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ABSTRACT

One of the most interesting problems in population dynamics is
concerned with a population of predators feeding on a population of prey.

Lotka and Volterra (L-V) were the first to propose a set of rate equations

with qﬁadratic nonlinearities t;;describe such anecosystem. Later; by
incorporating a saturation level term for the prey species, Gause and Witt
modified the L-V mééeirinto what is known as thevVolterra-Gause-Witt
(V—G—W)‘model.r Further, the V-G-W model involving constant time lag terms
was studied by Wangersky and Cunningham:(w-é).

In the literature on population dunamics there are many investi-
gations, méinly dealing with stability problems. However, it is impartant
in some cases that an apprs;imate solutiod?to thé modelling equations be

- obtained. A useful approach to achieve this goal is the small parameter -
expansion on which the perturbation theory is based. A widely useé method
in this theory is the asymptotic method of Krylov-Bogoliubov-Mi;ropolskii
(K-B—M}. This method is used to study the following V-G~W modified models:
a) V-G-W model with two satur;;ion levels
b) V-G-W model with two saturation levels and sméll time lag terms

in the nonlinear part

¢} V-G-W model with two saturation levels and small time lag terms

v

in the linear part

d) W-C model with small time lag

e) W-C model with large time lag.

L~ -
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When fhe time lag involved is small, the sféﬁem ma& be reducedﬂr
to one without deviating argument. Then igvestigétions can be done with
the K-B-M method. For nonlinear oscillatory problémsi it is generally
known that the frequency of oscillation and the amplitu@e,beqome inter-
dependgnt. This behéviour is exﬁibited in the first drder solutioniin most
cases. The fluctuations are shown to be not only frequency dependent but
also exponentially damped owing to the preséﬁce«of saturatibﬁ levels. For-

the model with significant time lag, the situation is more complicated. In

this case an extension of the K-B-M method is used.

Finally, comparisons of the influences of time lag terms, small
and significant, on the amplitude and the phase of these different models

are made based on their first order approximate solutions.

P~

N



ACKNOWLEDGEMENT

The author would like to express his appreciation to Dr. G. N.
Bojadziev for his encouragement and guidance throughout the entire period

]
while this work was done. Also, many thanks to_y;é staff and faculty

/
» N .
members in the Mathematics Department of Simon Fraser University who made

this thesis possible.

kS

e

S

(v)



TABLE OF CONTENTS

- page
FOREWARD vii
G‘IAPiI'ER 1 1
§ 1 The Krylov-Bogoliubov-Mitropolskii method 1
§ 2 Delay differential equations 10

.8 3 KrYlov—Bogoliubov—Mitropo;skii method for aelaf
differential equationsr |
§ 4 Some basic models in population d;pamics
CHAPTER 2 7 — €
"§ 1 vVolterra-Gause-Witt model with two levels of saturationm
§ 2 Volterra-Gause-Witt model with small time lag in the
nonlinear part and two levels of saturation
§ 3. Volterra-Gause-Witt model with small time lag in the
linear part aﬁd‘two levéls oflsaturation
§ 4 Wangersky-Cunningham model with small time lag
CHAPTER 3

§ 1 A special Wangersky4Cunningham model with large

-

time lag : -
§ 2 Asymptotic solution . ‘ i
§ 3 Discussion | ’ ;
, CONCLUSION - >
7

14

19

22

22

30

35

38

42

42

_ 46

53

56

LIST OF REFERENCES

(vi)

L



FOREWARD

Many of the problems faced today by physicists, engineers and
applied mathematicians involve difficulties due to nonlinear governing
equations involving retarded arguments,- small or significant, which

g

preclude exact analytical solutions. To solve theée_froblems we shall

resort to a form of approximate sblution. Among those systematic method§
of approximation techniques, one which is widely used is the perturba;ion
method of Krylov-Bogoliubov-Mitropolskii (K-B-M) which involves asymptotic
expansions in powérs 6% a small parameter. Application of this‘hethod to s
biological'éciences was not known until recently: . ééi\
Here the K—B—M'method is used to study nonlinear models, mainly.
with retardation, in préblems of popuiation dynamics. Extension of the
Volterra, Gause and Witt (V-G-W) model to include time lag, small or
siénificant, will promote the”cloéeness"of'déscribing4a'cértain"prdéeés
by a system of nonlinear differential equétions with deviating arguments
in which past history is also.accoqfted for.r Clearly, inves;igations a;a‘\\\\_
ah , .
derivations of approximate solutions of nonlinear systems with retarded.
arguments will be more interes;ing and at the same time invol&e more
com;lications.
~In Chapter 1, the‘K;B-M method for a second orde; ordinary

3
differential ehé;tion with small nonlinearity is reviewed. A brief

A s Y S . .. g .
introduction of delay differential equations is given. Then an extension

S

of the K~B-M method used for differential eQuétionsvinvolvinéAaeviating

-

J (vii) :
. ) - //\
o



arguments with largéJdelay is outlined. The Lotka-Volterra model and
its modification to V-G-W model is briefly explained. Applications of .
N .

the K-B-M method to models of the V-G-W type by other authors are also

mentioned. ) s

In Chapter 2;4the V-G-W model with two,léveis ofisaturétion is
studied. The results obt;inedimay gﬁen be used.for coﬁparison with those
involving £ime lag; sméiiiénd significaﬁtg Two such models of thersame7W77" )
type but with small time lag ;éfms,are iﬁvestigated. Terms with deviating
arguments in the describing‘system.of différentia1~equations occur in the i:)
nonlinear part of the first model and the lineéf part of the second model.
For all three models, approximate solutions up~+to the second order are

obtained. Then the Wangersky and Cunningham (W-C) model with small time

lag is alsc studied. 1In this case, approximate solutions for Poth the
p

prgy and the predator species are given.
In Chapter 3, the W-C model with-large-time lag for only the- - - -
predator séecies is considér;d by means of the extended K-B-M method.
‘ As a conclusion, the first order solutions of all the models

being investigated are compared in order to exhibit the effect of time

lag on the approximate solutions. .

(viii)



~

CHAPTER 1 R T T T

§ 1 THE KRYLOV-BOGOLIUBOV-MITROPOLSKIT METHOD

i 4 ‘i
The study of oscillatory processes is of basic importance in

widely diverse branches of mechanics, physics and engineering. Investi-

gators in the theory of linear oscillations attemptéd to fit the

oscillatory progesses studied by them into linear schemes, neglecting the

nonlinear te;S%;without proper justifications And such a linearization

m%y lead to real errors not only of a quantitative but also of a qualitative

nature. In the last century there already existed a mathematical apparatds

which, if developed to the pecessary extent and generalized, might have

served as the tool for investigating ﬁonlinear oscillations, at léast. those

N

oscillations sufficiently close to the lineatr ones. An oscillation is
treated as sufficiently clqse to a linear one when, though the correspond-

ing differential equation be nonlinear, there is a parameter € in the

equation such that for a zero value of £ the equation degenerates into a =

2

'ﬁinearidifferential equation with constant coefficients. In this case it

¥

. N T
is assumed that the parameter € is 'small’, i.e. it may be .taken as
sufficiently small in aBsolute magnitude. However, there immediaéély )

arose the difficulty that it was impossible to use the usua®method of

3

expansions in powers of a small parameter for arriving at results which

would be ;uited tqj%ﬁéﬂ;tudy of motion over sufficiently prolomged intervals

o~

of time. 1In fact, the usual expansions in powers of a small parameter- lead

I

to approximate formulae for the unknown quantities, characterising the

motion, in cases which contain, besides terms depending harmonically on

Lan



: - . m . ‘ m
time, aifp secular terms like t sin at and t cos ot (m > 1, a = con-
. . » P : . ! :
stant),” with time 't' appearing without the sine or cosine symbol.

Consequently, the intensity'of the secular terms increases rapidly with

the increasing values of t. .Thus it is clear that the range of applica-
- . ‘ v . .
intervals

tion of the - gpproximation formuLae is';imited to very small

of time. o : o, '
~ : B R oo I}

The method of Poisson [1] for solving problems of the pendulum
oscillations also revealed the above mentioﬁedtdifficulty'of the ordinary
expansions in powers of a,-small parameter. Sﬁppose we have to find a

solution of a nonlinear equation containing a small parameter. € of the form

.
El

2 ' - ' : )
- X, ’x = efx, &y, o : ) (1.1)
o2 at , ,

@

Then using the method of Poisson we seek a solution, satisfies

o + :
(1.1) to an accuracy of order e" 1 of the form

2 n
X=X + + £ +. . . + ¢ . .
° €Xl X2 - Xn ‘ (1.2)

By substituting expression (1.2) into equation (1.1) and equatingvt 
coefficients of like powers of the parameter €, we get the follghing "

'system of equations:

d2Xo 2
3 + W xo = 0, : ;
at
a°x , T axg
3 TeR =EE e
dt ¥



.2 0

+ W = + =2
dt .

. -A - . - . . . - - . ’

1 - ) . : ‘ B .'
of s dx S S
vhere LT MM Xt - g ‘ -

S ‘A ) 7 - M

It can be easily seen that the abgvs ethod entalls appearance
»
e ,
of secular terms '%se ;nstemcr—:l7 ’yw ebtaln the 1B:Ei“‘fcsrt erder solutmn S

s

- 5 : Xo = a cos (Wt +'6)

. - . @
@ =

- = 7 dx i, : -
: ’ , [o) 3 v o .
d g , — = - R _
an suppcse that f(XoV 3t ) XOL:Jﬁfhen we get the second order

. N
approximation,

-

, Xl =,f{3/8w)a3t sin(wt + B8) + (1/32w2)a3 cos 3(wt + 8) , -

a

which contains. a secular term. Hence this method is suitable only for

-
Ty

very small 1nterva1s of tlme. Because of the presence of secular terms

on the r1ght-hand-s1de ofiexpress1on (l 2), it is dlfflcult to establish

the periodicity of the solutlon.

-

It is natural that the oscillating systems most accesgible for
investigations are those with small nonlinearity. Atipresent a number

of sufficiently general methods are available for treating weakly non-

i

linear systems. In this thesis, we will confine ourselves to the asymp-

L=

totic method known as the K~B-M method [1, 2]. This method came into = % =

existence under the work of N. M. Krylov and N. N. Bogoliubov and Yu. A.

Mitropolskii. We shall now construct the asymptotic approx1matlons for

3

the case of oscillations defined by equatlon (1. 1) When perturbationvis

absent, i.e., when € = 0 , the oscillations will be purely harmonic with

N



X(t) = acos ¥ ,
. v JR
where the amplitude: a and the phase Y are defined by -

§E=O, » ﬂ—_—w_ .

dt dt

4

The existence of nonlinear perturbation (¢ # 0) results in the
- -

appearance of overtones in the solution of equation (1.1), a factor that

ay

It and the

establishes dependence between the instantaneous frequency

ampliEﬂFe. We shall seek a general solution of equation (1.1) in the form
> X(0) = acos ¥ +eu (a¥) melu @) ¢ ... (1.3

Here Ul(a,W), U§(a,Wf, ... , are periodic.-functions of the phasé ¥ with

a period 2T and the quantities a, V¥, are functions of time defined by the

#

differential equations

da . 2 .
at - EAl(é) + € Az(a) e P

(1.4)
ay ‘ 2
Sc =@t er (@ +eB ()t .. B

Although power series expansions are divergent, the approximate
formulae obtained by taking a limited number of terms, for m ='1, 2, ... ,
are found to be extremely suitable for practical calculations. In fact,

these series are asymptotic in the sense that the error of the m—th appro-

o~

ximati9ﬁlis proportional to the (m+1)-th power 6f the small parameter €
Hence for fixed values of m = 1, 2, ... the error can be made as small as

desired when the value of € is sufficiently small. Of course, by increa-

sing m indefinitely we will not get coﬂeefgenééjirHowever, the absence of

such a convergence is not of essential importance in practice, because

T



practically the determination of the coefficients of successive powers of
\é becomes so complicated tha;_actually‘approximations of only taﬂlfirst
‘or the second order, or of not;very.high order, may be used; but their
usefulness is completely conditioned4by the property of asymptoticity. - }v
. —
In practice, due to the rap;gly,growi?g complexity of the formu-,
lae, only the first‘two or fhrge terms may be effectively derived. How-

ever, they are enough for appliéétibn purpbses. Therefore we confine our-

éelves to a finite number of ﬁéfms~in the expansions (1.3) and (1.4), i.e.,

B ' -

X(t) = acos ¥ 42U, (a,¥) + . . .+ EmUm(a,‘P) , (1.5)
da m
_ = + . . .+ ’ o
- EAl(a) _ € Am(a) ¥
(1.6)
ay m :
L — . . . ’ = 2 -
at w + EBl(a) + + € Bm(a) m 1,2,

Hence the practical applicabiliﬁy of the method is not determjned by the
cdnvergence of the series (1.5) and (1.6) when m + « but by their asymp-
totic propérties for a givén fix@d value of m when € > 0 .

I It is oply required thatvwhen € 1is small, expression (1.5)
should give a sufficiently accurate form of the solution:aflthe nonlinear
equation (1l.1) for a sufficiently long interval of time. Tﬁe first pfoblem
is to deduce suitable expressions for the functiéns Ul(a,W), U2(a,W), R

Al(a), Az(a),“. . ey Bl(a) B2(a), . « . But a certain amount of arbitrari-

.ness is involved in defining the above expressions. Hence for the unique-

ness of the definition of these coefficients we have to impose additional

restrictions on them. Thpus we require that the first harmonics are missing

in the expressions Ul(a,Y), U2(a,W), e + <y i.e., the conditions



6, Tmupde .
2m 2
IO Ui(a,W) cos ¥ a¥ = 0 ,
2 , (1.8)
IO U, (a,¥),sin ¥ a¥ =0, i=1,2,...,

,// -

have to be satisfied. Physically, the iﬁ%osition of these conditions is \\
equivalent to selecting a as thez?ulliﬁmplitude of the first fundamental -
gz

harmonic of oscillation. R S

- o

From equations (1.3) and (1.4) with some rearrangements in powers

of € , we get o
QU

dx‘_ , o M
ac - "aw sin ¥ + e(Al cos ¥ aB, sin Y + w;v—)
) ou 9U. - dU .
+e2(a. cos ¥ - aB_ sin ¥ + A, ==+ B, == + w=2) + e°. .
“ v 2 2 ) 1 3a 1 o¥ a¥ T
2
a’x 2 07Uy
— = -aw- cos Y + E(—2mAl sin ¥ ~ 2u>aBl cos ¥ +w > )
dt a¥
. da .
2 1 2
+ € {(Al rreia - 2waB ) cos Yy
C - (2mA2 + 2A1Bl + Alaa;—)51n Yy
5%y 'u, 9%y, 5
+ 2WA, === + 2wB + W } + ev. L.
1 daod¥ 1 8W2 8?2 , -
~ Hence the left-hand-side of equation.(l.gxsmay'be written as a

<




. 7.
o -
2 3 U SR
§—§ + w2X7= E{—ZwAl sin ¥ - 2waBl cos ¥ + w2 21 + szi}“
- dt } - .
+ € {(Aiﬁg—l:é aBi - 2waB2)cos y
l‘., a_ -~
. , dB,
N - + — i
. (ZwA2 + 2A1Bl Ala iz )sin ¥
32Ul S'Q'Ul 28202 2 3 ,
—_— + + + . . . .
+ 20B T 4 2UB18‘P2 W > w U2} € (1.9)

Also, the right-hand-side of equation (l.l) with the expression for X(t)

given by (1.3) may be written.in the form

Ef(X; g%) = ¢f(a cos ¥, -aw sin V¥)

+ EZ{U f'(a cos ¥, -aw sin ¥)
1l x »

ou i
+ (A, cos ¥ - aB_ sin ¥ + wsrH £, (a cos ¥, -aw sin W)} 4 €. . . (1.10)
1 -1 Y " Tx
In order that the egxpression (1.3) may satisfy the original B

equation with an accuracy of the order €m+1" it is necessary to equate
coefficients of equal powers of € in the right-hand-side of éqggtioné (1.9)
and (1.10) up to terms of the m-th order inclusively. Thusﬁﬁﬁwgbt a system
of m equations for the functionstﬁi ; for i =1, 2, ..., m. Using th;ﬁFourier

series expansion for the functions f(a cos ¥, -aw sin ¥) and Ul(a,W) in the

first equation of the system, we  may determine Aj(a)y-B; () and- U,,lf(a,,‘yéj.mm e

The two Fourier series are

[ o] .
.fla cos ¥, ~aw sin ¥) = g (a) + £ g (a) cos ny + h_(a) sin nw,
o n=1 B n
D © : ) (1.11)
U.(a,¥) =v (a) + I v (a) cos n¥Y + w (a) sin nv¥,
1 o n=2 D n



where

gn(a) -1/2mW fgn f(a cos ¥, ~aw sin ¥) cos n¥ av¥,

hn(a) 1/2m fgﬂ f(a - cos ¥, -aw sin ¥) sin n¥ 4a¥.

Then by equating coefficients of identical harmonics in the

.first equation of the system we get

g,(a) + 2waB, = 0, h, (a) + 2wA

1 1= o
v (a) =g (a)/w2 ' : (1.12)
) o™ ! : : o
2 . 2 o 22
= g,(a)/w (1-n7), w.(a) =h (a)/w (1-n"),

(’/// v_(a)
\\,1> n
Sy
for n = 2, 3, ... Thus we have uniquely determined Al(a) and Bl(a), as well
as all the harmonic components of the function Ul(a,W) exéept the first .

vl(a) and wl(a). However, by virtue of the additional conditions (1.8), -

these functions do not contain the first harmonic; therefore

vl(a) = 0, ‘ wl(a) = 0f~

Lo

Also, we have from equations (1.11) and (1.12),

Al(a) = -l/2ﬁw fgn f(a cos ¥, -aw sin ¥) sin WrdW,
Bl(a) = -1/2Twa fgn f(a cos ¥, -aw sin ¥) cos ¥ ay,
-~ : . <) . N s ’
Ul(a,W) = go(a)/w2 + 1/w2‘ X {gn(a) cos n¥ + hn(a)'sin nW}/(l—nz).

n=2 ‘ . -

By completely determining Ul(a,W), Al(a) and Bl(a), we can apply

similar techniques to the other equations in the foregoing system to obtaidm



S
Yo . 9,

L - .

o R

.higher order épproximaﬁions successively, i.e., the quantities (1.7). By
means of the additional copditions (1.8)7the functions An(a) énd Bn(a)
(n=1, 2, ...) are uniquely determined. As a result, the expfegsions
for An(a) and Bn(a) 4£hus obtainéd ensure the absence of tpfms with
first harmonics in tﬁe.systems of m equations, which in turn enables us
to avoid the appearance of secular terms in the solution.

In ﬁarﬁicular, using the‘second équation in the system of ﬁ eqﬁa-

tions, we obtain expressions for the second approximation

I aaly oL . L
A2(a) = EZﬁZAlBl + A ag- } Ern 0 [U {a, W)f (a cos V¥, | aw%§3n'?)
. FRsE R 7
3 A
(A‘1 cos ¥ - aB1131n Y + uh-—Of (a cos ¥, -aw sih‘W)J‘Sin'W ay,

12 da, 1 '
B2(a) = -Ea{Bl - (Al/a)a;—J - 2ﬂwa O [U (a, W)f (a cos ¥, -aw sin ¥)
Bu, o : e
+ (Al cos ¥ - aB} sin ¥ + w———)f (a cos ¥, -~aw sin ¥)] cos ¥ av¥.
L.

-
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/ § 2 DELAY DIFFERENTIAL EQUATIONS

L ' SR ;/“\

Differential egquations with a deviatihg argument are those in
which the unknown function and its derivatives enter, generally speaking,

under different values of the argument; e.g.,

X(t) = £[t, x(t), x(t- ], T>0.  (1.13)

ot

Equations with a deviating argument describe many processes with time

-

delay. They have many applications in the theory of automatic coh%rol,
the theory of self-oscillating systehs, the study of problems conneét;d
with combustion iﬁ rocket motion, the probiem of_long—rangé planning in
economics, a se;iés of biological problems{/;nd in.many other afeas of
science and technology. At preéent, this theory is 6ne of the most rap- .
id}y developing branches of mathematical analysis.

Consider the differential equation of n-th order with r  devia-

ting arguments

(mb) _ (mo-l)
X7 (v) = £y, X(0), . . ., X (t), X(t = T,(0)), « . .,
. | | | ~
(m,) .
X (t - T_(t)), « « ., Xttt - 1T (t)),
1 r . -
&) |
« - -, X (t - Tr(t))], z (1.14)
where the deviations “T.(t) > 0 , max .m. =n . Herer x(k)(t - T‘(t))
1 G_(_,'lir - l . I RS A,,,,,,,l,, S e

denotes the k-th derivative of the function X(Z) , taken at the point

Z=t- Ti(t) . In equation (1.14), let p = max m, , and ¥ewignate
1<i<r g
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A =m - u. The equations for which X > 0 are called équations with a
t
retarded argument; A = 0 » equations of neutral type; and X < 0 , equa-
tions of advanced type. This thesis will involve differential'equations '

with a retarded argﬁment only. Equation (1.13) with delay T being

constant is a simple example. - {

Consider an equation of the form ) \z_ -
. ‘\’ -
. n m { ) . Y
. Lix(e-n] = I I a X Phe - T = £ (1.1s)
p=0 j=0 PJ ‘ ‘ ! ).

with coefficients apj ‘and deviating arguments Tj's being constants. T~

Then ‘equation (1.15) is called a linear differential equation with constant

coefficients and constant deviating argumenfs. With no loss of genérality,

we assume O = To < Tl < . . . <'Tm . In equation (1.;5), if ano # O_"

-

while the other anj = 0 , then it is an equatidn with retarded argument.

To begin with we consider the homogeneous equation of (1.15),

b

n m (0) e :
I L a xP-1)=0, (1.16)
- ‘ p=0 j=0 PJ ] )

called a stationary linear homogeneous equation with a deviéting'ézgument;

We seek a solution of equation (1.16)‘which has the form ‘ - - {\

& x(t) = &%, | (1.7

where k is a constahttv
Substituting equation (1.17) into equation (1.16) and cancelling -

kt . . , e . .
e , one obtains the so called characteristic equation, = -

L



L . ' lz.c
‘'m - =kT. - : 4
s a kPe I = o0, _ (1.18)
0 j=0 PJ
for the determination of k?. The left-hand-side of equation (1.16),

e

n m " kT,
- : T ek) = L % a .kPe I,

p=0 j=0

is called the characteristic quasi-polynomial. This quasi-polynomial is’

,

an analytic function ever&where. -Equation (1.18) has an infinite set of

roots; the unique limit point is infinity. Each root correspords to a

: K.t 1
particular solution of the form e 1 .. Then the solution of the homogen-

eous equation (1.16), X, (t) with ¢ és a given_fnitial function, can be

»

¢

expanded into a series of these bésic solutions. For differential equationé
with a retapded argument, al;‘rOSts ki of the quasi-polynomial &(k) 1lie:

in a left half plane Re[ki] E;N . Here Re[z] denotes the real part of z. .

All/thé éolutions of eguation (13.16) are asymptotically stable-if all the

roots ki of the quasi—polynomial satisfy the condition Re[ki] < 0 and
are asymptotically unstable if at least on& root has a positive reélypaft

[7]1 The solution X,(t) of equation (1.13) is.called stable , if for any

¢

€ >0, there ‘exists a §(g) > 0‘, such that from the inequality

|6(t) - W(t)| < 6() on the initial sW¥, there follows Ix 0 - xw(t)|'< e

for all- t Z-tb , where Y(t)- is any antinuous initial function. A stable
v w .

solution X

R

oo

(t) is called asymptotically ‘stable , if lim JX¢(t)-7 xw(t)l =0

for any continuous initial function ¥(t) , satisfying for sufficiently small’

61 > 0 the condition . |¢(t) - w(t)l < 61 . All solutions of the linear -

equationvwith_a*deﬁiating argument, L[X(t-T)] = £(t) , and fixed initial
- -»{
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point to (as for a linear equation without deviating argument) are stable,

o:/unstabie simultaneously. For investigations of the stability of some

sdlution x¢(t) of equation (1.15), it'isrpossible, by the change of varia- j
ble Y(t) = X(t) - X¢(t) , to Eraﬁsform the discussion to stability of the
solution X¢At) into that of the trivial solution Y(t) of the correspondiig

homogeneous equation (1.16). ,



§ 3 K-B-M METHOD FOR DELAY DIFFERENTIAL EQUATIONS

4
. b .
~ Since we will consider mainly systems of differential equations

IR

with deviating arguments, straight forward agplication of the K=B-M method

will not be valid. If the deviating arguments involved have a $mall retarda-

o Fe ..

tion, wé can apply tﬁzamethod of expansion in powers of the retardation and
éhe sys£eﬁ1will then be reduced to one in which there is no deviating arg;—
ment. The nonliﬁigr system may then be solved by the K-B~M method. For
the case when the time lag is large, the situation is a bit mﬁre complicated.

Any given & system of two first order nonlinear differential equations,
even with deviating arguments, can always be reduced to a sécond order

- B A

- differential equation of the following'form:

X(t) + aX(t) + BX(t-0) + YX(t) + NX(t-A) = eF[X(t), X(t-4), X(t), X(t=8)],

i (1.19) .
- S

where_g,_é, Y. N are congtants and-A = 0(l). Hence we w%ll egﬁend the K-B-M

_method in accordance with equation (1.19). This method was given for the —

e

first time by Bojadziev and Lardner [4]. —~—

Consider the generating qu;tion of (1.19), when € = 0O,
R(t) + oX(t) + BX(t-A) + yX(t) ¥ nX(t-A) = O. (1.20)

. ) ' zt . .
This equation has solutions of the form Ce  ~, where C is an arbitrary

constant and Z is a root of the characteristic equation

'
- N
) ~.

- s -
Qz) = 22 + oz + Bze 2 ¥y + e = 0, (1.21)
"P & “ . }él
Fi 9
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The above expression for §(Z) is known as the quasipolynomial of the homo-~
geneous differential equation (1.20). If A is different from zero, then
véquation (1.21) has an infinite numberl of roots in the »comple}‘c plane. ILet
z = -§ + iw Jenote a particular root of (1.21).- Then the'correspénding

real solution of (l.?) takes the ‘following form:

X(O) (t)

re[ce "EHEW €

- tv
- . =Ce 2 cos (wt+w ))‘,
3 O O | s
» N g ‘;‘.«

where CO and wo“ are real constants; -Re[Z] is used to denote the real pa1:'5t< >

of Z. We are usually interested in the decaying soiutions of equation (l.AZO) '

; \
i.e., £>0. ; .

Since the systemrbeingoconside!red will involve strong damping and

large. time delay, a modified~ form of the \standard solution in the K-B~M
- ) . v

method for equaf;ion (1.19) is used,

x(t) = refe  E Y 7 oy w4 2P (g + .. L, (1.22)

4 .

where o and Y satisfy the equations
da_ . 2
. gc - 1t era) +e. . .,
(1.23)

b %li'=w+s:Q(a)+_€2... ’ : R

1

7

Then differentiating equation (1.22) and making use of equationslS

(1.23) , we obtain

(1)

ax _ -Ea+iV 9X X S 2
T Re e 77 (ZfeR)]+s{aa + w3y }+ 5. .., (1.24)

+ Al



2 , .
9—}25 = Re[e—€a+ll¥{z2 + €(R' + 2ZR}]
at o LN
2.(1) 2.(1) 2.(1) )
+ e(i—g + 2% + m2§——§— y + €2, . ., (1.25)
aa. - oY ::>
. . .. dr -
r/r/‘ where Z = -&+iw and R(0) = -EP(a) + iQ(e) and R' = ol
V/v ’ -
~ From the expression (1.22), we get
- =Ea,+i¥Y i ) :
X(t—A)}: Rele A] + ex(l)(aA,WA) + €2. . es
-Ea,+i¥ '
ax(t-A) A TTA
e = Rele {z + eR(aA)}],
(1) (1) '
BX X 8 R 2 '.,;_‘&
+ E{ga r(aA,WA) + wsy .(dArWA)} tE .y =
where aA = a(t~A) and WA = ¥Y(t-A).

By integrating the first equation of (1.23) from t-A to t, we get

- da o -, oo — - - PR R [ — - N - = e —
= o0 ‘ |

a(t-A) 1 + eP(a) + €°.

fa(t)

. . 2
a(teh) {1 -¢ep(a) +€°. . .}au

_ _ . po(t)
alt) a(ﬁ[{_) Efa(t—A)‘

Therefore we have {"' ) //"’—

ay = a(t-4) = a(t) - A - EPA(a) + €2. . ey

P(a)da + 2.

e

where PA(a) =’f§_A P(t) dr. Similarly, one can show that

o
¥, = We-) = ¥(e) - wh - (@ + €5 L L,
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where g (a) = 1o, e .

>,

-

Hence we have ~

~Eori¥ ~zA (1) (et ¥md) + €2. . ., (1.26)

X(t-A) = Re[(e Y(1 - EEA)] + eX

%‘t'm = Re[e £a+1‘{’ "2 4 er(o-d) - ezR(w )T
(1) D | o
+ e{%% (a=0,¥=wh) + w%% (a=A,¥-wh) } + 52. . .y (1.27)

where B () = -22%(@) + ig"(ay = 12, R ar.

Then with the expressions given in (1.22), (l.’24,) » (1.25), (1.26)
and (1.27), we can substituté Into equation (1.19) ‘and co’mpa;:e terms of
different orders in €. Thus we have reduced the differential equation (1.19)‘
‘ with time lag to a systgm of differential equétions in orders of € now with
"no time lag. The zero order terms cancelled‘ identically and the first order

€ eguation is as follows:

2X(l)

~.2.(1) 7 29(1) (1) (1)
3°x 97k 2 X 39X
—_— + 22 W= +alzs Fuwugy )
N s d0d? aw{j 30 Y7
N (D) o .
w»_a__, - _ oX A wt (1)
m,,,:,,,.,—{aa (G-, ¥-wh) + wiy (=B, ¥<GM} + yX
ER 1 .
» v
+onx Y (oma, ¥-wd) + Refe 5% (v 4+ 22R)) )
. o
o~ - -2
+ arele”®™1¥5] 4 grefe g“"” ZA{R(a p) - ZR (a)}]‘éfF»‘:l) (¥,
(1.28)
where - T T - o
l - 0 - 3 7- - » - . -
VF( ) £a+lq’],Re[e £0L+1‘Pe ZA]" Re[e £0L+1‘PZ]' Re [e £0L+1‘Pe ZAZ]}.

(a,¥) = F{Rre[e

(1.29)
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We shall seek a solution-of equation (1.28) in Fourier series form,

=+
mY

Vo = 1 x (@el™; : / (1.30)
m=—c . T )
x ) Y
and also expand F(l)(a,W) in Eeurier series,
=+ .
r = 1 Fméa)elmw.

n==% -

From the expression (1.29) fo}xgjl)(a,W), the nonzero coefficients Fm(a) can

7

be determined., Then by substituting (1.30) into equation (1.28) and compar—/

ing the coefficiénts of elmw, for the case m # *1, we have

-

' L ' Lo 202
X0 + (o + 21mm)xm(a) + (oimw - m"w + x)xm(q)

+ ng(a-A)e'imwA + (Bimw +»ﬁ¥¥m(a_A)e—imwAl= R (.

From this equation the coefficientsrxm(q)'may be dgtérmined;readily,,,v

For m = *1, as usual in the K-B-M method, we assume that the first

harmonics are not present in Xl(a,W). We thos have

b ]

gaFl(a). C(1.31)

R' + (2Z + )R + ge-ZAR(a—A) - _B_Ze-ZA fg_AR(s) ds = 2e
Once R(a) is determined from equation (1.31), then P(a) and Q(o) are

known and together with X(l)(a,W) being éomputed,—the first improved

approximation of the solution to equation (1.19) is obtained.

?fx' o ‘.'
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§ 4 SOME BASIC MODELS IN POPULATION DYNAMICS

The mathematical é%d&; of an ecosystem concerning a population
of prédators féeding on a population of prey was initiated independently
by £9£}a and Volterra [5,'6]; who proposed a set of rate equatidns with
quadratic nonlinéarities to describe the interaction of a prey species --
with its predator wheh both pdpulatioﬂs coexist in an ecologica; environ-
meht with finite resources. Invtﬁe Lotka and Volterré‘(L—v) model, it is
postuaiated that the population of spécies 1 (p?ey) would grow ekponentially
in the absence of species 2,(predator), while the‘population of the predator
would extinguish exponentially in the absence.éf its prey. The interaction
between the species is intfoduced throuéh binary coliiSions, solthat the -
‘loss rate of species 1 due to the interaction with;species 2 is p;oportional

to the product of their population sizes, as is the growth rate of species

2. The L-V rate_eéuations for a prey-predator system are given by

1
a - 4N T BNy
av, eI
V—dt = —a2N2 + 82N1N2 r

where Ni(t), for i = 1,2, is the number of individuals of species i at a

given time; ai is the intraspecific coefficient (innate capacity for increase

per individual) and Bi is the interspecific coefficient; they are all.

positive constants.

"A deficiency of the L-V model is the non-existence of a saturation

) -
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level for the population of the prey species alone which, in general, does
not grow indefinitely in a given environment with limited space and resource.

In order to incorporate the saturation effect, Gause and Witt [7] in 1935

introduced a self-interaction term for the population of the prey Nl . - The
" modified equations for the so called V-G-W model are
le X
qt - M (1 Ny/O) - BN,
(1.32)
—2 - 4N, + BN.N )
“dt 272 2712
where O is the carrying capacity (self-saturation level) of N, . For O + »,

1
the system (1.32) reduces to (1.31).
Some authors have studied system (1.31), or similar systems, by

qualitative investigations on the phase plane{“for instance, GoeIfﬁMaitra’r
and Montroll [8] in 1971. Since an exact solution of the prbposed problem
has not beén obtained so far; then one could go éboﬁt seeking an appro-
ximate solution. The standard proéedure is to linearize the nonlinear equa-
tion in the neighborhood of the equilibrium point in the phase plane, and

assume the effect of the nonlinear terms to be small. Under this assumption,

the elegant asymptdtic method of K-B-M could be applied to determine the

‘'weak nonlinear effects. An attempt to find an approximate solution of system

(1.32) using the K-B-M method was made by Dutt, Ghosh and Karmakar [9] , but = = ___
mistakes of principle character were made due to incorrect consideration of

those different € order terms generated from the nonlinearity of system (1.32).
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-

A more general V-G-W model which is described by the nonlinear

system of ff::%‘brder differential equations

-

where al

and £_ , .

1

recently

it

Y
——l-=aN[k-N/O—f(N)] N
dat 17171 1 17727 ’

(1.33)

2 .
G - ok, - M)k
’ a2 p kl P k2 are constants, © is the saturation level of Nl P
f2 are analytic functions of their arguments. This system was

studied in a paper by Bojadziev [10] and an approximate solution

was obtained by means of the K-B-M method. The>system (1.32) , which is a

particular case of (1.33), is considefed in detail also in that paper.

The approximate solutions for system (1.32), up to the second order, are

given.

N



22.
CHAPTER 2

~

§ 1 V-G-W MODEL WITH TWO LEVELS OF SATURATION

Let us considér a further modéfication of fhe Volterra, Gause
and Witt (V-G-W) model by incorporati another saturation level for the
second species. This includes the effect of compétition for food of .the
" second species amoﬂg themselves when ité pépulation size Qetgﬁlérgé
which will lead to’a decrease in the population eventually. The.system

ofTionlinear differential equations describing this model is

Ny

T - N8 Ik o N ()0 — o N8 ]

an, 5 | | e (2.1)
- T - N[, GZlNl(t) - u22N2(t)/92] '

where Oi is the carrying capacity (self-saturation level) of Ni and
K.'s, a,.'s are positive constants, for i,j = 1,2 . The non-zero

equilibrium positions can be obtained from (2.1) by setting

i=1,2; then we get

LT o3/ T %% 70

Ky ¥ 05dy = 05a/0,) =0
The solution of this system is
. = K1%227% * K%,
+ .00 ’ _
1 0)0y,/8,8) a0,
- 0, + -
o = 7% T K%
- )
2 090,,/0,0, T a0,
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We are interested in the small vibrations occurring in the
vicinity of the equilibrium position (ql,qz). In order to accomplish

this, we use the tranformations

N,.(t) = q, + eX,(t) ,. .oi=1,2 , L (2.2)
1 1 1

where € is a small positivepmrametef (e << 1) ; Xl(t) and X2(t)

a

are the two new variables. Substituting (2.2) into the system (2.1),

dividing by € and keeping terms up to order of 82 , gives

&
—L——a x-s(2bx +0L xx)-rs2 /
ac 12%91% 17 f12%1%2 by X,74y ,
dX, 2 2 23 ’
Tt - %p19p%y T E(2b X, - O‘zlxlxz) - € 2by X, /q, .

where the terms aiiqi/ei , 1i=1,2, are,smali when compared to the
frequency of the linearized system of (2.1). Hence we let

. 0..q./0, = €2b, . Also, the terms -¢e(a,./0.) X%‘ can be written as
iisi’ i i ii’ 7i i ,

2, 2 . . . i .
-€ (2bi/qi) Xl and therefore are not considered as first order. terms in € .

~

The linear system of (2.3), for € = 0 , can be reduced to the

- following form: >

. 2
xl + k xl —‘0 P
S (2.4) \
, R, +xx, =0, , 7 7\\;
. dxi'. 2 ’ .. ' . /
where X, = , 1=1,2 , and k¥ = 0a_,0,.9.d,. . Note that for the
i dt2 27217172 :

linear case we have q = Kz/q21 and q, = Kl/oa12 .
The solutions of system (2,4) are - : : L

Xl(t) = Plcos(kt+n) e » o o

X2(t) =~P2s1ngkt+n) ’
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-

where n 1is an arbitrary constant and the amplitudes are related as

~

P o -
1_ %2 &
IR APYAS R I

2 %1

Since xl and x2 ‘are related by the/first equation in (2.3),

can be derived from the knowledge of X and X. .

the solutlop for X 1 1

2

only; and from the

Henceforth we will consider the equation for X

1
nonlineér‘system (2.4) , we gét ) - ' o \{
X+ k%% —E(-27b').( + 2b £ - K2%2/q. - 0. XX - 0 -0 .q.X.X)
1 1 1°1 29129 %% 179 12°1%2 12%21%1%1%7
+ €2(-4b. X.X./q. + 2b.0. . q.X°/q. + 2b.0. X.X. - 0. 0. X°X.) \(25)
1717179 2%1291%279 2%12%1%2 12%21%1%27 - y

In order to apply the K-B-M perturbation method, equation (2.5) is reduced
to the following canonical form:

.. 2 .
xl + k xl = E:f(xl,xl) ’ o (2.6) \ |

where

. . . . 2 2 ) - -2
= - - +
£(X, X)) 2(b +b,) X, = K X/a, + 0, X X+ X /a)
4 E(-4b.b.X. + 2b.0..X° - 2b.X.X./q. + 2b.a. X2/k2 - X.%2/q0) + €2, :
, 17271 1%21%1 1%1%17% 2%21%17% 1%/9)7 T F e g

We shali.seek a geheral solution of equation (2.6) in the form
Xl(t) = a cos ¥ +v€U1(a,‘i’) + €2U2y(a,‘£’) + 83. . .

with a(t) and VY(t) defined by

da .2 3
rr Al(a) + € A2(a) +7; e e ‘ E
. o - (2.7
ay 2 3 ‘
el s r-:Bl(a) + e B,2(.a) + €. .

We ‘are interested in the first order approximate solution of equation

(2.6) and f(xl,il) in (2.6) takes the following form:



. - . + , . . :
f(xl,xl) ﬂo(xl,xl) le(x1 X,) - - .

] s ' ‘ .
Then using Taylor's formula for each_of the Mi'si for i = 0,1, the

25.

L

’

above expression becomes

M . 2

f(xl,xl) = M (a ¥) + €M (a,¥) + e°... .

- + sM (a ¥) +€M(a \P) +s3... ‘  (2.8)
. 2’
_ = Mo(a,W) + E{Mo(a,W)'+ Ml(F,T)} + e,
where ~ - - 7
g(a ¥) = Mo(a cos ¥, -ak sin ¥) ,
0 . ' '
, l(»a,‘l’) = M (a cos Y, -ak sin V) , <
1 aMo S
0(a ‘P) = Ul -é-x—; ‘(a cos ¥, -ak sin ¥)
'aUl oM
s+ [A cos Y - aB s:Ln‘P+k-——:|—(a' cos ¥, -ak sin V) . -
/ 1 1 av .
] axl

Thus, according to the K-B-M method, we have

fo(,a,‘l’)‘= Mb(a cos ¥, -ak sin V) , ) ' } * (2.9)
« > . A - dA - dB
£ (a,‘l’) = Ml(a ¥y +Mo(a ‘P{), + (a.B2 A -—-—) cos ¥V + (2A B fan —) s:.n‘l’
1] o’ 1! 1 "1 da 1 da
with _
A_(a) = —l/2ﬂk'f2ﬂ f (a,¥) sin ¥ a¥
1 o o' et
- . (2.10)

B. (a) = -1/2mak f21Tf (a,¥) cos ¥ a¥ . ‘
1 0o 0"’

From the expressions (2.6), (é.8) and (2.9) we obtain

fo(a,‘l’) = 2(b1+b2)ak sin ¥ - (a2k2/ql)cos 2¥Y - %d. a2k sin 2Y .

21

.

Hence the non-zero Fourier coeffi’cients(‘;gf M (a cos ¥, -ak sin Y) are- S

0

-

_ - e
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. 22 ~
g2_ ak/ql ’ =
. e
= +
h1 2(b1 bz)ak ’
' 1 2
= - =0 -
hy = -2%n2 %7 -
so /formulae (2.10)
4" A, = -h_/2k = - (b +b_)a
- 1 1 172 ! ‘\'
. By = -9 /23K = .
Thus, up to the first order, we get .
—d-§=-€(b+b)a=— q/@ + a q/@)a,
at ... 12T *11% 2272
av _
) 7 dt—k '
ﬁhich have solutions 1
-= +
: 5 (@73,/0) + 0),q,/0))t
a(t) = Pie , ’
v 1 (2.11)
Y(t) = kt + ko . ' -

where P1 and ko are constants of integration. Therefore the first

approximation of equation (2.6) is

- q,/@ +0..g9./0.)t
a“’v Xl(t) = Ple 11 1. 2272 2 cos Kt + ko) .

Al

In order to derive the first improved approximation, Ul(a,W)

is expressed in Fourier series with the form
[s o]

Ul(a,W) =v (a) + L v (a)cos hW + w (é)sin nY ,
o n .

»

n=1
" where
v (a) = g (a)/k% ,
0 9p'8 '
)
vn(g) = gn(a)/k (1-n™) ,
w (a) = h (a)/kz(l—nz) ’ n=2,3,-2. .+
n n

S

\
-
N
5
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Therefore weshave ~ - .
3 -;;‘ ° X N
— & ) VO = Vl = 0 ’ . -
2 <
vy = a/3q " -
w. = 0 a2/6k | -
2 21 ‘. %

and otherwise zeroces. Thus the first improved approximation is'given by

‘Xl(t) = a cos ¥ + E(a2/3){(l/ql)cos’2W + (a21/2k)sin 29}, - ”T2ai2)

7 A : )
Since Bl‘= 0 , in order to obta%g/d9§éndence of tﬁe phase on the.

amplitude, we have to calculate the second approximation. From expressions
(2.7), (2.9), (2.10) and (2.12) with a series of elaborations we get
12 ”

£ = =a“ + :
@) = 3a% (by+by)ay,

/12 +/a3k2/l2qi + a(bl+b2)2}cos‘¥

o 3 2
+ {- +
r {-4p)bra + a%a,)

+ (0)sin¥ + other terms of higher harmonics;

then - . ‘ : , | )

_er , _
Az(a) -1/2mk fq fl(a,W)51n‘PdW =0,

B,(a) = -1/2mak fé"fl(a,W)cosq'dw (2.13)

1 v2 . 2,2 2, 2
- 5 {o=b,) " + a%(a, +k%/q))/12} .

Also from expressions (2.8), (2.11) and (2.13) we have -~

1

-=(a,.q,/0. +0,_.q9./0)t

at) = B e 2 71171 T 2% ,
2. 2 '
¥(t) = kt{1- (1/8k )(allql/el - azzqz/ez) } (2.14)
5 az(azi + kz/qi)—
+ e — - +k , L
24k (@),9)/0; +a,,q9,/0,) 0 v ;

together with (2.12) as the second approximate solutiop for the nonlinear

-

differential equation (2.6).
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By taklng the limit.as Ol ’ 02 + © in the expressions (2.11),

- -
we obtain the first lmproved approximation ‘for the L-V model (1. 31)w ‘ ;

Xl(t) = a Ccos IP + (aZB /3){(1/(1 ) cos 2‘}1 + (l/2k)sin 21P}
* . o o 2 T2
with VY(t) = kt + ko and ga(t) =a, whére k = }aiaz)%';fJi

C e e

EAN

: L]
In u51ng the K-B- -M perturbation technigue, the calculatlon was -

fﬂ?

based on the assumption of small flhctqgﬁlons of the populatlons of species

L
N1 and N2 about their respective equlllbrlum levels. Esseptlally, this
- - . ( .

means that both a/ql and a/q2 - are small quantities. Hence the q ita<
tive features shown by the first order results may not be true forf large
nonlinear fluctuations.

From the linearized system (2.4) of the V-G-W model we haveg..an
< R
expression for ‘the linear frequency which is dependent on the intraspecific .

coefficients

Kir Ky and the other coefficients as well, in contrast to the

L-V model, in which case the linear frequency depends only on the dintra- . e

specific coefficients, al and a2-. The extra dependénce occurs merely L

due to the presence of two saturation level terms. ' ~

¢ - v V \ V
For the first approximation, the frequency of oscillation is found -

to be the same as in the linear case, since Bl = 0 , and the amplitude is

expdnentially damped. This damping effect appears due to the two saturation

levels, since aii and qi‘ are poéitive cohstants, and the power of the

damping factor can be zero only if Gi +®  for i = 1,2 . Consequently,

the amplitude in the V-G-W model is shown to be decaying exponentially with

a small damping constagtrf -%(aliqlfef -+ 622 2%92) ‘-efb1"+4b5?*74wh11e~1nvf—Affguf

=
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the L-V model it is just a constant. Nonlinearity is then exhibited

through the dependence on a(t) in the expression (2.12) for Ul(a,T) .

Further, the dependence of ‘T(t) on a(t) 1is revealed in the second

approximation through the term B2(a) which is given in egquation (2.13).

4

This woulgd;mean that the period of the harmonic terms stays constant,
21/k , in the first order solution, with a correction factor occurring
in the second oxder solution. In féct,«we can see from the second egua-

tion in expressions (2.14) that the period,

e

20 . 2,4
‘ am/[k{1 - (1/8k")(a))q,/0, - @,,q,/0,)7}] ,
~—~ \ .
is actually increased.’
Py T)-i
L
-
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~ § 2 V-G-W MODEL WITH SMALL TIME LAG IN THE NONLINEAR

%

PART AND TWO LEVELS OF SATURATION

It is known in ecolquxthat the degree of pattern regularity in
population oscillatiéns depénds on £ﬁ¢ population history. Pertufbations
applied to systems may have aftereffects which -do notlshow up until a
certain tiﬁe after they HaVéibeeh appliea.?rThis is the effect due to -
~time délay mechanisms. The previous V-G-W model (3.1) is generalized to

incIude deviating arguments in the nonlinear part as follows:

1 N _ o _
EE—'-"KlNl(t) allNl(t)Nl(t A)/@l al2N1(t)N2(t Ay
sz ‘ | /_ — - ; - (2.15)
Fraale —K2N2(t) + aleZ(t)Nl(t—A) - a22N2(t)N2(t-A)/®2 ,

-, -

where Oi is the saturation leveLafof the species Ni , Ki , and
= .

aij >0, for i, j =1, 2.

Since the devietlon is small, we can use the method of expansion
in powers of the deviation and thus reduce thg system to.one without déviav
ting arguﬁent. Then the method of K-B-M may be appliedri}rectly to solve
the system. We let the time lag A = €T , where € << 1 ; therefore one
can expand Ni(t—et) in powers of the fetardation éT using the Tayior

series expahsion as suggested in El'sgol'ts [3] and get

N.(t-eT) = N, (t) - €TIN, (t) + 8212N.(t)/2!
1 1 1 A

™

- ..+ (_l)memeN;m)(t)/m! ., i=1,2. (2.18)

With € = 0 and setting >dNi/dt = 0 in system (2.15), we
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obtain the nonzero equilibrium position- (qi,qz'} ‘which is given by
o = K1%9279 * K509,
+ 1
1 0g05570,0; F a0
- +
o = 2%117% * 1%
+ v
2 097055/0,0; Yo, 05
As in the previous case, the substitutions
* .
= + i = .
Ni(t) q, EXi(t) ' i=1,2, (2.17)
are used and expression (2.16) becomes
2 . 3.2 _
N, (t-€T) =g, +eX, (t) ~e X, (B)+e7 17X, (t) /2 - ... . (2.18)
i i i - i i

By substituting the expressions (2.179 and (2.18) into the system (2.15)

we then have

)

at - %129

+

ac - %21%%

+

X. +e(~-2b . X, - 0. . X.X_ + 0

2

B 2 2 iy
- +
e ( 2blxl/q1 2b_TX

151 7 %% %y T 09 TX)

1 2. 3
- X +e3 ...
1% 7 2% T X))t e '
(2.19)

- + - 7
+ g 2b2x o, .X. X ' azlquxl) 7

2 2 e 1
- + + =
e ( 2b2X2/q2 2b_TX

2 21172

27 3
2™ * 30Tt X))t e ..

where aiiqi/@i = €2bi are assumed to be small quantities, for i = 1,2 ;,

and therefore €d, . (X?
ii*i

Hence for ¢

2 .
where k fa12@21q1q2

- P

[ ] . 2
qi‘l.'Xi)/@i are considered as terms of order € .

0 , the linear system of (2.19) is

. ee 2
+ =
Xl k Xl o,

. 2 . -
X +k,,x2;,0,,,7,, N

This -system-possesses—a solution of -theform

\



>
i

1 Plcos(kt + n) ,

[y
]

5 PéSln(kt + n) ,

where P, s P, "and n are constants.

The canonical form is obtained by differentiating the first

equation once in the system (2.19) and using the second one to eliminate

e

X2 - Then system (2.19) is reduced to the following differential equa-

2
tion, up to terms of order ¢ ,
T
. 2 2 _.¢° 2.2 2
+ = -2 +b_-k - + +
:xl L ef (b+b, k"D X, - k"X]/q; VN azlxlxl}
J

2 +2 *2 2
[(2b2/k”?—T]xl - X X]/q }. (2.20)

+ € { 4b.b X, + 20 .b.X° - 2b /q 1

+
1°2%1 21°1%1 1%1%079 Y oy

- And similarly‘we have

- 2 o 2 2.2, =2 .
X, + kK'x, = s{-z(blisg-k X, .k,xz/qz + X2/q2 alzxzxz}

2, 2 ' 2 *2 °2 2
+ € {-4blb2X2 -~ 2a,,b X, - 2b.X X2/q2 - a12[(2bl/k )-T]X2 - X2X2/q2} .

Now we shall consider equation (2.20) which in standard form is

- -

X+ k%%

1 1 T EE(X X))

b

=

eM_(X.,X.) + %M (X, ,X.)
(o i | 17177
This is similar to the case in the previous section, hence we have

£,(a, ) = Mo(a'cos ¥, -akisin ¥

. T (2.21)
fl(a,W)‘= Mo(a,W) + Mlga,W)
5 dA : ‘ dB
+ (aBl - Al a——0cos Y + (2A1Bl + aAl af—051n Y.

From equatlons (2 20) and (2. 21) we get

fo(a,W) = 2(b +b -k T)ak sin ¥ - %a 12 k sin 2¥ -~ (a k /q Ycos 2Y¥ .



Thus the nonzero Fourier coefficients for fo(a,W) are

»

2.2

9, = Takaq .
h, = 2(b_+b —sz)ak
1 1 72 !
1 2
h2 = -2a ka21 .
Therefore we have _
. , L,
= e + -

. Al(a) (bl bz,k T)a , 'ﬁ
‘ Bl(a) =0 -

Then the amplitude is given by
2
-£(b_+b_=-k
( 1 b2 nt

=P
a(t) le
/8, + 0,4/, - 2k°M)t
(0,9 229
=P_e ,

1

and the phase is
Y(t) = kt + ¥O ,

"where P1 and WO are integration constants. Further, we have for the

first improved approximation,

(1) -

Xl(t) =acos ¥ + ¢cu (a, W) ,

where

(1)
v 1

l \
(a,¥) = E-az{(l/ql)cos 2¥Y + (a21/2k)sin 2¥} . ' (2.21)
Calculation of the second approximation is necessary in order

to obtain dependence of the phase on the amplitude. From expressions

(2.19), (2.20) and (2.21) we get

S
fl(a,‘P)— 0 a (bl+b2)eL21

2 32,2 0 .2 29
- + +b -
+ { 4blb2a+a21/12-fa k /12ql a(bl b2 k“1)°} cos ¥

+ (0)sin¥Y + other terms of higher harmonics,
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so we have

il
o

27 .
Az(a) v-l/ZWk fO fl(a,W)51n ¥ qy

]
(@]

27
B2(a) ~1/2mak fo fl(a,‘i’) cos ¥ a¥

o 42 2. .42 2,22, 2
-(1/2k){(b1 b2) 2(b1+b2)k T +.k ™° + a (a21+k /ql)/12} .

As a second approximation-we have

' 2
—H(allql/el + a22g2/@2 - 2kA)t
a(t) = P_e :
1
Y(t) = kt{l + %[(0,.9./0, + a..q./0)A - k2A2 - —i—(a q./0.~0..q./0 )2]}
} 11°1° "1 2272" "2 4k2 11717 "1 "22°2° "2
2 2 2 2,2 2, -1
+ € (1/24k)a (a2l + k /ql)(allql/e1 + a22q2/62 ~ 2k7A) + Wo

In the first approximation we can see that the amplitude is damped
and the'dampiné g&nstant depends on thersaturation levels Ol, 92 and also
the time J.ag A . But the pﬁase remains the same as iﬁ the linear case. ‘\__'g
Complicated dépendence of the phase ¥ on the amplitude is obtained in the
"second approximation. Ohe can see that the improvement of the phaée consists
of twohain parts: (1) a small correction to the linear term kt due to the
saturation levels and the time delay A , (2) ;n exponential term a2 with

a fractional factor ihVolving all the parameters of the system including \E

©.'s and A .
1

]
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§ 3 V-G-W MODEL WITH SMALL TIME LAG IN THE LINEAR PART

AND TWO LEVELS OF SATURATION

This model is described by a nonlinear system involving small

time lag in the linear part of the describing equations:

dN
1 _ e - _
E‘E— = Nl (t-A) [Kl - allNl (t)/ol O‘L12N2 ()1
an, | (2.22)
= = Nz(t_A)[_K2 +o N (8) - e N (£)/0,] ,

where the time lag A is assumed to be small and we let A = €T .

AN
At equilibrium, with :ﬂ% =0, 1i=1,2 ; we get
.
o = K1%27% * K%
+ r
1 o« /6162 a12a21

11722

- +
@ - %179 * 1%
- .
2 alla22/0162 alzazl

Again, we use the substitutions ™

\‘a
N, (t) = g, + €X, (t) , i=1,% . -~ (2.23)
i i i
2

Also expanding N, (t-€T) wup to order " , wixEESé\

2 . . \
N, (t-€T) = q, + €X, - €°TX, . ' , (2.24)
i i i i L ) '

Substituting expressions (2.23 and 2.24) into the system 2.22) we obtain

. ’ 2 . 2
= - - + + -2
xl qlalzx2 s(zblxl allexz) £ (Tallex2 blxl/ql),
) , (2.25)
X = @0 X - e(Zb.X. - 0. X.X) + e2(-ta, %X, = 25.X2/q)
2~ L% 22 T %2171%2 217172 22/’

where aiiqi/Oi = €2bi . Note that terms involving T occur in the
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-
w

2 ) .
order of € only. System(2.29 is reduced to canonical form by

- differentiating the first equation and eliminating X_- by means of the

2
second equation, we then have X
! X+ k%X, = e£(X.,X.)
) 1 1 11 (2.26)
where £(X.,X.) = [=2(b.+b )X+ (X - kK2X° )/q. + 0. X.X.]
1'% T 172’ 17707 %1%

) 2 2 . 2.2 2 2
- - + -
+ ef 4b b X +2b.a . X] - [(2b +k T)/ql]xlxl (200, /k )X] - X X /a] },

and k2 =

919%12%1
Applying the K—BJM;method, we observe that the. first order and

. the first improved approximations coincide wi?h the results obtained in

Chapter 2 §1, i.e.,

Bl(a) =0, , (2.27)
u. (a,¥) = l-az{(l/q Ycos 2¥ + 'lﬂ(a /x)sin 2¥}
177 3 1 2 21 :

Dependence of the phase on the amplitude may be obtained by
deriving the second approximation. From expressions (2.26) and (2.27) we get
R .
) = +
fl(a ) = a (bl b2)a21
3.2 3.2 2 . 2
+ 1- +a’ + + +
{-ap.boa+a’a,]/12+ak"/12q] + a(b +b,) “}cos ¥ $
+ (0)sin Y + {(2b1 + sz)aZk/qu}sih Y+ . ..
One can easily compare with the results obtained in §1 and see
that Az(a) and (Bz(a) are also the same, with L

Az(a) =\U7J

- _1 42,2, 2 2 2
B, (a) ( /2k)_{(1o1 b,)"+a"(a,] +k /ql)/12} .
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-

Hence, up to the second oyder approximation, the small time lag
terms occurring in the linear parts have no effect on the small vibrations:
in the vicinity of the equilibrium position. Difference méy be anticipated

in higher order solutions but it is of no interest 'to go any further from

here.

™
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§ 4 THE W-C MODEL WITH SMALL TIME LAG
In this section we shall consider a‘special case of the non-
linear Wangersky and Cunningham (W-C) [11] model in which the growth
o ’ . '
rate of the predator speties may depend on the interaction between the

populations of the two species at a small time prior to a given moment.

This model is governed by the following system of equations:

le
'd—t' = alNl(t) [1- Nl(t)/O] - BlNl(t)NZ (t) .,
(2.28)
dN2 e o
wrale -aZNZ(t) + Blejt—A)Nz(t-A) '

: -
where ai,Bi >0 and A is the small time lag, © is the carrying

capacity for N
- 1
: " , le 2
As in previous cases, with € = 0 .and setting dt, =0,
P

the non-zero equilibrium populations then obtained-are
= = - .
9 /By 0 a, =0, (1-a,/80)/8
By using the transformations

t) = q, + X, (t i = ‘
Ni( ) q; exi( ), _ i 1,2, ‘ \

1
in the vicinity of the equilibrium position (qi,qz), and the expansions
for Ni(t—A) , with A =¢1 ,

2 . 3 .
N, (t-eT) = q, + €X, - € TX, + ¢ (T2/2)X. - e
1 1 1 1 1

System (2.28) then becomes

dxl . ° o ° : 2 : - oo T T T T T T
— = - + (- - X_) + €e°...
e qulx2 €(-2bX, lelxz) € - -
(2.29)
—2_ 8 gx +6eB (XX - TqX. - Tq.X.) + €2... ,
at 23% 2'%1% 2%1 12 ;
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where alqi/@ = g2b is a small quantity.

The linear system of (2.29), with €& = 0 , can be reduced as
. 2 , ’ :
X. + kX, =0, _ (2.30)

2
1,2 ; where k = e, -

for 1i

For the nonlinear system, with € # 0 , after some manipula-

tions o0f the two equations in (2.29), we obtain

.. 2» 2
X. + kX =€{0L2k X

2 .
1 1 - (2b - k T)x1v+ B

1 2X1Xl

2

. 2
- (k Xl

- %D /q} +ote?) L (2.30)

where ‘k2 = 8182q1q2 . Then expanding the right-hand-side of equation

(2.31% by Taylor's formula we get‘

. N 2
Xl + kle = efo(a cos ¥, -ak sin ¥) + O(eg")

where fo(a cos ¥, -ak 'sin ¥) = (2b J'sz)ak sin ¥ + aésza cos ¥

- 4B,a’k sin 2¥ + (a’k?/q ) cos 2¥ .

. . . pe) .
Hence the non-zero Fourier coefficients for f (a cos ¥, -ak sin ¥) . are

go=o ’
2 ) 2
= k = - T
gl a2 Ta , ,hl (2b k T)ak ,
2.2 2-
g, =ak /ql ' h2 = - &aza k .

Thus we have, according to the K-B~-M method, - — - - .

- I - ,,,,2 — — P —
A= - o= -~a(b - 1) ,
B, = -—El-= ~ka kT
1~ 2ak 20 " ~
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Since a = €A, , S, 5
—€ (b-}k°T) t a(0)9)/0 -k A)e
aoe = aoe .

it

a(t)

Also, Vo= k + eBl , and oo

3

Y(t) = kt - eha kTt + ¥ = kt(l - %0 A) + ¥
2 o 2 o)

where a, and Wo are constants of integration.

With
U.(a,¥) = g /K% - (1/3k%){g. cos 2¥ + h_ sin 2¥}
143t = 9, , 93 2 St ’
we thus get

X, (t) = a cos ¥ o+ €(a2/3){(l/ql)cos 2¥Y + (82/2k)sin 2¥}.  (2.32)

Now Xl(t) is determined as a first improvéd approximation. For equation

(2.29) with Xl(t) known, X2(t) can be solved and is given by
X2(t) = (a/Bl){(k/ql)sin Y - (al/2@)cos ¥} - %aABZ{(k/Sl)sin ¥+ q,cos vl
2 .
+ ela /3qul){(k/2ql)51n 2Y + 82 cos 2¥} .

The linear frequency remains the same as in the case without
time lag. In_the first order correction terms, there are contributions
from the time lag for both the amplitude and frequency. The amplitude is
damped exponentially with a small.coefficient of decay or grthhrwhich
takes the form G = -€(b - ksz) = fk(alql/@ - k2A) . If alql/e > k2A ’
then G < 0 and the amplitude is decaying; if - alql/@ < k2A , then
G > 0 and a 1is increasing. Tﬂe coefficient G is zero when

2 :
alql/@ =k , which implies that the fluctuations Xl(t) and Xz(t)

are periodic. As a particular case when there is no saturation level

(6 > ©) and no delay (A =0) , G is zero. The reéﬁiﬁrdegeﬁerates to
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that for the L-V model. The introduction of a saturation 1eve1 term
causes some sort of decaying damping effect. But fhe iﬂtfoduction of
a small time lag ﬁends to diminish the~damping effect, and to cause
growth of the amplitude. In‘this case, Bl is dffferentrfrom zero, and
a small cor;ection' - % azkA to the freéuency is determined. Thg;phase
¥, in the first approximgtion; is ;ndependent of the amp}itudeAbut depends
on the tiﬁe lag. Due to this dependence, the period of the harmonic terms
in the so;ution'for xl(t) , expfession'(2.32), is influenced. For
instance, the period of cos ¥ is %E%l + %azA), up to the order of €. .
Hence the introduction of a small time lag tends to increasevthe period,
%g—, of the solution of the linear system (2.30). | |

Thé first order correction terms to acos Y in Xl(t) involve
the harmonics cos 2¥ and sin 2¥Y with sﬁall amplitudes_of the type

r

€a2Cl , where Cl is a constant depending on the given parameters of the
system (2.28). Correction terms of the same nature. appear in the

expression for X2(t) as well. In addition there are correction terms,

due to the presence of time lag, involving cos ¥ and sin ¥ with small

— ) ,
N amplitaaésng/;héf¥grm AaC_. Also there is a small correction term
R - . .

2
involving cos ¥ with the amplitude a in the form (a/O)C3 . Here

C and C depend on the given parameters too.

2 3 A ‘!




CHAPTER 3

§ 1 A SPECIAL W-C MODEL WITH SIGNIFICANT TIME LAG

. -
&"‘J

p

1 o , .
} A special W-C model is investigated which involves a deviating
argument for the predator species only in the nonlinear part of the second
eqﬁatibn. This will account for effects on the growth rate of the predator

due to its population size at some time prior to a given moment. The model

is described by the following system of differential equations:

le
F= HN (B 1-N()/6 - BlNl(t)NZ(t) '
, an, : (3.1)
r L - = - .
dt azNz(t) + Ble(t)NZ{t_A) ’ -
where 0O 1is the saturation level for the species Nl , and ai's, Bi's > 0,
for i = 1,2. Here the significant time lag A is not small and has the
same order as the parameters ai's and Bi's . Even the presence of signifi-

cant time lag for N2 only in the nonlinear part of the second equation -

introduces a lot of complications to the problem.
The equilibrium position (ql,qz) is also given by
q, = 0L2/B2 ' q, = (al/Bl)(l - 32/829) .
Again we use the substitutions
= + i=1,2.

Then system (3.1) becomes




= —qulx‘z'—’s:(_szl + lelxz) , .

\ ax, ' (3.2)

T "%, f qule + a2x2(t-A) + sBlexz(t-A) ..

where €2b = alql/O. Here we cannot expand Xz(t'-A) in Taylor series since

A is not small. Systém (3.2} becorqes, after elimina'tinrg X2 ;- S

.’_ . ‘ . v 2
R, + az)g{ Ca,X (e-B) + KX

4 . kY

oy 2.2 _ . .
1 + 2a2bxl(t—A) -k xl/ql + 282X1_X1(t-A) |

°2
= -2 -
_ e{-2bx. + Xl/ql 2a2le

- B X, (t-A) X, (£-0) }, o (3.3)

2 ) - - . '
where k* = B.B,q,4,. » J

For € = 0, we obtain the generating equation of (3.3)

- , . o‘ . 2
X, + azfxl - xl(t-A)] + k’X

1 =0, | (3.4)

1

which possesses solutions of the form CeZt , where C is an arbitrary cons-

tant and 2 is a root of the characteristic equation

£(z) = 22 + cxzz + k2 - ozzze_‘zA = 0. - (3.5)

,The above expression for {(2) is called the quasipolynomial of equation

P 3

(3.4). 1I1f A is different from zero and 2nw/k, for n = 1, 2, ..., equation

o

(3.5) has an infinite number of roots in the complex plane. Let Z = ~-§ + 0y =

denote.a particular root of -equation (3.5). Then the corresponding real

2



- will lie to the left of the imaginary axis is that

) , T T -

solution of equation (3.4) to this root takes the forﬁ' 'i -
. \ . L

Xéo)(t) = RETCE(-€+iw)t] = aoe-Et cos(wt+wo),, f (3.6)

~

where a_ and w  are real constants and Re[Z] is used to denote the real

part of Z. We are usually interested in the decaying solution of equation

(3.4), i.e., £ > 0.

In most cases the investigation of the stability of the

solution of equation (3.3) is similar to the investigation of the stability
of the null solution of the linear equation (3.4). It is known that (from
Bellman and Cook [12], or ﬁl‘sgdi'ts {3]) the null $olution of the n;;linear
equation (3.3) is’asymptoticélly stable if all<the roots of the charactérisQ
tic equation (3.5) have‘neéative real parts. Referring to the‘bbok by

Eellman and Cook-(Theorem 13.10), one can see that the conditions stated
in this theorem-are fulfilled by thé céefficients_of'equafion (3.5). fhe

.

necessary and Sufficient condi tion such that all the roots of §(2).= 0

S 1-coso >0, . (3.7)

wnere 9 (n > 0) is the sole root of the equation

tan 0 = (-sz2 - 02)/a2A0f

which lies on the interaral (nm-%m, nﬂ+&ﬂ); The number r is defined as,

§}pgg -avA < 0, the even n for which o lies closest to kA. Generally,

+ * -
" conditidn (3.7) can be satisfied except when Qr takes on the wvalue of 2nm,

forn = 1, 2, ... The case when Ur‘= 2n1 would im?ly that A = 2nn/K and



@
i

‘this has been excluded as mentioned earlier. Otherwise, purely imaginary
roots would result instead. Thus all the roots of equation (3.5) have

negative real parts. This would mean that the null solution Xl o= 0 of
’ .

R oo
“the nonlinear equation (3.3) is asymptotically stable. Similarly, elimina-

& ,

" _ ting Xl from the system (3.2) will lead to a nonlinear equation in terms

2

of X, of the type (3.3) with-the sémé}Hinear part and hence the same cha-
racteristic equation (3.5) will be obtained. Therefore the null solution

X2 0" 0 is also asymptotically stable. Taking into account the substitu-
14 - -~

tions, Ni(t) =d; +-€Xi(t) , for i =1,2 , it follows that the populations

Nl and Né will be asymptotically stable in the vicinity of the equilibrium

pos;tlon'(ql,qz)

—t




"'="":_‘J‘; ’ ' § 2 ASYMPTOTIC SOLUTION
-

s

~ﬂerattem§t now to find an asymptotic solution for ‘equation (3.3)
Some nonliﬁéar eqﬁationsvsimilarrto~(3.3) have been studied previously by
Minorskyr(1962), Rubinik (1969), anq‘Mitropolskii and Martinyuk.(1969).
However, all the models:considered involve nonlihear‘equations eitﬁer with
small time 1ég, or with signiﬁféant time lag takingrpért only aé gg;ilrggg:v
linear terms. . Besides, the characteristic equations corresponding to the
models investigated involve purely imaginary roots. The solution,associated'

iwth such an imaginary root describes an almost sinusoidal oscillation. As

in equation (3.4), significant time lag is involved in the linear part, and._

thie corresponding characteristic equation will have an infinite number of

roofs depending on the time lég A . Models exhibiting this feature are con-
sidered in the paper by Bojadziev and Chan [13]. In this case, imaginary

roots are possible only for particular valuesofthecoefficientsoftheiin— .

ear equation. Otherwise, roots of the characteristic equation will all be

complex. Hence the solution (3.6) corresponding to a particular root .
Z =~ + iw are both damped and égbillatory. It is this feature that pre- -

vents the straight forward application of the K-B-M methed from working. An
extension and modification of the K-B-M method for damped oscillations en-
countering significant time lag as given in Chapter 1 is used instead.

A solution of the nonlinear equation (3.3), which tends to the

solution (3.6) of equation (3.4) as € -+ 0 , is sought in thé form
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J-Eori¥ Dy +e . 1=12 G

xi(t) = Re[ ] + ex

where o and ¥ are determined by the following equations

do _ 2
E’-—l+€P(OL)+€...,

(3.8)
ay _ 2
dt-w+€Q(a) + €, .

Solutions of the type (3.7) are not the most general; but are
chosen because usually thevreal part -£, of a particular root of equation
(3.5), is appréciably smaller than the real parts of all the other roots.
For this reason, in the solutiog of an arbitrary initial value problem,
ali thé other modgs will die out relatively quickly, and only the one mode

with the smallest_-i will persist for any length of time.

By substituting the corresponding expressions for il(t), xl(t),

kl(t-A), into equation (3.3) and'comparing*those’termS”of'different*ordérs  R

in € , the zero order terms cancel identically and for the terms of ¢

order, we get the following equation for Xil),

82}(;1) 82}(;1) 232Xil) axil) axi_l)
—_— 2 0 —= +a{z== + g }
3a2 do.o¥ BWZ 2°3a ¥
(1) (1)
X 9X

1 (o=, Y-wh) 1 (o-A,¥-wd)y - -2 (1)

a, {z= ¥ wsy } o+ k. X,

+ re[e” M im0+ ('ZZ”FGE)W)*':’azﬂ!fa:ﬁre:ZA?—*’UEZRAWTJ'ZA} ]

=r Py, (3.9)
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where : .

F(l)(a,W) -2bRe[e-€a+iWZ] + {Re[e_£a+iwz]}2/ql

-£q+1WefZA

20 bRe[e—€a+lW] + 2a.bRe[e 1 .

2 ,

e—£a+1We-zA e—§a+1We—zAZ]

Ire|

BzRe[

—£a+iW] e-£a+iwe—zAZ]

Re[

+

282Re[e

-£a+iW]}2 N (3.10)

(k2/ql) {Re[e

A

Also, R' = ; R(a) = -EP(a) + iQ(a). and R = —EPA + iQA ’ fogether with

&l

A _ '
P" = Jo ) B(D) ar, and Q" = /o, o ar.

>

We shall seek a solution of equation (3.9) in Fourier series form

M=+ &

Vv = ¢ x (mel™, (3.11)
1 lm
m=—00 :
and also expand F(l)(a,W) in Fourier series
m=+® ) -
rF Y (a9 = = Fm(a)elmw.
- '

From the expression (3.10), it follows that the only nonzero coefficients

Fm(a) arise when m = 0, *1, *#2, and they are given by

- - - 7’*2 742":' e
F(a) = e 2504& 20 2BAng £ U (k%/2q. + B.E)coswh + B.wsinwAl}, P
0(®. “3q, t ¢ DBt - (/2 ¢ By 2 .
| 3

-be—ga{a - - a‘eEAcoswA + i(tw+ o eEAsinpA)},

Fl(a) 2 . 5
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-2&0 W
Fz(a) = e (-——j;— (ws1n2wA /ﬁcggﬁmq)

l

%egA[-(kz/qi + BZE)cosmA + 62 sinwAj

+ i{Ew/qu - 62e2gﬂ(wc052wA + Esin2wd) -
p EA 2 .
+ %e” [B, coswh + (k /2q, + BZE)s1nwA]}) )t
‘and F(_m)(a) = [Fm(a)]* , for m = 1,2; where [Z]* represents the coﬁpiéi -

conjugate of Z . w

By substituting the series (3.11) into equation (3.8) and com-

paring the coefficients of elmw for m # tl1 , we have
X" (a) + (a + 12mw)x' (a) + (1a2m -~ m2w )X () - azxim(a-A)e—lmMA
: —imwA’ 2 : :
-1 - = ; .12
1a2mwxlm(a Ae + k xlm(a) Fm(a) (3.12)
ax, _ ‘
where Xj === . From the above equations, the coefficients X, (0)

may readily be determined.

For m = *1 , as usual in the K-B-M method we assume that the

first harmonics are not present in X( )(a ¥) , i.e., Xll(a) = Xl _l(a) = 0.
’

We obtain
. 1 . -2A a -zA
R' + (22 + az)R - azR(a-A)e + azz fa—A R(T) 4T e

&,

2e Fl(a)

455%&5”—'£”l azegucoswA + i(w + azesAgii ), (3.13)
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Now we will,afeek the solution; R(a), of equation (3.13) with the form

R(Q) = qu + W2 ' . . (3.14)

where W, , W

1 are complex constants.

2

By substituting expressiOn (3.14) into equation (3.13) and com-

paring the coefficients of & and the free term, we get: -

Wil2z + o, (1 = e 4 gpe”Z

W2z + a(l-e2 4 z0e™®)] 4w 1+ ane - nmne ™ B
2 2 1 2 ¢
J = —Zb[a2 - £ - azegAcoswA + i(w + azeEAsinwA)].
Solving the above system gives
Wl = 0,
W, = -2b[a2 -£- aze! coswh + i(w + azegAsinmA)]/Q'(Z) '
where Q'(2) = %% = 2% + a2(1 - e“ZA % ZAe-ZA). Itriskassumed'that

Z=-f£ + iw is a simple root of Q(Z) = 0, i.e., R'(2) # 0. Then for

convenience, we let

—

—2b(G1 +‘1G2)

W2 -fw., + iw, = (3.15)

1 2 H, + iH_ ’

where
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=]
I

L =0y -2 - azegAcoéwA - aergA(gcoswA - wsinwd),

TH, = 2w+ aQ eg“AsinwA + aergA(wcoswA + Esinwd). o

2 2

Solving equation (3.15) and comparing the real and imaginary

parts, we have v . S

(3.16)
-Ewlﬁz + w2H1 = -2bG2 .
since W, =0, R(@) = -£8(a) + iQ(a) , and W, = ~Ew, +'iy2 , equations
(3.14) and (3.16) imply
. ,
. 2b(GH, + G,H))
Pla) =w, = 2 2. !
gy + H) | |
s _ e e Ean
2b(H,G) - H,G,) ) : . , ¢
Q(a) = wy = = 2. "
]+ H)

Therefore equation (3.8) with expressions (3.17) takes the form

y

do _

rrie 1+ Ewl ’

(3.18)
g_‘g = + EW
Lode STl .
which have solutions of the following form )
TN =Ea -£(1+
e gdr: aoe g( E:Wl)t ’ (3.19)

Y(t) = (w+ ew,)t + v . - (3.20)
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Thus the first approximatidn is then

xl(t) = acos Y , (3.21)

where the amplitude a= e—&a is given.by equation (3.19) and the phase Y

» then

by (3.20). If, in addition , equation (3.12) is selved for xlm’

) Xil)(a,W) car B¥ determined making use of the series (3.11) and we obtain

the so called first improved approximation

-&a, (1)

Xl(t),= e cos Yy +‘€Xl (a,¥) ,

which represents improvement over the first approximation only over time
intervals of length O(1l) , when it is accurate to within an exror of

2
order £ . -
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§ 3 DISCUSSION

In this section,we will confine our atténtion to the first
’3\ approximate solution (3.21) which has the general nature of an oscilla-
tory part cos ¥ multiplied by a decaying amplitude a , since § > 0 .
The decay is of exéonential type with decaf constant 'E , but its form .

is modified by an additional term ew Also, there is a small correc-

1°
tion term Ew, to the linear frequency w .. Both correction terms in-
volve the time lag A . To investigate the vibration determined by
expression (3.21),. we can introduce a logarithmic decrement Gl = ln(;;——ﬁ
j+1

to measure the décay of the amplitude. Here aj and aj+1 represent the

amplitudes a = e—Ea , given by equation (3.19), for the j-th and (j+1)-th

cycles, for times tj and tj¥T  where T is the quasi-period. Then

.

we get -

Gl = £(1 + ewi)T . - (3.22)

The quasi-period T defined by W(tj+T) - W(tj) = 2m can be found from

equation (3.20) and, as a first approximation, is given by

av

_2m ' , '
T = N1 - ew, /) . o (3.23)

For € = 0 , the linear case, from expressions (3.22) and (3.23) we get the

(o)

known results Gio) = 2mE/w and T = 2T/W .

When the time lag A takes on some special—values,2n7/k, for

n=0,1, 2, ..., the characteristic equation (3.5) would give purely

imaginary roots *ik . This corresponds to the case § =0 and w=k .
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Then.the-solution for the nonlinear equation (3.3) is sought according to

the standard K-B-M method and we obtain

"ab/(l + MkA) [

o]
Il

Thus the first approximation for this special case is

e-ebt/ (1+%kA)
]

AX (t) = a cos(kt + ¥ ) ,
1 o

where A = 2nm/k , ao and WO are ‘constants of integration.
Clearly, the vibrating process is slowly decaying due to a decrea-

is largest when A = 0O,

sing exponential amplitude. Since the magnitude -IAll

the time lag A acts in a way to diminish the damping effect produced due to
the presence of a saturation level. The phasebstays the same as in thg
linear case. As n increases, the change in the amplitude decreases. This
means that-if n - « , the ampiitude a-~> aO and the decaying process *
approaches a periodic one. Hence the time lag A has‘a destabilizing
effect. But this latter case is rather restrictive since A can be taken
only as certain values; therefore it is not that interesting for us te
pursue any further.

For applied problems modeled by ordinary differential equations,
the initial conditions are given at a point t = tO .‘.But the iniﬁial
conditions for delay differential equations will be given on an interval

[t -A, to]i. Hence the initial value problem for the différential equation & —~—
o : ]

~

{3.3) with time lag can be stated as follows: find a function -X{t) , which

for t > to satisfies equation (3.3) and the conditions



X{(t) = p(t) ,

ax(t) _ dp(t)
dt dat

’
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t e [tO—A, to] .

L




QONCLUSION
| I

The aim of this thesis is to study the effect of time lag on
diffe;ent modified models of the V-G-W and the W-C types in population
djnamics. As a final discussion of the reﬁults, we confine our conéi-
deration to the first approximate solutions only of those els studied:
(1) No time lag, (11) Small time lag, A= €T , in the no near part, -
(iii) Small time lag in the linear part, (1v) W-C model with small time
lag, (v) Special W-C model with significant time lag. The first order
- approximations for the above models are all.designaﬁed by_ X(t) = a.cos Y.,

"where a and Y are given respectively as follows:

-&(allql/el + o 2q2/6 )t
a = aoe ?

- (D)
Y=kt+ VY ; .
o ,

L .. . -

. 2
~4(0,,q,/6, + 0,.9,/0, - 2%k ANt

(2)
Y = kt + ?' ;

&(allql/el +0,,3,/0,)t
a=ae ’
[o] . .
(3)
Y=%kt+ V¥ ;
Or N
“%(0.q./0 - k)t - '
19,79 S -

I
I
P
L
N

Y = kt(1 - %azA) + Wd ;
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SE+cppg /Ot

a=aoe . ’

A O TC L S - (5)

In the first three models, one can see that the small -positive
térms aiiqi/ZGi = sbi in solutiqnsf(l), (2) and (3), due to the satura-

\

tion levels, cause a smaliigamping efféct and make the amplitude a vary

slowly as the time t iﬁ;r ases. The small time lgé A in éhé éecoﬁd
model produces a term k2A which tends to diminish the daqping effect,
ife., has a deétabili;ing influence on fhe amplitude a ,'yﬁile in the
third model, the small time lag occurring in the linear part of tﬁe system
generaEés no effect on the vibrations of the'popﬁlatibn as fér as the first
approxfmation.(\fhis is‘true even up tqjthe sécond order approximation;
The phase in all three cates involves no contribution from the time lag A.

o

Clearly, when A =0 , all three solutiqps coincide. Hence one sees that

4

the introduction of a small deviating'argument’will”result”in’a”small'cﬁ%%ge'*'"'

of .the amplitude only.
For ﬁodel {(iv), the small time lag produces the same effect in

/"*the amplitude as in the model (ii) and at*the same time contributes a cor-

N

rection term to the phase Y as well. The frequency is then increased
as a consequence.
However, for the case of significant time lag. correction factors

due to A occur as product terms with the small quantity €b , in the form

of Clalql/e and C2a1q1/9 ; for the amplitude and the phase respectively.

C1 and éé' arehéSmé4;§§fégéions involving.WA-. The amplitude a is
’ / . -
strongly decaying due to the decaying coefficient -£ which dominates the

~
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/9 ' Since. £ depends on A , ,the significant

rrectlon term C
<0 BN 4‘11 : A

1

time lag produces a strong §tab11121ng 1nf}d’nce on the nonlinear vibratin \\\_

e
<5

stem. Also, the phase ¥ % slightly affected due to £BE“fime ag A .

Note that in the special case when A = 2nﬂ/k ’ for n =_l, 2, caes this cor-
= .
‘:responds to £ =0, and the amplitude a -+ a a n + ® , The significant

time lag will then cause a destabilizing™effect instead.
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