INTER- AND INTRAMOLECULAR CYCLOADDITION
REACTIONS OF 2H-CHROMENES

by

Jason Logan Lamontagne
Bachelor of Science (Honours), Brandon University, 2005

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the
Department of Chemistry

© Jason Logan Lamontagne 2009

SIMON FRASER UNIVERSITY
Summer 2009

All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be
reproduced, without authorization, under the conditions for Fair Dealing. Therefore, limited reproduction
of this work for the purposes of private study, research, criticism, review and news reporting is likely to be
in accordance with the law, particularly if cited appropriately.
APPROVAL

Name: Jason Logan Lamontagne
Degree: Master of Science
Title of Thesis: Inter- and Intramolecular Cycloaddition Reactions of 2H-Chromenes

Examining Committee:

Chair: Dr. Michael Eikerling
Assistant Professor

Dr. Peter D. Wilson
Associate Professor, Senior Supervisor

Dr. Andrew J. Bennet
Professor, Supervisory Committee

Dr. Robert A. Britton
Assistant Professor, Supervisory Committee

Dr. Robert N. Young
Professor, Internal Examiner

Date Approved: May 6, 2009
Declaration of Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the “Institutional Repository” link of the SFU Library website <www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the thesis, project or extended essays, including the right to change the work for subsequent purposes, including editing and publishing the work in whole or in part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada
ABSTRACT

The research described in this thesis concerns a study of a series of inter- and intramolecular cycloaddition reactions of the carbon-carbon double bond of 2H-chromenes. Firstly, a series of mono-2H-chromenes were prepared and it was shown that numerous intermolecular cycloaddition reactions could be performed. These findings were then applied to a C_3-symmetric tris-2H-chromene in order to prepare complex polycyclic compounds in a highly efficient manner. For example, a cycloaddition reaction product was prepared in two steps from readily-available starting materials that contained seven fused rings and six stereogenic centres. Moreover, the regiochemistry and stereoselectivities of these cycloaddition processes were determined.

A series of intramolecular cycloaddition reactions were then attempted on mono- and tris-2H-chromenes. It was found that intramolecular [2+2] cycloadditions proceeded adequately, however, intramolecular [2+4] cycloadditions were unsuccessful. Thus, preliminary investigations were then undertaken towards the synthesis of functionalized 2H-chromenes that would contain a more reactive carbon-carbon double bond.

Keywords: 2H-Chromene; Intermolecular; Intramolecular; Cycloaddition
To my parents, Patrick and Shelley.
ACKNOWLEDGEMENTS

My senior supervisor, Dr. Peter Wilson, is thanked for his advice, encouragement and mentorship over the course of my studies. I am extremely grateful to Dr. Wilson for the training I have received during my time as a member of his research group.

I would also like to thank the other members of my supervisory committee, Dr. Andrew Bennet and Dr. Robert Britton, for their suggestions and encouragement throughout my studies.

Ms. Ladan Mohammadi is thanked for her preliminary investigations of the reactions discussed in Chapter Two. Mr. Josh Dubland is thanked for his preliminary investigations of the cyclopropanation reactions discussed in Chapter Three.

My past and present lab colleagues (Dr. Summon Koul, Dr. Peggy Paduraru, Mr. Matthew Campbell, Mr. Patrick Chen and Mr. Brendan Whelan) are thanked for their friendship and many helpful discussions over the years. In particular, I would like to thank my past lab colleague Dr. Jeremy Pettigrew for many insightful discussions and for much encouragement throughout my work on this thesis.

The technical assistance of Dr. Andrew Lewis (NMR), Mr. Colin Zhang (NMR), Mr. Hongwen Chen (MS), Mr. Simon Wong (MS), Mr. M. K. Yang (CHN microanalysis) and Mr. Frank Haftbaradaran (CHN microanalysis) is gratefully acknowledged.

Finally, Simon Fraser University and the Natural Sciences and Engineering Research Council of Canada are thanked for their financial support.
TABLE OF CONTENTS

Approval .. ii
Abstract ... iii
Dedication ... iv
Acknowledgements .. v
Table of Contents ... vi
List of Figures ... xi
List of Schemes .. xii
List of Tables .. xvi
List of Abbreviations .. xvii

1 Introduction: Inter- and Intramolecular Cycloaddition Reactions of 2H-Chromenes ...1

1.1 Thesis Introduction ..1
1.2 2H-Chromenes: General Review of Biological Significance and Preparation ..1
 1.2.1 Biological Significance ..1
 1.2.2 Preparation of 2H-Chromenes ...3
 1.2.3 Synthesis of 2H-Chromenes from Phenols and α,β-Unsaturated Aldehydes ...5
1.3 2H-Chromenes in Natural Product Chemistry: Daurichromenic Acid and the Xyloketal Family of Natural Products ...6
 1.3.1 Daurichromenic Acid (19) ...7
 1.3.2 The Xyloketal Family of Natural Products ..9
1.4 Proposed Studies: Inter- and Intramolecular Cycloaddition Reactions of mono- and tris-2H-Chromenes ..12
1.5 Thesis Overview ..15

2 Results and Discussion: Synthesis and Evaluation of mono-2H-Chromenes as Substrates for Intermolecular Cycloaddition Reactions ...17

2.1 Introduction ...17
2.2 Preparation of mono-2H-Chromenes ...18
2.3 Intermolecular [2+1] Cycloaddition Reactions ...20
 2.3.1 Epoxidation Reactions of mono-2H-Chromenes20
 2.3.2 Cyclopropanation Reactions of mono-2H-Chromenes23
2.4 Intermolecular [2+2] Cycloaddition Reactions ..27
 2.4.1 Ketene Cycloaddition Reactions of mono-2H-Chromenes27
 2.4.2 Tetracyanoethylene Cycloaddition Reactions of mono-2H-Chromenes30
 2.4.3 Benzyne Cycloaddition Reactions of mono-2H-Chromenes32
2.5 Intermolecular [2+4] Cycloaddition Reactions of mono-2H-Chromenes33
3 Results and Discussion: Intermolecular Cycloaddition Reactions of tris-2H-Chromenes

3.1 Introduction ..36
3.2 Synthesis of the tris-2H-Chromene 30 ...36
3.3 Intermolecular [2+1] Cycloaddition Reactions ..37
 3.3.1 Epoxidation Reactions of the tris-2H-Chromene 30 ..37
 3.3.2 Cyclopropanation Reactions of the tris-2H-Chromene 3038
 3.3.2.1 Synthesis and Evaluation of Additional Carbene Precursors52
3.4 Intermolecular [2+2] Cycloaddition Reactions ...55
 3.4.1 Ketene Cycloaddition Reactions of the tris-2H-Chromene 3055
 3.4.2 Tetracyanoethylene Cycloaddition Reactions of the tris-2H-Chromene 3063
3.6 Conclusions ...66

4 Results and Discussion: Intramolecular Cycloaddition Reactions of mono-2H-Chromenes

4.1 Introduction ..68
4.2 Intramolecular [2+2] Cycloaddition Reactions of the mono-2H-Chromene 9768
 4.2.1 Synthesis of the mono-2H-Chromene 97 ...68
 4.2.2 Intramolecular [2+2] Cycloaddition Reaction of the mono-2H-Chromene 9769
4.3 Intramolecular [2+4] Cycloaddition Reactions of the mono-2H-Chromene 9875
 4.3.1 Synthesis of the mono-2H-Chromene 98 ...75
 4.3.2 Intramolecular [2+4] Cycloaddition Reaction of the mono-2H-Chromene 9878
4.4 Conclusions ...78

5 Results and Discussion: Intramolecular Cycloaddition Reactions of tris-2H-Chromenes

5.1 Introduction ..80
5.2 Triple Intramolecular [2+2] Cycloaddition Reaction of the tris-2H-Chromene 3280
 5.2.1 Synthesis of the tris-2H-Chromene 32 ..81
 5.2.2 Attempted Triple Intramolecular [2+2] Cycloaddition Reaction of the tris-2H-Chromene 32 ...82
5.3 Triple Intramolecular [2+4] Cycloaddition Reaction of the tris-2H-Chromene 10884
 5.3.1 Synthesis of an Additional Functionalized Aldehyde for Subsequent [2+4] Cycloaddition Reactions ...88
5.4 Conclusions ...93
6 Results and Discussion: Studies Towards the Synthesis of an Activated 2H-Chromene Carbon-Carbon Double Bond...95

6.1 Introduction ...95

6.2 Attempted Activation of the Carbon-Carbon Double Bond of the tris-2H-Chromene 30 ..96

6.2.1 Attempted Synthesis of Functionalized Aldehydes97

6.3 Attempted Synthesis of the Dialdehyde 136 ...102

6.4 Attempted Synthesis of a Functionalized Aldehyde Towards the Preparation of an Activated 2H-Chromene Carbon-Carbon Double Bond107

6.5 Conclusions ...111

7 General Conclusions and Future Work ...113

8 Experimental ...116

8.1 General Experimental Details..116

8.2 Experimental Procedures and Characterization Data Concerning Chapter Two ...117

8.2.1 3-Methyl-but-2-enal [Senecialdehyde] (29) ..117

8.2.2 2,2-Dimethyl-2H-chromene (36) ..118

8.2.3 7-Methoxy-2,2-dimethyl-2H-chromene (2) ..119

8.2.4 5,7-Dimethoxy-2,2-dimethyl-2H-chromene (37)119

8.2.5 (1aSR,7bSR)-2,2-Dimethyl-1a,7b-dihydro-2H-oxireno[c]chromene (40) ..120

8.2.6 (1aSR,7bRS)-1,1-Dichloro-5-methoxy-2,2-dimethyl-1a,2,7b-tetrahydrocyclopropa[c]chromene (46) ...121

8.2.7 (1aSR,7bRS)-1,1-Dibromo-5-methoxy-2,2-dimethyl-1a,2,7b-tetrahydrocyclopropa[c]chromene (47) ...122

8.2.8 (2aSR,8bRS)-1,1-Dichloro-6-methoxy-3,3-dimethyl-1,2a,3,8b-tetrahydro-2H-cyclobuta[c]chromene-2-one (51) ..123

8.2.9 (2aSR,8bRS)-1,1-Dichloro-6,8-dimethoxy-3,3-dimethyl-1,2a,3,8b-tetrahydro-2H-cyclobuta[c]chromene-2-one (52) ..124

8.2.10 (2aRS,8bSR)-6-Methoxy-3,3-dimethyl-2a,8-dihydrocyclobuta[c]chromene-1,1,2,2-tetracarbonitrile (55) ...125

8.2.11 (2aRS,8bSR)-6,8-Dimethoxy-3,3-dimethyl-2a,8-dihydrocyclobuta[c]chromene-1,1,2,2-tetracarbonitrile (56) ...126

8.2.12 1,4-Dihydro-2,3-benzoxathiin-3-oxide (62) ..127

8.3 Experimental Procedures and Characterization Data Concerning Chapter Three ...128

8.3.1 2,2,6,6,10,10-Hexamethyl-2H,6H,10H-dipyranolo[6,5-f,6',5'-h]chromene (30) ..128

8.3.2 (1aSR,3cRS,4aSR,6cRS,7aSR,9cRS)-1,1,4,4,7,7-Hexachloro-2,2,5,5,8,8-hexamethylo-1,1a,2,3c,4,4a,5,6c,77a,8,9c-dodecahydrocyclopropa[c]bis-cyclopropa[3,4]pyrano[6,5-f,6',5'-h]chromene (67) and (1aSR,3cRS,4aSR,6cSR,7aRS,9cRS)-1,1,4,4,7,7-hexachloro-2,2,5,5,8,8-hexamethyl-1,1a,2,3c,4,4a,5,6c,77a,8,9c-dodecahydrocyclopropa[c]bis-cyclopropa[3,4]pyrano[6,5-f,6',5'-h]chromene (68) ..129
8.3.3 (1aSR,3cRS,4aSR,6cRS,7aSR,9cRS)-1,1,4,4,7,7-Hexabromo-2,2,5,5,8,8-hexamethyl-1,1a,2,3c,4,4a,5,6c,7,7a,8,9c-dodecahydrocyclopropa[c]bis-cyclopropa[3,4]pyrano[6,5-f,6',5'-h]chromene (69) and (1aSR,3cRS,4aSR,6cSR,7aRS,9cRS)-1,1,4,4,7,7-hexabromo-2,2,5,5,8,8-hexamethyl-1,1a,2,3c,4,4a,5,6c,7,7a,8,9c-dodecahydrocyclopropa[c]bis-cyclopropa[3,4]pyrano[6,5-f,6',5'-h]chromene (70) ..131

8.3.4 Ethyl-(10aRS,11SR,11aSR)-2,2,6,6,10,10-hexamethyl-10,10a,11,11a-tetrahydro-2H,6H-cyclopropa[c]-dipyrano[6,5-f,6',5'-h]chromene-11-carboxylate (74) and Diethyl-(6aRS,7RS,7aRS,9aRS,10aRS,10aRS)-2,2,6,6,9,9-hexamethyl-6,6a,7,7a,9,9a,10,10a-octahydro-2H-cyclopropa[c]-cyclopropa[3,4]pyrano[6,5-f]pyrano[6,5-h]chromene-7,10-dicarboxylate (75) and Triethyl-(1RS,1aRS,3cRS,4RS,4aRS,6cRS,7RS,7aRS,9cRS)-3,3,6,6,9,9-hexamethyl-1,1a,2,3c,4,4a,5,6c,7,7a,8,9c-dodecahydrocyclopropa[c]bis-cyclopropa[3,4]pyrano[6,5-f,6',5'-h]chromene-1,4,7-tricarboxylate (76) ..132

8.3.5 p-Toluenesulphonyl azide (77) ..136

8.3.6 1,3-Dimethyl-2-diazopropanedioate (80) ...137

8.3.7 1,3-Diethyl-2-diazopropanedioate (82) ..138

8.3.8 2-Diazocyclohexane-1,3-dione (84) ...138

8.3.9 (10aSR,12cRS)-12,12-Dichloro-2,2,6,6,10,10-hexamethyl-10,10a,12,12a-tetrahydro-2H,6H,11H-cyclobuta[c]dipyrano[6,5-f,6',5'-h]chromen-11-one (88) and (6aSR,8aRS,10aSR,12cRS)-8,8,12,12-tetrachloro-2,2,6,6,10,10-hexamethyl-6,6a,8,8a,10,10a,12,12a-octahydro-2H,7H,11H-cyclobuta[c]-cyclobuta[3,4]pyrano[6,5-f]pyrano[6,5-h]chromene-7,11-dione (89)139

8.3.10 (2aSR,4cRS,6aSR,8cSR,10aRS,12cRS)-1,1,5,5,9,9-Hexachloro-3,3,7,7,11,11-hexamethyl-1,2a,3,4c,5,6a,7,8c,9,10a,11,12c-dodecahydro-2H,6H,10H-cyclobuta[c]bis-cyclobuta[3,4]pyrano[6,5-f,6',5'-h]chromene-2,6,10-trione (90) ..144

8.3.11 (10aSR,12aRS)-2,2,6,6,10,10-Hexamethyl-10a,12a-dihydro-2H,6H-cyclobuta[c]dipyrano[6,5-f,6',5'-h]chromene-11,11,12,12-tetracarbonitrile (93) ..145

8.3.12 (6aSR,8aRS,10aSR,12aRS)-2,2,6,6,10,10-Hexamethyl-6a,8a,10a,12a-tetrahydro-2H-cyclobuta[c]-cyclobuta[3,4]pyrano[6,5-f]pyrano[6',5'-h]chromene-7,7,8,8,11,11,12,12-octacarbonitrile (94) ...146

8.4 Experimental Procedures and Characterization Data Concerning Chapter Four ..147

8.4.1 (2SR)-5,7-Dimethoxy-2-methyl-2-(4'-methylpent-3'-enyl)-2H-chromene (97) ...147

8.4.2 (1aRS,8bSR,8cSR)-6,8-Dimethoxy-1,1,3a-trimethyl-1a,2,3,3a,8b,8c-hexahydro-1H-bicyclo[3.2.0]hept-5-eno[4,5,6-bc]chromene (99) ...148

8.4.3 (3E)-4-(Furan-2'-yl)but-3-en-2-one (102) ..149
8.4.4 4-(Furan-2'-yl)butan-2-one (103) ...150
8.4.5 Methyl-(2E)-5-(furan-2'-yl)-3-methylpent-2-enoate (104) and
 Methyl-(2Z)-5-(furan-2'-yl)-3-methylpent-2-enoate (104a)151
8.4.6 (2E)-5-(Furan-2'-yl)-3-methylpent-2-en-1-ol (105) and (2Z)-5-
 (Furan-2'-yl)-3-methylpent-2-en-1-ol (105a) ..152
8.4.7 (2E)-5-(Furan-2'-yl)-3-methylpent-2-enal (106) and (2Z)-5-
 (Furan-2'-yl)-3-methylpent-2-enal (106a) ...153
8.4.8 (2SR)-[2'-(Furan-2''-yl)ethyl]-5,7-dimethoxy-2-methyl-2H-chromene
 (98) ...154

8.5 Experimental Procedures and Characterization Data Concerning Chapter
 Five ..155
8.5.1 (2SR,6SR,10SR)-2,6,10-Trimethyl-2,6,10-tri-(4'-methylpent-3'-
 enyl)-2H,6H,10H-dipyrano[6,5-f,6',5'-h]chromene (32)155
8.5.2 (2SR,6SR,10SR)-2,6,10-Tris-[2'-(furan-2''-yl)ethyl]-2,6,10-trimethyl-
 2H,6H,10H-dipyrano[6,5-f,6',5'-h]chromene (108)156
8.5.3 (2E)-3-(Furan-2'-yl)-1-phenylprop-2-en-1-one (111)157
8.5.4 3-(Furan-2'-yl)-1-phenylpropan-1-one (112) ...157
8.5.5 Methyl-(2Z)-5-(furan-2'-yl)-3-phenylpent-2-enoate (113) and
 Methyl-(2E)-5-(furan-2'-yl)-3-phenylpent-2-enoate (114)158
8.5.6 (2Z)-5-(Furan-2'-yl)-3-phenylpent-2-en-1-ol (115)160
8.5.7 (2E)-5-(Furan-2'-yl)-3-phenylpent-2-en-1-ol (116)161
8.5.8 (2Z)-5-(Furan-2'-yl)-3-phenylpent-2-enal (117)162
8.5.9 (2E)-5-(Furan-2'-yl)-3-phenylpent-2-enal (118)163

8.6 Experimental Procedures and Characterization Data Concerning Chapter
 Six ..164
8.6.1 2,2-Dimethyl-5-(propan-2'-ylidene)-1,3-dioxane-4,6-dione (126)164
8.6.2 5-Isopropyl-2,2-dimethyl-1,3-dioxane-4,6-dione (127)165
8.6.3 Dimethyl 2-(propan-2'-ylidene)malonate (128)166
8.6.4 2-(Propan-2'-ylidene)propane-1,3-diol (129) ...167
8.6.5 2-(Hydroxymethyl)-3-methylbut-2-enal (130) ...167
8.6.6 Dimethyl-[4'-(furan-2''-yl)butan-2'-ylidene]malonate (132)168
8.6.7 Diethyl-[4'-(furan-2''-yl)butan-2'-ylidene]malonate (133)169
8.6.8 2-[4'-(Furan-2''-yl)butan-2'-ylidene]propane-1,3-diol (134)170
8.6.9 (2E)-5-(Furan-2'-yl)-2-hydroxymethyl-3-methylpent-2-enal (135)171
8.6.10 Methyl-(p-nitrophenyl)acetate (139) ..172
8.6.11 (2E)-Methyl 2-cyano-5-(furan-2'-yl)-3-methylpent-2-enoate (142)173

References ..175
LIST OF FIGURES

Figure 1.1.1 The parent 2H-chromene ring system 1...1
Figure 1.2.1 Molecular structures of precocene I (2) and II (3). ...2
Figure 1.2.2 Molecular structures of acronycine (4), inophyllum B_{36} (5) and robustic acid (6)...3
Figure 1.3.1 Molecular structures of daurichromenic acid (19) and xyloketal A (20). ...7
Figure 1.3.2 Molecular structures of daurichromenic acid (19), rhodo-
daurichromanic acid A (21) and rhododaurichromanic acid B (22).8
Figure 2.1.1 Molecular structures of mono-2H-chromenes 36, 2 and 37.17
Figure 2.4.1 The two regiochemical isomers of the [2+2] ketene cycloaddition
reactions of the mono-2H-chromene 37...29
Figure 2.4.2 Diagnostic correlations observed in the HMBC spectrum of the
cyclobutane 52...29
Figure 2.5.1 Molecular structure of o-quinonedimethane (59)...33
Figure 3.3.1 1H NMR (600 MHz, CDCl$_3$) of the tris-dichlorocyclopropane 67.40
Figure 3.3.2 Diagnostic correlations observed in the HMBC spectrum of the
tris-dichlorocyclopropane 67. ..41
Figure 3.3.3 13C NMR (151 MHz, CDCl$_3$) of the tris-dichlorocyclopropane 67.42
Figure 3.3.4 1H NMR (600 MHz, CDCl$_3$) of the tris-dichlorocyclopropane 68.43
Figure 3.3.5 Diagnostic nOe contacts of the mono-cyclopropane 74.................................50
Figure 3.4.1 The key HMBC correlations of the cycloadduct 88...58
Figure 3.4.2 1H NMR (600 MHz, CDCl$_3$) of the tris-cycloadduct 90.................................60
Figure 4.1.1 Molecular structures of the mono-2H-chromenes 97 and 98.68
Figure 4.2.1 1H NMR (600 MHz, CDCl$_3$) of the cyclobutane 99.72
Figure 4.2.2 Selected nOe contacts for the cyclobutane 99...73
Figure 4.2.3 1H-1H COSY (600 MHz, CDCl$_3$) of the cyclobutane 99.74
Figure 5.1.1 Molecular structure of the tris-2H-chromene 108..81
Figure 5.3.1 1H NMR (500 MHz, CDCl$_3$) of the tris-2H-chromene 108.86
Figure 5.3.2 13C NMR (101 MHz, CDCl$_3$) of the tris-2H-chromene 108.......................87
Figure 6.1.1 A tris-2H-chromene activated with an electron-withdrawing group...........95
Figure 6.3.1 nOe Contacts of the E-isomer of the mono-aldehyde 135.105
LIST OF SCHEMES

Scheme 1.2.1 Synthesis of 2H-Chromenes 8 from Coumarins 7 via Addition of Grignard Reagents...3
Scheme 1.2.2 Preparation of 2H-Chromenes 8 from Chromanones 10.................................4
Scheme 1.2.3 Oxidation Reaction of Chromanes 11 to 2H-Chromenes 8...............................4
Scheme 1.2.4 Preparation of 2H-Chromenes 15 via Rearrangement of Propargyl Ethers 14..5
Scheme 1.2.5 Proposed Phenylboronic Acid-Mediated Condensation Reaction of Phenol 17 and an \(\alpha,\beta \)-Unsaturated Aldehyde 16...6
Scheme 1.3.1 Knoevenagel Condensation and Electrocyclization Reaction of 1,3-Cyclohexanediene 23 with \(\text{trans,trans} \)-Farnesal (24) ...9
Scheme 1.3.2 Retrosynthetic Analysis of Xyloketal A (20): Phenylboronic Acid-Mediated Condensation Reaction..10
Scheme 1.3.3 Phenylboronic Acid-Mediated Reaction of Phloroglucinol (27) with Senecialdehyde (29) ..11
Scheme 1.3.4 Proposed Triple Intramolecular [2+2] Cycloaddition Reaction of the \(\text{tris-2H-Chromene} \) 32 ...12
Scheme 1.4.1 Intramolecular [2+2] Cycloaddition Reaction of the 2H-Pyran 3413
Scheme 1.4.2 Intramolecular [2+2] Cycloaddition Reaction of Daurichromenic Acid (19) ...14
Scheme 2.2.1 Synthesis of the \(\text{mono-2H-Chromenes} \) 36, 2 and 37 from Senecialdehyde (29) ..19
Scheme 2.3.1 Epoxidation Reaction of the \(\text{mono-2H-chromene} \) 36 ...21
Scheme 2.3.2 Proposed Reaction of \(m \)-Chlorobenzoic Acid (42) or \(m \)-CPBA (41) with the Epoxide 43 ...22
Scheme 2.3.3 Attempted Epoxidation Reaction of the \(\text{mono-2H-Chromenes} \) 36 and 2 with Dimethyldioxirane (45) ..23
Scheme 2.3.4 Dichlorocyclopropanation Reaction of the \(\text{mono-2H-Chromene} \) 224
Scheme 2.3.5 Dibromocyclopropanation Reaction of the \(\text{mono-2H-Chromene} \) 224
Scheme 2.3.6 Attempted Preparation of Dichlorocyclopropane 48 and Dibromocyclopropane 49 from the \(\text{mono-2H-Chromene} \) 37 ..26
Scheme 2.3.7 Attempted Cyclopropanation of the \(\text{mono-2H-Chromene} \) 2 ...26
Scheme 2.4.1 Synthesis of the Cycloadducts 51 and 52 from the \(\text{mono-2H-Chromenes} \) 2 and 37 ...28
Scheme 2.4.2 Attempted [2+2] Cycloaddition Reaction of the \(\text{mono-2H-Chromene} \) 2 ...30
Scheme 2.4.3 Synthesis of Tetracyanocyclobutanes 55 and 56 from the \(\text{mono-2H-Chromenes} \) 2 and 37 ..31
Scheme 2.4.4 Attempted Synthesis of Benzocyclobutane 58 from the \(\text{mono-2H-Chromene} \) 2 and 2-Fluorobromobenzene (57) ..33
Scheme 2.5.1 Synthesis of the Sultine 62 from \(\alpha,\alpha'-\text{Dibromo-}o\text{-xylene} (60)\) 34

Scheme 2.5.2 Attempted Synthesis of Benzocyclohexanes 63, 64 and 65 from the \(\text{mono-}2H\text{-Chromenes} 36, 2\) and 37 ... 34

Scheme 3.2.1 Synthesis of the \(\text{tris-}2H\text{-Chromene} 30\) from Senecialdehyde (29) and Phloroglucinol (27) ... 37

Scheme 3.3.1 Attempted Synthesis of the \(\text{tris-}2H\text{-Chromene} 30\) ... 38

Scheme 3.3.2 Synthesis of the \(\text{bis-}2H\text{-Chlorocyclopropanes} 67\) and 68 .. 39

Scheme 3.3.3 Synthesis of the \(\text{tris-Dibromocyclopropanes} 69\) and 70 .. 45

Scheme 3.3.4 Attempted Cyclopropanation Reactions of the \(\text{tris-}2H\text{-Chromene} 30\) ... 47

Scheme 3.3.5 Synthesis of the \(\text{mono-}, \text{bis- and tris-Cyclopropanes} 74, 75\) and 76 from the \(\text{tris-}2H\text{-Chromene} 30\) ... 48

Scheme 3.3.6 Synthesis of the Stabilized Diazo Compounds 80, 82 and 84 .. 53

Scheme 3.3.7 Attempted Synthesis of the \(\text{tris-Cyclopropanes} 85, 86\) and 87 from the \(\text{tris-}2H\text{-Chromene} 30\) ... 54

Scheme 3.4.1 Synthesis of the \(\text{mono- and bis-Cycloadducts} 88\) and 89 from the \(\text{tris-}2H\text{-Chromene} 30\) ... 56

Scheme 3.4.2 Synthesis of the \(\text{bis-Cycloadduct} 89\) from the \(\text{mono-Cycloadduct} 88\) ... 59

Scheme 3.4.3 Synthesis of the \(\text{tris-Cycloadduct} 90\) from the \(\text{tris-}2H\text{-Chromene} 30\) ... 59

Scheme 3.4.4 Attempted Synthesis of the \(\text{tris-Cycloadduct} 92\) from the \(\text{tris-}2H\text{-Chromene} 30\) ... 62

Scheme 3.4.5 Synthesis of the \(\text{mono-Tetracyanoethylene Cycloadduct} 93\) from the \(\text{tris-}2H\text{-Chromene} 30\) ... 63

Scheme 3.4.6 Synthesis of the \(\text{bis-Tetracyanoethylene Cycloadduct} 94\) from the \(\text{tris-}2H\text{-Chromene} 30\) ... 64

Scheme 3.5.1 Attempted Diels-Alder Cyacloaddition Reaction of Cyclopentadiene with the \(\text{tris-}2H\text{-Chromene} 30\) ... 65

Scheme 3.5.2 Attempted Synthesis of \(\text{tris-Cyclohexabenzene} 96\) from the \(\text{tris-}2H\text{-Chromene} 30\) ... 66

Scheme 4.2.1 Synthesis of the \(\text{mono-}2H\text{-Chromene} 97\) from Citral (31) and 3,5-Dimethoxyphenol (39) ... 69

Scheme 4.2.2 Synthesis of the Cyclobutane 99 from the \(\text{mono-}2H\text{-Chromene} 97\) 70

Scheme 4.3.1 Synthesis of the \(\alpha,\beta\text{-Unsaturated Aldehyde} 106\) from Furfural (100) and Acetone (101) ... 76

Scheme 4.3.2 Synthesis of the \(\text{mono-}2H\text{-Chromene} 98\) from the Aldehyde 106 and 3,5-Dimethoxyphenol (39) ... 77

Scheme 4.3.3 Attempted Synthesis of the Diels-Alder Cycloadduct 107 from the \(\text{mono-}2H\text{-Chromene} 98\) ... 78
Scheme 5.2.1 Synthesis of the tris-2H-Chromene 32 from Citral (31) and Phloroglucinol (27) ...82
Scheme 5.2.2 Attempted [2+2] Cycloaddition Reaction of tris-2H-Chromene 3282
Scheme 5.3.1 Synthesis of the tris-2H-Chromene 108 from the \(\alpha,\beta\)-Unsaturated Aldehyde 106 and Phloroglucinol (27) ...85
Scheme 5.3.2 Attempted Diels-Alder Cycloaddition Reaction of the tris-2H-Chromene 108 ..88
Scheme 5.3.3 Synthesis of the \(Z\)- and \(E\)-Alcohols 115 and 116 from Furfural (100) and Acetophenone (110) ...90
Scheme 5.3.4 Synthesis of the \(Z\)-Aldehyde 117 and the \(E\)-Aldehyde 118 from the \(Z\)-Alcohol 115 and the \(E\)-Alcohol 116 ...91
Scheme 5.3.5 Attempted Synthesis of the tris-2H-Chromene 119 from the \(Z\)-\(\alpha,\beta\)-Unsaturated Aldehyde 117 and the \(E\)-\(\alpha,\beta\)-Unsaturated Aldehyde 118 and Phloroglucinol (27) ...93
Scheme 6.1.1 Retrosynthetic Analysis of an Activated tris-2H-Chromene 12096
Scheme 6.2.1 Attempted Synthesis of the Activated tris-2H-Chromene 122 via Trichloroacetyl chloride and the tris-2H-Chromene 30 ...97
Scheme 6.2.2 Retrosynthetic Analysis of the Activated tris-2H-Chromene 123 to the Dialdehyde 124 ..97
Scheme 6.2.3 Synthesis of 2,2-Dimethyl-5-(propan-2'-ylidene)-1,3-dioxane-4,6-dione (126) from Meldrum’s Acid (125) ...98
Scheme 6.2.4 Synthesis of 5-Isopropyl-2,2-dimethyl-1,3-dioxane-4,6-dione (127) from 2,2-Dimethyl-5-(propan-2'-ylidene)-1,3-dioxane-4,6-dione (126) ...98
Scheme 6.2.5 Synthesis of 2-(Hydroxymethyl)-3-methylbut-2-enal (130) from Dimethyl Malonate (79) and Acetone (101) ...99
Scheme 6.2.6 Synthesis of the Dialdehyde 124 from the Diol 129100
Scheme 6.2.7 Attempted Synthesis of the Functionalized 2H-Chromenes 131 and 123 ...101
Scheme 6.3.1 Synthesis of the \(\alpha,\beta\)-Unsaturated Diesters 132 and 133 from 4-(Furan-2'-yl)butan-2-one (103) ...102
Scheme 6.3.2 Synthesis of (2E)-5-(Furan-2'-yl)-2-hydroxymethyl-3-methylpent-2-enal (135) from the \(\alpha,\beta\)-Unsaturated Diesters 132 or 133 ...103
Scheme 6.3.3 Attempted Synthesis of the Functionalized tris-2H-Chromene 137 from the Dialdehyde 136 and Phloroglucinol (27) ...106
Scheme 6.4.1 Synthesis of Methyl-(p-nitrophenyl)acetate (139) from p-Nitrophenylacetic Acid (138) ...107
Scheme 6.4.2 Attempted Synthesis of (E)-Methyl 5-(furan-2'-yl)-3-methyl-2-(4-nitrophenyl)pent-2-enoate (140) from Methyl-(p-nitrophenyl)acetate (139) and 4-(Furan-2'-yl)butan-2-one (103) ...108
Scheme 6.4.3 Synthesis of Methyl 2-cyano-5-(furan-2'-yl)-3-methylpent-2-enoate (142) from 4-(Furan-2'-yl)butan-2-one (103) ...109
Scheme 6.4.4 Attempted Reduction of the Ester 142 using DIBAL-H

Scheme 6.4.5 Retro-Knoevenagel Condensation of (2E)-Methyl 2-cyano-5-(furan-2'-yl)-3-methylpent-2-enoate (142)

Scheme 7.1.1 Proposed Reaction of 2-Bromo-senecialdehyde (145) with Phenol (146) to Form the Functionalized 2H-Chromene 147
LIST OF TABLES

Table 2.3.1 Reagents and Conditions Corresponding to Scheme 2.3.727
Table 3.3.1 Expected and Experimental Isotopic Ratios of the tris-
Dichlorocyclopropane 68 ...44
Table 3.3.2 Expected and Experimental Isotopic Ratios of the tris-
Cyclopropane 70 ...46
Table 3.3.3 Reagents and Conditions Corresponding to Scheme 3.3.447
Table 3.3.4 Reagents and Conditions Corresponding to Scheme 3.3.548
Table 3.4.1 Reagents and Conditions Corresponding to Scheme 3.4.156
Table 3.4.2 Expected and Experimental Isotope Ratios of the tris-Cycloadduct 90 ...61
Table 3.4.3 Reagents and Conditions Corresponding to Scheme 3.4.462
Table 4.2.1 Reagents and Conditions Corresponding to Scheme 4.2.270
Table 4.3.1 Reagents and Conditions Corresponding to Scheme 4.3.378
Table 5.2.1 Reagents and Conditions Corresponding to Scheme 5.2.283
Table 5.3.1 Reagents and Conditions Corresponding to Scheme 5.3.288
Table 5.3.2 Reagents and Conditions Corresponding to Scheme 5.3.491
Table 5.3.3 Reagents and Conditions Corresponding to Scheme 5.3.492
Table 6.3.1 Reagents and Conditions Corresponding to Scheme 6.3.2104
Table 6.4.1 Reagents and Conditions Corresponding to Scheme 6.4.2108
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>chemical shift (NMR spectroscopy)</td>
</tr>
<tr>
<td>2D</td>
<td>two dimensional</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>AcOH</td>
<td>acetic acid</td>
</tr>
<tr>
<td>amu</td>
<td>atomic mass unit (mass spectroscopy)</td>
</tr>
<tr>
<td>Anal.</td>
<td>elemental analysis</td>
</tr>
<tr>
<td>aq</td>
<td>aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>aromatic group</td>
</tr>
<tr>
<td>atm</td>
<td>atmospheres</td>
</tr>
<tr>
<td>Å</td>
<td>Ångstrom (0.1 nm)</td>
</tr>
<tr>
<td>B.p.</td>
<td>boiling point</td>
</tr>
<tr>
<td>br</td>
<td>broad (spectroscopy)</td>
</tr>
<tr>
<td>brsm</td>
<td>based on recovered starting material</td>
</tr>
<tr>
<td>Calcd.</td>
<td>calculated (elemental analysis)</td>
</tr>
<tr>
<td>cat.</td>
<td>catalytic (amount)</td>
</tr>
<tr>
<td>Cl</td>
<td>chemical ionization (mass spectroscopy)</td>
</tr>
<tr>
<td>cm⁻¹</td>
<td>wavenumbers (IR spectroscopy)</td>
</tr>
<tr>
<td>¹³C NMR</td>
<td>carbon nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>COSY</td>
<td>¹H-¹H correlation spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>doublet (NMR spectroscopy)</td>
</tr>
<tr>
<td>dd</td>
<td>doublet of doublets (NMR spectroscopy)</td>
</tr>
<tr>
<td>dr</td>
<td>diastereoisomeric ratio</td>
</tr>
<tr>
<td>dt</td>
<td>doublet of triplets (NMR spectroscopy)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-Dichloro-5,6-dicyano-(p)-benzoquinone</td>
</tr>
<tr>
<td>dec.</td>
<td>decomposition</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DMF</td>
<td>(N, N)-dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin Periodinane</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>EC(_{50})</td>
<td>median effective concentration</td>
</tr>
<tr>
<td>ef</td>
<td>evaporated film (IR spectroscopy)</td>
</tr>
<tr>
<td>equiv.</td>
<td>equivalent(s)</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>Et(_2)O</td>
<td>diethyl ether</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple bond coherence spectroscopy</td>
</tr>
<tr>
<td>HMQC</td>
<td>heteronuclear multiple quantum coherence spectroscopy</td>
</tr>
<tr>
<td>(^1)H NMR</td>
<td>proton nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectroscopy</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single quantum coherence spectroscopy</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz (cycles per second)</td>
</tr>
<tr>
<td>IC(_{50})</td>
<td>median inhibition concentration</td>
</tr>
<tr>
<td>IR</td>
<td>infrared spectroscopy</td>
</tr>
<tr>
<td>(J)</td>
<td>coupling constant (NMR spectroscopy)</td>
</tr>
<tr>
<td>KBr</td>
<td>potassium bromide disc (IR spectroscopy)</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium (N, N)-diisopropylamide</td>
</tr>
<tr>
<td>lit.</td>
<td>literature value for a physical or spectroscopic property</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>m</td>
<td>multiplet (NMR spectroscopy)</td>
</tr>
<tr>
<td>M</td>
<td>molarity of a solution</td>
</tr>
<tr>
<td>M</td>
<td>molecular ion (mass spectroscopy)</td>
</tr>
<tr>
<td>M + H</td>
<td>molecular ion plus proton (mass spectroscopy)</td>
</tr>
<tr>
<td>M – OH</td>
<td>molecular ion minus hydroxide (mass spectroscopy)</td>
</tr>
<tr>
<td>M – OMe</td>
<td>molecular ion minus methoxide (mass spectroscopy)</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>matrix assisted laser desorption ionization-time of flight (mass spectroscopy)</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>m-chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MeCN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol (methyl alcohol)</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz (NMR spectroscopy)</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>millilitres</td>
</tr>
<tr>
<td>mm Hg</td>
<td>millimetres of mercury</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole(s)</td>
</tr>
<tr>
<td>M.p.</td>
<td>melting point</td>
</tr>
<tr>
<td>mol</td>
<td>mole(s)</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectroscopy</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>N/A</td>
<td>not applicable</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>n-butyl lithium</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>nOe</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear Overhauser effect spectroscopy</td>
</tr>
<tr>
<td>OAc</td>
<td>acetate</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>PhH</td>
<td>benzene</td>
</tr>
<tr>
<td>PhMe</td>
<td>toluene</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million (NMR spectroscopy)</td>
</tr>
<tr>
<td>py</td>
<td>pyridine</td>
</tr>
<tr>
<td>q</td>
<td>quartet (NMR spectroscopy)</td>
</tr>
<tr>
<td>rel.</td>
<td>relative</td>
</tr>
<tr>
<td>R$_f$</td>
<td>retention factor (thin-layer chromatography)</td>
</tr>
<tr>
<td>s</td>
<td>singlet (NMR spectroscopy)</td>
</tr>
<tr>
<td>t</td>
<td>triplet (NMR spectroscopy)</td>
</tr>
<tr>
<td>TEA</td>
<td>triethylamine</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin-layer chromatography</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>v/v</td>
<td>volume by volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight by volume</td>
</tr>
<tr>
<td>w/w</td>
<td>weight by weight</td>
</tr>
</tbody>
</table>
INTRODUCTION

Inter- and Intramolecular Cycloaddition Reactions of 2H-Chromenes

1.1 Thesis Introduction

This thesis concerns a study of a series of inter- and intramolecular [2+1], [2+2] and [2+4] cycloaddition reactions of the carbon-carbon double bond of various 2H-chromenes (Figure 1.1.1). 2H-chromenes, also referred to as 2H-1-benzopyrans, are a class of oxygen heterocycles that are common structural motifs in a number of natural products.1 The objective of this study was to expand on the knowledge of cycloaddition reactions that can be performed on 2H-chromenes in order to access complex, stereochemically-rich polycyclic compounds in a concise and direct manner.

![Diagram of 2H-chromene ring system (1).]

Figure 1.1.1 The parent 2H-chromene ring system (1).

1.2 2H-Chromenes: General Review of Biological Significance and Preparation

1.2.1 Biological Significance

The 2H-chromene moiety is found in a number of natural products such as tannins and polyphenols which are commonly found in a variety of fruits, vegetables, teas and red wines.2 The interest in these compounds is increasing because of their reported benefit to health.2 Additionally, the 2H-chromene moiety is present in a variety of naturally occurring compounds that have anti-tumour3 and anti-bacterial activity.4
Though 2H-chromenes were first prepared in 1939,5 these interesting heterocycles did not receive significant attention until 1976 when Bowers and co-workers isolated precocene I (2) and precocene II (3) from *Ageratum houstonianum* (Figure 1.2.1).6

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{fig1_2_1.png}
\caption{Molecular structures of precocene I (2) and II (3).}
\end{figure}

These two simple 2H-chromenes were shown to induce precocious metamorphosis in a variety of insects.6 As such, these 2H-chromene moieties were identified as lead compounds for the development of environmentally friendly insecticides. A large number of 2H-chromene containing natural products have subsequently been isolated and characterized. For example, acronycine (4) is an antitumor drug with an IC\textsubscript{50} value of 2.0 μg/mL.7 Inophyllum B\textsubscript{36} (5) is an HIV-1 reverse transcriptase inhibitor with an IC\textsubscript{50} value of 1.6 μM.8 Finally, robustic acid (6) is a cAMP inhibitor with an IC\textsubscript{50} value of 10.0 μM (Figure 1.2.2).9
1.2.2 Preparation of 2H-Chromenes

A variety of routes have been used to prepare 2,2-dialkyl-2H-chromenes. Initially, coumarins 7 and an appropriate organometallic reagent were used to afford the requisite 2,2-dialkyl-2H-chromene 8 (Scheme 1.2.1). This reaction was first conducted by Shriner and co-workers nearly 70 years ago. Unfortunately, this method is limited to the reactions of coumarins which do not contain functional groups that could react with the organometallic reagent, such as a hydroxyl functional group.

Scheme 1.2.1 Synthesis of 2H-Chromenes (8) from Coumarins (7) via Addition of Grignard Reagents
The dehydration reaction of chromanols 10 is another popular option for the preparation of 2H-chromenes. Initially, an appropriately substituted chromanone 9 is reduced with either lithium aluminium hydride or sodium borohydride to afford the corresponding chromanol 10. This chromanol 10 is then readily dehydrated upon treatment with acid to afford the desired 2H-chromene 8 (Scheme 1.2.2).

Scheme 1.2.2 Preparation of 2H-Chromenes (8) from Chromanones (10)

Additionally, chromanes 11 can be directly oxidized to the 2H-chromene 8 using either DDQ or NBS. This method was utilized by Solladie and co-workers to prepare 6,7-dimethoxy-2,2-dimethyl-2H-chromene (precocene II, 3) from the corresponding chromane (Scheme 1.2.3).

Scheme 1.2.3 Oxidation Reaction of Chromanes (11) to 2H-Chromenes (8)

The thermal rearrangement of aryl propargyl ethers is another general and convenient method for the preparation of 2H-chromenes. The aryl propargyl ether 14 can be readily prepared by the alkylation reaction of an appropriate phenol derivative 12 and a C3-halogenated alkyne 13. The reaction is thought to proceed via a Claisen-like [3,3] sigmatropic rearrangement followed by a [1,5] sigmatropic shift. Finally, an
electrocyclization reaction completes the synthesis of the 2H-chromene 15 (Scheme 1.2.4).11

Scheme 1.2.4 Preparation of 2H-Chromenes (15) *via* Rearrangement of Propargyl Ethers (14)

1.2.3 Synthesis of 2H-Chromenes from Phenols and α,β-Unsaturated Aldehydes

A variety of methods are available for the preparation of 2H-chromenes from a phenol and an appropriately substituted α,β-unsaturated aldehyde. For example, 2H-chromenes can be prepared either through base-promoted cyclization or by the phenylboronic acid-mediated condensation reaction of a phenol with an α,β-unsaturated aldehyde.12,13 Throughout this thesis, the phenylboronic acid-mediated condensation reaction was selected for the preparation of various 2H-chromenes.

The phenylboronic acid-mediated condensation reaction involves the use of an α,β-unsaturated aldehyde, a phenol, phenylboronic acid and propionic acid, acting as a catalyst, that are heated at reflux in benzene with the azeotropic removal of water. It has been proposed that this reaction proceeds through an *ortho*-quinone methide intermediate, which would undergo a 6π electrocyclic rearrangement to afford the corresponding 2H-chromene moiety (Scheme 1.2.5).13
Scheme 1.2.5 Proposed Phenylboronic Acid-Mediated Condensation Reaction of Phenol (17) and an \(\alpha,\beta \)-Unsaturated Aldehyde (16)

\[
\begin{align*}
\text{R} & \quad \text{R'} \\
16 & \\
\text{OH} & \\
17 & \\
\text{PhB(OH)₂} & \text{Propionic Acid, PhH} \\
\end{align*}
\]

1.3 \(2H \)-Chromenes in Natural Product Chemistry: Daurichromenic Acid and the Xyloketal Family of Natural Products

The Wilson research group has prepared a variety of natural products containing a \(2H \)-chromene moiety. For example, daurichromenic acid (19) is a natural product that contains a \(2H \)-chromene core. In addition, the \(2H \)-chromene moiety could serve as a precursor in the formation, through hydrogenation, of chromane containing compounds, such as xyloketal A (20) (Figure 1.3.1).
1.3.1 Daurichromenic Acid (19)

Daurichromenic acid (19), along with rhododaurichromanic acid A and B (21 and 22), was isolated from the leaves and twigs of *Rhododendron dauricum*, by Kashiwada *et al.* in 2001. Daurichromenic acid (19) was found to be biologically active, with potent anti-HIV activity against acutely infected H9 cells (EC$_{50}$ = 0.00567 μg/mL). In addition to being a natural product itself, daurichromenic acid (19) is thought to be the biosynthetic precursor of the chromane containing natural products, rhododaurichromanic acid A and B (21 and 22) (Figure 1.3.2). It has been proposed and demonstrated that the conversion of daurichromenic acid (19) into either rhododaurichromanic acid molecule proceeds via a [2+2] cycloaddition reaction.
Figure 1.3.2 Molecular structures of daurichromenic acid (19), rhododaurichromanic acid A (21) and rhododaurichromanic acid B (22).

The total synthesis of daurichromenic acid (19) was recently completed by Hu et al.16 The key step in this synthesis, the preparation of the 2\textit{H}-pyran 25, was accomplished in a highly convergent manner by utilizing a Knoevenagel condensation reaction followed by a tandem 6\textpi-electrocyclization reaction of the 1,3-cyclohexanedione 23 with \textit{trans,trans}-farnesal (24) (Scheme 1.3.1).
Scheme 1.3.1 Knoevenagel Condensation and Electrocyclization Reaction of 1,3-Cyclohexanedione (23) with trans,trans-Farnesal (24)

\[
\begin{align*}
\text{EtO} & \quad \text{Me} \\
\text{O} & \quad \text{Me} \\
\text{O} & \quad \text{Me} \\
\end{align*}
\]

A subsequent dehydrogenation reaction afforded the corresponding 2H-chromene moiety, which was then hydrolyzed to the corresponding carboxylic acid, thus completing a concise total synthesis of daurchromenic acid (19).

1.3.2 The Xyloketal Family of Natural Products

As previously stated, the 2H-chromene moiety could serve as a precursor, through hydrogenation, to afford a variety of chromanes. One such example is the natural product, xyloketal A (20). This natural product was isolated from a mangrove fungus of the *Xyleria species* and has been shown to possess notable biological activity.\(^{17}\) Xyloketal A (20) is particularly interesting because it has a unique and aesthetically pleasing \(C_3\)-symmetric structure (Figure 1.3.1).

Xyloketal A (20) is a \(C_3\)-symmetric \textit{tris}-chromane which could, in principle, be prepared upon hydrogenation of the \(C_3\)-symmetric \textit{tris}-2H-chromene 26. This \textit{tris}-2H-chromene could be prepared from the corresponding \(\alpha,\beta\)-unsaturated aldehyde 28 and
phloroglucinol (1,3,5-trihydroxybenzene) (27) via a phenylboronic acid-mediated condensation reaction (Scheme 1.3.2).

Scheme 1.3.2 Retrosynthetic Analysis of Xyloketal A (20): Phenylboronic Acid-Mediated Condensation Reaction

Unfortunately, when the requisite aldehyde 28 was employed in this reaction the compound proved to be unstable towards the reaction conditions. As such, this route could not be applied to complete the total synthesis of xyloketal A (20). However, a series of tris-2H-chromene analogues of this natural product were readily prepared via this route. The total synthesis of xyloketal A (20) was subsequently accomplished using a boron trifluoride diethyl etherate-promoted triple electrophilic aromatic substitution reaction using a hydroxymethyl dihydrofuran.18

In order to assess the feasibility of performing this phenylboronic acid-mediated condensation reaction with various α,β-unsaturated aldehydes, a model study was conducted to determine the optimal reaction conditions to prepare an unprecedented C₃-symmetric tris-2H-chromene. Pettigrew et al. were able to develop a concise method for the construction of C₃-symmetric tris-2H-chromenes using a simple model α,β-unsaturated aldehyde (senecialdehyde, 29) (4 equiv) and phloroglucinol (27) (1 equiv)
using phenylboronic acid (3 equiv) as a Lewis acid and propionic acid as a catalyst.19

This reaction was performed in benzene at reflux, with the azeotropic removal of water, to afford the \textit{tris}-2\textit{H}-chromene (30) in excellent yield (Scheme 1.3.3).

Scheme 1.3.3 Phenylboronic Acid-Mediated Reaction of Phloroglucinol (27) with Senecialdehyde (29)

Using this methodology, a variety of \textit{tris}-2\textit{H}-chromenes were prepared. Specifically, the \textit{tris}-2\textit{H}-chromene 32 was prepared from citral (31, \textit{E}:\textit{Z} = \textasciitilde 2.1) (4 equiv), phloroglucinol (27) (1 equiv), phenylboronic acid (3 equiv) and propionic acid (cat.) in benzene on heating at reflux with the azeotropic removal of water (Scheme 1.3.4). Interestingly, the chromene 32 has three pendant double bonds that are in a favourable position with the chromene carbon-carbon double bonds to potentially undergo a triple intramolecular \textit{[2+2]} cycloaddition reaction to afford the remarkable product 33. This cycloadduct would contain ten fused rings and twelve stereogenic centres which would be generated in a single step from the \textit{tris}-2\textit{H}-chromene 32.
Scheme 1.3.4 Proposed Triple Intramolecular [2+2] Cycloaddition Reaction of the tris-2H-Chromene (32)

Reagents and conditions: (a) Citral (31, 4 equiv, $E:Z = \sim 2:1$), PhB(OH)$_2$ (3 equiv), propionic acid (cat.), PhH, reflux, 4 h, 61%.

The inspiration for performing a triple intramolecular [2+2] cycloaddition reaction on the tris-2H-chromene 32 and the research project described in this thesis came from other intramolecular cycloaddition reactions that have been completed in the Wilson research group.20

1.4 Proposed Studies: Inter- and Intramolecular Cycloaddition Reactions of mono- and tris-2H-Chromenes

A number of compounds have been successfully prepared by means of intramolecular cycloaddition processes. Specifically, the synthesis of an artocarpol A analogue 35 was completed by Paduraru et al. by means of an intramolecular [2+2] cycloaddition reaction of the 2H-pyran 34 in moderate yield (45%) (Scheme 1.4.1).20
In addition, although not pursued in the Wilson research group, Jin et al. successfully converted daurichromenic acid (19) to rhododaurichromanic acid A and B (21 and 22) via an intramolecular [2+2] cycloaddition process. This photochemical process was performed in hexanes and afforded a mixture of rhododaurichromanic acid A and B (21 and 22) in 40% and 20% yields, respectively (Scheme 1.4.2). It was assumed that the trans C-11 – C-12 double bond of daurichromenic acid (19) was isomerized to the cis-isomer under the reaction conditions to afford rhododaurichromanic acid B (22).
Scheme 1.4.2 Intramolecular [2+2] Cycloaddition Reaction of Daurichromenic Acid (19)

The successful execution of various intramolecular [2+2] cycloaddition reactions of various 2H-chromenes led to the idea that a variety of inter- and intramolecular cycloaddition reactions could be performed on *tris*-2H-chromene analogues of phloroglucinol (27).

Thus, it was envisioned that a series of cycloaddition reactions, both inter- and intramolecular, could be investigated to determine the reactivity of the 2H-chromene carbon-carbon double bond. Specifically, these cycloaddition reactions could be performed on simple *mono*-2H-chromenes, which would aid in the characterization of the products from multiple cycloaddition reactions of the corresponding *tris*-2H-chromenes. The regio- and stereoselectivity of these single and multiple cycloaddition reactions would also be studied. Moreover, these reactions can be used to build complex polycyclic compounds that contain multiple stereogenic centres in a rapid and concise
manner. As such, these reactions could provide a means to prepare C_3-symmetric compounds that could serve as structural analogues of the biologically active natural product xyloketal A (20).

1.5 Thesis Overview

The goal of this research project was to perform multiple cycloaddition reactions on the C_3-symmetric tris-2H-chromene 30 to evaluate the reactivity of the 2H-chromene carbon-carbon double bond. Specifically, the regioselectivity and stereoselectivity of a series of cycloaddition reactions would be determined and used to prepare complex polycyclic ring systems in a direct manner. Towards these ends, simple mono-2H-chromenes were also investigated as model systems.

In Chapter 2 of this thesis, the synthesis of a series of mono-2H-chromenes is described. These mono-2H-chromenes were subjected to a series of [2+1], [2+2] and [2+4] intermolecular cycloaddition reactions.

In Chapter 3, the synthesis of a C_3-symmetric tris-2H-chromene is described. Subsequently, a series of [2+1], [2+2] and [2+4] intermolecular cycloaddition reactions were performed.

In Chapter 4, the synthesis of two functionalized mono-2H-chromenes is described. These chromenes were used as model systems for both intramolecular [2+2] and [2+4] cycloaddition reactions.

In Chapter 5, the synthesis of two functionalized C_3-symmetric tris-2H-chromenes is described. These chromenes were used to evaluate the feasibility of performing triple intermolecular [2+2] and [2+4] cycloaddition reactions.
In Chapter 6, a means to install a more reactive $2H$-chromene double bond is described and in Chapter 7, an outline of future research is presented together with an overall conclusion section on the research described in this thesis.

In the final chapter of this thesis, Chapter 8, the experimental procedures and full characterization data concerning all of the compounds discussed in this thesis are provided.
2 RESULTS AND DISCUSSION

Synthesis and Evaluation of mono-2H-Chromenes as Substrates for Intermolecular Cycloaddition Reactions

2.1 Introduction

In this chapter, the synthesis of a series of 2H-chromenes 36, 2 and 37 is described (Figure 2.1.1). We envisioned that these mono-2H-chromenes would serve as model substrates to evaluate a series of [2+1], [2+2] and [2+4] intermolecular cycloaddition reactions. This would allow us to determine the reactivity of the 2H-chromene carbon-carbon double bond as well as the regioselectivity of these cycloaddition processes. Additionally, the structural analysis of these cycloaddition reactions would assist in the determination of the molecular structures of the products formed from multiple cycloaddition reactions of tris-2H-chromenes.

![Figure 2.1.1 Molecular structures of mono-2H-chromenes (36, 2 and 37).](image)

The mono-2H-chromenes 2 and 37 were prepared because the electron donating effects of the methoxy groups closely resemble the electronic nature of the C_3-symmetric tris-2H-chromene 30. Additionally, the mono-2H-chromene 36 was prepared to represent the simplest 2H-chromene of this series of reaction substrates.
2.2 Preparation of mono-2H-Chromenes

A series of tris-2H-chromenes have been prepared by Pettigrew et al. using a phenylboronic acid-mediated condensation reaction from phloroglucinol (27) and an α,β-unsaturated aldehyde.19 Using these reaction conditions, the three mono-2H-chromenes 36, 2 and 37 were readily prepared from the corresponding phenols. In these cases, 3-methyl-but-2-enal (senecialdehyde 29) was used as the α,β-unsaturated aldehyde precursor as this would lead to the simplest 2,2-disubstituted 2H-chromenes that would be expected to be stable.21 Senecialdehyde (29) was prepared from the corresponding alcohol, 3-methyl-2-buten-1-ol, in a single step by oxidation with manganese dioxide following known literature procedures in good yield.21

The model chromenes were prepared using senecialdehyde (29) (1.3 – 1.5 equiv), the corresponding phenol (1 equiv), phenylboronic acid (1 equiv) and propionic acid (cat.) in benzene on heating at reflux with azeotropic removal of water from the reaction mixture (Scheme 2.2.1). The reaction of phenol (17) with senecialdehyde (29) afforded the mono-2H-chromene 36 in low yield, whereas the reactions of the two methoxy-substituted phenols 38 and 39 afforded the corresponding mono-2H-chromenes 2 and 37 in good yield, respectively. The additional methoxy groups around the benzene ring function to make this electrophilic aromatic substitution process more facile, resulting in a higher yield of the desired 2H-chromene products 2 and 37.22
Scheme 2.2.1 Synthesis of the \textit{mono-2H-Chromenes} (36, 2 and 37) from Senecialdehyde (29)

\[\text{Senecialdehyde (29)} \xrightarrow{a} \text{PhB(OH)}_2 \xrightarrow{b} \text{propionic acid (cat.)} \xrightarrow{c} \text{PhH, reflux, 21 h, 28\%;} \]

Reagents and conditions: (a) Senecialdehyde (29) (1.5 equiv), PhB(OH)$_2$ (1 equiv), propionic acid (cat.), PhH, reflux, 21 h, 28%; (b) senecialdehyde (29) (1.3 equiv), PhB(OH)$_2$ (1 equiv), propionic acid (cat.), PhH, reflux, 4 h, 75%; (c) senecialdehyde (29) (1.5 equiv), PhB(OH)$_2$ (1 equiv), propionic acid (cat.), PhH, reflux, 3 h, 81%.

The known \textit{mono-2H-chromenes} 36, 2 and 37 were all readily purified by flash chromatography. Interestingly, the 2\textit{H}-chromene 2 was prepared as a single regioisomer, as determined by analysis of the 1H NMR spectrum of the crude reaction mixture. The formation of this single product is likely due to decreased steric interactions at the C-6 position of the phenol 38 during the phenylboronic acid-mediated condensation reaction. The regiochemistry of this process was confirmed by examining the splitting pattern in the 1H NMR spectrum of the \textit{mono-2H-chromene} 2. In particular, the aromatic proton, H-5, of chromene 2 corresponded to a doublet at $\delta = 6.9$ ppm ($J = 8.2$ Hz) while the proton H-6, corresponded to a doublet of doublets located at $\delta = 6.41$
ppm ($J = 8.2, 2.3$ Hz). In addition, the aromatic proton $H-8$ corresponds to a doublet located at $\delta = 6.38$ ($J = 2.3$ Hz). This coupling pattern indicates that protons $H-5$ and $H-6$ are on adjacent carbon atoms.

During the preparation of the above mentioned chromenes, both of the methoxy substituted chromenes 2 and 37 were isolated as colourless oils in good yields where as the non-substituted chromene 36 was prepared as a yellow, gummy oil in low yield. Due to both the ease of preparation and handling of the two methoxy substituted chromenes 2 and 37, they were used as the substrates for the majority of the subsequent reactions.

2.3 Intermolecular [2+1] Cycloaddition Reactions

With a series of mono-2H-chromenes in hand, a series of intermolecular cycloaddition reactions could be investigated. The first set of cycloaddition reactions selected for study focused on a [2+1] cycloaddition process. Specifically, a series of epoxidation and cyclopropanation reactions were attempted that are described in the following section.

2.3.1 Epoxidation Reactions of mono-2H-Chromenes

The known epoxide 40 was prepared upon reaction of the mono-2H-chromene 36 with m-CPBA (41) according to literature procedures (Scheme 2.3.1).25
Scheme 2.3.1 Epoxidation Reaction of the mono-$2H$-chromene (36)

\[
\begin{array}{c}
\text{Me}, \text{Me} \\
\text{O} \\
36 \\
\end{array}
\rightarrow
\begin{array}{c}
\text{Me}, \text{Me} \\
\text{O} \\
\text{O} \\
40 \\
\end{array}
\]

Reagents and conditions: (a) \textit{m}-CPBA (41) (1 equiv), \textit{NaHCO}_3 (0.5 M), \textit{CH}_2\text{Cl}_2, 0 \text{°C} \text{ to room temperature, 48 h, 20%}.

The epoxide 40 was found to readily decompose on flash chromatography. Neutralizing the silica gel with triethylamine or using neutral alumina did not aid in the purification of the epoxide 40 by chromatographic methods. Therefore, isolation of the epoxide was accomplished by precipitation of by-products and impurities from a mixture of chloroform-hexanes. The precipitate was then removed by filtration and the resultant filtrate was concentrated \textit{in vacuo} to afford the epoxide 40 as a pale yellow oil.

The ^1H and ^{13}C NMR data was consistent with the data available for the known epoxide 40.26 Also, the mass spectrum (CI) had the expected M + H peak at 177 amu’s.

It has been stated by Bujons \textit{et al}. that the electron donating nature of the chromene oxygen atom renders the epoxide ring susceptible to ring opening processes.27 Specifically, when performing the epoxidation cycloaddition reaction with \textit{m}-CPBA (41) as the oxidant, the resultant \textit{m}-chlorobenzoic acid (42) or \textit{m}-CPBA (41) could then attack the corresponding epoxide ring, opening it to afford the substituted alcohol 44 (Scheme 2.3.2).
Scheme 2.3.2 Proposed Reaction of \textit{m}-Chlorobenzoic Acid (42) or \textit{m}-CPBA (41) with the Epoxide (43)

Due to the high reactivity of the epoxide towards nucleophiles, different epoxidation methods were investigated. A mild route towards epoxidation involving the \textit{in situ} generation of the oxidant dimethyldioxirane (45) has been discussed in a review by Murray.28 The advantage of this system is that an unreactive by-product of the oxidation procedure is acetone and therefore this represents a very mild means to affect an epoxidation reaction. Dimethyldioxirane (45) was generated \textit{in situ} from Oxone® (3 equiv) and acetone (3 equiv) in a basic solution as previously described by Shi (Scheme 2.3.3).26
Scheme 2.3.3 Attempted Epoxidation Reaction of the mono-2H-Chromenes (36 and 2) with Dimethyldioxirane (45)

Reagents and conditions: (a) Oxone® (3 equiv.), NaHCO₃ (12 equiv.), acetone, (n-Bu)₄NHSO₄ (cat.), CH₃CN/EDTA, 0°C to room temperature, 2.5 h; (b) Oxone® (3 equiv.), NaHCO₃ (12 equiv.), acetone, (n-Bu)₄NHSO₄ (cat.), CH₃CN/EDTA, 0°C to room temperature, 2.5 h.

Unfortunately, ¹H NMR analysis of the crude reaction mixtures did not display any signals characteristic of either epoxide. Since epoxidation of the chromenes 36 and 2 was unsuccessful, the use of 5,7-dimethoxy-2,2-dimethyl-2H-chromene 37 was not attempted because of the expected higher propensity for ring opening.

2.3.2 Cyclopropanation Reactions of mono-2H-Chromenes

To further investigate [2+1] cycloaddition reactions, a series of cyclopropanation reactions were conducted. In the first instance, cyclopropanation reactions of the mono-2H-chromenes were performed by generating a dihalocarbene via an alpha-elimination reaction of either chloroform or bromoform on treatment with an aqueous solution of sodium hydroxide.
The known cyclopropane 46 was prepared, in moderate yield, upon treatment of the \textit{mono-2H}-chromene 2 with chloroform, \textit{n}-tetrabutylammonium bromide (cat.) and an aqueous solution of sodium hydroxide (8 M) (Scheme 2.3.4).29

\textbf{Scheme 2.3.4} \textit{Dichlorocyclopropanation Reaction of the \textit{mono-2H}-Chromene (2)}

![Dichlorocyclopropanation Reaction of the \textit{mono-2H}-Chromene (2)](image)

Reagents and conditions: (a) CHCl\textsubscript{3}, NaOH (8 M), (\textit{n}-Bu\textsubscript{4})NBr (0.2 equiv), room temperature, 12 h, 52%.

The known cyclopropane 46 was purified by flash chromatography to afford a white powder. The melting point as well as the 1H and 13C NMR data were all in agreement with that previously reported.29 Moreover, the mass spectrum (CI) of the dichlorocyclopropane 46 displayed the expected molecular ion peaks for [M(2 x 35Cl) + H], [M(35Cl + 37Cl) + H] and [M(2 x 37Cl) + H] at 273, 275 and 277 amu’s, respectively. These signals occurred in a 9:6:2 ratio, which is in close agreement with calculated values.30

In addition, the \textit{2H}-chromene 2 was reacted with dibromocarbene (prepared from bromoform) to afford the dibromocyclopropane 47 (Scheme 2.3.5).

\textbf{Scheme 2.3.5} \textit{Dibromocyclopropanation Reaction of the \textit{mono-2H}-Chromene (2)}

![Dibromocyclopropanation Reaction of the \textit{mono-2H}-Chromene (2)](image)

Reagents and conditions: (a) CHBr\textsubscript{3}, NaOH (8 M), (\textit{n}-Bu\textsubscript{4})NBr (0.2 equiv), room temperature, 19 h, 34%.
The dibromocyclopropane 47 was readily purified by flash chromatography to afford a colourless solid. The 1H NMR spectrum of the dibromocyclopropane 47 was very similar to the dichlorocyclopropane 46. The doublets corresponding to the protons of the cyclopropane ring were located at $\delta = 2.2$ and 2.9 ppm ($J = 10.7$ Hz) with two sharp singlets corresponding to the two inequivalent methyl groups at $\delta = 1.2$ and 1.7 ppm. Additionally, the 13C NMR spectrum of the dibromocyclopropane 47 contained the thirteen carbon signals expected for this compound. The mass spectrum (Cl) of the dibromocyclopropane 47 displayed the expected molecular ion peaks for [M(2 x 79Br) + H], [M(79Br + 81Br) + H] and [M(2 x 81Br) + H] at 361, 363 and 365 amu’s, respectively. These signals occurred in a 1:2:1 ratio which is in agreement with those expected for a compound that contains two bromine atoms.30 Finally, elemental analysis was used to confirm both the purity and elemental composition of the dibromocyclopropane 47.

Interestingly, when the electron-rich dimethoxy-substituted $mono$-$2H$-chromene 37 was subjected to the above reaction conditions no corresponding dihalocyclopropanation products were isolated (Scheme 2.3.6). The reason for this remains unclear, however, it is likely that the additional methoxy groups decrease the electrophilic nature of the $2H$-chromene double bond.
Scheme 2.3.6 Attempted Preparation of Dichlorocyclopropane (48) and Dibromocyclopropane (49) from the mono-2H-Chromene (37)

Reagents and conditions: (a) CHCl₃, NaOH (8 M), (n-Bu)₄NBr (0.2 equiv), room temperature, 22 h; (b) CHBr₃, NaOH (8 M), (n-Bu)₄NBr (0.2 equiv), room temperature, 22 h.

Additional cyclopropanation reactions were also investigated. Specifically, the synthesis of the cyclopropane 50 was attempted under a variety of reaction conditions as specified below (Scheme 2.3.7). Of note, only the single methoxy-substituted 2H-chromene 2 was used as this was the only chromene that had been shown to undergo an intermolecular [2+1] cyclopropanation reaction.

Scheme 2.3.7 Attempted Cyclopropanation of the mono-2H-Chromene (2)

Reagents and conditions: (a) See below: Table 2.3.1.
Table 2.3.1 Reagents and Conditions Corresponding to Scheme 2.3.7

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₂N₂ (2 equiv), PdCl₂ (5 mol %), Et₂O, 0 °C to room temperature, 24 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>2</td>
<td>CH₂N₂ (20 equiv) (dropwise addition), Pd(OAc)₂ (10 mol%), Et₂O, 0 °C to room temperature, 60 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>3</td>
<td>CH₂N₂ (20 equiv) (rapid addition), Pd(OAc)₂ (10 mol%), Et₂O, 0 °C to room temperature, 60 h</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

In these reactions, diazomethane was generated *in situ* from *N*-methyl-"N"-nitroso urea and an aqueous solution of potassium hydroxide *via* a known procedure. ³¹

Unfortunately, it was found that none of the reaction conditions stated above afforded the cyclopropane ⁵⁰ (Table 2.3.1). ³²

In addition, a copper(I)-catalyzed cyclopropanation reaction involving both the *mono-2H*-chromenes ² and ³⁷ with ethyl diazoacetate was performed. Unfortunately, no reaction products were observed and starting material was recovered. Interestingly, this reaction proceeded quite well on a *tris-2H*-chromene derivative (See: Section 3.3.2).

2.4 Intermolecular [2+2] Cycloaddition Reactions

A series of intermolecular [2+2] cycloaddition reactions of the *mono-2H*-chromenes ² and ³⁷ are described in the following sections.

2.4.1 Ketene Cycloaddition Reactions of *mono-2H*-Chromenes

An efficient way to prepare [2+2] cycloadducts of alkenes is *via* ketene cycloaddition reactions. The cycloadducts ⁵¹ and ⁵² were prepared from the *mono-2H*-chromenes ² and ³⁷ on reaction of dichloroketene, which was generated *in situ* from trichloroacetyl chloride (3 equiv) and zinc (4.5 equiv) in tetrahydrofuran according to known procedures (Scheme 2.4.1). ³³
Scheme 2.4.1 Synthesis of the Cycloadducts (51 and 52) from the *mono-2H-Chromenes* (2 and 37)

Reagents and conditions: (a) Cl$_3$CCOCl (3 equiv), Zn (4.5 equiv), THF, 0 °C to room temperature, 26 h, 26% (38% brsm); (b) Cl$_3$CCOCl (3 equiv), Zn (4.5 equiv), THF, 0 °C to room temperature, 2 h, 47%.

Both of the cycloadducts 51 and 52 were readily purified by flash chromatography to afford the corresponding products as white solids in moderate yields.

The structure of the cycloadducts 51 and 52 were both confirmed on analysis of the 1H and 13C NMR spectra and full characterization data. The cycloadduct 52 had no doublets associated with the chromene protons of the starting material and a new set of doublets at $\delta = 4.0$ and 4.3 ppm ($J = 10.8$ Hz) indicate the formation of the cyclobutane ring. Furthermore, the 13C NMR spectrum contains the fifteen expected carbon signals and notably the signal at $\delta = 192$ ppm is characteristic of a cyclobutanone carbonyl group.34 In addition, the mass spectrum (CI) of both cycloadducts 51 and 52 gave the expected masses in the expected isotopic ratios consistent for compounds that contain two chlorine atoms.

The addition of dichloroketene to the 2H-chromene double bond can occur in two different ways to afford the two possible regioisomeric products 52 and 52a (Figure
2.4.1). However, it was expected that the ketene cycloaddition would afford the cycloadduct 52.34

![Figure 2.4.1 The two regiochemical isomers of the [2+2] ketene cycloaddition reactions of the mono-2H-chromene (37).](image)

The expected regiochemistry of the ketene addition to the 2H-chromene 37 was confirmed by extensive analysis of 2D NMR spectra. Based on the spectral data from the HMBC spectrum, the ketene addition occurred as shown below (Figure 2.4.2).

![Figure 2.4.2 Diagnostic correlations observed in the HMBC spectrum of the cyclobutane (52).](image)

The key HMBC correlations that proved the regiochemistry of this cycloaddition process focussed on the assignment of protons H-2a and H-8b. H-8b has strong correlations to multiple aromatic ring carbons as well as a strong correlation to C-1. H-2a has a strong correlation to the quaternary carbon, C-3, as well as to both of the methyl groups (Figure 2.4.2).

Similarly, the structure of the cycloadduct 51 was confirmed by both ¹H and ¹³C NMR analysis. Of note, the ¹H NMR spectrum displayed a two hydrogen multiplet at δ = 4.1 ppm. This multiplet is due to the overlap of the cyclobutane protons and as such the
regiochemistry of this cycloaddition reaction could not be confirmed. However, it is likely that the ketene cycloaddition regiochemistry would be that shown in the cycloadduct 52.

After successfully generating the cyclobutanes 51 and 52, an additional cycloaddition reaction involving the ketene (dihydroketene) was attempted. Initially, 2-chloroacetic acid was converted to the corresponding acid chloride on reaction with oxalyl chloride and \(N,N\)-dimethylformamide (cat.) in dichloromethane. The resultant 2-chloroacetyl chloride (53, 5 equiv) was then added to a suspension of the \(2H\)-chromene 2 (1 equiv) and zinc powder (7.5 equiv) in tetrahydrofuran (Scheme 2.4.2). Unfortunately, no reaction products were observed and starting material was observed on analysis of the \(^1\)H NMR spectrum of the crude reaction mixture.

Scheme 2.4.2 Attempted \([2+2]\) Cycloaddition Reaction of the mono-\(2H\)-Chromene (2)

Reagents and conditions: (a) Chloroacetyl chloride 53 (5 equiv), Zn (7.5 equiv), THF, 0 °C to room temperature, 48 h.

2.4.2 Tetracyanoethylene Cycloaddition Reactions of mono-\(2H\)-Chromenes

Further \([2+2]\) cycloaddition processes that were attempted involved the use of tetracyanoethylene as a reaction substrate. Tetracyanoethylene is an electrophilic olefin that readily undergoes \([2+2]\) cycloadditions with nucleophilic alkenes, such as the \(2H\)-chromene carbon-carbon double bond.\(^{35}\) The synthesis of the tetracyanocyclobutanes 55 and 56 involved the addition of tetracyanoethylene (1.5 equiv) to a solution of either
mono-2H-chromene 2 or 37 in acetonitrile. On heating at reflux, the cyclobutanes 55 and 56 were isolated (Scheme 2.4.3). During the course of these reactions it was observed that the addition of tetracyanoethylene to the acetonitrile solution of the 2H-chromene resulted in a deep blue colour. Upon heating, the reaction mixture changed from a deep blue colour to a brown colour, indicating that the reaction was complete. This is presumably due to the formation of a charge-transfer complex prior to cycloaddition. TLC analysis indicated that both 2H-chromenes 2 or 37 were completely consumed when this colour change occurred.

Scheme 2.4.3 Synthesis of Tetracyanocyclobutanes (55 and 56) from the mono-2H-Chromenes (2 and 37)

Reagents and conditions: (a) Tetracyanoethylene (1.5 equiv), CH₃CN, reflux, 20 h, 29%; (b) tetracyanoethylene (1.5 equiv), CH₃CN, reflux, 30 min, 33%.

Both of the tetracyanocyclobutanes 55 and 56 were purified by flash chromatography. However, it was noted that some decomposition occurs on silica gel.

The ¹H NMR spectrum of the cyclobutane 55 contained a pair of doublets located at δ = 4.1 and 4.5 ppm (J = 9.6 Hz) that indicated the formation of the cyclobutane ring. In addition, the ¹³C NMR spectrum contains the eighteen carbon signals expected for this
compound. The 1H NMR spectrum of the cyclobutane 56 has a pair of doublets located at $\delta = 3.6$ and 4.3 ppm ($J = 9.4$ Hz). Moreover, the 13C NMR spectrum contains the nineteen carbon signals expected for this compound. The IR spectrum of both compounds displayed characteristic nitrile stretching frequencies at 2248 cm$^{-1}$. Finally, both the purity and elemental composition of the cyclobutanes 55 and 56 were verified by elemental analysis.

Having successfully completed two classes of [2+2] cycloaddition reactions, a third type of cycloaddition reaction was attempted involving the highly reactive species, benzyne.

2.4.3 Benzyne Cycloaddition Reactions of mono-2H-Chromenes

Benzyne is a highly reactive species which has been shown to readily undergo [2+2] cycloaddition reactions. Attempts at benzyne formation focussed on a known procedure involving oxidative addition of magnesium and subsequent elimination to form the benzyne intermediate.36 Thus, a solution of o-fluorobromobenzene (57) in tetrahydrofuran was added via syringe pump over the course of 3 hours to a suspension of mono-2H-chromene 2 and magnesium turnings (1.1 equiv) in tetrahydrofuran at room temperature (Scheme 2.4.4). Upon completion of the addition process the mixture was brought to reflux for 2 hours, however, no reaction products were observed.
Scheme 2.4.4 Attempted Synthesis of Benzocyclobutane (58) from the *mono-2H-*
Chromene (2) and 2-Fluorobromobenzene (57)

Reagents and conditions: (a) Mg (1.1 equiv), THF, 60 °C to reflux, 2 h.

As no reaction products were observed efforts were then focussed on performing an intermolecular [2+4] cycloaddition reaction. As such, the highly reactive species, *o-*quinonedimethane (59) was evaluated as a possible route towards an intermolecular [2+4] cycloaddition reaction.

2.5 Intermolecular [2+4] Cycloaddition Reactions of *mono-2H-*Chromenes

Attempts to perform an intermolecular [2+4] cycloaddition have focussed on the generation and reaction of *o-*quinonedimethane (59) (Figure 2.5.1). Less reactive dienes, such as cyclopentadiene, were also later used in cycloaddition reactions of the *tris-2H-*chromene 30 (See: Section 3.5).

Figure 2.5.1 Molecular structure of *o-*quinonedimethane (59).

Towards these ends, Durst and co-workers have shown that the known sultine 62 affords *o-*quinonedimethane upon heating in benzene. The sultine 62 was prepared on reaction of *α,α'-dibromo-oxylene* (60) with Rongalite (61) in *N,N*-dimethylformamide in moderate yield (Scheme 2.5.1).}

33
Scheme 2.5.1 Synthesis of the Sultine (62) from \(\alpha,\alpha'-\)Dibromo-\(o\)-xylene (60)

\[
\begin{array}{c}
\text{60} \\
\text{Br} \quad \text{Br} \\
\text{61} \\
\text{OH} \quad \text{SO}_2\text{Na} \\
\text{62} \\
\end{array}
\]

Reagents and conditions: (a) Rongalite (61) (2 equiv), \((n\text{-Bu})_4\text{NBr}\) (0.2 equiv), DMF, 0 °C to room temperature, 20 h, 54%.

The spectral data for the sultine 62 was in agreement with the previously reported data. With the requisite sultine 62 in hand, the Diels-Alder cycloaddition was attempted. In each case, the sultine 62 (1 equiv) was reacted with a mono-2\(H\)-chromene in benzene and heated at reflux (Scheme 2.5.2). All three mono-2\(H\)-chromenes were used as substrates in this reaction.

Scheme 2.5.2 Attempted Synthesis of Benzocyclohexanes (63, 64 and 65) from the mono-2\(H\)-Chromenes (36, 2 and 37)

\[
\begin{array}{c}
\text{62} \\
\text{36, 2, 37} \\
\end{array}
\]

Reagents and conditions: (a) PhH, reflux, 24 h.

Unfortunately, no products were isolated from these reactions. Observations made by TLC analysis indicate that the sultine 62 was consumed on heating at reflux for 24 hours. This suggests that the \(o\)-quinonedimethane was generated but it did not undergo an intermolecular Diels-Alder cycloaddition reaction with the 2\(H\)-chromene carbon-carbon double bond.
2.6 Conclusions

Using methodology developed in the Wilson research group, three \textit{mono-2H-}
cromenes 36, 2 and 37 were efficiently prepared to study a series of intermolecular
cycloaddition reactions. Of these intermolecular cycloaddition reactions, an epoxidation
reaction was shown to proceed on the unsubstituted 2\textit{H-}chromene 36, whereas the
methoxy-substituted 2\textit{H-}chromene 2 did not afford a stable epoxide that could be isolated
or characterized. Dichloro- and dibromocarbene were shown to readily react with the
\textit{mono-2H-}chromene 2 to afford the corresponding cyclopropane adducts. Dichloroketene
and tetracyanoethylene [2+2] cycloaddition reactions were shown to proceed with both
\textit{mono-2H-}chromenes 2 and 37. However, the [2+2] cycloadducts from the reaction with
benzyne were unsuccessful. Efforts to affect a [2+4] cycloaddition with \textit{o-}
quinoinedimethane (59) were also unsuccessful. The results from this preliminary study
provided a basis to the multiple intermolecular cycloadduct processes to a \textit{tris-2H-}
cromene which are described in the following chapter.
3 RESULTS AND DISCUSSION

Intermolecular Cycloaddition Reactions of tris-2H-Chromenes

3.1 Introduction

In this chapter, preparation of the known tris-2H-chromene 30 is described using the phenylboronic acid-mediated condensation reaction of senecialdehyde (29) with phloroglucinol (27). This will afford a C3-symmetric substrate in order to study various multiple cycloaddition reactions. It was envisioned that a series of [2+1], [2+2] and [2+4] cycloaddition reactions could be performed. This would allow for the regio- and stereoselectivity of these multiple cycloaddition reactions to be determined and provide a rapid, modular and concise synthesis of complex polycyclic ring systems. Moreover, the adducts from these triple cycloaddition reactions could represent C3-symmetric structural analogues of xyloketal A (20) whose biological activities could be subsequently determined. Of note, the C3-symmetry of the tris-2H-chromene 30 greatly simplifies the stereochemical outcome of subsequent multiple cycloaddition reactions. In terms of the facial selectivity of these transformations only two possible diastereoisomeric products can arise. Specifically, three cycloaddition reactions can occur from the same face of the molecule or two cycloaddition reactions can occur on the same face, while the other cycloaddition reaction occurs from the opposite face.

3.2 Synthesis of the tris-2H-Chromene (30)

To investigate both the regioselectivity and stereoselectivity of multiple intermolecular cycloaddition reactions, the tris-2H-chromene 30 was prepared upon mixing senecialdehyde (29) (4 equiv), phloroglucinol (27) (1 equiv), phenylboronic acid
(3 equiv) and propionic acid (cat.) and heating in benzene at reflux with azeotropic removal of water (Scheme 3.2.1). The spectral data for this compound was identical to the data previously reported.5

Scheme 3.2.1 Synthesis of the tris-2H-Chromene (30) from Senecialdehyde (29) and Phloroglucinol (27)

a Senecialdehyde (29) (4 equiv), PhB(OH)\textsubscript{2} (3 equiv), propionic acid (cat.), PhH, reflux, 2 h, 61%.

3.3 **Intermolecular [2+1] Cycloaddition Reactions**

With the requisite tris-2H-chromene 30 in hand, a series of [2+1] cycloaddition reactions were performed and are discussed in the following sections.

3.3.1 **Epoxidation Reactions of the tris-2H-Chromene (30)**

The epoxidation reaction of the mono-2H-chromene 36 was shown to be successful (See: Section 2.3.1). Thus, an identical approach was taken to prepare the desired tris-epoxide 66 from the tris-2H-chromene 30. The reaction was conducted in two different ways. The first reaction involved using \textit{m}-CPBA (41) (4 equiv) without a buffer and the second reaction involved the use of \textit{m}-CPBA (41) (4 equiv) with sodium bicarbonate acting as the buffer (Scheme 3.3.1). In either case, no epoxidation products were observed on analysis of the 1H NMR spectrum of the crude reaction mixtures.
Scheme 3.3.1 Attempted Synthesis of the tris-Epoxide (66) from the tris-2H-Chromene (30)

Reagents and conditions: (a) m-CPBA (41) (4 equiv), CH$_2$Cl$_2$, 0 °C to room temperature, 24 h; (b) m-CPBA (41) (4 equiv), NaHCO$_3$ (0.5 M), CH$_2$Cl$_2$, 0 °C to room temperature, 24 h.

As mentioned earlier, Bujons et al. has established that when electron donating groups are present on the chromene the resultant epoxide is unstable. Therefore, a more mild procedure was attempted to prepare the desired tris-epoxide 66. Dimethyldioxirane (45) was described in Chapter 2 as an alternative method to m-CPBA (41) for generating epoxides. Dimethyldioxirane (45) was generated in situ on reaction of Oxone® with acetone in an acetonitrile / potassium carbonate solution. Initial attempts indicated that the reaction was likely forming a mono-epoxide, based on analysis of the 1H NMR spectrum of the crude reaction product and the mass spectral data. However, the compound proved to be unstable to flash chromatography, despite buffering the silica gel with triethylamine or with the use of neutral alumina as the chromatographic medium. Due to the unstable nature of these epoxides, the full characterization of the compound could not be performed. Thus, attention was turned to the study of other [2+1] cycloaddition reactions.

3.3.2 Cyclopropanation Reactions of the tris-2H-Chromene (30)

Several cyclopropanation reactions have been shown to readily occur on the mono-2H-chromenes, therefore these reactions were attempted on the tris-2H-chromene
The tris-dichlorocyclopropanes 67 and 68 were prepared, in good yield, upon addition of chloroform to a mixture of the tris-2H-chromene 30, n-tetrabutylammonium bromide (cat.) and an aqueous solution of sodium hydroxide (8 M) at room temperature (Scheme 3.3.2).

Scheme 3.3.2 Synthesis of the tris-Dichlorocyclopropanes (67 and 68)

Reagents and conditions: (a) CHCl₃, NaOH (8 M), (n-Bu)₄NBr (0.3 equiv), room temperature, 21 h, 11% (67) and 55% (68).

The reaction proceeded well at room temperature, affording a mixture of both the C₃-symmetric and unsymmetrical cyclopropanes 67 and 68, respectively. Analysis of the ¹H NMR spectrum of the crude reaction mixture indicated that the diastereoselectivity of the reaction was ~3:2, in favour of the unsymmetric stereoisomer 68 based on integration of the methyl signals. The two diastereoisomers 67 and 68 were separated by flash chromatography.
The structures of these cyclopropanes were confirmed by spectroscopic analysis. The 1H NMR spectrum clearly indicated the C_3-symmetry of cyclopropane 67. Specifically, a single pair of doublets located at $\delta = 2.0$ and 3.0 ppm ($J = 11.0$ Hz) correspond to the sets of protons at positions H-1a and H-9c, respectively, on the cyclopropane ring. In addition, two sharp singlets, located at $\delta = 1.3$ and 1.7 ppm, represented the two sets inequivalent methyl groups (Figure 3.3.1).

![Diagram of cyclopropane structure with NMR spectrum]

Figure 3.3.1 1H NMR (600 MHz, CDCl$_3$) of the *tris*-dichlorocyclopropane (67).

The two inequivalent hydrogen atoms of the three cyclopropane rings were assigned by analysis of the HMBC spectrum (Figure 3.3.2).
Figure 3.3.2 Diagnostic correlations observed in the HMBC spectrum of the *tris*-dichlorocyclopropane (67).

The proton H-1a was assigned based on HMBC correlations to the methyl groups, as well as to the quaternary carbon, C-2. As such, the proton H-9c was assigned based on HMBC correlations to the aromatic carbon, C-3a.

The cyclopropane 67 contains twenty-four individual carbon atoms, however, only eight carbon signals were observed in the 13C NMR spectrum, further confirming the C_{3}-symmetry of this compound (Figure 3.3.3).
Figure 3.3.3 13C NMR (151 MHz, CDCl$_3$) of the tris-dichlorocyclopropane (67).

The 1H NMR spectrum of the unsymmetrical diastereoisomer 68 contains six doublets ranging between $\delta = 2.1 – 3.1$ ppm that correspond to the six unique protons of the cyclopropane rings. Additionally, there are four peaks, between $\delta = 1.25 – 1.72$ ppm, that integrate for a total of eighteen hydrogen atoms, which confirm that there are six inequivalent methyl groups in the molecule (Figure 3.3.4). Of note, the apparent singlet located at $\delta = 1.25$ ppm integrates for nine hydrogen atoms and can be attributed to three methyl groups that cannot be distinguished by 1H NMR at 600 MHz.
The 13C NMR spectrum of the cycloadduct 68 displayed twenty-two of the expected twenty-four signals providing further indication that this is the unsymmetric isomer.

Since these compounds contain six chlorine atoms, a characteristic mass spectrum would be expected based on the isotopic abundance of chlorine. In the following table the expected isotopic ratio and the experimentally determined isotopic ratio for the unsymmetrical diastereoisomer 68 are displayed (Table 3.3.1). Similar data was also collected for the symmetrical diastereoisomer 67.
Table 3.3.1 Expected and Experimental Isotopic Ratios of the *tris*-Dichlorocyclopropane (68)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Expected (%)</th>
<th>Found (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>571 [M (6 x ^35Cl) + H]</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>573 [M (5 x ^35Cl + ^37Cl) + H]</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>575 [M (4 x ^35Cl + 2 x ^37Cl) + H]</td>
<td>88</td>
<td>86</td>
</tr>
<tr>
<td>577 [M (3 x ^35Cl + 3 x ^37Cl) + H]</td>
<td>42</td>
<td>38</td>
</tr>
<tr>
<td>579 [M (2 x ^35Cl + 4 x ^37Cl) + H]</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

The experimental values listed above were in very good agreement with the expected values for a compound with the molecular formula C_{24}H_{24}Cl_{6}O_{3.30} Finally, elemental analysis was used to confirm both the purity and elemental composition of both *tris*-dichlorocyclopropane diastereoisomers 67 and 68.

Having successfully made the *tris*-dichlorocyclopropanes 67 and 68 the corresponding dibromocyclopropanes 69 and 70 were prepared. This involved the addition of bromoform to a mixture of the *tris*-2H-chromene 30, *n*-tetrabutylammonium bromide (cat.) and an aqueous solution of sodium hydroxide (8 M) at room temperature. The requisite dibromocyclopropanes 69 and 70 were separated by flash chromatography and isolated in moderate yield. (Scheme 3.3.3).
Scheme 3.3.3 Synthesis of the *tris*-Dibromocyclopropanes (69 and 70)

Reagents and conditions: (a) CHBr₃, NaOH (8 M), (n-Bu)₄NBr (0.3 equiv), room temperature, 19 h, 19% (69) and 12% (70).

Analysis of the ¹H NMR spectrum of the crude reaction mixture indicated that the diastereoselectivity of the reaction was ~3:2, in favour of the unsymmetric stereoisomer 70 based on integration of the methyl signals.

The ¹H and ¹³C NMR spectra of the dibromocyclopropanes 69 and 70 were quite similar to those recorded for the dichlorocyclopropanes 67 and 68. Additionally, the *tris*-dibromocyclopropanes 69 and 70 displayed the expected isotopic patterns in the high resolution mass spectrum for a *hexa*-substituted bromine compound with a molecular formula C₂₄H₂₄Br₆O₃ (Table 3.3.2).³⁰
Table 3.3.2 Expected and Experimental Isotopic Ratios of the tris-Cyclopropane (70)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Expected (%)</th>
<th>Found (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{834} [M (6 \times 79\text{Br}) + H]$</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>$^{836} [M (5 \times 79\text{Br}) + ^{81}\text{Br} + H]$</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>$^{838} [M (4 \times 79\text{Br} + 2 \times 81\text{Br}) + H]$</td>
<td>76</td>
<td>69</td>
</tr>
<tr>
<td>$^{840} [M (3 \times 79\text{Br} + 3 \times 81\text{Br}) + H]$</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$^{842} [M (2 \times 79\text{Br} + 4 \times 81\text{Br}) + H]$</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>$^{844} [M (79\text{Br} + 5 \times 81\text{Br}) + H]$</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>$^{846} [M (6 \times 81\text{Br}) + H]$</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Of note, the three individual cyclopropanation reactions using dichlorocarbene and dibromocarbene on this tris-2H-chromene proceeded in good yield. The overall yield of the triple cycloaddition of dichlorocarbene was 66%, which corresponds to an average yield of 87% per individual cyclopropanation reaction. The dibromocyclopropane was isolated in an overall yield of 31%. This corresponds to an average yield of 68% per cyclopropanation reaction. Of additional and important note, the products of these reactions contain seven fused rings and six stereogenic centres and were prepared in two steps from simple and inexpensive commercially available starting materials.

Cyclopropanation reactions of the tris-2H-chromene 30 using the simplest carbene, dihydrocarbene, were also attempted. Although a variety of methods were attempted to affect this transformation, none were successful (Scheme 3.3.4).
Scheme 3.3.4 Attempted Cyclopropanation Reactions of the *tris-2H*-Chromene (30)

Reagents and conditions: See below: Table 3.3.3.

Table 3.3.3 Reagents and Conditions Corresponding to Scheme 3.3.4

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₂N₂ (10 equiv), Pd(OAc)₂ (8 mol %), Et₂O, 0 °C to room temperature, 23 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>2</td>
<td>CH₂N₂ (18 equiv), Pd(OAc)₂ (10 mol%), Et₂O, 0 °C to room temperature, 20 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>3</td>
<td>Zn/Cu, I₂, CH₂I₂, Et₂O, reflux, 48 h</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

In the first two instances, diazomethane was generated *in situ* from *N*-methyl-*N*-nitroso urea and reacted with palladium acetate in diethyl ether in the presence of the *tris-2H*-chromene 30 (entries 1 & 2). Unfortunately, no reaction products were observed and the starting material was recovered. A Simmons-Smith reaction was also performed using standard procedures (entry 3), however, no reaction products were observed. Thus, attention was turned to other carbenes to prepare other cyclopropane adducts.

According to a procedure described by Lyle *et al.*, carbenes can be generated *in situ* by reaction of a diazo compound with a copper(I) salt in the presence of a bipyridyl ligand to form a cyclopropane product.
Initial studies involved the use of ethyl diazoacetate (73) as a diazo source and copper(I) triflate which was generated in situ from copper(II) triflate on reduction with phenylhydrazine (Scheme 3.3.5).

Scheme 3.3.5 Synthesis of the mono-, bis- and tris-Cyclopropanes (74, 75 and 76) from the tris-2H-Chromene (30)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Equiv (73)</th>
<th>Addition Time (h)</th>
<th>Yield (%) 74</th>
<th>Yield (%) 75</th>
<th>Yield (%) 76</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>18</td>
<td>22 (53 brsm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>12</td>
<td>4 (37 brsm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>9</td>
<td>16</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>24</td>
<td>6</td>
<td>26</td>
<td>22</td>
</tr>
</tbody>
</table>

(*) General reaction conditions: Cu(OTf)$_2$ (1.25 mol%), 2,2'-bipyridyl (1.5 mol%), PhNHNH$_2$ (1.5 mol%), CH$_2$Cl$_2$, room temperature.

All of the cyclopropanation reactions were carried out in dichloromethane at room temperature. The equivalents of ethyl diazoacetate (73), along with the addition
times, were varied in order to optimize the yields of the mono-, bis- and tris-
cycloadducts. Initially, the reaction was performed using ethyl diazoacetate (73) (3
equiv) which was added over a 20 hour period. However, no products were isolated from
this reaction (entry 1). Thus, ethyl diazoacetate (73) (6 equiv) was used which was added
over an eighteen hour period and this resulted in the isolation of the mono-cyclopropane
74 as a single diastereoisomer in 22% yield (53% brsm, entry 2). It was thought that
further increasing the number of equivalents of ethyl diazoacetate (73) would afford the
bis- and tris-cycloadducts. Therefore, ethyl diazoacetate (73) (9 equiv) was added over
the course of 12 hours, however, the bis- and tris-cycloadducts were not isolated and only
the mono-cycloadduct 74 was isolated in a 4% (37% brsm) yield (entry 3). Ethyl
diazoacetate (73) (15 equiv) was subsequently added over 9 hours and this afforded both
the mono- 74 as well as the bis-cyclopropane 75 cycloadducts in 16 and 40% yields,
respectively (entry 4). Finally, ethyl diazoacetate (73) (15 equiv) was added over the
course of 24 hours to afford the mono-, bis- and tris-cyclopropane adducts 74, 75 and 76
with 6, 26 and 22% yields, respectively (entry 5).

The three cyclopropanation products 74, 75 and 76 were separated by flash
chromatography. The 1H NMR spectrum of the mono-cyclopropane 74 had two sets of
doublets at \(\delta = \sim 5.5 \) and 6.6 ppm corresponding to the four remaining chromene protons.
In addition, a doublet of doublets, which was located at \(\delta = 2.8 \) ppm \((J = 9.3, 3.8 \) Hz),
corresponded to the proton \(H-11a \). In addition, a multiplet located at \(\delta = 2.0-2.2 \) ppm
corresponded to the protons \(H-10a \) and \(H-11 \). The assignment of these protons was based
on extensive analysis of the HMQC and HMBC spectra. The 13C NMR spectrum also
contained the expected twenty-five carbon signals for this compound. Additionally, the
mass spectrum (CI) showed the expected M + H peak at 411 amu’s. Finally, elemental analysis was used to confirm both the purity and elemental composition of the mono-cyclopropane 74.

As mentioned before, the mono-cycloadduct 74 was formed as a single diastereoisomer. 1D-nOe analysis of the mono-cyclopropane 74 indicated that the three cyclopropane protons were all on the same face of the molecule. The key nOe contacts are shown below (Figure 3.3.5). Of note, the ester functionality is projected over the centre of the chromene-core, which is also indicated from nOe contacts of the methylene (CH₂) group to the methyl groups of the three chromenes.

![Figure 3.3.5 Diagnostic nOe contacts of the mono-cyclopropane (74).](image)

The structure of the bis-cycloadduct 75 was confirmed by a variety of spectroscopic methods. The 1H NMR spectrum of this compound displayed a pair of doublets, which were located at δ = 5.4 and 6.5 ppm (J = 9.9 Hz), which corresponded to the two remaining chromene protons. Moreover, two multiplets were located at δ = ~2.7 and ~2.8 ppm corresponded to either protons H-6a or H-10a. Additionally, a large multiplet located between δ = 2.0-2.1 ppm represented the remaining four protons around the cyclopropane rings. The bis-cyclopropane 75 is formed as a mixture of two diastereoisomers (dr = 4:3), as measured by integration of the multiplets at δ = 2.7 and 2.8 ppm in the 1H NMR spectrum of the crude reaction mixture. Furthermore, the 13C
NMR spectrum contained fifty six carbon signals, indicating that it was a mixture of two compounds. The elemental composition of these compounds were confirmed by high resolution mass spectrometry. A mass of 497.2534 amu’s was calculated and a mass of 497.2538 amu’s was experimentally found.

The structure of the tris-cyclopropane 76 was confirmed by analysis of the 1H NMR spectrum. Notably, no proton signals were observed in the low field region, indicating that all of the chromene double bonds had reacted. In addition, a series of multiplets were located at the expected locations, notably $\delta = \sim 2.0$ and ~ 2.7 ppm, corresponding to the protons around the cyclopropane rings. High resolution mass spectrometry further confirmed the elemental composition of this compound. A mass of 583.2902 amu’s was calculated and a mass of 583.2897 amu’s was recorded.

Unfortunately, the 1H NMR spectrum of the crude reaction mixture was too complex to accurately define the peaks corresponding to the mono-, bis- and tris-cyclopropanes (Table 3.3.4, entry 5). However, on isolation of the bis-cyclopropane 75 by flash chromatography, the two diastereoisomers could be distinguished as there are two sets of peaks located at $\delta = \sim 2.7$ ppm, as well as 12 singlets located between $\delta = 1.1$-1.6 ppm. Integration of these signals indicates that a 5:3 ratio of diastereoisomeric bis-cyclopropanes were formed in this latter reaction. However, the stereochemistry of these cycloadducts could not be determined. Similarly, the tris-cyclopropane 76 was formed as a complex mixture of stereoisomers as indicated by 1H NMR spectroscopy, which were inseparable by flash chromatography.
3.3.2.1 Synthesis and Evaluation of Additional Carbene Precursors

The successful use of a copper(I)-catalyzed cyclopropanation reaction led us to prepare a series of additional diazocompounds to further evaluate this reaction. These carbene precursors were chosen as they are symmetrical molecules and as such, the number of stereoisomers formed in the multiple cycloaddition processes would be reduced.

Initially, \(p \)-toluenesulphonyl azide (77) was prepared from \(p \)-toluenesulphonyl chloride (78) on reaction with sodium azide (1 equiv) in a mixture of acetone and water, which afforded the known azide 77 in excellent yield.\(^{41}\) With the azide source in hand, preparation of the diazo compounds was performed using standard procedures.\(^{42}\) This involved the slow addition of triethylamine (1.1 equiv) to a mixture of \(p \)-toluenesulphonyl azide (77) (1 equiv) with the requisite diester or dione (1 equiv) in acetonitrile. Diethyl diazomalonate (82) was isolated in low yield (28%) whereas dimethyl diazomalonate (80) and diazo-1,3-cyclohexadione (84) were isolated in good yield (Scheme 3.3.6). The spectral data was in agreement to that previously reported.\(^{42-44}\)
Scheme 3.3.6 Synthesis of the Stabilized Diazo Compounds (80, 82 and 84)

Reagents and conditions: (a) TsN₃ (77) (1 equiv), triethylamine (1.1 equiv), CH₃CN, room temperature, 17 h, 77%; (b) TsN₃ (77) (1 equiv), triethylamine (1.1 equiv), CH₃CN, room temperature, 17 h, 28%; (c) TsN₃ (77) (1 equiv), triethylamine (1.1 equiv), CH₃CN, room temperature, 14 h, 77%.

With the diazo compounds in hand, the copper(I)-catalyzed cyclopropanation reactions were performed using similar procedures to those described previously (Scheme 3.3.7). Unfortunately, no cycloaddition reaction products were isolated from these reactions.
Scheme 3.3.7 Attempted Synthesis of the tris-Cyclopropanes (85, 86 and 87) from the tris-2H-Chromene (30)

Reagents and conditions: (a) Diazo compound (80) (6 equiv), Cu(OTf)₂ (1.25 mol%), 2,2'-bipyridine (1.5 mol%), PhNHNH₂ (1.5 mol%), CH₂Cl₂, room temperature, 36 h; (b) Diazo compound (82) (6 equiv), Cu(OTf)₂ (1.25 mol%), 2,2'-bipyridine (1.5 mol%), PhNHNH₂ (1.5 mol%), CH₂Cl₂, room temperature, 36 h; (c) Diazo compound (84) (9 equiv), Cu(OTf)₂ (1.25 mol%), 2,2'-bipyridine (1.5 mol%), PhNHNH₂ (1.5 mol%), CH₂Cl₂, room temperature, 27 h.

Having established that a series of [2+1] cycloaddition reactions of the tris-2H-chromene 30 with various carbenes were possible, attention was turned to the study of a series of multiple [2+2] cycloadditions of the tris-2H-chromene 30.
3.4 Intermolecular [2+2] Cycloaddition Reactions

Having established that intermolecular [2+2] cycloaddition reactions of mono-2H-chromenes are possible (See: Section 2.4), these reactions were applied to the tris-2H-chromene 30 and are discussed in the following section.

3.4.1 Ketene Cycloaddition Reactions of the tris-2H-Chromene (30)

Using the procedures described earlier for the generation of dichloroketene (See: Section 2.4.1), both the mono-cycloadduct 88 and bis-cycloadduct 89 were prepared from the corresponding tris-2H-chromene 30 under a variety of conditions. We have shown that by varying both the equivalents of trichloroacetyl chloride and the reaction temperature that either the mono-cycloadduct 88 or bis-cycloadduct 89 can be formed preferentially (Scheme 3.4.1). General reaction conditions are outlined below with the addition times of the trichloroacetyl chloride being ~1-2 minutes (Table 3.4.1).
Scheme 3.4.1 Synthesis of the mono- and bis-Cycloadducts (88 and 89) from the tris-2H-Chromene (30)

![Scheme 3.4.1 Diagram]

Reagents and conditions: (a) See below: Table 3.4.1.

Table 3.4.1 Reagents and Conditions Corresponding to Scheme 3.4.1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Yield (%) 88</th>
<th>Yield (%) 89</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cl₃CCOCl (9 equiv), Zn (13.5 equiv), THF, -78 °C to room temperature, 23 h</td>
<td>27 (38 brsm)</td>
<td>5 (8 brsm)</td>
</tr>
<tr>
<td>2</td>
<td>Cl₃CCOCl (9 equiv), Zn (13.5 equiv), THF, 0 °C to room temperature, 18 h</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Cl₃CCOCl (9 equiv), Zn (13.5 equiv), THF, room temperature, 15 h</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Cl₃CCOCl (15 equiv), Zn (22.5 equiv), THF, 0 °C to room temperature, 1 h</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Cl₃CCOCl (15 equiv), Zn (22.5 equiv), THF, room temperature, 21 h</td>
<td>5</td>
<td>29</td>
</tr>
</tbody>
</table>

The initial reactions involved the use of trichloroacetyl chloride (9 equiv) and zinc powder (13.5 equiv) with addition temperatures ranging from -78 °C to room temperature (entries 1-3). The mono-cycloadduct 88 was the primary product formed using 9 equivalents of trichloroacetyl chloride, which indicated that more equivalents of trichloroacetyl chloride would be required for further addition processes to occur. The
number of equivalents of trichloroacetyl chloride and zinc powder were increased to 15 and 22.5, respectively. When the reaction was conducted at 0 °C, both the mono-cycloadduct 88 and the bis-cycloadduct 89 were prepared in nearly equivalent yields (entry 4). However, when the reaction was repeated at room temperature the bis-cycloadduct 89 was formed as the major product (entry 5).

Both the mono-cycloadduct 88 and the bis-cycloadduct 89 were readily separated by flash chromatography. The 1H NMR spectrum of the mono-cycloadduct 88 displayed two pairs of doublets at $\delta = \sim 5.4$ and ~ 6.5 ppm ($J = \sim 9.9$ Hz) which corresponded to the two remaining chromene double bonds. A pair of doublets representing the cyclobutane protons were located at $\delta = 3.9$ and 4.3 ppm ($J = 11.0$ Hz). In addition, the 13C NMR spectrum displayed the twenty-three individual carbon signals expected for this compound. Furthermore, the mass spectrum (CI) displayed the expected molecular ion peaks of $[M(2 \times ^{37}\text{Cl}) + H]$ and $[M(2 \times ^{35}\text{Cl}) + H]$ at 440 and 436 amu’s, respectively. Of note, both the 1H and 13C NMR spectra indicated that this product was formed as a single regioisomer. The regiochemistry of this cycloaddition process was confirmed on analysis of the HMQC and HMBC spectra. Proton H-10a has a strong correlation to the quaternary carbon (C-10) as well as to the carbonyl carbon (C-11). Additionally, the proton H-12a has a strong correlation to the dichloro carbon (C-12) as well as strong correlations to carbons on the aromatic core (Figure 3.4.1).
The 1H NMR spectrum of the bis-cycloadduct 89 has a single pair of doublets at $\delta = 5.4$ and 6.5 ppm ($J = 10.0$ Hz) which correspond to the two remaining chromene protons. Additionally, two pairs of doublets, located at $\delta = ~4.0$ and ~4.3 ppm ($J = ~11$ Hz), corresponded to the pairs of protons on the two cyclobutane rings. The 13C NMR spectrum further confirmed that this product is a bis-addition as the twenty-five carbon signals expected were present. Furthermore, the mass spectrum (CI) has the expected molecular ion peak [M(4 x 37Cl) + H] at 553 amu’s. In addition, this cycloadduct was formed as a single regioisomer as shown by the 1H and 13C NMR spectra, although the relative stereochemistry could not be determined.

Conversion of the mono-cycloadduct 88 to the tris-cycloadduct 90 was attempted by resubjecting the mono-cycloadduct 88 to the reaction conditions. In this case, only the bis-cycloadduct 89 was afforded. The conversion of the mono-cycloadduct 88 to the bis-cycloadduct 89 was accomplished in moderate yield on using trichloroacetyl chloride (10 equiv) and zinc powder (15 equiv) in tetrahydrofuran from 0 °C to room temperature (Scheme 3.4.2).
Scheme 3.4.2 Synthesis of the *bis*-Cycloadduct (89) from the *mono*-Cycloadduct (88)

Reagents and conditions: (a) Cl₃CCOCl (10 equiv), Zn (15 equiv), THF, 0°C to room temperature, 15 min, 40%.

During the preparation of both the *mono*- and *bis*-cycloadducts, the ketene was generated quickly. It was subsequently found that by generating the ketene slowly, a *tris*-cycloadduct 90 could be readily prepared. This involved the addition of a solution of trichloroacetyl chloride (9 equiv) in tetrahydrofuran via syringe pump over the course of twelve hours to a suspension containing zinc powder (13.5 equiv) and the *tris*-2H-chromene 30 in tetrahydrofuran at room temperature. This afforded the *tris*-cycloadduct 90 in good yield (Scheme 3.4.3). Of note, the three individual cycloaddition reactions proceeded in excellent yield. The overall yield of the cycloaddition process was 60% which corresponds to an average yield of 85% per individual cycloaddition reaction.

Scheme 3.4.3 Synthesis of the *tris*-Cycloadduct (90) from the *tris*-2H-Chromene (30)

Reagents and conditions: (a) Cl₃CCOCl (9 equiv), Zn (13.5 equiv), THF, 0°C to room temperature, 12 h dropwise addition, 60%.
The synthesis of the *tris*-cycloadduct 90 was confirmed by a variety of spectroscopic methods. Analysis of the 1H NMR spectrum revealed that no chromene protons were present, however, three pairs of doublets, located between $\delta = 3-4$ ppm, indicated that the chromene double bonds had reacted to form the three cyclobutane rings (Figure 3.4.2). In addition, the presence of six methyl signals indicates that this is the unsymmetrical isomer 90.

![Figure 3.4.2](image)

Figure 3.4.2 1H NMR (600 MHz, CDCl$_3$) of the *tris*-cycloadduct (90).

Interestingly, the stereochemical outcome for the *tris*-cycloadduct 90 was aided by the C_3-symmetry of the starting material. The 1H NMR spectrum of the *tris*-cycloadduct 90 would be exceedingly simple if all six cyclobutane protons were on the same face of the molecule. However, the 1H NMR spectrum shows six distinct doublets...
indicating that the cycloaddition reactions occurred with two cycloadditions on the same face while the third cycloaddition occurred from the opposite face. This is the only non-symmetrical arrangement possible for this particular triple cycloaddition process.

The 13C NMR spectrum displayed twenty-five carbon signals, which is two signals less than the twenty-seven expected and it can be concluded that certain peaks overlap. In addition, the presence of three distinct carbonyl peaks ranging from $\delta = 192$-194 ppm further confirms that the unsymmetrical isomer 90 was prepared.

The MALDI-TOF displayed the following isotopic pattern for the molecular ion (Table 3.4.2).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Expected (%)</th>
<th>Found (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>654 [M (6 x 35Cl)]</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>656 [M (5 x 35Cl + 37Cl)]</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>658 [M (4 x 35Cl + 2 x 37Cl)]</td>
<td>88</td>
<td>85</td>
</tr>
</tbody>
</table>

Finally, elemental analysis was used to confirm both the purity and elemental composition of the $tris$-cycloadduct 90.

Having successfully prepared the $mono$-, bis- and $tris$-cycloadducts using dichloroketene, investigations were then turned to additional ketene substrates in order to prepare further [2+2] cycloadducts. A variety of attempts were made to generate other ketenes. Initial attempts focussed on the generation of dimethyl ketene by the reaction of 2-methylpropionyl chloride (91) under a variety of conditions (Scheme 3.4.4).
Scheme 3.4.4 Attempted Synthesis of the tris-Cycloadduct (92) from the tris-2H-Chromene (30)

![Scheme 3.4.4](image)

Reagents and conditions: (a) See below: Table 3.4.3.

Table 3.4.3 Reagents and Conditions Corresponding to Scheme 3.4.4

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acyl chloride 91 (9 equiv), Et₃N (9 equiv), THF, 0 °C to room temperature, 22 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>2</td>
<td>Acyl chloride 91 (9 equiv), Et₃N (13.5 equiv), Et₂O, room temperature, sonication, 30 min</td>
<td>No reaction</td>
</tr>
<tr>
<td>3</td>
<td>Acyl chloride 91 (9 equiv), LDA (10 equiv), Et₂O, -78 °C to room temperature, 21 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>4</td>
<td>Acyl chloride 91 (4.5 equiv), NaH (4.8 equiv), THF, -78 °C to room temperature, 20 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>5</td>
<td>Acyl chloride 91 (10 equiv), NaH (15 equiv), Et₂O, 0 °C to room temperature, 36 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>6</td>
<td>Acyl chloride 91 (10 equiv), n-BuLi (11 equiv), Et₂O, -78 °C to room temperature, 36 h</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

Initially, the acid chloride 91 was reacted with triethylamine to remove the alpha proton and generate dimethyl ketene, but with no success (entry 1). Under similar conditions, the number of equivalents of triethylamine were increased from 1 to 1.5 but again no cycloadducts were isolated (entry 2). Other bases were also employed in this reaction. Specifically, lithium diisopropylamide (entry 3), sodium hydride (entries 4 & 5) and n-butyllithium (entry 6) were used, however, no cycloadducts were isolated. Thus, a different [2+2] cycloaddition process was explored to further determine the reactivity of the tris-2H-chromene substrate.
3.4.2 Tetracyanoethylene Cycloaddition Reactions of the tris-2H-Chromene (30)

Intermolecular [2+2] cycloaddition reactions involving tetracyanoethylene were shown to proceed well on mono-2H-chromenes (See: Section 2.4.2). Using the same methodology, tetracyanoethylene (4 equiv) was added to a solution of the tris-2H-chromene 30 in acetonitrile and the reaction was heated at reflux for five minutes. This afforded the mono-tetracyanoethylene cycloadduct 93 (Scheme 3.4.5).

Scheme 3.4.5 Synthesis of the mono-Tetracyanoethylene Cycloadduct (93) from the tris-2H-Chromene (30)

Reagents and conditions: (a) Tetracyanoethylene (4 equiv), MeCN, reflux, 5 min, 29%.

Of note, on addition of tetracyanoethylene to a solution of the tris-2H-chromene 30 in acetonitrile, the reaction mixture developed a deep blue colour. After five minutes of being heated at reflux, the reaction mixture then turned a deep brown colour. TLC analysis indicated that when this colour change occurred that the tris-2H-chromene 30 had been consumed.

The molecular structure of the mono-cycloadduct 93 was confirmed by a variety of spectroscopic methods. Analysis of the 1H NMR spectrum displayed two pairs of doublets corresponding to the four remaining chromene protons as well as a pair of doublets, located at $\delta = 3.6$ and 4.3 ppm ($J = 9.7$ Hz), which corresponded to the cyclobutane protons. Moreover, the 13C NMR spectrum displayed the twenty-seven
signals that were expected for this compound. Additionally, the IR spectrum has a weak absorption peak at 2250 cm\(^{-1}\), which is characteristic of cyano groups.

The \textit{bis}-cycloadduct 94 was prepared, in moderate yield, via similar methodology. In this instance, the \textit{tris}-2\textit{H}-chromene 30 was reacted with tetracyanoethylene (9 equiv) in acetonitrile heated at reflux for 24 hours (Scheme 3.4.6).

\textbf{Scheme 3.4.6} \hspace{1cm} \textbf{Synthesis of the \textit{bis}-Tetracyanoethylene Cycloadduct (94) from the \textit{tris}-2\textit{H}-Chromene (30)}

\begin{center}
\includegraphics[width=0.8\textwidth]{Scheme3.png}
\end{center}

Reagents and conditions: (a) Tetracyanoethylene (4 equiv), MeCN, reflux, 24 h, 42%.

The \(^1\text{H}\) NMR spectrum of the \textit{bis}-cycloadduct 94 contained a single pair of doublets representing the two remaining chromene protons as well as two pairs of doublets which correspond to the protons of the two cyclobutane rings located at \(\delta = \sim 4.1\) and \(\sim 4.5\) ppm. In addition, the \textit{bis}-cycloadduct 94 was formed as a single diastereoisomer. Although the stereochemistry of the \textit{bis}-cycloadduct 94 could not be determined, it is likely formed as shown above (Scheme 3.4.6). This assumption is based on the steric argument that the initial cycloaddition would prevent further cycloaddition reactions from occurring on the same face of the molecule, therefore the second cycloaddition would occur from the opposite face. In addition, the \(^{13}\text{C}\) NMR spectrum displayed thirty-two carbon signals, which is one less signal than the thirty-three expected. The reason for this is attributed to the overlap of two similar carbon signals. Moreover, high resolution mass spectrometry was used to confirm the mass and the
elemental composition of this cycloadduct. Unfortunately, no triple cycloaddition products were isolated from these reactions. Having successfully performed a series of intermolecular [2+2] cycloaddition reactions, our attention was turned towards performing an intermolecular [2+4] cycloaddition reaction.

Initial attempts to affect a [2+4] cycloaddition involved mixing the tris-2H-chromene 30 with freshly distilled cyclopentadiene, which would serve as the diene component. This involved heating freshly distilled cyclopentadiene (10 equiv) at reflux with the tris-2H-chromene 30 in toluene for 6 days (Scheme 3.5.1). Unfortunately, no reaction products were observed from this reaction.

Scheme 3.5.1 Attempted Diels-Alder Cycloaddition Reaction of Cyclopentadiene with the tris-2H-Chromene (30)

Reagents and conditions: (a) Cyclopentadiene (10 equiv), PhMe, reflux, 6 days.

In order to perform an intermolecular [2+4] cycloaddition reaction, it was concluded that a more reactive diene was required. As mentioned earlier (See: Section 2.4.1), the sultine 62 is a compound that can be readily prepared and that can serve as a precursor to the highly reactive diene, o-quinonedimethane (59).
Thus, the sultine 62 (3 equiv) was heated with the tris-2H-chromene 30 in benzene at reflux for 48 hours. Unfortunately, this did not result in the formation of the desired cycloadduct 96 (Scheme 3.5.2).

Scheme 3.5.2 Attempted Synthesis of tris-Cyclohexabenzene (96) from the tris-2H-Chromene (30)

![Scheme 3.5.2]

Reagents and conditions: (a) Sultine 62 (3 equiv), PhH, reflux, 48 h.

This lack of reactivity likely indicates that the 2H-chromene double bond will need to be activated in order to engage in a Diels-Alder cycloaddition reaction.

3.6 Conclusions

It has been shown that the tris-2H-chromene 30 can undergo a variety of intermolecular cycloaddition reactions. Multiple intermolecular [2+1] cycloaddition reactions of both dichloro- and dibromocarbenes afforded both C_3-symmetric and unsymmetric cyclopropane adducts. Additionally, cyclopropanation reactions of ester-stabilized carbenes, generated in situ via a copper(I)-catalyst, were shown to afford mono-, bis- and tris-cycloadducts. Multiple [2+2] cycloaddition reactions also proved to be quite successful. Ketene cycloaddition reactions of the tris-2H-chromene 30 afforded the corresponding mono-, bis- and tris-cycloadducts. Additionally, [2+2] cycloadditions
involving tetracyanoethylene were shown to afford both a *mono*- and *bis*-cycloadduct. Finally, [2+4] cycloaddition reactions were attempted. However, even when the highly reactive diene, *o*-quinonedimethane, was employed no reactions occurred. Therefore, in order to facilitate a [2+4] cycloaddition reaction, the 2\text{H}-chromene carbon-carbon double bond needs to be activated with an electron withdrawing group. Of note, these multiple cycloaddition processes afforded complex polycyclic compounds containing upwards of 7 fused rings and 9 stereogenic centres generated from readily available starting materials in two synthetic operations.
4 RESULTS AND DISCUSSION

Intramolecular Cycloaddition Reactions of mono-2H-Chromenes

4.1 Introduction

In this chapter, the synthesis of two functionalized mono-2H-chromenes are described. These compounds were prepared to investigate the feasibility of intramolecular [2+2] and [2+4] cycloaddition reactions of the 2H-chromene carbon-carbon double bond (Figure 4.1.1). It was envisioned that the two model 2H-chromenes 97 and 98 could be prepared, using the phenylboronic acid-mediated condensation reaction, from the corresponding phenol and α,β-unsaturated aldehydes.

![Figure 4.1.1 Molecular structures of the mono-2H-chromenes (97 and 98).](image)

4.2 Intramolecular [2+2] Cycloaddition Reactions of the mono-2H-Chromene (97)

4.2.1 Synthesis of the mono-2H-Chromene (97)

In order to investigate an intramolecular [2+2] cycloaddition reaction, the requisite 2H-chromene 97 was prepared in excellent yield via the phenylboronic acid-mediated condensation reaction of commercially available citral (31) (E:Z = ~2:1) (1.3 equiv) and 3,5-dimethoxy phenol (39) (1 equiv) (Scheme 4.2.1).
Scheme 4.2.1 Synthesis of the mono-2H-Chromene (97) from Citral (31) and 3,5-Dimethoxyphenol (39)

Reagents and conditions: (a) Citral (31, 1.3 equiv, $E:Z = \sim 2:1$), PhB(OH)$_2$ (1 equiv), propionic acid (cat.), PhH, reflux, 2.5 h, 94%.

The structure of the 2H-chromene 97 was determined by a variety of spectroscopic methods. The 1H NMR spectrum contained characteristic signals for the chromene protons located at $\delta = 5.4$ and 6.6 ppm ($J = 9.8$ Hz). The 13C NMR spectrum displayed the expected eighteen signals for this compound. Moreover, the mass spectrum (CI) displayed the expected M + H signal at 289 amu’s. Satisfactory elemental analysis results could not be obtained for this compound, however, high-resolution mass spectrometry was used to confirm the elemental composition of this compound.

4.2.2 Intramolecular [2+2] Cycloaddition Reaction of the mono-2H-Chromene (97)

With the functionalized 2H-chromene 97 in hand, the [2+2] cycloaddition reaction of the 2H-chromene was carried out under a variety of reaction conditions (Scheme 4.2.2).
Scheme 4.2.2 Synthesis of the Cyclobutane (99) from the *mono-2H*-Chromene (97)

Reagents and conditions: (a) See below: Table 4.2.1.

Table 4.2.1 Reagents and Conditions Corresponding to Scheme 4.2.2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph₂(CO), PhH, 2 h</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>Acetone, 24 h</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>PhH, 12 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>4</td>
<td>Hexanes, 12 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>5</td>
<td>Acetone, t-BuOH (1:1), 2.5 h</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

For all experiments, the irradiation source used was a Hanovia 450 Watt medium pressure mercury vapour lamp. In addition, all reactions were degassed by bubbling dry nitrogen gas through the reaction mixture over the course of ~25 minutes. A benzene solution containing the 2*H*-chromene 97 and a sensitizer [benzophenone (1 equiv)], was irradiated in a quartz reaction vessel to afford the cyclobutane 99 in good yield (entry 1).

In addition, a solution of the 2*H*-chromene 97 in acetone was irradiated in a quartz reaction vessel to afford the cyclobutane 99 in moderate yield (entry 2). When either benzene or hexanes were used (entries 3 & 4), without a sensitizer, no reaction products were observed. Thus, a photosensitizer is required to elicit the desired cycloaddition
reaction. Finally, the use of an acetone:1-butanol mixture also resulted in no reaction products being observed (entry 5).46

The known cyclobutane 99 was readily purified by flash chromatography to afford a white solid. The melting point of the cyclobutane 99 (104-106 °C) is in close agreement with the previously reported literature value for this compound.46

The structure of cyclobutane 99 was verified by extensive 1D and 2D NMR spectral analysis. The 1H NMR spectrum of the crude reaction mixture indicated that the reaction had gone to completion because the two doublets from the chromene protons at δ = 5.4 and 6.6 ppm were absent and a new set of peaks corresponding to the cyclobutane protons of compound 99 were present (Figure 4.2.1).
Figure 4.2.1 1H NMR (600 MHz, CDCl₃) of the cyclobutane (99).

Characterization of the cyclobutane 99 began with the highest upfield signal, the singlet at $\delta = 0.7$ ppm, which corresponded to one of the methyl groups. Additionally, the two other methyl substituents gave sharp singlets at $\delta = 1.3$ and 1.4 ppm. The singlets at 1.3 and 1.4 ppm were assigned to Me-1a and Me-4, respectively, based on nOe contacts of cyclobutane 99, using H-8b as a characteristic signal (Figure 4.2.2). H-8b was assigned to the doublet at $\delta = 3.0$ ppm based on observed 1H-1H COSY correlations and chemical shift (Figure 4.2.3). The observed nOe contacts of Me-1a were to H-1a and H-8b. The observed nOe contacts of H-8c were to H-1a, H-8b and Me-4. Additionally, Me-1b had nOe contacts to Me-1a and H-3β. These stereochemical assignments indicate
that all three protons around the cyclobutane ring are on the same face of this molecule. These stereochemical assignments are consistent for 4,5,6 fused rings of this nature.

Figure 4.2.2 Selected nOe contacts for the cyclobutane (99).

Further analysis of the 1H-1H COSY spectrum reveals couplings between the protons of the four and five membered rings (Figure 4.2.3).
Figure 4.2.3 1H-1H COSY (600 MHz, CDCl₃) of the cyclobutane (99).

A coupling between protons H-8b and H-8c ($J = 9.6$ Hz) was observed. Additionally, coupling between protons H-8c and proton H-1a was observed ($J = 7.4$ Hz). Moreover, coupling between proton H-1a and proton H-2α was observed. Thus, all protons around the cyclobutane ring have been assigned. On analysis of the HSQC spectrum of cyclobutane 99 it was possible to assign the protons on carbons C-2 and C-3. The protons H-2α and H-2β were found to belong to the multiplet located at $\delta = 1.56$-1.69 ppm. The HSQC spectrum displayed both proton signals located at $\delta = 1.58$ and 1.68 ppm as belonging to C-2. Additionally, the HSQC spectrum displayed the proton signals located at $\delta = 1.64$ and 1.97 ppm were found to belong to C-3.
Having established that an intramolecular [2+2] cycloaddition reaction is possible, studies were undertaken to prepare and evaluate a functionalized mono-2H-chromene for an intramolecular [2+4] cycloaddition reaction.

In order to evaluate the plausibility of an intramolecular [2+4] cycloaddition reaction, a furan moiety was selected as the diene component due to its synthetic ease.

4.3.1 Synthesis of the mono-2H-Chromene (98)

The \(\alpha,\beta\)-unsaturated aldehyde 106 is needed to prepare the novel mono-2H-chromene 98. The aldehyde 106 was easily prepared via standard methodology from inexpensive starting materials.

Preparation of the aldehyde 106 began with the addition of furfural (100) to a mixture of acetone (101) (1 equiv) and water at room temperature and to this reaction mixture was added an aqueous solution of sodium hydroxide (8 M). The resultant mixture was allowed to stir for twenty-three hours, which afforded the known \(\alpha,\beta\)-unsaturated ketone 102 in moderate yield.\(^4^7\) This compound was then subjected to standard hydrogenation reaction conditions to afford the ketone 103 in good yield.\(^4^8\) A Horner-Wadsworth-Emmons reaction of ketone 103 and trimethyl phosphonoacetate (1.3 equiv) afforded the \(\alpha,\beta\)-unsaturated ester 104 in excellent yield. This ester was then reduced with lithium aluminium hydride (1.1 equiv) to afford the allylic alcohol 105 in excellent yield. This alcohol was subsequently oxidized with manganese dioxide to
afford the α,β-unsaturated aldehyde 106 in good yield (Scheme 4.3.1). This aldehyde 106 was prepared in five steps with an overall yield of 18%.

Scheme 4.3.1 Synthesis of the α,β-Unsaturated Aldehyde (106) from Furfural (100) and Acetone (101)

Reagents and conditions: (a) NaOH, H2O, 23 h, 57 %; (b) H2, Pd/C, EtOAc, room temperature, 17 h, 69 %; (c) Trimethyl phosphonoacetate, NaH, THF, room temperature, 1 h then ketone 103, reflux, 24 h, 84 % (E:Z = ~3:1); (d) LiAlH4, Et2O, 0°C to room temperature, 90 min, 85 % (E:Z = ~3:1); (e) MnO2, CH2Cl2, room temperature, 14.5 h, 65 % (E:Z = ~3:1).

The ester 104, the alcohol 105 and the aldehyde 106 were all formed as a mixture of isomers (E:Z ratio = ~3:1) that were not readily separated. The E:Z ratio of the isomers was measured using the area of integration of the methyl signals for each compound. Both the ester 104 and the alcohol 105 were new compounds and were fully characterized by spectroscopic methods as well as by elemental analysis.

The structure of the aldehyde 106 was confirmed by a variety of spectroscopic methods. Analysis of the 1H NMR spectrum showed that the aldehyde proton was split by the vinylic proton H-2, affording two doublets at δ = 10.0 and 5.9 ppm (J = 8.0 Hz), respectively. The expected number of carbon signals for the aldehyde 106 was ten but
analysis of the 13C NMR spectrum displayed twenty carbon signals, indicating a mixture of two isomers. In addition, the mass spectrum (CI) of the aldehyde 106 displayed the expected M + H signal at 165 amu’s. Finally, elemental analysis was used to confirm both the elemental composition and the purity of this compound.

With the α,β-unsaturated aldehyde 106 in hand, the phenylboronic acid-mediated condensation reaction was performed. The mono-$2H$-chromene 98 was prepared, in moderate yield, upon reaction of the aldehyde 106 (1.3 equiv) with 3,5-dimethoxyphenol (39) (1 equiv), phenylboronic acid (1 equiv) and propionic acid (cat.) in benzene heated at reflux with the azeotropically removal of water (Scheme 4.3.2).

Scheme 4.3.2 Synthesis of the mono-$2H$-Chromene (98) from the Aldehyde (106) and 3,5-Dimethoxyphenol (39)

![Scheme 4.3.2](attachment:image.png)

Reagents and conditions: (a) Aldehyde 106 (1.3 equiv), PhB(OH)$_2$ (1 equiv), propionic acid (cat.), PhH, reflux, 4 h, 41%.

The mono-$2H$-chromene 98 was readily purified by flash chromatography and isolated as a colourless oil. Analysis of the 1H NMR spectrum showed the presence of the pair of characteristic $2H$-chromene double bond protons located at $\delta = 5.4$ and 6.6 ppm ($J = 10$ Hz). Additionally, the 13C NMR spectrum displayed the expected eighteen carbon signals for this compound. Moreover, the mass spectrum (CI) contained the expected M + H peak located at 301 amu’s, which further confirmed the molecular
structure. Finally, elemental analysis of the 2H-chromene 98 confirmed both the elemental composition and the purity of the compound.

4.3.2 Intramolecular [2+4] Cycloaddition Reaction of the mono-2H-Chromene (98)

With the Diels-Alder precursor in hand, the intramolecular [2+4] cycloaddition reaction of this compound was explored. Using standard literature procedures, the 2H-chromene 98 was heated in toluene at different temperatures, in a sealed tube, to affect a [2+4] cycloaddition reaction (Scheme 4.3.3).49

Scheme 4.3.3 Attempted Synthesis of the Diels-Alder Cycloadduct (107) from the mono-2H-Chromene (98)

Reagents and conditions: (a) See below: Table 4.3.1.

Table 4.3.1 Reagents and Conditions Corresponding to Scheme 4.3.3

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhMe, 135 °C, 20 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>2</td>
<td>PhMe, 220 °C, 43 h</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

Unfortunately, no reaction products were isolated, even at elevated temperatures.

4.4 Conclusions

The mono-2H-chromene 97, derived from citral (31) and 3,5-dimethoxy phenol (39), was prepared to evaluate an intramolecular [2+2] cycloaddition reaction. This
chromene was shown to readily cyclize under two sets of photochemical conditions to afford the cyclobutane 99. Thus, it has been established that an intramolecular [2+2] cycloaddition is possible on a 2H-chromene carbon-carbon double bond. Therefore, the possibility exists for this type of cycloaddition reaction on a C₃-symmetric tris-2H-chromene. In addition, as a means to study the intramolecular [2+4] cycloaddition reaction, the mono-2H-chromene 98 was required. In order to prepare the desired chromene 98, the α,β-unsaturated aldehyde 106 first needed to be prepared. Using readily available starting materials the aldehyde 106 was prepared in five steps in an overall yield of 18%. Having prepared the requisite aldehyde, the mono-2H-chromene 98 was readily prepared, however, it was found that this particular system does not undergo the required cycloaddition reaction. In order to affect this type of intramolecular process it will be necessary to activate the 2H-chromene carbon-carbon double bond or a more reactive diene may be required.
5 RESULTS AND DISCUSSION

Intramolecular Cycloaddition Reactions of tris-2H-Chromenes

5.1 Introduction

In this chapter, the synthesis of two functionalized C_3-symmetric tris-2H-chromenes is described in which an alkene and a diene moiety are tethered to the chromene core for subsequent triple intramolecular [2+2] and [2+4] cycloaddition reactions. If successful, these reactions would generate large, polycyclic ring systems that contain up to thirteen fused rings and fifteen stereogenic centres.

It was envisioned that the known tris-2H-chromene 32, prepared from citral (31) and phloroglucinol (27), could undergo an intramolecular [2+2] cycloaddition reaction. Intramolecular [2+2] cycloaddition reactions performed on the mono-2H-chromene 97 were previously demonstrated (See: Section 4.2.2). Therefore, application of this methodology towards the C_3-symmetric tris-2H-chromene was planned. Additionally, a new C_3-symmetric tris-2H-chromene 108, prepared from the α,β-unsaturated aldehyde 106, was made to investigate a triple intramolecular [2+4] cycloaddition reaction (Figure 5.1.1).
Figure 5.1.1 Molecular structure of the *tris-2H*-chromene (108).

5.2 Triple Intramolecular [2+2] Cycloaddition Reaction of the *tris-2H*-Chromene (32)

5.2.1 Synthesis of the *tris-2H*-Chromene (32)

The known *tris-2H*-chromene 32 was prepared according to the procedure previously described by Pettigrew et al. Thus, commercially available citral (31, \(E:Z \approx 2:1\)) (4 equiv) and phloroglucinol (27) (1 equiv) were mixed with phenylboronic acid (3 equiv) and propionic acid (cat.) in benzene and heated at reflux to afford the known *tris-2H*-chromene 32 in good yield (Scheme 5.2.1). Interestingly, only the symmetric diastereoisomer (all *cis*) of the *tris-2H*-chromene 32 was formed in this reaction. The spectroscopic data for this *tris-2H*-chromene 32 was identical to that previously reported.
Scheme 5.2.1 Synthesis of the tris-2H-Chromene (32) from Citral (31) and Phloroglucinol (27)

\[
\begin{array}{c}
\text{Me} & \text{Me} & \text{C} = \text{O} \\
\text{Me} & \text{Me} \\
 & \\
\text{OH} & \text{OH} & \text{PhBr} \\
\text{Me} & \text{Me} & \text{Me} \\
\end{array}
\]

Reagents and conditions: (a) Citral (31, 4 equiv, \(E:Z = \sim 2:1\)), PhB(OH)\(_2\) (3 equiv), propionic acid (cat.), PhH, reflux, 4 h, 57%.

5.2.2 Attempted Triple Intramolecular [2+2] Cycloaddition Reaction of the tris-2H-Chromene (32)

Earlier, it was shown that the intramolecular [2+2] cycloaddition readily occurred on a functionalized mono-2H-chromene (See: Section 4.2.2). The cycloaddition reaction proceeded in benzene with benzophenone as the sensitizer or in acetone. Using these conditions, the triple intramolecular [2+2] cycloaddition reaction of the tris-2H-chromene 32 was attempted (Scheme 5.2.2).

Scheme 5.2.2 Attempted [2+2] Cycloaddition Reaction of tris-2H-Chromene (32)

\[
\begin{array}{c}
\text{Me} & \text{Me} & \text{Me} \\
\end{array}
\]

Reagents and conditions: (a) See below: Table 5.2.1.
Table 5.2.1 Reagents and Conditions Corresponding to Scheme 5.2.2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph₂(CO), PhH, 22 h</td>
<td>Decomposition</td>
</tr>
<tr>
<td>2</td>
<td>Acetone, 24 h</td>
<td>Complex Mixture</td>
</tr>
</tbody>
</table>

For all reactions, the irradiation source used was a Hanovia 450 Watt medium pressure mercury vapour lamp. All reaction mixtures were purged of oxygen by bubbling dry nitrogen gas through them for ~25 minutes. Unfortunately under these conditions, decomposition or a complex mixture of products formed from which it was not possible to isolate cycloadducts (entries 1 & 2).

However, based on results obtained from the mono-2H-chromene intramolecular [2+2] cycloaddition, the ¹H NMR spectrum of the crude reaction mixture revealed evidence of cyclobutane formation. The highest upfield signal is a singlet that corresponded to a methyl group at δ = ~0.7 ppm as well as a series of multiplets which were located at δ = ~2.25, ~2.45 and ~3.0 ppm. These multiplets are in very good agreement with the multiplets observed for the cyclobutane 99, which corresponded to the protons around the cyclobutane ring.²⁰

Purification of this compound proved exceedingly difficult. Repeated flash chromatography did not separate the starting material from the multiple products formed during the course of the reaction. Moreover, the ¹H NMR spectrum of the crude reaction mixture indicated that the chromene protons were still present and that the starting material had not fully reacted in the latter reaction (entry 2). It is also possible that the substrate could have undergone a number of intermolecular [2+2] cycloaddition reactions to form oligomers. Having been unsuccessful in attempts to prepare C₃-symmetric [2+2]
cycloadducts, efforts were focussed on performing a triple intramolecular [2+4] cycloaddition reaction.

5.3 Triple Intramolecular [2+4] Cycloaddition Reaction of the tris-2H-Chromene (108)

The study of intramolecular [2+4] cycloaddition reactions is of particular interest because of the potential to prepare compounds with multiple fused rings and stereogenic centres. As stated earlier, the functionalized tris-2H-chromene 108 would serve as an excellent substrate to evaluate triple intramolecular [2+4] cycloaddition reactions. This novel chromene could be prepared upon reaction of the α,β-unsaturated aldehyde 106 and phloroglucinol (27).

The synthesis of the required α,β-unsaturated aldehyde 106 was described earlier (See: Section 4.3.1). As such, the phenylboronic acid-mediated condensation reaction was performed on reacting the α,β-unsaturated aldehyde 106 (4 equiv) with phloroglucinol (27) (1 equiv), phenylboronic acid (3 equiv) and propionic acid (cat.) in benzene heated at reflux to afford the tris-2H-chromene 108 in good yield (Scheme 5.3.1). The resultant product was readily purified by flash chromatography to afford a light yellow oil. Of note, only the C₃-symmetric (all cis) diastereoisomer of the tris-2H-chromene 108 was isolated from this reaction and there is no evidence for the unsymmetrical isomer in the ¹H NMR spectrum of the crude reaction mixture.
Scheme 5.3.1 Synthesis of the tris-2H-Chromene (108) from the α,β-Unsaturated Aldehyde (106) and Phloroglucinol (27)

Reagents and conditions: (a) Aldehyde 106 (4 equiv), PhB(OH)$_2$ (3 equiv), propionic acid (cat.), PhH, reflux, 4 h, 63%.

The inherent simplicity of both the 1H and 13C NMR spectra confirmed that the 2H-chromene 108 was formed as a single, C_3-symmetric product. The 1H NMR spectrum contained a sharp singlet at $\delta = 1.4$ ppm, indicating that only one type of methyl group is present. Moreover, the presence of a single pair of doublets, located at $\delta = 5.4$ and 6.6 ppm ($J = 10.0$ Hz) which corresponds to the protons of the three equivalent 2H-chromene double bonds, further confirms the C3-symmetry of this product (Figure 5.3.1).
Figure 5.3.1 1H NMR (500 MHz, CDCl$_3$) of the tris-$2H$-chromene (108).

The 13C NMR spectrum clearly indicated the C_3-symmetric nature of this compound (Figure 5.3.2). This compound has a molecular formula of C$_{36}$H$_{36}$O$_6$ and only twelve signals are observed in the 13C NMR spectrum.
Furthermore, the synthesis of the tris-2\(^H\)-chromene 108 was confirmed by the mass spectrum (CI) displaying the expected M + H peak located at 543 amu’s. Finally, elemental analysis was used to confirm both the purity and elemental composition of this compound.

With the requisite tris-2\(^H\)-chromene 108 in hand, the intramolecular Diels-Alder cycloaddition reaction was then attempted (Scheme 5.3.2).
Scheme 5.3.2 Attempted Diels-Alder Cycloaddition Reaction of the \textit{tris}-2\textit{H}-
Chromene (108)

Reagents and conditions: (a) See below: Table 5.3.1.

Table 5.3.1 Reagents and Conditions Corresponding to Scheme 5.3.2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhMe, 210 °C, 22 h</td>
<td>Decomposition</td>
</tr>
<tr>
<td>2</td>
<td>Me$_2$AlCl (1.5 equiv), -78 °C, CH$_2$Cl$_2$, 23 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>3</td>
<td>MeAlCl$_2$ (0.3 equiv), -78 °C, CH$_2$Cl$_2$, 22 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>4</td>
<td>MeAlCl$_2$ (3 equiv), -78 °C, CH$_2$Cl$_2$, 24 h</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

Initially, the \textit{tris}-2\textit{H}-chromene 108 was subjected to standard furan Diels-Alder
cycloaddition reaction conditions which involved heating in a sealed tube at 210 °C for
22 hours (entry 1).49 As this thermal process caused extensive decomposition of the
starting material, two Lewis acids of varying reactivities were employed to promote these
cycloaddition reactions (entries 2-4).50 Unfortunately, no reaction products were
observed.

5.3.1 Synthesis of an Additional Functionalized Aldehyde for Subsequent [2+4]
Cycloaddition Reactions

Having successfully prepared the \textit{tris}-2\textit{H}-chromene 108, application of the
methodology was extended to include an alternate substituent at the C-3 position of the
\(\alpha,\beta\)-unsaturated aldehyde 106. The phenyl group was chosen as this is a readily accessible substrate that can be easily prepared upon an aldol condensation of furfural (100) and acetophenone (110).

Initially, the aldol reaction with furfural (100) was attempted with both acetophenone (110) and \(t\)-butylacetone, however, only acetophenone (110) would react to afford the corresponding known \(\alpha,\beta\)-unsaturated ketone 111.\(^{51}\) The \(\alpha,\beta\)-unsaturated ketone 111 was then hydrogenated using standard hydrogenation procedures to afford the known ketone 112 in good yield.\(^{52}\) Following the same methodology used earlier (See: Section 5.2.1), the \(\alpha,\beta\)-unsaturated esters 113 and 114 were prepared in excellent yield over two steps from the \(\alpha,\beta\)-unsaturated ketone 112. Interestingly, the \(R_f\) value of the \(E\) isomer 113 matches the \(R_f\) value of the starting ketone 112 and so the reaction was stirred for twenty-four hours to ensure the reaction was complete. The esters 113 and 114 were then reduced with lithium aluminium hydride to afford the corresponding allylic alcohols 115 and 116 (Scheme 5.3.3).
Scheme 5.3.3 Synthesis of the Z- and E-Alcohols (115) and (116) from Furfural (100) and Acetophenone (110)

Reagents and conditions: (a) NaOH, H₂O, 150 min, 63 %; (b) H₂, Pd/C, EtOAc, room temperature, 4.5 h, 72 %; (c) Trimethyl phosphonoacetate, NaH, THF, room temperature, 1 h then ketone 112, reflux, 24 h, 43 % (113), 50 % (114); (d) LiAlH₄, Et₂O, 0°C to room temperature, 40 min, 74 %; (e) LiAlH₄, Et₂O, 0°C to room temperature, 30 min, 74 %.

The alcohols 115 and 116 were then oxidized with either Dess-Martin periodinane or with manganese dioxide to afford to corresponding α,β-unsaturated aldehydes 117 and 118 (Scheme 5.3.4).
Scheme 5.3.4 Synthesis of the Z-Aldehyde (117) and the E-Aldehyde (118) from the Z-Alcohol (115) and the E-Alcohol (116)

Reagents and conditions: (a) See below: Table 5.3.2; (b) see below: Table 5.3.3.

Table 5.3.2 Reagents and Conditions Corresponding to Scheme 5.3.4

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMP, CH₂Cl₂, room temperature, 3 h</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>MnO₂, CH₂Cl₂, 16 h</td>
<td>79</td>
</tr>
</tbody>
</table>

Initially, a solution of the Z-alcohol 115 in dichloromethane was added to a suspension of Dess-Martin periodinane in dichloromethane at room temperature which afforded the corresponding aldehyde 117 in low yield (entry 1). Due to the isolated poor yield, manganese dioxide was used as the oxidant and this afforded the corresponding α,β-unsaturated aldehyde 117 in good yield (entry 2). Similar results were obtained during the oxidation of the E-alcohol 116 (Table 5.3.3).
The structures of the aldehydes 117 and 118 were confirmed by analysis of the 1H NMR spectra. Notably, the aldehyde proton was split by the vinylic proton H-2 leading to two doublets at $\delta = 10$ and 5.4 ppm ($J = 7$ Hz). Moreover, the 13C NMR spectrum of each aldehyde displayed the expected twelve carbon signals. Additionally, IR spectroscopy confirmed the presence of the aldehyde functional group as strong absorption at ~ 1675 cm$^{-1}$ was noted. Finally, both the elemental composition and the purity of these new aldehydes were confirmed by elemental analysis.

The stereochemistry of the double bond isomers was confirmed by 1D-nOe experiments. The α,β-unsaturated aldehyde Z-isomer 117 was identified by nOe coupling between the vinylic proton, H-2, and both of the CH_2 protons. Additionally, the E-isomer 118 was identified by the nOe contact between the aldehyde proton and the CH_2 protons.

With the α,β-unsaturated aldehydes in hand, the phenylboronic acid-mediated condensation reaction was performed. The reaction was carried out using either aldehyde 117 or aldehyde 118 (4 equiv), phloroglucinol (27) (1 equiv), phenylboronic acid (3 equiv) and propionic acid (cat.) in benzene at reflux with azeotropic removal of water (Scheme 5.3.5).
Scheme 5.3.5 Attempted Synthesis of the tris-2H-Chromene (119) from the Z-α,β-Unsaturated Aldehyde (117) and the E-α,β- Unsaturated Aldehyde (118) and Phloroglucinol (27)

Reagents and conditions: (a) Aldehyde 117 (4 equiv), PhB(OH)\(_2\) (3 equiv), propionic acid (cat.), PhH, reflux, 3 h; (b) Aldehyde 118 (4 equiv), PhB(OH)\(_2\) (3 equiv), propionic acid (cat.), PhH, reflux, 3 h.

Analysis of the \(^1\)H NMR spectrum of the crude reaction mixture indicated that the 2H-chromene double bonds had formed based on the presence of multiplets located at \(\delta = 5.3\) and 6.5 ppm. Moreover, TLC analysis indicated the formation of a new compound. However, repeated attempts at purification by flash chromatography to isolate a pure compound were unsuccessful.

5.4 Conclusions

Using standard methodology, an appropriate \(C_3\)-symmetric tris-2H-chromene 32 was prepared to investigate a triple intramolecular [2+2] cycloaddition reaction. Although promising observations were made on analysis of the \(^1\)H NMR spectrum of the crude reaction mixture, purification of the resultant products were unsuccessful. Using the \(\alpha,\beta\)-unsaturated aldehyde 106, the tris-2H-chromene 108 was readily prepared using the phenyl boronic acid-mediated condensation reaction. This chromene was subjected to
a variety of conditions to induce an intramolecular [2+4] cycloaddition reaction, however, no cycloaddition products were observed. Finally, two \(\alpha,\beta \)-unsaturated aldehydes 117 and 118 were prepared to further evaluate the applicability of the phenylboronic acid-mediated condensation reaction and afford an additional tris-2\(H \)-chromene. Subjecting each of these aldehydes to the phenylboronic acid-mediated condensation reaction afforded a complex mixture containing the expected 2\(H \)-chromene 119, but this mixture could not be purified.
6 RESULTS AND DISCUSSION

Studies Towards the Synthesis of an Activated 2H-Chromene Carbon-Carbon Double Bond

6.1 Introduction

In this chapter, the synthesis of precursors to prepare functionalized C_3-symmetric tris-2H-chromenes as activated substrates for [2+4] cycloaddition reactions is described. It was envisioned that the installation of an electron withdrawing group at C-3 of a 2H-chromene would increase the reactivity of the 2H-chromene carbon-carbon double bond (Figure 6.1.1).

![Figure 6.1.1 A tris-2H-chromene activated with an electron-withdrawing group.](image)

Two routes were pursued to activate the chromene double bond. The first route involved the attempted direct installation of an electron withdrawing group onto C-3 of the 2H-chromene 30. The second route involved the synthesis of a functionalized aldehyde 121 which could potentially be prepared by two synthetic routes. The first method would involve the reduction of the Meldrum’s acid analogue 126 to afford an α,β-unsaturated dialdehyde. The second method would involve chemistry previously used (See: Section 4.3.1) to access various α,β-unsaturated dialdehydes. These aldehydes would contain an additional electron withdrawing group at the 2-position.
Thus, when the phenylboronic acid-mediated condensation reaction is performed the electron withdrawing group will be in conjugation with the $2H$-chromene double bond (Scheme 6.1.1). Other electron withdrawing groups, such as cyano or nitro groups, could also be installed at this position.

Scheme 6.1.1 Retrosynthetic Analysis of an Activated tris-$2H$-Chromene (120)

![Chemical structure images](image)

6.2 Attempted Activation of the Carbon-Carbon Double Bond of the tris-$2H$-Chromene (30)

Initial attempts towards activating the $2H$-chromene carbon-carbon double bond involved the installation of a trichloroketone moiety at the 3-position of the tris-$2H$-chromene 30 using a synthetic method described by Hojo et al. Thus, the chromene 30 was reacted with trichloroacetyl chloride and pyridine in dichloromethane at -20 °C (Scheme 6.2.1). However, no reaction products were observed on allowing this reaction to warm to room temperature.
6.2.1 Attempted Synthesis of Functionalized Aldehydes

As it was found that the $2H$-chromene carbon-carbon double bond was unreactive towards electrophilic substitution with trichloroacetyl chloride, the synthesis of the dialdehyde 124 was pursued in order to prepare the activated $2H$-chromene 123 (Scheme 6.2.2).

Scheme 6.2.2 Retrosynthetic Analysis of the Activated $tris$-$2H$-Chromene (123) to the Dialdehyde (124)

Initially, a direct approach was taken to prepare the activated dialdehyde precursor. A Knoevenagel condensation between Meldrum’s Acid (125) and acetone (101) with ammonium acetate (0.05 equiv), acetic acid (0.25 equiv) and 4Å molecular sieves in toluene afforded the known compound 126 in moderate yield (Scheme 6.2.3).54
Scheme 6.2.3 Synthesis of 2,2-Dimethyl-5-(propan-2'-ylidene)-1,3-dioxane-4,6-dione (126) from Meldrum’s Acid (125)

Reagents and conditions: (a) Acetone (1.5 equiv), NH₄OAc (0.05 equiv), AcOH (0.25 equiv), 4Å molecular sieves, PhMe, room temperature, 48 h, 34%.

Analysis of the ¹H NMR spectrum of compound 126 contained two sharp singlets, indicating that two types of methyl groups were present. Additionally, the compound was a colourless solid that had a melting point of 73-75 °C, which is in good agreement with the literature value.⁵⁴

This compound 126 could then, in theory, be reduced by a hydride source to afford the dialdehyde 124. Thus, the compound 126 was treated with diisobutylaluminium hydride (2.2 equiv) in dichloromethane at -78 °C which afforded the known compound 127 (Scheme 6.2.4). There, the hydride attacked the 4 position rather than the expected 2 position of the α,β-unsaturated carbonyl compound 126.

Scheme 6.2.4 Synthesis of 5-Isopropyl-2,2-dimethyl-1,3-dioxane-4,6-dione (127) from 2,2-Dimethyl-5-(propan-2'-ylidene)-1,3-dioxane-4,6-dione (126)

Reagents and conditions: (a) DIBAL-H (2.2 equiv), CH₂Cl₂, -78 °C, 3 h, 37%.

The 1,4 addition of the hydride was confirmed by ¹H NMR spectroscopy. The ¹H NMR spectrum of compound 127 contained a doublet at δ = 1.1 ppm (J = 7.2 Hz) and a
doublet of septets, corresponding to H-5a, located at $\delta = 2.7$ ppm ($J = 7.0, 3.0$ Hz). In addition, a doublet corresponding to H-5 was located at $\delta = 3.6$ ppm ($J = 3.2$ Hz). Moreover, the melting point of the product was 99-102 °C, which is in close agreement with the reported literature value of 102-104 °C.55

Unfortunately, the initial route to prepare the dialdehyde 124 was unsuccessful. Therefore, a different method was explored in which the dialdehyde could be prepared in a similar fashion as used to prepare the α,β-unsaturated aldehydes in the previous chapter (See: Section 4.3.1). Using acetone (101) (1 equiv) and dimethyl malonate (79) (1 equiv) under standard Knoevenagel conditions,56 the diester 128 was prepared in good yield. This diester 128 was added to a suspension of lithium aluminium hydride in benzene and heated at reflux over 3 hours to afford the desired diol 129 in moderate yield. This diol was then treated with manganese dioxide in dichloromethane to afford the mono-aldehyde 130 in good yield (Scheme 6.2.5). Overall, the aldehyde 130 was prepared in 19% yield over three steps.

Scheme 6.2.5 Synthesis of 2-(Hydroxymethyl)-3-methylbut-2-enal (130) from Dimethyl Malonate (79) and Acetone (101)

Reagents and conditions: (a) TiCl$_4$ (2 equiv), THF, 30 min, py (4 equiv), THF, room temperature, 16 h, 77 %; (b) LiAlH$_4$, PhH, reflux, 195 min, 38 %; (c) MnO$_2$, CH$_2$Cl$_2$, room temperature, 3.5 h, 64%.
Interestingly, manganese dioxide only afforded oxidization of one of the alcohols. The reaction was performed using 15 mass equivalents of manganese dioxide as well as 20 mass equivalents, however, only the mono-aldehyde 130 was formed. The mono-aldehyde 130 has a simple 1H NMR spectrum with a singlet located at $\delta = 10.1$ ppm, corresponding to the aldehyde proton and a 2H-singlet, located at $\delta = 4.4$ ppm, which corresponded to the two methylene protons. Moreover, the 13C NMR spectrum displayed the expected six signals for this compound, which further confirmed the structure of the mono-aldehyde 130. Furthermore, the elemental composition was confirmed by high-resolution mass spectrometry. The calculated mass of the compound is 115.0759 amu’s and a mass of 115.0762 amu’s was found.

Since manganese dioxide was unable to oxidize the diol 129 to the corresponding dialdehyde a more powerful oxidant was needed. For this reason, the Swern oxidation reaction was chosen. Using standard Swern oxidation conditions, the diol 129 was successfully converted to the dialdehyde 124 (Scheme 6.2.6).

Scheme 6.2.6 Synthesis of the Dialdehyde (124) from the Diol (129)

![Scheme 6.2.6 Synthesis of the Dialdehyde (124) from the Diol (129)](image)

Reagents and conditions: (a) (COCl)$_2$ (3 equiv), DMSO (8 equiv) then Et$_3$N (10 equiv), CH$_2$Cl$_2$, -78 °C to room temperature, 1 h.

Analysis of the 1H NMR spectrum of the crude reaction mixture displayed two peaks located at $\delta = \sim 10$ and ~ 2 ppm, which indicated the presence of the aldehyde protons as well as the methyl protons. Moreover, no methylene protons were observed in
the 1H NMR spectra, indicating that the reaction had gone to completion. However, attempted purification of this compound was unsuccessful as the compound readily decomposed upon flash chromatography. Moreover, the compound is highly unstable and readily decomposed within a few hours of preparation.

Having prepared a \textit{mono}-aldehyde 130 and the dialdehyde 124, the phenyl boronic acid-mediated condensation reaction was then employed. The appropriate aldehyde (4 equiv) was reacted with phloroglucinol (1 equiv), phenyl boronic acid (3 equiv) and propionic acid (cat.) in benzene and heated at reflux (Scheme 6.2.7).

\textbf{Scheme 6.2.7 \hspace{1cm} Attempted Synthesis of the Functionalized 2\textit{H}-Chromenes (131 and 123)}

Reagents and conditions: (a) Aldehyde 130 (4 equiv), PhB(OH)\textsubscript{2} (3 equiv), propionic acid (cat.), PhH, reflux, 4 h; (b) Aldehyde 124 (4 equiv), PhB(OH)\textsubscript{2} (3 equiv), propionic acid (cat.), PhH, reflux, 3 h.
Unfortunately, the desired tris-2H-chromenes were not observed upon analysis of the \(^1\)H NMR spectrum of the crude reaction mixtures. Despite these findings, the synthesis of the dialdehyde on the requisite furan system was evaluated.

6.3 Attempted Synthesis of the Dialdehyde (136)

A Knoevenagel condensation between the furan-ketone 103 and two diesters was performed. Both the dimethyl ester 132 and diethyl ester 133 were prepared in good yield from the corresponding dimethyl malonate (79) and diethyl malonate (81), respectively (Scheme 6.3.1).

Scheme 6.3.1 Synthesis of the \(\alpha,\beta\)-Unsaturated Diesters (132 and 133) from 4-(Furan-2'-yl)butan-2-one (103)

Reagents and conditions: (a) TiCl\(_4\) (2 equiv), THF, 30 min, py (4 equiv), THF, room temperature, 16 h, 65%; (b) TiCl\(_4\) (2 equiv), THF, 30 min, py (4 equiv), THF, room temperature, 16 h, 62%.

Both of the esters were readily purified by flash chromatography to afford analytically pure products. The dimethyl ester 132 has two sharp singlets at \(\delta = 3.77\) and 3.79 ppm in the \(^1\)H NMR spectrum, indicating that the two methoxy groups are inequivalent. Also, the \(^{13}\)C NMR spectrum displayed the expected thirteen peaks for this compound. As well, the mass spectrum (CI) displayed the expected M + H peak at 253 amu’s.
The diethyl ester 133 was characterized by a variety of spectroscopic methods. The 1H NMR spectrum displayed a multiplet at $\delta = 1.3$ ppm which integrated for six hydrogens and another multiplet at $\delta = 4.2$ ppm which integrated for four hydrogens that can be assigned to both methyl and methylene groups on the two inequivalent esters, respectively. In addition, the 13C NMR spectrum displayed the expected fifteen peaks for this compound. Moreover, the mass spectrum (CI) displayed the expected M + H peak at 281 amu’s. Finally, both the elemental composition and purity of the diesters 132 and 133 were validated by elemental analysis.

Both of the diesters 132 and 133 were then reduced using lithium aluminium hydride to afford the desired diol 134 in low yield. The novel diol 134 was then oxidized under various conditions to afford the mono-aldehyde 135 (Scheme 6.3.2).

Scheme 6.3.2 Synthesis of (2E)-5-(Furan-2'-yl)-2-hydroxymethyl-3-methylpent-2-enal (135) from the α,β-Unsaturated Diesters (132 or 133)

![Diagram](Image)

Reagents and conditions: (a) LiAlH$_4$, PhH, reflux, 18 h, 17 %; (b) LiAlH$_4$, PhH, reflux, 16 h, 12 %; (c) see below: Table 6.3.1.
Table 6.3.1 Reagents and Conditions Corresponding to Scheme 6.3.2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Yield (%)</th>
<th>E:Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MnO₂, CH₂Cl₂, room temperature, 4 h</td>
<td>9</td>
<td>1:1</td>
</tr>
<tr>
<td>2</td>
<td>DMP, CH₂Cl₂, room temperature, 4.5 h</td>
<td>9</td>
<td>1:2</td>
</tr>
</tbody>
</table>

Initially, the diol 134 was oxidized by manganese dioxide in dichloromethane to afford the *mono*-aldehyde 135 as a mixture of *E:*Z isomers in low yield (entry 1). Changing the oxidant to Dess-Martin periodinane in dichloromethane afforded the *mono*-aldehyde 135 as a mixture of *E:*Z isomers also in low yield (entry 2). On flash chromatography of these two isomers, only the *E* isomer was isolated.

The *mono*-aldehyde 135 was characterized by analysis of the ¹H NMR spectrum. A singlet located at \(\delta = 10 \) ppm was indicative of the aldehyde proton while a doublet at \(\delta = 4.3 \) ppm \((J = 6.6 \text{ Hz}) \) corresponded to the methylene protons that are adjacent to the alcohol functional group. Additionally, the ¹³C NMR spectrum displayed the expected eleven peaks for this compound. Moreover, high resolution mass spectrometry confirmed the elemental composition of this compound. The calculated mass of this compound is 195.1021 amu’s and a mass of 195.1019 amu’s was found. The geometry of the *E*-isomer was confirmed by 1D-nOe spectroscopy, specifically a nOe contact between the aldehyde proton and the methyl group was identified. Additionally, a nOe contact between the methylene protons was observed (Figure 6.3.1).
Figure 6.3.1

nOe Contacts of the E-isomer of the mono-aldehyde (135).

Having shown earlier that the dialdehyde can be prepared by Swern oxidation, this procedure was applied to the diol 134, which afforded the dialdehyde 136. Analysis of the 1H NMR spectrum of the crude reaction mixture showed two singlets at $\delta = -10$ ppm, which corresponded to the two inequivalent aldehyde protons of the dialdehyde 136. Additionally, the 1H NMR spectrum displayed the absence of the methylene protons of the starting material, indicating that the reaction had gone to completion.

Using the standard reaction conditions to prepare 2H-chromenes, the dialdehyde 136 (4 equiv) was mixed with phloroglucinol (27) (1 equiv), phenylboronic acid (3 equiv) and propionic acid (cat.) in benzene and heated at reflux with azeotropic removal of water (Scheme 6.3.3). Unfortunately, 1H NMR analysis of the crude reaction mixture showed the complete decomposition of the starting materials.
Scheme 6.3.3 Attempted Synthesis of the Functionalized \textit{tris}-2\textit{H}-Chromene (137) from the Dialdehyde (136) and Phloroglucinol (27)

The dialdehyde 136 is, in principle, an appropriate precursor to increase the reactivity of the corresponding 2\textit{H}-chromene double bond. However, the difficulty in preparation and instability of the compound makes this route problematic. Therefore, a different route was pursued to prepare an aldehyde with an alternative electron withdrawing group.
6.4 Attempted Synthesis of a Functionalized Aldehyde Towards the Preparation of an Activated 2H-Chromene Carbon-Carbon Double Bond

Using a Knoevenagel condensation, along with the furan-ketone 103, an α,β-unsaturated ester with an electron withdrawing group could, in principle, be readily prepared.

p-Nitrophenylacetic acid (138) was reacted in methanol in the presence of sulphuric acid (cat.) and heated at 65 °C to afford methyl-(p-nitrophenyl)acetate (139) in excellent yield (Scheme 6.4.1).

Scheme 6.4.1 Synthesis of Methyl-(p-nitrophenyl)acetate (139) from *p*-Nitrophenylacetic Acid (138)

Reagents and conditions: (a) H₂SO₄ (cat.), MeOH, 65 °C, 2 h, 90%.

The methyl-(p-nitrophenyl)acetate (139) precipitated on cooling the reaction mixture to room temperature. After refrigeration at 0 °C overnight, fine pale yellow crystals were then collected. These crystals were found to have an identical melting point to the literature values. Additionally, the ¹H and ¹³C NMR spectra were identical to that reported for this known compound.

The Knoevenagel condensation reaction of methyl-(p-nitrophenyl)acetate (139) with the furan-ketone 103 was performed under a variety of conditions (Scheme 6.4.2)
Scheme 6.4.2 Attempted Synthesis of (E)-Methyl 5-(furan-2'-yl)-3-methyl-2-(4-nitrophenyl)pent-2-enoate (140) from Methyl-(p-nitrophenyl)acetate (139) and 4-(Furan-2'-yl)butan-2-one (103)

Reagents and conditions: (a) See below: Table 6.4.1.

Table 6.4.1 Reagents and Conditions Corresponding to Scheme 6.4.2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents and Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ester 139 (1.5 equiv), NaOMe (2.5 equiv), MeOH, reflux, 5 days</td>
<td>No reaction</td>
</tr>
<tr>
<td>2</td>
<td>Ester 139 (2 equiv), NaH (2 equiv), PhH, 60 °C, 5 days</td>
<td>No reaction</td>
</tr>
<tr>
<td>3</td>
<td>Ester 139 (1.1 equiv), LDA (1.2 equiv), Et₂O, -78 °C to room temperature, 48 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>4</td>
<td>NH₄OAc (0.05 equiv), AcOH (0.25 equiv), PhMe, 4Å molecular sieves, 24 h</td>
<td>No reaction</td>
</tr>
<tr>
<td>5</td>
<td>NH₄OAc (0.05 equiv), AcOH (0.25 equiv), PhH, reflux, 24 h</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

In the first instance, the ketone 103 was added to a solution of the ester 139 (1 equiv), sodium methoxide in methanol and the mixture was heated at reflux for 5 days. (entry 1). The ester 139 was then reacted with sodium hydride in benzene at 60 °C followed by the addition of the ketone 103 (entry 2). The ester was then reacted with a solution of \(N,N \)-diisopropylamide in ether at -78 °C followed by the addition of the ketone 103 (1 equiv) (entry 3). In all of these cases, a deep purple colour was formed upon addition of the ester to the reaction mixtures. However, upon addition of the ketone 103 no reaction was observed by both TLC or by \(^1\)H NMR analysis of the crude reaction mixture. Other standard Knoevenagel conditions were also attempted (entries 4 & 5).\(^{49}\)

Unfortunately, no desired reaction products were isolated from these reactions.
Repeated attempts to condense methyl-(p-nitrophenyl)acetate (139) with the ketone 103 were unsuccessful, therefore methyl-2-cyanoacetate (141) was selected as a subsequent reactant based on a literature precedent. The α,β-unsaturated ester 142 was prepared on reaction of the ketone 103 and methyl-2-cyanoacetate (141) (1 equiv) with ammonium acetate (0.2 equiv) and acetic acid (0.8 equiv) on heating in benzene with azeotropic removal of water (Scheme 6.4.3).

Scheme 6.4.3 Synthesis of Methyl 2-cyano-5-(furan-2'-yl)-3-methylpent-2-enoate (142) from 4-(Furan-2'-yl)butan-2-one (103)

![Scheme 6.4.3](image)

Reagents and conditions: (a) NH$_4$OAc (0.2 equiv), AcOH (0.8 equiv), PhH, reflux, 24 h, 11%.

This novel α,β-unsaturated ester was formed as a mixture of isomers (E:Z ≈ 1:1) that were not readily separated by flash chromatography. The ester 142 was fully characterized by a variety of spectroscopic methods. The 1H NMR spectrum had two singlets at $\delta = 2.4$ and 3.8 ppm, which corresponded to the methyl group and the methoxy group, respectively. In addition, the 13C NMR spectrum displayed the expected twelve signals for this compound. Moreover, the mass spectrum (Cl) displayed the expected M + H signal at 220 amu’s. Finally, elemental analysis confirmed both the elemental composition and the purity of the compound.

Attempts were then made to reduce the ester 142 to either the alcohol 143 or the aldehyde 144. The ester 142 was reacted with diisobutylaluminium hydride with the
intention of isolating the desired aldehyde 144 or the alcohol 143 (Scheme 6.4.4). Although the 1H NMR spectrum of the crude reaction mixture displayed a small peak in the aldehyde region ($\delta = 9.9$ ppm) this reaction afforded a complex mixture of products.

Scheme 6.4.4 Attempted Reduction of the Ester (142) using DIBAL-H

![Scheme 6.4.4](image)

Reagents and conditions: DIBAL-H (2 equiv), CH$_2$Cl$_2$, -78 °C to room temperature, 1 h.

In addition, reduction of the ester 142 was attempted with lithium aluminium hydride in tetrahydrofuran,\(^{61}\) however, a complex mixture of products was also formed.

Since the two reduction methods afforded a complex mixture of products, a different approach was taken to preparing the aldehyde 144. It was initially thought that by hydrolyzing the ester 142 to the corresponding carboxylic acid, that a mild reduction could be performed to prepare the desired alcohol 143, which could then be oxidized to the corresponding aldehyde 144. As such, hydrolysis of the ester 142, using a known procedure involving lithium hydroxide in a tetrahydrofuran/water mixture was attempted.\(^{62}\) Surprisingly, it was found that the addition of lithium hydroxide to a solution of the α,β-unsaturated ester 142 afforded the ketone 103, via a retro-Knoevenagel condensation reaction (Scheme 6.4.5).
Scheme 6.4.5 Retro-Knoevenagel Condensation of $(2E)$-Methyl 2-cyano-5-(furan-2'-yl)-3-methylpent-2-enoate (142)

Reagents and conditions: (a) LiOH, THF:H$_2$O (1:1), 22 h, room temperature, 34%.

Thus, it remains to devise alternative methods to prepare activated aldehydes for these proposed studies.

6.5 Conclusions

A variety of attempts were undertaken to prepare an activated aldehyde precursor, capable of undergoing the phenylboronic acid-mediated condensation reaction to afford an activated tris-$2H$-chromene. A Meldrum’s acid analogue 126 was successfully prepared, however, reduction with diisobutylaluminium hydride afforded the undesired 1,4 addition product 127. Attempts were then made to prepare a dialdehyde from diol precursors using manganese dioxide as the oxidant. However, only a mono-aldehyde was prepared via this method. However, a Swern oxidation successfully prepared the simple dialdehyde 124. Both the mono-aldehyde 130 and the dialdehyde 124 were subjected to the phenyl boronic acid-mediated condensation reaction, however, the desired functionalized tris-$2H$-chromenes were not isolated. Subsequently, a Swern oxidation of the alcohol 134 allowed for the preparation of the dialdehyde 136. However, when subjected to the phenylboronic acid-mediated condensation reaction conditions, the aldehyde 136 was found to decompose. Thus, the synthesis of a different activated aldehyde precursor was attempted using a Knoevenagel condensation of 2-cyano acetic
acid methyl ester (141) with the furan-ketone 103 to successfully prepare the α,β-
unsaturated ester 142. Surprisingly, it was found that the subsequent saponification of
this ester caused a retro-Knoevenagel condensation, which afforded the starting ketone
103. Thus, alternative routes towards these compounds will need to be devised.
7 GENERAL CONCLUSIONS AND FUTURE WORK

The research work described in this thesis has concerned studies on inter- and intramolecular cycloaddition reactions of various 2H-chromene carbon-carbon double bonds. A series of *mono*-2H-chromenes 36, 2 and 37 were prepared to evaluate a series of intermolecular cycloaddition reactions of the 2H-chromene double bond. It was found that the cyclopropanation reactions of the *mono*-2H-chromene 2 using either dichloro- or dibromocarbene afforded the desired cycloadducts. Additionally, intermolecular [2+2] cycloaddition reactions utilizing dichloroketene and tetracyanoethylene were found to proceed quite well and afforded the corresponding cyclobutanes.

Having successfully demonstrated that these cycloaddition reactions can occur on the 2H-chromene double bond, these processes were then applied to the C₃-symmetric *tris*-2H-chromene 30. It was subsequently found that the intermolecular [2+1] cyclopropanation reactions afforded the desired C₃-symmetric cyclopropane product as well as the unsymmetrical isomer. Also, it was found that by using the cyclopropanation procedure described by Lyle and co-workers,⁴⁰ that the corresponding *mono*-, *bis*- and *tris*-cycloadducts could be prepared and isolated. The intermolecular [2+2] cycloaddition reaction using dichloroketene was found to afford either the *mono*- or *bis*-cycloadducts depending on the reaction conditions. It was subsequently found that dropwise addition of dichloroketene to a reaction mixture containing the *tris*-2H-chromene 30 afforded the *tris*-cycloadduct 90. Moreover, the intermolecular [2+2] cycloaddition involving tetracyanoethylene afforded the corresponding *mono*- and *bis*-cycloadducts. A [2+4] cycloaddition reaction was also attempted. This involved the generation of the highly reactive diene, *o*-quinonenedimethane, as described by Durst *et al.*³⁷ Unfortunately, the
subsequent [2+4] cycloaddition reaction product was not isolated. As such, it was determined that a more reactive 2H-chromene carbon-carbon double bond would be required.

Having established that a series of intermolecular cycloaddition reactions are possible, efforts were then focussed on intramolecular cycloaddition reactions. A mono-2H-chromene 97, which was readily prepared from citral (31) and 3,5-dimethoxyphenol (39), was prepared to evaluate an intramolecular [2+2] cycloaddition reaction. By subjecting this 2H-chromene to a variety of conditions it was found that the corresponding cyclobutane adduct 99 could be readily prepared and isolated. As such, studies were then undertaken towards executing a triple intramolecular [2+2] cycloaddition reaction of the C₃-symmetric tris-2H-chromene 32. Unfortunately, the C₃-symmetric tris-2H-chromene 32, though readily prepared as a single diastereoisomer, did not afford the desired cycloadduct, but instead resulted in a complex mixture of reaction products which could not be purified.

A novel α,β-unsaturated aldehyde 106 containing a furan group, which would function as the diene in an intramolecular [2+4] cycloaddition, was then prepared and reacted with phloroglucinol (27) to afford the desired C₃-symmetric tris-2H-chromene 108. Although a variety of conditions were subsequently attempted to affect a triple cycloaddition process, the desired product was not isolated.

A study was then performed on preparing a more reactive 2H-chromene carbon-carbon double bond. Though initial efforts focussed on creating the highly reactive dialdehyde species 124, it was subsequently determined a different electron withdrawing group would be much more appropriate. As such, the α,β-unsaturated cyanide ester 142
was prepared. However, reduction of this ester to the corresponding alcohol was unsuccessful. Therefore, a different substrate and synthetic route is needed to prepare an activated aldehyde. Thus, the preparation of 2-bromo-senecialdehyde 145, which could be used to prepare the corresponding 2H-chromene (147), could be subsequently used to install a variety of electron withdrawing groups. The installation of the electron withdrawing groups could occur before the phenylboronic acid-mediated condensation reaction or once the requisite 2H-chromene has already been formed (Scheme 7.1.1).

Scheme 7.1.1 Proposed Reaction of 2-Bromo-senecialdehyde (145) with Phenol (146) to Form the Functionalized 2H-Chromene (147)

![Reaction Scheme 7.1.1](image-url)
8 EXPERIMENTAL

8.1 General Experimental Details

All non-aqueous reactions were performed under an atmosphere of dry nitrogen in oven- or flame-dried glassware, unless indicated otherwise. The reaction temperatures stated were those of the external bath. Diethyl ether (ether) and tetrahydrofuran (THF) were dried over sodium/benzophenone ketyl and distilled under an atmosphere of dry nitrogen immediately prior to use. Benzene, dichloromethane, pyridine, toluene and triethylamine were dried over calcium hydride and distilled under an atmosphere of dry nitrogen immediately prior to use. Methanol was dried over magnesium methoxide and distilled under an atmosphere of dry nitrogen immediately prior to use. All other solvents and reagents were purified by standard techniques or used as supplied. Silica gel column chromatography (“flash chromatography”) was carried out using Merck silica gel 60 (230 to 400 mesh). Brine refers to a saturated aqueous solution of sodium chloride. Melting points (M.p.) were measured on a Gallenkamp capillary melting point apparatus and are uncorrected. All proton and carbon nuclear magnetic resonance spectra (\(^1H \) NMR, \(^{13}C \) NMR, respectively) were recorded on 400 MHz (operating frequencies: \(^1H \), 400.13 MHz; \(^{13}C \), 100.61 MHz), 500 MHz (operating frequencies: \(^1H \), 499.77 MHz; \(^{13}C \), 125.68 MHz) and 600 MHz (operating frequencies: \(^1H \), 600.33 MHz; \(^{13}C \), 150.95) FT spectrometers at ambient temperature. The chemical shifts (\(\delta \)) for all compounds are listed in parts per million downfield from tetramethylsilane using the NMR solvent as an internal reference. The reference values used for deuterated chloroform (CDCl\(_3\)) were \(\delta \) 7.26 and 77.00 ppm for \(^1H \) and \(^{13}C \) NMR spectra, respectively. The reference values used for deuterated benzene (C\(_6\)D\(_6\)) were \(\delta \) 7.15 and 128.02 ppm for \(^1H \) and \(^{13}C \) NMR
spectra, respectively. The reference values used for deuterated acetonitrile (CD$_3$CN) were δ 1.94 and 1.24 ppm for 1H and 13C NMR spectra, respectively. Infrared spectra (IR) were recorded as either KBr pellets (KBr), evaporated films (ef) or as neat films (neat) using a Perkin Elmer 599B IR spectrophotometer. Low-resolution mass spectra (MS) were recorded on a Varian 4000 GC/MS/MS. The mode of ionization used was chemical ionization (CI) with methanol as the ionization gas. Matrix-assisted laser desorption/ionization time-of-flight mass spectra (MALDI-TOF) were recorded using 2,4-dihydroxybenzoic acid as the matrix. High-resolution mass spectra (HRMS) were recorded on an Agilent Technologies 6210 time-of-flight-LC/MS mass spectrometer. Microanalyses (Anal.) were performed on a Carlo Erba Model 1106 CHN analyzer.

8.2 Experimental Procedures and Characterization Data Concerning Chapter Two

8.2.1 3-Methyl-but-2-enal [Senecialdehyde] (29)21

To a suspension of manganese dioxide (80.0 g, 919 mmol) in dichloromethane (325 mL) at room temperature was added 3-methyl-but-2-en-1-ol (9.29 mL, 92.9 mmol). After 39 h, the reaction was filtered through a pad of celite and the filter-cake was washed with dichloromethane (4 x 50 mL) and then the combined filtrates were concentrated in vacuo. Purification of the crude product by distillation at reduced pressure afforded the title compound 12 (5.17 g, 66%) as a colourless oil. $R_f = 0.41,$ hexanes:ether (1:1); B.p. ~56 °C, ~35mm Hg (lit.21 133-135 °C, 760 mm Hg); 1H NMR (400 MHz, CDCl$_3$) δ 1.97 (s, 3H, Me), 2.16 (s, 3H, Me), 5.87 (d, $J = 8.1$ Hz, 1H, CH),
9.94 (d, J = 8.1 Hz, 1H, CHO); 13C NMR (101 MHz, CDCl$_3$) δ 18.9, 27.2, 128.1, 160.6, 191.0; IR (neat) 2985, 2917, 2854, 2763, 1684, 1630, 1616, 1448, 1378, 1198, 1131, 1048 cm$^{-1}$; MS (CI) m/z (rel. intensity) 85 (M + H, 100).

8.2.2 2,2-Dimethyl-2H-chromene (36)23

A mixture of senecialdehyde (29) (1.49 g, 17.7 mmol), phenol (17) (1.11 g, 11.8 mmol), phenylboronic acid (1.44 g, 11.8 mmol), propionic acid (40 drops) and benzene (30 mL) was heated at reflux in a Dean-Stark apparatus for 21 h. The resultant solution was cooled to room temperature and on filtration through a pad of silica gel with ether (125 mL) was concentrated in vacuo. Purification by flash chromatography using hexanes:ether (15:1) as the eluant afforded the title compound 36 (540 mg, 28%) as a light yellow oil. $R_f = 0.55$, hexanes:ether (15:1); 1H NMR (500 MHz, CDCl$_3$) δ 1.43 (s, 6H, Me), 5.61 (d, J = 9.8 Hz, 1H, ArCHCH), 6.32 (d, J = 9.8 Hz, 1H, ArCHCH), 6.77 (apparent d, J = 8.0 Hz, 1H, ArH), 6.84 (apparent t, J = 7.4 Hz, 1H, ArH), 6.97 (dd, J = 7.4, 1.5 Hz, 1H, ArH), 7.10 (dt, J = 7.8, 1.6 Hz, 1H, ArH); 13C NMR (126 MHz, CDCl$_3$) δ 27.9, 76.1, 116.3, 120.7, 121.2, 122.3, 126.3, 129.0, 130.7, 152.9; IR (ef) 3043, 2973, 2924, 1604, 1486, 1456, 1376, 1360, 1260, 1164, 1120 cm$^{-1}$; MS (CI) m/z (rel. intensity) 161 (M + H, 100).
8.2.3 7-Methoxy-2,2-dimethyl-2H-chromene (2)22

A mixture of senecialdehyde (29) (1.60 g, 19.0 mmol), 3-methoxyphenol (38) (1.82 g, 14.6 mmol), phenylboronic acid (1.78 g, 14.6 mmol), propionic acid (50 drops) and benzene (35 mL) was heated at reflux in a Dean-Stark apparatus for 4 h. The resultant solution was cooled to room temperature and on filtration through a pad of silica gel with ether (200 mL) was concentrated \textit{in vacuo}. Purification by flash chromatography using hexanes:ether (8:1) as the eluant afforded the title compound 2 (2.07 g, 75%) as a colourless oil. \textit{R}_f = 0.53, hexanes:ether (8:1); 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 1.43 (s, 6H, Me), 3.77 (s, 3H, OMe), 5.47 (d, \(J = 9.8\) Hz, 1H, ArCHCH), 6.28 (d, \(J = 9.8\) Hz, 1H, ArCHCH), 6.38 (d, \(J = 2.3\) Hz, 1H, H-8), 6.41 (dd, \(J = 8.2, 2.2\) Hz, 1H, H-6), 6.88 (d, \(J = 8.2\) Hz, 1H, H-5); 13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 28.0, 55.3, 76.3, 101.9, 106.6, 114.6, 121.9, 126.9, 127.8, 154.1, 160.6; IR (neat) 3043, 2976, 2928, 2836, 1615, 1568, 1502, 1315, 1280, 1195, 1158, 1129, 1033 cm-1; MS (Cl) \(m/z\) (rel. intensity) 191 (M + H, 100).

8.2.4 5,7-Dimethoxy-2,2-dimethyl-2H-chromene (37)24
A mixture of senecialdehyde (29) (1.50 g, 17.8 mmol), 3,5-dimethoxyphenol (39) (1.83 g, 11.9 mmol), phenylboronic acid (1.45 g, 11.9 mmol), propionic acid (50 drops) and benzene (50 mL) was heated at reflux in a Dean-Stark apparatus for 3 h. The resultant solution was cooled to room temperature and on filtration through a pad of silica gel with ether (125 mL) was concentrated in vacuo. Purification by flash chromatography using hexanes:ether (9:1) as the eluant afforded the title compound 37 (2.21 g, 84%) as a colourless oil. \(R_f = 0.39 \), hexanes:ether (9:1); \(^1\text{H NMR}\) (500 MHz, CDCl\(_3\)) \(\delta \) 1.43 (s, 6H, Me), 3.77 (s, 3H, OMe), 3.78 (s, 3H, OMe), 5.42 (d, \(J = 9.9 \) Hz, 1H, ArCHCH\(_2\)), 6.01 (d, \(J = 2.3 \) Hz, 1H, Ar\(H_1 \)), 6.04 (d, \(J = 2.2 \) Hz, 1H, Ar\(H_1 \)), 6.59 (d, \(J = 9.9 \) Hz, 1H, ArCHCH\(_2\)); \(^{13}\text{C NMR}\) (126 MHz, CDCl\(_3\)) \(\delta \) 27.7, 55.2, 55.4, 76.1, 91.3, 93.9, 104.1, 116.6, 125.8, 154.6, 156.0, 160.9; \(^{1}\text{R} \) (neat) 2973, 2938, 2838, 1636, 1613, 1578, 1496, 1464, 1390, 1375, 1360, 1247, 1202, 1148, 1123, 1102, 1050 cm\(^{-1}\); \(^{1}\text{MS} \) (Cl) \(m/z \) (rel. intensity) 220 (M + H, 100).

8.2.5 (1aSR,7bSR)-2,2-Dimethyl-1a,7b-dihydro-2H-oxireno[c]chromene (40)\(^{26}\)

![40]

To a mixture of the chromene 36 (54 mg, 0.33 mmol), an aqueous solution of sodium bicarbonate (0.5 M, 3 mL) and dichloromethane (5 mL) at 0 °C was added \(m \)-chloroperoxybenzoic acid (41) (77%, 82 mg, 0.33 mmol). The resultant mixture was allowed to warm to room temperature and stirred for 48 h. Dichloromethane (10 mL) was then added and the resultant mixture was washed with a saturated aqueous solution of sodium bicarbonate (2 x 20 mL), water (20 mL), dried over anhydrous sodium
sulphate and then concentrated *in vacuo*. Purification of the resultant oil was accomplished by precipitation of impurities from a mixture of chloroform (1 mL) and hexanes (0.5 mL). Filtration and concentration of the filtrate *in vacuo* afforded the *title compound* 40 (12 mg, 20%) as a pale yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 1.26 (s, 3H, Me), 1.58 (s, 3H, Me), 3.50 (d, $J = 4.4$ Hz, 1H, ArCHCH), 3.91 (d, $J = 4.4$ Hz, 1H, ArCHCH), 6.81 (d, $J = 8.3$ Hz, 1H, ArH), 6.92 (t, $J = 7.5$ Hz, 1H, ArH), 7.23 (dt, $J = 7.7,$ 1.6 Hz, 1H, ArH), 7.33 (dd, $J = 7.4,$ 1.6 Hz, 1H, ArH); 13C NMR (126 MHz, CDCl$_3$) δ 25.5, 25.6, 51.0, 62.8, 72.9, 117.9, 119.9, 121.0, 129.6, 130.3, 152.5; IR (ef) 2977, 2927, 1613, 1585, 1558, 1540, 1488, 1381, 1237, 1207, 1164 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 177 (M + H, 100).

8.2.6 (1aSR,7bRS)-1,1-Dichloro-5-methoxy-2,2-dimethyl-1,1a,2,7b-tetrahydrocyclopropa[c]chromene (46)29

To a mixture of the chromene 2 (150 mg, 0.788 mmol), tetra-n-butylammonium bromide (50 mg, 0.16 mmol) and an aqueous solution of sodium hydroxide (8 M, 5 mL) was added chloroform (5.0 mL, 62 mmol) dropwise at room temperature. The reaction mixture was allowed to stir at room temperature for 12 h and then dichloromethane (5 mL) was added. The resultant mixture was separated and the aqueous layer was extracted with dichloromethane (2 x 10 mL). The combined organic extracts were washed with water (2 x 10 mL), dried over anhydrous sodium sulphate and concentrated *in vacuo*. Purification by flash chromatography using hexanes:ether (9:1) as the eluant,
with dichloromethane to load, afforded the title compound 46 (110 mg, 52%) as a white powder. $R_f = 0.33$, hexanes:ether (9:1); **M.p.** 96-98 °C, hexanes:ether (lit. 90-92 °C);

1H NMR (500 MHz, CDCl₃) δ 1.24 (s, 3H, Me), 1.69 (s, 3H, Me), 2.15 (d, $J = 10.9$ Hz, 1H, ArCHCH), 2.82 (d, $J = 10.9$ Hz, 1H, ArCHCH), 3.76 (s, 3H, OMe), 6.39 (d, $J = 2.5$ Hz, 1H, ArH), 6.54 (dd, $J = 8.3$, 2.5 Hz, 1H, ArH), 7.19 (d, $J = 8.4$ Hz, 1H, ArH); 13C NMR (126 MHz, CDCl₃) δ 26.6, 27.2, 30.5, 40.4, 55.2, 62.2, 71.3, 103.1, 107.9, 110.2, 130.5, 152.4, 160.3; **IR** (ef) 2976, 2934, 2842, 1626, 1583, 1511, 1468, 1444, 1371, 1340, 1279, 1194, 1164, 1134 cm⁻¹; **MS** (Cl) m/z (rel. intensity) 277 [M (2 x 37Cl) + H, 15], 276 (15), 275 [M (35Cl + 37Cl) + H, 44], 274 (70), 273 [M (2 x 35Cl) + H, 63], 272 (100), 237 (M – Cl, 77).

8.2.7 (1aSR,7bRS)-1,1-Dibromo-5-methoxy-2,2-dimethyl-1,1a,2,7b-tetrahydrocyclopropa[c]chromene (47)

To a mixture of the chromene 2 (150 mg, 0.788 mmol), tetra-n-butylammonium bromide (50 mg, 0.16 mmol) and an aqueous solution of sodium hydroxide (8 M, 5 mL) was added bromoform (5.0 mL, 57 mmol) dropwise at room temperature. The reaction mixture was allowed to stir at room temperature for 19 h and then dichloromethane (5 mL) was added. The resultant mixture was separated and the aqueous layer was extracted with dichloromethane (2 x 10 mL). The combined organic extracts were washed with water (2 x 10 mL), brine (10 mL), dried over anhydrous sodium sulphate and concentrated *in vacuo*. Purification by flash chromatography using hexanes:ether.
(9:1) as the eluant, with dichloromethane to load, afforded the **title compound** 47 (100 mg, 34%) as a white powder. \(R_f = 0.28 \), hexanes:ether (9:1); **M.p.** 126-130 °C, hexanes:ether; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 1.22 (s, 3H, Me), 1.70 (s, 3H, Me), 2.24 (d, \(J = 10.7 \) Hz, 1H, ArCHCH), 2.90 (d, \(J = 10.7 \) Hz, 1H, ArCHCH), 3.76 (s, 3H, OMe), 6.37 (d, \(J = 2.6 \) Hz, 1H, ArH), 6.54 (dd, \(J = 8.4, 2.6 \) Hz, 1H, ArH), 7.20 (d, \(J = 8.4 \) Hz, 1H, ArH); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 25.9, 27.6, 30.8, 31.2, 41.5, 55.2, 72.2, 103.1, 108.0, 111.9, 130.5, 152.3, 160.3; **IR** (ef) 2978, 2934, 2832, 1619, 1584, 1506, 1460, 1435, 1364, 1328, 1289, 1272, 1189, 1152, 1131 cm\(^{-1}\); **MS** (Cl) \(m/z \) (rel. intensity) 365 [M (2 x \(^{81}\)Br) + H, 3], 363 [M (\(^{79}\)Br + \(^{81}\)Br) + H, 7], 361 [M (2 x \(^{79}\)Br) + H, 4], 283 (M – Br, 73), 281 (M – Br, 72), 202 (M – 2 x \(^{81}\)Br, 100); **Anal.** Calcd. for C\(_{13}\)H\(_{14}\)Br\(_2\)O\(_2\): C, 43.13; H, 3.90. Found: C, 42.99; H, 4.01.

8.2.8 (2aSR,8bRS)-1,1-Dichloro-6-methoxy-3,3-dimethyl-1,2a,3,8b-tetrahydro-2H-cyclobuta[c]chromen-2-one (51)

To a suspension of zinc powder (320 mesh, 191 mg, 2.92 mmol) and chromene 2 (124 mg, 0.638 mmol) in tetrahydrofuran (15 mL) at 0 °C was added trichloroacetyl chloride (0.22 mL, 1.9 mmol) dropwise over ~1 min. The resultant suspension was stirred at 0 °C for 15 min and then was allowed to warm to room temperature and stirred for an additional 26 h. A saturated aqueous solution of sodium bicarbonate (1 mL) was then added and the reaction mixture was allowed to stir for 10 min. The resultant mixture was filtered through a small pad of celite and the filter-cake was washed with ether (3 x
10 mL). The combined filtrates were washed with a saturated aqueous solution of sodium bicarbonate (2 x 25 mL), water (2 x 25 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (5:1) as the eluant afforded the title compound 51 [52 mg, 26% (38% brsm)] as a white solid and the starting material (2) (39 mg, 20%). \(R_f = 0.25 \), hexanes:ether (5:1); M.p. 116-117 °C, hexanes:ether; \(^1H\) NMR (500 MHz, CDCl\(_3\) \(\delta \) 1.19 (s, 3H, Me), 1.69 (s, 3H, Me), 3.77 (s, 3H, OMe), 4.09 (m, 2H, ArCHCH\(H\)), 6.41 (d, \(J = 2.5 \) Hz, 1H, Ar\(H\)), 6.60 (dd, \(J = 8.6, 2.6 \) Hz, 1H, Ar\(H\)), 7.14 (d, \(J = 8.4 \) Hz, 1H, Ar\(H\)); \(^{13}C\) NMR (126 MHz, CDCl\(_3\) \(\delta \) 25.3, 26.0, 46.6, 55.3, 63.3, 74.6, 87.3, 103.4, 108.9, 110.8, 132.4, 154.2, 160.9, 193.4; IR (KBr) 3015, 2979, 2964, 2938, 2835, 2835, 1795, 1586, 1504, 1464, 1352, 1368, 1273, 1197, 1133, 1106, 1030 cm\(^{-1}\); MS (Cl) \(m/z \) (rel. intensity) 305 [M (2 x 37Cl) + H, 12], 303 [M (\(^{35}Cl + 37Cl\)) + H, 75], 301 [M (2 x \(^{35}Cl\)) + H, 100], 265 (M – Cl, 88); Anal. Calcd. for C\(_{14}H\(_{14}\)Cl\(_2\)O\(_3\): C, 55.83; H, 4.69. Found: C, 55.87; H, 4.56.

8.2.9 (2aSR,8bRS)-1,1-Dichloro-6,8-dimethoxy-3,3-dimethyl-1,2a,3,8b-tetrahydro-2\(H\)-cyclobuta[c]chromen-2-one (52)

\[
\begin{align*}
\text{Cl} & \quad \text{Me}\quad \text{Me} \\
\text{MeO} & \quad \text{MeO} \\
\end{align*}
\]

To a suspension of zinc powder (320 mesh, 134 mg, 2.05 mmol) and chromene 37 (100 mg, 0.454 mmol) in tetrahydrofuran (8 mL) at 0 °C was added trichloroacetyl chloride (0.15 mL, 1.4 mmol) dropwise over ~1 min. The resultant suspension was stirred at 0 °C for 10 min and then was allowed to warm to room temperature and stirred
for an additional 2 h. A saturated aqueous solution of sodium bicarbonate (1 mL) was then added and the reaction mixture was allowed to stir for 30 min. The resultant mixture was filtered through a small pad of celite and the filter-cake was washed with ether (2 x 10 mL). The combined filtrates were washed with a saturated aqueous solution of sodium bicarbonate (25 mL), water (40 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (9:1) as the eluant afforded the title compound 52 (71 mg, 47%) as a white solid. \(R_f = 0.25 \), hexanes:ether (9:1); \textbf{M.p.} 158-160 °C, hexanes:ether; \(^1\text{H} \text{NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \) 1.19 (s, 3H, Me), 1.68 (s, 3H, Me), 3.76 (s, 3H, OMe), 3.85 (s, 3H, OMe), 4.01 (d, \(J = 10.8 \) Hz, 1H, ArCHCH\(_2\)), 4.29 (d, \(J = 10.8 \) Hz, 1H, ArCHCH\(_2\)), 6.04 (d, \(J = 2.3 \) Hz, 1H, ArH), 6.14 (d, \(J = 2.3 \) Hz, 1H, ArH); \(^{13}\text{C} \text{NMR} \) (126 MHz, CDCl\(_3\)) \(\delta \) 25.2, 26.0, 42.3, 55.3, 55.7, 61.9, 74.6, 87.1, 92.5, 94.9, 100.8, 154.5, 159.9, 161.4, 194.1; \textbf{IR} (KBr) 2976, 2940, 2843, 1806, 1617, 1591, 1495, 1464, 1426, 1370, 1309, 1220, 1201, 1149, 1102, 1050 cm\(^{-1}\); \textbf{MS} (Cl) \(m/z \) (rel. intensity) 335 [M (2 x \(^{37}\text{Cl}\) + H, 11], 333 [M (\(^{35}\text{Cl} + ^{37}\text{Cl}\) + H, 64], 331 [M (2 x \(^{35}\text{Cl}\) + H, 100]; \textbf{Anal.} Calcd. for C\(_{15}\)H\(_{16}\)Cl\(_2\)O\(_4\): C, 54.40; H, 4.87. Found: C, 54.72; H, 4.89; \textbf{HRMS} Calcd. for C\(_{15}\)H\(_{17}\)Cl\(_2\)O\(_4\): 331.0498. Found: 331.0489.

\textbf{8.2.10} (2aRS,8bSR)-6-Methoxy-3,3-dimethyl-2a,8b-dihydro-cyclobuta[c]chromene-1,1,2,2-tetracarbonitrile (55)

\begin{center}
\includegraphics[width=0.2\textwidth]{55.png}
\end{center}

A solution of chromene 2 (138 mg, 0.711 mmol) and tetracyanoethylene (139 mg, 1.08 mmol) in acetonitrile (15 mL) was heated at reflux for 20 h. The reaction mixture
was then allowed to cool to room temperature and was concentrated in vacuo. The resultant solid was then partitioned between acetonitrile (10 mL) and a saturated aqueous solution of ammonium chloride (15 mL). The aqueous phase was separated and extracted with ether (2 x 10 mL). The combined organic extracts were washed with water (30 mL), brine (30 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ethyl acetate (2:1) as the eluant afforded the title compound 55 (66 mg, 29%) as a white solid. \(R_f = 0.30 \), hexanes:ethyl acetate (2:1); \textbf{M.p.} 205-206 °C, hexanes:ethyl acetate; \textbf{\(^1H \) NMR} (500 MHz, CD\(_3\)CN) \(\delta \) 1.16 (s, 3H, Me), 1.61 (s, 3H, Me), 3.79 (s, 3H, OMe), 4.05 (d, \(J = 9.6 \) Hz, 1H, ArCHCH), 4.46 (d, \(J = 9.6 \) Hz, 1H, ArCHCH), 6.48 (d, \(J = 2.6 \) Hz, 1H, ArH), 6.72 (dd, \(J = 8.7, 2.7 \) Hz, 1H, ArH), 7.39 (d, \(J = 8.7 \) Hz, 1H, ArH); \textbf{\(^13C \) NMR} (126 MHz, CD\(_3\)CN) \(\delta \) 23.4, 24.0, 37.7, 40.8, 42.3, 49.4, 56.1, 73.9, 103.9, 106.2, 110.2, 110.7, 111.0, 112.5, 112.6, 133.4, 155.6, 163.0; \textbf{IR} (KBr) 2984, 2938, 2840, 2248, 1618, 1578, 1504, 1442, 1373, 1319, 1286, 1198, 1158, 1124, 1109 cm\(^{-1}\); \textbf{MS} (Cl) \textit{m/z} (rel. intensity) 319 (M + H, 5), 191 (M – C\(_6\)N\(_4\), 100); \textbf{Anal.} Calcd. for C\(_{18}\)H\(_{14}\)N\(_4\)O\(_2\): C, 67.91; H, 4.43; N, 17.60. Found: C, 67.82; H, 4.19; N, 17.23.

\underline{8.2.11} (2aRS,8bSR)-6,8-Dimethoxy-3,3-dimethyl-2a,8b-dihydrocyclobuta[c]chromene-1,1,2,2-tetracarbonitrile (56)

A solution of chromene 37 (100 mg, 0.454 mmol) and tetracyanoethylene (87 mg, 0.68 mmol) in acetonitrile (8 mL) was heated at reflux for 30 min. The reaction mixture
was then allowed to cool to room temperature and was concentrated in vacuo. The resultant solid was then partitioned between acetonitrile (10 mL) and a saturated aqueous solution of ammonium chloride (15 mL). The aqueous phase was separated and extracted with ether (2 x 10 mL). The combined organic extracts were washed with water (30 mL), brine (30 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ethyl acetate (2:1) as the eluant afforded the title compound 56 (52 mg, 33%) as a white solid. \(R_f = 0.41 \), hexanes:ethyl acetate (2:1); M.p. 188-191 °C, hexanes:ethyl acetate; \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \)

A mixture of α,α’-dibromo-ο-xylene (60) (2.00 g, 7.58 mmol), Rongalite\(^\circledR\) (61) (2.35 g, 15.2 mmol), tetra-n-butylammonium bromide (489 mg, 1.52 mmol) and \(N,N\)-dimethylformamide (30 mL) was stirred at 0 °C for 3 h and then at room temperature for
17 h. Water (100 mL) was then added and the reaction mixture stirred an additional 30 min. The resultant aqueous mixture was extracted with ether (3 x 300 mL), dried over magnesium sulphate and concentrated in vacuo. The resultant oil was dissolved in ether (30 mL) and washed with water (3 x 150 mL), brine (2 x 150 mL), dried over anhydrous magnesium sulphate and concentrated in vacuo to afford the title compound 62 (686 mg, 54%) as a pale yellow oil. \(R_f = 0.50 \), hexanes:ethyl acetate (1:2); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 3.55 (d, \(J = 15.4 \) Hz, 1H, CH), 4.42 (d, \(J = 15.4 \) Hz, 1H, CH), 4.96 (d, \(J = 13.7 \) Hz, 1H, CH), 5.30 (d, \(J = 13.7 \) Hz, 1H, CH), 7.21 – 7.26 (m, 2H, ArH), 7.33 – 7.38 (m, 2H, ArH); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 56.9, 62.9, 125.7, 126.2, 127.8, 128.6, 129.6, 133.7; IR (neat) 3029, 2968, 2921, 2874, 2245, 2109, 1784, 1719, 1695, 1495, 1459, 1404, 1207, 1142, 1119, 1094 cm\(^{-1}\); MS (Cl) \(m/z \) (rel. intensity) 169 (M + H, 100), 104 (M – SO\(_2\), 3).

8.3 Experimental Procedures and Characterization Data Concerning Chapter Three

8.3.1 2,2,6,6,10,10-Hexamethyl-2H,6H,10H-dipyano[6,5-6,6',5'-h]chromene (30)\(^{19}\)

\[
\text{Me}_3\text{C} \quad \text{Me}
\]

A mixture of senecialdehyde (29) (1.83 g, 21.7 mmol), phloroglucinol (27) (680 mg, 5.43 mmol), phenylboronic acid (1.99 g, 16.3 mmol), propionic acid (60 drops) and benzene (50 mL) was heated at reflux in a Dean-Stark apparatus for 2 h. The resultant solution was cooled to room temperature and on filtration through a pad of silica gel with
ether (125 mL) was concentrated in vacuo. Purification by flash chromatography using hexanes:ether (15:1) as the eluant afforded the title compound 30 (1.08 g, 61%) as a white powder. \(R_f = 0.51, \) hexanes:ether (15:1); M.p. 110-113 °C, hexanes:ether \((\text{lit.}^{19} \ 110-113 \degree \text{C, hexanes:ether}) \). \(^1\text{H NMR} \ (500 \text{ MHz, CDCl}_3) \ \delta 1.40 \ (s, 18 \text{H, Me}), 5.41 \ (d, J = 9.8 \text{ Hz, } 3 \text{H, ArCHCH}), \ 6.58 \ (d, J = 9.8 \text{ Hz, } 3 \text{H, ArCHCH}); \(^{13}\text{C NMR} \ (126 \text{ MHz, CDCl}_3) \ \delta 27.9, \ 76.4, \ 103.4, \ 116.8, \ 125.8, \ 149.1; \) \(^\text{IR} \ (\text{ef}) \ 2974, \ 2913, \ 2863, \ 1639, \ 1592, \ 1459, \ 1434, \ 1378, \ 1365, \ 1243, \ 1218, \ 1138 \text{ cm}^{-1}; \) \(^\text{MS} \ (\text{Cl}) \ m/z \ (\text{rel. intensity}) \ 325 \ (\text{M + H, 100}).\)

8.3.2 \((1a\text{SR},3\text{cRS},4\text{aSR},6\text{cRS},7\text{aSR},9\text{cRS})-1,1,4,4,7,7-\text{Hexachloro-2,2,5,5,8,8-hexamethyl-1,1a,2,3c,4,4a,5,6c,7a,8,9c-dodecahydrocyclopropa[\text{c}]bis-cyclopropa[3,4]pyran}[6,5-f,6',5'-h]\text{chromene (67) and (1a\text{SR},3\text{cRS},4\text{aSR},6\text{cSR},7\text{aRS},9\text{cRS})-1,1,4,4,7,7-\text{hexachloro-2,2,5,5,8,8-hexamethy}-1,1a,2,3c,4,4a,5,6c,7a,8,9c-dodecahydrocyclopropa[\text{c}]bis-cyclopropa[3,4]pyran}[6,5-f,6',5'-h]\text{chromene (68)\)

To a mixture of the chromene 30 (93 mg, 0.29 mmol), tetra-n-butylammonium bromide (28 mg, 0.09 mmol) and an aqueous solution of sodium hydroxide (8 M, 6 mL) was added chloroform (10 mL, 120 mmol) dropwise at room temperature. The resultant mixture was allowed to stir at room temperature for 21 h and then ether (10 mL) was added. The resultant mixture was separated and the organic phase was washed with water (2 x 25 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. The resultant yellow solid was dissolved in a minimum amount of chloroform and to this
solution was added hexanes until a precipitate formed. The *title compound 67* was collected by vacuum filtration (19 mg, 11%) as a white powder. The filtrate was concentrated *in vacuo* and triturated with hexanes (20 mL). Drying of the solid *in vacuo* afforded the *title compound 68* (90 mg, 55%) as a white powder.

*Title compound 67: * $R_f = 0.21$, hexanes:ether (15:1); **M.p.** 256-259 °C, chloroform; 1H NMR (600 MHz, CDCl$_3$) δ 1.24 (s, 9H, Me), 1.72 (s, 9H, Me), 2.05 (d, $J = 11.0$ Hz, 3H, ArCHCH); 3.02 (d, $J = 11.0$ Hz, 3H, ArCHCH); 13C NMR (151 MHz, CDCl$_3$) δ 25.1, 26.6, 27.7, 39.4, 62.3, 71.5, 100.4, 149.9; IR (KBr) 3041, 2974, 2929, 2850, 1612, 1469, 1454, 1384, 1368, 1308, 1156, 1142, 1079, 1034 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 577 [M (3 x 35Cl + 3 x 37Cl) + H, 29], 576 (12), 575 [M (4 x 35Cl + 2 x 37Cl) + H, 74], 574 (14), 573 [M (5 x 35Cl + 37Cl) + H, 100], 572 (7), 571 [M (6 x 35Cl) + H, 38], 537 (M – Cl, 19), 501 (M – 2 x Cl, 12); Anal. Calcd. for C$_{24}$H$_{24}$Cl$_6$O$_3$: C, 50.29; H, 4.22. Found: C, 50.58; H, 4.19.

*Title compound 68: * $R_f = 0.37$, hexanes:ether (15:1); **M.p.** 239-240 °C, hexanes; 1H NMR (600 MHz, CDCl$_3$) δ 1.25 (apparent s, 9H, Me), 1.708 (s, 3H, Me), 1.714 (s, 3H, Me), 1.719 (s, 3H, Me), 2.06 (d, $J = 11.0$ Hz, 1H, ArCH), 2.088 (d, $J = 11.1$ Hz, 1H, ArCH), 2.090 (d, $J = 11.1$ Hz, 1H, ArCH), 3.02 (d, $J = 11.0$ Hz, 1H, ArCH), 3.140 (d, $J = 11.1$ Hz, 1H, ArCH), 3.143 (d, $J = 11.1$ Hz, 1H, ArCH); 13C NMR (151 MHz, CDCl$_3$) δ 24.9, 25.1, 25.3, 26.5, 26.57, 26.63, 27.33, 27.35, 27.7, 39.3, 39.46, 39.49, 62.3, 62.7, 71.6, 71.8, 100.4, 100.6, 100.8, 150.0, 150.1, 150.2; IR (KBr) 3063, 2990, 2977, 2934, 2870, 1615, 1471, 1366, 1308, 1156, 1140, 1080 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 579 [M (2 x 35Cl + 4 x 37Cl) + H, 9], 578 (9), 577 [M (3 x 35Cl + 3 x 37Cl) + H, 38], 576 (20), 575 [M (4 x 35Cl + 2 x 37Cl) + H, 86], 574 (25), 573 [M (5 x 35Cl + 37Cl) + H, 100], 572
8.3.3 (1aSR,3cRS,4aSR,6cRS,7aSR,9cRS)-1,1,4,4,7,7-Hexabromo-2,2,5,5,8,8-
hexamethyl-1,1a,2,3c,4,4a,5,6c,7,7a,8,9c-dodecahydrocyclopropa[c]bis-
cyclopropa[3,4]pyrano[6,5-f,6',5'-h]chromene (69) and
(1aSR,3cRS,4aSR,6cSR,7aRS,9cRS)-1,1,4,4,7,7-hexabromo-2,2,5,5,8,8-
hexamethyl-1,1a,2,3c,4,4a,5,6c,7,7a,8,9c-dodecahydrocyclopropa[c]bis-
cyclopropa[3,4]pyrano[6,5-f,6',5'-h]chromene (70)

To a mixture of the chromene 30 (100 mg, 0.308 mmol), tetra-n-butylammonium bromide (30 mg, 0.09 mmol) and an aqueous solution of sodium hydroxide (8 M, 8 mL) was added bromoform (10 mL, 110 mmol) dropwise at room temperature. The reaction mixture was allowed to stir at room temperature for 19 h and then water (20 mL) was added. The resultant mixture was then separated and the aqueous phase was extracted with chloroform (2 x 20 mL). The combined organic extracts where washed with water (50 mL), dried over anhydrous magnesium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (15:1) as the eluant afforded the title compound 69 (44 mg, 19%) as a white powder and the title compound 70 (32 mg, 12%) as a white powder.

Title compound 69: R$_f$ = 0.28, hexanes:ether (15:1); M.p. 229-231 °C, hexanes:ether; 1H NMR (600 MHz, CDCl$_3$) δ 1.26 (s, 9H, Me), 1.74 (s, 9H, Me), 2.16 (d,
\[J = 10.9 \text{ Hz, } 3\text{H, ArCHCH}, 3.08 (d, J = 10.9 \text{ Hz, } 3\text{H, ArCHCH}); \]

\[^{13}\text{C NMR} \text{ (151 MHz, CDCl}_3 \text{)} \delta 25.7, 26.0, 28.2, 31.0, 40.4, 72.4, 101.8, 150.0; \]

**IR (KBr) 2974, 2933, 1613, 1467, 1383, 1364, 1304, 1242, 1154, 1140, 1077, 1031, 727 \text{ cm}^{-1}; \text{ MS (HRMS) m/z (rel. intensity)} 846 [M (6 \times 81\text{Br} + H, 6)], 844 [M (5 \times 81\text{Br} + 79\text{Br}) + H, 31], 842 [M (4 \times 81\text{Br} + 2 \times 79\text{Br}) + H, 80], 840 [M (3 \times 81\text{Br} + 3 \times 79\text{Br}) + H, 100], 838 [M (2 \times 81\text{Br} + 4 \times 79\text{Br}) + H, 69], 836 [M (81\text{Br} + 5 \times 79\text{Br}) + H, 32], 834 [M (6 \times 79\text{Br}) + H, 6]; \text{ HRMS Calcd. for C}_{24}\text{H}_{25}\text{Br}_6\text{O}_3: 842.6826. \text{ Found: 842.6839.} \]

Title compound 70: \[R_f = 0.38, \text{ hexanes:ether (15:1); M.p. 199-201 \text{ °C, } ^1\text{H NMR} \text{ (600 MHz, CDCl}_3 \text{)} \delta 1.25 \text{ (apparent s, } 6\text{H, Me}), 1.27 \text{ (s, } 3\text{H, Me}), 1.737 \text{ (apparent s, } 6\text{H, Me}), 1.743 \text{ (s, } 3\text{H, Me}), 2.17 \text{ (d, } J = 10.9 \text{ Hz, } 1\text{H, ArCH}), 2.18 \text{ (d, } J = 11.0 \text{ Hz, } 1\text{H, ArCH}), 2.19 \text{ (d, } J = 11.0 \text{ Hz, } 1\text{H, ArCH}), 3.09 \text{ (d, } J = 10.9 \text{ Hz, } 1\text{H, ArCH}), 3.22 \text{ (d, } J = 11.0 \text{ Hz, } 1\text{H, ArCH}), 3.23 \text{ (d, } J = 11.0 \text{ Hz, } 1\text{H, ArCH}); \]**

**\[^{13}\text{C NMR} \text{ (151 MHz, CDCl}_3 \text{)} \delta 25.6, 25.86, 25.91, 25.93, 26.00, 26.02, 27.7, 27.8, 28.2, 30.9, 31.43, 31.46, 40.3, 40.5, 72.4, 72.74, 72.76, 102.2, 102.3, 102.4, 149.9, 150.0, 150.2; \text{ IR (KBr) 2977, 2932, 1616, 1471, 1384, 1366, 1308, 1156, 1140, 1080, 1035, 813 \text{ cm}^{-1}; \text{ MS (HRMS) m/z (rel. intensity)} 846 [M (6 \times 81\text{Br} + H, 5)], 844 [M (5 \times 81\text{Br} + 79\text{Br}) + H, 27], 842 [M (4 \times 81\text{Br} + 2 \times 79\text{Br}) + H, 73], 840 [M (3 \times 81\text{Br} + 3 \times 79\text{Br}) + H, 100], 838 [M (2 \times 81\text{Br} + 4 \times 79\text{Br}) + H, 67], 836 [M (81\text{Br} + 5 \times 79\text{Br}) + H, 28], 834 [M (6 \times 79\text{Br}) + H, 5]; \text{ HRMS Calcd. for C}_{24}\text{H}_{25}\text{Br}_6\text{O}_3: 840.6845. \text{ Found: 840.6839.} \]

8.3.4 Ethyl-(10aRS,11SR,11aSR)-2,2,6,6,10,10-hexamethyl-10,10a,11,11a-tetrahydro-2H,6H-cyclopropa[c]-dipyran[6,5-f,6',5'-h]chromene-11-carboxylate (74) and Diethyl-(6aRS,7RS,7aRS,9aRS,10RS,10aRS)-2,2,6,6,9,9-hexamethyl-6,6a,7,7a,9,9a,10,10a-octahydro-2H-cyclopropa[c]-cyclopropa[3,4]pyran[6,5-f]pyran[6,5-h]chromene-7,10-dicarboxylate (75) and Triethyl-(1RS,1aRS,3cRS,4RS,4aRS,6cRS,7RS,7aRS,9cRS)-3,3,6,6,9,9-
hexamethyl-1,1a,2,3c,4,4a,5,6c,7,7a,8,9c-dodecahydrocyclopropa[c]bis-cyclopropa[3,4]pyrano[6,5-f,6',5'-h]chromene-1,4,7-tricarboxylate (76)

Method A: To a solution of copper(II) triflate (17 mg, 46 μmol) in dichloromethane (15 mL) was added 2,2'-bipyridine (9 mg, 56 μmol) and the resultant solution was stirred at room temperature for 30 min. Phenylhydrazine (10 μL, 102 μmol) and chromene 30 (200 mg, 0.617 mmol) were then added. A solution of ethyl diazoacetate (73) (0.39 mL, 3.7 mmol) in dichloromethane (3 ml) was then added over the course of ~18 h via a syringe pump. After the addition was complete, the reaction was stirred for an additional 4 h. The reaction mixture was then concentrated *in vacuo* to afford the crude product. Purification by flash chromatography using hexanes:ether (4:1) as the eluant afforded the *title compound* 74 [57 mg, 22% (53% brsm)] as a colourless oil and the starting material (30) (117 mg, 58%).

Method B: To a stirred solution of copper(II) triflate (11 mg, 35 μmol) in dichloromethane (5 mL) was added 2,2'-bipyridine (7 mg, 42 μmol) and the resultant
solution was stirred at room temperature for 30 min. Phenylhydrazine (10 μL, 102 μmol) and chromene 30 (100 mg, 0.308 mmol) were then added. A solution of ethyl diazoacetate (73) (0.29 mL, 2.7 mmol) in dichloromethane (3 ml) was then added over the course of ~12 h \(\text{via}\) a syringe pump. After the addition was complete, the reaction was stirred for an additional 24 h. The reaction mixture was then concentrated \textit{in vacuo} to afford the crude product. Purification by flash chromatography using hexanes:ether (5:1) as the eluant, using chloroform to load the column, afforded the \textit{title compound} 74 (5 mg, 4%, [37% brsm]) as a colourless oil and the starting material (30) (90 mg, 90%).

\textbf{Method C:} To a stirred solution of copper(II) triflate (31 mg, 87 μmol) in anhydrous dichloromethane (12 mL) was added 2,2'-bipyridine (16 mg, 0.10 mmol) and the resultant solution was stirred at room temperature for 30 min. Phenylhydrazine (10 μL, 102 μmol) and chromene 30 (150 mg, 0.462 mmol) were then added. A solution of ethyl diazoacetate (73) (0.73 mL, 6.9 mmol) in dichloromethane (3 ml) was then added over the course of ~9 h \(\text{via}\) a syringe pump. After the addition was complete, the reaction was stirred for an additional 24 h. The reaction mixture was then concentrated \textit{in vacuo} to afford the crude product. Purification by flash chromatography using hexanes:ether (4:1) as the eluant afforded the \textit{title compound} 74 (30 mg, 16%) as a colourless oil and the \textit{title compound} 75 (78 mg, 40%) as a pale yellow oil.

\textbf{Method D:} To a stirred solution of copper(II) triflate (21 mg, 58 μmol) in anhydrous dichloromethane (7 mL) was added 2,2'-bipyridine (11 mg, 69 μmol) and the resultant solution was stirred at room temperature for 30 min. Phenylhydrazine (10 μL, 102 μmol) and chromene 30 (100 mg, 0.31 mmol) were then added. A solution of ethyl diazoacetate (73) (0.49 mL, 4.6 mmol) in dichloromethane (3 ml) was then added over
the course of ~24 h via a syringe pump. After the addition was complete, the reaction was stirred for an additional 13 h. The reaction mixture was then concentrated *in vacuo* to afford the crude product. Purification by flash chromatography using hexanes:ether (9:1) followed by hexanes:ether (2:1) as the eluant, using chloroform to load, afforded the *title compound* 74 (6 mg, 6%) as a colourless oil, the *title compound* 75 (37 mg, 26%) as a pale yellow oil and the *title compound* 76 (28 mg, 22%) as a colourless oil.

Title compound 74: \(R_f = 0.34 \), hexanes:ether (5:1); \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) 1.22 (s, 3H, Me), 1.26 (t, \(J = 7.2 \) Hz, 3H, CH\(_2\)Me), 1.33 (s, 3H, Me), 1.38 (s, 3H, Me), 1.43 (s, 3H, Me), 1.44 (s, 3H, Me), 1.50 (s, 3H, Me), 2.01-2.06 (m, 2H, \(H-10a \) & \(H-11 \)), 2.84 (dd, \(J = 9.3, 3.6 \) Hz, 1H, \(H-11a \)), 4.11-4.19 (m, 2H, C\(CH_2\)Me), 5.41 (d, \(J = 9.9 \) Hz, 1H, ArCH-), 5.45 (d, \(J = 9.8 \) Hz, 1H, ArCH-), 6.49 (d, \(J = 9.8 \) Hz, 1H, ArCH-), 6.60 (d, \(J = 9.8 \) Hz, 1H, ArCH); *Observed nOe contacts* \(H-10a \) to \(H-11a \), \(H-11 \) to \(H-10a \), \(H-11a \) to \(H-11a \); \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta \) 14.2, 18.3, 24.5, 25.5, 27.1, 27.4, 28.0, 28.2, 34.4, 60.5, 72.2, 76.1, 76.4, 103.8, 104.3, 104.8, 116.6, 116.7, 126.3, 126.5, 133.6, 147.3, 147.4, 151.1, 172.9; IR (ef) 2974, 2923, 1721, 1635, 1600, 1454, 1364, 1302, 1177, 1132 cm\(^{-1}\); MS (Cl) \(m/z \) (rel. intensity) 411 (M+H, 20); Anal. Calcd. for C\(_{25}\)H\(_{30}\)O\(_5\): C, 73.15; H, 7.37. Found: C, 73.19; H, 7.53; HRMS Calcd. for C\(_{25}\)H\(_{31}\)O\(_5\): 411.2166. Found: 411.2164.

Title compound 75: \(R_f = 0.29 \), hexanes:ether (2:1); \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) 1.157 (s, 3H, Me), 1.209 (s, 3H, Me), 1.25-1.28 (m, 6H, CH\(_2\)Me), 1.35 (s, 3H, Me), 1.42 (s, 3H, Me), 1.486 (s, 3H, Me), 1.51 (s, 3H, Me), 1.98-2.09 (m, 4H, \(H-6a \); \(H-7 \); \(H-9a \), \(H-10 \)), 2.72-2.74 (m, 1H, \(H \)), 2.86-2.88 (m, 1H, \(H \)), 4.12-4.19 (m, 4H, CH\(_2\)Me), 5.43 (d, \(J = 9.9 \) Hz, 1H, ArCH-3), 6.49 (d, \(J = 9.9 \) Hz, 1H, ArCH-4); \(^{13}\)C NMR (151 MHz, CDCl\(_3\))
δ 14.20, 14.21, 18.28, 18.31, 24.4, 24.5, 25.38, 25.39, 27.4, 28.0, 28.1, 28.12, 34.6, 34.7, 60.5, 60.6, 71.9, 72.2, 76.1, 105.0, 105.5, 105.7, 116.6, 127.0, 145.5, 149.3, 149.4, 172.9, 173.0; IR (ef) 2977, 2934, 2912, 1723, 1638, 1610, 1467, 1365, 1321, 1300, 1263, 1179, 1151, 1130 cm⁻¹; MS (CI) m/z (rel. intensity) 498 (24), 497 (M + H, 100), 451 (M – C₂H₅O, 16); HRMS Calcd. for C₂₉H₃₇O₇: 497.2534. Found: 497.2538.

Title compound 76: Rᵥ = 0.21, hexanes:ether (2:1); ¹H NMR (600 MHz, CDCl₃) δ 1.15 (s, 3H, Me), 1.16 (s, 3H, Me), 1.19 (s, 3H, Me), 1.24-1.29 (m, 9H, CH₂Me), 1.476 (s, 3H, Me), 1.482 (s, 3H, Me), 1.492 (s, 3H, Me), 1.98-2.06 (m, 6H, CH), 2.74 (dd, J = 8.7, 4.2 Hz, 1H, CH), 2.79 (apparent dd, J = 9.3, 3.6 Hz, 3H, CH), 4.11-4.20 (m, 6H, CH₂Me); ¹³C NMR (151 MHz, CDCl₃) δ 14.2, 18.3, 24.5, 25.5, 27.1, 27.4, 28.0, 28.2, 34.4, 60.5, 72.2, 76.1, 76.4, 103.8, 104.3, 104.8, 116.6, 116.7, 126.3, 126.5, 133.6, 147.3, 147.4, 151.1, 172.9; IR (ef) 2977, 2933, 1721, 1613, 1468, 1422, 1366, 1298, 1178, 1152, 1126 cm⁻¹; MS (CI) m/z (rel. intensity) 584 (31), 583 (M + H, 100), 537 (M – C₂H₅O, 34); HRMS Calcd. for C₃₃H₄₃O₉: 583.2902. Found: 583.2897.

8.3.5 *p*-Toluenesulphonyl azide (77)⁴¹

![77](image)

To a mixture of *p*-toluenesulphonyl chloride (78) (3.00 g, 15.7 mmol), acetone (50 mL) and water (50 mL) was added sodium azide (1.02 g, 15.7 mmol) at 0 °C. The resultant mixture was allowed to warm to room temperature over 2 h. The excess acetone was then removed *in vacuo* and the resultant aqueous solution was extracted with ether (2 x 100 mL), dried over anhydrous sodium sulphate and concentrated *in vacuo* to afford the
title compound 77 (2.75 g, 89%) as a colourless oil. \(R_f = 0.43 \), hexanes:ether (3:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 2.48 (s, 3H, Me), 7.41 (apparent d, \(J = 8.2 \) Hz, 2H, ArH), 7.84 (dd, \(J = 8.3, 1.8 \) Hz, 2H, ArH); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 21.8, 127.5, 130.2, 135.4, 146.2; IR (neat) 3067, 2926, 2871, 2349, 2126, 1595, 1494, 1451, 1399, 1371, 1297, 1169, 1086 cm\(^{-1}\); MS (Cl) \(m/z \) (rel. intensity) 155 (M – N\(_3\), 100).

8.3.6 1,3-Dimethyl-2-diazopropanedioate (80)\(^{42}\)

![80]

To a solution of \(p \)-toluenesulphonyl azide (77) (2.24 g, 11.4 mmol) and dimethyl malonate (79) (1.50 g, 11.4 mmol) in acetonitrile (30 mL) was added triethylamine (1.75 mL, 12.5 mmol) dropwise at room temperature. The resultant solution was allowed to stir for 17 h and then the solvent was removed in vacuo. The resultant solid was partitioned between dichloromethane (40 mL) and water (40 mL) and stirred at room temperature for 1 h. The two phases were then separated and the organic phase was washed with water (2 x 50 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ethyl acetate (1:1) as the eluant afforded the title compound 80 (1.39 g, 77%) as a light yellow oil. \(R_f = 0.34 \), hexanes:ethyl acetate (1:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 3.80 (s, 6H, OMe); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 52.4, 161.3; IR (ef) 3006, 2958, 2849, 2139, 1762, 1741, 1694, 1439, 1355, 1334, 1276, 1191, 1098 cm\(^{-1}\); MS (Cl) \(m/z \) (rel. intensity) 159 (M + H, 100), 132 (M – N\(_2\), 41).
8.3.7 1,3-Diethyl-2-diazopropanedioate (82)44

\[
\text{EtO} \quad \overset{\text{N}_2} {\text{C}} \quad \text{EtO}
\]

82

To a solution of \textit{p}-toluenesulphonyl azide (77) (1.85 g, 9.38 mmol) and diethyl malonate (81) (1.50 g, 9.37 mmol) in acetonitrile (35 mL) was added triethylamine (1.45 mL, 10.3 mmol) dropwise at room temperature. The resultant solution was allowed to stir for 17 h and then the solvent was removed \textit{in vacuo}. The resultant solid was partitioned between dichloromethane (40 mL) and water (40 mL) and stirred at room temperature for 1 h. The two phases were then separated and the organic phase was washed with water (2 x 50 mL), dried over anhydrous sodium sulphate and concentrated \textit{in vacuo}. Purification by flash chromatography using hexanes:ethyl acetate (2:1) as the eluant afforded the \textit{title compound} 82 (0.48 g, 28\%) as a light yellow oil. \textit{R}_f = 0.43, hexanes:ethyl acetate (2:1); 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta \) 1.29 (t, \(J = 7.0 \) Hz, 6H, Me), 4.28 (q, \(J = 7.6 \) Hz, 4H, OCH\textsubscript{2}); 13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta \) 14.3, 61.5, 161.0; \textit{IR} (ef) 2984, 2939, 2907, 2139, 1760, 1736, 1691, 1466, 1447, 1395, 1372, 1321, 1269, 1198, 1170, 1093 cm-1; \textit{MS} (Cl) \textit{m/z} (rel. intensity) 187 (M + H, 100), 159 (M − N\textsubscript{2}, 35).

8.3.8 2-Diazocyclohexane-1,3-dione (84)43

\[
\overset{\text{N}_2} {\text{C}} \quad \text{C} \quad \overset{\text{N}_2} {\text{C}}
\]

84

To a solution of \textit{p}-toluenesulphonyl azide (77) (1.68 g, 8.55 mmol) and cyclohexa-1,3-dione (83) (959 mg, 8.55 mmol) in acetonitrile (30 mL) was added triethylamine (1.30 mL, 9.41 mmol) dropwise at room temperature. The resultant
solution was allowed to stir for 14 h after which the solvent was removed in vacuo. The resultant oil was partitioned in dichloromethane (30 mL) and water (30 mL) and stirred at room temperature for 1 h. The two phases were then separated and the organic phase was washed with water (2 x 50 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ethyl acetate (1:4) as the eluant afforded the title compound 84 (1.39 g, 77%) as a viscous yellow oil. \(R_f = 0.31 \), hexanes:ethyl acetate (1:4); \(^1\text{H NMR} \) (500 MHz, CDCl\(_3\)) \(\delta 2.03 \) (quintet, \(J = 6.4 \) Hz, 2H, \(\text{CH}_2 \)), 2.55 (t, \(J = 6.6 \) Hz, 4H, C(O)CH\(_2\)); \(^{13}\text{C NMR} \) (126 MHz, CDCl\(_3\)) \(\delta 18.6, 36.8, 190.4 \); IR (ef) 2958, 2902, 2195, 2133, 1645, 1460, 1418, 1350, 1316, 1287 cm\(^{-1}\); MS (Cl) \(m/z \) (rel. intensity) 111 (M – N\(_2\), 27), 85 (100).

8.3.9 (10a\text{SR},12c\text{RS})-12,12-Dichloro-2,2,6,6,10,10-hexamethyl-10,10a,12,12a-tetrahydro-2\text{H},6\text{H},11\text{H}-cyclobuta[c]dipyrano[6,5-f,6',5'-h]chromen-11-one (88) and (6a\text{SR},8a\text{RS},10a\text{SR},12c\text{RS})-8,8,12,12-tetrachloro-2,2,6,6,10,10-hexamethyl-6,6a,8,8a,10,10a,12,12a-octahydro-2\text{H},7\text{H},11\text{H}-cyclobuta[c]-cyclobuta[3,4]pyrano[6,5-f]pyrano[6,5-h]chromene-7,11-dione (89)

\[\text{Method A: To a suspension of zinc powder (320 mesh, 204 mg, 3.12 mmol) and chromene 30 (75 mg, 0.23 mmol) in tetrahydrofuran (7 mL) at -78 °C was added trichloroacetyl chloride (0.23 mL, 2.1 mmol) dropwise over ~2 min. The resultant suspension was stirred at -78 °C for 15 min then was allowed to warm to room temperature and stirred for an additional 23 h. A saturated aqueous solution of sodium bicarbonate (1 mL) was then added and the reaction mixture was stirred for 1 h. The} \]
resultant mixture was filtered through a small pad of celite and the filter-cake was washed with ether (2 x 20 mL). The combined filtrates were washed with a saturated aqueous solution of sodium bicarbonate (2 x 20 mL), water (2 x 15 mL), dried over anhydrous sodium sulphate and concentrated \textit{in vacuo}. Purification by flash chromatography using hexanes:dichloromethane (3:2) as the eluant afforded the \textit{title compound 88} [27 mg, 27\% (38\% brsm)] as a white solid and \textit{title compound 89} [4 mg, 5\% (8\% brsm)] as a white solid and the starting material (30) (5 mg, 2\%).

\textbf{Method B:} To a suspension of zinc powder (320 mesh, 109 mg, 1.67 mmol) and chromene 30 (40 mg, 0.12 mmol) in tetrahydrofuran (5 mL) at 0 °C was added trichloroacetyl chloride (0.12 mL, 1.1 mmol) dropwise over ~1 min. The resultant suspension was stirred at 0 °C for 2 h and then was allowed to warm to room temperature and stirred for an additional 16 h. A saturated aqueous solution of sodium bicarbonate (1 mL) was then added and the reaction mixture was stirred for 30 min. The resultant mixture was filtered through a small pad of celite and the filter-cake was washed with ether (2 x 10 mL). The combined filtrates were washed with a saturated aqueous solution of sodium bicarbonate (2 x 15 mL), water (2 x 15 mL), dried over anhydrous sodium sulphate and concentrated \textit{in vacuo}. Purification by flash chromatography using hexanes:dichloromethane (3:2) as the eluant afforded the \textit{title compound 88} (7 mg, 14\%) as a white solid.

\textbf{Method C:} To a suspension of zinc powder (320 mesh, 109 mg, 1.67 mmol) and chromene 30 (40 mg, 0.12 mmol) in tetrahydrofuran (5 mL) at room temperature was added trichloroacetyl chloride (0.12 mL, 1.1 mmol) dropwise over ~2 min. The resultant suspension was stirred for an additional 15 h. A saturated aqueous solution of sodium
bicarbonate (1 mL) was then added and the reaction mixture was stirred for 1 h. The resultant mixture was filtered through a small pad of celite and the filter-cake was washed with ether (2 x 15 mL). The combined filtrates were washed with a saturated aqueous solution of sodium bicarbonate (2 x 20 mL), water (2 x 20 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:dichloromethane (3:2) as the eluant afforded the title compound 88 (8 mg, 15%) as a white solid and the title compound 89 (3 mg, 4%) as a white solid.

Method D: To a suspension of zinc powder (320 mesh, 272 mg, 4.16 mmol) and chromene 30 (60 mg, 0.19 mmol) in tetrahydrofuran (8 mL) at 0 °C was added trichloroacetyl chloride (0.31 mL, 2.8 mmol) dropwise over ~2 min. The resultant suspension was stirred at 0 °C for 15 min and then was allowed to warm to room temperature and stirred for an additional 21 h. A saturated aqueous solution of sodium bicarbonate (1 mL) was then added and the reaction mixture was stirred for 1 h. The resultant mixture was filtered through a small pad of celite and the filter-cake was washed with ether (2 x 25 mL). The combined filtrates were washed with a saturated aqueous solution of sodium bicarbonate (2 x 25 mL), water (2 x 25 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (9:1) as the eluant afforded the title compound 88 (23 mg, 29%) as a white solid and the title compound 89 (15 mg, 21%) as a white solid.

Method E: To a suspension of zinc powder (320 mesh, 272 mg, 4.16 mmol) and chromene 30 (60 mg, 0.19 mmol) in tetrahydrofuran (8 mL) at room temperature was added trichloroacetyl chloride (0.31 mL, 2.8 mmol) dropwise over ~2 min. The resultant suspension was stirred for an additional 21 h. A saturated aqueous solution of sodium
bicarbonate (1 mL) was then added and then reaction mixture was stirred for 1 h. The resultant mixture was filtered through a small pad of celite and the filter-cake was washed with ether (2 x 25 mL). The combined filtrates were washed with a saturated aqueous solution of sodium bicarbonate (2 x 25 mL), water (2 x 25 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (9:1) as the eluant, using chloroform to load the column, afforded the title compound 88 (4 mg, 5%) as a white solid and the title compound 89 (28 mg, 29%) as a white solid.

Method F: To a suspension of zinc powder (320 mesh, 70 mg, 1.1 mmol) and the mono-cycloadduct 88 (31 mg, 0.071 μmol) in tetrahydrofuran (8 mL) at 0 °C was added a solution of trichloroacetyl chloride (0.08 mL, 0.7 μmol) in tetrahydrofuran (1 mL) dropwise over ~2 min. The resultant suspension was then allowed to warm to room temperature and stirred for an additional 2 h. The resultant suspension was filtered through a small pad of celite and the filter-cake was washed with ether (2 x 10 mL). The combined filtrates were washed with water (2 x 10 mL), a saturated aqueous solution of sodium bicarbonate (15 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (4:1) as the eluant afforded the title compound 89 (16 mg, 40%) as a white solid

Title compound 88: $R_f = 0.38$, hexanes:ether (9:1); **M.p.** 178-180 °C, hexanes:ether; **1H NMR (500 MHz, CDCl₃)** δ 1.16 (s, 3H, Me), 1.39 (s, 3H, Me), 1.42 (s, 3H, Me), 1.46 (s, 3H, Me), 1.47 (s, 3H, Me), 1.68 (s, 3H, Me), 3.95 (d, $J = 11.0$ Hz, 1H, H-10a), 4.33 (d, $J = 11.1$ Hz, 1H, H-12a), 5.41 (d, $J = 9.9$ Hz, 1H, ArCHCH), 5.46 (d, $J = 10.0$ Hz, 1H, ArCHCH), 6.50 (d, $J = 9.9$ Hz, 1H, ArCHCH), 6.61 (d, $J = 9.9$ Hz, 1H,
ArCHCH); 13C NMR (126 MHz, CDCl$_3$) δ 25.7, 25.9, 27.6, 28.2, 28.6, 28.8, 42.3, 62.0, 75.2, 76.6, 77.3, 87.5, 100.3, 103.8, 104.6, 116.2, 116.6, 125.9, 126.0, 149.0, 149.4, 152.6, 194.8; IR (ef) 2974, 2929, 2865, 1803, 1635, 1600, 1551, 1448, 1365, 1306, 1133, 1090, 1037, 999 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 440 [M (2 x 37Cl) + H, 2], 439 (11), 438 [M (35Cl + 37Cl) + H, 11], 437 (64), 436 [M (2 x 35Cl) + H, 100]; Anal. Calcd. for C$_{23}$H$_{24}$Cl$_2$O$_4$: C, 63.46; H, 5.56. Found: C, 63.74; H, 5.83.

Title compound 89: R$_f$ = 0.23, hexanes:ether (9:1); M.p. 190-192 °C, hexanes:ether; 1H NMR (500 MHz, CDCl$_3$) δ 1.11 (s, 3H, Me), 1.30 (s, 3H, Me), 1.46 (s, 3H, Me), 1.49 (s, 3H, Me), 1.67 (s, 3H, Me), 1.73 (s, 3H, Me), 3.91 (d, J = 11.3 Hz, 1H, CH), 4.03 (d, J = 11.0 Hz, 1H, CH), 4.36 (d, J = 11.0 Hz, 1H, CH), 4.39 (d, J = 11.3 Hz, 1H, CH), 5.44 (d, J = 10.0 Hz, 1H, ArCHCH), 6.52 (d, J = 10.1 Hz, 1H, ArCHCH); 13C NMR (126 MHz, CDCl$_3$) δ 25.6, 25.9, 26.0, 26.2, 28.6, 29.1, 42.0, 42.2, 61.8, 62.8, 75.6, 75.7, 77.7, 87.4, 87.9, 100.8, 102.2, 105.1, 115.8, 126.2, 149.9, 152.1, 153.2, 194.4, 195.1; IR (ef) 2977, 2929, 2858, 1803, 1628, 1607, 1558, 1454, 1384, 1364, 1301, 1210, 1132, 1090 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 553 [M (4 x 37Cl) + H, 4], 552 (4), 551 [M (35Cl + 3 x 37Cl) + H, 17], 550 (16), 549 [2 x 35Cl + 2 x 37Cl] + H, 64], 548 (100), 547 [M (3 x 35Cl + 37Cl) + H, 51]; Anal. Calcd. for C$_{25}$H$_{24}$Cl$_4$O$_5$: C, 54.97; H, 4.43. Found: C, 54.84; H, 4.47.
To a suspension of zinc powder (320 mesh, 218 mg, 3.33 mmol) and chromene 30 (80 mg, 0.25 mmol) in tetrahydrofuran (8 mL) at room temperature was added a solution of trichloroacetyl chloride (0.25 mL, 2.2 mmol) in tetrahydrofuran (3 mL) dropwise via syringe pump over 12 h. A saturated aqueous solution of sodium bicarbonate (1 mL) was then added and the reaction mixture was stirred for 30 min. The resultant mixture was filtered through a small pad of celite and the filter-cake was washed with ether (2 x 10 mL). The combined filtrates were washed with a saturated aqueous solution of sodium bicarbonate (2 x 20 mL), water (20 mL), dried over anhydrous magnesium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (2:1) the eluant, with chloroform to load, afforded the title compound 90 (98 mg, 60%) as a white solid. \(R_f = 0.25 \), hexanes:ether (2:1); \textbf{M.p.} 245 °C (dec.), hexanes:ether; \(^1\text{H NMR} \) (600 MHz, CDCl\(_3\)) \(\delta \) 1.16 (s, 3H, \(Me \)), 1.28 (s, 3H, \(Me \)), 1.29 (s, 3H, \(Me \)), 1.73 (s, 3H, \(Me \)), 1.74 (s, 3H, \(Me \)), 1.75 (s, 3H, \(Me \)), 3.97 (d, \(J = 11.3 \) Hz, 1H, CH), 4.01 (d, \(J = 11.3 \) Hz, 1H, CH), 4.07 (d, \(J = 10.7 \) Hz, 1H, CH), 4.23 (d, \(J = 10.7 \) Hz, 1H, CH), 4.43 (d, \(J = 11.3 \) Hz, 1H, CH), 4.44 (d, \(J = 11.3 \) Hz, 1H, CH); \(^{13}\text{C NMR} \) (151 MHz, CDCl\(_3\)) \(\delta \) 25.88, 25.9, 26.0, 26.2, 26.4, 41.9, 42.0, 61.3, 62.5, 62.8, 75.6, 76.15, 76.16, 87.0, 87.7, 87.8,
102.1, 102.6, 103.9, 152.5, 153.2, 153.9, 193.4, 194.4, 194.6; IR (ef) 2981, 2938, 1804, 1611, 1454, 1389, 1372, 1301, 1243, 1209, 1130, 1077, 1040 cm⁻¹; MS (MALDI-TOF) m/z (rel. intensity) 660 (3), 659 [M (4 x Cl + 2 x Cl) + H, 7], 658 (4), 657 [M (5 x Cl + Cl) + H, 8], 655 [M (6 x Cl) + H, 4], 624 [M – Cl, 15], 622 [M – Cl, 20], 620 [M – Cl, 10], 588 (21), 586 (16), 552 (11); Anal. Calcd. for C₂₇H₂₄Cl₆O₆: C, 49.34; H, 3.68. Found: C, 49.45; H, 3.94.

8.3.11 (10aSR,12aRS)-2,2,6,6,10,10-Hexamethyl-10a,12a-dihydro-2H,6H-cyclobuta[c]dipyrano[6,5-f,6',5'-h]chromene-11,11,12,12-tetracarbonitrile (93)

A solution of chromene 30 (250 mg, 0.771 mmol) and tetracyanoethylene (395 mg, 3.08 mmol) in acetonitrile (15 mL) was heated at reflux for 5 min and then allowed to cool to room temperature. A saturated aqueous solution of ammonium chloride (15 mL) was then added to the reaction mixture. The aqueous phase was then separated and extracted with ether (2 x 10 mL). The organic extracts were combined and washed with water (2 x 15 mL), brine (2 x 20 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (1:1) as the eluant afforded the title compound 93 (66 mg, 29%) as a white solid. Rf = 0.36, hexanes:ether (1:1); M.p. 215-217 °C, hexanes:ether; ¹H NMR (500 MHz, CDCl₃) δ 1.23 (s, 3H, Me), 1.42 (s, 3H, Me), 1.43 (s, 3H, Me), 1.44 (s, 3H, Me), 1.55 (s, 3H, Me), 1.68 (s, 3H, Me), 3.58 (d, J = 9.7 Hz, 1H, CH), 4.34 (d, J = 9.7 Hz, 1H, CH), 5.45
(apparent t, J = 10.0 Hz, 2H, ArCHCH), 6.55 (d, J = 10.0 Hz, 1H, ArCHCH), 6.57 (d, J = 10.1 Hz, 1H, ArCHCH); 13C NMR (126 MHz, CDCl$_3$) δ 23.9, 24.1, 27.9, 28.4, 29.2, 29.3, 36.5, 38.8, 39.4, 48.2, 73.0, 77.3, 79.1, 92.3, 103.9, 104.5, 108.4, 108.7, 111.1, 111.3, 115.3, 115.9, 125.9, 126.6, 148.3, 151.2, 152.2; IR (ef) 2973, 2924, 2851, 1646, 1635, 1597, 1465, 1460, 1364, 1352, 1246, 1172, 1133, 1005 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 325 (M – C$_6$N$_4$, 100); Anal. Calcd. for C$_{27}$H$_{24}$N$_4$O$_3$: C, 71.67; H, 5.35; N, 12.38. Found: C, 71.84; H, 5.34; N, 12.48.

8.3.12 (6aSR,8aRS,10aSR,12aRS)-2,2,6,6,10,10-Hexamethyl-6a,8a,10a,12a-tetrahydro-2H-cyclobuta[c]-cyclobuta[3,4]pyrano[6,5-f]pyrano[6′,5′-h]chromene-7,7,8,8,11,11,12,12-octacarbonitrile (94)

![Chemical Structure](image)

A solution of chromene 30 (77 mg, 0.24 mmol) and tetracyanoethylene (275 mg, 2.14 mmol) in acetonitrile (15 mL) was heated at reflux for 24 hours and then allowed to cool to room temperature and concentrated in vacuo. Purification by flash chromatography using hexanes:ethyl acetate (3:1) as the eluant afforded the title compound 94 (58 mg, 42%) as a white solid. R$_f$ = 0.32, hexanes:ethyl acetate (3:1); M.p. 240-242 °C, hexanes:ethyl acetate; 1H NMR (600 MHz, CDCl$_3$) δ 1.08 (s, 3H, Me), 1.34 (s, 3H, Me), 1.43 (s, 3H, Me), 1.57 (s, 3H, Me), 1.68 (s, 3H, Me), 1.69 (s, 3H, Me), 4.06 (d, J = 10.3 Hz, 1H, CH), 4.15 (d, J = 9.7 Hz, 1H, CH), 4.51 (d, J = 10.3 Hz, 1H, CH), 4.56 (d, J = 9.7 Hz, 1H, CH), 5.63 (d, J = 10.2 Hz, 1H, ArCHCH), 6.58 (d, J = 10.2 Hz,
1H, ArCHCH); 13C NMR (151 MHz, CDCl$_3$) δ 23.3, 23.4, 24.1, 24.2, 28.8, 29.3, 37.3, 37.5, 38.7, 39.4, 39.6, 39.8, 47.9, 48.3, 75.6, 76.4, 80.4, 96.1, 96.9, 106.1, 110.0, 110.6, 110.8, 110.9, 112.08, 112.10, 112.5, 114.9, 128.1, 151.9, 153.0, 155.2; IR (KBr) 2983, 2933, 2248, 1642, 1605, 1469, 1395, 1377, 1171, 1133 cm$^{-1}$; MS (ESI) m/z (rel. intensity) 581 (M + H, 100); HRMS Calcd. for C$_{33}$H$_{25}$N$_8$O$_3$: 581.2049. Found: 581.2027.

8.4 Experimental Procedures and Characterization Data Concerning Chapter Four

8.4.1 (2SR)-5,7-Dimethoxy-2-methyl-2-(4'-methylpent-3'-enyl)-2H-chromene (97)

![Compound 97](image)

A mixture of citral (31) ($E:Z = 2:1$, 1.1 mL, 6.3 mmol), 3,5-dimethoxyphenol (39) (750 mg, 4.86 mmol), phenylboronic acid (590 mg, 4.86 mmol), propionic acid (30 drops) and benzene (30 mL) was heated at reflux in a Dean-Stark apparatus for 2.5 h. The resultant solution was cooled to room temperature and on filtration through a pad of silica gel with ether (125 mL) was concentrated in vacuo. Purification by flash chromatography using hexanes:ether (8:1) as the eluant afforded the title compound 97 (1.32 g, 94%) as a colourless oil. $R_f = 0.33$, hexanes:ether (8:1); 1H NMR (500 MHz, CDCl$_3$) δ 1.38 (s, 3H, Me), 1.59 (s, 3H, Me), 1.64 (m, 1H, CH$_2$), 1.67 (s, 3H, Me), 1.73 (m, 1H, CH$_2$-α), 2.11 (m, 2H, CH$_2$-β), 3.76 (s, 3H, OMe), 3.79 (s, 3H, OMe), 5.10 (m, 1H, CH), 5.38 (d, $J = 9.8$ Hz, 1H, ArCHCH), 5.99 (m, 1H, ArH), 6.03 (m, 1H, ArH), 6.61 (d, 1H, ArCHCH).
\(J = 9.8 \text{ Hz}, 1\text{H}, \text{ArCHCH})\); \(^{13}\text{C NMR}\) (126 MHz, CDCl\(_3\)) \(\delta\) 17.6, 22.7, 25.7, 26.3, 41.0, 55.3, 55.5, 78.5, 91.2, 93.8, 103.9, 117.1, 124.2, 124.7, 131.5, 154.8, 156.0, 160.9; \text{IR (ef)} 2970, 2940, 2842, 1613, 1578, 1495, 1456, 1381, 1202, 1148, 1115 cm\(^{-1}\); \text{MS (Cl)} \(m/z\) (rel. intensity) 289 (M + H, 100); \text{HRMS} \text{ Calcd. for C}_{18}\text{H}_{25}\text{O}_3: 289.1798. \text{ Found: 289.1789.}

8.4.2 (1aRS,8bSR,8cSR)-6,8-Dimethoxy-1,1,3a-trimethyl-1a,2,3,3a,8b,8c-hexahydro-1\text{H}-bicyclo[3.2.0]hept-5-eno[4,5,6-bc]chromene (99)

\[\text{Method A:} \] A solution of the chromene 97 (25 mg, 0.08 mmol) and benzophenone (16 mg, 0.08 mmol) in benzene (6 mL) was deoxygenated by purging with dry nitrogen for 20 minutes at room temperature. The quartz flask was then sealed and irradiated using a Hanovia 450 W high-pressure mercury lamp for 2 h. The reaction mixture was then concentrated \textit{in vacuo}. Purification by flash chromatography using hexanes:ether (9:1) as the eluant afforded the \textit{title compound 99} (14 mg, 57%) as a white solid.

\[\text{Method B:} \] A solution of the chromene 97 (35 mg, 0.12 mmol) in acetone (7 mL) was deoxygenated by purging with dry nitrogen for 25 minutes at room temperature. The quartz flask was then sealed and irradiated using a Hanovia 450 W high-pressure mercury lamp for 24 h. The reaction mixture was then concentrated \textit{in vacuo}. Purification by flash chromatography using hexanes:ether (9:1) as the eluant afforded the \textit{title compound 99} (9 mg, 26%) as a white solid. \(R_f = 0.29, \text{hexanes:ether (8:1)}; \text{M.p.} \text{ 104-106 °C,} \)
hexanes: ether (lit. 107-108 °C, hexanes); 1H NMR (600 MHz, CDCl$_3$) δ 0.70 (s, 3H, Me-1b), 1.32 (s, 3H, Me-1a), 1.38 (s, 3H, Me-3a), 1.56 – 1.68 (m, 3H, CH$_2$-CH-2a), 1.97 (m, 1H, CH-2b), 2.36 (apparent t, J = 7.4 Hz, 1H, CH-1a), 2.54 (dd, J = 9.6, 7.4 Hz, 1H, CH-8c), 3.03 (d, J = 9.6 Hz, 1H, CH-8b), 3.73 (s, 3H, OMe), 3.76 (s, 3H, OMe), 6.04 (d, J = 2.3 Hz, 1H, ArH), 6.07 (d, J = 2.3 Hz, 1H, ArH); Observed nOe contacts H-8b to H-8c, H-8b to Me-1a, H-8c to H-1a, H-8c to Me-3a, H-1a to Me-1a, H-1a to H-2a, H-1a to H-8b, Me-1b to CH-2b, Me-1b to CH$_2$-3, Me-1b to Me-1a; 13C NMR (151 MHz, CDCl$_3$) δ 17.7, 25.7, 27.8, 33.7, 36.1, 37.7, 37.8, 38.9, 46.3, 55.0, 55.3, 83.5, 91.4, 94.4, 105.4, 154.3, 159.0, 159.4; IR (ef) 2943, 2865, 2839, 1615, 1589, 1558, 1494, 1457, 1419, 1371, 1216, 1202, 1146, 1111 cm$^{-1}$; MS (CI) m/z (rel. intensity) 289 (M + H, 100); Anal. Calcd. for C$_{18}$H$_{24}$O$_3$: C, 74.97; H, 8.39. Found: C, 75.13; H, 8.18.

8.4.3 (3E)-4-(Furan-2'-yl)but-3-en-2-one (102)47

An ice cold aqueous solution of sodium hydroxide (12 M, 6.0 mL) was slowly added to a mixture of freshly distilled furfural (100) (44.1 g, 459 mmol), acetone (101) (67.5 mL, 918 mmol) and water (200 mL) at room temperature. The resultant mixture was stirred at room temperature for 23 h and then sulphuric acid (10% v/v, 50 mL) was added dropwise. The organic layer was then separated and direct purification of the crude product by distillation at reduced pressure afforded the title compound 102 (35.5 g, 57%) as a light yellow oil which solidified on standing. R_f = 0.31, hexanes:ethyl acetate (2:1); M.p. 32-34 °C, (lit. 37-39 °C); B.p. ~173 °C, ~35 mm Hg (lit. ~116 °C, ~10 mm
Hg); 1H NMR (500 MHz, CDCl$_3$) δ 2.32 (s, 3H, Me), 6.47 (dd, $J = 3.4$, 1.9 Hz, 1H, ArH-4), 6.61 (d, $J = 15.9$ Hz, 1H, CH), 6.66 (apparent d, $J = 3.4$ Hz, 1H, ArH-3), 7.27 (d, $J = 15.9$ Hz, 1H, CH), 7.49 (apparent d, $J = 1.3$ Hz, 1H, ArH-5); 13C NMR (126 MHz, CDCl$_3$) δ 27.9, 112.5, 115.6, 124.3, 129.4, 144.9, 150.9, 197.8; IR (ef) 3000, 2950, 2920, 1687, 1664, 1611, 1553, 1475, 1388, 1358, 1302, 1270, 1252, 1206, 1170 cm$^{-1}$; MS (CI) m/z (rel. intensity) 137 (M + H, 100).

8.4.4 4-(Furan-2'-yl)butan-2-one (103)48

A mixture of the ketone 102 (29.9 g, 220 mmol), palladium on charcoal (1.69 g, 10% w/w) in ethyl acetate (200 mL) under an atmosphere of hydrogen (balloon pressure) was stirred at room temperature for 17 h. The resultant mixture was filtered through a pad of celite and the filter-cake was washed with ethanol (4 x 40 mL). The combined filtrates were then concentrated in vacuo. Purification by flash chromatography using hexanes:ethyl acetate (2:1) as the eluant afforded the title compound 103 (20.9 g, 69%) as a pale yellow oil. $R_f = 0.35$, hexanes:ethyl acetate (2:1); 1H NMR (500 MHz, CDCl$_3$) δ 2.15 (s, 3H, Me), 2.77 (t, $J = 7.7$ Hz, 2H, CH_2), 2.90 (t, $J = 7.7$ Hz, 2H, CH_2), 5.98 (m, 1H, ArH-3), 6.25 (m, 1H, ArH-4), 7.28 (m, 1H, ArH-5); 13C NMR (101 MHz, CDCl$_3$) δ 22.2, 29.9, 41.7, 105.2, 110.2, 141.0, 154.5, 207.2; IR (neat) 3118, 3001, 2910, 1717, 1667, 1597, 1507, 1362, 1232, 1164, 1079, 1007 cm$^{-1}$; MS (CI) m/z (rel. intensity) 139 (M + H, 100), 43 (15).
8.4.5 Methyl-(2E)-5-(furan-2'-yl)-3-methylpent-2-enoate (104) and Methyl-(2Z)-5-(furan-2'-yl)-3-methylpent-2-enoate (104a)

To a suspension of sodium hydride (60% w/w in mineral oil, 5.45 g, 136 mmol) in tetrahydrofuran (40 mL) at room temperature was added a solution of trimethyl phosphonoacetate (19.6 mL, 136 mmol) followed by an additional portion of tetrahydrofuran (40 mL). The resultant mixture was stirred for 30 min and then a solution of the ketone 103 (15.0 g, 109 mmol) in tetrahydrofuran (10 mL) was added. The reaction mixture was then heated at reflux for 24 h and then cooled to room temperature. A saturated aqueous solution of ammonium chloride (20 mL) and water (25 mL) were then added. The aqueous layer was separated and extracted with ether (3 x 30 mL). The organic extracts were combined and washed with brine (50 mL), water (50 mL), dried over anhydrous magnesium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (7:1) as the eluant afforded the title compounds 104 and 104a as a mixture of isomers (E:Z = ~3:1, 17.7 g, 84%) as a pale yellow oil. \(R_f \) = 0.31, hexanes:ether (7:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 1.84 (s, 3H, Z-Me), 2.19 (s, 3H, E-Me), 2.49 (t, \(J = 8.7 \) Hz, 2H, E-CH\(_2\)), 2.80 (m, 4H, E&Z-CH\(_2\)), 2.95 (m, 2H, Z-CH\(_2\)), 3.68 (s, 3H, OMe), 5.69 (s, 1H, Z-CH), 5.71 (s, 1H, E-CH), 6.01 (apparent d, \(J = 2.0 \) Hz, 1H, E-ArH-3), 6.02 (d, \(J = 3.1 \) Hz, 1H, Z-ArH-3), 6.26 (m, 2H, E&Z-ArH-4), 7.30 (m, 1H, E&Z-ArH-5); \(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 18.7, 25.2, 26.1, 26.6, 31.6, 32.0, 39.0, 50.8, 50.9, 105.2, 105.3, 110.1, 115.7, 116.5, 140.9, 141.0,
154.5, 155.1, 158.6, 159.3, 166.5, 167.1; \textbf{IR} (neat) 3116, 2993, 2943, 2843, 1718, 1648, 1595, 1507, 1360, 1340, 1282, 1225, 1149, 1078 cm\(^{-1}\); \textbf{MS} (CI) \textit{m/z} (rel. intensity) 195 (M + H, 83), 163 (100); \textbf{Anal.} Calcd. for C\(_{11}\)H\(_{14}\)O\(_3\): C, 68.02; H, 7.27. Found: C, 67.69; H, 7.39.

8.4.6 (2\textit{E})-5-(Furan-2'-yl)-3-methylpent-2-en-1-ol (105) and (2\textit{Z})-5-(Furan-2'-yl)-3-methylpent-2-en-1-ol (105a)

To a suspension of lithium aluminium hydride (2.93 g, 77.2 mmol) in ether (40 mL) at 0 °C was added a solution of the esters 104 and 104a (12.0 g, 61.8 mmol) in ether (10 mL) and the reaction mixture was stirred at 0 °C for 90 min. Water (2.9 mL), an aqueous solution of sodium hydroxide (2 M, 2.9 mL) and water (8.7 mL) were then added sequentially, followed by addition of anhydrous magnesium sulphate. The resultant mixture was filtered through a pad of celite and the filter-cake was washed with ether (4 x 25 mL) and the combined filtrates were concentrated \textit{in vacuo}. Purification by flash chromatography using hexanes:ether (1:3) as the eluant afforded the \textit{title compounds} 105 and 105a as a mixture of isomers (\textit{E:Z} = \textit{~3:1}, 8.76 g, 85%) as a colourless oil. \textit{R}_f = 0.33, hexanes:ether (1:3); \textbf{\textit{H NMR}} (500 MHz, CDCl\(_3\)) \(\delta\) 1.39 (s, 1H, OH), 1.70 (s, 3H, \textit{E-Me}), 1.76 (s, 3H, \textit{Z-Me}), 2.36 (m, 2H, \textit{E-CH}_2), 2.41 (m, 2H, \textit{Z-CH}_2), 2.76 (m, 4H, \textit{E&Z-CH}_2), 3.98 (d, \textit{J} = 7.2 Hz, 2H, \textit{Z-CH}_2OH), 4.14 (d, \textit{J} = 6.9 Hz, 2H, \textit{E-CH}_2OH) 5.43 (m, 2H, \textit{E&Z-CH}) 5.98 (m, 2H, \textit{E&Z-ArH-3}), 6.27 (m, 2H, \textit{E&Z-ArH-4}), 7.29 (m, 2H, \textit{E&Z-ArH-5}); \textbf{\textit{C NMR}} (126 MHz, CDCl\(_3\)) \(\delta\) 16.0, 23.0, 26.4, 26.4, 30.4,
37.6, 58.6, 58.9, 104.7, 105.2, 110.0, 110.0, 124.0, 125.3, 137.9, 138.1, 138.1, 140.7, 140.9, 155.1, 155.5; IR (neat) 3360, 2912, 2855, 1716, 1668, 1596, 1506, 1446, 1382, 1230, 1150, 1076 cm⁻¹; MS (CI) m/z (rel. intensity) 167 (M + H, 14), 149 (100); Anal. Calcd. for C₁₀H₁₄O₂: C, 72.26; H, 8.49. Found: C, 71.97; H, 8.38.

8.4.7 (2E)-5-(Furan-2'-yl)-3-methylpent-2-enal (106) and (2Z)-5-(Furan-2'-yl)-3-methylpent-2-enal (106a)

To a suspension of manganese dioxide (60.1 g, 690 mmol) in dichloromethane (180 mL) at room temperature was added a solution of the alcohols 105 and 105a (8.14 g, 48.9 mmol) in dichloromethane (10 mL). After 14.5 h, the reaction mixture was filtered through a pad of celite and the filter-cake was washed with dichloromethane (4 x 50 mL) and the combined filtrates were concentrated in vacuo. Purification by flash chromatography using hexanes:ether (2:1) as the eluant afforded the title compounds 106 and 106a as a mixture of isomers (E:Z = ~3:1, 5.23 g, 65%) as a colourless oil. Rf = 0.27, hexanes:ether (2:1); ¹H NMR (500 MHz, CDCl₃) δ 1.97 (s, 3H, Z-Me), 2.18 (s, 3H, E-Me), 2.56 (t, J = 7.9 Hz, 2H, E-CH₂), 2.86 (t, J = 7.3 Hz, 2H, E-CH₂), 2.89 (m, 4H, Z-CH₂CH₂), 5.89 (d, J = 8.0 Hz, 1H, CH) 6.01 (m, 2H, E&Z-ArH-3), 6.27 (m, 2H, E&E-Z-ArH-4), 7.31 (m, 2H, E&Z-ArH-5), 9.75 (d, J = 8.1 Hz, 1H, Z-CHO), 9.99 (d, J = 8.1 Hz, 1H, E-CHO); ¹³C NMR (126 MHz, CDCl₃) δ 17.4, 24.7, 25.7, 26.9, 31.2, 38.6, 105.5, 106.1, 110.1, 110.2, 127.6, 129.1, 141.1, 141.4, 153.4, 153.9, 161.9, 162.1, 190.4, 191.1;
IR (neat) 3117, 2918, 2854, 2770, 1634, 1507, 1439, 1381, 1195, 1153, 1121, 1076, 1009 cm⁻¹; MS (CI) m/z (rel. intensity) 165 (M + H, 100); Anal. Calcd. for C₁₈H₁₂O₄: C, 73.15; H, 7.37. Found: C, 73.07; H, 7.20.

8.4.8 (2SR)-[2'-(Furan-2''-yl)ethyl]-5,7-dimethoxy-2-methyl-2H-chromene (98)

A mixture of the aldehydes 106 and 106a (66 mg, 0.40 mmol), 3,5-dimethoxyphenol (39) (48 mg, 0.31 mmol), phenylboronic acid (38 mg, 0.31 mmol), propionic acid (10 drops) and benzene (12 mL) was heated at reflux in a Dean-Stark apparatus for 4 h. The resultant solution was cooled to room temperature and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (8:1) as the eluant afforded the title compound 98 (38 mg, 41%) as a colourless oil. Rf = 0.34, hexanes:ether (8:1); ¹H NMR (600 MHz, CDCl₃) δ 1.41 (s, 3H, Me), 1.96-2.09 (m, 2H, CH₂), 2.67-2.89 (m, 2H, CH₂), 3.77 (s, 3H, OMe), 3.79 (s, 3H, OMe), 5.38 (d, J = 10.0 Hz, 1H, ArCHCH), 5.95-5.98 (m, 1H, ArH-3), 6.00 (d, J = 2.3 Hz, 1H, ArH), 6.03 (d, J = 2.3 Hz, 1H, ArH), 6.26 (dd, J = 3.1, 1.9 Hz, 1H, ArH-4), 6.65 (d, J = 10.0 Hz, 1H, ArCHCH), 7.28 (dd, J = 1.8, 0.8 Hz, 1H, ArH-5); ¹³C NMR (151 MHz, CDCl₃) δ 22.9, 26.4, 39.3, 55.3, 55.5, 78.1, 91.4, 93.8, 103.8, 104.6, 110.1, 117.6, 124.0, 140.7, 154.8, 156.0, 156.1, 161.1; IR (ef) 3000, 2959, 2938, 2835, 1613, 1578, 1496, 1465, 1454, 1202, 1148, 1114 cm⁻¹; MS (CI) m/z (rel. intensity) 301 (M + H, 100), 81 (2); Anal. Calcd. for C₁₈H₂₀O₄: C, 71.98; H, 6.71. Found: C, 71.63; H, 6.76.
8.5 Experimental Procedures and Characterization Data Concerning Chapter Five

8.5.1 (2SR,6SR,10SR)-2,6,10-Trimethyl-2,6,10-tri-(4'-methylpent-3'-enyl)-2H,6H,10H-dipyran[6,5-f,6',5'-h]chromene (32)\(^{19}\)

A mixture of citral (31) \(E:Z \approx 2:1\), 1.0 mL, 6.0 mmol), phloroglucinol (27) (190 mg, 1.51 mmol), phenylboronic acid (540 mg, 4.43 mmol), propionic acid (10 drops) and benzene (50 mL) was heated at reflux in a Dean-Stark apparatus for 4 h. The resultant solution was cooled to room temperature and on filtration through a pad of silica gel with ether (125 mL) was concentrated in vacuo. Purification by flash chromatography using hexanes:ether (99:1) as the eluant afforded the title compound 32 (450 mg, 57%) as a light yellow oil. \(R_f = 0.37\), hexanes:ether (99:1); \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)) \(\delta\) 1.29 (apparent dd, \(J = 4.9, 1.8\) Hz, 9H, Me), 1.51 (s, 9H, Me), 1.63 (s, 9H, Me), 1.69 (m, 6H, \(CH_2\)), 2.21 (m, 6H, \(CH_2\)), 5.12 (apparent d, \(J = 6.8\) Hz, 3H, \(CHCMe_2\)), 5.21 (d, \(J = 10.0\) Hz, 3H, Ar\(CHCH\)), 6.92 (d, \(J = 10.1\) Hz, 3H, Ar\(CHCH\)); \(^{13}\)C NMR (126 MHz, C\(_6\)D\(_6\)) \(\delta\) 17.6, 23.2, 25.8, 26.5, 41.5, 79.1, 103.5, 117.8, 124.8, 124.9, 131.3, 150.1; IR (ef) 2969, 2924, 2851, 1639, 1593, 1451, 1375, 1214, 1152, 1129, 1076, 1000 cm\(^{-1}\); MS (Cl) \(m/z\) (rel. intensity) 529 (M + H, 58), 279 (100).
8.5.2 (2SR,6SR,10SR)-2,6,10-Tris-[2'-(furan-2''-yl)ethyl]-2,6,10-trimethyl-2H,6H,10H-dipyran-[6,5-f,6',5'-h]chromene (108)

A mixture of the aldehydes 106 and 106a (5.23 g, 31.9 mmol), phloroglucinol (27) (1.00 g, 7.93 mmol), phenylboronic acid (3.39 g, 27.9 mmol), propionic acid (40 drops) and benzene (50 mL) was heated at reflux in a Dean-Stark apparatus for 4 h. The resultant solution was cooled to room temperature and on filtration through a pad of silica gel with ether (250 mL) was concentrated in vacuo. Purification by flash chromatography using hexanes:ether (6:1) as the eluant afforded the title compound 108 (2.14 g, 63%) as a light yellow oil. \(R_f = 0.42, \text{hexanes:ether (6:1);} ^1H \text{ NMR (500 MHz, CDCl}_3) \ \delta \ 1.42 \ (s, \ 9H, Me), \ 2.04 \ (m, \ 6H, CH}_2), \ 2.78 \ (m, \ 6H, CH}_2), \ 5.40 \ (d, \ J = 9.9 \ Hz, 3H, ArCH}_2) \ 5.97 \ (m, \ 3H, ArH-3), \ 6.26 \ (m, \ 3H, ArH-4), \ 6.65 \ (d, \ J = 9.9 \ Hz, 3H, ArCH}_2), \ 7.29 \ (m, \ 3H, ArH-5); ^{13}C \text{ NMR (101 MHz, CDCl}_3) \ \delta \ 22.9, \ 26.4, \ 39.2, \ 78.4, \ 102.8, \ 104.6, \ 110.1, \ 117.6, \ 124.2, \ 140.7, \ 149.2, \ 155.9; \ \text{IR (neat) 3055, 2972, 2925, 2856, 1639, 1593, 1507, 1449, 1366, 1148 cm}^{-1}; \ \text{MS (Cl) m/z (rel. intensity) 565 (M + H, 100);} \)

Anal. Calcd. for C\textsubscript{36}H\textsubscript{36}O\textsubscript{6}: C, 76.57; H, 6.43. Found: C, 76.24; H, 6.31.
8.5.3 (2E)-3-(Furan-2'-yl)-1-phenylprop-2-en-1-one (111)\(^{51}\)

![Image of compound 111]

An ice cold aqueous solution of sodium hydroxide (12 M, 20 mL) was slowly added to a mixture of freshly distilled furfural (100) (15.0 g, 156 mmol), acetophenone (110) (18.2 mL, 156 mmol) and ethanol (95%, 175 mL) at room temperature. The resultant mixture was stirred at room temperature for 2.5 h and then sulphuric acid (10% v/v, 50 mL) was added dropwise. The organic layer was then separated and direct purification of the crude extract by distillation at reduced pressure afforded the title compound 111 (19.7 g, 63%) as a light yellow oil. \(R_f = 0.28\), hexanes:ether (3:1); B.p. 184-185 °C, ~25 mm Hg (lit. 177-178 °C, 7 mm Hg); \(^1H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 6.51 (dd, \(J = 3.4, 1.7 \text{ Hz}, 1\text{H, ArH-4}\)), 6.72 (apparent d, \(J = 3.4 \text{ Hz}, 1\text{H, ArH-3}\)), 7.35 (apparent d, \(J = 1.7 \text{ Hz}, 1\text{H, ArH-5}\)), 7.46 (d, \(J = 15 \text{ Hz}, 1\text{H, CH}\)), 7.51 (d, \(J = 7.8 \text{ Hz}, 1\text{H, ArH}\)), 7.57 (m, 2H, ArH), 7.60 (d, \(J = 15 \text{ Hz}, 1\text{H, CH}\)), 8.03 (d, \(J = 7.3 \text{ Hz}, 2\text{H, ArH}\)); \(^{13}C\) NMR (126 MHz, CDCl\(_3\)) \(\delta\) 112.7, 116.2, 119.2, 128.4, 128.6, 130.6, 132.7, 138.1, 144.9, 151.6, 189.8; IR (ef) 3128, 3060, 1659, 1601, 1547, 1476, 1447, 1389, 1328, 1223, 1177 cm\(^{-1}\); MS (Cl) \(m/z\) (rel. intensity) 199 (M + H, 100).

8.5.4 3-(Furan-2'-yl)-1-phenylpropan-1-one (112)\(^{52}\)

![Image of compound 112]
A mixture of the ketone 111 (10.0 g, 50.4 mmol), palladium on charcoal (250 mg, 10% w/w) in ethyl acetate (175 mL) under an atmosphere of hydrogen (balloon pressure) was stirred at room temperature for 4.5 h. The resultant mixture was filtered through a pad of celite and the filter-cake was washed with ethyl acetate (4 x 50 mL). The combined filtrates were then concentrated *in vacuo*. Purification by flash chromatography using hexanes:ether (5:1) as the eluant afforded the *title compound* 112 (7.32 g, 72%) as a colourless solid. \(R_f = 0.44 \), hexanes:ether (5:1); **M.p.** 35-36 °C, hexanes:ether (lit. 36 °C, petroleum ether); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 3.09 (t, \(J = 7.7 \) Hz, 2H, CH\(_2\)), 3.31 (t, 8.0 Hz, 2H, CH\(_2\)), 6.06 (dd, \(J = 3.2, 0.7 \) Hz, 1H, ArH-3), 6.29 (dd, \(J = 3.0, 2.0 \) Hz, 1H, ArH-4), 7.31 (apparent d, \(J = 1.7 \) Hz, 1H, ArH-5), 7.44 (td, \(J = 7.5, 1.5 \) Hz, 2H, PhH), 7.54 (td, \(J = 7.4, 1.3 \) Hz, 1H, PhH), 7.96 (d, \(J = 8.2 \) Hz, 2H, PhH); \(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 22.2, 36.6, 105.1, 110.0, 127.8, 128.4, 132.9, 136.5, 140.9, 154.5, 198.2; IR (ef) 3148, 3116, 3061, 2913, 2851, 1686, 1597, 1580, 1507, 1449, 1411, 1363, 1296, 1208, 1179 cm\(^{-1}\); MS (Cl) *m/z* (rel. intensity) 201 (M + H, 100).

8.5.5 Methyl-(2Z)-5-(furan-2'-yl)-3-phenylpent-2-enoate (113) and Methyl-(2E)-5-(furan-2'-yl)-3-phenylpent-2-enoate (114)

To a suspension of sodium hydride (60% w/w in mineral oil, 1.53 g, 38.2 mmol) in tetrahydrofuran (100 mL) at room temperature was added a solution of trimethyl phosphonoacetate (5.3 mL, 37 mmol) followed by an additional portion of tetrahydrofuran (120 mL). The resultant mixture was stirred for 30 min and then a
solution of the ketone 112 (5.88 g, 29.4 mmol) in tetrahydrofuran (10 mL) was added. The reaction mixture was then heated at reflux for 38 h and then cooled to room temperature. A saturated aqueous solution of ammonium chloride (35 mL) and water (35 mL) were then added. The aqueous layer was separated and extracted with ether (3 x 30 mL). The organic extracts were then combined and washed with brine (50 mL), water (50 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (5:1) as the eluant afforded the title compound 113 (3.23 g, 43%) as a colourless oil and title compound 114 (3.74 g, 50%) as a pale yellow oil.

Title compound 113: $R_f = 0.27$, hexanes:ether (5:1); 1H NMR (500 MHz, CDCl$_3$) δ 2.75 (t, $J = 8.2$ Hz, 2H, CH$_2$), 2.84 (t, 8.2 Hz, 2H, CH$_2$), 3.57 (s, 3H, OMe), 5.94 (s, 1H, CH), 6.01 (m, 1H, ArH-3), 6.29 (m, 1H, ArH-4), 7.22 (m, 2H, ArH), 7.32 (m, 1H, ArH-5), 7.34 – 7.41 (m, 3H, ArH); Observed nOe contacts H-2 to OMe, H-2 to CH$_2$-4; ^{13}C NMR (126 MHz, CDCl$_3$) δ 25.9, 38.5, 50.9, 105.3, 110.0, 117.3, 127.0, 127.7, 127.9, 139.2, 140.9, 154.2, 158.3, 166.0; IR (ef) 3119, 3080, 3060, 3026, 2949, 2851, 1730, 1636, 1599, 1575, 1558, 1540, 1507, 1491, 1434, 1378, 1339, 1228 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 257 (M + H, 100), 225 (M – OMe, 98); Anal. Calcd. for C$_{16}$H$_{16}$O$_3$: C, 74.98; H, 6.29. Found: C, 74.68; H, 6.44.

Title compound 114: $R_f = 0.44$, hexanes:ether (5:1); 1H NMR (500 MHz, CDCl$_3$) δ 2.78 (t, $J = 7.8$ Hz, 2H, CH$_2$), 3.44 (t, 8.1 Hz, 2H, CH$_2$), 3.76 (s, 3H, OMe), 6.00 (m, 1H, ArH-3), 6.09 (s, 1H, CH), 6.25 (m, 1H, ArH-4), 7.28 (m, 1H, ArH-5), 7.37 (m, 3H, ArH), 7.43 (m, 2H, ArH); Observed nOe contacts H-2 to OMe, H-2 to ArH; ^{13}C NMR (126 MHz, CDCl$_3$) δ 27.3, 29.8, 51.2, 105.2, 110.0, 117.7, 126.7, 128.6, 129.0, 140.7,
8.5.6 (2Z)-5-(Furan-2'-yl)-3-phenylpent-2-en-1-ol (115)

To a suspension of lithium aluminium hydride (289 mg, 7.62 mmol) in ether (60 mL) at room temperature was added a solution of the ester 113 (1.50 g, 5.85 mmol) in ether (10 mL) and the reaction mixture was stirred at room temperature for 40 min. Water (0.3 mL), an aqueous solution of sodium hydroxide (2 M, 0.3 mL) and water (1.0 mL) were then added sequentially, followed by addition of anhydrous sodium sulphate. The resultant mixture was filtered through a plug of cotton wool and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (1:3) as the eluant afforded the title compound 115 (997 mg, 74%) as a pale yellow oil. \(R_f = 0.38 \), hexanes:ether (1:3); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 1.37 \) (s, 1H, OH), 2.68 (t, \(J = 7.2 \) Hz, 2H, CH\(_2\)), 2.75 (t, \(J = 6.9 \) Hz, 2H, CH\(_2\)), 4.03 (d, 2H, CH\(_2\)OH), 5.71 (t, \(J = 6.8 \) Hz, 1H, CH), 5.97 (m, 1H, ArH-3), 6.27 (m, 1H, ArH-4), 7.15 (d, 2H, ArH), 7.29 (m, 2H, ArH and ArH-5), 7.35 (m, 2H, ArH); Observed nOe contacts CH\(_2\)-1 to H-2, CH\(_2\)-1 to PhH; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta 26.6, 37.0, 59.9, 104.9, 109.9, 126.4, 127.1, 127.6, 128.1, 128.4, 139.2, 140.7, 155.2; IR (neat) 3384, 3055, 3023, 2926, 2857, 1718, 1657, 1598,
8.5.7 (2E)-5-(Furan-2'-yl)-3-phenylpent-2-en-1-ol (116)

To a suspension of lithium aluminium hydride (289 mg, 7.62 mmol) in ether (60 mL) at room temperature was added a solution of the ester 114 (1.50 g, 5.85 mmol) in ether (10 mL) and the reaction mixture was stirred at room temperature for 30 min. Water (0.3 mL), an aqueous solution of sodium hydroxide (2 M, 0.3 mL) and water (1.0 mL) were then added in succession, followed by addition of anhydrous sodium sulphate. The resultant mixture was filtered through a plug of cotton wool and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (1:3) as the eluant afforded the title compound 116 (985 mg, 74%) as a pale yellow oil. $R_f = 0.39$, hexanes:ether (1:3); 1H NMR (500 MHz, CDCl$_3$) δ 2.68 (t, $J = 7.5$ Hz, 2H, CH$_2$), 2.88 (t, $J = 7.4$ Hz, 2H, CH$_2$), 4.19 (d, $J = 7.0$ Hz, 2H, CH$_2$OH), 5.89 (t, $J = 6.9$ Hz, 1H, CH), 5.95 (m, 1H, ArH-3), 6.28 (m, 1H, ArH-4), 7.29 – 7.40 (m, 6H, ArH & ArH-5); Observed nOe contacts CH$_2$-1 to H-2, CH$_2$-1 to CH$_2$-4, H-2 to PhH; 13C NMR (126 MHz, CDCl$_3$) δ 26.9, 28.5, 59.2, 105.5, 110.1, 126.5, 127.3, 128.1, 128.3, 141.0, 141.2, 141.4, 154.9; IR (ef) 3449, 3051, 3026, 2932, 1719, 1681, 1594, 1493, 1447, 1351, 1001, 911 cm$^{-1}$; MS (CI) m/z (rel. intensity) 211 (M – OH, 100), 81 (52); Anal. Calcd. for C$_{15}$H$_{16}$O$_2$: C, 78.92; H, 7.06. Found: C, 78.68; H, 7.14.
Method A: To a mixture of Dess-Martin periodinane (602 mg, 1.42 mmol) in dichloromethane (40 mL) at room temperature was added a solution of the alcohol 115 (295 mg, 1.29 mmol) in dichloromethane (3 mL). The resultant mixture was allowed to stir at room temperature for 3 h and then ether (10 mL) and an aqueous solution of sodium hydroxide (2 M, 10 mL) were added. The organic phase was separated and washed with water (30 mL), an aqueous solution of sodium hydroxide (2 M, 10 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (2:1) as the eluant afforded the title compound 117 (36 mg, 12%) as a pale yellow oil.

Method B: To a suspension of manganese dioxide (10.0 g, 115 mmol) in dichloromethane (75 mL) at room temperature was added a solution of the alcohol 115 (1.00 g, 4.38 mmol) in dichloromethane (10 mL). After 16 h, the reaction was filtered through a pad of celite and the filter-cake was washed with dichloromethane (3 x 30 mL) and then the combined filtrates were concentrated in vacuo. Purification by flash chromatography using hexanes:ether (2:1) as the eluant afforded the title compound 117 (779 mg, 79%) as a pale yellow oil. $R_f = 0.34$, hexanes:ether (2:1); 1H NMR (500 MHz, CDCl$_3$) δ 2.79 (t, $J = 7.1$ Hz, 2H, CH$_2$), 2.96 (t, $J = 7.5$ Hz, 2H, CH$_2$), 5.99 (d, $J = 3.3$ Hz, 1H, ArH-3), 6.12 (d, $J = 8.1$ Hz, 1H, CH), 6.28 (apparent t, $J = 3.0$ Hz, 1H, ArH-4), 7.28-7.31 (m, 3H, ArH-5 and ArH), 7.43-7.45 (m, 3H, ArH), 9.46 (d, $J = 8.2$ Hz, 1H, CHO);
Observed nOe contacts H-2 to CH_2-4, H-2 to CH_2-5, H-2 to CHO; 13C NMR (126 MHz, CDCl$_3$) δ 26.0, 37.8, 105.6, 110.1, 128.4, 128.6, 128.8, 129.1, 137.0, 141.2, 153.8, 164.5, 193.4; IR (ef) 3116, 3058, 3019, 2924, 2844, 2775, 2723, 1672, 1615, 1598, 1572, 1507, 1492, 1442, 1395, 1348, 1197, 1125, 1077, 1015 cm$^{-1}$; MS (CI) m/z (rel. intensity) 227 (M + H, 100), 143 (37), 81 (22); Anal. Calcd. for C$_{15}$H$_{14}$O$_2$: C, 79.62; H, 6.24. Found: C, 79.98; H, 6.31.

8.5.9 (2E)-5-(Furan-2'-yl)-3-phenylpent-2-enal (118)

![Chemical Structure](image)

Method A: To a mixture of Dess-Martin periodinane (576 mg, 1.36 mmol) in dichloromethane (40 mL) at room temperature was added a solution of the alcohol 116 (282 mg, 1.24 mmol) in dichloromethane (3 mL). The resultant mixture was allowed to stir at room temperature for 3 h and then ether (10 mL) and an aqueous solution of sodium hydroxide (2 M, 10 mL) were added. The organic phase was separated and washed with water (30 mL), an aqueous solution of sodium hydroxide (2 M, 10 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. Purification by flash chromatography using hexanes:ether (2:1) as the eluant afforded the **title compound** 118 (108 mg, 38%) as a pale yellow oil.

Method B: To a suspension of manganese dioxide (10.0 g, 115 mmol) in dichloromethane (75 mL) at room temperature was added a solution of the alcohol 116 (985 mg, 4.31 mmol) in dichloromethane (10 mL). After 17 h, the reaction was filtered through a pad of celite and the filter-cake was washed with dichloromethane (3 x 30 mL)
and then the combined filtrates were concentrated in vacuo to afford the
\textit{title compound} \textbf{118} (771 mg, 79\%) as a pale yellow oil. \(R_f = 0.34 \), hexanes:ether (2:1); \(^1\text{H} \text{NMR} \) (500 MHz, CDCl\(_3\)) \(\delta 2.81 \) (t, \(J = 7.4 \) Hz, 2H, CH\(_2\)), 3.36 (t, \(J = 7.3 \) Hz, 2H, CH\(_2\)), 5.95 (d, \(J = 3.1 \) Hz, 1H, ArH-3), 6.25 (dd, \(J = 3.1 \), 1.9 Hz, 1H, ArH-4), 6.27 (d, \(J = 7.9 \) Hz, 1H, CH), 7.30 (d, \(J = 1.7 \) Hz, 1H, ArH-5), 7.41 – 7.43 (m, 3H, ArH), 7.48 – 7.50 (m, 2H, ArH), 9.90 (d, \(J = 7.9 \) Hz, 1H, CHO); \textbf{Observed nOe contacts} CHO to H-2, CHO to CH\(_2\)-4;
\(^{13}\text{C} \text{NMR} \) (126 MHz, CDCl\(_3\)) \(\delta 27.6, 28.5, 106.3, 110.1, 126.5, 128.5, 128.7, 129.8, 139.1, 141.4, 153.2, 160.4, 190.5; \textbf{IR} \) (neat) 3115, 3058, 2978, 2916, 2832, 2759, 1675, 1607, 1572, 1506, 1493, 1445, 1397, 1347, 1325, 1254, 1142, 1076, 1034, 1003 cm\(^{-1}\);
\textbf{MS} \(\text{CI} \) m/z (rel. intensity) 227 (M + H, 100), 143 (39), 81 (29); \textbf{Anal.} Calcd. for C\(_{15}\)H\(_{14}\)O\(_2\): C, 79.62; H, 6.24. Found: C, 79.95; H, 6.14.

\subsection*{8.6 Experimental Procedures and Characterization Data Concerning Chapter Six}

\subsection*{8.6.1 2,2-Dimethyl-5-(propan-2'-ylidene)-1,3-dioxane-4,6-dione (126)54}

\begin{center}
\includegraphics{126.png}
\end{center}

Acetone (101) (5.6 mL, 100 mmol) was added to a mixture of acetic acid (1.0 mL, 17 mmol), ammonium acetate (267 mg, 3.46 mmol), Meldrum’s acid (125) (10.0 g, 69.4 mmol), 4Å molecular sieves (1.5 g) and toluene (80 mL) at room temperature. The resultant mixture was allowed to stir for 48 h and it was then filtered and concentrated \textit{in vacuo} to half its original volume. To the resultant slurry was added toluene (40 mL) and a saturated aqueous solution of sodium bicarbonate (40 mL). The organic layer was
separated and washed with a saturated aqueous solution of sodium bicarbonate (2 x 50 mL), brine (50 mL), dried over anhydrous magnesium sulphate and concentrated in vacuo. Purification of the resultant solid was accomplished by trituration with hexanes, filtration and drying in vacuo to afford the title compound 126 (4.39 g, 34 %) as colourless crystals. \(R_f = 0.35 \), hexanes:ether (1:9); \textbf{M.p.} 73-75 °C, hexanes (lit.\(^{42}\) 75-78.5 °C, methanol:water); \textbf{\(^1H \text{ NMR} \)} (500 MHz, CDCl\(_3\)) \(\delta \) 1.72 (s, 6H, Me), 2.51 (s, 6H, Me); \textbf{\(^{13}C \text{ NMR} \)} (126 MHz, CDCl\(_3\)) \(\delta \) 26.8, 27.1, 103.5, 115.9, 161.1, 177.3; \textbf{IR} (KBr) 2997, 2948, 1750, 1719, 1605, 1426, 1396, 1386, 1360, 1285, 1245, 1202, 1118, 1096, 1021 cm\(^{-1}\); \textbf{MS} (Cl) \(m/z \) (rel. intensity) 127 (M – C\(_3\)H\(_6\)O, 100), 84 (47).

\[8.6.2 \quad 5\text{-Isopropyl-2,2-dimethyl-1,3-dioxane-4,6-dione (127)}^{55} \]

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{Me} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

(127)

To a mixture of diisobutylaluminium hydride (1.0 M in hexanes, 2.4 mL, 2.4 mmol) in dichloromethane (15 mL) at -78°C was added a solution of compound 126 (200 mg, 1.09 mmol) in dichloromethane (5 mL). The resultant mixture was allowed to stir at -78°C for 3 h and then a saturated aqueous solution of ammonium chloride (3 mL) was added. The resultant mixture was allowed to warm to room temperature and then a saturated aqueous solution of ammonium chloride (7 mL) was added. The aqueous phase was separated and extracted with dichloromethane (2 x 15 mL). The combined organic extracts were then washed with water (2 x 20 mL), dried over anhydrous sodium sulphate and concentrated in vacuo to afford the title compound 127 (76 mg, 37%) as a colourless
solid. \(R_f = 0.30 \), hexanes:ether (1:1); \textbf{M.p.} 99-102 °C, hexanes:ether (lit.55 102-104 °C, hexanes); \textbf{\textit{1H NMR}} (500 MHz, CDCl\textsubscript{3}) \(\delta 1.12 \) (d, \(J = 7.2 \) Hz, 6H, CH\textsubscript{Me\textsubscript{2}}), 1.69 (s, 3H, \(Me \)), 1.72 (s, 3H, \(Me \)), 2.71 (doublet of septets, \(J = 7.0 \), 3.0 Hz, 1H, CH\textsubscript{Me\textsubscript{2}}), 3.39 (d, \(J = 3.1 \) Hz, 1H, \(CH \)); \textbf{\textit{13C NMR}} (126 MHz, CDCl\textsubscript{3}) \(\delta 19.0 \), 27.2, 28.1, 28.8, 51.39, 51.42, 104.5, 164.9; \textbf{IR} (KBr) 3003, 2977, 2964, 2946, 2869, 1775, 1736, 1460, 1386, 1371, 1308, 1252, 1211, 1066 cm-1; \textbf{MS} (Cl) \textit{m/z} (rel. intensity) 186 (M + H, 1), 129 (M – C\textsubscript{3}H\textsubscript{4}O, 6), 103 (3), 85 (29), 59 (100).

\textbf{8.6.3 Dimethyl 2-(propan-2'-ylidene)malonate (128)66}

\begin{center}
\includegraphics[width=0.2\textwidth]{128}
\end{center}

\textbf{128}

To a mixture of acetone (101) (2.63 g, 45.5 mmol) and dimethyl malonate (79) (6.00 g, 45.4 mmol) was added titanium tetrachloride (12.7 mL, 91.1 mmol) at 0 °C. A solution of pyridine (14.7 mL, 190 mmol) in tetrahydrofuran (30 mL) was then added to the resultant mixture over the course of 30 min. The reaction mixture was then allowed to warm to room temperature and stir for an additional 16 h. Ice cold water (100 mL) was then added to the reaction mixture which was then extracted with ether (3 x 75 mL). The organic extracts were then combined, dried over anhydrous sodium sulphate and concentrated \textit{in vacuo}. Purification by flash chromatography using hexanes:ether (3:1) as the eluant afforded the \textit{title compound} 128 (5.99 g, 77%) as a colourless oil. \(R_f = 0.25 \), hexanes:ether (3:1); \textbf{\textit{1H NMR}} (500 MHz, CDCl\textsubscript{3}) \(\delta 2.06 \) (s, 6H, \(Me \)), 3.76 (s, 6H, OMe); \textbf{\textit{13C NMR}} (126 MHz, CDCl\textsubscript{3}) \(\delta 22.2 \), 52.0, 124.0, 156.0, 166.1; \textbf{IR} (neat) 2954, 1726,
1641, 1435, 1375, 1245 cm$^{-1}$; **MS** (CI) m/z (rel. intensity) 173 (M + H, 70), 141 (M – OMe, 100).

8.6.4 2-(Propan-2'-ylidene)propane-1,3-diol (129)67

![Chemical Structure 129](image)

To a suspension of lithium aluminium hydride (1.24 g, 32.7 mmol) in benzene (40 mL) at room temperature was added a solution of the ester 128 (2.50 g, 14.5 mmol) in benzene (10 mL). The reaction mixture was then heated at reflux for 3 h and then cooled to room temperature. Water (1.2 mL), an aqueous solution of sodium hydroxide (2 M, 1.2 mL) and water (3.6 mL) were then added sequentially. The resultant mixture was then filtered through a cotton plug with ether (3 x 5 mL). The combined filtrates were dried over anhydrous sodium sulphate and concentrated *in vacuo*. Purification by flash chromatography using acetone:chloroform (7:13) as the eluant afforded the title compound 129 (640 mg, 38%) as a colourless oil. $R_f = 0.22$, acetone:chloroform (7:13);

1H NMR (500 MHz, CDCl$_3$) δ 1.78 (s, 6H, Me), 2.24 (s, 2H, OH), 4.31 (s, 4H, CH$_2$); 13C NMR (101 MHz, CDCl$_3$) δ 20.3, 62.1, 130.7, 133.7; **IR** (neat) 3342, 1644 cm$^{-1}$; **MS** (CI) m/z (rel. intensity) 99 (M – OH, 46).

8.6.5 2-(Hydroxymethyl)-3-methylbut-2-enal (130)

![Chemical Structure 130](image)
To a suspension of manganese dioxide (400 mg, 4.60 mmol) in dichloromethane (5 mL) at room temperature was added a solution of the alcohol 129 (40 mg, 0.35 mmol) in dichloromethane (2 mL). After 3.5 h the reaction was filtered through a pad of celite and the filter-cake was washed with dichloromethane (2 x 10 mL) and the combined filtrates were concentrated in vacuo. Purification by flash chromatography using hexanes:ether (1:9) as the eluant afforded the title compound 130 (26 mg, 64%) as a colourless oil. \(R_f = 0.26, \) hexanes:ether (1:9); \(^1^H\) NMR (600 MHz, CDCl\(_3\)) \(\delta\) 2.08 (s, 3H, \(\text{Me}\)), 2.24 (s, 3H, \(\text{Me}\)), 4.36 (s, 2H, \(\text{CH}_2\)), 10.13 (s, 1H, \(\text{CHO}\)); \(^{13}^C\) NMR (151 MHz, CDCl\(_3\)) \(\delta\) 19.7, 23.1, 56.9, 135.7, 158.9, 191.9; IR (ef) 3412, 2912, 2886, 1659, 1630, 1439, 1374, 1300, 1161, 1013 cm\(^{-1}\); MS (Cl) \(m/z\) (rel. intensity) 115 (M + H, 81), 97 (M – OH, 100); HRMS Calcd. for C\(_6\)H\(_{11}\)O\(_2\): 115.0759. Found: 115.0762.

8.6.6 Dimethyl-[4'-(furan-2''-yl)butan-2'-ylidene]malonate (132)

![Chemical Structure](image)

To a solution of the ketone 103 (1.88 g, 13.6 mmol) and dimethyl malonate (79) (2.25 g, 17.0 mmol) in carbon tetrachloride (20 mL) at 0 °C was added titanium tetrachloride (3.8 mL, 27 mmol) over the course of 25 min. After a further 15 min, a solution of pyridine (4.4 mL, 54 mmol) in tetrahydrofuran (50 mL) was added over the course of 10 min. The resultant mixture was allowed to warm to room temperature and was stirred for an additional 16 h. Ice cold water (75 mL) was then added and the aqueous layer was separated and extracted with ether (3 x 50 mL). The organic extracts were combined, dried over anhydrous sodium sulphate and concentrated in vacuo.
Purification by flash chromatography using hexanes:ether (3:1) as the eluant afforded the *title compound 132* (2.24 g, 65%) as a colourless oil. R$_f$ = 0.25, hexanes:ether (3:1); \(^1\)H NMR (500 MHz, CDCl$_3$) δ 2.03 (s, 3H, Me), 2.70 (t, J = 8.1 Hz, 2H, CH$_2$), 2.84 (t, J = 8.3 Hz, 2H, CH$_2$), 3.76 (s, 3H, OMe), 3.77 (s, 3H, OMe), 6.02 (m, 1H, ArH-3), 6.27 (m, 1H, ArH-4), 7.30 (m, 1H, ArH-5); \(^{13}\)C NMR (126 MHz, CDCl$_3$) δ 21.0, 26.3, 35.2, 52.0, 52.0, 105.4, 110.1, 124.6, 141.1, 154.2, 157.8, 165.5, 165.9; IR (neat) 3117, 3023, 2953, 2843, 1734, 1634, 1596, 1506, 1435, 1377, 1290, 1255, 1145, 1109, 1083 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 253 (M + H, 28), 221 (M – OMe, 100); Anal. Calcd. for C$_{13}$H$_{16}$O$_5$: C, 61.90; H, 6.39. Found: C, 62.10; H, 6.37.

8.6.7 Diethyl-[4'-(furan-2''-yl)butan-2'-ylidene]malonate (133)

![133]

To a solution of the ketone 103 (4.00 g, 28.9 mmol) and diethyl malonate (81) (5.10 g, 31.9 mmol) in carbon tetrachloride (20 mL) at 0 °C was added titanium tetrachloride (8.1 mL, 58 mmol) over the course of 10 min. After a further 15 min, a solution of pyridine (9.4 mL, 120 mmol) in tetrahydrofuran (50 mL) was added over the course of 15 min. The resultant mixture was allowed to warm to room temperature and was stirred for an additional 16 h. Ice cold water (50 mL) was then added and the aqueous layer was separated and extracted with ether (3 x 25 mL). The organic extracts were combined, dried over anhydrous sodium sulphate and concentrated *in vacuo*. Purification by flash chromatography using hexanes:ether (7:2) as the eluant to afford the *title compound 133* (5.01 g, 62%) as a colourless oil. R$_f$ = 0.36, hexanes:ether (7:2); \(^1\)H
NMR (500 MHz, CDCl₃) δ 1.29 (m, 6H, OCH₂Me), 2.03 (s, 3H, Me), 2.70 (t, J = 7.6 Hz, 2H, CH₂), 2.84 (t, J = 7.4 Hz, 2H, CH₂), 4.23 (m, 4H, OCH₂Me), 6.02 (m, 1H, ArH-3), 6.27 (m, 1H, ArH-4), 7.29 (m, 1H, ArH-5); ¹³C **NMR** (126 MHz, CDCl₃) δ 13.9, 13.9, 20.9, 26.3, 35.1, 60.8, 60.9, 105.3, 110.1, 125.3, 141.0, 154.4, 156.8, 165.2, 165.5; **IR** (neat) 3117, 2981, 1736, 1635, 1596, 1507, 1444, 1367, 1300, 1158, 1057 cm⁻¹; **MS** (CI) m/z (rel. intensity) 281 (M + H, 39), 235 (M – OEt, 100); **Anal.** Calcd. for C₁₅H₂₀O₅: C, 64.27; H, 7.19. Found: C, 63.97; H, 7.31.

8.6.8 2-[4’-(Furan-2”-yl)butan-2’-ylidene]propane-1,3-diol (134)

![Image](image)

Method A: To a suspension of lithium aluminium hydride (254 mg, 6.68 mmol) in benzene (40 mL) at room temperature was added a solution of the ester 132 (750 mg, 2.97 mmol) in benzene (10 mL). The reaction mixture was then heated at reflux for 18 h and then cooled to room temperature. Water (0.25 mL), an aqueous solution of sodium hydroxide (2 M, 0.25 mL) and water (0.75 mL) were then added sequentially and the resultant mixture was then filtered through a pad of celite. The filter-cake was washed with ether (3 x 10 mL) and the combined filtrates were concentrated *in vacuo*. Purification by flash chromatography using acetone:chloroform (7:13) as the eluant afforded the **title compound** 134 (101 mg, 17%) as a light yellow oil.

Method B: To a suspension of lithium aluminium hydride (993 mg, 26.2 mmol) in benzene (75 mL) at room temperature was added a solution of the ester 133 (2.95g, 10.5 mmol) in benzene (10 mL). The reaction mixture was then heated at reflux for 16 h
and then cooled to room temperature. Water (1.0 mL), an aqueous solution of sodium hydroxide (2 M, 1.0 mL) and water (3.0 mL) were then added sequentially and the resultant mixture was allowed to cool to room temperature and the solution was filtered through a pad of celite. The filter-cake was washed with ether (4 x 25 mL) and the combined filtrates were concentrated \textit{in vacuo}. Purification by flash chromatography using acetone:chloroform (7:13) as the eluant afforded the \textit{title compound 134} (252 mg, 12\%) as a light yellow oil. $R_f = 0.24$, acetone:chloroform (7:13); $^1\text{H NMR}$ (400 MHz, CDCl$_3$) δ 1.79 (s, 3H, Me), 1.88 (s, 2H, OH), 2.46 (t, $J = 7.4$ Hz, 2H, CH$_2$), 2.75 (t, $J = 7.4$ Hz, 2H, CH$_2$), 4.18 (s, 2H, CH$_2$OH), 4.29 (s, 2H, CH$_2$OH), 5.99 (m, 1H, ArH-3), 6.28 (m, 1H, ArH-4), 7.31 (m, 1H, ArH-5); 13C NMR (126 MHz, CDCl$_3$) δ 17.9, 26.7, 32.8, 60.9, 61.5, 105.1, 110.1, 132.3, 135.6, 140.9, 155.1; IR (neat) 3481, 3116, 2928, 2879, 1717, 1660, 1595, 1507, 1438, 1371, 1213, 1147, 921 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 179 (M – OH, 10), 161 (M – 2 x OH, 100); \textit{Anal. Calcd. for C$_{11}$H$_{16}$O$_3$: C, 67.32; H, 8.22. Found: C, 67.16; H, 8.43.}

8.6.9 \textit{(2E)-5-(Furan-2'-yl)-2-hydroxymethyl-3-methylpent-2-enal (135)}

\begin{center}
\includegraphics[width=0.2\textwidth]{135.png}
\end{center}

Method A: To a solution of the alcohol \textit{134} (90 mg, 0.46 mmol) in dichloromethane (40 mL) at room temperature was added Dess-Martin periodinane (428 mg, 1.00 mmol). The resultant mixture was allowed to stir for 4.5 h and ether (15 mL) and an aqueous solution of sodium hydroxide (1.3 M, 15 mL) were added. The organic layer was then washed with water (25 mL), an aqueous solution of sodium hydroxide (2
M, 30 mL), dried over anhydrous sodium sulphate and concentrated in vacuo.

Purification by flash chromatography using dichloromethane:ether (2:1) as the eluant afforded the title compound 135 as a mixture of isomers (E:Z = ~1:2, 8 mg, 9%) as a colourless oil.

Method B: To a suspension of manganese dioxide (600 mg, 6.90 mmol) in dichloromethane (5 mL) at room temperature was added a solution of the alcohol 134 (33 mg, 0.17 mmol) in dichloromethane (2 mL). After 4 h, the reaction mixture was filtered through a pad of celite and the filter-cake was washed with dichloromethane (2 x 10 mL). The combined filtrates were then concentrated in vacuo. Purification by flash chromatography using hexanes:ethyl acetate (2:3) as the eluant afforded the title compound 135 (3 mg, 9%) as a colourless oil.

\[R_f = 0.26, \text{hexanes:ethyl acetate (2:3)}; \]

\[^1H \text{ NMR (600 MHz, CDCl}_3\text{)} \delta 2.22 (s, 3H, Me), 2.71 (t, J = 7.8 Hz, 2H, CH\textsubscript{2}), 2.86 (t, J = 7.6 Hz, 2H, CH\textsubscript{2}), 4.25 (d, J = 6.6 Hz, 2H, CH\textsubscript{2}OH), 6.01 (m, 1H, ArH-3), 6.27 (m, 1H, ArH-4), 7.31 (m, 1H, ArH-5), 10.13 (s, 1H, CHO); \textbf{Observed nOe contacts, CHO to Me, CH\textsubscript{2}-OH to CH\textsubscript{2}-5}; \]

\[^13C \text{ NMR (150 MHz, CDCl}_3\text{)} \delta 17.7, 26.5, 35.3, 56.7, 105.9, 110.3, 136.4, 141.4, 153.7, 160.1, 192.4; \textbf{IR} (ef) 3428, 3118, 2917, 1663, 1624, 1506, 1305, 1140, 1011 cm-1; \textbf{MS (Cl)} m/z (rel. intensity) 177 (M – OH, 81), 81 (100); \textbf{HRMS} Calcd. for C\textsubscript{11}H\textsubscript{15}O\textsubscript{3}: 195.1021. Found: 195.1019.

8.6.10 Methyl-(p-nitrophenyl)acetate (139)58
To a solution of \(p \)-nitrophenylacetic acid (138) (20.0 g, 110 mmol) in methanol (20 mL) was added concentrated sulphuric acid (15 drops) and the resultant mixture was heated at 65 °C for 2 h. The reaction mixture was then allowed to cool to room temperature. The resultant crystalline suspension was placed in a refrigerator overnight, after which it was filtered and then washed with ice cold methanol to afford the title compound 139 (19.3 g, 90%) as a pale yellow solid. \(R_f = 0.28 \), hexanes:ethyl acetate (2:1); M.p. 50-52 °C, methanol (lit. 53-54 °C, methanol); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 3.74 (s, 3H, Me), 3.76 (s, 2H, CH\(_2\)), 7.47 (d, \(J = 8.6 \) Hz, 2H, ArH-2’ and ArH-6’), 8.21 (d, \(J = 8.7 \) Hz, 2H, ArH-3’ and ArH-5’); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 40.8, 52.4, 123.7, 130.3, 141.2, 147.2, 170.6; IR (ef) 3116, 3090, 3006, 2961, 2852, 1733, 1607, 1518, 1436, 1354, 1228, 1112 cm\(^{-1}\); MS (Cl) \(m/z \) (rel. intensity) 196 (M + H, 100).

8.6.11 (2E)-Methyl 2-cyano-5-(furan-2'-yl)-3-methylpent-2-enoate (142)

To a mixture of acetic acid (1.0 mL, 17 mmol), ammonium acetate (334 mg, 4.33 mmol) and methyl-2-cyanoacetate (141) (2.15 g, 21.7 mmol) in benzene (100 mL) at room temperature was added the ketone 103 (2.99 g, 21.7 mmol). The reaction mixture then was heated at reflux in a Dean-Stark apparatus for 20 h. The resultant mixture was allowed to cool to room temperature and was then concentrated \(\text{in vacuo} \). The residual oil was then dissolved in ethyl acetate (30 mL), washed with water (2 x 30 mL), dried over anhydrous sodium sulphate and concentrated \(\text{in vacuo} \). Purification by flash chromatography using hexanes:ether (3:1) as the eluant afforded the title compound 142.
(510 mg, 11%) as a pale yellow oil. $R_f = 0.27$, hexanes:ether (3:1); 1H NMR (600 MHz, CDCl$_3$) δ 2.35 (s, 3H, Me), 2.92 (m, 4H, ArCH$_2$CH$_2$), 3.82 (s, 3H, OMe), 6.06 (dd, $J = 3.1$, 0.4 Hz, 1H, ArH-3), 6.28 (dd, $J = 3.2$, 1.9 Hz, 1H, ArH-4), 7.33 (dd, $J = 1.8$, 0.8 Hz, 1H, ArH-5); 13C NMR (151 MHz, CDCl$_3$) δ 20.9, 25.9, 39.1, 52.5, 105.2, 106.2, 110.3, 115.2, 141.6, 152.7, 162.2, 176.1; IR (neat) 2955, 2226, 1732, 1607, 1507, 1435, 1286, 1233, 1146, 1081 cm$^{-1}$; MS (Cl) m/z (rel. intensity) 220 (M + H, 100), 188 (M – OMe, 47); Anal. Calcd. for C$_{12}$H$_{13}$NO$_3$: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.80; H, 5.96; N, 6.31.
REFERENCES

(44) Box, V. G. S.; Marinovic, N.; Yiannikourovs, P. Heterocycles 1991, 32, 245.

