-.27
~.21
.08
-.18
.22
.04
.10

(=)
=)
(+)

III(2)

LU42 (#)
57 {+)
« 35 (+)
3T ()

-

-, 21
- 12
e
-.22
.06
.28

.54



Figure C-1

Plot of Table C-I
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Tabla C-II

" Data from Williams and Williams (1973)

Raw rotation of loadings from canonical analysis of
tha 16 Personality Pactor Questionnaire
and the Vocational Preference Inventory

Nbsarvad variables
S2t on2 (16 P. F.)

Cyclothymia (Scciable)
Int=2lligence (Bright)
Emotional Stability (Mature)
pominance (Aggressive)

Parmid4 (Adventurous)
Premnsia (Effeminate)

O W AU & Wiy -
.« o s

10. Autia {In ver ted)

11. Shrewdness (Sophisticated)
12. Guilt Pronen=ss (Insscure)
13. Radicalism (Q1)

14. S=1f-sufficiency (Q2)

15. High S=lf-sentiment (Q3)
16, Ergic Tension (QWU) .

Saf “two (V. P. I.)

. Realistic
JIntellectual (Investigative)
Social
Convantional
Enterprising
Artistic
Control
Male~-Female

. Status

-10, Infrequency
11. Acquiescence:

1
2
3
4
5
6
7
8
9

Surge:;ZQﬁEnthusiastic).
" Super o Strength (Parsistant)

. ParanoidTend=sncy (Suspecting)

4

.03
» 10
.09
.02
.12
.17
.06
.83
-.13
. 65
.12
-.04

. 20

L] 19’

[

.13
.18

I

-.27
-:06
.09
-. 47
-. 31
.75
.19

<14
.05
-. 04

Canonical loadings

(H II()’ IIT (1)
.85 (++) -.06
-.14 .14
.08 12
.16 =46 ()
.50 {+) -.41 (7))
.22 ’ L4270 (4)
48 (+) -.26
(++) .23 .06
~. 15 .10
(+) -.18 -.15
-.07 -.23
-.05 .08
-.25 ~-.13
-.62 (=) <31 (4)
-.06 . .02
-.09 .14
(2) II(2) I1II(2)
-. 16 L3 (4)
-.26 .66 {+)
.88 (+4) . 14
(=) .20 .23
(=) LU6 (+) -.32
(++) -.04 . =,05
.31 (#) -.18
{=) -.21 .09 -
. U6 (+) -.34 (-)
.39 (+) -.04
.15 .24
_/—-.‘_,__—/
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. Tabls C-III
Data from Williams and Williams (1973)
variate intercorrelations from canonical analysis

of the 16 Personality Factor Questionnaire
and the Vocational Preference Inventory

45
Raw rotation
V. P, I. variates.
I(2) IT1(2) - IITI(2)
16 P.Fc I(1) .76 '.O? '--01
variates , L :
II (1) W02 .73 .05 ' -
B - ITI(1) .01 L | .58
‘ Tl -
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Table C-1V

Data from Williams and Williams (1973)

of the 16 Perscnality Factor Quastionnaira
and the Vecaticnal Preference Inventory

rd

Obsarvad variables

(16 P, F.) -
Cyciothymia (Sociable)
Int=21lligenc= (Bright) -
Emotional Stability (Mature)
Dominance {Aggrassive)
Surgency {(Enthusiastic)
Super-ego Strength (P=rsistant)
Parmia (Advanturous)
Premsia (Effeminate)
Paranoid Tendancy (Suspecting)
Autia (Introverted)

Shrewdnass (Sophisticated)
Guilt Pronsnass (Insscurs)
Radicalism (Q1)
Self-sufficiency (02)

High S=lf-sentimant (Q3)

Ergic Tension (Q4)

two (V. P. I.)
Realistic
Int=allectual
Social
Conventional
Enterprising
Artistic
Control
Male-Female
Status
Infrequency
Acquiescancs

{(Investigative)

Canonical loadings

e 03

I(1) II(1)
. 09 .78 (++)
.10 -.19
) 08 002 v
-.03 .36 (+)
-.10 .67 (+)
-.13 .01
.08/ .55 (*)
LB (+4) 0 14
-. 14 -. 17
.62 (+) -.12
-. 14 .05
-.04 -.08
.17 -. 17
.16 - 70 (--)
-.13 -.06
.18 -+« 15
I(2) II(2)
-.28 -.37 (=)
+.07 -.60 (+)
115 .61 (+)
‘;'\-AS (") .0“
-.28 .57 (+)
T4 {(++) -.03
o2 <34 (+)
Tl 56 (-) -.19
.16 <57 (+)
.07 .33
-.03

”

IITI (1)

.34
.05
.15 .

-.33

-.10
.49

-.01
.09
.03

-.26

-.23
.05

-.24

-.03
.00
. 077

(+)

(f)
(+)

I11(2)

.26
.38
. 64
.33
.04
-.10
.04
-.03
.01
.20
.29

(*)
(+)
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Tabl= C-V
Data from Williams and Wil®iams (1973)
Variate intercorrelations from canonical analysis
of the 16 Perscnality Factor Qua2stionnaire

and th=s Vocatisnal Preference Inventory

Normaliz=d rotation

V. P. I. variates

1(2) I1(2) 111(2')

16 P.F. - I(M .76 L 11 .04
variatses : ,
I1(1) -.02 W75 . -.17
ITI() .02 - 11 .54

- M ’



Figure C-3

Plot of Tables C-IV and C-V
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Appendix D
Data from Burger, Armentrout, and Rapfog=2l (1975)

Child's Repcrt of Parental Bzhavior Inventory
vs, Minnssota Multiphasic P2rsonality Inventery

S
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6

-~

1
2
3
i
7

3.,
9.

10.
11.

12,
13.

Can
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Tabl= D-1

Data from Burger, Armentrout, and Rapfogel (1975)

Unrotated loadings from canonical analysis

Child's Report of Parental Behavior Inventory and

of

Minnesota Multiphasic .Personality Inventory

Observed variablas

.ons (parental hshavior)
Accaptance
Cnildcentrednass
Posssssivan=ss

R23j2ctinn

Control

Ernforcem=nt

Positivse Involvem=ant
Intrusiveness

Control Through Guilt
Hostil= Control
Inconsistent Disciplina
Non=znforcem=nt

Acceptance of Individuation

Lax Disciplin=

Instilling Parsisternt
Anxiety

Hostil> Detachment

Withdrawl of Rakaticns

Extram= Autoncny

*wo (M. M. P. I.)

L Scals=

F Scal-=

K Scale ,
Hypochondriasis (Hs)
Dzprassion (D)

Hyst=ria (Hy)

Psychopathic Deviate (P4d)
Masculinity-Femininity (Mf)
Paranoia (Pa)
Psychasthenia
Schizophrenia
Hypomania (Ma)
Social Intrecversion-
Extroversion

onical correlations

I(m IT (1)
-.63 (=) ~.32 (-)
.63 (~) -. 11

.23 .21

.59 (+) <39 (#)

.10 . 26

U3 () .35 (+)
-.50 (=) -,22

.69 (+) .03

17 .38 (+)

L2 (4) .56 (+)

.16 W42 (+)
W34 (+) .25
-.33 () .37 (=)

89 (+4) .15

o _

.03 LU0 (#)
.12 .32 (+)

.67 (+) . 28

.52 (+) W22

I(2) IT(2)

B9 (++) -.01

.61 (#+) <55 (+)

.05 -.42 (-)

.55 (+) LU46  (+)
-.26 .08
-.33 (=) .28

LU (4) .65 (+)
-.45 (-~) -.12

.07 .24

.07 240 (4)
-.20 .62 {+)
-.43 (=) <35 (+)
<34 (4+) » 20

.98 .81

canonical loadings

ITI ()

~.33
-.u45
~.07
. 40
-.05
.36
-.58
.15
.23
.16
27
.26
-.51
.20

.33
J42
.09
23

(=)
()
(+)

(+)
(-)

{-)

(+)
(+)

ITI (2)

-.02
-. 1
.00
-.12
.58

.39

009
.13
-.24

) -013

-.08
) 44

.36

.75

(+)
(+)

<)
(+1,

—
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Figure D-1
Plot of Table D-I
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Figure D-1 (cont'd)
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Tablse D-II

78

N |

|
s ~

Data from Burger, Armentrout, and Rapfoqel (1975)

Raw rotation of loadings from canonical analysis of
Child's Report of Parental Bzshavior Inventcry and:
Minnesota Multiphasic Personality Inventory

Obs=rved variables

S=2t on= (parental bshavior) I(1) II(nH ITIT (1)
1. Accaptance .72 (-=) -.04 -.30 (-)
2. Childcentredn=ss -.68 (-) -.19 -.33 (=)
3. Possessiveness .27 <17 -.03
4. Ra9jaction LT1 (+4) .09 .39 (%)
5. Control .15 . .24 .03
6. Enforcement .59 (+) A0 « 37 (4)
7. Positive Involv=amant -.60 (-) 12 -.51 (=)
8., Intrusiveness ‘ .69 (+) -.16 .01
3, Control Through Guilt .28 .22 <31 (+)
10, Hostile Ceontrol .56 (+) « 37 (+) .26
11. Inconsistent Discipline .29 .25 <37 (#)
12. Nonanforcement . 42 () .06 .26
13. Acceptance of Individuation -.46 (-) -.08 -.54 (-)
14, Lax Discipline <92 (++) -. 1 .07
15. Instilling Persistent

. Arrxiety .16 .23 U4 (4)
16. Hostile Detachmant .24 10 .48 (+)
17. Withdrawl of Relations T2 (++) .09 .05
18, Extreme Autonomy .58 (+) .01 .19
S5zt two (M. M. P. I.) I(2) II(2) IIT1(2)
1. L Scals=s S’ .81 (+4) -.31 (=) - =.20
2. P Scalse 1T (+4) .30 (+) -.03
3. K Scale ' -.12 -.37 (=) -.16
4, Hypochondriasis (Hs) .68 (+) .25 -.06
5., Dapression (D) -.18 -.08 .H1 (+)
6., Hyst=ria (Hy) -.17 .19 .52 (+)
7. Psychopathic Deviats (P4) .85 (++) - «29 .18
8, Masculinity-Fa2mininity (Mf) =-.46 (-) .00 .17
9, Paranoia (Pa) .15 .28 .15
10. Psychasthenia {(Pt) 22 .37 (+) .01
11. Schizophrenia (Sc) .06 .63 (+) .19
12. Hypomania (Ma) -.28 <62 {+) -.19
13, Social Introversion- -

Extroversion U1 (+) -.009 .33 (#+)

Canonical loadings

-
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Table D-III ’
Data from Burger, Armentrout, and Rapfogel (1975)
variats intercorrelaticons from canonical analysis of
Child@"s Report of Parental Behavior Inve9¢pry and

Minnesota Multiphasic Personality Inveéntory

Raw rotation

ﬂ. M1 P- I-

variates
1(2) 11 (2) 1II(2)
'barental I .95 =019 -.05
behavior .
variates IT(1) .11 .80 - .03
IITI () -.02 .03 ] 77
S
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Plot of Tables D-II and D-III
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Data~ﬁrom'Burgér,’Armantrout;

f&abléTD-IV

and Rapfogel

(1975)

"Normallzed ehtation of loadlnqs from canonical analysis of
- child's Report of Parental Behavior Inventory and

Minnesota- Mult;pha51c Personality Inventory

Obssrved variablses

-

H

1: Accaptance ' ]
2. Childcentredness %J‘
3. Possessiveness

4, ‘Réjection .

5. Control ~

6. Enforcement

7. Positivs Ipvolvement

8., Intrusiveness

Setvone (pacantal behavio%).

9, Control Through Guilt

10. .Hostile Control -

11. Inconsistent. D1sc1pl*n~

12, Nona2nforcement

13. Acceptance of Individuation

14, Lax Disciplin=

15.‘Inst'lling Persistant
Anxiety

16. Hostile Detachment

17. Withdrawl of Rslations

18, Extrem= Autonomy

S22t two (M. M. B, I.)

L Scals

Y F Scale . B
. K scale e
Hypochondr1a81s (ds)
Depression (D)
"Hystaria (Hy)
7. Psychopathic D=aviate (P43)
8. Masculinity~-Femininity (Mf)
9. Paranoid  (Pa)
10. Psychasthenia (Pt) ~
11. Schizophrenia (Sc)
12, Hypomania {(Ma)
13. Social Introvar51on—
Extroversicn

« .

A

I(1)

-, 08

-.69
.22
.65
.10
.48

-.58
.70
21
.45
.21
.38

-.40
.91

.08

‘1018

-/.68

.55

(-)
(=)

(+)

(+)
(-)
(++)

(+)
(+)
(-)

(++)

(+)
(+)

I(2)

.86
.68

-009 .

.61
-.15
-.20
.76
-. U5

.08

-.08

.42

L3

(++)
(+)

(+)

(+)

Canonlcal loadlngs

-

Ty i o

IT(1)

-.17
.07
.23
.20
.26
.18
.03

-.02
.25
.45
.27
.13

-.13
.08

.22
.11
.23
12

(+)

'II(Z)

-.12
.47
-.39
.39
-.12
.15
47
-.10
.30

“62

(+)
()
(+)

(+)

)y
(+)
(+),
LS5 HEy

111 (1),

-.37. (
.00

LU45 (+)'

.05
42 (H)

=55 (=)

.06

.35 (+)

.33 (+)

<40 (+)

.29
-.57 (-)

.13

CLU6 (+)

.50 (+)
.11
.23

ITI(2) . °

-.21
-.ou
.16 .
-.06_
.61 (+)
.53 (%) -
.18
.17
.15

..01
.19

033 (4)

-.18
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Tabl= D=V
Data from Burger, Armantrout, and Rapfogsl (1975)
variat= intercorrelations fron c&honicg}fggafgéis of
Child's Report of Parental Behavior Inventsry and

Minnesota Multiphasic Parsonality Invéhfory

Normalized rotation

M. M. P. I.

variates
;/
B 1(2) II(2) I1T(2)
B Rat,,ental I(1) .96 -.14 - 11
behavior
variates IIm .13 .79 -.04
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Figure D-3

Plot of Tables D-IV and D-V
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Appendix E

Data frem Scott (1977)
2
Crime ratss from victimization survsys
vs., crim= rates frdém police sources
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Ta@@e E-T1

Data frcm Scott (1977)

Inrotated loadings from canonical analysis
of crim= rates from victimization surveys
and crime rates frcm police sources

Observad variatbles Canonical loadings
5=t o2n= (victimizaticn rat=s) (1 II(N CIII(Y)
1. Rap= 40 (#) - .25 ) 51 ({+)
2. Robbery -.80 (-~) -.19 .16
3. Aggravated assault LH2 (4) .30 (+) L4 (+4)
4, Other assault .69 (+¥%) .36 (+) LU0 (+)
5. Burglary -.15 -.08 .63 (+)
6. Larceny .58 (+) .25 .65 (+)
7. Auto theft -, 49 (=) LTT (+4) .36 (+)
52t two (Police rates) I(2) 11 (2) III(2)
1. Rapa - 40 (-) C .21 .03
2. Robbh=ary -.90 (--) -.23 -.03
3. Aggravated assault -.48 (-) T o=-.26 ~-.37 (7)
4, Burglary : -.15 - 14 L49 (#)
5, Larcesny .38 (#) - =,10 .19
5. Auto theft -.74 (--) .62 () .28
7. Murd=sr ' -.67 (-) -.34 (=) .20
Canonical:correlations : .96 .92 .82

t

— £
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Figure E-1
Plot of Table E-I
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S2t cn= (victimization rat=es)
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Table E-IT

Data frcm Scott

(1977)

* Raw rotation of lcadings from canonical analysis
nf crime rates from victimization surveys
and crim= rates from police sources

Observed variables

I(1)

Rap= .11
Robbery 34 (4)
Aggravated assault .20
Other assault .01
Burglary .19
Larceny .04
Anto theft « 97 (++)
S=2t two (Police rates) e I1(2)
Rap=a L40 (4)
Rehbary 33 (+)
Agjgravated assault -.02
Burglary ToL12
Larceny -.25
Auto thaft .98 (++)
Murder .18

N EwN -

.

Canonical loadings

I (1) III (1)
.65 (#+) .22
-.63 (~) 42 (+)

.78 (++) .39 (+)

.88 (++) .01
.13 .62 (#4)
.86 (++) .30 (+)
.09 .07

TI(2) IITI(2)
-.21 -.02
-.85 (-=-) .16
-.63 (=) -.19
-.04 .52 (+)

37 (#) .18
-, 21 .08
-.65 (=) .38 (+)
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Tabl=2 E-ITI

Data frem Scett (1977)
variate intercorrelations from canonical analysis of
' crime rates frcm victimization surveys and
crime rates from police sources

Raw rotation 2
Police
variates
I(2) ITI(2) 111 (2)
Victimization (1) .92 .01 N
variatess
IT(1) .05 .92 .10
III (1) .00 -.18 .83
> [
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Figure E-2

Plot of Tables E-II and E~-III
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" Table E-IV
Data from Scott (1977)

Normalized rotation of loadings from canonical analysis
of crime rates from victimizatioA surveys
and crime rates from police sourcas -

2

Observed variables . Canonical loadings
Set- ona (victimization rates) I(1) CII(Y) IITI(1)
1. Rape | ' .07 .66 (+) .19
2. Robbery . «32 (*) . =459 () < W49 (+)
3. Aggravatad assault .14 T W81 (+4) .36 (+)
4., Other assault -.02 «88 [++) -.05-
5, Burglary . .13 « 17 ) .62 (+)
6. Larceny -.01 «87 (+4) . 24 ’
7. Auto theft .96 {++) , 13 .15
Set two (Police rates) 1(2) II(2) CIII(2)
1. Rape U1 (M) -.18 - .06
2. Robbery «35 (+) .79 (--) .34 (+)
3. Aggravated assault .03 - -.65 (-) -.08
4., Burglary .06 .06 - 33 (%)
5. Larceny -.28 +32 {+) .09
6. Auto theft <97 (+4) -.12 «22
7. Murder : .17 -.56 (-) 51 (+)

. 5

~ ’)‘
A\j/
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Tabl= E-V
Data frem Scott  (1977)
variate intercorr=lations from canonical analysis of
crime ratss frchk victimization surveys amdd

crime rates from polic= snurces

Normalized rotatM™on

Police
variates
I{2) ITI(2) COITII(2)
victimization I(1) .93 -.03 .02
variates )
I1(1) .08 : .91 -.01
IIT(1) . =.01 =010 .85



3
: 96
140
1 .
5 44)) A;‘,
aey

Figure E-3

Plot of Tables E-IV and E-V
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