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ABSTRACT

Randomn=ss is an important principal in the Earth Sciencess in

g=anaral and in geomorpholbgy in particular. Originators of this

concept’emphasized cocnsktraints placad on randomness by

geomorpnic proc=2ss=s; most subsequant work has, howevsar,

‘ C :
concentratad on prepsriies of one aspect-of surface. form {(the ..

L4

drainage n=t) in thes absz=nc= of structural control. The pressent

study investigatss othsr network broperties of surfaces,

must bs placzd on randomn=ss in order that a surface’s

>

topological propertias will approximate thoss of geomorphic

Ny

surfaces. The study is largely thsoretical, and all data are
deriv}d from madium scale topographic contour maps.

Various concapts of a "random" surface are examined. One

] -
apparsnt constraint is that the variance spectrum of the terrain

: : v
must approximatz a power function. "Random, mature, fluvially-

groded" terrain is further constrained by an absence of large,
-7 — //’ ' :
clos=d dspressions. Attention is .at first concentrated on

topological properties of.ridges patterns. A simple model, in

which magnitude-N ridge networks are simulated by forming

primarily ridge patterns, and =mphasizes thes constraints which 1f7

minimum spanning tress of sests of N points (representing peaks),

B

distributad randomly within an -ellipse, provides good

pradictions for magnitud=-6 ridgs topological class freguencies;



"
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mods l]Ad frequznci=s ares generat ed u51ng the Monte~Carlo‘ .

approach, with 5000 trials. When goodness-of-fit (msasurzsd by-

Chi;squarq) is plottsd against ths elongation ratioc of the \

ellipse, the shapes of the plet indicates thérdegree of ridge

ahisotropy presant within the topograohy‘ 1In areas of
¢ . N

hétérogeneous gzclogy but withoot;overt structUra]rbontrol, the

curve shows approximatsly squal fit for all slongations bstis
a circlz and a 2:1 e}]ipse,ooeyond.which.poinb“the fit rapid]y
bbcomes very .pcor. In contrast, areas of f]at-lying, |
homogeneooé ggology showroo?ves which deo]ine noticeably as onse

goes from ths circlzs to an optimum fit at an elongation of about

0.5. TRis indicates a significant @ithin—natworkmridge

”anlsotropy in fhdSA landscapes, which is attributndvto local

topographlo contrcl impos=d by the major trlbutarlAs oP mast@r

$§E§ams. ,The mod=1 also fits areas with overt”struoturalwrf

control (ridgu-and—val]ey tepography), out with an optimum
glongation ratio o?‘about 0.1. Suffaon trens,'whichvrepresentf
some thrae dlman51ona1 aSp»cts oP surFaCA topology, are
completely detzrmined by pidge graph topology and pass elsvation
ranks. Their topologica]ly—distihctrclasses aré not ppadicted
well 1if pass zlzvations are assumed to be independent, but
require the éssumpkion of pass height autooorrelation.i A1l
paosas (and most topographic complexity) are found to be
conc=ntratz=d above the maén olavation of the terrain. Although

topological featur=s =z2xclude explicit references to geometry and



= i

,scaié; theyvérefnevertheless influenceéfby these factqrs.
F;ndamsntél{sééleé of topOgraphiC'surﬂaCeéiabé discussed. oo
ridgé.modélvfits networks of magnitudes from y to 7, but the
shépes of the gbodneSs;of-fitlplots indiéate that;degree of
énisbtropy varies with magnitudé in Soméflandséaﬁés; this is a

scale ‘effect., = N o

s

It is difficult to rz=late the ridge topo]ogy reszarch presented

in this study to previous strzam topology work;~ré§sons,for this
- Lo o : . u-' . ‘

‘difficulty are discussed. 1t is ébnplﬁded that furthsr research
should attempt to resclve these difficultiss, and also should
conczntrats on constraints on topological‘randomneSs,mrather

N

than on thz randomness itself,
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CHAPTER 1: TNTRODUCTTON 3 A
Pt . r S— ~

: /w.."ﬁ”w ; . . A\

'"Anycne who has looked can hard]y deny the presence of//

a random element in natural landscapes. Tt is *]f
~impossible to predict exactly what will be around t

next bend or.over: the next ridge .

R.Lﬁ Shreve (1975, p. 527).

"It may be visualized that the study of ¢t landscape

is the study of constraints imposed by geo ic - o
structure, lithology, and history. To identify those [ )
Qohstraints is the purpose of much of-geologic o T
enquiry; to gvaluatg the effects of constraints upom

the landscape. is an obJeot of qq&ntltatlve ,

geomorpho]ogy " “

“ L.B. Leopold and W.B. Layngbein (1962, p. A11).

A

1.7: Randomness in Geomorp”oquy

Leopold-and Langbein (1962) sugpested that "the distribution of
energy in a>river Sy5t8m~ S'tOwan the most probable state™,

and, by analogy with thermodynaﬂlcs termed this'ooncept

-

"entropy" “Their work implied that geomorphLO patterns tend to -

be probabilistio, Tathe:/tﬁ;n deterministio,‘emphasizinq the
meortanoe oP a random or apparently random element in
Vlandsoapesa- This approaoh was applled by Soheldegger and
Langbevn (1966), and has Found its mostcsuooessful expr8551on in
-fhe wr¢t1ngs of Shreve (1966, #967, 1969) .. Shreve® (1975) and
Smart and werner (1976) have reoéntiyqreviewed,the many

guantitative properties of ‘drainage systems which have been

vexplained" by this probabilistic-topologic approach.
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~~ Leopold and Langbein (1962).d¢§elopéd'modéls for the
&xlongitudinal profiles of ‘rivers, for hydraulic geometry, and for

the planimetric patterns of drainage netwopks, all based onﬂthé 'i
entropy concept. Perhaps their most impoﬁtantfpoint,

[y

illustrated in their’dL§EdssiQn‘ofVﬁﬁngitudidaxgpfofiles, Ys
' N " o o . ER
that, if entropy considerations are assumed to- apply, "the

L
-

aﬁsence,of‘alj oonétraihtsrleads to no-solutidng-'an obvioﬁs'but
not a trivial result" (Leopold and Lanébeip; 1962, p. A1ﬂ)}

The other important poiﬁt, howeVer, is ‘that oﬁe or a fq; very
simple constraints, together with the entropy princip]e, féadﬂ§o
"solutions“ (moét probablé states) which closely approximéte
heality“ In the Ca§e df the'longiﬁudfnal profile,vghe simple
‘constraints of a base level énd a headwater eléyaﬁion lead toh
the commonly obs?rved exponential profile form. Similarly,
Arandom'walks constrained in such a way‘as to exclude circuits or
loops give rise -fto simulated drainagé nets which obey "Horton's
- Laws" (Horton,.19u5) of dréinage~composition (Leopold and
Langbein, 1962; Milton, 1966). One must, of course, be aware of. 
the poésibility of convergence of fofms,rénd it is dangerous ‘to
assume that river patterns which obey "Horton;s Laws" areb i
neceéSarily ?andom{; It‘is, however, génerally faf}more

dangérdhé to interpret as meaningful those patterns which ﬁay

reasonably be ascribed to randomness.
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Given that "Horton’'s Laws"™ may be due to ra&d@mrbfaﬁChing'and

the naturevof the or&éring system, on=2 faces two alternatives: '
53 may conclude, ;as did Milton (1966, 1967), that Horton’s Law

e

f Stream Numbers is ”i?kelevant to geomorphology" (1967, p. ‘=
83) 4Sch»1§bggar‘and B&ngéln (1966) Shrave (1966), and most
- ’ ' . .

othér geomorphglog¢sts have however, grawnwghe‘other

conclu31on, namsly that random or apparently random procesées

are very important in‘geomorphology. The question has arisen in

-+ the gezologic literature as to whsather the ”ran@om”*component“ih

g=ologic proc=ss=s 1s tPﬁ%Y réndom;OPVWhether‘itAon]y appesars tb
bz random "due to a large number of Qetenmihistiorevents
involved" (Mann, 1970, p.'%oz). Simpsoh (1970, p. 3184)

statzsd that events mgy:be unpredictablgﬁbécagse (a) not all
predictofs ;re known, or (b) not all ﬁéédictors.are knowéb}e, or

(e ) even if all predictors are known, there is an unrgsolvable. ... -

&tochastlc compoenant., Smeson bAllAVéd that no macro- géomorphlc

s

proc=sszs fall into class (c). Watson (1969) and Sma]lcy (1970)

- .A L
-,

also enteread the debaté, but I agrde with Scheﬂdegger and
Langbeain (1966) and Shreve (1975) in their conclusion that the
dist “nctjon ba2twaen "raa]" and "apparent" randémnessvisjlarge]y
irr=21l=svent te an§ practical analysis or evaluation ofrdatalin“ - .

geomorphclogy, at 1l®ast at thes physiographic ér "landscape"

scale.



In the dlSCUSSlO“ of the - lmpllcatlons of their work for o

eeomonpbolqszy. Leopold and Langbein (1962, p. AIT), stated that “.

"in a sense, then, much of geomorpho]opy has been the study of
the v&ry same donstraints that we have attempted to express in- a
.mathematical model"™. 1In responding to. the crltlclsm that ‘his
pPObabllLSZlC topologlc approach lacks physical content Shreve
(1975, p. 528) echoed Lecpold and Langbeln statlnq that "the
geomorphology, in other worde, consists in choeosing the rlqht
basic postulate;”- these Upostulates" represent some of the
"conetraints" meationed above. To a large exteht;'however,
subseqﬁent reséarchers have ignored Leopold and Langbein's
emphasis on constraints, and have concentrated their effqrts en
fluviaiiy-erodediterrain in the absence of structural contrel.

S : T R R 3
. ¥ ‘;&.( 1\‘_3

~Topologlca1 propert1es of dralnave nets, which ignorejof at”

@

least de-emphasize geometric properties sueh‘as lengtbs,,aneas,
and angﬁes, have‘been an important area of concern for
geomorpheiogists since’the seminal paper of Herton (1945).
'Among other thinés, a concentration on toeology alloﬁs for a4
simplification oF systems, making "explanation" more tractable.
Once these propertles have been exp]alned (as by Shreve, 1966
1967, for stream patterns) 1t may be possible to re-introduce

geometric properties (such-as stream lengths; Shreve, 1969).

“n
%

=2

~ The pndbabib&stic-topologie apphoaeh"has_thﬁs;fay~beenaepplled'/ﬂ

~ - e

almost exclusively to pLanimetpic prdperties‘qf the drainage .

a

Vs
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net, the ; ception'being’wuhner'sr(ﬁ972a1 1972b 1972C, 1973)

work,oh irde pattzrns. The’ pr1n01pa1 obleoglyﬁ/of the present \
study is to go beyond the dralpage pet gnd*to examine other o

network representatians of geomorphic sUr?aoes,'suoh as those

_used in ”maoroFAOFPaphy” by Watntz’ (1986) and lanomputdp L

oartography by«saveral authors, A reourrlnq theme will be an

-

examination of the oonstralnts whloh must be placed on the,
randomnzss of surfaces in order that their topoIo ical :
prop=aritiss approximate those of real geomorphlc surfaoes.l$a

3

The st%dy is organized inﬁo four ﬁaiﬁ‘ohapgarsf Chapter 2 -
introduces soms basic terms and éohcedts frﬁm'éraph theory which -
wilf be useful for the anminatioh of topblogioai brépertiés;
and revisws two lines of resezarch 1nto surPace networks "The
nAxt two chapters apply the raﬂpom approaoh to prédlctlng Pfaltz
graph (rldge) topology (ChaptAr 3) and surface trees (Chaptér
Mi. Ih‘Chaptgr 5, the »ffeots of scale, both topologlc (by
Qarying the magnitudss of systems) apd geometrlcﬂ~onathese
nstworks will be desofiﬁQd. ‘Graphiﬁhmoretic terms, aata sources
and esrror evalﬁatidns} and addltlonal compute: cartographlo
appliéations of the,ne§yorks devglopad and dlsoussed, ara
containzad in threze aépéndioes..rjn-phe balarice of this éhaptér}
ths important‘duestion: "ﬁhatris a randém surface?" Qil] be

expiorad.



1.2% . What “is a Random Surfacs? TS ' -

T

o

s e . RN

The conCApt oF ”randomnd5°” often is used .to provide a '"null

\ e

hypothesis! for. varzous statlstlcal testS' w1th respect to

surface anely51s, this gives rise to the questlon which heads

<

this Séétiob. First, it is impdrtant to note that the
unqua} 2d term ”Canaom"_has‘esé@ntially no meaning. Tt is

only meaningﬁulﬂwhen~ip‘represeﬁts qQb.jects or events which have
begen randomly selectéd‘from‘sbme population, and that A

population, be. it uniform, Gaussian (normal), or other, must be

s

défined. Such a definition, however, when applisd to geomorphic
surfaces, constltutas the Flrst 1n a seriss of constrawnts which

contaln the "phy5¢oa1 eontgnt” oP thA random approach in

gsomorphology. . L s ' .

R

PHPhdpS the flrst concept of a "random surface" to oceur wéuld

b2 to assign a randomly chosen (From some populatlon) Alavatlon

-

to zach datum 1ocation. On such a surface; adgacent p01nts’

would haVJ 1nd4pendsnt Alevatlons, aﬁd thws is the T

two~dimensional Aqu1valdnt of "white n01se"\(F1gure;1;1A).

RN

- -

Seginer (1969) called this the "random roughness model",. and
, ' ' S - -
studied the drainage nets which would dsvglop on such, surfaces,

with and without thu furthér cbnétraint of an inclined plane

1

add d to th@ whlte n0lse. ngérally, however, this "modél",does_d

'not pr@duce Surfacés whlch resgmblé\most natural ugrraln in ltSr

) ?
- . . . . <L ~ - ’
.
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Figure 1.1: Autocorrelation functions (left) and éssociated
power spectra (right) for three types of "random"

- processes. A: White noise; B: BroWnian or Wiener-=Levy

process over a finite interval; C: Stationary Gaussién

Markov process, All scales are X¥inear,
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_autocorrelation and general appearance, 51noe there 1s no

continuity. 1In contrast tov'this approach, Mandelbrot (1975)
produced. a "Brownian Surface" baéed on ‘the two-dimensional
generalizatioﬁ of Brownien motien. This bears,a much closer
resemblence to natural terrain than does the white noise =

surface, and even has well developed "ridges" and "Valleys"

which are'SOIely the‘consequende of the continuity constraint

imposed by the generating process. The probabilityiéistributiqn_

. for ridge orientation on a Brdwwmian surface is isotropic, but- =

Mahdelbnotuéuggested that the suﬁface could be made to resemble
+ A('t .

some terraln ewen more closely by 1ntrodu01ng a preferred
#-

orientation (anlso ropy) 1nto the rldge directions by deformlng

the coordinate system to ”stretch" the plane. Mandelbrot-(1975,

p. 3827) stated that these surfaces have a continuous power
2 ﬁa
spectram, with spectral density proportl ha

-2 pOWEr. Papoulls (1965, D. 293) however, stated thateghe N
aut ocorrelatlon between F(t j and 1c‘(t ) of a Brownian (or
Wiener-Levy) process is a constant times the emallef of

(tq,t5). For an&ufinite-lengﬁh Brownian series, the
autocorrelation plot would thus be a HObizontal }ine (see Figure
1.1B), and the limit of the autecorrelétion plot as the series
length goes to infinity is undgfined; for a finite series, the.
power ;pectrum is just a spike at zerc frequency. A visual

inspection of a block diagram presented by Mandelbrot would

suggest that'the,spectruh is of the power function form, and

e
=

1al to 1c‘requency to the'% 

w4



o»rtalnly not . 51mD1j suoh a zerc- Pr—*qu—*noy splke; wh %hér ths 7[

spsctral propzrti 2s chang= dramatically when‘one generalizess thé R

)

Brownian conc2pt to morz than ons dimension, or whether s =

'

‘Mandz2lbrot s surﬁaeewqeneration.procedure is in fact not a

. correct generalizat *@n CF Brownlan notion, is not known.

Pl

Much of the rather limited amount of reszarch Into
autocorr=lations and pow=r spza2ctra of-geodmorphic surfac=s has
conczntrated on "atypical'" teprain such as lunar surfaces and

heir analoguss (Jazger and Schuring, 1966; Marcus, 1967;

St

'Roégma, 1969) hoDonald and Katz (1969) studied sza, floor

i
e,féw to

topography rwhjlé Pik= arrd Rozema (1975) ars among. th

™ examine terrestrial "maorpo"-r=li=f. Jaeger and Schuring (1966),
: = Tl

Roz=ma (19693, and Pikezs and Rozema (1975) plof%ed power speotra

x

77777 B +

on double—légarithﬁic graph pappr, and all f‘ouna‘ the spectra to

plot as aporcynmate ST ralght lines, (1nd¢cat1ng pCWar fUnOLlOQ oo

Telat LChE bztwe2n variance and frequzncy), with slobes around. -2
r& * . .

—3 (see Figure 1:2). Marcds (1967) and IoDonald and thg

P

(1969) reportsd thsir rzsults as autocorr=lation plots, Whi@h

. .

warzs approximatzly z2xponz=ntial in formn.

- Y - s

n

The obszrva=d spzctrz and autccorrslation plots are distinct from.
white noisz, and nmuch more closzly approximate the exponzntial
form shewn in rigurs 1.1C. This form is characteristic of a

stationary Gaussian larkov process (Bendat and Piesrsol, 1966, p.
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- function with exponent--Z; this s also the exponent of

. . 3 . LT 7 T LT T

geomorphlc surfaces are. formed by such- processes,A The power

Spectrum in Flgure 1 1C has a tail whlch approximates a power .

1

Mandelbrot”s (1975) surface,‘whil an exponent of -3 indicates v

" unlformlty of topographlc slope*in all features in an area

1regard1ess of size" jPlke,a d Rozemai_1975 512) In anv b

aQQ), butAthedsam%laraty~dees—ﬂet——fﬁL{xHH%he——}ndaeate—that———————————

N

£ 4
t

case, the autocorrelatlon functlon (oﬁ power spectrum)

represents a constralnt on ‘the . randomness of terraln surfaces.

.,

?

All of these surfaces, including those with.exponential

autocorrédlation, have-equal expectedeumbers of peaksr(maxi@a)

~and pits (minima). The aimost complete absence of large pits

(closed depressions which wodld _appear on medium-scals contour

maps) is, however, perhaps the most 1mportant constralht on the - ~

possible randomness of mature fluv1a1 topography G1ven this,

5

together with a further constraint on .the branching patterns of
stream networks (namely, that strean‘patterns are "trlvalent f
planted plane trees“;(see Chapter Z,for an explanatlon of thlS .
term), Shreve (1966 1967,71969) developed the |

probablllstlc-topologlc approach to stream networks.' It is-

important, howeverx to recognlze that this simple model has

built-in constralnts. The present study will concentrate on'the
v! N ! ) : ;-
concept of "randomness" as applied to tgpologicaI‘properties'of

s
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other network rébreseﬁtations of sugfages, primarily the ridge

networks, together with the constraints neccessary to provide an

adequate representation of these aspects of geomorphic surfaces.. .
: ) " : > . . T
a’ \
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CHAPTER 2: SURFACE NETWORKS AND GRAPH THEORY CONCEPTS

Slnce a map may in many ways be con31dered to be a special case Yo

-

of the mathematlcal concept termed ac"griz?" (see below), graphs

have always been an 1mportant part of Geography. With the _ e

5relat1vely recent development of the branch o6f Mathematics.

called “Graph Theory" geographers have-available a'theOPeticali_p‘

Framework for the study of maps and networks (see Haggett and .
- Cf . . —_
Chcrley, 1969, for an extensive review). - f*~ S gal,;, e

'- ) - . , o . . ’0 ;‘ T 4
In the mid-nineteenth century, an approach to the topology of

-continLous‘smooth surfacés was developed by Reech (1858), Cayley
(1859), "and Maxwell (1870). .This approach, which identifies

points of equ1libr1um and’ thelr 1nterrelatlonsh1ps, was "re-

I [ . 2 7” _ -

"dlscovered" by Warntz (1966), and placed in.a more formal graph-

theoretlc framework by Pfaltz (1976). So far, this approach has -
received only very llmlted attentlon in a geomorphlc context
(Woldenb rg, 1972 Warntz, 1975) . - '

. \b | ‘ | : .

S

In the mid-1960's,vanotner method for describing .some aspects,of
the topology of contlnuous ‘smooth surfaces was developed in
*““**“‘“"computer"science‘fﬁoyeligandzRnston**%Q63*4Morse4‘4965%‘4‘4?Hﬁf4444444
- —eﬂeeﬁtear—treeﬂ—appreaeh—wou}d—appeap—te—haye—eensadepable——————e——————
potentlal for characterlzlng the topology of terraln, but has

not yet been applied to that problem.



@

After presenting'some basic graph—theoretic terms and concepts,

" this chapter wiﬂi reviewvand develep these two lines of

~suffers from a lack of standardized terminclogy. . This §tudf¥’

“'reseéreh thelr potentlal appllcablllty to the 1nvest1gatlon of

<~

'geomorphlc "randomness" will be dlscussed in iater chapters.r

-

e .

2.1: Graph Theory Concepts and Termlnology

Graph theory is a reiatively new branch of mathenatics,randqr

2

will in géeneral follow %he definitions and terms of Harary . y

"~ (1969), but ‘since this is relatively new to many geograpners, —

: deflned below are repeated 1n alphabetlcal order in Appendlx A

and since som2 changes and additional concepts are necessary, a

brief review seems appropriate here. The terms listed and

for.ready reference; some of .the terms are illustrated in

Figures 2.1 and 2.2.

- A graph can be defined as a set V of p points (usually termed

- vertices), together with a set E of g edges eonnecting distineb/'///

pairs of vertices in,V. Such a graph is usually denoted G(V;E),

and may also be refered to as a (n,q) graph. Customarily, a

-‘graph.is reprssented by a diagram; the graph is,rhqyever, the

‘mathematical relation underlying the diagram. A graph is

labelled if there is 3 name or label associated with each

vertex. It is edge—labelled if eachf?dge is so named. A rooted
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"Figure‘2.1 I Some graphr-t‘:heorfe%i'cr terms and’cbﬁéépts':”
| points a and ;b are adjacent; ‘A and B are isomorphic;
C and&élr)‘b—afe_ s’xrzbgraphsrof A (and of B); C is thé | :
complete';graph Kq; D is a spanning subtree of A (and &
df B); B and D are plane graphs; all four graphs are

~planar,
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AFigufe« 2.2t Add{'{ional graph-theoretic terms and concepts:
A i the complétewbiﬁaitite”graph»x3'3§WB'iéﬁhéﬁé6;"7 7
, - : ’

morphic to Figure 2,1C; C is a disconnected subgraph

of B; D is a trivalent planted tree, rooted at aj

C and D are plane graphs; B is planar but A is not.




-ar vertex is 1dent1F1ed as the

. gpaph 1s one 1n whlch a partlc

"root", a unlquely 1d°nt1f1edvr ferance p01nt

k__;//'-
ff ) 'f;If two v»rtlces shahe an. sdge, they are sald to be adgacent 5;;_3‘.;?
?'JC’, ‘°The set ﬁ all vertlcss ad1aeent to a glven vertex are said tc‘gif*;bf

e - - o E [ - :.u

'”;j?;fube the helghboursvof that vertex, whrle edges whlch share -a 53‘*
. S [\

vertex are termed adjacent edges. ~The- number of edges In01den“h#*ssss—

on (connﬂcted w1th) a vertex is the degree of that vertex. .

£ J
Vertlces of degree one are Ltermed endfpo;nts, those of degree 7

- zero isolated vertdces. . If eVery vertex is adgacentAto avery
other, the(graph is complete, and is hsually denoted Ké, whehe
n is‘the number of vertices. kIf a graph has no edges, it is
said td be a nullrgraph. A graph must have at lgast one vertexy

~a’graph with only one vertex is termed "trivial'.

A subgraph of G(V;E) is a graph havinghali bf its vertises in V
-;and its:edges in E. A spanning subgraph contains all the
T \wertices of V. 1If the graph can be”divided ihto two subéraphs
such that ewery vertex is in a subgraph and such that each

. .4 ‘ . .
subgraph is a null_graph, thevtotal graph is said to be

"bipartite. The complete bipartite graph (or, bigraph) with m

. __vertices in one subgraph and n in the other is designated

_ KmTﬂ: If the graph can be divided into k null subgraphs- such

that each vertex is in exactly one subgraph, the graph-is

k-partite.:

~
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Two graphsiare said -to be isomorphic if there”exists a'one-to;.’

.one correspondence of their vertices ‘which preserves

1]

adJacen01es.e Two graphs are homeomorphlc if. they can be made

‘,9;'\,;,\

;vééiiﬁé'v 1somorphlc,by adding or deleting vertaces of degree two; :Ifma-;iﬁffi

UQ}Q“n/ graphﬁls drawnIOn (embedded ln) a plane w1thout any 1ntersect1ng’

edges, it is a plane graph A graph whlch is 1somorphlc to some

i vl SN — -

plane graph is sald to be planar, and two plane graphs wh1ch are

iSOmorphic andrwhose points-can be made'to correspond’through a - .
continuous-deformationwin the plane are said to be topologicallyr
identical. | |
//fK: If there exists aafunction which assigns a non-negative weight'
\ﬂ;,or length to each edge7*the graph is termed a network. ﬁln a

gebmetric'graph' every vertex has a position in Euclidean

(Cartes1an) space. One network ass001ated w1th a geometrlc

graph.onld have as its edge welghts the Euclldean distances
between adjacent vertices. Two netﬁorks are said to be
Aisomorphic if theirygraphs (ignoringredgetweights) are
isomorphic} Properties‘of&the‘graph of a network'are called

: topological properties of the network.

e walk-is-an-alternating series of adjacent edges and vertices;
SR ,f,,aupathfiguamwalkuingwhichfallfAQHA;hﬁxer;exceptgpossiblygtheemefhgggfff
first and last, are distinct. If there exists at least one path

between every pair of vertices, the graph is connected. The



AN

tepologleal leﬂgth of-a- pathlls the number nf" edges it onnfa]ns.

'A cycle 1s a path leadlng from a vertex to. 1tself A connected

i graph hav1ng no cycles 1s\termed‘a tree, and denerd T(V E)
‘Z_‘A tree w1th ‘D vertlce ; St have q p 1 edges.i’A dlsconnected

'“*grapﬁ‘COntalnzng no cycles 1s a set of trees and 1s termed a

forest., A tree all of whose vertlces are of degree 1-or k 1s

Saiqﬁtémbalk:zélggﬁ, A tree rooted at an end< p01nt is sald ﬁo

\\

be planted.
An elementany cycle of a plane graph is'one'whicﬁ”ﬁas*no'poin€§*"' -
or Lines»withln it, ”SUOhran'elementaryycycle encloses or bounds
a face or cell.//A“plane map is a connected plane graph, ;;3~ckf_
T together with;all‘its faces. Faces are adjacent ifAtheY‘gaare"
at. least one edge? such.&aces aye/neighbours.a The gigmetricl
,,dual of a plane map ‘is formed by pla01ng a new vertex in each‘

>

face and cOnnectlng these new vertices if their faces are

N

adjacent. This dual is also a plane map,iand-its dual is the

original map.

:;2.2: "Normal” Surfaces and "Critical" Pointsrk

\\

\

1 Will herein restrict the term "surface" to' a continuous,

31ngle valued functlon of two varlables, zZ= f(x,y) (the term

5 . )

could, of course, be extended to N dlmen31ons) Dlscu531on,w111

be further reSurlcted to geographlc surfaces (where the

5
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1ndependent varlables, X and y, denote p081tlon in keographlc r:

2

PR space), and to surfaces whlch are “closed" A. closed surFaqe 1s’

genera]ly that part of a surface wh1ch occuples the portlon of a
p]ane bounded by astngle closed contour, a l;ne of constant
z-value on the surface. Unless otherwise noted;;surfaces wili

RN - , - o ,
- furthermore be assumed to be . "smooth", thatnis, to be continuous

in at~}east~the—Pirst»deriVativeu" : e o ;“*”””
. , A S

Reech (1858) demonstrated a theorem concernlng certalnvﬂ' -

"crltlcal“ points on a closed surface-- these .are equmvalent to
p01nts where the flrst'derlvatlve of the~surface 1sbzero. Reech
1dent1?1ed three types of such p01nts, which Warntz (1966)
termed peaks, pits, and passes (Warntz actua]]y d1st1ngu1shed

two\types of‘saddle&p01ntsras "passes" and "pa]esﬂ; this

distinction,—whiiewimportantvwisWnot”relevant to”thBVpnesentsg”m:*"‘*
, discussion). ' Reech then placed these points in the contekt of

equilibrium theony: peaks are points of unstable-equilibrium,~

pits of stable'equilibrium,'and passes of mixed equilibrium*(for

-a more comp]ete deve]opment of these concepts and thelr

exten31on to N dlmen31ons, seo Morse, 1925, 19#9). Reech (1858)

further demonstrated that on a sphere, the number of peaks plus

. e

pits minus passes is always exactly two. Within a closed

contour,’peaks p]us p;ts>number one more than passes, and the

- - — T P : ~

area outside the\closing contour is considered to be the "extra®

critical point, either 'a peak or a pit, depending on the

¥
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‘direction of suﬁgaoefslopeeatiLheshounding;goﬁiour.ﬂj f .
An interesting»co%sequence of the assumption of smoothness is
'thatfthe contour which passes, exactly through a pass must cross’
itself there; For cartographic qeaSOns, such self;crossing

contours are never portrayed on contour maps; nevertheless;

their existence may be proven by con51der1ng the llmlt of the

shape of the contours in the neighbourhood o{i}he pass (see
Peucker, 1972, p. U6). | |
s .

- The work of. both Reech (1858) and Morse (1925, 1949) ignored the
pos51b111ty that three or more areas of elevation (or of
depresslon)‘mlght meet at a singie "multiple"'pass. In such a

dease; the self;orossing oontour crosses itself three or ﬁore'

rtimes., Maxwell (1870), ‘however, presented a more general

3
relatlon for numbers of crltloal p01nts whlch allowed for such

'multlple passes. Suco feapures are-extremely rare in most
geographlcpsur aces (especﬁally in topographic'surfaces){ and so
Qhe present study will foliow'Pfaltz‘(1976) in exaﬁining only
"normal surfaces", which are definedvas smooth surfaces all of

whose passes are of the simple "single" form of most saddle

points., A related assumption is that no possible contour passes

RN -

exactly through more than one pass, that is, no two passes have

‘identical elevation. These assumptionsldo noﬁ-unduly restrict

- the results, since for dny geographic sdhface, there exists a



‘norma] surface whlch is everywhere w1th1n an arbltrarlly small

ep51lon of: the orlglnal surface (Pfaltz, 1976) Some of thefi

rather diverse terminology which has been applied: to critical

points is listed in Table II.1.

e

2.3: Critical Lines, Networks, and Graphs

Cayley (.1859) defined a network of critical lines which indicate

relatlonshlps among the cr1t1ca] p01nts.” A slope, ]ine is,

e

defined as a llne in the directioh of steepest slope on the

surface; such lines must everywhere be orthogona] to the

contours. On a normal surface, every point which is not a

- critical point lies ‘on exactly one contour and one slope line.

-~

Peaks and pits have no contour lines Cbr " the contour line is

reduced toa single p01ntf and’an 1nf1n1te numbﬂr of slope

lines; passes have exactly two slope lines (or pairs, if each is

divided at the'pass) and'tWoﬁcontour’line'segments (both, of

-

"course, parts of the same self-cgos51ng contour) Although all

other slope 11nes lead from a’ peak to a pit, :one of the pairs of

slopevllnes through a pass leads from -a peak to another peak

g(rarely, to %he same peak), and the other pa1r from p1t to p1t

(rarely, the same pit). The smoothness assumptlon fornpq ohe to

assumes that the s]ope line coming doupafrom a peak to a pass

continues on to the other peak, rather than down to one of the

pits. The line joiningithe peaki;is{designated as two ridge



I.1: CHARACTERISTICS: AND TERMINOLOGY OF CRITICAL

TABLE ‘1
- POINTS
instability 0 % % 2
(Morse, 1925) : o 4
vergenby divergent‘ mixed convergent
(Warntz, %975) o '
terminolgy:
Reech (1858) Msommet" "ithmes" “"fond"
o (summit) ___(isthmus). ~ (bottom) .-
Cayleyv(1859) summit ~ knot immit
Maxwell (1870) summit pass bar bottom
Morse (1965) cap ‘pass bar cup
(saddle)
Warntz (1966) peak pass pale pit
_ (knot) .
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”www———f—}rneS“*thTe/the’Uﬁfr 01n1ng e plts is termed two course

lines. The cr1t10a1 p01ntS'can thus be seen as the vertlces in

a network hav1ng the ridgz -lines and course lines as edges.

T

" Such a netwdrk, when "embedded" 1n a geographic surface,; is

-

harein tzrmed the "Warngz Network" of tht’surface (see Figure

2.3), after William Warntzl~who revived this interesting

S AHLheonetieal;ﬁg&ﬁéWeeraf%ermafcentvry“Ufemégréﬁt*rWgﬁﬁfgnggggyj*““”*

‘Recently, Pfaltz (1976) placed .this work firmly in'a>graphe

The terminology which has been applied td the lines and areas of

Warntz networks is eontalned in Tables II 2 an\\jl +3,

respectvvely

theorstic context. Hisiapproéch igﬁores the geometrical

properties oP Warntz Networks, and Pepresents theiﬁ'topdlogy in

S

“Pfa1+z Graph"; Pfaltz s term "Surface Network" is con31dered to
be too- general as 1t could ea511y refer to ~any of the Y

-

reoresenbatlons discussed: 1n this chapter. Pfaltz (1976 p.

8&) listzd f"1'\/e'n=‘c<:-=ssa;r'y condltlons for -a trlpartlte graph
g ~ ?
G{VO,V1,V2,E) to be reallzable, that is, to be 1somorphlc o

w.a.

to soms p0531ble Warntz network ‘where the V ‘s are the, sets

of.all pits, passes, and peaks, ”e§EESE£3§11;44$D§§§429gg;&gpns,

'

I

ars rapzated be low, with sllghtly altered notation and - e T

,/—ﬁ—) . . -
~terminology: T . ‘ -
. & 7 f&%,‘ -~
P P . RO )
e - - 4/’
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Figure 2.,3: A Simplified contour map of a magnitude-6
"hilltop, with critical points shown; B: Critical
lines forming the Warntz network of the surface

i (ridge lines are solid; course lines are dashed, ,and
all lead to some pit or pits outside the bounding
contour), o : -
¥ A : r. -

=3
3
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TABiB’II.Zi CHARACTERISTICS AND TERMINOLOGY QOF

CRITICAL JINES

vergency
" (Warntz, 1975)

terminology: "

Cayley (1859)

Warntz (1966).

Maéwell (1870) °
Morse (1965) .

Warrtz and
Waters (1975)

'divergent

ridee 1ine

’watérshed
e

ridge liﬁéﬁ/

convergent

course line

‘watercourse

trough line .

-
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,,‘ TABLE TTI.3: C}/HXRACTE%}?ISTICS AND TERMIN,,OLOGY OF§'7CR'ITIQAL AREAS

-

N - |
- vergency divergent ‘ mixed= " convérgent
(Warntz, 1975) ' -

terminology: - : e . S y

‘Maxwell (1870) 'hill ~  natural distriot.;bésin or dale
Morse (1965) IV » e T TR

- warhtz‘(1966)' " hill - terriﬁory 7 dale

Warntz and - high ’? territory - low
Waters (1975) S S L S




28

(1) The graph must be connected;

i

(2) THe number of peaks plus pits minus passes aust.be two {(the

"result of-Rezch, 1858);

-(3) Each pass must bs a vertesx of degree four, and be of degree
two in each of the bipartite subgraphs C(VO,V1;E), the

cdurse graph, and R(V1,V2;E), the.ridge graph;

(). If a particular peak, and pit are both singly connected to a
common pass, they must be singly'connéctad to at iéast one other

common pass;

(5) A pass is on a circuit in the course graph if and only if it

is not doubly connected to a single peak; it is on a circuit:ini
. % : ' . :

the course graph if and only if it is not doubly connected to a

single pit (A'double connection is itself considered to be a

. circuit). ‘
7

Pfaltz‘(1976, p. 8U4) Stated that "it is not known whether these
properties ars S¥fficient to guaréntee the realizability of G".
In fact, they are not.. First, the connéetiviby requifemanﬁ (M) -
must be increased; specifidally, the subgraphs C and R must each.
be connected.‘ Furthermore, two'other conditions must’ be

fulfille=d: :




(6) The ‘graph must be.bipartite; specifically, the subgraph
H(VO,VZ;E) must b= a null graph, that is, have no edges
(Pfaltz’s exampl=s cleérly illustrat¢ that he was aware of this
condition, but he failed -to list it explicitly);

(7) The grgﬁhﬁmust ba planaf, since to be realizable, it must be

isomorphic to somz Warntz Network~which is embedded in the plans -

without intersszcting edges.

An interesting special cases arises when a cloéed surface has no
pits, except for the ons representing the area outside the
bounding contour. Such a closed surface with no pits will be
termed a "hilltop". This is of particular interest in the .
geonorphic coﬂtext; since pits large esnough to appear on
medium-scals topographic maps are very rare in fluvia]ly-eroded.,.
tehraih‘ Singé VO thenAconsists_of a siﬁgla point, each pass
Tpust—be dgubly connacted to}it in C;‘-Then, by property 5, the
ridgé graph contains no circuitg, and since it is fur@hermore
connecteq (proberty 1, as modified), it must takeféhe form of a
tree. Each pass is of degree 2 in R, and thus it .is convznient
to ﬁepresent the ridges graph by a tree‘whése'vertices are dhly
the pgaks, and with peaks which éhare a pass connected to zach
other; this tres, which can g;itermed the "ridge tree", is
homzomorphic to R, and complately determines Ebe Pfaitz'graph.of

a hilltop, up to isomorphism. Each esdge in the ridge tree can

7
A
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be seen to "represent" a pass. The number.6f non-isomorphic .

"distinct types of kcees with exactly one to ten vertices are 1,

1, 1, 2, 3, 6, 11, 23, 47, and 106 (for the continuation of this

b ’
SSFTEquseesequence'299 inlSloane, 1973, p. 53). 'Dué to the

aforementioned homeomorphism, this sequence also enumerates
topologically-distint Pfaltz graphs and Warntz networks for
areas with no pits. Figure 2.4 illustrates the six Pfaltz

graphs and ridge trees for- magnitude-6 hilftop areas.
2.4: Complexity of Warntz.Networks

Warntz and Waters (19755 applied'severai measures of netwogk
comblexity from Kénsky (1963)'to‘E§pnpz networks for atmosphéric
pressure surfaces. They Suggested (p. 488) that there may be
some relationship between these measures and»certain '
meteorological measures relating to atmospherib physios.
Actually, Warntz networgf are gonnected in a.very,speo?fic Qay,t
as outlined by Pfaltz (1976) and above, and thus the purely
tqpologioal Kansky measures used.by Warntz and Waters (1975) are
largely fixed by these constraints and éould not possibiy relate

to physical concepts. Since Warntz networks are necessarily

planar, the planar versions of Kansky’s measures should-be

-employed. Table II.4 indicates that, for large, compietémWarnEz'

networks, the alpha index must be approximately one half, the

beta -index’ two, and the gamma index two thirds, regardlesé of
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Figure 2,4: The six topologically-distinct magnitude-6
Pfaltz gra@hs, represented as tripartite graphs (right)
and as ridge trees (left). .For clarity, the double |
ﬁonnections of all passes to the single ("outside™)

pit are not shown. B is isomorphic to the network in

VFigure 2.3B; the letters indicate the correspondenée.
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TABLE 1IT.4: KANSKY S MEASURES FOR
WARNTZ NETWORKS .

"magnitud=" of the network

M =
p = -aumbzr of vertices )
g = numbzr of edges -
| p = 2M - 1
q = 4(M-=1) )

alpha = (q - p + 1)‘/ (2p - 5)

=2 (M- 1)/ (4M - T)

=1/ 2 {(as M => infiqity) .
beta = g / p :

= 4(M - 1) /7 (2M = 1)

= 2 (as M -> infinity)
gamma = q / (3(p - 2)) :

= U(M - 1) / 3(2M = 3)

=2/ 3 (as M => infinity) '
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the details of thz network. For the ridge and course netWorEs
&

examined separately, these three measures depend only upon the
relative_numbers of peaks and pits. ' It 1s pos51ble that the

Kansky indices based on network” flows (theta, iota) may have

St ~ = L
relationships to physical aspectsiof surfaces, but at present it -

;o

would appear that .the Kansky indices are not useful for

characterizingfthe Eppology'of’Warntzﬂnetworks, 7‘v\farnftz'andr—ft J—

~

Waters (1975)_suggested seVeral'neasures_of the relative

importance of particular nodes, but no useful measures of

overal] network complexity.

2.5{ The Surface Tree

»

n

Another way of representlng some aspects of the topology of a
geographlc surface is the surface tree, a'new~representatlon—~—;n~~fm»

based on the "contour treef developed;ln compnter cartography. ’ P
The idea of representing adjacency relations of a set of |
contours by a tree was apparently first publlshed by Boyell and
Ruston (1963). Their "enclosure treeﬁ was based'on the fact

that a contour 1obpacan“enclose’any'nnmber of other contour

loops, -but -can itself be immediately enclosed by only one. Thus

each sUch loop can. be represented by a vertex in @ tree (that

- -

is, a connzcted graph contalnlng no c1rcu1ts) ThiS-iS

R ,,7! L - - J—

topologlcally 1dent1cal to representlng a set”’ of disjoint rings

in a plane (Berge, 1962, p: 161). Berge directed each edge

e
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[ |
(ﬁ//‘: toward the 2n osed~ﬁing, and called such a directed tree-an—

N

3

"arborescence"; Harary’'s (1969, p. 201) term "out-tree" is to

kel o

be preferred, since "arborescence" -has begen used in graph theory

"y
-

N in a different contextvb& other workers.

. The "contour tree" éoncept was fe-inventad, abparéntly
ihdependently, by Morse (19654 1969). In his "graph of.a e
cqntour map", sets of mutually adjacent contou;s (which bound an
inter-contour area)»were identified gs.verﬁices in ; tree whose
edges were equivalent to those .contours sharedlby a@jécéﬁcy
sets. Since each adjacency set contains'only oﬁe="boﬁnding"'
contour which enéloses the othérs, this aefiniﬁion.is isombrph?b
to Boyell and Ruston’s. Freeﬁan ahd Morée (1967) drew the

[

analogy between the contour tree and the geométric dual of a -

planar, graph, in”which,amyentex,is”placed,inweach,negionr;andl o
ad jacent regions’ vertices are joined. 'It is, hqwevér;'oniyuan
analogy, since a'contour map,:having«no.verticeé, is ndt.b ‘
strictly a grapﬁL Boehlm (1967) introduced the preferred térm
"contour trée" for these coﬁtourvenclosure,graphsf Figqra 2.5
shows the contour trees for Figure 2.3; but with{twovdiffefént

4

contour intervals.

N

L

Given this concept of a contour tree, we caﬁ define the 'surface

tree of a gaographicvég}fégéji It was already assumed abbve that

"no two passes have identical'heights; we can -then imagine that
. 9 4 . -, o . ’

.
A
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Figure 2.5: A: Contour enclosure tree for the area depicted
in Figure 2.3; B: As in A, but for a 100 unit contour
interval; C: The surface tree of the area, with

‘elevations of critical points plotted to scale (figures

)

in “hundreds of units), The lower-case letters indicate
. ) s

the corréspéﬁdenCE“With”?iQUTE“Effi“fW"“***‘”“**"“*’
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the contour interval is decreased until ﬁﬁ*iﬂ%@fﬁéﬁﬂfﬁﬁf‘ﬁfﬁ&’ T
contains more than one critical point{ ,A11 points in the

contouq%tree of such a map will then be of degree one .

£

(representing inter-contour arsas containing peaks or pits), two

&ﬂif the area contains no critical point),‘br three (if therareé /

contains a pass). Finally, we remove all vertices of degree two

(by a series of EthanQrphih contractions") to obtain the .
surface tree. ‘
~
Since each temaining node represents exactiy ohe critical poinﬁ}
the surface tree has the sa;e vertex set as the Pfaltz graph.

Furthermore, we can associate the elevations of the critical -

[

“  points with the equivalent vertices -in the surfacé”tréé; and

plot the tree with the elevations to scale (Figure 2.5C).

The surface tree should havé a familian look to most
geomorphologists, Since it is a tfivalent planted tree. ‘Stream_
networks are generaiiy assumead to be trivalénﬁ planted plane
trees (Smart, 1972, p; 306?, but in the surface tree there i$

no "right" or "left® branch at each vertex, and hence the
surface tree is not a "plane" graph. In fact, each

topologically distinet surface tree is isomorphic to all'membehs

of some "ambilateral class" (Smart, 1969) of stream networks.

By*anaiogyiwi£gié£ﬁeém netwofk conventions,‘the magnitude 6f a

surface tres will be the number of end-points (peaks plus pits),

LY




excluding the "proot" (representing the area outside the bounding

contour, and topologically equivélent to the*"mouth" of a strean

network). Non—plané‘trivalent planted tress are counted by the
"Wadderburn-Ethéfington Numbers™ (seQUence 298, Sloane, 1973, p.
53). " The Flrst ten numbers in thls sequence are 1, 1, 1, 2, 3,

6, 11, 23, 46, and'98; Figure 2 6 shows the six p0531blé surface

. 5 T N . ' . ' '<,
trees of magnitude six. o

The contour tree has cénéiderable'utility,in comPutar | -
cartography, and this éxﬁénds beyond applications to the profile 
‘search prbblem (Freeman and Morse, 1967) anq‘line;of-sight> .
calculations (Boehm, 1967). As part of the preseﬁt Study, it

was found that if the éontouf tree is determined'for another

type of digital terrain model before comtours have been drawn,

_— e e

it should théoretlcally be able to 1mprove th= efflclency of
contouring programs., The surface tree»may<also be of value in
surface generalizations} These domputer-cartographic

applicaticn§ represent an area of pqtehtial prackical‘utility,

-

) . o o N .
but are peripheral to the, main thrust of the present thesis.

L

"For'this reason, -a datailed zxposition of these applications has

bean ralsgated to Appendix B.

4
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Figure 2,6: The six possible surface trees of magnitudé—6/~

hilltops witk _no pits., " III is isomorphic to Figure = -
'2,5C, a5 indicated by the letters. o~

, .
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CHAPTER 3: .,TOPOLOGICAL RANDQMNESS OF TWO-DIMENSIONAL RIDGE

NETWORKS
. -
v .

, 1972b, 1972c, 1973) ‘and Goudie (1969) -represent

£ . . .

Werner. (197z
P perhaps.  thg only geomorphologists who have previously ex%ﬂéned}“

~topologicAl aspects of ridge networks. Although the topological

- ‘T representatiéné'qf?géographio surfaces discussed in Chapter 2
. have been cited in a.géomorﬁhologiovconﬁekt ("Waé@tz Netwofks"
by Woldenbersg, 1972, and Warntz, 19%5; "antgur treésﬁ-by EVaés,
'1é72, énd'Mark, 1975a), the.poésibiliby’of abglyinéja random
topolégy modzl to geomorbhic;surféces through_these graphs has
apparently‘gone-uhnoticed uﬁtii ﬁow. Before~pres§nting this new
'reSearch,’previogs work on ridge topblogy-will be briefly .

. reviewsd. ' B e

e

. 2
[ : . . . b . e
o

und

ras

‘GQUdig (1é69) applied "Horton’s Laws" to dune ridges, and fo .
that’ €% "Laws" provided a good fit. He also showed that hiéééf.
junctipng_&h‘his arza had a Poissén‘fandom distribution in /"

4space.  %éidg3S" were not formally defined, but were IR

.morphological fsatures. not directly-related tb passes as are the
. - ’ b o .

"ridge linss" of a Warntz network. Goudie did nét’indicate how

a "root!" of tha é}aph, topolbgically;equivalent‘ﬁb;ﬁhe mouth of

a drainags net, was (or cogld«be) identified. Wéfné;t(1972a“
1972b, 1972c, 1973) has providsd a mofe.fitm‘basis for examining .
the planimetric topology of morphological ridge§‘r Ridges were -

oy

e .
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nelther Formal]y nor operatlonally deflned 1n the Werner papers,

but were based on contour crenulations in a manner analogous to.
the. extensionrof the drainage net (C. Werner, pers. oomn.,f
1976) . Werner (1972b) proposed dividing ridge systems at all
passes, and'studying the resulting subenetworks,'whioh represent
al*l the. morphoiogioal ridges witnin a single "hill" (Maxwell,
187Qi. Usﬁng Wernerxs (1972b) approaoh hls frequen01es for

R o e

various magnltudes in the ‘same area of eastern Kentucky were

‘confirmed; in contrast, hill.sub-units for an area of the Cascade((
= e

Ly

'Mountainspog,sodtHErnvBritish Columbia had much lower average
magnitudes, suggesting that :this approach may not be useful for
- all topographiCVtextures. Furthermore, there is a considerable

element of sub3e@%1v1ty Envolved 1n de01d1ng which™ contour

- 2

P

crenulatlons shoq}d be 1nterpreted as ridges. Conversely, the-

: rldge llnes 11/;pe Warntz network can be defined ea51ly and _/‘

unamblguously as outllned above 1n sectlon 2. 3 : )
P S

Werner (3972a,'1972c,’1973) also related rldge patterns to |
_stream topology w1th1n dralnage ba31ns. While ridge patterns
appear to be topologically random when analyzed in iso}ation

(Werner, 1972b), as.do stream networks, neither pattern is é{’M—

' random once the other has been specified. 1In particular, Werner

'“(TQTZa) found that palrs‘of‘“ojaoent‘frrst order stream
separated—by—exact}y—onefﬁirst—order—ridge—in 88‘6f‘449* fH}L%F—f——f

random (Poisson) model would predict only 44 such occurrences 1f
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the distributions were indepenaent( Werner néted thatrthé
relationship ié stoéhastic, réther than dé£ehﬁin£é£gg;ﬂggaroﬁi&jiWﬂ
approximates a geomeﬂric duality. He later (1973), however,
aSsumed the dualityyto be exact in order to proceed to further
hypotheses regarding ridgertépology. - In Warntz nebkworks, the
duality between’thevridge and course networks is exacgiﬂj(%“\ﬁ
$ : . )
For reasons of repkbducibility and’épbliCabiiiﬁy to a wider
range of terrain types, it would appeaﬁ%tha£ Warhtz‘hetworkqvapd
‘Pfaltz graphs repres&ntxa better aﬁproadh for examinigg ridgea
topology. 1t must, however,lbe remembéred that w%rneﬁ;s ridges -
bear a much clo§gr relation to features of local topographic
(geometric) significance; the WarntZ"atwork only indiqgtes
relations among critical points.; In practice, Wafntz'riage'
- iines~1arge1; coincide with the more important geometric ridges
‘in fluvialiy;ékddéa'(éndhiﬁ”aipihé"giaéiéif”té?kéiﬁjfbﬁ%”ﬁaﬁf”w”

for example, in karst .

3.1 Topological'Randomness‘and Pfaltz Graphs

-

Two basic approaches to the examination of topological

randomness have been employed in stream network research (Smart, >

,ﬂjglzi;ﬁqonewinynlygs_demailﬁdfﬁxaminéiion thfinixe networks of

negessapily small magnitude, while the other invéstigates

o MR.{;,:},;‘L . - . . . : . )
average properties of infinite, topologieally random networks
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L

(Shreve, 1967). Because of’a_number of _mathematical =
difficulties (ehiefly, ghe\absence of a simple closed expression
for the number of surface trees of a given magnitude;
Etherington, 1937), this s£ud& adopts the former approach.
'eMagnitude-6 systems wererselected for analysis, since the number
of p0331b111t1es is rather small for lesser magnltudes but

°

rapidly becomes unmanageable for larger graphs.

in order td‘provide an initial test for hypotheses,concerning?

topological randomness of Pfaltz granhs, three areas were

selected. The first sample'cqnsists of ali 230 magnitude-6

'hilltops in an area of eastern Kentucky between the Leyisa~and

Tug Forks of/the Big Sandy Rlver (see Appendix C). Thls a;ea»
>

S was sel@é?ed because "the area, whlle not perfect appears to be

a Foodﬁexample of a mature landscape developed 1n the absence‘of

¥ I

structural control" (Krumbein and Shreve, 197Q, p. 4). This
area has been‘extensively used to test various aspects of the
probabilistio-topoiogic apprqach'te landgeapes, both for streams
(Shreve, 1969; James and Krumbein, 1969; Krumbein and Shreve;
1970;. Werner, 1975; Dacey and Krumbein, 1975; Smart and Werner;
1976) and for ridges (Werner, 1972a, 1972b, 1973c, 19%3). None

of these studies found strong evidence of any major non-random
A :

element in those aspects of this landscane which they examined,

although dlscrepan01es between observed and expected frequen01es

of certain topological patterns led to some refinements of the
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~

random topology model. These data w111 form the prlmary ba51s

for discussions of topological randomness of hilltops.

. . —_

7

- Samples were a]so obtained from an area of the mlddle Callfornla‘

Coast Ranges (65 h111tops) and From southern Brltlsh Co]umbla

(103 hi]]tops)\(see Appendix C). Each area has a heterogeneous
geoiogy; the latter area wae heevily glapiated;during the .
Pieistooene Eoooh; wnile the fonmer has been Qery hea&ilyr -fwrw
faulted, but in such a way that structunal control is nof

appahent.

The simplest hypothesis for Pfaltz graphs of closed surfaces

without pits is that‘they are all equally likely to occur, that
the probability of each topologically-distinct Pfaltz graph-in

the abssnce of pits is the inverse of the number oﬂ-arbitrary

trees witn as many verEiééé éé £5é’g}abh’has”be£ké;m

As indicated by the frequencies listed in Table IIT.1, this

hypothesis-must clearly be rejected; a Chi-square test confirms

&

the obvious.

-~

'3.2: The -Simulation Model for Pfaltz Graph Freouencies

A somewhat'Qoremeomp}exwbutmstillfeogeeptually_simplegmodelft@pf 77777 .

explain the Pfaltz graph'frequencies was suggested by D. G.
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TABLE 111.1: OBSERVED FREQUENCIES OF PFALTZ GRAPH CLASSES

PFALTZ GRAPH A B C' D E F Total
Kentucky | 100 65 56 2 170 230
Middle California 31 16 13 2 2 1 { <65
British Columbia 4u1 30 23 b 5 0 1103
~ Northern California 23 15 16 3 1 0 * 58 B
Northern Pennsylvania 30 17 13- 2 1 0 463
Southern Pennsylvania 57 4 2 2 1 .0 66
!
o *
>,
) Fassl
® & St
‘ “
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of possible ridge orientations within a hillto
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A .
Kirkpatrick (pers. comgm., 1976). This involved forming minimum

spanning trees (Kruskal; 1956) of sets of randomly-distributed

points, and observing the frequencies of the various topological

‘classes. To implement this suggestion,'it was neccessary to

define a field over which the points would be distributed. A

circular fieid was chosen to’simulgte an isotropic distﬁibutioh
;; aggﬂthis was.
deformed into ellipses of'varying elongaﬁion in oFd;f to préduce

different degrees of anisotropy (see Mandelbrot, 1975, p.

'3827). This should in turn influence Pfaltz graph ffequencies.

The aSSumptions of the model are:

—

1) A random”distribution of points (representing peaks);

2) An elliptical field with variable elongation ratio;

-

H
i
T
-

3

3) An-approximation to a mihimum spanning tree by ridge

“networks.

It is well known that no single test can discriminate between .
handém and non-random point patterns in all cases. Assumption 1

was therefore tested for an area 9 by 12 km in the centre of the

Kentucky samplzs areza, uéing,threebapproacheéz a visual

examination, a Poisson-quadrat test, and nearest neighbour

analysis. None of the tests indicated a significant hon-random

*y
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element in the spatJal distribution of'peaksiln that area (the
nearest neighbour ratlo was 0.98,_notrs1gn1flcantly dlfferent_.
from 1‘0)3 Assumption 2 leads to further hypotheses relating

.geometry‘and'topOIOgy, which -will be examlned in Chapter 5; it

is dssumption 3, however, which is prlmarlly under test.‘

g
.

Modelled frequencies were generated using Monte Carlo methods -
w1th 5000 tr1als, Figure 3.1 shows the var1at10n in Pfaltz graph’ ;_
frequencises with changing elongation of the-elllptlcal fleld.

N ; R
Exactﬁmodelled'frequencies are given in Appendix D.
Beoause of cortstraints on the geometry of minimpm‘spanniné trees
for points°in‘Euc;idean space‘(for example; Blaok; 1970, has
shown .that all angles must’be greater than or equal to 6dw |
degrees), it is not unreasonabls that Pfaltz graph class 'F dld
nob;occur”at all in'thevprediéted”frequeneies.”Sinéé the five .
'fremaining_class frequenoies-vary together, therefis no a priori
reason tqe expect that the mo¥el would fit observed frequen01es
well For any of the elongatlon values. -Flgure 3.2 plots the
Chl—square value of the dlfference between the ohserved'and-
modelled frequencies,for the aforementioned three samplé areas.
Usually,‘the desired outcome in statistical hypothesis testlngj

is the(reJectlon oF the null hypothe31s, the»researcher is thus

belng conservatlve by choosing a small value of alpha (5 or 1- i}f

' per cent ). 1n testlng the significance of results., When testing .

the output of a simulation model, hewever, one generally wishes



3
Relative Fregquency

Elongation

Figure 3.1: Relative frequencies of the six possible-
’magnitude-6 Pfaltz graphs,.as predictéd by the randsh .
minimum spanning tree model, plotted as functions‘ B
of the elongation of the bounding gllipse, The letters
indicate' the classes shown in Flgure 2.L4; occurence |

0f class F was not predicted by the model
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Figure 3.2: Chi-square of the ifference between observed}
and modelled Pfaltz graph class. frequencies, plotted

37

v -

against elongation. -A: Kentucky sample;  B: British

‘Solid lines indicate no Significant difference at the |
30 per cent level, dashed at the 5 per cent level.

\
R




49

o . .o . f

. to accept the null hypothesis of "no,signithaﬁt difference"
between the quelied and observed valués;'clﬁ this‘caﬁéz a
'conservaﬁive résearcher should use much higher alpha léyels;
Blélock (1960, p. 162)‘suggested 10, 20, or ﬁeven" 39 pefvcgnt.

At this 30 per'cent level, thé results of ﬂﬁe present model do

- not differ significantiy—fkom aﬁy of the threeﬁsamples, for any .
elongation pgrameﬁep betwé&n about10181 agg{Owéﬂq——Indeedq~%‘nrf*7~%W"
‘circle4(elongation ratio 1.0, representing isotropic ridge‘ E
oriedtatiqns) cannot be rejected at the 30 per cent level for

either the British Columbia or California sample.,

/

‘In'therKentuoky samplé, there ié a clear preferred elohgation

parametér of .about 0.6. 1In contrast, the;California samplet

shows no particular preferred elongation, with approximately

equal fit for all elongation values between- 1,0-and about-0.+64 -

' - co-

the British Columbia sample shows a similar shape but a
gererally poorer fit., At first, these results seem strange: g

the area with very uniform 'geology and hqfizontél structure

-

’}(Kéntucky) shows a definite prgferred elongation‘(anisoﬁropy),”

hheheas the area of heterogeneous gedlogy and complex structurzs

"

(Californié Céast Ranges) does not. A'ﬁ%ssible explanation for

.thislhasAbeen‘suggested by M. Churghﬂ}gers.pcomm,, 1976): 1in an

= -

area of horizontal, uniform beds of sifiilar lithalogy, the

przsence of mast@r streams_and their major tributaries would be

- Iikely to préducg élongated<inferfIUVes, within whigh ridges
B B . /’ -

S

-
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£

'mlght be expectegd to be anlsotroplc and to tend tq\parallel the

’ 1nterf1uve, On the other hand 'such relatlvely strajght

A

interfluves wou]d Qe 1ess=11ke1y in‘areas of complex geology and
‘structure (but without strong structgrﬁﬁ_control).

Y . ~

P

-~

In order to provide a qualitative test for this hypothesis,

. sampl es’ of Pfaltz graph frequencies were obtained from an .area

further north in the Califormia Coast Ranges and from part of
the Allegheny Plateau in north;central gennsyivénia (for .

details, see Appendix C). Tt was hypefhesized that the.
Afiegheny area (flat-]y%ng,sandsténe) would show anisotropy
similar to that of the Kentucky sample, bt that thefseconq{ﬂ“

California sample (heterogeneous geology) would not. Chi-sduare'

- Wwas plotted against elongation for each of these samples (Figure

3.3), and the resylts seem to confirm Church’s hypothesis.

S

Strong structural control, such as thé.ridge-and-véliey
topography”of the'eastehn Appalachian Mountéins, would be’
expected to show Pfaltz graph frequencies cé}responding with a
pronou;ced elongation vé{ué (highly anisotrépic). A sémple of
ridge class frequencies was obtaiﬁed f"rv'om Su%h an area”in W

south- central Pennsylvanla (see Appendlx C), and the circle

hypothe31s (1sotropy, elongatlon = 1.0) was very strongly

rejected (Chlfsquare = 49.67); convérsely,’the model predictions

with an elongation val ue ofJOV1 produced a-veryvgood fit
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Figure 3.3:‘ As in Figure 3.2,bbut-for the Northern California
(4) and nor{?ern Pennsylvania (B) samples. -

~
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3.2.1: Effects of Sampling on Chi-square Plots

)

been used to 1nfer the degree of ridge anisotropy 1m‘landscapes

-~ ke

1t 1s ln order to ‘examine the sen31t1v1ty of theselcutyea%gossbasska»s

sampling effects., ‘All samples except the Kentucky one were

based on rectangular blocks formed by ad jacent map quadrangles,

- - SO S
- gnd so palrs of’quadrangles were selected from the central

/

portlon of the Kentucky sample area. Sp801flcally, the 37'
hllltops located in the Inez quadrangle were combined with those
from each,of that map’s neighbours to produce fourrsub-samples ?
o% from 55 to 75 hilltops: Chi-sqare plots for these sub-samplesl
are showh in Figure'3.n.r Sampling effectsiwanqlperhapssspatla,msugma;f
varwatlons in Pfaltz graph class freqm/nc1es, produoe a "
considerable var}atlen in overall degree of fit. Hglle three of

the curves have shapes slmllar to the egtlre set of 230 hilltops

(distinct optlmum elongation parameters around 0.5 to 0.6), the

fourth sample plot has a shape more 1ike the CalifOPnia samples, .
- h f - -

£ Y
3

* which were interpreted as being more or less isotropic. Thus '

while samples of arcund 60 appear'generally to give réliable

o
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Figure 3.4: As in Figure 3.2, but for four sub-samples of

from 55 to 75 hilltops from the Kentucky sample area.
The long dashes show the total Kentucky sample (230

hilltops) for comparison,

o
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3.3: Conctusions -
'A simple geomatric model with a random component and with'one -

adjustable parameter (constraint), an

i

elongation ratio which

*

characterizes the degree of anisotropy‘of ridge orientation

' withinahilltop units, provides excellent predictiohs of Pfaltz

’gFéﬁhffﬁédﬁéﬁéf€§“?65m5405F555§76fmgFéégfj Regions with ‘
heterogensous geology and structure but with no overt structural

control are best fit by an isotropic ridge distribution. At the

e

other extrems, the overﬁ'sthﬁctural control presented by
ridge-and-vallsy topography pfoduces ridge topology fbequencies
which are well predicted by the model, but with a very
pronounced (10:1) elongation of the elliptical field in which

psaks are éssumed to be randomly distributed. Somewhat

surprigingly, areas of extremely uniform, horizontal geology
have hilltops which aré best fit by»the-model'with an elongétibn
ratio of‘;gpghly 2:17. This may be dué to topographié contrql
introduced by méster streams and their ma jor tributaries; Even,

if this is not the cause,ithe;elo ation parameter in the model

represents a constraint on the "randghness" of at least some

topographic surfaces.
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__CHAPTER 4: SURFACE TREES'W A THREE-DIMENSTIONAL APPROACH TO

GEOMORPHIC RANDOMNESS

@

'
w
-

The surface tree (see section 2.5) is a tooologioai
representation which containsAinfohmation about the
three-dimensionaj.arrangement of a surface. While it is

completely determlned by the Pfaltz graph of the surface,

- ,
together ‘with the assoolated pass height ranks, it portrays thls

information in such a~different way that it 1is an interesting
representation in its own right. Thls chapter examines surfaoe

trees from the point of v1ew of topologlcal randomness in

e

geomorphology.

et . . -

Y

»

4.1: Topological Randomness and Surface Trees . ,

For each of the 398 hl]ltops 1n the Kentucky, Brltlsh Columbla,
kN

and middle California coastal samples examlned in s the {ast B
- chapter, the'surface tree glass was determlned fromJamong the
six poseible topologles (Figure 4.1). As wtﬁh Pfaltz graphs,
the simplest. possible hypothesis, that of equgi likelihood of
all’topologically distinct trees,‘is hntenable, an Ais strongly

rejected using a Chi-square test. Slnce, as already noted, the

surface tree is completely determJned by the Pfaltz graph and

' “***‘44bESSW?Hﬁk§4Vth€4§U4§tlOn arlses' 'now do the six surfﬁoe“tree

-

classes relate to ‘the Pfaltz graph classes?
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Figure L4.1: The six possible magnitude-6 surface trees.
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A551gn1ng the pass,elevatlon Pa?¥s—to the'passes“is EXdCbly
equ1valent to the problem of lébéﬁllng the edges of the rldge

graph with labels 1,2,...,N-1. In general, the edges of all

trees with exactly N vertices can be labelled in exactly NN-3
distinct ways (Moon, 1970, p. 6). For N=z6, there are thus 216
»distinct_edge;labelleq trees, each %ith ité Pfaltzigraph class

and surface treé class determined. Table IV.1 tabulates these.
216 trees-- it can be seén that dnly 25 .of the 36 cells can
possibly occur. If the pass eievation ranks are mutﬁally

independent, the'relative frequencies of surface trees for ahy

particular Pfaltz graph class should roportional to the

entries in the appropriate column of Tab .1. This
independence assumption -can then be coéh;ned ith the expected’
freqqencies of Pfaltz graphs from the last chaptef to prodqce'
expected surface tree frequencies (Figure 4,2). As elongatlonhmvaiér

varles, contrlbutlons from various Pfaltz‘Eﬁaph c]asses vary,
J w
but the totals stay almost constant for three classes (II, III,

V); classes IV and VI increase steadily with increasijfi\wéfp
elongation; while only class I declines. ' 7
- . ; .. - ﬁg
The circle (elongation value of 1.0) provides best predictions

i Fang

inall three éreas, but the differehce between the ekﬁected and

- observed surface tree Frequen01es is highly 51gn1flcant for the

California and Brltlsh Columbla samples, and fairly large (but ™
not quite significant at the 5 percent level) for the Kentucky
sample (Table 1IV.2). BaSically;'all areas‘show too many surface

trees of class I; this would be expected to occur if the pass



»

. 58

i

o

¥

TABLE IV.1: NUMBERS OF "PASS-LABELLED"™ PFALTZ -

GRAPHS AND ASSOCIATED SURFACE TREES

, - /
PFALTZ GRAPH A B C D E F  Total
SURFACE TREE . :
I § 15 18, 11 7 1 60 | \
LI 16 12 16" 4 - - 48 S
. FII 12 15 12 3° 3 - “l5
TV 12- 12 - - R b
v 4y 6 6 2 2 - 20.
Vi . 8 - 8 - - - 16
Total 60- 60 60 20 15 1~ 216
~
¥
t A
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Figure 4,2: Expected relative frequen¢ies of the six :

surface trees as functions of ellipse,elongatién,

vased on the model (Figure 3,1) and assumed pass

height independence. " ‘ |
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TABLE‘IV.2:‘ THEORETICAL AND OBSERVED FREQUENCIES=O§ .
SURFACE TREES, CIRCLE SIMULATION MODEL e

Tree .Expected

Class Prbbgbility

Observed'

Kentdbky Califorg}a

B.C.

1 0.226 67 (0.291) 32 (0.492) 44 (0.427§
‘11 0.238 62 (0.270)F 11°(0.169) 19 (0.184) . ,
IIT . 0.211 . 41 £0.178) 11 (0.169) -16-(0.155)% .- _
v 0.145 26 (0.2.13) 7 (0%108) 9 (0.087) =
R - 0.087 © 16 €0.070) 1 (0.014): 12 (0.117)
VI 0.093 18 (0.078) .3 (0.046) 3 (0.029) -
Totals 230. 65 " 103
Chi-squared 9.43 28,21%¥ 29, 11%#

¥* significant,

0.1 per cent level

5

o




heights are hot'independent but rather show a positivéirf

"autécorrelation'.

e . L Q

4.2 Autocdrrelation of Pass Elevations : © - '_ s

. F

The continuity of topographic surfaces ehSures that points whigh
are ve?y close together in the hofizontal (x-yf plane musﬁ have

very similar heights;:,Genefally;’this "aqtocoﬁre&atibnﬁmwi&&?\ﬁfﬂ;A*
“deéline (rough]y exbogentially{ sgé Seqtibn_].2)fa§vhorizoh£él

. distahce iécrégsgg, énq'it is not un?é§§ohéblé tb-sungSe that
tépologiéally'adjécént pasééé might have-more $imilér elevatioﬁs
than more'distant pairs. "&f autocorrelation is high over the |
entire scale of the individual hilltops, minor variations will
produce independence of elevation ranks;'if, on the other hénd,v
autocorrelation declines significant]& over intra—hil]top

distances, £his Shou]deisturﬁfthe“independence’aésumptiqn~andfﬂ”f_v

influence surface tree frequenci

Sur face tree C]E;S I results if, and only if, theﬂhighest pass

is adjécent to tﬁe spgond highestyrthé third'is édjacent to oné
of these, and the féufthrnext to:one of these three, Any other
VéombinationAwill produce one of the otﬁer fiQeﬁsurface tfée |

~classes.

It is thus easy to see that a.positive spatial

autocorrelation of pass elevations should favour class I over .

= —

the others,'resulting in underpredictionvofithis class/folloding

&



" the independencejassnmhtion: dAIT”thnee eheas shcw:this.ff»
undencredicticn,'nhich is less'marked in tHe KentuckyesambTe,’
probably because of the effects of the scele of autoccrrelation,>A
as mentioned above. It remains nowAto demonstrate thelpresence

of autocorrelation statisticaliy: : ] s

“Frz.1:  An Intuitive*kpproach to Autocorrelation - --- iwef

- For each of the three more frequent Pﬂéltz graph types (A

and C), the probablldty of the hlghest and second hlghest pass '

- belng adJacent was determlned assumlng 1ndependence.

Furthermore, the conditional probabllltles of the other
adjacency relations whlch would lead to surface tree class T.-

were determined (conditional on all previous adjacency

requirements'being'met);~~These—probabilities~were=then~usedlaSWW~,~

null hypotheses in b1nom1al tests of the observed 1<‘r'equencles oP
various adJacen01es for each of- the three study areas, and .
observed frequencies significantly higher than expected are
1nterpreted as ev1dence of’ p031t1ve autocorrelatlon. 'The -
'results of these tests (Table IV.3) clearly 1ndlcate that
significant positive autocorrelatlon of lag-1 nelghbouns is

present in all three areas. Departunes from the null hypotheses

are, in general, most pronounced for the ‘California sample and

weakest forvthe Kentucky area. (This trend is, c01n01denta11y,

inversely related to sample’size, so,that the "81gn1flcance“ oP'c
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. California

s '
TABLE TV.3: BINOMIAL TESTS FOR PASS HETGHT
KUTOCORRELATTON
, Pfaltz : Adjacency
* Class 12 {1213 {{12}3}4
A Expected  0.500 0.500 0.667
Kentucky 0.520%#% 0.673%% (0.486)%
B.C. 0.683%*  0.714%% 0,800
i California vO.806¥* “0.520 0. 796’
_ B Expected  0.500 _ 0.600  0.833 %
. Kentucky - ~0.600 0.821%% (0.719)
. S B.C. 0.700 0, 857%% 0.944
. Ebgﬁalifornia 0.813%% o\gg3** (0.667)
'C - Expected  0.500 .  0.733  0.818
" Kentucky = 0.732%¥% (0.732) (0.719)
) B.C. 0.565  (0.538)  (0.571)
= . 0.732% 0.900 1.000

-l

¢

¥ significant,
¥*%¥ gsignificant,

5 per cent level
1 per cent level

(-) observed value less than expected
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the;diffepenee'is’similar in-mos

5— . - ' V , : -
4y.2.2: FogmaJ,Autocorrelation Analysis
L e b - -
- . B _
& T : o B . :
" Formally, spatial autocorrelation can be defined as. a situation

Where“"the prgsence of some qua]it?iinAé county of a country

;mgkes 1ts presence 1n neighbouring cc t les. more,Qnilessillkely"

M'(Cllff and Ord 1973, p. 1), where "county" and "country" refer

1n the generai case to areal sub unit and study area;
'respectively. Cliff and Ord suggested two general
autocorrelation coePfLCients to- quantlfy these neighbour
~inf1uences “the first due to Moran (1950) relates the sums of .
Cross- products of neiahbouring cases to the total variance of
a]lzcases,»th;_second, suggested by Geary (1954), divides the
VafiénééﬁQf neiéhbcdfﬁgigf‘rﬁn” s _by total varianceLmNThe,fonmecii;,
coefficient,is-closelyre]ated both to the standard measures of
autocon;eigticn'in time—senies anaJysis,,and to the(
product;ﬁoment'corfelation coefficient betweep)values 6? ali
;neighbour pairs, and differs from ‘the 1atten~on1y in Weightings/-
for the total variance calquation. ;heppoduct-@oment h é v/?*
autocorre]ation coefficient is intuitive]y more apnealing in its

reiation to well-known statistical procedures and concepts, and

[

is used.in the fo]]ow1ng analys1s.




In the present study, "neizhbou

\

ir" was used in the:

graph-théohetic'dr‘topOlOgical sense (section 2.1) in the
calculation of pass elevation autocorrelétion éoefficients‘fdﬁ
the Kentucky and British Columbia hilltop'samples. This was
depe for all possible lags, with "lag 2" or second order

P

neighbours being defined as those passes on edges adgacent to

,thehﬂipstAepdeP—(}ag-4}"ﬂ€&gthUTSywet ee%era.jﬁObvioﬁsly7~lagE%*“‘f;

v

‘neighbour relations occur oﬁly in"PfaltZ‘gfaph élass EI while

third order nelghbours do not oceur 1n classes D and E.

Product mom»nt autocorrelatlon coefflclents were comput»d for

each possible lag and each Pfaltz graph class for each of the

two sample areas. When raw elnvatlons were used, the resultlng

plots of autocorrelatlon agalnst lag (Flgure 4,3) are domlnated

by inter-hilltop ﬁlevatlon d1 ferences, thus’ emphas1z1ngwthe?

rsimilaritymof~pass~elevations~within*éach'hill%op;fcomparedmwi%h~f~;f

the over-all relief of the study areas. Only intra-hilltop o

autocorrelation will influence surface tree frequencies, and -

~ thus it was deemed necessary to attempt to standardize

("de~-trend") the data before analysis. Several different

‘standsrdiZations were applied, and that which set the highestv

o

1 A
pass Lo one and thd lowest to zero appears bcst in that its

dlmens1onldss Form may reduce scale effects. Figure 4. 3 shows

the autocorrslation plots ‘For dlfferent ‘Pfaltz classes us1ng

thlS transformatlon._ In each araa, but espec1ally in the

Kentueky sample, Pfaltz graph classes A, B, and € show mutually
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”féur) peak has a pass héight*which is very distinct from the

~ The larger sample was arbitrérily located,:butlthe.sméller‘was

similar autocorrelation plots. In each area, class D shows the -

strongest negative autocorrelation; this was for lag-2, and

indiéatQ§ that the ohe‘edge not incident on the'oentral?(deéree

-,

her edges. On the other hand, Pfaltz graph class E has

negative‘autocorrélation~at lag;1 and independence or positive

autocorrelation for lag-2. 1In this élﬂEELMEE would appear tiiat

thecentral" edge.has a distinect (and by inspéctiohd generally
lower) eleyatioﬁ. Thé numbers of occﬁrrences of classes D and.E-

-

are,-howevqry'SOMIOW'that these trends may not.be reliable. .

4.3: Surface Trees for Largér Areas

&

‘Thus far, -attention has been focused on surface trees of small,

. fixed magnitude (6), in order that all topologically-distinct

"pdssibilitiQS‘could be éonsiderad. Now,ﬁtrees for larger areas

will be considered.’ Surface trees were determined for five

- larger terraindsamples. The first two (Figus; 4.4) were
4'09mputed‘for 3 by 3 km and 2 by 2 km équare sample areas from

the dnez quadrangle ﬁearrthe centre of the Kentucky study area.

=
.

-

. . hd : k3 T . ~ P
chosen’ so as to minimizelthe amount of major valley floor. The

" form oF the larger tégé-(Fig&reragﬂA)\is dominated by two

el

.1
4

ectsT  a general accordance of summit elevationsy, and

influences of the study;areavbodndary, which "phbduced" the two

0

-

-~



AN

Figure L.4:
‘ i‘Qﬁadfangle, Kenéuckj. A: 3 by 3’kﬁ’aréé; B: 2 by 2 -
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~ km ared,
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2

Surfacé trees for two ‘sub-areas of the Inez
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lowest passss (which are riot passes when.the 'sample area is

L3

increased). The‘Smaller tree (Figure 4.4B) owes, its simpler

¢
form to the szlection procedure which- avoided the introduction
of artificial "=dge" passes. !
.

As noted in the introduection (Chapter 1), a feature of either a

"white noise" ¢or a "Brownian" random surface would be an equal

- - N

expecfed freqﬁency of peaks and ' pits. E@%ﬁhermore,‘the exbected E
 e1evations of arbitrary points are ﬁbrmally distribqped for both

‘0of these surfaces (if the white noise is Gaussian), and the-- - -————

passes have the same expected elevation as the arbitrary points,
but. probably with a smaller variance. Figure 4.5 shows %he
frequeh6§ distributign.forrall points, forrpassgs, and for

peaks, for the area rebresented-by Figurd 4.4A (exciuding "edge"

k7]

peakS‘andrpasses). All peaks, anﬁ more. importantly, all passes,

lié-above the megp'elavatioé_éf t%e_ter}ain;“this uneven
distributidn of critical points within the elevaéion range of
the terrain represehts,a“yery impo%tant non-randém'eleﬁenti
(cdnstraint) o? the teﬁté%n of this area. This is probably - —~
related to Leopold and Langbein'sk(1962, p. ABj claim that "the
higher the'ﬁandscape above base leavel, the greater beqomes the 2

distribution of possible slopes", This in turn may be a

] : . ] k- :
consz2quencs of diffusion models for geomorphic surfaces viewsd

as transport,gurtaces (Scheidepgsr aﬁﬁ‘tghgbéinf‘ﬂgﬁﬁ; Luke,

;1973).' & similar result may be derived from completely
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. : s o
N

surface of Mardus (1967). ’ , ) 1

. 5

Surface trees weré alsc q;termined for three much iarge? terrain
samples from the glaciated mountains of western Canada; these

are shOWn'in Figure %.6. - C represents a 7 by 14 km rectangle
ffom'the~Ptarmiganh€reek~map~apeaﬂ483ﬁD%iﬂi;gand*wasgganaéﬁhedag;;_;
by the computer from a digital terrain model using the methods
described in Appendix ITI. D and E are based on 719‘by 9.6 km
recbangles froﬁ theriékeriauiséﬁ(8é N/8E) and Méhﬁiﬁé Park (92
H/éW) m;p areas, rzspe®tively. The Manning Park area was
compietely ovértopped by glacier ice during the Pféistocene
Epdch; while the other two arsas show sharp "cirqhe-and-hgrn"
topography in the upper parts of their elevation\ranges and -
“smoother f,oaﬂms~rbelo4#.——r——Inr—fi}Jﬂ:’errg—‘c,rr'ez—;.&offm't;hz-zsz-,»ar'jaéusfLEiijg,ur:e,AL&F ,,,,,,,,
'C and D), cirques containing closed dearessions appear as short
branchess which slope downward away from- the ﬁain branches.,

Thesz pits, and the over-all scale of relief,-are réally the

only features which distinguish these trees from those é%bwn in
Figure 4.4, suggesting that surface trees may. be of limited

]

valuz as a physiographic tool. The general accordance of

frsummits in the Manning Park area, which probably représents-a

pre-glacial =2rosion surface (Rice, 1960, p. 2), is shown very

well in the surfacs tree of that area (Figure H4.6E), but could

havz bzzn shown =qually wsll by any of a numbser of simpler
, ‘



-

Figure 4,6: Surface trees for three areas of glaciated

mountains from western Canada, C: Ptarmigan Creek

map area; D: Lake Louise map area;’,E: Manning Park

map area.
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graphical techniques.

The surfacu Lraes shown in 'Figures 4.4 and 4.6 have the

-

elevatlons oF th31r nodAs to scale, but their horlzontal scales

are arbitrary. It is possible (but very tedious using,manual

methods) to compute thu_surFaén areavaSSOéiated with?each branch-

e Y

L S — e 5

of the ﬁrée, and uss these valucs to scale the horlzontal ) o

lehgihs of ‘the branches. Figuré M.7 shows the. Ptarmigan Creek

sample area (already shown in Figure 4.6C7, buﬁ with the

horizontal compoheﬁtS'oﬂ the branches SCaledAbyuthe sqgarg roots

‘of associated areas. 'Thc slopes oF thé branches are indirectlyt o

relatAd to avaragd land slopes,-and the,iree giwves, an 1mpr3551on

of hypsometry, as well as'lndlcatlng rellef, summlt accordanca;~

: ' Lo . . . o o
and perhaps trim lines and cirgque slevations. - :

3

L]

4.4: "Horton Analyéis"Aof Surface Trees
\ - . ( ? L3
"In a frequently us=d apﬁrdéch, ”the#ﬁ}&gf step in‘&rainagé;basin E

5

analysis is desionation of stream o%der,~followihg‘d system;

*

1nurodu04d into the Unite d States by Horton (1945) and- sllphtly
modifisd by Strahler (1952)"A(Str'ah1 r, 1964, p. u 43). " This

S%Ap 1s—ef%nﬂfﬂei}GWAéfby*a—AHGP%Gn—ana}yS%s——*%n—wh%eh—%hs
logarlthms of sanamAnumnem&ﬁmuﬁuLlﬁagihsﬁganﬁgmeangdcalnagiggggggf

arsas are plotted agalnst ordar. For most streams, thése - .

seml-logarLbhmlc plots prquce approxlmate styglght lines; thesé

4,

- - 1 N A
R . x . N
. . .
\\ N .
. - . - .
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are known as "Horton's Law$ﬂlmw§nngg§,ij966), and others, have

shown that these relétions represent the most probable statés ofr
}andomiy-brénching networks, and that furthermore, the expected
slobes of these plots are closely determinéd. The expected

slope of the number plot (the "bifurcation ratio", Ry) is ﬁ

for very large stream syspems (Shreve, 19675; the expected value

of the length ratio (R ) is 2 and of the area ratio (R,) 4

(Shreve, 1967). While Horton’s "Laws" do involve "averaging
processés” which “"obscure the basic qualities" of mean link
lengthSHaﬁd draiﬁage areas (Shreve’, 1975, p. 529), their
application éo surface trees}provides an interesting descriptivq

tool for large networks,

First, it is possible to establish the expected bifurcation.

ratios for magnitude-6 trees under various conditions. Surface

tree class 1 (see Figure 4.1) has a Strahler order of 2, and

thus has a bifurcation ratio of 6. For the other five tree

classes, the tree is of thifd order,léﬁd the geometric mean
bifurcation ratio is 2.45 (square root of 6). For stream

networks, Figure 4.1 can be thought of ‘as representing the six

-

ambilateral stream classes, and the number of members in each

class can be used to calculate aﬂweighted mean bifurcation

" ratio. Class I would contain 16 of the 42 distinct magnitude-6

trivalent planted plane trees, and this would produce anm average —

bifurcation ratio of 3.80 (see Table 1V.4). When the surface

-~
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TABLE IV.4: EXPECTED MEAN BIFURCATION RATIOS FOR
MAGNTTUDE-6 TREES
’ C]ass I A1l Others Mean Ry
Geometric Mean Ry 6.0' 2.45 '_ ' -
Tree Frequencies: .
Stream Networks- 0,381 . 0.619 = 3.80
Circle Simulation 0.226 0.774 3.25
Kzentucky 0.291 0.709 3.48 -
British Columbia . - Q0.427 ~0.573 3.97
California . 0.492 0.508 4,20
N ////
_ Fe R - 7’77 e
A» R
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tree values for'the~simuiaficn"mddgl'(see Figure 4,2) are usesd
" as weights, a considerably lower Ry (3.25) results, but this
P B
rises with increasing positive autocorrelation of pass heights,

so £hat mean values for observed surface trees are similar to

the valuss for stream nstworks (see Table 1V.4).

The,five,suﬁfacs,trsés;showg,in:Figupes;M.AﬁandiﬂTédwepefepdeped—u@—Q
using Strahlesr’s system, and the numbers/éhd mganwnﬁlé?f‘;alues ’
.for 2ach ordér werz determineds: Figures 4.8 and 4;9 represent
Horton-type diagrams for."hill numbers” and '"hill mean‘réiiefi,
respeoﬁiveiy. The numberAp]ots (Figure 4.8) are rather similar
to typical stream plots, with geometric mean bifurcation'}atios
betwszen 3 and 5; as explained above, however, this close
approximation to stream ratiqs,isvlargely coiﬁcidenial,— Mean
,ralief”seems,towincreasawgeamatpicalighwithAordenWLEigupemufger§,uW7
but‘it w&u]d’appear that the constraint imposed by total

évailable relief msans that the relief ratio is not independent

of order, as is gznerally the case for stream networks.

This is well illustrated by the Kentucky samples. The average
local relief in this are=a is no more than 180 métres, while the

mean relief of first order hilltops is consistently about 19 n. $; h

about 110lm, but duse tortharsamgle’area size and number of

psaks, this branch is third ordsr for the smaller sample and -

<
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fourth th the Iargen.L

{;

The Inez quadrang]e contalns over 400

Y

' 110 wo m.

peaks, and 1ts Lotal surface tree would pqgﬁabiy be of order
- five ar 51x,_but the hlghest order branch would agaln be around

'71

The geometrlc mean relief ratio of an order M tree

is computpd by taklng the (M 1)th root of the ratlo of Mth order

r‘elleF to mean first order relief

e

Since this ratlo is
relatively constant once the»sampie area‘exceeds the reglonal
, graln (woodvand Snell,

&

to exoeed the graln of the Kentucky area), the mean relief ratlo\

1960) (and the 2 by 2 km sample appears B
will decline w1th,incréaalng order

=
-7

- , |
- Probably, only the pean S
relief of first order hills is meaningful, and even this is ‘ o
- ‘ T
.opnst;alned by the contour interval when maps are used as the
-

_ ‘data source. ’
.5: ;Concinsions

'

In the last chapter, it was found that tgsmfrequen01es of Pfaltz
graph cLasses oould be well predlcted by a model based on a
random spatlal dlstrlbutlon of peaks

K

3
¢

\ -
wlth the’ rldge network
llnklng*these COnstralned to

k

sbe of minimum total length A N
further constraint of an elongated field for these points was
prasent iiﬂiigi/guf/nAt all terrain. These freguencies,
rtegethen;with—aSSﬁﬁed*independenc34of‘pass*ne1gnts, produced
expeeted frequencies for'uagn tude

surf
not in agfée@ént with the data.

A
Rl ¥

~ '
ace

trees—which were

a

This is because pass elevations

=
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bifurcation ratiocs arg similar only by coincidence. The mean.

’ 5 ) , 81

Y

A

are not indspendant:  the positive autocorrelation of

glevations on g=comorphic surfaces, which-results from

continuity, repressents a further constraint on the "randomness"

of topological §§presehtat10ns. .

&

P - >t

Large ‘surface trees gensrally obey "Horton’s Laws", but mean

relief ratio is not independsnt of order, sincs the relief of
the high=st order’branchrcanhot éxceéd the local relief of the

sample area.
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CHAPTER 5: EFFECTS OF SCALE ON TOPOLOGY
. 'y' '

; ,
* -

The scale (size, extent) -of landscape.elements represents.atvepy

important aspect of all geomorphological,research,'for even if‘j;

scale is not explicitly specified ortihvestigated, itmﬁill'be
implicit in the delimitation of”a'study”anea”and cfﬁa'samplinéii>:

density or- 1n~the“resoTut16n dfwind1v1dual measurements.» While

oy o

topologlcal propertles are by deflnlthﬂ ‘scale- free, they are,

however, 1nf1uenced in varlous wgys by scale effectsmrjﬁﬁf_;,_wﬂﬂa

»

example, F1x1ng the magnltude of a dral e’ba31n or of a

-

hilltop establlshes an expected planimetric size for these

[N

units, based on drainage, ridge, or peak density. The. flrst
section of thls ‘chapter will rev1ew various measures-of

landscape _scale as they have been (or should have been) eﬁployed

2

,infgeomorphcnetryvﬂ Attentionm will ™ then turn to scale effects ac
they relate to hilltops of various magnitudes. Finally, an
attempt is made to relate size and_,shape of hiiltcps to each

other and to ridge topology. -~

-

5{13 Funda@entaffgga;;s/;f Geomorphometry

s;ngle measure, but rather must be characterlzed bxﬁa,sgzig_gf B

baS¢c or "fundamental concepts of geomorphometry" (Mark\\li?gb%”//~

Flrst among these is the planlmetrlc or horlzontal scale, whlch

.
3 e

~

- 1
.
. E . . .%\7,

R
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itself cannotrﬁé;édequately represented by a single value, but

can only be completely characterized by the two-dimensional

power spectrum of the terrain. This can sometimes be summarized
» > . o . A

2 .V . - . o .
by the average one-dimensional power spectrum, or more often by - - _

the importantfor characteristicfwavelengths of the terrain

Perhaps the most 1mportant of these are the smallest and largest

(¥

wavefengthS“Uf*Interesv* crstlngu1shed as “texture" and "graln"

-
R

respectlve]y;(Mark, 1975b), for the former 1nfluencesrthe

required resolution of measurements and the latter therize of

sampl ing areas. Drainage density and peak density are more

commenly'used geomorphometric perameters which are related_to

this horizontalrscale, as are the average *sizes of |

-

flxed ragnitude baSLnS or hilltops, for reasons outllnedﬁabove

What most previous researchers (1nclud1ng Mark, 1975b) have

.directions; that is, anlsotropy may be present. Fur}harmore,

this anisotropy may itself vary with scale, beingipFEsehtfat‘

some scales and'absent'at others. For exampng:Flgure 3.2
4.

clearly indicates that an 1mportant element ¢f ridge anlsotropy

\

1s present within magnltude 6 hllltops in the Kentucky samp]e,;wh~7

E)

area. When the orlentatloms of these hllltops are 1nvest1gated

howeve", no 51gn1flcant between hilltop anlsotroov ‘is Dresent

(Flgure 5.1, A, B), despite the fact that gggnltu@e-S dralnage'

basins -in the same area show a significant deparyure from a

unifgfg’gis%ribUtion (Khumbein and Shreve, 1970, p. 94-101; see



Figure 5,1: Orlentatlon pr0pert1es of the Inez quadrangle

Kentucky: A: Hllltop trend, 20 degree classes-
"B: Hilltop trend 90 degree classes C: Outlet R

> o
orlentatlon magn1tude-5 streams- D “Dip of Strata in

magn1tude-5 basins, (C and D after Krumbein- and -

; Shreve, 1970, p. 95).
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also Figure:E/J);, EyldenLlyTlxhe’aﬂ&se%f0py*thUhJTﬁTTﬁéﬁE§§/*4kﬁ

magnltude 6 Pfa]tz graph topology does not extend to largar'
1andscape Al@ménts ' ThlS is entlrely gonsistent with thur~\:-'

hypothesized reason for the anisotropy, the 1nflpence;of'm§jdﬁ

stﬁeams on local‘drvides,‘which woﬁld notvbe'éxpéctedwtd'extend

5
I3

to iarger systems. ' 4 : ‘ ’ -

e e — o e ey - - e

Vertical scale, commonly termed. "relief", representé anothéf ;
basic dimension; correlatipn'ahdkfactor analySes héve generallz
shown this to be'independent'0f4the héhizbntalrégéié (éa}diﬂér,r
1975; Mark, 19755)‘ Anothe;Rfundamehtal concept bfoposed’”
earlier (Mark, 19755) is'th¢ dispersion of qrthogona]s te the .
surface. The averaging procedﬁfas_employed;in this calculation,

however, obScure the fact that these orthogonals may reveal

aspects of landscape anisotropy (see Chapman, -1952). —Anisotropy-

is probably also what is being measured by most basin'shabé<

paramsters. ,,,/‘f/ﬁiﬁ

5.2: . Pfaltz Graph Topology for Varying Magnitudes

In order to test further the model and hypotheses developed in

Chapter 3, and also to 1nvest1gate indirect effects of scale on,

topology,:samplas of hllltops of magnltudes h, 5, and 7T wWere

3 [

S

" obtained from the Kentucky and Brltlsh Columbia sample areas.

Thesz2 hilltops were each classified into one of the 2, 3, or 11

-



.

(rnspactlvely) topologlcally dlstlnct PQa;t_,gnaphaolassesjd~$hea~b-*
'~m1n1mum spannlng trea moda]l was run for each of these v "@
;magnituoes,‘using‘a rangﬂrof Alongatlon values to produce
_EXpectéd frequsncies (see Appendix D) o - o ,iKA

-Figur»s 5. 2 and 5.3 plot Chi—squaré‘(goodness-of-Fit) against .

/:"—\"_ 5 PR u - N
2longation for th= Four magnltudes 1n these two areas. Bgcausa o .

of lowrexpectdd values for Soma Pfaltz graphs, ‘soms classes were
‘amalgamateqf MagnltudesAL and 5 each have but one degree of
freedom;fWhiIe‘magﬁitudes 6 and 7 Have 3 ang ﬂhdégreéﬁhofrh': L
freedom, respﬂctlvely In the Kentucky area (Figurﬂ 5.2), the
shapc observed for magnltude 6 (1nterpreted as 1nd10at1ng
within- hllltop anisotropy) appears to apply throughout this
Lmagnltude range; the second- "optlmum" for the 01rcle at
magnltude 7 sugcests that the 1sotropy -at 1arger horizontal ﬁ;;m,,;w,ﬂﬂ%
scales in thls landscape may be beginning to influence topology |
at this magnltude. In the Br;t;ﬁh Columbla sample (Flgura 5.3), .
isotropio effects were-thought (Chapter 3) to doﬁihate at

maghitude-6; ahdthis clearly extends to magnitudes-7. The

smaller magnitudes, howeuer, show anisotﬁopic éhapes similar to | %
the Kentucky sampl , Suggesting that ‘the boundary between local
anisotropy and gzneral isotropic ef fects for this landscape lies

betweerm magnitudes 5 and 6. 1In contrast, this boundary would

appzar to lie above, but perhaps not far : above, magnltud9-7

systems for thes Kentucky Study ahea} The difference is perhaps

et ki F i s 1 e o] e

-
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As in Figure 5.2, but for the British Columbia

-
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.

largely a result of different map écale$ and contowr intervals

(Kenapdky: T{éu,bdb?mubrfeét;VBfiﬁishJColumbia: 1:50,000, 100
feet)» Although areal extents of different'magnitgdes wére not
rmeasured, théfmagnitude-u éystems in B}itish Columbia probabiy
have a sihiléb mean afea to the magnitude-7 hilltops of the .

Kentucky maps;' The comparisoﬂ is not straight forward, however,

because there are‘prouably réal'differéncés in,topographic»

texture between the two areas< Furthermore, the British’

Columbia arqa_has‘beenfglaciated;lit is interesting to speculate//;/;/£

that possible scale differences among fluvial, glacial,
perigﬂacial; and paraglacial processes may contribute to the

differences in the goodness-offfit plots.

)

-, - -

5.3: Allometric Analysis of i11top Form

o~ .

Corneiationfanarfagtoriéﬁéiyééé indicéﬁéﬁfhéﬁufﬁé;idéé%ikﬁméiéf '
area, lengﬁh of ridges, and radii of the largest insqbibed and
smallest'circumsqribed circles fob each hilltop are all very
closely related, while relief, the remaining size measﬁre, is
less éiosely linked with these. This‘broviaggffurther

confirmationAof the relative independence éfrhorizbntélhand

- A

vertical scales of topography. Allometric analysis provides a

)
s p TR

!methodwiopiexaminingfthewsipueiupeféiLmorphemetpiemsystemﬁ in

more detail. ,Thguallgmgitic4apanagh;sLudiﬁs the relationship

of size of one part of a system to some measure of the total



‘relief-area relation suggests that small hillfops tend to have a

90

yai
-
FE
* -

system, and was_originated mB}e%eﬁ%see«WﬁW’)
review). The apphoach wasiintroducea;into the Earth Sciences by
Woldenberg (1966) and was\recently reviewed by Bull (1975). 1t
would appeah that area is the best measure of hilltop size.

Power funetions relating each of the other measures to area were
computed using functional ahaiysis (sge Mark and Church, 1977),v

with ‘Lhe error variance ratio. erﬂt £ technlque/44ambda9ebased—/—'

on the error variances of the logarlthms reported in Appendfx C.

'The results, given in Table V 1, -indicate that only Lhe relaulon

" between rellef and area dlffers slgnlflcantly from 1soﬁetry (tho

preservatlon of form with changing size). They also indicate

that planimetric shape is essentially_independent of size; the-

~higher relative relief than largeb ones. Mosely and Parker

- (1972) have disousseq;the,dghgerrof ihLerpreLinglsize-relateﬁwe?mw~'

changes in shape as growth patterns, Such an interpretation
would be most inappropriate here, Since even if space cah be
substituted for time, process considerationg would indicate that

: - i - 'i,
hilltop_ planform shrinks, rather than grows, isometrically..

should be related to topology, and that size should be

s

'irrelevant- the allometric analyses c¢onfirm the relatlve

1ndependence of shape and size.
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TABLE V.1: ALLOMETRIC RESULTS
| 7 isometric observed
X Y ‘exponent  exponsnt
A H 0.5 0.423%
A RC 0.5 0.543 s )
A RI 0.5 0.515
- ¥ significant allometry, 5 per
cent level
TABLE V.2: ELONGATION RATIOS FOR PFALTZ ‘GRAPH :
Class Mean t » Mean ' r ot
= . - L ox - :
A 0.588 ‘ o 07588--=~} D e
, o - ’ }
B 0.667---} | J- 2.6U *

}
%
}- 0.36 ' N.S. 0.66%1=~=} } %
' | o }-2.98 * ®
} .
}
}

C - 0.654---} B o B L

. , : ~ }- 1.21 N.S.
D 0.707---} ° o - -} I

}- 0.39 N.S. O0.7h4--=} . _—
E 0.755---} ) -
, . -

o significant g;ffzrenéé, 1% lével.,~; » ':*,
- Y




[jgg;,"S;ﬂ:* Relations Between Topology ahd»ermﬁmry : Eoen
) g ) 1S z - :
) 'd
One intuitively reasonablelconsequence of the model developed in

o - R p

=

¥ v 3
P : - : e . ) . 3

-~ Chapter 3is an expected relation between Pfaltz graph class and
" the shape of the contouribounding the hilltop. If the

elongat;on ratio of fhe (1mag1nary) boundlng elllpse varies,

,WeUAthese e;lisseseshe thayefdiffefent~average shapesfor the

E different topol_ i 'ciasses 51nce topology varies witlt

1elongation., Bﬁ‘iﬁ’on the contrasts exhlblted 1n Flgure 3 1 ‘one

lwould expect no s1gn1?10ant dlfferences between the elongatlon

,,Values for classes B and C, nor“between D and E. Class A,shouldv'
be_more elongated than any other, uhile B+C should be'somewhet

mo?e‘elongatednthan D+E. - Next, it can be)shownbthrough.anotherb
. R » -
simulatlion study that average elongation of the bounding

q

~contours- oF hllltops 1s posrtrve}y correlated*WIth eIongatlon df
-

the bounding ellipse. ,Differences betﬁeen the observed

elongations of the bounding contours (as measured’by;theAnatio S
N < ¥ . ) T . ) * -

of the smallest inscribed.to largest circumscribed cgircle) wehe -

-y

examineqd using t-tests; the resurtS‘@Table_V,Z)*coincide fellx-

R ’ O . . &

with he expected consequences of the model outlinggiﬁﬁﬁd% and

Pl

‘provide independent verificationvfor;the model .

It - R

;rder to 1nvest1gate further the relatlons between topolovy

oF P?altz vraphs and the geomatry of their a55001ated hilltops,

« an attempt was mede to dlstlngulsh the Pfaltz graph‘classes on
- N 4 - - o g , -

\

-

~
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the basis of the.five measured geomorphometric variables (section {

5;3);’of ridge density, énd of the 10 ﬁossible ratios among the

-

; . N , v _
basic’variables (as measures of shape). This was done, first

for each of the sixteen variables alone (using t-tests), and

¥

then for all variables together (using stepwise multiple

oz

discriminant analysis).

. . .
R Aoy

The t-tests indicated that Pfaltz graph classes B and C did not

show significant differences for any of the variables, nor did

‘p}asses D and E. This is not unexpected, since this was found
for the elongation ratio already discussed above. For further

t-testing, each of these pairs of classes was combined, giving

three groups (A,JB+C, D+E) in_ all. Class A was found to have a

2l .

. L R . : o
sign%ggcantly shorter mean total length of ridges ‘than either of

the other classes, and -less compact average shape. as measured

by two '"shape" ratioslw;The strongest differences were for the

;‘:&i = 7
ratio of the total length.of.ridges;to.the radius of the

qircumsoriﬁéd circle (*RD2"). Once again, this %ﬁ an exped%ed
and reasonable'resdiz, since geometric considerations require
that this measure should be abpréximately-equal to two

in a class A (unbranched) hilitop which is Pelatively.stréight;_.

in the other classes, stae ridges should (and do) increase-th%§-'

- length ratio. Groups'LB+C7“§ﬁH‘TD1E7‘Hid not differ

'significantiymWith‘réspect*to‘any“vafiﬁﬁﬁ%f‘7*‘ =
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jﬁ‘-;

"insightsy except to conflrm that the Pfaltz grap claSSes'shqﬁia

* The mu]tiple discrimi#ant’analysis did not pro caLanyHHEW“eﬂf**””””

o e .
y‘d’

great deal of over]ap w1th respect o their geometrlc

characterlstlcs. ~When all flv%fclasses were used the optlmum
13 :r’&« / ¢

discriminant scheme classlfleq only 37 per cent of the hJ]ltops

into - the approprlate topolog cal olass.’ When classes -B-to E

e
were comhined the probablllty of correot,cla551flcatlonrrose te»ﬂﬂw

64 per cent. In each ‘case, RD2 was th@ first varlable entered
in the stepwise dlscrlmlnant procedure.

p-

5.5: Conclusions

-

All geomorphological studies involve seaie effects. There are .

several fundamentals.scales to descnibe topographic form:&‘two of

'!%e

the most 1mportant are the. basic.horizontal ’'and vertical scales.

Horlzontal scale may itself have many components, espe01a11y if
topography has an anlsotroplc element- such anlsq;ropy may

Pur'ther' be. present at -some scales and absent at others._ For

exampl , between- hllltop orientatlons for the Kentucky sample

- =

area are isotropic, while topologlcal class frequenc1es for

-

ridge- systems of'maénftudes M through 7 indicate a marked degree'

of w1th¢n hllltop anlsotropy. In contrast, the British Columbia -

g

— 77,73

sample area shows w1th1n hllltop isotropy for larger magnltudes

(6 and 7) bqp anlsotropy f‘or' smaller (4 and 5). Exact reasons

for the§e scale, effects are unknown.

+

¢
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An a]lomdtrjc analys;s confirms the 1ndependen0A'oP planlm@trlc
F:“N’ '-

‘'Shape and size For the Kentucky hllltop data. Relatlve relief

is, however, gr»atﬂr on the average for sma]l hilltops than For
large. Wi%h the exceptlon of the total length of ridges, thg
topologicad Pfaltz graph classes are dlstlngUJshed by thelr
shapﬂs ‘and not by the ba51c 81ze related varlablos. ThlS result
engendars further. confidﬁnce in thﬂ model dgxaioped‘rn Chapter
3. The geom=»rlc Qropertles examined are not, however, so
closely relatpd to topoibgy that for éxample, topologlcal Pldgd

class can be Lnferred from-hilltop gﬁomatry alone.

N 1% - . J F
° ; : . ¥

'
b
-




CHAPTER 6: DISCUSSION AND QQNChUSfONS

- - P

6.1: Relating Ridge and Stream Topology

One of the eritieisms Pevelled at the probabi&istic topologic

-“approach in Chapter 1 was that 1t lacked generallty, since

)

although the drainage net is very important, it nevertheless

represents only a small fraction*of'the 1 ndsoape. The Warntz
network and its associated Pfaltz graph iné}ude both course
lines {related to, but not identical with, stream channels) and

ridge lines (related to geometric ridges) %p a unified system.

~ As noted in Chapterr3, however, the course graph contains no
topolbgicai information in.an are4 without” pits, such as

fluvial]y-erodedfterrain at small and medium ma’p scales, 'sinde

all courses connect w1th the same "outs1de" th.- Thlsvpresentsf

a paradOX'; Pluv1ally eroded terraln, in whlch stream ohannels

play a- domlnant role in geomorphlc processes,_ls the very sort

o? terraLn in whlch the course part of the Pfaltz graph is of no
topological interest. This arises primarily because courses | t -

and channels are not identical. - . s

- .
i

In the strictly defined Warntz system, whioh’asSumes continuity

of the surface 1tseTf’and of ‘at least the first derlvatlve,

eocurse llﬂes may ﬁ%et Gnly at crItIcai p01nts* exactty‘twv'meet“"*'**

at each-:pass, and any number may meet at a plt It is obvious,



across surfaces, parabolic troughs would beconsz V-shapedj”énﬂf***wéna”

'and rldga gunctlons and stream and rldge sourcas. Leaving agide.

‘the problem 3f deflnlng rldges and courses in such a system, it
~%

hdnéger,_that streamedé merge in'naﬁunah ‘Tneﬁe afé“ét“féa§t5*
three ways_oﬁ resolving this'contﬁaéﬁctidn; FinSt,nonermay
contend that since topographic surfaées'are notddontindods in
the first derivative, the Wafntz system Should notibe uséd‘fdr'
such surfaées. For example; Luke (1974, p. 4037-8) nas éﬁoWn
that; by assuming surface erosion by continuousrfluid flow

thus have a slopez diacontinuity which would ailow noursa'lines

to merge.i To adopt such a'system'would, howenar, naquire tne

intrdduction oF~severa1 new types'of poinfs, including stream .

seems clear thatvat least soms oP Lhe topoloplcal ax1oms or

ao

propzarties oF Pfaltz graphs would no longur apply

A sacond solutlon was proposed by Warntz (1975) his éolutiona

was to rata®n the strlct axioms oF these graphs, but also to

i

introduce addltwonal crltlcal p01nts in tho nelghbourhoods of .
all stream (or rldge) Junctlons. Spe01flca11y,_Warntz' p
introduced a pit on each stréam immediately above the "junction,

and a "triple"kpale'at'the'junction itself; the three con?ses'

a53001ated w1th thlS pale are th» two 1n00m1ng and one

continuing streams. Except for thn fact that those pltS and

palés'do-not exist in-natuneL th;s_seems at first to be a

reasonablz solution,-but there are-additional complications: .

: Co . -
< v o, e - 7.
o . A - ' P TR ST T -
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. the pale a]so’creates thnee Fid@es. 'Fdr”simpiieityj”cdnsiderm**””s“ﬂ'
the case of two flrst order streams mergzqg to form a second

orgehg -one of the three rldpes is c]ear}y the leLdP between'.

rthe %irst order streams,_but the Zther two lead upward toward-

‘the divide which bdunds the second order basin.v ﬁidges,

however, ane not permitted te merge either, and hence;triplev

passes and peaks must -be- 1ntroduoedAatAtheseap01ntsqw These,aan

‘turn, generate new courses, and so ad 1nF1n1tum. Warntz (j975)
appears to have beliede that sucﬁ'an’"infinite regress"tof
rldges and courses&@ctually exists, but that since 4t is not B
practlcal to deal with these complete networks a thresho]d 9
below which nldges‘and courses are 1gnored must be imposed for
anadysis. 'This,hOWever,»seegs also to be a éenerally
unsatisfactory‘solution. | |

The third, and perhaps nost prdmising, avenue for furthen,
researeh is to contendvthatfa strzam of high magnitude -
rapresents not-one course but rather a "bundle"'O£'para11el,
.infinitismally close course lines. This woqu immediatelyvlead
to new dafinitions .of stream iinkA("a reach:ef a streamﬂhaving a

constant number of course lines").and of link-magnitnde ("the

number of course llnes 1n the bundle formlnp the llnk") - On= is,

st1]1 Faced with the problem that not all channels head in

passes, and that there is stlll no. relatlon between rldge and'

strzam .topologies.
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"6.2: Conclusions
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If edch point'uhena,a,course leaves a. studyNrea is considered = =

€

-to be a dlstlnct .pit (rath@r thagia‘pathvto a jcommon "outside"

,plt), th» course half of the Pfaltz graph w u1d~indicate'thq

dralnage basins whicdh cover: the area, but wo ld stlll not

1ndlcate in whlch of" - he topologlcally dlstlnct ways these )

“

courses merge (or adjoin each other) in order to form a single

stream (éourée "bUndle“), " To explain-those aspects,'it is

necessary to use the approach developed by Shreve, whlch is

1ndepend9nt of the Pfaltz graph Further research 1n “this abea i
mlght lnclude both Pfaltz graph topolng and Shreve”’ E work inte

a more comprehens1ve system. - B -

If a single, main bénclqsidnrygrerto be drawn from the results
of this study, it would be that, while there is a very important
random element in geomorphic surfaces; this randomness is

N

subject to a considerable number of constraints-- it is the

detgrmimation of these constraints which shoUid be a primary

goal of 1andscape-sca1e#geomorpho]ogy (physiography).

Basically, these constraints can be elucidated using either of

two approaches: the researcher can examine geomorphic processes

in oonsiderabizrdefail ”éhamasé deductive methods to inféf7What

F
=5

Aalternativelyz gne_can,study»tbe'fprms ﬁhemselves,vandvdetermine e
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vhat eonstralntS—must -be placed on geomopph1egpandgmnessgiaffg

order to adequately predlct the statlstlcal propertles oF

geomorpblcgsurfaces.~ The latter approach was adopted in this

study. . o e . : -

o - 7w o - <,

e g : 3

8 : ’ ' : :
The following are the major findings and conctusions of this »
study: i S X ' . .

ey

Topélogical_aspectsvbf the drainége net have received
considerable‘aétention from geomérpboioéistéi but other aspegté
lofbsuerCe topology have largel® beeh.ignored. Two'topologicali
Pepresentatioﬁs whiczhfgtend béyond the drainage net;“the Pfaltz
graph based:on‘nihetee;%hbcentury research into equilibrium' 
revived by Warntz, and the surfaée thee based onAthe qdntour
enclosure tree of compdter-cgrﬁogrébhy;weredeschibed,vahd -

applied to the problem of topologieal randomness. .

A simple Hedel, based on a random distribut%on of points

g , ) - o -
(representing peaks)~witﬁin an'ellibtical fieldJ and on the
minimum spanning tree of those points, provided excellent

predictions for the’frequencies of topologically distinét'Pfaltzv

graph classes for both magnitude-6 and magnitude-5 systems from

a'variety of terrain- types. The minimum tree represents one

constraint on the randomness of the 51nulat,, ridge netwqus;

'whlle the elongatlon ratlo of the elllpt"cal Fleld equivalent~~d
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to the degree of anisotropy of within-hilltop ridge - —— -

orientdtions, represents another. 1In three areas of SN oo

hetehogeneous geology and. structure but without strong
structural oohtrol a 01rcle (elllpse w1th elongatlon 1@9)
prov1ded optimal or near-< optlmalipredlotlons of Pfaltz gh;ph
:gfgequenoies. n contrast yytwo areas of-horizonally-bedded
i1homogeneous geologg had. best flts provided by the simulation o
model&hith an elongétionjpahameterrof'around 2:1. This may be a
result of elongated hldges formed-between parallel oh sub-‘
paballel.major tribQtaries oflmaster streams in the absence o6f
‘geologicel-oohthol. (The‘heterogeheity of the aforementioned

three areas could be expected'to disrupt suoh‘psrallelism of

\ streams). The model also fits the strongly struoturally—

L

?oontrolled rldgerand valley topography of south
Pennsylvania, hut w1th 3. preferred elongatlo ratlo Qf 10: 1. ‘,ll;:ﬁﬂ
The surface tree is completely oetermined:by_ e,Pfaltz graphfof;
a surface, together with the pass heightvranks. " The fhequeholesh
of the Pfaltz graph classes (from the simulation model,‘above) 
,wehe oombinedfw%th'the QSSumptioh ofrindependent pass height

ranks to produce expeoted surface‘tree frequencies. 'These’Were

not in agreement with observed frequen01es, and the difference

. would appear to result from an 1nterdepehdenoe (autocorrelatlon)

of pass helghts whlch ‘in turn is due to the overall'i

autoeorrelatlon of geomdrphlc surfaoes. L

) r,/, = - s . Z ‘ N
: \ o M T, B e . ot sl
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Some Iarger surface tr 'Es 'Weré”fémlned 'hTﬁwall areas, peaks

and passes ware concentrated above the mean e]evatlon' Since,

-

~in general, passes on'"randomﬂ surfaces have the sanme expected
. 7. . B 3 o i . i N - s N i » -
‘height as arbltrary p01nts, this represents a further constraint

on randemness.. The trédes were ordered using Strahler s syé&em,‘
”“‘2 ' F
Cand the numbers of branches werg- found to fit "Horton s Lawus"
well, ‘with bifurcation ratios ranging. from 3 to 5. The fﬁ; *fw

¥

closensss of the bifurcation ratios to characteristic streamQ%

values was shown to be largely coincideptal.> Branch mean rerlef

values plot agalnst order as approximate stralght llnes on seml-
logarlthmlc graph paper.. The slopes of. these "Laws of HlllL
Helghts" are similar, but appear to decrease with 1norea31ng
tree orden; due to the oonstraints on branch relief imposed by
total available reiief‘of a study area. -
| oy |
Scale effects were examined directly, and also indirettly
'thnough their influence on topology of Pfaltz graphs of
magnitudes 4 through 7. Anlsotropy was found to be present for
small systems in both landscapes examlned but is only apparent
"in some landscapes at larger magnltudes. Exaot reasons for ¢

_ . A , , : ,
these scale effects remain unknown. An'allometric analysis

showsd. that planlmetrwc dlmen31ons oF hllltops vary

isomgtrically, but that relatlve rellef changes w1th ohanglng

size. Some of the Pfaltz graph classes were found to dlffer;

significantly in tbeir mean values of certain shape measures; -

P . . . B - P
N - ; N - : - S LD

PP 4 . R ) >




there is so much overlap that"Pfaftz’EFébHAEiaéﬁ?Cénﬁoiqu”

[y

‘predicted adequately oh the basis of shape alone.

8
In the iptroductioh, the question "What is a random surface?" =
was poéed« It may now.be seen that this qUestioh has no simple
- answer, since all surfaces are subject to some éonstfaints:
"White ho%ée" suéfaces;’which'havg a minimum of cohsﬁféihté,”é?éf
not in genéra]*satisfactohy,,since their statist%calvpropertieg
-(especially autocorrelations and power spectra) do’not fesembie
most terrain."If we wished to generate a "randoﬁ, fluvig;}y-f
eroded" surfaoe; a\great_many more oonstréints, such as gbsg&ée_
of bits,:presencgﬂogwa Streém network drawn from a |
:topologica%ly-randbm population, all passes in the upper part
of the feliéf range, tidge‘patterné apbrdximated‘by mihimum
spanning trees émongrpeaks,—a (sohetimesi4éqisotfoﬁicﬁridg9””mw””
distribution, and autocorbe;ated péss heigﬁt57 would have to be
specified. This, however, wou%d<hapdfy be "raﬁdom" in the |
normal sense of tﬁai word. If landscape scale geomorphometry is
~to form a useful part of ‘geomorphology, 1 believé,that it Qill
do so through an emphasis on identifying constraints on the

randomness of geomorphic .surfaces. -
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APPENDTX A&:, GLOSSARY OF GRAPH THEOﬂY’TEﬁMTNQLOEY‘USLD [N THLS

STUDY

adjacent, Vertices which share a ccmmon edge; edges which share

¢

a common vertax.

NS ' '
bipartite graph. A graph whgose vertices can be divided into two -~
subsets sych that no points in the same subsegt are

" ';%,‘:

ad jacent,.

completé graph. A graph in whichﬂevery vertex is édjécént to
-every other. A ccomplete bipartite graph is onhe in which
every point in each subset is adjacent to gvery point in
the other.

-

-

1

connected»ghaph: A graph inrwhigh theré4eXisb§%ii least one

path between-every pair of vertices.

cycle. A patd leading from a point to itself.

T e -

degree. The degree of a vertex is the numbep of adjacent

vertices. _ : . ‘\“fv

S —

The graph formed by placing a

~dual (geometric, of a plane map).

vertex in each face or cell of a plane map, and conngcting



) . 105

those new vertices which lie on faces which share an edge.

<
s

- edge. A pair of distinct verticés, which are said to be

connected. //

end-point. A véﬁtex of/degrée'ohe.

¥e

face. A contiguous region of the 'plane on which a plane graph

is embedded, which is bounded by an. elementary cycle. .
) (=] . ) - - : Y

forest. A disconnected graph cohtainingﬂno cycles; a,set og'_

.trees. ~ ~

»

graph. A set of vertices, and a (possibly empty) set of edges.

homeomobphic. Two graphs are homeomorphic if they: ¢an be made
to'be’isogorphic by adding or deleting vertices of degree

two. ) K

-

B

*

incident. The edges which contain a vertex are said to be
incident on that vertex.

isolated vertex. A vertex of degree =zero.
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isomorphic. ~Two graphs are isomorphic if there axists a one. to

.

one correspondence of their vertices which preserves

adjacencies.

labelled”graph. Aagrébh in which a label or name (gener311§ the .

" “integers 1,2,...,p) is attached té‘bacb vertex. An

redgeflabe}}eé~gpaphhhasﬁitSWedges~sefﬂamcd.

ES

maé (plane): A plane map is a plane graph, together with all
its faces. \\[

L Y
neighbour. All vertices~adjacent te a particular verﬁex are its

neighbours.

L4 e . ) 7 B —
- ¥ ’*‘ ) : . .
-network. A graph, and a function which assigns a non-negative — —
: : : o e 0 .
weight or length to each edge. '
null graph. A ghaph withrho'édges¢ 51
P . ‘ - ¥ — ]

B . . ] . ;,‘h , . . ,' ‘:
path. A walk.all ofxwh%§e;veqt;oes, except possibly theAfih;EJQ

 and last, are distinét. "

#7 . O S

p-=4

planar graph. A graph WhichAis'isomoﬁphic to some plane graph.

LN



: 107
‘plang g;aph. A gpaph which ls—dpawngen~£ﬂembedded41nw)ﬁ&1¢hmw§444*
without any 1ntersect1ng edges., ' -

planted tree. A tree roo@éd at an end-point.

&

+

rooted graph. - A grfph in which one vertex is designated as the

_root, a uniquely-idemtified reference point. . _ - B
ST b o | .

Fe

*

“spanning subgraph. Absubgraph which contains all the points of

"a graph.

subgraph (cof gnéﬁh G(V,E)):,ﬂA graph alT: of whose vértieeé are

in the set V and all of ‘whose edgés\are in ‘the set E.

coLe

w0

-

tree. A connected graph contalnlng no cyeies. .

. 4

trivial graph. A graph containing oné point and no edges.

va2rtex. A point in a graph.

: : -
- walk. A succession of adjacent vertices.




APPENDPX B: APPLICATIONS OoF SURFACE NETWORKS 1IN COMPUTER

N
CARRQGHAPHY

t

Y
The surface networks described in Chapter 2 have a number

of -applications in computer oartography For exampleN Boyell
/

) and Ruston (1963), Morse (1965), Freeman and Morse (1967), and

2 i

A

Boehm (1967) have all used the contour treg to supply a
"neighbourhood function" for’a'set of digitized contours, which

’gﬁglothérwise difficult to search among,'sinﬁe édjacendy'
félations are not apparent from the qontour coordinates aionef
Boyell and'Ruston-(1963) were primarily concermed with the
generation of proPLles for radar 51mulat10n, while Morse and

Freeman applled oontounxtrees to the'"proflle searoh” problam

the obJect being to locaue a given terraln proflle (representlng

the ground track From alrcraft radar) w1th1n a contour data set
Boehm (1967)'approached a related problem, namely'that of"
determining inter-visibility for pairs of points on aotérrain .
surface. ‘All:threénapplications‘have obvious miiitary
applicatioﬁs‘(adq iﬁdeed were developed in miiitany—supported
research projects), -but surface networks Qave, in general, bégn

little used beycond this in computer cartography,\‘This abpendix

. investiga%esw%he~app}iéa%iﬂﬂ—ef~surfaceunetworksﬁtO‘%wo

_important computer~cartographic problems: ecentouring, and

surface generalization. ‘ ‘ A . .
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(also known as contour tracking), and "plotting by grids or

109

B.1i A TOPOLOGICAL APPROACH TO THE CONTOURING PROBLEM ~—  —

-

The "centouring probiem" may be stated as follows: given either -

7

(a) a set of irregularly-distributed points or (b) a regular

R

grid, produce a contour map-of the surface which those points

represent. Case (a) has generally beeh approaehed by first
interpolating a d8nse regular gpid,~and then -using the7"j%~w7
contouring procedures developed for case (b) In>Fact many
papers with "contouring" in thelr tltles have dealt only with
1nterpolat10n and not with the contouring: problem per;yg}(for
exampl_e1 Pelto et al., 1968; Olea, 1972, 1974).- This sectlon,'
however, will %iscuss the actuel contohring problem, and will

=

assume a given Digital Terrain Model (DTM) which may be'either a

" Triangulated Irregular Network (TIN) like the GDS system

(Peucker. and bhrisman,r1975),—on~a—regu1ar—grid~whiehvhasrbeehiw

divided-into triangular planar4facets by insertihg‘either

'diagonals or additional points in the cell centres.,

Batcha and Reese (1964) cbserved that there are two basic

apprecaches to eontouring:'"plotting'one contour at a time"

S~

segments". , They stated that the former method involves "severe"

"storage requwrements and "complex" program language even when

grid-based, but that there is a significant sav1ng in plotter

time when compared with the "segment" approach. In the latter



method, all contours between two adjacent columns of a grid are

found and plotted, and this procedure is‘repeated~for each

~ -~

successive pair of columns. TIf the only output requlred 1s a

oo
Y |/¥\ N

31ngle contour map, this 1s/a reasonable approach *ﬁlthongh as
noted above it requlres more plo@ter tlme.“ For man§ purposes,
however, the contours must. be connected up- 1nto chalns or loops.
The "contour assembly"rmethodj which assembles the ocutput of —— —
the seém’ t -approach, haszbeen used for regular grids (see

g§s73), and“For TINfs (Cochrane, .in.Peucken 1973)

where in th1s case- contours are determined for each trlangle and

Stanger

,Epen assembled. The assembly phase of ‘these proceduhes is

cldarly a sorting problem, with the average number of objects in
each sort being the mean numberlof segments per contour level. |
(To attempt to avoid oonfusion, contour "level" will refer to

S all contoursrofwa~giéen height whether conneeted or-- not, ‘while - — —
contour "loop" will refer to a connected set of contour

segments) . The sortlng can become very time consumlng, and
Cochrane (197&) later abandoned the assembly method in favour of

a contour tracking approach. |

The "standard" methed employed in contour tracking programs is,

for*each contour level, to traverse all the edges‘connecting

vnelghbour;ng p01nts Ln the data set, checking whether one end is

above and the other below the contour being drawn. When this
condition is met, the current edge intersects the contour, and
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if thé edge hak not been "flagged", a starting point has been

found. There e available good aigOrithms for tracking (or
."followiné") a ohtour through either e’regular grid orea TIN,
glven a startlng p01nt these are genera]]y based on the.
',"reference p01nt - sub-p01nt" method. Durlng the tracklnp
phase every edpe crossed by the contour is flagged, and the’
routine eventua]ly either returns to the startlng p01nt or ;
reaches the boundary of the ‘data area. 1In the lat}er instance,
one could track a]ong the boundary uhtl] the conéohr entered the
area again;vand in this Way'eventﬁglly return to the starting .
point. Mohe Jsually, hdwever; uhoh~;eaching the beuhdary the
routine returns to the stahiihg pdint and tracks in hhe'oppOSiie
direction tovthe boundahy.. Theneheckihg“procedure theh |

continues through the edges, and %hen all the edges have been

checked and the contours found have been tracked,-the comtouwr.

level is complete. The flags'ahe then reset to zero, and the
procedure is repeated for each“subsequent contbur<fe;efwn
required. This can become*?ery time consuming, with 5 great
deal.of redundant checking, if many distinct contour levels are

required, since each contour level wilrl in general intersect

only a small proportion of all -edges.

Once a egehtihéﬁheint hasebeen found;’there are good tracking;'§

procedures for both grids and TIN’s; it is. searching for
staﬁ;ing points which may require large amounts of computer

time. The contouring problem thus centres on finding S~

-y



cOnggur starting pointsfand assuring tnat"fhefcéntpurS*througthi"ﬂ**

?%ﬁ%se poipts have not already beenvdetenmined. Any methodAwhich
™~ . . : ~ o '
finds'a set of points, one and only one on each contour loop,

should impnove contouring~speed for problems involving many

contour levels. Such-a method based cn . the Pfaltz graph andi

surPace tree (Chapter 2), is described below o ?5~?*j7””

B.2: METHODS FOR DETERMINING SURFACE NETWORKS AND" CONTOUR

STARTS

In order to determine the Pfaltz graph of a DTM each point mustf
be checked to determine wh ther it is a pass. This is “done by a

simplified version of Greysukh’s (1966) method for

characterizing local surface form,dwhioh examines. the profile of
a - ; 3 Lo - o

"a concentric figure centred at the point in.question. Next, one

s

tracks up the two ridges and down the two courses connected to
, ;o e ,
each pass, saving the chains of point numbers,representing'the :

‘ridges and courses, and building the -Pfaltz Graph of the

surface,

As already noted (Chapter 2), the surface tree of a closed

surface can be uniquely determined from the PFaltz Graph,

e — Li, - =

together with the elevations of the surface specific p01nts (and

the assunption that at least alI the passes have distlnct

elevationsy. The algorithm is relatively simple: First, each
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pPak is. 1noerted 1nto the tree as a. 31ngle4nQde Sub- tnee,,ﬁNextfefff
the passes are added in order from thhest to lowest, and each

pass,.as_added, is conected to the lowest‘p01nt 1h‘the two ; o

-

"sub-trees to which its peaks be]ong. If both beaks are in’the
_same sub- tree, the pass is actually afpale (see Waﬁgtz, 1966),1;-

ahd w11I only have Qne,e-ge at thls stage, When althhe passes.“‘f‘w

7

A~ghayefbeena1ncluded the'plts are then added as sung]e‘p01nt ":

-

sub-trees. . The algerithm reprocesses the pagsesafrom low€§t to
» ‘ N
" highest, and whenever a pass points to an unconnected pit,géﬁat
_ connection is inserted,:unti] all pits are connected. The

surface tree is then complete.

If it is desired to obtain the contour tree for a particular set

of contours, it is only necessary to determine points for the

corresponding evations on all edges‘in the surfaeewghee”yhiehy

A

have one end above and the other below each successive contour ™
level '~ If a coarser set of contour levels is used, some complex
i .

parts of the tree w111 be removed if they are-not represenﬁ%d by

the inserted nodes; these are features which are not represented:
, ' '

by the new contours. Exact starting points for the contours can

then he determined by reference first to the Pfaltz graph and

then to the stored ridge and course chains.

A5 previously descrlbed (Chaﬁter 2), the eontour- and

surface-tree concepts apply only to sets of closed contours. If
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the data-area is arbltrarlly bdi?ded aelosureﬁthpoughfthe S

boundavy must be assumed; ‘Following Freeman: and Morse’ (1967)

contours are assumad to close hill, i:e., around relatiye

max1ma and ‘the area out31de the data-aPEa_iSaaséﬁmﬁdgﬁpgbf

IR

’lower and to contaln bne plt L
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B.3: SURFACE NETWORKS AND CARTOGRAPHIC GENERALIZATION

Generalization is a recurring theme in cartography, since any .
aerial photograph . contains far moré'ﬂinformation"'thah;can, or
indeed should, be éortrayed on a map. Much of the l%ﬁ;rature on

cartdgraphic gen 1¢zatlon has centred on the portrayal of

-~

irregular lines such as coasts and contours, and a good rev1ew\

“of traditional (manual) approaches to this pgoblem was given by
Pannekoek (1962). Mors recently, the generalization of lines
paS'béeh quantified (see Maling, 1963), and a "theory of the
cartographic line" has been developed iPeﬁcker .1976) Whlle
these approaches have been rather successfully applled Eo
coastlines (for example, see Douglas,and Peucker, 1973)n they
face certain phdbieﬁs,whed-applied to antoura, siaee if each

contour is generaiizéd independently, the resulting lines may

touch (see Douglas and Peucker, 1973, p. 119) or perhaps‘even»

cross. 1t would seenm. to be preferable to generallze the

underlylng surface. first, and then produce contours based on

this generalized version.

W
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Wﬁﬁélﬁaﬁhekégk‘(1§62;1gi’55)'péihted Qut,;gegggg;i;atiggl;wf;w ,,,,,
,"coﬁsists‘of two différent'pfocésses: a)Aselebtidh.of 5bjééts'
to be 1ncluded in the map,{the others belng left out, .. and b)-
'tslmplzflcatlon QP tne shépe to be glven to the obJects,chosentf:. 5
“ - YT ; e gjx

"ifor reprasentatlon" Surfaoe networks wou]d seem to be valuable

'w1th respect t@ ‘the Former process. o '

In dlscu351n9 éppzlcatlt;s of a particulaf type of surface

'network (which I nave called the "Pfaltz graph"), Pfaltz (1976//5\\
p. 85) noted that while this graph contaims only a very small
amount of 1nform;tlon about a surface, it may nevertheless

contain too much. Pfaltz (p. 86) noted that "on any surface

there are (sic) often a nultitude of minor peaks, passes, and

pits that are of little importance", and that it would be

des:rable to determlne a "macrostructure" of the surface

suppressing (but not dlscardlng) "tQQsetpasses which are part of '
a local microstructure"; Pfaltz did not, however, define

" portance". He illgstrated arbroppsed gréph-theoretic
"contraction" procedure, whereby a "minor" pass was_a§800iated
with a pafticular,sub-graph topology in the Pfaltz graph (FigbreA
B.jA). It would appear, however, that the Pfaltz graph topology

alone does not contain sufficient information to indicate either

thé’Cartograﬁﬁié”ﬁF’geomorphic Timportance" of critical points.

This is indicated by the situation shown in Figure B.1B.

Here, it is clearl y>pass Y> and peak z3 which should be
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I 5. .;“
- Figure B,1: A generalization procedure proposed by Pfa;tz
_ (1976) would del@ass ¥, and peak Z5 ir‘i_ealc’h‘fcase;' )
'4! ) ’ this would be app Ypriate in A (Pfaltz',examplejrbut

not in B.
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7o

deleted; .the' sub-Pfaltz graphs if’ Figure B.l-arés howevep, — & . o
' B

~topologically ifqn;fééL;{am@;Pfalpis,eonté@ctionAproeedﬁﬁé _»ru*

\would,deleterzZ'and Yq. ¢ Furthermore, other simple forms,

~

such as the cirque-like §tructurés in Pfaltz's (1976) Figures 11
_to 13, are not suppressed by Pfaltz'srcont;;étion procedure, |

As méntioned in Chapter 2, the surface tree,cég;pg plqppgdh;,ﬂ;mgq;ﬁ
. with thé eleyations‘of'critioa; points to scale. Tt has a]readykv
been proposédi(Hormann} 1971),tha£ thév"importance" of'a,peakAu
is b%st»measured by its height abovevits higﬁéé}_adjacent pass
u(the.relativeiheig§t~of a'pit cah beVsimilarly defined).fﬂThié,k
information is cOntained~in the "length" of the app}opriéte

braﬁch of the surface tree, ‘Generalization based on thé surfacey :
tree is concepﬁually simplé: at each succéssive step, the peak }7?
,Ofipit,wi£h ?heUlQWe§t,F?la©lyeﬁneighpﬂ(Shphtestmbréngh),f;;,,ﬂﬁﬁﬁ;
togetheﬁ with its highéét pass, is‘deleted, until, no branches.
shorter tﬁan some thrééhold remainfr'This geﬁeralized surface:

tree may then be used to guide contouring Qr,other display
'prooedures, leaving out those peaks and pits whése "importancé"
was below the threshold. This proéess is illustrated in Figure

B.2, using the surface from Figure 2.3. Alternatively, the

planimetric area of the hilltop surrounding a peak could be used 3

as the "size" in the above generalization procedure.




118

Figure B,2: Illustration of the proposed generalization

procedure based on the surface tree.




It would appear that the surface tree canm previde a Retter basis
for the generalization of topographic surfaces than chn Pfaltz’s

' (1976) pfoceduré.

B.4: CONCLUSTONS

Two of the more impopte
namélyvcontouri g aéd éup’ace generalization;’can be appfoachéd
through.surface. etworkﬂ.' Thevsolutions'probésed have been

, developed to the degreé'that‘they-would appear;to be workable
'and of cOns1derab1? potential, but(haVe:nof yeﬂ been

E incorporated into fully oberational programs. Furthermore,:the
generalizatiob phocedure outliﬁed above must in general be
foilqgedAbyﬁ;implification of the formé of the remaining
_contours. WFﬁPEhQRWFQSQQbCDﬁHilL,ipyglve,ﬁriting;of;compAHL&”,H:MﬁWf
wb@bduction“ proafams,mand empiricél%lesting todeter'mjzéie

optimal surface tree generalizaﬁion thresholds.

T

hA TSI
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A APPENDIX C DATA SOURCES AND COLLECTION PROCEDURES EﬁROR

ESTIMATES ANDnNORMALIZATION METHODS
C.1: DATA SOURCES AND COLLECTTION PROCEDURES

All data used in this study were derived from medium scala>

(1 24 OOO to 1: 62 500) topographlc contour maps. All map sheets

[ S -

used for the hilltop samples are listed .in C. 2 to C.7T.

In all but the Kentucky sample, all suitable hllltops

w7

(see below) ceccuring entirely within aﬁy'of the maps'were

sampled, but no attempt was m de to detect hilltops which

-

spanned the map sheet boundaries. 1In the Kentucky sample, map

edges were compared. so as to find.any such additional hilltops.

?~

While map sheet boundaries were used in the other areas, the o

Kentucky sample arsa is boundad by maJor water courses. Thqwﬁw

o
area 1is roughly triangular, with the eastern and western

boundaries formed*by,the Leyiéa and Tug Forks, respectively, of
the Big Sandy River, and the southernvbase formed by; from west

to east, John'é Creek, Brushy Fork, Left Fork, John Young

Branch, Middle Fork, Elkins Fork, and Big Creek.

In each study area, all ridge areas were examined, and sets of

éiégtl?”§if‘adgacent peaks, separated from all other peaks by

passes ltower than any of their five internal passes, were

identified. TIf an area containing seven such peaks did not have

‘..K.,. P
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an acceptable magn t f-ﬁ,subfset -and if at least one peak was

represented by oﬁ]y a small single closéd»loop. }he,smallestf

such peak was deleted to produce a magnitude-6 hilltop.® All

©

hilltops were then classified into one df.the six topologically
distincet Pfaltz graphiolaSSes. Magnltude y,
- C\\"

were later oo]]ected 1n the same way ¥

{-,—

5, and 7 hilltops =

s

-

In the Kentucky, British - Columbla and middle California

¢

samp]es. w1th1n hllltop pass helght ranks were assigned to all

pa ses, and Lhe surface tree topologlcal class was determlned
Fr m these and the Pfaltz graph, Actual pass elevations were

recorded for<all passes in the Kentucky and Brftish Columbia

-

rMorpnometrlo measures were determlned for all hilltops in. the .

Kentuoky sample. .The elevation of the highest point was found,
and ’from this angd§the lowest pass eleVatioh, the local relief ™

was ealculated. The boundary of each hilltop was drawn as the

self-cressing contOth>through the loWest‘pass. The radii of the

largest inscribed and smallest circumscribed circles were .

A

measured tc the nearest whole millimetre (representing 24 m),

using dividers. Total length of ridges was. determined using

v’

- dividers set at 5,mm-(120 m), and areas were estimated using a -

dot planimeter with a 5 by 5 mm (120 by 120 m) grid.

Coordinates'of the centre of each hilitop were. determined to the

r

~

ik
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nearest 100 m from the Universal Transverse

-y

N

printed on the map margins.

- &

1
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Y- C.2: MAP SHEETS (1:24,000 SCALE),
. KENTUCKY SAMPLE ‘

Adams - Paintsville - ;
Inez Prestonberg !
Kermzzt Richardson
- Lancer . Thomas _ e

Louisa Varney

Milo Webb

Naugatuck Williamson

Offut

C
C. MAP SHEETS (1:50,000

SCALE), BRITISH COLUMBIA :
SAMPLE - o

82 F/3E 92 G/TW -

82 F/8W 92 G/8E B )

82 FA11E = 92 G/8W , T S
82 F/15W 92 'G/9W

82 G/1E 92 G/15

82 G/2uW 92 H/2W )
82 G/6W. 92 H/3E . .
82 L/11E 92 H/3W
82 L/13W - 92 H/ME

82 N/LE " 92 H/LUW :

83 D/10 592 H/SE v \

92 F/TE /92 H/5W

92 G/1E 92 0/1E

92- G/1W 103 G/16W i
92 G/TE : A —

7




Fog

. Cf

6:
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Cal: MAP,SHEEIS Li;ézga;§§&1L51T~
MIDDLE CALTFORNTA SAMPLE '

~

Bryson

Cape San Martin )

Junipero Serra : - .
King City :

C.5: MAP SHEETS" (1 62 , 500

SCALE), NORTHERN.
CALIFORNTIA SAMPLE .

~ Calistoga _ . o
Heal sburg '
-Kelseyville
Lower Lake

MAP . SHEETS (1 24, OOO SCALE), NORTHERN o
'PENNSYLVANIA SAMPLE S

Ayers Hill = Marshlands
Cherry Springs Oleona . .
Conrad " -Short Run
Galeton : * Slate Run
Hammersley Fork -~ . Tamarack

Lees Fire Tower ~ Young Womars. Creek.

C.7: MAP SHEETS (1:24,000 SCALE),
SOUTHERN PENNSYLVANTA SAMPLE

_Au ghwi&kf - ‘ __McVe y to wn

Blain Co- Newberg

Blairs.Mill = Newton Han N .
Doylsburg Shade Gap e I :
McCoysville . 5ﬂ¢¥’% : T
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- R3
© R4 e

H (R lleP)
A (Area)
SUML (Total length of ridges)

RC (radius of smallest circumscribed circle)
RT1 (radius of largest inscibed circle)

D = SUML / A
ST = RC/ RT .
= RC /7 Sart(A)
.83 = RI / Sqrt(A)
" RP1 = SUML_ 7/ Sqrt(A)
’ RD2’: SUML / RC =
RD3 = SUML / RI
R = H 7/ Sqrt(A)
R2 = H / SUML
= H / RC

'/ RI

gt
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C.9: MEANS STANDARD DEVTIATIONS, . ‘

' COEFFICIENTS OF VARTATTION, AND- - . .~ ... .
: ESTIMATED ERRORS FOR THE KENTUCKY
»~- MORPHOMETRIC VARIABLES

- Mean - s.d. . c,v, est, error
S - ij T : )/i’ . . . .
- ZMAX  0.391  0.041  0.1705 ' 0.000010
CH 0.046° 0.016 0.348  0.000039
A 0.266° 0.155 0.583  0.6000244
SUML. 1.634  0.467 . 0.286  0.000937
RC 0.678 0.184 0.271  0,000037 )
"RLI -~ 0.106 0.034 0.321 0.000037
D 7.250 2.683  0.370 -
S "0.159  0.040 0.252 -
S2  _0.743 . 0.122 0.164 -

s3 ' 0.214  0.035 0.164 - -

RD1 3.326  0.621 - 0.187 -

. RD2 2.428 0.396 0.163 -
RD3 16.109 ~ 4.482  0.278 -

0.094  0.025 0.266 -

R2 0.029 0.010 0.345 -

R3 0.069 0.020 = 0.290 -

RY 0.444  0.109  0.2U5 -

C.10: ERROR ESTTMATION

As recently noted (Mark énd Church, 1977), it is imborﬁant to
jfxﬂeport calgulatad,‘or at least es}iﬁated, errors for ali

geomorphic variables. Errors in afeérmeaéuremehts were

estimated using equation 36 of Frblov and Malihg (1969, p. 33),

while errors in the other planlmetrlc varlables were

approx1mat°d by assuming that the resolutlon of the measurement

represents a five per cent confldenoe llmlt (see Mark and

Church, 1976). Relief and maximum elevatlon errors were

J
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estimated in the manneﬁypropoéed”by Thompson and Davey (1953).

The estmated error variances of .the variables are given in C.9Q.

- Variances of the logarithms of variables .can be estimated by

~dividing the unlogged variahces'by‘the sguared mean values.

This relation was used to estimate the variances of the

logarithms fdn,all variables. ©On the assumption that errors in

; different variables are independent, the error variance.of the -

logged'ratio of two variables was assumed to équalyéhé éum Qf

the individualAérror variances of"th; logarithms. The raiio of

tﬁé total variance to the "real" (total minﬁs érrbr)ivariance'

was compﬁtedrforbeach variable and compared. with the abpropriate'
value of F; only three variables (all relative relief - measures)
had'signifioanﬁ F-ratios,yihdicating that measurement arhorsvdo

‘not constitqte an importéntfeomponentofthe variance of most of

the variables.
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ESTIMATIONS OF ERROR VARTIANCES OF LOGGED
MORPHOMETRIC VARTIABLES

Variance
Total Error "real" F

. ZMAX '0.011025 0.000063 0.010962 1.01

H S 0.121104° 0.018241 0.102863 1.18 .

A '0.339889  0.003451. 0.336438 1.01

SUML 0.081796 0.000351 0.081445 1.00

RC 0.073441  0.000081 0.073360 1.00

RI 0.103041 0.003329 0.099713 1.03

D 0.136951 - -0-.003802 0.133149 ~ 1.03 o
St 0.063289 0.003410 '0.059879 1.06 »

S2 0.026961 0.000944 0.026017 ~ 1.04

S3 0.0267u9- 0.004192 0.022769* "1.18

RD1 - 0.034861 0.001214 0.033647 1.04

‘Rb2 0.026601 0.000432 0.026169 1.02

RD3 0.077412 0.003680 0.073732 1.05

R1 - 0.070733  0.019104 . 0.051629 1.37%

R2 . 0.118906: '0.018592 -~ 0.100314 1.19

R3 0.084016 0.018322 0.065694 1.28%

RY 0.060268 0.821570 0.038698 1.56%%

¥ significant, 5 per
¥*%* significant, 1 per

4

cent level
cent level

C.11: NORMALTZATTION PROCEDURES

S e e e mee e e

Most statistical procedures assume that all variables have

normal distribﬁtions; C}1].1 reports the skewness and

kurtosis of each variable before transformation; most of the

variables depart sigﬁi{ieantlj;fromjthe skewness of zéro and

kurtosis of three‘fhich éhardcterize the normal distribution.

While a‘simple logarithmic trénsformation improves the normality
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- of mostrvariables, a linear transformation before*taking”9m*”'?” R

>

logarkthms can further improve -the resulgg (Pattersop, 1974) . v
C.11.2 indicates the optihqm transforma%igné'fo}lowing

Patterson’s (197“) approa@%;.these transformed vériables were

used .in the various stafistical procedufes outlined in Chapter,;

5, which were carried out using the SPSS package. The skewness

and kﬁrtosis-valu@s after transformation a;e a;so”iisﬁed.in : ,v'Aw -
C.11.1. 1Interestingly, the use of transformations did not

notably influence the results, althoqgh statistical tests can,be

applied withtmore confidgnce.

~C.11.1: SKEWNESS, KURTOSIS, AND TRANSFORMATIONS

Untransformed Simple Log Optimum Transformation
sk k © sk k ' sk : k
ZUAX 0. u47%* 2,717 - . .sqrt_ . 0.35%  2.64%
H 0.98%#% L cL%* _0, 8% 3.87% log 0.22 3.29
A 2.06%% g _78%% (,19 2.82 log + -0.18 =~ 2.87
SUML 0.95%% Y, Ug%%¥ (,08 2.91 log ~0.07 2.90
RC 1.35%% 6, 35%% (O, L1%¥%¥ 3,23 - log -0.03 3.07
RI 1.05%% 4 50%*% 0,11 3.01 log -0.05 3.11
D 1.03%% 4, 309%*% (o 01 2.81 log 0.01 2.81
ST O.6L%% 3 _71%% _0_ 18 3.23 log -0.03 " 3.12
S2 0.10 3.13 - - none 0.10 “3.13
83 0.17 2.70 - - none 0.17 2,70
RD1 0.31% 3.06 - - none 0.31*% 3.06
RD2 0.12 3.70% - - none 0.12 3.70%
RD3 0.69%% 3 . 58% _0, 04 2.68 log 0.08 2.68
R1 O.4g%% 3 5Qg% _0,51%% L4 Q%= . log 0.09 3.29
R2 0.86%% 3,73% _0,14 3.23 log - 0.14 2.91
R3 __0.50%% 3,217 sqrt—— 0.05— 3,10

R4 0.37% 3.25 =0.4u* - 1,22%%  log  -0.04 3.05

¥ significant, 5 per cent level
¥%¥ signidficant, 1 per cent level




C.11.2: SPSS DATA TRANSFORMATIONS -~ -~ =
EMPLOYED, ‘ |

ZMAX = SQRT(ZMAX) o
H =LN((H-0.012)%#28.1+1.0)

A = LN((A=0.072)%35.5+1.0)

. SUML = LN((SUML-0.84)¥1.71+1.0) -
RC = LN((RC-0.36)%8.15+1.0) ‘ —
RT = LN((RI-0.048)%29.4+1.0) ~
D = LN((D-2.851)%0.335+1.0)

"$1 = LN((S1-0.067)%¥10.+1.0)
RD3 = LN((RD3-8.0)%0.089+1.0) ,

- R1 LN((R1-0.031)%12.%1.0) .,
R2 = LN((R2-0.008)%60.+1.0) S ‘

R3 SQRT(R3) o '
R4 LN((R4-0.169)%1.83+1.0)

newnonon

s2, S3, RD1, RD2, X, and Y
were not transformed




APPENDTX D:

MONTE- CARLO STMULATION RESULTS AS FUNCTIONS OF —~—
THE ELONGATTON PARAMETER,

5000 TRTALS
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1: MAGNTTUDE 4

S

D.
1.0 0.9 0.8 0.7 0.6 0.55 0.5
1 4045 4043 4051 4092 4174 . 4208 4260
2 955 957 949 908 826 792 740
0.4 0.3 0.2 . 0.1 . 0.05 0.02 0.01
1 4391 4515 4702 4885- 4971 4993 ....4997
2 606 185 298 115 29 7 3
' D.2: MAGNTTUDE 5
1.0 0.9 0.8 0.7 \ 0.6 0.55 0.5
1 3048 304 1 3079 3141 3234 3270 3334
2 1913 1920 1878 1822 1741 1709 1647
3 39 39 43 37 25 21 19
0.4 0.3 0.2 0.1 ° 0.05 .02 0.01
1 3549 3843 4281 4696- 4895 4979 4993
2 1440 1142 718 304 105 21 7.
3 11 5 0 0 0 0
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'D.3: MAGNITUDE 6 .

0.9

0.6

i
/

1.0 0.8 0.7 0.55 0.5
1 2194 2186 2225 2263 2343 2398 = 2448
2 1200 1219 1230 1264 1282 1268 1280
3 1301 1276 1242 1192 1138 1117 1081
I 84 98 92 83 68 63 52
5 221 221 211 197 149 154 139
6 0 0 0 1 0 0 0
” 0.4 0.3 0.2 . 0.1 0.05 0.02 0.01
1 2717 3087 3626 4389 4769 4938 4981
2 1201 1065 801 266 153 41 W »
3 946 778 539 24 77 21 B
4 39 15 9 0 0 0 0
5 97 55 25 1 1 0 0
6 0 0 0 0 0 0 0
. -
.4: MAGNITUDE 7
1.0 0.9 0.8 0.7 0.6 0.55 0.5
~ 589 1612 1614 1600 1658 1691 1750
2 21 715 726. 800 850 902 9U1
3 1694 1605 1651 1653 . 1609 1579 1545
N /9 281 252 244 2Uu6 237 227
-5 16 109~ 110 -tp2-— - 103 - 106 ——109—— - —
6 526 529 504 us57 410 382 327
7 60 61 53 48 51 45 uy
8 76 . 77 . T7 . 75 61 56 48
9 9 11 13 21 12 8 9
10 0 0 0 0 0 0 0 '
11 0 0 0 0 0 0 0
0.4 0.3 0.2 0.1 0.05 0.02 0.01
1 1946 2288 2974 4008 U627 4ygoy 4976
2 968 - gu2- 771 411 165 30 11 -
3 1487 - 1379 1061- 540 204 46 13
m 168 101 - 53 13 2 0 0
5 98 78 43 10 1 0 0
6 265 173 85 13 1 -0 0
7 3. T s T3 0 0 0
8 30 . 20 7 2 0 0 0 -
-9 5 2t 0 0 0 0
10, 0 0 0 0 0 0 0.
11) 0. 0 0 0 0 0 0

-
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