A TEST OF MACD TRADING STRATEGY

by

Bill Huang
Master of Business Administration, University of Leicester, 2005

Yong Soo Kim
Bachelor of Business Administration, Yonsei University, 2001

PROJECT SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF BUSINESS ADMINISTRATION

In the
Faculty
of
Business Administration

Global Asset and Wealth Management MBA

© Bill Huang/Yong Soo Kim 2006

SIMON FRASER UNIVERSITY

Fall 2006

All rights reserved. This work may not be reproduced in whole or in part,
by photocopy or other means, without permission of the author.
APPROVAL

Name: Bill Huang / Yong Soo Kim

Degree: Master of Business Administration

Title of Project: A Test of MACD Trading Strategy

Supervisory Committee:

Dr. Peter Klein
Senior Supervisor
Professor, Faculty of Business Administration

Dr. Daniel Smith
Second Reader
Assistant Professor, Faculty of Business Administration

Date Approved: December 8, 2006
DECLARATION OF PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the "Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006
ABSTRACT

From in-the-sample test, we found that by increasing flexibility of the parameter settings for standard MACD R2 trading strategy, we can create a very powerful tool that outperforms, or at least equal to, the performance of standard long or short MACD trading strategy. Out-of-sample tests enable us to measure the effectiveness of momentum trading strategy in a setting more close to real world. We confirmed that MACD trading can outperform buy-and-hold on NASDAQ, TSX, HSI, KOSPI, and TWSE if trading cost has been ignored.

When we scrutinize MACD trading returns over ten indices and DJIA stocks with paired comparison test, we found no evidence that MACD trading can outperform buy-and-hold with the presence of trading cost.
ACKNOWLEDGEMENTS

We would like to thank Dr. Peter Klein and Dr. Daniel Smith for the time and effort they spent helping and supervising us for this project.

Moreover, we would like to thank our friends in GAWM MBA 2005 for the early discussions on this topic and for their useful insights.
TABLE OF CONTENTS

Approval... ii
Abstract... iii
Acknowledgements... iv
Table of Contents .. v
List of Figures .. vi
List of Tables .. vi

1 Introduction

1.1 Purpose of the paper ... 1
1.2 Definition and trends of technical analysis ... 1

2 Idea and philosophy of the Technical Analysis

2.1 Technical Trading and the Efficient Markets Hypothesis ... 3
2.2 Technical Indicators .. 4
2.3 A Skeletal Review of Literature ... 6

3 Moving Average Convergence/Divergence (MACD) Indicator

3.1 Moving Average Convergence/Divergence (MACD) Indicator .. 9
3.2 Usefulness and Criticism of Standard MACD .. 12
3.3 Refined MACD Indicator – MACDR1 and MACDR2 .. 12
3.4 Research Model and Source Data .. 13
3.5 Effectiveness of in Sample MACD Trading .. 15
3.6 In Sample MACD Trading With Trading Cost .. 33
3.7 Effectiveness of Out of Sample MACD Trading .. 38

4 Conclusion ... 54

Appendices

Appendix A Interface of trading model .. 56
Appendix B Interface of Learning/Applying Model ... 57
Appendix C Visual Basic Code .. 58

Reference List .. 110
LIST OF FIGURES

Figure 2-1 Number of technical analysis trading studies (1960-2004) ...8
Figure 3-1 Typical technical analysis system using MACD ...11
LIST OF TABLES

Table 3-1 Strategy 1 with standard MACD parameters .. 17
Table 3-2 Strategy 1 with optimized MACD parameters .. 19
Table 3-3 Strategy 2 with standard MACD parameters .. 21
Table 3-4 Strategy 2 with optimized MACD parameters .. 23
Table 3-5 Comparison of optimized strategy 2 versus strategy 1 ... 24
Table 3-6 Strategy 3 with standard MACD parameters .. 25
Table 3-7 Strategy 3 with optimized MACD parameters .. 28
Table 3-8 Comparison of optimized strategy 3 versus strategy 2 ... 29
Table 3-9 Strategy 4 with standard MACD parameters .. 30
Table 3-10 Strategy 4 with optimized MACD parameters .. 32
Table 3-11 Comparison of optimized strategy 4 versus strategy 1 ... 33
Table 3-12 Strategy 2 with optimized MACD parameters, one-way trading cost 0.25% 35
Table 3-13 Strategy 3 with optimized MACD parameters, one-way trading cost 0.25% 37
Table 3-14 Combinations of learning period and applying period .. 39
Table 3-15 Strategy 2 learning-applying on ten indices ... 41
Table 3-16 Optimized strategy and learning-applying setting for each index 43
Table 3-17 Sustainable level of trading cost for ten indices ... 45
Table 3-18 Strategy 2 learning-applying on DJIA component stocks 47
Table 3-19 Optimized strategy and learning-applying setting for 12 DJIA stocks 52
Table 3-20 Sustainable level of trading cost for 12 DJIA stocks ... 53
1 INTRODUCTION

1.1 Purpose of the paper

The purpose of this paper is to test the profitability of technical analysis. To achieve this, we first review theoretical and empirical studies and then implement trading simulations that identify the timing of long and short in stock markets by using standard or customized trading strategies.

Technical analysis is the use of past price or volume relationships to forecast price movements. This type of analysis is particularly popular in the future markets, where high leverage, high liquidity, and low brokerage costs permit quick trading profits and losses [Murphy, 1986, pp 1]. Approximately 30% to 40% of practitioners, in the future markets and foreign currency markets, seem to believe that technical analysis is an important factor in determining price movement for shorter time horizons. However, no survey that focuses on stock market traders is available [Park, 2004, pp 1-3].

In order to determine the usefulness of technical analysis, the most straightforward measure is to compare the performance of active technical trading systems to that of buy-and-hold strategy.

1.2 Definition and trends of technical analysis

Technical analysis is a forecasting method of price movements using past prices or volume. Pring (2002) provides a more specific definition:
"The technical approach to investment is essentially a reflection of the idea that prices move in trends that are determined by the changing attitudes of investors toward a variety of economic, monetary, political, and psychological forces. The art of technical analysis, for it is an art, is to identify a trend reversal at a relatively early stage and ride on that trend until the weight of the evidence shows or proves that the trend has reversed." (p. 2)

According to Fama (1970), however, the capital markets are characterized by the weak form of the Efficient Market Hypothesis (EMH), a hypothesis which states that the *ex ante* expected return from a technical trading system cannot be greater than that from a naive buy-and-hold strategy of equal risk.

The empirical literature has been categorized into two groups, "early" and "modern" studies, defined by the characteristics of testing procedures.

- Some early studies showed that technical trading strategies were profitable in foreign exchange markets and futures markets, but not in stock markets before the 1980s [Smidt (1965), Fama (1966, 1970), Bear (1970), Leuthold (1972), Sweeney (1986)].

- More recent studies indicated that technical trading strategies has consistently generated economic profits in certain markets at least until the early 1990s [Lukac, Brorsen, and Irwin (1988), Lukac and Brorsen (1990), Taylor (2000), Olsen (2004)].

In spite of the favourable evidence on the profitability of technical trading strategies, it seems that a majority of empirical studies are subject to various problems in testing procedures such as data snooping, *ex post* selection of trading rules, and improper treatment on risks or transaction costs [Park, 2004].
2 IDEA AND PHILOSOPHY OF THE TECHNICAL ANALYSIS

The first premise of technical analysis is that market action discounts everything. When prices are rising, technicians reckon that demand is stronger than supply and therefore the fundamental has to be bullish. In another word, a study of price action is all that is required [Murphy, 1999, pp. 2-3].

The second premise of technical analysis is the assumption that prices move in trends. This is an adaptation of Newton's first law of motion by assuming that a trend in motion is more likely to continue than to reverse. To identify and follow existing trend is probably one of the most basic technical strategies [Murphy, 1999, pp. 3-4].

The third premise of technical analysis is the belief that history repeats itself. Future is predictable; the key to see the future lies in the understanding of the past [Murphy, 1999, pp. 5].

2.1 Technical Trading and the Efficient Markets Hypothesis

Most economists have been sceptical of technical analysis because they argue that any discernible pattern in time-series price data would be exploited immediately by rational investors who would take advantage of the profit opportunities [Fyfe, 1999, pp. 1].

On the other hand, the EMH has also been criticized by practitioners. George Soros, one of the most successful traders, who stated that, '...this [efficient markets theory] interpretation of the way financial markets operate is severely distorted. ... It may seem strange that a patently false theory should gain such widespread acceptance.' [Soros, 1994].
In general, the efficient markets hypothesis is still dominant in the sense that financial economists have not yet reached a consensus on a better model of price formation. However, the efficient markets paradigm has been challenged by a growing number of alternative theories such as noisy rational expectations models and behavioural models. The disagreement in theoretical models has therefore made empirical evidence a key consideration in determining the profitability of technical trading strategies [Park, 2004, pp. 16].

2.2 Technical Indicators

Technical indicators can be classified into two major categories: trend followers and counter-trend indicators. In this section we will discuss briefly one of the most established trend followers, the Moving Average, and one of the most frequently used counter-trend indicator, the Relative Strength Index [Wong, 2003, pp. 545-546].

\textit{Moving average (MA)}

The \(n\)-day simple MA is given by

\[
M_{t,n} = \frac{1}{n} \sum_{i=t-n+1}^{t} C_i
\]

\[
= (C_t + C_{t-1} + \cdots + C_{t-n+2} + C_{t-n+1})/n
\]

Where \(M_{t,n}\) is the \(n\)-day simple moving average at period \(t\) and \(C_i\) is the closing price for period \(i\). A buy signal is generated when the closing price rises above the MA and a sell signal is generated when the close falls below the MA.

The other use of moving average includes the dual moving average system, and the triple moving average system. The usefulness of a dual or triple moving average system is to provide explicit trading signals through the crossing of moving average lines.
Relative strength index (RSI)

The construction of $RSI_{t,p}$ at time t of period p uses closing prices to calculate the ratio of upward change U_i, to downward change D_i, over the selected time period p, expressed as an oscillator that has a range of 0 to 100. Given an index set $I_{t,p} = \{i : t - p \leq i \leq t\}$, for any $i \in I_{t,p}$ we have

$$U_i = \begin{cases} C_i - C_{i-1} & \text{if } C_i > C_{i-1} \\ 0 & \text{otherwise} \end{cases}$$

$$D_i = \begin{cases} C_{i-1} - C_i & \text{if } C_{i-1} > C_i \\ 0 & \text{otherwise} \end{cases}$$

where C_i is the closing price at time i, the next step is to calculate exponential moving average of U_i and D_i such that

$$\overline{U}_{t,p} = \text{Exponential Moving Average of } U_i \text{ over } I_{t,p}$$

$$\overline{D}_{t,p} = \text{Exponential Moving Average of } D_i \text{ over } I_{t,p}$$

the ratio of those two averages is the Relative Strength (RS)

$$RS_{t,p} = \frac{\overline{U}_{t,p}}{\overline{D}_{t,p}}$$

Finally, we can have RSI by plugging RS into the following formula:

$$RSI_{t,p} = 100 - \frac{100}{1 + RS_{t,p}}$$

For practitioners, a reading above 70 indicates an overbought market, while a reading below 30 indicates an oversold market.
2.3 A Skeletal Review of Literature

The feasibility of market timing has long been the subject of debate. Researchers question the usefulness of such techniques, arguing that such techniques usually cannot generate better returns than a buy-and-hold strategy [Wong, 2003, pp. 544]. Considering the presence of transaction costs, the returns could even be negative [Fama, 1966; Jensen, 1970]. These results are in line with the efficient market hypothesis - current price has already reflected all available information including the past history of prices and trading volume. Since investors compete with each other to exploit their knowledge on price history, they certainly will drive price level to where expected rate of return corresponds with risk. At that price level no one can expect abnormal returns [Fama, 1970].

Technicians may recognize the value of information on future economic prospects of the firm, however their belief is that such information is not vital for a successful trading strategy. Whatever the reason is that drives the change in the stock price, if the process takes time, technicians should be able to capture a trend and profit from it before the adjustment is completed. Therefore the critical factor to successful technical analysis is the slow response of stock prices to the fundamental demand-supply equilibrium [Wong, 2003, pp 544].

Early Studies (1960-1987)

Most early studies applied technical trading rules to examine price behaviour in various markets, along with standard statistical analyses such as serial correlation, runs analysis, and spectral analysis. However these statistical techniques have their limitations. Technical trading rules have been therefore considered as an alternative to avoid the weaknesses of statistical analyses [Park, 2004, pp. 20-21].
The most significant improvement in modern studies has been in the analytic techniques. The fast growing computing power has enabled researchers to apply more advanced theories and statistical methods [Park, 2004, pp.46]. Lukac, Brorsen and Irwin's (1988) work is probably one of the most important modern studies. They tested twelve technical trading systems, applied out-of-sample testing for optimized rules with a statistical test, and measured performance after adjusting for trading costs and risk. The results showed that four out of twelve systems produce significant net returns. Based on the findings, they concluded that “disequilibrium models are a better description of short-run futures price movements than the random walk model” [Lukac, Brorsen, & Irwin, 1988, pp. 623].

Pruitt and White (1988) have proposed a trading system CRISMA (Cumulative volume, Relative Strength, Moving Average) that attempted to forecast stock price by three filters, (1) moving average crossover, (2) relative strength of individual stock price performance against that of the market, and (3) the trend of cumulative volume. Even though they claimed that CRISMA can outperform buy-and-hold in US stock market, two subsequent researches that tested CRISMA in UK stock market [Goodacre, Bosher, & Dove, 1999] and HK stock market [Cheng, Cheung, & Yung, 2003] are quite disappointing. To everybody’s surprise, Cheng, Cheung, and Yung discovered that two of the three filters - relative strength (RS) and cumulative volume (CV) are not useful. The only component that actually works is the moving average filter.

Figure 2-1 shows that in the last ten years the number of technical trading studies has been increased dramatically. With more researches, people may someday be able to delineate technical analysis in a more discreet manner.
Figure 2-1 Number of technical analysis trading studies (1960-2004)

Source: Park, 2004, pp. 71
3 MOVING AVERAGE CONVERGENCE/DIVERGENCE (MACD) INDICATOR

3.1 Moving Average Convergence/Divergence (MACD) Indicator

Created by Gerald Appel in 1979, MACD is one of the most popular indicators in technical analysis. Its construction requires three exponential moving averages (EMA), which are lagging indicators, to identify the continuation or reversal of a trend. These lagging indicators are converted into a momentum oscillator by deducting the slow moving average from the fast moving average. Fast means shorter moving average and slow means longer moving average. In a standard setting the periods are 12 and 26 days for generating the first indicator:

\[
MACD = EMA1 \text{ (12-day closing prices)} - EMA2 \text{ (26-day closing prices)}
\]

The second indicator, called signal line, is once again applying EMA to smooth the first indicator. The standard day setting for signal line is 9:

\[
Signal = EMA \text{ (9-day MACD)}
\]

To calculate EMA for both indicators, the following formula has been applied in our program.

\[
EMA_t = \alpha \times (\text{closing price})_t + (1 - \alpha) \times EMA_{t-1}
\]

Where \(\alpha = \frac{2}{N + 1} \), \(N \): number of days.
The above formula shows that as long as the first EMA is known, any subsequent EMA could be derived from the closing price of that day and the EMA of previous day. For the first EMA, we apply the following formula:

$$EMA_t = \frac{cp_t + (1-\alpha)cp_{t-1} + (1-\alpha)^2 cp_{t-2} + \ldots + (1-\alpha)^{t-1} cp_1}{1 + (1-\alpha) + (1-\alpha)^2 + \ldots + (1-\alpha)^{t-1}}$$

Where cp_t stands for the closing price on day t.

Most technical analysis systems display an extra indicator that shows the difference between MACD and Signal by a solid block histogram. The MACD-Histogram is positive when MACD is above its 9-day EMA and negative when MACD is below its 9-day EMA. It was developed in 1986 by Thomas Aspray.

A buy signal is generated when the more volatile indicator (MACD) cross the less volatile one (Signal) from beneath. On the other hand, a sell signal is given when MACD indicator crosses Signal indicator from above. Figure 3-1 demonstrates how MACD looks like in a typical technical analysis system.
Figure 3-1 Typical technical analysis system using MACD

S&P/TSX COMPOSITE INDEX

![Graph showing S&P/TSX Composite Index with moving averages and price fluctuations over time.](Image)
3.2 Usefulness and Criticism of Standard MACD

While myriads of technical indicators have been created in the past, MACD is one of the oscillators that have stood the test of time. The mechanism behind MACD is easy to comprehend and its construction rules are straightforward. Unlike Relative Strength Index (RSI), another highly popular oscillator provided by almost any existing technical analysis system, which only signals plausible status of overbought, oversold, or in between without unambiguous answer on where to buy or sell.

Due to the lagging feature of the MACD indicator, any buy or sell signals will be generated shortly after the bottom or top in the price movement. Standard MACD works well when there are clear upward and downward trends in price movement. However in a sideways market MACD crossovers may lead to whipsaws and false signals.

3.3 Refined MACD Indicator – MACDR1 and MACDR2

In order to improve the precision of MACD trading signal, Gunter, Albin, and Kai (2001) proposed extra decision rules when a standard MACD crossover has been identified. They pointed out that quite often a trend falters even though it might be strong in the beginning. Meanwhile since MACD is a lagging indicator, the timing to close an existing trade is often too late.

The first model, called MACDR1 (R: Refinement), attempts to ignore buy and sell signal if crossovers are too intensive in a short period of time. To accomplish this, the trading signal is given three days after the crossover, provided that no other crossing has appeared in between. To overcome the weakness of a lagging indicator that is not able to provide timely exit warning, they set a predetermined target at 3% or 5% for profit taking. Thus, the model will generate an exit signal to an existing position when a 3% or 5% target of gain has been reached, or if another
crossing occurs before the target is reached. The weakness in setting a predetermined profit level is that it might miss out the greater profit potential in a steady long trend.

The second model, MACDR2, is an enhancement from the first one. It inherits the same trading rules from MACDR1. The additional procedure is that when a buy or sell signal has been confirmed according to the aforementioned rules, it now further calculates the difference of MACD and Signal over closing price at the end of the third day after a crossing. Assuming closing price is $100, MACD=3 and Signal=1 on the third day after a crossing. If predetermined trigger level is 1%, by applying the following calculation a buy signal has been confirmed.

\[\text{Trading Signal: } \frac{3-1}{100} = 2\% \geq \text{Predetermined Trigger Level 1\%} \]

Gunter claimed that with this extra treatment, MACDR2 is able to capture a more significant trend in the beginning by avoiding random movement in a narrow trading range.

3.4 Research Model and Source Data

In order to study the effectiveness of MACD trading, the best way is to build a trading model that simulates trading activities according to a set of predefined trading rules. The program used in this research has been written in Microsoft Excel Visual Basic. We choose Excel because it owns two of the most convenient features – data input and portability.

Our Excel model contains two major parts. The first part is to provide MACD trading results and to search for the optimal combination of MACD parameters for each trading strategies. The criterion in searching for the optimized MACD parameters is to generate highest possible compounding return. Both functions in the first part use the whole time series as input and therefore the output here is purely in sample result. There are four available trading strategies in this part, which include:
Strategy 1: Long only trading strategy

A long position will be established while detecting the first buying signal. After the position is being sold it will hold nothing until seeing the next buying signal. It will close out existing position, if any, on the last trading day.

Strategy 2: Long or short trading strategy

A position, either long or short, will be established while detecting the first trading signal. Afterward it will keep holding either a long or short position until the last trading day.

Strategy 3: MACD R2 trading strategy

While detecting a trading signal, this strategy will hold trading decision after a certain days and then verify if the gap between MACD and Signal is sufficient to trigger a trade. It will close out a position under three conditions: (1) stock price has reached a specific profit taking or stop loss level, (2) a trading signal comes out, (3) last trading day.

Strategy 4: Short only trading strategy

The mechanism for this strategy is highly similar to that of Strategy 1 with one different rule: only short position is allowed.

It is worth noticing that Strategy 2 can be deemed as a special setting in Strategy 3 where all the three extra parameters (days delay, trigger gap, target profit/loss) are set to zero.

The second part of the model is designed for testing MACD out of sample trading capability. An explanation of how it works will be given in the later part of this research.

The historical data of US market are downloaded from Yahoo Finance, while indices outside the US are downloaded from Bloomberg. We use the adjusted daily closing price from Yahoo Finance for the thirty constituent stocks in Dow Jones Industrial Average Index (DJIA) for the reason that the adjusted closing price has followed CRSP standards in adjusting splits and
dividend distributions. Most of the time series start from the start of January 1980 to the end of September 2006 except some DJIA stocks that went IPO on a later date.

3.5 Effectiveness of in Sample MACD Trading

Before we apply MACD related trading rules to out of sample trading test, we believe it is worth going through in sample trading test to uncover certain unique characteristics in MACD. Ten major indices have been selected for in sample test, which include Dow Jones Industrial Average Index (DJIA), NASDAQ Composite Index (NASDAQ), S&P 500 Index (S&P500), S&P/TSX Composite (TSX), Deutsche Aktien Xchange (DAX), Financial Times Stock Exchange 100 Index (FTSE 100), Hang Seng Index (HSI), Korea Composite Stock Price Index (KOSPI), Nikkei-225 Stock Average (NIKKEI 225), Taiwan Stock Exchange Index (TWSE). All indices data start from January 1980 to September 2006 except FTSE 100, which starts from January 1984.

To conduct in sample test, we went through four trading strategies (long only, long or short, MACDR2, and short only). For each trading strategy, we first examine standard parameter setting (EMA1=12, EMA2=26, Signal=9) and compare them with the optimized parameter setting.

To search for the optimized MACD parameters, a set of upper bounds have to be assigned for searching. By definition EMA1 is shorter moving average and EMA2 is longer moving average, therefore EMA1 shall never be equal or greater than EMA2. Since Signal is the moving average of EMA1 - EMA2, if Signal equals to one day moving average the MACD indicator and Signal indicator will overlap and fails to generate crossover. Consequently the starting value of Signal has to be 2. The following upper bounds have been applied for in sample test.

Max EMA1 = 29
Max EMA2 = 30
Max Signal = 10
With the above setting, our program will search through 3,915 combinations starting from (1, 2, 2) to (29, 30, 10). For any given EMA1, EMA2, and Signal, the number of combinations can be calculated through the following formula:

$$\text{Number of combinations} = \text{EMA2} \times (\text{EMA2} - 1) \times (\text{Signal} - 1) / 2$$

Table 3-1 shows the performance of long only strategy based on standard MACD setting (12, 26, and 9). Even though these three parameters have been used as default MACD setting on almost every technical analysis platforms, probably no practitioner will be so naïve as to believe that there exists a common solution. The fact is, only four indices will allow superior trading results than buy-and-hold. Obviously for anyone who is interested in trading upon MACD signals should not take the standard setting as given. Moreover, there are two common characters that can be identified from the trading results in these indices. First, under standard MACD setting, the average holding period of a profitable trade is 30 days and the average holding period of a losing deal is 10 days. Second, even though on average MACD captures more from a winning trade than it gives out in a losing trade, it is quite a surprise that overall MACD trading signals generate more losing deals than winning deals.
Table 3-1 Strategy 1 with standard MACD parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Profit Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Loss Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Compounding Index</th>
<th>Index End Value</th>
<th>Index Start Value</th>
<th>Buy and Hold Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>123</td>
<td>3.32%</td>
<td>28.0</td>
<td>155</td>
<td>-1.77%</td>
<td>9.1</td>
<td>224.22%</td>
<td>11679.07</td>
<td>824.57</td>
<td>1316.38%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>115</td>
<td>5.38%</td>
<td>31.0</td>
<td>137</td>
<td>-2.42%</td>
<td>10.3</td>
<td>1106.59%</td>
<td>2258.43</td>
<td>148.17</td>
<td>1424.22%</td>
</tr>
<tr>
<td>S&P500</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>103</td>
<td>3.78%</td>
<td>31.2</td>
<td>163</td>
<td>-1.72%</td>
<td>10.5</td>
<td>154.69%</td>
<td>1335.85</td>
<td>105.76</td>
<td>1163.10%</td>
</tr>
<tr>
<td>TSX</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>110</td>
<td>4.09%</td>
<td>32.7</td>
<td>132</td>
<td>-1.63%</td>
<td>10.1</td>
<td>773.74%</td>
<td>11761.27</td>
<td>1806.08</td>
<td>551.20%</td>
</tr>
<tr>
<td>DAX</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>127</td>
<td>3.87%</td>
<td>27.9</td>
<td>164</td>
<td>-2.09%</td>
<td>8.5</td>
<td>247.38%</td>
<td>6004.33</td>
<td>493.5</td>
<td>1116.68%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>89</td>
<td>3.63%</td>
<td>30.4</td>
<td>151</td>
<td>-1.68%</td>
<td>9.2</td>
<td>71.28%</td>
<td>5960.80</td>
<td>997.5</td>
<td>497.57%</td>
</tr>
<tr>
<td>HSI</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>110</td>
<td>7.75%</td>
<td>33.2</td>
<td>122</td>
<td>-2.66%</td>
<td>10.7</td>
<td>10974.47%</td>
<td>17543.05</td>
<td>889.13</td>
<td>1873.06%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>119</td>
<td>6.73%</td>
<td>28.9</td>
<td>164</td>
<td>-3.31%</td>
<td>9.2</td>
<td>548.01%</td>
<td>1371.41</td>
<td>100</td>
<td>1271.41%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>104</td>
<td>4.41%</td>
<td>30.6</td>
<td>139</td>
<td>-2.32%</td>
<td>10.8</td>
<td>207.28%</td>
<td>16127.58</td>
<td>6560.16</td>
<td>145.84%</td>
</tr>
<tr>
<td>TWSE</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>108</td>
<td>9.90%</td>
<td>32.2</td>
<td>167</td>
<td>-2.79%</td>
<td>9.9</td>
<td>11886.38%</td>
<td>6883.05</td>
<td>562.65</td>
<td>1123.33%</td>
</tr>
</tbody>
</table>
Table 3-2 shows that with perfect hindsight, how amazing an optimized set of MACD parameters can be in certain markets. Since the in sample optimization process here ignores trading cost, it therefore makes perfect sense that the optimized parameters invariably generate larger amount of transactions in order to maximize compounding return. Even though all trading results are better than buy-and-hold, for certain indices it seems that a single set of optimized parameters may not be able to keep useful for more than 20 years. Apparently the unimpressive trading results in DJIA, S&P500, DAX, and FTSE 100 shows that in sample optimization have its limitation. One explanation is that these markets are more efficient and therefore no single set of MACD parameters can outperform for such a long period of time.
<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Profit Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Loss Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Compounding Return</th>
<th>Index End Value</th>
<th>Index Start Value</th>
<th>Buy and Hold Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>607</td>
<td>1.44%</td>
<td>5.2</td>
<td>783</td>
<td>-0.75%</td>
<td>2.1</td>
<td>1432.57%</td>
<td>11679.07</td>
<td>824.57</td>
<td>1316.38%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>699</td>
<td>1.83%</td>
<td>5.1</td>
<td>615</td>
<td>-1.11%</td>
<td>2.4</td>
<td>27479.68%</td>
<td>2258.43</td>
<td>148.17</td>
<td>1424.22%</td>
</tr>
<tr>
<td>S&P500</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>859</td>
<td>1.19%</td>
<td>3.5</td>
<td>891</td>
<td>-0.80%</td>
<td>1.9</td>
<td>1843.37%</td>
<td>1335.85</td>
<td>105.76</td>
<td>1163.10%</td>
</tr>
<tr>
<td>TSX</td>
<td>1</td>
<td>25</td>
<td>2</td>
<td>563</td>
<td>1.58%</td>
<td>6.5</td>
<td>587</td>
<td>-0.65%</td>
<td>2.4</td>
<td>13565.53%</td>
<td>11761.27</td>
<td>1806.08</td>
<td>551.20%</td>
</tr>
<tr>
<td>DAX</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>635</td>
<td>1.77%</td>
<td>5.1</td>
<td>722</td>
<td>-1.12%</td>
<td>2.3</td>
<td>1626.13%</td>
<td>6004.33</td>
<td>493.5</td>
<td>1116.68%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>368</td>
<td>1.64%</td>
<td>7.9</td>
<td>495</td>
<td>-0.83%</td>
<td>2.7</td>
<td>510.75%</td>
<td>5960.8</td>
<td>997.5</td>
<td>497.57%</td>
</tr>
<tr>
<td>HSI</td>
<td>1</td>
<td>19</td>
<td>6</td>
<td>361</td>
<td>3.55%</td>
<td>10.0</td>
<td>422</td>
<td>-1.27%</td>
<td>3.3</td>
<td>102863.26%</td>
<td>17543.05</td>
<td>889.13</td>
<td>1873.06%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>906</td>
<td>2.05%</td>
<td>3.4</td>
<td>956</td>
<td>-1.15%</td>
<td>1.9</td>
<td>117632.86%</td>
<td>1371.41</td>
<td>100</td>
<td>1271.41%</td>
</tr>
<tr>
<td>NIKKEI225</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>681</td>
<td>1.60%</td>
<td>4.4</td>
<td>855</td>
<td>-0.96%</td>
<td>2.1</td>
<td>1023.61%</td>
<td>16127.58</td>
<td>6560.16</td>
<td>145.84%</td>
</tr>
<tr>
<td>TWSE</td>
<td>1</td>
<td>29</td>
<td>8</td>
<td>337</td>
<td>4.04%</td>
<td>11.4</td>
<td>424</td>
<td>-1.38%</td>
<td>3.3</td>
<td>107317.83%</td>
<td>6883.05</td>
<td>562.65</td>
<td>1123.33%</td>
</tr>
</tbody>
</table>
Table 3-3 shows that in strategy 2 the transaction number doubles that of strategy 1. Notice that the proportion of losing trades has increased. In comparison with Table 3-1, the ratio of losing trades to winning trades is 1.35 to 1. Here the ratio has become 1.66 to 1. The consequence is a worse overall trading performance – even losing money in DJIA, S&P500, DAX, and FTSE 100. In comparison to the same parameter setting under strategy 1, only three indices (TSX, HSI, and TWSE) perform better than buy-and-hold under strategy 2. Among these three indices, TWSE is especially outstanding that has accumulated a compounding return four hundred times over initial investment.
Table 3-3 Strategy 2 with standard MACD parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Profit Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Loss Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Compounding Index</th>
<th>Index End Value</th>
<th>Index Start Value</th>
<th>Buy and Hold Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>193</td>
<td>3.26%</td>
<td>28.8</td>
<td>362</td>
<td>-1.83%</td>
<td>11.4</td>
<td>-45.61%</td>
<td>11679.07</td>
<td>824.57</td>
<td>1316.38%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>200</td>
<td>5.04%</td>
<td>31.8</td>
<td>302</td>
<td>-2.61%</td>
<td>10.9</td>
<td>353.61%</td>
<td>2258.43</td>
<td>148.17</td>
<td>1424.22%</td>
</tr>
<tr>
<td>S&P500</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>181</td>
<td>3.29%</td>
<td>30.4</td>
<td>351</td>
<td>-1.88%</td>
<td>11.9</td>
<td>-60.87%</td>
<td>1335.85</td>
<td>105.76</td>
<td>1163.10%</td>
</tr>
<tr>
<td>TSX</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>199</td>
<td>3.78%</td>
<td>32.2</td>
<td>284</td>
<td>-1.72%</td>
<td>11.7</td>
<td>888.96%</td>
<td>11761.27</td>
<td>1806.08</td>
<td>551.20%</td>
</tr>
<tr>
<td>DAX</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>214</td>
<td>3.83%</td>
<td>28.6</td>
<td>369</td>
<td>-2.21%</td>
<td>9.7</td>
<td>-34.66%</td>
<td>6004.33</td>
<td>493.5</td>
<td>1116.68%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>157</td>
<td>3.41%</td>
<td>30.1</td>
<td>322</td>
<td>-1.85%</td>
<td>10.8</td>
<td>-58.67%</td>
<td>5960.8</td>
<td>997.6</td>
<td>497.57%</td>
</tr>
<tr>
<td>HSI</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>190</td>
<td>7.53%</td>
<td>33.1</td>
<td>274</td>
<td>-2.90%</td>
<td>12.5</td>
<td>19730.35%</td>
<td>17543.05</td>
<td>889.13</td>
<td>1873.06%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>221</td>
<td>5.62%</td>
<td>29.0</td>
<td>345</td>
<td>-3.15%</td>
<td>9.6</td>
<td>72.58%</td>
<td>1371.41</td>
<td>100</td>
<td>1271.41%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>185</td>
<td>4.45%</td>
<td>32.0</td>
<td>301</td>
<td>-2.29%</td>
<td>12.5</td>
<td>140.79%</td>
<td>16127.58</td>
<td>6560.16</td>
<td>145.84%</td>
</tr>
<tr>
<td>TWSE</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>218</td>
<td>7.96%</td>
<td>28.9</td>
<td>331</td>
<td>-2.91%</td>
<td>10.4</td>
<td>40198.22%</td>
<td>6883.05</td>
<td>562.65</td>
<td>1123.33%</td>
</tr>
</tbody>
</table>
Table 3-4 shows that the compounding returns in seven indices have been improved if the restriction of short selling has been taken away. It is quite interesting that the enhancement in return can be more than ten times in five indices (see Table 3-5). On the other hand, this strategy is not dominating either. In comparison with optimized strategy 1, it generates less return on DAX, DJIA and FTSE 100.
<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Profit Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Loss Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Compounding Return</th>
<th>Index End Value</th>
<th>Index Start Value</th>
<th>Buy and Hold Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>1107</td>
<td>1.43%</td>
<td>5.3</td>
<td>1671</td>
<td>-0.78%</td>
<td>2.3</td>
<td>1149.48%</td>
<td>11679.07</td>
<td>824.57</td>
<td>1316.38%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1232</td>
<td>1.86%</td>
<td>5.2</td>
<td>1400</td>
<td>-1.02%</td>
<td>2.4</td>
<td>293162.08%</td>
<td>2258.43</td>
<td>148.17</td>
<td>1424.22%</td>
</tr>
<tr>
<td>S&P500</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1270</td>
<td>1.35%</td>
<td>4.6</td>
<td>1694</td>
<td>-0.81%</td>
<td>2.3</td>
<td>2045.83%</td>
<td>1335.85</td>
<td>105.76</td>
<td>1163.10%</td>
</tr>
<tr>
<td>TSX</td>
<td>1</td>
<td>25</td>
<td>2</td>
<td>1039</td>
<td>1.55%</td>
<td>6.4</td>
<td>1261</td>
<td>-0.63%</td>
<td>2.4</td>
<td>242709.51%</td>
<td>11761.27</td>
<td>1806.08</td>
<td>551.20%</td>
</tr>
<tr>
<td>DAX</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1166</td>
<td>1.76%</td>
<td>5.1</td>
<td>1553</td>
<td>-1.11%</td>
<td>2.5</td>
<td>1411.12%</td>
<td>6004.33</td>
<td>493.5</td>
<td>1116.68%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>661</td>
<td>1.67%</td>
<td>8.0</td>
<td>1067</td>
<td>-0.86%</td>
<td>2.8</td>
<td>390.20%</td>
<td>5960.8</td>
<td>997.5</td>
<td>497.57%</td>
</tr>
<tr>
<td>HSI</td>
<td>1</td>
<td>19</td>
<td>6</td>
<td>657</td>
<td>3.46%</td>
<td>10.1</td>
<td>909</td>
<td>-1.30%</td>
<td>3.4</td>
<td>1938947.12%</td>
<td>17543.05</td>
<td>889.13</td>
<td>1873.06%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1762</td>
<td>1.93%</td>
<td>3.4</td>
<td>1959</td>
<td>-1.14%</td>
<td>1.9</td>
<td>4649405.16%</td>
<td>1371.41</td>
<td>100</td>
<td>1271.41%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1286</td>
<td>1.64%</td>
<td>4.5</td>
<td>1785</td>
<td>-0.96%</td>
<td>2.2</td>
<td>2977.14%</td>
<td>16127.58</td>
<td>6560.16</td>
<td>145.84%</td>
</tr>
<tr>
<td>TWSE</td>
<td>1</td>
<td>29</td>
<td>8</td>
<td>617</td>
<td>3.95%</td>
<td>11.1</td>
<td>905</td>
<td>-1.41%</td>
<td>3.2</td>
<td>2812347.78%</td>
<td>6883.05</td>
<td>562.65</td>
<td>1123.33%</td>
</tr>
</tbody>
</table>
Table 3-5 Comparison of optimized strategy 2 versus strategy 1

<table>
<thead>
<tr>
<th>Index</th>
<th>Optimized Strategy 2 (a)</th>
<th>Optimized Strategy 1 (b)</th>
<th>(a) / (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOSPI</td>
<td>4649405.16%</td>
<td>117632.86%</td>
<td>39.5</td>
</tr>
<tr>
<td>TWSE</td>
<td>2812347.78%</td>
<td>107317.83%</td>
<td>26.2</td>
</tr>
<tr>
<td>HSI</td>
<td>1938947.12%</td>
<td>102863.26%</td>
<td>18.8</td>
</tr>
<tr>
<td>TSX</td>
<td>242709.51%</td>
<td>13565.53%</td>
<td>17.9</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>293162.08%</td>
<td>27479.68%</td>
<td>10.7</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>2977.14%</td>
<td>1023.61%</td>
<td>2.9</td>
</tr>
<tr>
<td>S&P500</td>
<td>2045.83%</td>
<td>1843.37%</td>
<td>1.1</td>
</tr>
<tr>
<td>DAX</td>
<td>1411.12%</td>
<td>1626.13%</td>
<td>0.9</td>
</tr>
<tr>
<td>DJIA</td>
<td>1149.48%</td>
<td>1432.57%</td>
<td>0.8</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>390.20%</td>
<td>510.75%</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 3-6 shows the results by combining standard MACD parameters with MACDR2 trading rules (3 days delay, trigger at 0.3%, and profit taking target at 5%). With these extra restrictions, the transaction number has reduced significantly. However it fails to improve the accuracy of trading signals. The losing deal number is still higher in most indices except for that of FTSE 100 and HSI.
Table 3-6 Strategy 3 with standard MACD parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Profit</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Loss</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Compounding Return</th>
<th>Index End Value</th>
<th>Index Start Value</th>
<th>Buy and Hold Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>44</td>
<td>3.85%</td>
<td>20.2</td>
<td>79</td>
<td>-2.58%</td>
<td>16.2</td>
<td>-34.77%</td>
<td>11679.07</td>
<td>824.57</td>
<td>1316.38%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>77</td>
<td>4.41%</td>
<td>18.6</td>
<td>96</td>
<td>-4.07%</td>
<td>13.3</td>
<td>-51.80%</td>
<td>2258.43</td>
<td>148.17</td>
<td>1424.22%</td>
</tr>
<tr>
<td>S&P500</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>48</td>
<td>3.99%</td>
<td>20.4</td>
<td>71</td>
<td>-2.71%</td>
<td>13.9</td>
<td>-9.32%</td>
<td>1335.85</td>
<td>105.76</td>
<td>1163.10%</td>
</tr>
<tr>
<td>TSX</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>40</td>
<td>3.80%</td>
<td>26.7</td>
<td>55</td>
<td>-2.37%</td>
<td>17.2</td>
<td>16.70%</td>
<td>11761.27</td>
<td>1806.08</td>
<td>551.20%</td>
</tr>
<tr>
<td>DAX</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>72</td>
<td>4.50%</td>
<td>15.8</td>
<td>84</td>
<td>-2.88%</td>
<td>14.8</td>
<td>98.94%</td>
<td>6004.33</td>
<td>493.5</td>
<td>1116.68%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>45</td>
<td>4.21%</td>
<td>19.3</td>
<td>42</td>
<td>-2.69%</td>
<td>15.1</td>
<td>99.27%</td>
<td>5960.8</td>
<td>997.5</td>
<td>497.57%</td>
</tr>
<tr>
<td>HSI</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>122</td>
<td>5.56%</td>
<td>15.2</td>
<td>114</td>
<td>-3.78%</td>
<td>14.0</td>
<td>755.72%</td>
<td>17543.05</td>
<td>889.13</td>
<td>1873.06%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>102</td>
<td>5.11%</td>
<td>14.1</td>
<td>122</td>
<td>-4.16%</td>
<td>11.7</td>
<td>-17.21%</td>
<td>1371.41</td>
<td>100</td>
<td>1271.41%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>68</td>
<td>4.76%</td>
<td>19.2</td>
<td>87</td>
<td>-3.24%</td>
<td>15.8</td>
<td>28.51%</td>
<td>16127.58</td>
<td>6560.16</td>
<td>145.84%</td>
</tr>
<tr>
<td>TWSE</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>112</td>
<td>5.48%</td>
<td>13.0</td>
<td>129</td>
<td>-4.29%</td>
<td>12.5</td>
<td>24.29%</td>
<td>6883.05</td>
<td>562.65</td>
<td>1123.33%</td>
</tr>
</tbody>
</table>
Table 3-7 shows that from a perfect hindsight, optimized MACD\textsubscript{R2} is a strategy capable of reaching the greatest profit potential. Other than the search for the three MACD parameters, optimizer will do extra search for MACD\textsubscript{R2} parameters shown below:

- Days Delay: 0, 1, 2, 3
- Trigger: 0, 0.1\%, 0.2\%, 0.3\%
- Target: -5\%, 0, +5\%

Even though the searching range of these extra parameters is very limited at the first glance, it requires much more calculations than in other strategies. As mentioned earlier, in order to search for the optimized MACD parameters, the program has to repeat 3,915 times of trading simulation on the same time series to sort out the one with maximum compounding return. Taking these three extra MACD\textsubscript{R2} parameters into consideration, it will have to repeat 187,920 (\(= 4 \times 4 \times 3 \times 3915\)) times of trading simulation. For a typical time serious applied in this research that starts from January 1980 to September 2006, the number of closing price is around 6,800.

The optimized results in strategy 3 are superior or at least equal to the results in strategy 2 because the latter is merely a special setting of the former where all MACD\textsubscript{R2} parameters are set to zero. However the optimized parameters listed in Table 3-7 shows that parameters such as Days Delay and Trigger are mostly inactive in an optimized setting. Although Gunter has provided a very plausible reason on why should it be better to hold a trading decision three days after seeing traditional MACD signal, our in sample test shows that act immediately upon traditional signal leads to most favourable results.

Table 3-7 indicates that there are six optimized Target levels not equal to zero. It means that Gunter's idea of setting a predetermined profit target has actually worked. Even though Gunter's MACD\textsubscript{R2} does not incorporate any predetermined stop loss decision, our optimizer is capable of testing either stop loss or profit taking level. For example, NASDAQ shows a Target of -5.0\% in Table 3-7 means that optimizer has identified a better performance if there is a
predetermined stop level (-5.0%) in place. Table 3-8 shows that the compounding return for NASDAQ in strategy 3 is 10% higher than that of strategy 2. This 10% extra return can be fully attributed to the new stop loss setting because the rest parameters in strategy 2 and 3 are identical.
Table 3-7 Strategy 3 with optimized MACD parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Profit Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Loss Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Compounding Return</th>
<th>Days Delay</th>
<th>Trigger</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>1108</td>
<td>1.44%</td>
<td>5.2</td>
<td>1670</td>
<td>-0.77%</td>
<td>2.3</td>
<td>1394.69%</td>
<td>0</td>
<td>0.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1232</td>
<td>1.86%</td>
<td>5.2</td>
<td>1400</td>
<td>-1.02%</td>
<td>2.4</td>
<td>322203.76%</td>
<td>0</td>
<td>0.0%</td>
<td>-5.0%</td>
</tr>
<tr>
<td>S&P500</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1271</td>
<td>1.36%</td>
<td>4.5</td>
<td>1693</td>
<td>-0.81%</td>
<td>2.2</td>
<td>2632.34%</td>
<td>0</td>
<td>0.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>TSX</td>
<td>1</td>
<td>25</td>
<td>2</td>
<td>1039</td>
<td>1.55%</td>
<td>6.4</td>
<td>1261</td>
<td>-0.63%</td>
<td>2.4</td>
<td>242709.51%</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>DAX</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>850</td>
<td>1.98%</td>
<td>5.2</td>
<td>1145</td>
<td>-1.15%</td>
<td>2.4</td>
<td>2583.47%</td>
<td>0</td>
<td>0.1%</td>
<td>5.0%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>661</td>
<td>1.70%</td>
<td>7.6</td>
<td>1067</td>
<td>-0.86%</td>
<td>2.8</td>
<td>500.67%</td>
<td>0</td>
<td>0.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>HSI</td>
<td>1</td>
<td>19</td>
<td>6</td>
<td>657</td>
<td>3.46%</td>
<td>10.1</td>
<td>909</td>
<td>-1.30%</td>
<td>3.4</td>
<td>1938947.12%</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1762</td>
<td>1.93%</td>
<td>3.4</td>
<td>1959</td>
<td>-1.14%</td>
<td>1.9</td>
<td>4649405.16%</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1287</td>
<td>1.68%</td>
<td>4.3</td>
<td>1784</td>
<td>-0.96%</td>
<td>2.2</td>
<td>5125.86%</td>
<td>0</td>
<td>0.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>TWSE</td>
<td>1</td>
<td>29</td>
<td>8</td>
<td>617</td>
<td>3.95%</td>
<td>11.1</td>
<td>905</td>
<td>-1.41%</td>
<td>3.2</td>
<td>2812347.78%</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Table 3-8 Comparison of optimized strategy 3 versus strategy 2

<table>
<thead>
<tr>
<th>Index</th>
<th>Optimized Strategy 3 (a)</th>
<th>Optimized Strategy 2 (b)</th>
<th>(a) / (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>2583.47%</td>
<td>1411.12%</td>
<td>1.8</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>5125.86%</td>
<td>2977.14%</td>
<td>1.7</td>
</tr>
<tr>
<td>S&P500</td>
<td>2632.34%</td>
<td>2045.83%</td>
<td>1.3</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>500.67%</td>
<td>390.20%</td>
<td>1.3</td>
</tr>
<tr>
<td>DJIA</td>
<td>1394.69%</td>
<td>1149.48%</td>
<td>1.2</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>322203.76%</td>
<td>293162.08%</td>
<td>1.1</td>
</tr>
<tr>
<td>TSX</td>
<td>242709.51%</td>
<td>242709.51%</td>
<td>1.0</td>
</tr>
<tr>
<td>HSI</td>
<td>1938947.12%</td>
<td>1938947.12%</td>
<td>1.0</td>
</tr>
<tr>
<td>KOSPI</td>
<td>4649405.16%</td>
<td>4649405.16%</td>
<td>1.0</td>
</tr>
<tr>
<td>TWSE</td>
<td>2812347.78%</td>
<td>2812347.78%</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 3-9 shows how disastrous it can be when applying short only strategy upon rising time series. Seven out of ten end up with damaging initial investment. Even though on average the standard MACD parameters are still able to grab more in a winning deal and give out less in a losing deal, the proportion of losing deals (67%) are simply too high.
Table 3-9 Strategy 4 with standard MACD parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Profit Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Loss Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Compounding Return</th>
<th>Index End Value</th>
<th>Index Start Value</th>
<th>Buy and Hold Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>70</td>
<td>3.16%</td>
<td>30.1</td>
<td>207</td>
<td>-1.87%</td>
<td>13.1</td>
<td>-83.22%</td>
<td>11679.07</td>
<td>824.57</td>
<td>1316.38%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>85</td>
<td>4.58%</td>
<td>32.7</td>
<td>165</td>
<td>-2.77%</td>
<td>11.5</td>
<td>-62.41%</td>
<td>2258.43</td>
<td>148.17</td>
<td>1424.22%</td>
</tr>
<tr>
<td>S&P500</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>78</td>
<td>2.63%</td>
<td>29.3</td>
<td>188</td>
<td>-2.03%</td>
<td>13.1</td>
<td>-84.64%</td>
<td>1335.85</td>
<td>105.76</td>
<td>1163.10%</td>
</tr>
<tr>
<td>TSX</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>89</td>
<td>3.40%</td>
<td>31.5</td>
<td>152</td>
<td>-1.81%</td>
<td>13.0</td>
<td>13.19%</td>
<td>11761.27</td>
<td>1806.08</td>
<td>551.20%</td>
</tr>
<tr>
<td>DAX</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>87</td>
<td>3.77%</td>
<td>29.7</td>
<td>205</td>
<td>-2.31%</td>
<td>10.6</td>
<td>-81.19%</td>
<td>6004.33</td>
<td>493.5</td>
<td>1116.68%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>68</td>
<td>3.13%</td>
<td>29.8</td>
<td>171</td>
<td>-2.00%</td>
<td>12.2</td>
<td>-75.87%</td>
<td>5960.8</td>
<td>997.5</td>
<td>497.57%</td>
</tr>
<tr>
<td>HSI</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>80</td>
<td>7.23%</td>
<td>32.8</td>
<td>152</td>
<td>-3.09%</td>
<td>14.0</td>
<td>79.06%</td>
<td>17543.05</td>
<td>889.13</td>
<td>1873.06%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>102</td>
<td>4.33%</td>
<td>29.1</td>
<td>181</td>
<td>-3.00%</td>
<td>9.9</td>
<td>-73.37%</td>
<td>1371.41</td>
<td>100</td>
<td>1271.41%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>81</td>
<td>4.50%</td>
<td>33.9</td>
<td>162</td>
<td>-2.26%</td>
<td>13.9</td>
<td>-21.64%</td>
<td>16127.58</td>
<td>6560.16</td>
<td>145.84%</td>
</tr>
<tr>
<td>TWSE</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>110</td>
<td>6.05%</td>
<td>25.7</td>
<td>164</td>
<td>-3.03%</td>
<td>10.9</td>
<td>236.20%</td>
<td>6883.05</td>
<td>562.65</td>
<td>1123.33%</td>
</tr>
</tbody>
</table>
Table 3-10 shows the optimized results for short only strategy is still disappointing. Six out of ten compounding return are still lag behind buy-and-hold return. Table 3-11 shows that the optimized results in the last strategy are merely tiny fractions of the optimized results in strategy 1.
<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Profit Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Loss Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Compounding Return</th>
<th>Index End Value</th>
<th>Index Start Value</th>
<th>Buy and Hold Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>500</td>
<td>1.42%</td>
<td>5.4</td>
<td>888</td>
<td>-0.80%</td>
<td>2.5</td>
<td>-18.47%</td>
<td>11679.07</td>
<td>824.57</td>
<td>1316.38%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>533</td>
<td>1.90%</td>
<td>5.2</td>
<td>785</td>
<td>-0.95%</td>
<td>2.4</td>
<td>963.33%</td>
<td>2258.43</td>
<td>148.17</td>
<td>1424.22%</td>
</tr>
<tr>
<td>S&P500</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>575</td>
<td>1.34%</td>
<td>4.8</td>
<td>908</td>
<td>-0.82%</td>
<td>2.5</td>
<td>12.52%</td>
<td>1335.85</td>
<td>105.76</td>
<td>1163.10%</td>
</tr>
<tr>
<td>TSX</td>
<td>1</td>
<td>25</td>
<td>2</td>
<td>476</td>
<td>1.51%</td>
<td>6.3</td>
<td>674</td>
<td>-0.62%</td>
<td>2.5</td>
<td>1676.80%</td>
<td>11761.27</td>
<td>1806.08</td>
<td>551.20%</td>
</tr>
<tr>
<td>DAX</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>531</td>
<td>1.75%</td>
<td>5.1</td>
<td>831</td>
<td>-1.11%</td>
<td>2.6</td>
<td>-12.46%</td>
<td>6004.33</td>
<td>493.5</td>
<td>1116.68%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>293</td>
<td>1.71%</td>
<td>8.1</td>
<td>572</td>
<td>-0.89%</td>
<td>2.9</td>
<td>-19.74%</td>
<td>5960.8</td>
<td>997.5</td>
<td>497.57%</td>
</tr>
<tr>
<td>HSI</td>
<td>1</td>
<td>19</td>
<td>6</td>
<td>296</td>
<td>3.34%</td>
<td>10.1</td>
<td>487</td>
<td>-1.33%</td>
<td>3.5</td>
<td>1783.24%</td>
<td>17543.05</td>
<td>889.13</td>
<td>1873.06%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>856</td>
<td>1.80%</td>
<td>3.3</td>
<td>1003</td>
<td>-1.13%</td>
<td>2.0</td>
<td>3849.20%</td>
<td>1371.41</td>
<td>100</td>
<td>1271.41%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>605</td>
<td>1.68%</td>
<td>4.6</td>
<td>930</td>
<td>-0.96%</td>
<td>2.4</td>
<td>173.86%</td>
<td>16127.58</td>
<td>6560.16</td>
<td>145.84%</td>
</tr>
<tr>
<td>TWSE</td>
<td>1</td>
<td>26</td>
<td>8</td>
<td>288</td>
<td>3.80%</td>
<td>10.6</td>
<td>483</td>
<td>-1.48%</td>
<td>3.1</td>
<td>2546.70%</td>
<td>6883.05</td>
<td>562.65</td>
<td>1123.33%</td>
</tr>
</tbody>
</table>
Table 3-11 Comparison of optimized strategy 4 versus strategy 1

<table>
<thead>
<tr>
<th>Index</th>
<th>Optimized Strategy 4 (a)</th>
<th>Optimized Strategy 1 (b)</th>
<th>(a) / (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>-18.47%</td>
<td>1432.57%</td>
<td>-1%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>963.33%</td>
<td>27479.68%</td>
<td>4%</td>
</tr>
<tr>
<td>S&P500</td>
<td>12.52%</td>
<td>1843.37%</td>
<td>1%</td>
</tr>
<tr>
<td>TSX</td>
<td>1676.80%</td>
<td>13565.53%</td>
<td>12%</td>
</tr>
<tr>
<td>DAX</td>
<td>-12.46%</td>
<td>1626.13%</td>
<td>-1%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>-19.74%</td>
<td>510.75%</td>
<td>-4%</td>
</tr>
<tr>
<td>HSI</td>
<td>1783.24%</td>
<td>102863.26%</td>
<td>2%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>3849.20%</td>
<td>117632.86%</td>
<td>3%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>173.86%</td>
<td>1023.61%</td>
<td>17%</td>
</tr>
<tr>
<td>TWSE</td>
<td>2546.70%</td>
<td>107317.83%</td>
<td>2%</td>
</tr>
</tbody>
</table>

3.6 In Sample MACD Trading With Trading Cost

In the previous section we have identified certain indices that generate hundreds or even thousands times of trading return comparing to buy-and-hold results. Without considering trading cost, optimizer invariably favours MACD parameters that generate more trading activities. Even though this will inevitably invite more losing trades, it doesn’t really matter as long as these trades maintain a positive average return. Through the power of compounding, myriad of insignificant winning trades keep magnifying the investment for hundreds of times until the final figure becomes too good to be true. Impose trading cost can force the optimizer to search for more realistic solutions. More importantly, if MACD can not outperform in sample with the presence of trading cost, it probably won’t get any chance to outperform in real life situation.

First we assume one-way trading cost is 0.25% for either buying or selling. Then we optimize MACD parameters for trading strategy 2. With the presence of trading cost the optimized parameters hit upper bound much more often now. If more than one parameter has reached the upper limit, we relax the upper bound from (29, 30, 10) to (49, 50, 20). The detail of trading results is demonstrated in Table 3-12.
Without surprise, trading cost is a real issue that brings devastating results in four indices (DJIA, S&P 500, FTSE 100, NIKKEI 225). On the other hand, MACD has survived in sample trial in HSI, KOSPI, and TWSE. A further investigation shows that MACD trading strategy 2 can outperform buy-and-hold on TWSE with trading cost up to 0.40%. Coincidentally the three indices all reside in Asia Pacific and none of these countries impose capital gain tax on equity investment.

Noticeably, trading activity has withered in every index. To be more precise, total deal number in Table 3-12 is only 16.2% of that number in Table 3-4.
<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal Deal</th>
<th>P/L</th>
<th>Period</th>
<th>Return Value</th>
<th>Value Hold</th>
<th>Value Compounding Index Start</th>
<th>Index End</th>
<th>Buy and Hold</th>
<th>Return Value</th>
<th>Value Hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>32</td>
<td>41</td>
<td>13</td>
<td>87</td>
<td>4.92%</td>
<td>-2.67%</td>
<td>23.8</td>
<td>82.457</td>
<td>1316.38%</td>
<td>-99.30%</td>
<td>11679.07</td>
<td>882.17</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>46</td>
<td>49</td>
<td>20</td>
<td>72</td>
<td>10.96%</td>
<td>-3.96%</td>
<td>28.7</td>
<td>966.583</td>
<td>1315.22%</td>
<td>-116.63%</td>
<td>2258.43</td>
<td>148.17</td>
</tr>
<tr>
<td>S&P500</td>
<td>34</td>
<td>50</td>
<td>19</td>
<td>69</td>
<td>5.31%</td>
<td>-3.05%</td>
<td>27.0</td>
<td>1335.85</td>
<td>1136.10%</td>
<td>-1424.22%</td>
<td>105.76</td>
<td>1163.10%</td>
</tr>
<tr>
<td>TSX</td>
<td>25</td>
<td>30</td>
<td>2</td>
<td>114</td>
<td>3.56%</td>
<td>-1.51%</td>
<td>8.2</td>
<td>95.31%</td>
<td>551.20%</td>
<td>-1166.88%</td>
<td>11761.27</td>
<td>493.15</td>
</tr>
<tr>
<td>DAX</td>
<td>23</td>
<td>24</td>
<td>19</td>
<td>118</td>
<td>6.07%</td>
<td>-3.15%</td>
<td>20.5</td>
<td>156.20%</td>
<td>1116.68%</td>
<td>-2404.05%</td>
<td>6004.33</td>
<td>497.57%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>18</td>
<td>43</td>
<td>20</td>
<td>19</td>
<td>5.73%</td>
<td>-2.40%</td>
<td>18.9</td>
<td>5960.8</td>
<td>187.06%</td>
<td>-1547.38%</td>
<td>17543.05</td>
<td>889.13</td>
</tr>
<tr>
<td>HSI</td>
<td>27</td>
<td>28</td>
<td>2</td>
<td>214</td>
<td>6.81%</td>
<td>-2.23%</td>
<td>8.2</td>
<td>6878.49%</td>
<td>145.84%</td>
<td>-2307.45%</td>
<td>1371.41</td>
<td>100.00</td>
</tr>
<tr>
<td>KOSPI</td>
<td>48</td>
<td>49</td>
<td>17</td>
<td>86</td>
<td>10.95%</td>
<td>-4.06%</td>
<td>24.2</td>
<td>2507.45%</td>
<td>1121.41%</td>
<td>-1277.70%</td>
<td>6500.16</td>
<td>145.84%</td>
</tr>
<tr>
<td>TWSE</td>
<td>17</td>
<td>30</td>
<td>2</td>
<td>286</td>
<td>6.48%</td>
<td>-2.31%</td>
<td>6.4</td>
<td>12495.74%</td>
<td>1123.33%</td>
<td>626.05</td>
<td>6883.05</td>
<td>621.32</td>
</tr>
</tbody>
</table>
We have demonstrated in the last section that strategy 3 (MACDR2 trading strategy) can marginally improve trading results of strategy 2 (either long or short) without considering trading cost. Table 3-13 shows that strategy 3 is even more useful while facing trading cost. In comparison with the results in Table 3-7, more MACDR2 parameters have been set active. Instead of only three out performance in strategy 2, here we have five winners (NASDAQ, HSI, KOSPI, NIKKEI 225, and TWSE).

Perhaps the most important contribution of MACDR2 is to protect downside loss instead of boosting further profit for front runners. The trading results are all positive now but the optimized trading performance of previous winners (HSI, KOSPI, and TWSE) is still identical. In another word, the extra efforts in searching for MACDR2 specific parameters on these three indices have not led to better results previously identified by strategy 2.
Table 3-13 Strategy 3 with optimized MACD parameters, one-way trading cost 0.25%

<table>
<thead>
<tr>
<th>Index</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Profit Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Loss Deal</th>
<th>Average P/L</th>
<th>Average Holding Period</th>
<th>Compounding Return</th>
<th>Days Delay</th>
<th>Trigger</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>17</td>
<td>24</td>
<td>7</td>
<td>20</td>
<td>5.68%</td>
<td>32.7</td>
<td>14</td>
<td>-2.92%</td>
<td>19.3</td>
<td>94.01%</td>
<td>1</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>47</td>
<td>48</td>
<td>20</td>
<td>69</td>
<td>11.03%</td>
<td>84.8</td>
<td>114</td>
<td>-3.40%</td>
<td>25.0</td>
<td>1779.90%</td>
<td>2</td>
<td>0.0%</td>
<td>-5.0%</td>
</tr>
<tr>
<td>S&P500</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>4.82%</td>
<td>8.4</td>
<td>2</td>
<td>-3.52%</td>
<td>5.0</td>
<td>41.89%</td>
<td>1</td>
<td>0.2%</td>
<td>5.0%</td>
</tr>
<tr>
<td>TSX</td>
<td>25</td>
<td>30</td>
<td>2</td>
<td>211</td>
<td>3.56%</td>
<td>29.3</td>
<td>431</td>
<td>-1.50%</td>
<td>8.2</td>
<td>101.70%</td>
<td>0</td>
<td>0.0%</td>
<td>-5.0%</td>
</tr>
<tr>
<td>DAX</td>
<td>23</td>
<td>30</td>
<td>9</td>
<td>47</td>
<td>5.04%</td>
<td>25.0</td>
<td>34</td>
<td>-4.48%</td>
<td>22.9</td>
<td>106.63%</td>
<td>3</td>
<td>0.1%</td>
<td>5.0%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>18</td>
<td>28</td>
<td>13</td>
<td>22</td>
<td>5.22%</td>
<td>23.7</td>
<td>8</td>
<td>-3.57%</td>
<td>23.7</td>
<td>128.34%</td>
<td>2</td>
<td>0.2%</td>
<td>5.0%</td>
</tr>
<tr>
<td>HSI</td>
<td>27</td>
<td>28</td>
<td>2</td>
<td>214</td>
<td>6.81%</td>
<td>29.6</td>
<td>412</td>
<td>-2.25%</td>
<td>8.2</td>
<td>6878.49%</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>48</td>
<td>49</td>
<td>17</td>
<td>86</td>
<td>10.95%</td>
<td>77.5</td>
<td>125</td>
<td>-4.06%</td>
<td>24.2</td>
<td>2307.45%</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>11</td>
<td>29</td>
<td>6</td>
<td>64</td>
<td>4.98%</td>
<td>17.8</td>
<td>64</td>
<td>-2.98%</td>
<td>14.2</td>
<td>214.11%</td>
<td>0</td>
<td>0.1%</td>
<td>5.0%</td>
</tr>
<tr>
<td>TWSE</td>
<td>17</td>
<td>30</td>
<td>2</td>
<td>286</td>
<td>6.48%</td>
<td>22.4</td>
<td>519</td>
<td>-2.31%</td>
<td>6.4</td>
<td>12495.74%</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
With the help of in sample test, we have identified the possibility for MACD trading to outperform buy-and-hold strategy in some markets from a hindsight perspective. The finding here also shows that even if a trader can get the optimized parameters in advance, the chance that overall MACD trading performance lags behind buy-and-hold is still high if the trader keeps using the same parameters in certain developed markets (DJIA, S&P 500, TSX, DAX, FTSE 100).

3.7 Effectiveness of Out of Sample MACD Trading

In sample test may not be able to answer the true effectiveness of MACD trading strategy because (1) optimized parameters can only be observed ex post, (2) it is possible that the optimized parameters are changing through time. An out of sample test should be able to clarify these concerns.

Zitzlsperger (2002) has tested S&P 500 by continuous searching for the optimized MACD parameters for two years and then apply in trading for the subsequent year. He claimed that, without considering trading cost, the training-applying strategy will be able to generate 17710% of total return from 1970 to 2001.

The second part of our model has been designed to perform out of sample test. The program for learning-applying methodology is similar to the functions in the first part. For example, learning function is working in the same way as optimization. The difference is that learning is an on going process that only focuses on a shorter period of time. The parameters identified in the learning process will be applied at once in the adjacent trading period.

The rationale behind learning and applying is straightforward, there might exist certain parameters that are capable of capturing price momentum in a finite period of time. Several different learning and applying period will be tested to increase the chance of recognizing such a relationship.

In order to provide comparable benchmarks, for each applying period a buy-and-hold return will be calculated. Right before the start of an applying period we assume that there is no
position for either MACD trader or buy-and-hold investor. When an applying period starts, MACD trader will act upon the first trading signal while buy-and-hold investor will long index or stock immediately. Existing position will be closed out on the last day of the applying period for both MACD trader and buy-and-hold investor. Under this setting the compounding return of a series buy-and-hold results will be different from general buy-and-hold definition. This discrepancy comes from the repetitive liquidating on the last applying day and repurchasing on the next day, the beginning of the next applying period.

We have predetermined several different learning and applying period to perform out of sample test. For simplicity, we will express a learning-applying setting by this notation: learning months – applying months. For example, 12-6 means training 12 months and applying 6 months. All the predetermined combinations are listed below (Table 3-14).

<table>
<thead>
<tr>
<th>Learning Period</th>
<th>Applying Period</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 12-month</td>
<td>12-month</td>
<td>12-12</td>
</tr>
<tr>
<td>2 24-month</td>
<td>12-month</td>
<td>24-12</td>
</tr>
<tr>
<td>3 36-month</td>
<td>12-month</td>
<td>36-12</td>
</tr>
<tr>
<td>4 48-month</td>
<td>12-month</td>
<td>48-12</td>
</tr>
<tr>
<td>5 12-month</td>
<td>6-month</td>
<td>12-6</td>
</tr>
<tr>
<td>6 12-month</td>
<td>3-month</td>
<td>12-3</td>
</tr>
<tr>
<td>7 6-month</td>
<td>6-month</td>
<td>6-6</td>
</tr>
<tr>
<td>8 6-month</td>
<td>3-month</td>
<td>6-3</td>
</tr>
<tr>
<td>9 3-month</td>
<td>3-month</td>
<td>3-3</td>
</tr>
</tbody>
</table>

Next, we will revisit DJIA, NASDAQ, S&P 500, TSX, DAX, FTSE 100, HSI, KOSPI, NIKKEI 225, and TWSE by applying MACD trading strategy 2. All indices data start from January 1980 to September 2006 except FTSE 100, which starts from January 1984. None of the applying period will start from January 1980 because learning period has to come first. For
example, a 48-12 setting means that the first 48 month data (from January 1980 to December 1983) have been treated as known data and will not be traded upon.

Table 3-15 exhibits the out-of-sample trading results of MACD strategy 2. It shows that without considering trading cost, MACD is able to outperform buy-and-hold on most indices except DJIA. This may be a useful finding for anyone who wants to trade DJIA index by using moving average indicators. If MACD can’t work on DJIA in a frictionless setting, it doesn’t stand a chance with the presence of trading cost.

It also shows that 24-12 is probably the most useful one among nine different settings. This learning-applying combination has generated the best performance in four indices (S&P 500, DAX, FTSE 100, and TWSE) and is the only setting that enables out performance in nine indices except in DJIA.

The performance figures presented in Table 3-15 are similar to the concept of compounding returns with certain different settings. Since no position exists right before the beginning of an applying period and any existing position must be closed out on the last day of the applying period, the compounding return for buy-and-hold here is actually the compounding return of a series of buy-and-hold. The reason for this setting is to create a comparable benchmark in each applying period that will enable us to critically verify the statistical meaning of trading results in the later stage.
<table>
<thead>
<tr>
<th>Index</th>
<th>Strategy</th>
<th>12-12</th>
<th>24-12</th>
<th>36-12</th>
<th>48-12</th>
<th>12-6</th>
<th>12-3</th>
<th>6-6</th>
<th>6-3</th>
<th>3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>Strategy 2</td>
<td>224.7%</td>
<td>357.2%</td>
<td>281.3%</td>
<td>392.6%</td>
<td>598.4%</td>
<td>609.2%</td>
<td>138.6%</td>
<td>616.0%</td>
<td>292.9%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1028.5%</td>
<td>1154.6%</td>
<td>958.0%</td>
<td>763.3%</td>
<td>942.0%</td>
<td>791.1%</td>
<td>1051.6%</td>
<td>877.5%</td>
<td>981.4%</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>Strategy 2</td>
<td>22153.1%</td>
<td>42162.8%</td>
<td>57809.8%</td>
<td>51111.3%</td>
<td>22479.8%</td>
<td>8911.6%</td>
<td>19468.5%</td>
<td>35029.0%</td>
<td>24438.8%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1007.3%</td>
<td>1050.8%</td>
<td>868.2%</td>
<td>701.4%</td>
<td>996.0%</td>
<td>1120.8%</td>
<td>1302.0%</td>
<td>1446.4%</td>
<td>1732.6%</td>
</tr>
<tr>
<td>S&P 500</td>
<td>Strategy 2</td>
<td>1355.6%</td>
<td>1888.2%</td>
<td>483.4%</td>
<td>598.9%</td>
<td>1332.1%</td>
<td>539.2%</td>
<td>158.8%</td>
<td>221.6%</td>
<td>445.3%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>860.7%</td>
<td>968.8%</td>
<td>832.8%</td>
<td>682.4%</td>
<td>797.8%</td>
<td>683.6%</td>
<td>960.6%</td>
<td>813.5%</td>
<td>921.3%</td>
</tr>
<tr>
<td>TSX</td>
<td>Strategy 2</td>
<td>58587.0%</td>
<td>40769.2%</td>
<td>19135.7%</td>
<td>20870.3%</td>
<td>25967.3%</td>
<td>52655.9%</td>
<td>30941.9%</td>
<td>52160.7%</td>
<td>174476.7%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>423.0%</td>
<td>513.0%</td>
<td>512.4%</td>
<td>367.8%</td>
<td>383.8%</td>
<td>388.2%</td>
<td>425.5%</td>
<td>424.9%</td>
<td>498.6%</td>
</tr>
<tr>
<td>DAX</td>
<td>Strategy 2</td>
<td>111.7%</td>
<td>1116.8%</td>
<td>10.6%</td>
<td>17.0%</td>
<td>138.0%</td>
<td>68.3%</td>
<td>538.8%</td>
<td>302.8%</td>
<td>-26.0%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1019.7%</td>
<td>1018.8%</td>
<td>906.1%</td>
<td>629.3%</td>
<td>898.9%</td>
<td>714.2%</td>
<td>821.3%</td>
<td>645.4%</td>
<td>703.7%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>Strategy 2</td>
<td>32.1%</td>
<td>453.0%</td>
<td>96.4%</td>
<td>97.1%</td>
<td>117.2%</td>
<td>228.6%</td>
<td>88.6%</td>
<td>121.9%</td>
<td>312.3%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>385.2%</td>
<td>319.0%</td>
<td>252.6%</td>
<td>246.1%</td>
<td>326.1%</td>
<td>294.5%</td>
<td>401.1%</td>
<td>369.2%</td>
<td>340.9%</td>
</tr>
<tr>
<td>HSI</td>
<td>Strategy 2</td>
<td>30644.8%</td>
<td>60976.3%</td>
<td>80490.7%</td>
<td>170185.6%</td>
<td>37489.1%</td>
<td>29565.6%</td>
<td>35931.8%</td>
<td>13550.7%</td>
<td>93272.2%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1131.9%</td>
<td>1236.2%</td>
<td>2246.9%</td>
<td>1954.6%</td>
<td>1045.6%</td>
<td>1234.5%</td>
<td>1526.8%</td>
<td>1753.9%</td>
<td>2419.7%</td>
</tr>
<tr>
<td>KOSPI</td>
<td>Strategy 2</td>
<td>245715.9%</td>
<td>92339.7%</td>
<td>418372.7%</td>
<td>90975.9%</td>
<td>171330.2%</td>
<td>46199.0%</td>
<td>70810.0%</td>
<td>43594.3%</td>
<td>157966.8%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1243.5%</td>
<td>901.8%</td>
<td>859.9%</td>
<td>870.3%</td>
<td>939.0%</td>
<td>902.8%</td>
<td>891.0%</td>
<td>860.8%</td>
<td>926.3%</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>Strategy 2</td>
<td>30.2%</td>
<td>172.2%</td>
<td>74.1%</td>
<td>488.0%</td>
<td>332.5%</td>
<td>736.1%</td>
<td>1032.3%</td>
<td>806.2%</td>
<td>331.1%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>104.6%</td>
<td>90.4%</td>
<td>83.3%</td>
<td>48.0%</td>
<td>78.0%</td>
<td>96.8%</td>
<td>84.2%</td>
<td>102.4%</td>
<td>113.8%</td>
</tr>
<tr>
<td>TWSE</td>
<td>Strategy 2</td>
<td>205811.2%</td>
<td>393224.4%</td>
<td>311788.3%</td>
<td>132449.1%</td>
<td>47402.9%</td>
<td>27193.4%</td>
<td>59909.8%</td>
<td>12403.1%</td>
<td>43893.8%</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1155.5%</td>
<td>1162.4%</td>
<td>1454.5%</td>
<td>804.3%</td>
<td>1238.3%</td>
<td>1204.0%</td>
<td>1451.7%</td>
<td>1410.0%</td>
<td>1276.6%</td>
</tr>
</tbody>
</table>
The next question is, can strategy 3 (MACDR2) provide any enhancement to those highest strategy 2 results for each index? We have demonstrated during in sample test that MACDR2 can outperform strategy 2 or at least guarantee an equal performance. Unfortunately, it is not true anymore for out of sample test. Table 3-16 shows that MACDR2 can only outperform strategy 2 in three indices (NASDAQ, KOSPI, and NIKKEI 225). And the rest seven MACDR2 trading performances are behind strategy 2 performance. Optimized setting for DJIA has been marked as ‘n/a’ because neither strategy 2 nor MACDR2 can outperform buy-and-hold strategy.

We have calculated the statistical significance for each index by applying one-tailed paired comparisons test. The assumptions and formulas are listed below:

\[H_0 : \mu_d \leq 0 , \ H_a : \mu_d > 0 \]

\[\mu_d = \text{Mean of the paired differences (MACD return - Buy-and-Hold return)} \]

\[t = \frac{\bar{d} - 0}{s_d} \] \text{... t-statistic with } n - 1 \text{ degree of freedom}

\[\bar{d} = \text{Sample mean difference} \]

\[s_d = \frac{s_d}{\sqrt{n}} \] \text{... Standard error of the mean difference}

\[s_d = \text{Sample standard deviation} \]

\[n = \text{Number of applying period} \]

The p-values listed in Table 3-16 indicate that five MACD trading performances are significantly outperform buy-and-hold return with a five percent level of significance. The results imply that a MACD trader may have a chance to outperform buy-and-hold on NASDAQ, TSX, HSI, KOSPI, and TWSE if trading cost has been ignored.
Table 3-16 Optimized strategy and learning-applying setting for each index

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>616.0%</td>
<td>352.0%</td>
<td>Strategy 2</td>
<td>n/a</td>
<td>79363.3%</td>
<td>23</td>
<td>2.6474</td>
<td>0.0072</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>57809.8%</td>
<td>79363.3%</td>
<td>MACD2 36-12</td>
<td>23</td>
<td>79363.3%</td>
<td>24</td>
<td>0.7360</td>
<td>0.2344</td>
</tr>
<tr>
<td>S&P 500</td>
<td>1888.2%</td>
<td>1782.0%</td>
<td>Strategy 2 24-12</td>
<td>24</td>
<td>1888.2%</td>
<td>106</td>
<td>4.6695</td>
<td>4.5E-06</td>
</tr>
<tr>
<td>TSX</td>
<td>174476.7%</td>
<td>74815.3%</td>
<td>Strategy 2 3-3</td>
<td>174476.7%</td>
<td>498.6%</td>
<td>24</td>
<td>-0.1737</td>
<td>0.4318</td>
</tr>
<tr>
<td>DAX</td>
<td>1116.8%</td>
<td>394.7%</td>
<td>Strategy 2 24-12</td>
<td>1116.8%</td>
<td>1018.8%</td>
<td>24</td>
<td>0.3763</td>
<td>0.3553</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>453.0%</td>
<td>361.3%</td>
<td>Strategy 2 24-12</td>
<td>453.0%</td>
<td>319.0%</td>
<td>20</td>
<td>0.3763</td>
<td>0.3553</td>
</tr>
<tr>
<td>HSI</td>
<td>170185.6%</td>
<td>71012.3%</td>
<td>Strategy 2 48-12</td>
<td>170185.6%</td>
<td>1954.6%</td>
<td>106</td>
<td>2.4755</td>
<td>0.0107</td>
</tr>
<tr>
<td>KOSPI</td>
<td>418372.7%</td>
<td>522626.9%</td>
<td>MACD2 36-12</td>
<td>522626.9%</td>
<td>859.9%</td>
<td>23</td>
<td>2.4863</td>
<td>0.0103</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>1032.3%</td>
<td>1337.1%</td>
<td>MACD2 6-6</td>
<td>1032.3%</td>
<td>84.2%</td>
<td>52</td>
<td>1.1060</td>
<td>0.1369</td>
</tr>
<tr>
<td>TWSE</td>
<td>393224.4%</td>
<td>102610.0%</td>
<td>Strategy 2 24-12</td>
<td>393224.4%</td>
<td>1162.4%</td>
<td>24</td>
<td>2.0218</td>
<td>0.0272</td>
</tr>
</tbody>
</table>

The real challenge of MACD trading strategy is to face the trial with the presence of trading cost. Since it requires much more execution time for a learning-applying simulation than that of an in sample test, the search for sustainable trading cost has to be confined to certain predetermined values. We will test the following one-way trading costs: 0.25%, 0.125%, 0.0625%, 0.03125%, and 0.01%.

Table 3-17 displays the sustainable trading costs for each index. We use the term “sustainable” to refer to the highest trading cost that MACD can still outperform. With the presence of trading cost, MACD can no longer outperform buy-and-hold on DAX even if the
trading cost is as low as 1 basis point. A slightly better result can be found in S&P 500 and FTSE 100, where the sustainable trading cost is merely 1 basis point and the performance is slightly above buy-and-hold. MACD can still outperform in NASDAQ, HSI, KOSPI, and NIKKEI 225 with trading cost 6.25 basis points. It is quite a surprise that MACD can still outperform in TSX with trading cost as high as 12.5 basis points. Finally, our model shows that MACD trading can outperform in TWSE with one-way trading cost as high as 25 basis points.

However under the scrutiny of paired comparison test, none of the result can be confirmed as statistically significant. Therefore we are unable to prove whether out of sample MACD trading can outperform buy-and-hold with the presence of trading costs listed in Table 3-17.
Table 3-17 Sustainable level of trading cost for ten indices

<table>
<thead>
<tr>
<th>Index</th>
<th>Strategy</th>
<th>Optimized Setting</th>
<th>One way trading cost</th>
<th>Compounding Return v.s. Buy-and-Hold</th>
<th>d.f.</th>
<th>t-stat</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJIA</td>
<td>Strategy 2</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASDAQ</td>
<td>MACDR2</td>
<td>36-12</td>
<td>0.0625%</td>
<td>2546.3% 839.6%</td>
<td>23</td>
<td>0.5032</td>
<td>0.3098</td>
</tr>
<tr>
<td>S&P 500</td>
<td>Strategy 2</td>
<td>24-12</td>
<td>0.01%</td>
<td>975.0% 963.5%</td>
<td>24</td>
<td>0.1013</td>
<td>0.4601</td>
</tr>
<tr>
<td>TSX</td>
<td>Strategy 2</td>
<td>3-3</td>
<td>0.125%</td>
<td>967.4% 359.2%</td>
<td>105</td>
<td>0.6431</td>
<td>0.2608</td>
</tr>
<tr>
<td>DAX</td>
<td>Strategy 2</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTSE 100</td>
<td>Strategy 2</td>
<td>24-12</td>
<td>0.01%</td>
<td>321.2% 317.3%</td>
<td>20</td>
<td>0.0977</td>
<td>0.4616</td>
</tr>
<tr>
<td>HSI</td>
<td>Strategy 2</td>
<td>48-12</td>
<td>0.0625%</td>
<td>19177.9% 1896.4%</td>
<td>22</td>
<td>1.2023</td>
<td>0.1210</td>
</tr>
<tr>
<td>KOSPI</td>
<td>MACDR2</td>
<td>36-12</td>
<td>0.0625%</td>
<td>8719.9% 831.5%</td>
<td>23</td>
<td>0.9240</td>
<td>0.1825</td>
</tr>
<tr>
<td>NIKKEI 225</td>
<td>MACDR2</td>
<td>6-6</td>
<td>0.0625%</td>
<td>119.1% 72.4%</td>
<td>52</td>
<td>-0.1426</td>
<td>0.4436</td>
</tr>
<tr>
<td>TWSE</td>
<td>Strategy 2</td>
<td>24-12</td>
<td>0.25%</td>
<td>2514.8% 1014.0%</td>
<td>24</td>
<td>0.6322</td>
<td>0.2666</td>
</tr>
</tbody>
</table>

So far we have tested both in sample and out of sample on ten indices. From Table 3-15 we know that even ignoring the trading cost, learning and applying still can not outperform buy-and-hold on DJIA. How about applying out of sample test on those 30 constituents of DJIA?

Table 3-18 shows that without considering trading cost, MACD trading strategy 2 can outperform in twelve DJIA stocks, which includes Alcoa Inc. (AA), American International Group Inc. (AIG), Boeing Co. (BA), Citigroup Inc. (C), Caterpillar Inc. (CAT), El DuPont de Nemours & Co. (DD), Walt Disney Co. (DIS), General Motors Corporation (GM), Honeywell International Inc. (HON), International Business Machines Corp. (IBM), Intel Corp. (INTC), JPMorgan Chase & Co. (JPM).
There is no superior learning-applying setting that can be identified in Table 3-18. However it seems apparent that if we can capture one setting that outperform on a certain stock, the chance that different settings might work as well is quite high. Or, to put it another way: MACD only works on certain stocks. When that stock has been identified, very likely the number of outperforming setting on that stock is more than one. The only exception is INTC, for which we have identified only one setting that can outperform buy-and-hold.

Even though we have identified that by ignoring trading cost, MACD trading is capable of outperforming buy-and-hold in twelve stocks. We have also noticed a dismal fact that no matter under which learning-applying setting, MACD trading inevitably leads to the destruction of value in three stocks: Hewlett-Packard Co. (HPQ), Verizon Communication Inc. (VZ), and Exxon Mobil Corp. (XOM). A possible explanation is that the market has completely exploited any price signal revealed by them, i.e. market is extremely efficient on these stocks. Whenever our model has figured out the optimal parameters for a certain period, the market has already identified the same information and therefore that knowledge is completely useless. Nevertheless, we don’t have an explanation on why it only happens to these three stocks.
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Strategy</th>
<th>12-12</th>
<th>24-12</th>
<th>36-12</th>
<th>48-12</th>
<th>12-6</th>
<th>12-3</th>
<th>6-6</th>
<th>6-3</th>
<th>3-3</th>
<th>No. of setting that outperforms</th>
<th>Optimized Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Strategy 2</td>
<td>2401.7%</td>
<td>4059.0%</td>
<td>20853.8%</td>
<td>5107.2%</td>
<td>6306.4%</td>
<td>1931.7%</td>
<td>7390.2%</td>
<td>24812.5%</td>
<td>2761.1%</td>
<td>9</td>
<td>6-3</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1259.5%</td>
<td>1422.3%</td>
<td>1091.0%</td>
<td>659.6%</td>
<td>1046.2%</td>
<td>1091.1%</td>
<td>1078.4%</td>
<td>1141.5%</td>
<td>1141.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIG</td>
<td>Strategy 2</td>
<td>3460.2%</td>
<td>984.1%</td>
<td>3188.7%</td>
<td>2044.4%</td>
<td>2744.4%</td>
<td>1898.9%</td>
<td>3824.3%</td>
<td>1797.6%</td>
<td>2439.5%</td>
<td>8</td>
<td>6-6</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1404.3%</td>
<td>1188.0%</td>
<td>1240.5%</td>
<td>1136.6%</td>
<td>1223.5%</td>
<td>1068.8%</td>
<td>1560.5%</td>
<td>1361.9%</td>
<td>1607.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXP</td>
<td>Strategy 2</td>
<td>-69.4%</td>
<td>-86.9%</td>
<td>-72.6%</td>
<td>-97.3%</td>
<td>-9.1%</td>
<td>94.6%</td>
<td>-80.7%</td>
<td>-27.8%</td>
<td>-88.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>11871.8%</td>
<td>9713.0%</td>
<td>6180.3%</td>
<td>5298.9%</td>
<td>10013.3%</td>
<td>6079.7%</td>
<td>12480.0%</td>
<td>7586.9%</td>
<td>9748.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Strategy 2</td>
<td>693.7%</td>
<td>1747.1%</td>
<td>2096.2%</td>
<td>4097.7%</td>
<td>906.4%</td>
<td>265.8%</td>
<td>2492.1%</td>
<td>427.4%</td>
<td>21.9%</td>
<td>2</td>
<td>48-12</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>2234.0%</td>
<td>4183.0%</td>
<td>2645.5%</td>
<td>1936.1%</td>
<td>1912.0%</td>
<td>2080.5%</td>
<td>2462.7%</td>
<td>2599.6%</td>
<td>2571.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Strategy 2</td>
<td>864.6%</td>
<td>839.5%</td>
<td>5460.9%</td>
<td>11694.9%</td>
<td>1330.7%</td>
<td>1827.3%</td>
<td>1129.1%</td>
<td>1416.8%</td>
<td>5860.8%</td>
<td>3</td>
<td>48-12</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>5260.0%</td>
<td>4718.0%</td>
<td>5440.7%</td>
<td>3517.5%</td>
<td>4171.2%</td>
<td>3398.0%</td>
<td>3773.9%</td>
<td>3033.9%</td>
<td>3634.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT</td>
<td>Strategy 2</td>
<td>13859.2%</td>
<td>28607.7%</td>
<td>3530.8%</td>
<td>2135.8%</td>
<td>6352.0%</td>
<td>7695.5%</td>
<td>8499.2%</td>
<td>9374.1%</td>
<td>21771.6%</td>
<td>9</td>
<td>24-12</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1431.1%</td>
<td>1499.3%</td>
<td>1951.1%</td>
<td>1601.9%</td>
<td>1332.1%</td>
<td>1003.5%</td>
<td>1469.7%</td>
<td>1094.8%</td>
<td>1226.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>Strategy 2</td>
<td>25.2%</td>
<td>148.0%</td>
<td>92.1%</td>
<td>38.1%</td>
<td>1854.3%</td>
<td>2731.2%</td>
<td>621.0%</td>
<td>2358.0%</td>
<td>1164.4%</td>
<td>4</td>
<td>12-3</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1294.3%</td>
<td>1378.6%</td>
<td>1372.8%</td>
<td>864.3%</td>
<td>1160.0%</td>
<td>840.9%</td>
<td>1225.5%</td>
<td>889.8%</td>
<td>1087.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIS</td>
<td>Strategy 2</td>
<td>10193.9%</td>
<td>7761.1%</td>
<td>5936.5%</td>
<td>7210.1%</td>
<td>3226.6%</td>
<td>1063.2%</td>
<td>641.7%</td>
<td>852.0%</td>
<td>177.1%</td>
<td>5</td>
<td>12-12</td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>2677.7%</td>
<td>2677.7%</td>
<td>2189.1%</td>
<td>2537.4%</td>
<td>3093.1%</td>
<td>2679.0%</td>
<td>3250.8%</td>
<td>2816.3%</td>
<td>3010.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>Strategy 2</td>
<td>-39.0%</td>
<td>130.2%</td>
<td>-21.4%</td>
<td>55.5%</td>
<td>-84.3%</td>
<td>-78.4%</td>
<td>-91.0%</td>
<td>-41.3%</td>
<td>-35.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and</td>
<td>5612.3%</td>
<td>5799.6%</td>
<td>3350.7%</td>
<td>2513.4%</td>
<td>5365.2%</td>
<td>4186.9%</td>
<td>6543.9%</td>
<td>5211.8%</td>
<td>5789.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

47
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Strategy</th>
<th>12-12</th>
<th>24-12</th>
<th>36-12</th>
<th>48-12</th>
<th>12-6</th>
<th>12-3</th>
<th>6-6</th>
<th>6-3</th>
<th>3-3</th>
<th>No. of setting that outperforms</th>
<th>Optimized Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>Buy and Hold</td>
<td>2512.5%</td>
<td>2876.2%</td>
<td>137.1%</td>
<td>336.0%</td>
<td>1780.0%</td>
<td>1209.5%</td>
<td>3053.0%</td>
<td>1023.4%</td>
<td>57.0%</td>
<td>7</td>
<td>6-6</td>
</tr>
<tr>
<td>HD</td>
<td>Buy and Hold</td>
<td>298.8%</td>
<td>946.8%</td>
<td>2757.0%</td>
<td>927.0%</td>
<td>651.7%</td>
<td>351.2%</td>
<td>-73.3%</td>
<td>-33.7%</td>
<td>-73.5%</td>
<td>15394.6%</td>
<td>10660.1%</td>
</tr>
<tr>
<td>HON</td>
<td>Buy and Hold</td>
<td>641.1%</td>
<td>507.1%</td>
<td>3784.9%</td>
<td>1462.2%</td>
<td>-30.1%</td>
<td>251.9%</td>
<td>-13.5%</td>
<td>35.8%</td>
<td>-10.8%</td>
<td>2</td>
<td>36-12</td>
</tr>
<tr>
<td>HPQ</td>
<td>Buy and Hold</td>
<td>-99.0%</td>
<td>-95.5%</td>
<td>-94.2%</td>
<td>-42.5%</td>
<td>-98.6%</td>
<td>-96.8%</td>
<td>-99.2%</td>
<td>-94.1%</td>
<td>-84.2%</td>
<td>1824.8%</td>
<td>2040.1%</td>
</tr>
<tr>
<td>IBM</td>
<td>Buy and Hold</td>
<td>47.7%</td>
<td>2228.8%</td>
<td>711.2%</td>
<td>1383.0%</td>
<td>63.7%</td>
<td>338.3%</td>
<td>186.0%</td>
<td>44.8%</td>
<td>154.6%</td>
<td>3</td>
<td>24-12</td>
</tr>
<tr>
<td>INTC</td>
<td>Buy and Hold</td>
<td>487.3%</td>
<td>-93.4%</td>
<td>54.4%</td>
<td>162.5%</td>
<td>131.3%</td>
<td>756.6%</td>
<td>521.2%</td>
<td>1810.7%</td>
<td>5893.3%</td>
<td>1</td>
<td>3-3</td>
</tr>
<tr>
<td>JNJ</td>
<td>Buy and Hold</td>
<td>109.1%</td>
<td>89.3%</td>
<td>54.7%</td>
<td>119.6%</td>
<td>597.4%</td>
<td>469.2%</td>
<td>26.2%</td>
<td>100.1%</td>
<td>136.6%</td>
<td>5626.7%</td>
<td>4900.7%</td>
</tr>
<tr>
<td>JPM</td>
<td>Buy and Hold</td>
<td>6208.4%</td>
<td>2223.4%</td>
<td>1237.0%</td>
<td>715.3%</td>
<td>9991.8%</td>
<td>5199.2%</td>
<td>2134.0%</td>
<td>2797.2%</td>
<td>1919.4%</td>
<td>9</td>
<td>12-6</td>
</tr>
<tr>
<td>KO</td>
<td>Buy and Hold</td>
<td>54.0%</td>
<td>-39.2%</td>
<td>-64.4%</td>
<td>-38.6%</td>
<td>188.0%</td>
<td>130.9%</td>
<td>2037.1%</td>
<td>758.4%</td>
<td>-8.7%</td>
<td>6174.7%</td>
<td>5632.4%</td>
</tr>
<tr>
<td>Ticker</td>
<td>Strategy</td>
<td>12-12</td>
<td>24-12</td>
<td>36-12</td>
<td>48-12</td>
<td>12-6</td>
<td>12-3</td>
<td>6-6</td>
<td>6-3</td>
<td>3-3</td>
<td>No. of setting that outperforms</td>
<td>Optimized Setting</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MCD</td>
<td>Strategy 2</td>
<td>470.8%</td>
<td>96.5%</td>
<td>253.5%</td>
<td>754.0%</td>
<td>690.2%</td>
<td>216.8%</td>
<td>1062.5%</td>
<td>96.9%</td>
<td>738.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>5439.4%</td>
<td>4013.4%</td>
<td>2745.6%</td>
<td>2179.7%</td>
<td>4668.1%</td>
<td>3679.0%</td>
<td>4734.3%</td>
<td>3731.5%</td>
<td>4433.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMM</td>
<td>Strategy 2</td>
<td>-86.4%</td>
<td>-73.1%</td>
<td>-29.1%</td>
<td>-93.5%</td>
<td>-34.1%</td>
<td>-0.1%</td>
<td>74.3%</td>
<td>825.9%</td>
<td>241.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>2095.6%</td>
<td>2160.2%</td>
<td>1444.0%</td>
<td>1216.5%</td>
<td>1885.4%</td>
<td>1676.5%</td>
<td>2151.6%</td>
<td>1927.6%</td>
<td>2111.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td>Strategy 2</td>
<td>-71.1%</td>
<td>-73.1%</td>
<td>169.3%</td>
<td>78.9%</td>
<td>6.9%</td>
<td>-71.6%</td>
<td>-73.0%</td>
<td>107.8%</td>
<td>32.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>11037.9%</td>
<td>9708.0%</td>
<td>7791.5%</td>
<td>6126.3%</td>
<td>9557.2%</td>
<td>6658.6%</td>
<td>10286.1%</td>
<td>7038.9%</td>
<td>8499.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRK</td>
<td>Strategy 2</td>
<td>67.4%</td>
<td>33.1%</td>
<td>-7.5%</td>
<td>117.9%</td>
<td>606.5%</td>
<td>31.7%</td>
<td>554.4%</td>
<td>-12.4%</td>
<td>-57.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>2971.1%</td>
<td>2918.6%</td>
<td>2843.8%</td>
<td>2536.2%</td>
<td>2731.2%</td>
<td>1715.0%</td>
<td>3297.5%</td>
<td>2078.0%</td>
<td>2175.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFT</td>
<td>Strategy 2</td>
<td>84.6%</td>
<td>-16.0%</td>
<td>-33.3%</td>
<td>-3.3%</td>
<td>138.5%</td>
<td>181.8%</td>
<td>-84.5%</td>
<td>-78.8%</td>
<td>-96.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>8427.1%</td>
<td>6508.5%</td>
<td>8367.1%</td>
<td>2877.4%</td>
<td>7182.6%</td>
<td>6985.1%</td>
<td>16025.7%</td>
<td>16750.6%</td>
<td>31494.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFE</td>
<td>Strategy 2</td>
<td>11.9%</td>
<td>403.1%</td>
<td>598.6%</td>
<td>1235.0%</td>
<td>30.3%</td>
<td>25.3%</td>
<td>18.8%</td>
<td>-70.7%</td>
<td>-78.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>3486.9%</td>
<td>3198.3%</td>
<td>2612.6%</td>
<td>2000.7%</td>
<td>3326.0%</td>
<td>2534.1%</td>
<td>4289.6%</td>
<td>3155.8%</td>
<td>3369.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG</td>
<td>Strategy 2</td>
<td>-16.0%</td>
<td>1.5%</td>
<td>-86.1%</td>
<td>-77.1%</td>
<td>-7.0%</td>
<td>94.3%</td>
<td>-76.7%</td>
<td>-36.9%</td>
<td>7.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>5998.7%</td>
<td>4788.3%</td>
<td>3070.1%</td>
<td>3007.3%</td>
<td>5499.7%</td>
<td>4465.4%</td>
<td>5247.5%</td>
<td>4181.2%</td>
<td>4605.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Strategy 2</td>
<td>150.8%</td>
<td>-30.4%</td>
<td>-64.3%</td>
<td>-7.3%</td>
<td>-57.9%</td>
<td>-51.4%</td>
<td>-4.4%</td>
<td>-67.6%</td>
<td>511.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>1008.2%</td>
<td>698.8%</td>
<td>562.4%</td>
<td>517.9%</td>
<td>821.1%</td>
<td>633.6%</td>
<td>1035.2%</td>
<td>796.8%</td>
<td>883.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTX</td>
<td>Strategy 2</td>
<td>305.6%</td>
<td>2040.4%</td>
<td>468.4%</td>
<td>503.4%</td>
<td>1577.3%</td>
<td>1406.7%</td>
<td>553.3%</td>
<td>201.7%</td>
<td>63.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>3600.8%</td>
<td>5070.3%</td>
<td>3559.0%</td>
<td>2527.7%</td>
<td>4029.5%</td>
<td>3840.3%</td>
<td>5997.5%</td>
<td>5608.9%</td>
<td>5842.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VZ</td>
<td>Strategy 2</td>
<td>-67.5%</td>
<td>-62.9%</td>
<td>-67.1%</td>
<td>-67.5%</td>
<td>-46.8%</td>
<td>-69.0%</td>
<td>-84.8%</td>
<td>-80.3%</td>
<td>-79.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and</td>
<td>750.5%</td>
<td>500.5%</td>
<td>346.0%</td>
<td>353.3%</td>
<td>697.1%</td>
<td>549.5%</td>
<td>877.3%</td>
<td>703.0%</td>
<td>700.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ticker</td>
<td>Strategy</td>
<td>12-12</td>
<td>24-12</td>
<td>36-12</td>
<td>48-12</td>
<td>12-6</td>
<td>12-3</td>
<td>6-6</td>
<td>6-3</td>
<td>3-3</td>
<td>No. of setting that outperforms</td>
<td>Optimized Setting</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Hold</td>
<td></td>
</tr>
<tr>
<td>WMT</td>
<td>Strategy 2</td>
<td>480.8%</td>
<td>746.2%</td>
<td>656.7%</td>
<td>249.8%</td>
<td>52.1%</td>
<td>448.3%</td>
<td>-9.3%</td>
<td>196.7%</td>
<td>-29.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>22913.2%</td>
<td>16564.7%</td>
<td>7113.1%</td>
<td>4323.1%</td>
<td>23695.3%</td>
<td>20815.4%</td>
<td>39558.9%</td>
<td>32708.5%</td>
<td>42551.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XOM</td>
<td>Strategy 2</td>
<td>-96.7%</td>
<td>-94.4%</td>
<td>-75.8%</td>
<td>-91.0%</td>
<td>-99.1%</td>
<td>-97.9%</td>
<td>-99.1%</td>
<td>-99.0%</td>
<td>-98.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buy and Hold</td>
<td>4328.8%</td>
<td>5159.2%</td>
<td>4705.2%</td>
<td>3296.3%</td>
<td>3930.0%</td>
<td>3104.9%</td>
<td>4929.1%</td>
<td>3778.3%</td>
<td>4553.9%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-19 shows that time consuming MACDR2 performs worse than strategy 2 in most of the stocks except for DD. This should not be a surprise because we have already identified this phenomenon from Table 3-16. Apparently the advantage of those three extra parameters unique to MACDR2 has disappeared while dealing with out of sample data. In comparison to strategy 2 that simply relies on three moving average parameters, MACDR2 is inherently more susceptible to the problem of over training.

Table 3-19 also shows that at the five percent level of significance, only one trading result (CAT) has significantly outperformed buy-and-hold. Even though we have observed in Table 3-18 that MACD outperforms buy-and-hold in all nine settings on three stocks (AA, CAT, and JPM), the test result shows that only CAT has a p-value lower than 5%.
Table 3-19 Optimized strategy and learning-applying setting for 12 DJIA stocks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>24812.5%</td>
<td>15186.60%</td>
<td>Strategy 2</td>
<td>6-3</td>
<td>24812.5%</td>
<td>1141.5%</td>
<td>104</td>
<td>1.4780</td>
</tr>
<tr>
<td>AIG</td>
<td>3824.3%</td>
<td>532.60%</td>
<td>Strategy 2</td>
<td>6-6</td>
<td>3824.3%</td>
<td>1560.5%</td>
<td>42</td>
<td>0.8248</td>
</tr>
<tr>
<td>BA</td>
<td>4097.7%</td>
<td>4013.30%</td>
<td>Strategy 2</td>
<td>48-12</td>
<td>4097.7%</td>
<td>1936.1%</td>
<td>22</td>
<td>0.4056</td>
</tr>
<tr>
<td>C</td>
<td>11694.9%</td>
<td>7666.30%</td>
<td>Strategy 2</td>
<td>48-12</td>
<td>11694.9%</td>
<td>3517.5%</td>
<td>22</td>
<td>0.6196</td>
</tr>
<tr>
<td>CAT</td>
<td>28607.7%</td>
<td>11569.30%</td>
<td>Strategy 2</td>
<td>24-12</td>
<td>28607.7%</td>
<td>1499.3%</td>
<td>24</td>
<td>1.7277</td>
</tr>
<tr>
<td>DD</td>
<td>2731.2%</td>
<td>5067.20%</td>
<td>MACDR2</td>
<td>12-3</td>
<td>5067.20%</td>
<td>840.9%</td>
<td>102</td>
<td>0.9084</td>
</tr>
<tr>
<td>DIS</td>
<td>10193.9%</td>
<td>6900.40%</td>
<td>Strategy 2</td>
<td>12-12</td>
<td>10193.9%</td>
<td>2677.7%</td>
<td>25</td>
<td>1.0864</td>
</tr>
<tr>
<td>GM</td>
<td>3053.0%</td>
<td>1265.40%</td>
<td>Strategy 2</td>
<td>6-6</td>
<td>3053.0%</td>
<td>307.2%</td>
<td>52</td>
<td>0.9480</td>
</tr>
<tr>
<td>HON</td>
<td>3784.9%</td>
<td>2531.10%</td>
<td>Strategy 2</td>
<td>36-12</td>
<td>3784.9%</td>
<td>1311.6%</td>
<td>23</td>
<td>0.4785</td>
</tr>
<tr>
<td>IBM</td>
<td>2228.8%</td>
<td>668.40%</td>
<td>Strategy 2</td>
<td>24-12</td>
<td>2228.8%</td>
<td>774.5%</td>
<td>24</td>
<td>0.2521</td>
</tr>
<tr>
<td>INTC</td>
<td>5893.3%</td>
<td>2211.50%</td>
<td>Strategy 2</td>
<td>3-3</td>
<td>5893.3%</td>
<td>2856.8%</td>
<td>79</td>
<td>0.00346</td>
</tr>
<tr>
<td>JPM</td>
<td>9991.8%</td>
<td>4802.10%</td>
<td>Strategy 2</td>
<td>12-6</td>
<td>9991.8%</td>
<td>260.9%</td>
<td>43</td>
<td>1.6293</td>
</tr>
</tbody>
</table>

Finally, we implement different trading costs (0.25%, 0.125%, 0.0625%, 0.03125%, and 0.01%) on each optimized settings and record the highest cost level that MACD trading can still outperform buy-and-hold. Table 3-20 shows that both IBM and JPM can tolerate the highest one-way trading cost at 12.5 basis points. However the results from paired comparison test shows that none of the out-performances in this table is statistically significant. That is to say, no matter in ten indices or in DJIA stocks, we don’t find any statistical evidence to show that MACD trading can outperform buy-and-hold with the presence of trading cost.
Table 3-20 Sustainable level of trading cost for 12 DJIA stocks

<table>
<thead>
<tr>
<th>Index</th>
<th>Strategy 2</th>
<th>Optimized Setting</th>
<th>One way trading cost</th>
<th>Compounding Return v.s. Buy-and-Hold</th>
<th>d.f.</th>
<th>t-stat</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Strategy 2</td>
<td>6-3</td>
<td>0.0625%</td>
<td>2396.10% 988.8%</td>
<td>104</td>
<td>0.3626</td>
<td>0.3588</td>
</tr>
<tr>
<td>AIG</td>
<td>Strategy 2</td>
<td>6-6</td>
<td>0.01%</td>
<td>2710.40% 1546.3%</td>
<td>42</td>
<td>0.5739</td>
<td>0.2846</td>
</tr>
<tr>
<td>BA</td>
<td>Strategy 2</td>
<td>48-12</td>
<td>0.01%</td>
<td>3469.70% 1926.8%</td>
<td>22</td>
<td>0.2654</td>
<td>0.3966</td>
</tr>
<tr>
<td>C</td>
<td>Strategy 2</td>
<td>48-12</td>
<td>0.01%</td>
<td>7589.70% 3500.9%</td>
<td>22</td>
<td>0.4283</td>
<td>0.3363</td>
</tr>
<tr>
<td>CAT</td>
<td>Strategy 2</td>
<td>24-12</td>
<td>0.0625%</td>
<td>2442.80% 1450.1%</td>
<td>24</td>
<td>0.7059</td>
<td>0.2435</td>
</tr>
<tr>
<td>DD</td>
<td>MACDR2</td>
<td>12-3</td>
<td>0.01%</td>
<td>2252.50% 821.7%</td>
<td>102</td>
<td>0.4779</td>
<td>0.3169</td>
</tr>
<tr>
<td>DIS</td>
<td>Strategy 2</td>
<td>12-12</td>
<td>0.01%</td>
<td>3449.80% 2663.3%</td>
<td>25</td>
<td>0.6767</td>
<td>0.2524</td>
</tr>
<tr>
<td>GM</td>
<td>Strategy 2</td>
<td>6-6</td>
<td>0.0625%</td>
<td>388.80% 281.1%</td>
<td>52</td>
<td>0.1675</td>
<td>0.4338</td>
</tr>
<tr>
<td>HON</td>
<td>Strategy 2</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM</td>
<td>Strategy 2</td>
<td>24-12</td>
<td>0.125%</td>
<td>757.30% 721.6%</td>
<td>24</td>
<td>-0.2204</td>
<td>0.4137</td>
</tr>
<tr>
<td>INTC</td>
<td>Strategy 2</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPM</td>
<td>Strategy 2</td>
<td>12-6</td>
<td>0.125%</td>
<td>414.10% 223.3%</td>
<td>43</td>
<td>-0.0263</td>
<td>0.4896</td>
</tr>
</tbody>
</table>
4 CONCLUSION

Derived from the concept of exponential moving average, MACD has already become one of the most studied technical indicators and is available in almost every technical analysis system. One of the reasons that MACD is so popular is because its trading signals are unambiguous. This can be valuable if a trader is looking for clear definition of trading rules in order to construct an automatic trading system. Other than MACD, many other indicators are in fact quite ambiguous. For example, another popular technical indicator RSI measures market sentiment without answering when to initiate trading activities. For trading rules or indicators that leave too much room for interpretations, the challenge of testing their effectiveness is probably similar to the challenge of testing the effectiveness of art.

The unambiguous nature of MACD enables us to construct a testing model that includes both in sample and out of sample test functions. The function of in sample test treats the whole time series as given data. It searches for the optimized MACD parameters that generate highest compounding return. The function of out of sample test only treats learning period as given data. With the optimized parameters identified from learning period, the program will be able to trade ahead and compare results to buy-and-hold strategy in the same applying period.

From the in sample test we found that by increasing flexibility to the parameter settings for standard MACD2 trading strategy, we have created a very powerful tool that outperforms, or at least equal to, the performance of standard long or short MACD trading strategy. From a hindsight perspective, there exist certain parameters that enable a trader to outperform buy-and-hold in certain indices even with the presence of trading cost.

Out of sample tests enable us to measure the effectiveness of momentum trading strategy in a setting more close to real world. We confirmed that MACD trading can outperform buy-and-
hold on NASDAQ, TSX, HSI, KOSPI, and TWSE if trading cost has been ignored. Our test on DJIA stocks shows that, without considering trading cost, only the trading result on CAT outperforms buy-and-hold.

Even though our model has identified that, with the presence of trading cost, MACD trading on certain indices and DJIA stocks can outperform buy-and-hold. When we scrutinize these trading returns by paired comparison test, none of the results are statistically significant.

Tons of research papers claimed that they can successfully challenge weak form EMH by providing abnormal trading results. Our research shows that, as long as the settings are away from reality, we can demonstrate some fantastic returns as well. For example, ignoring trading cost, our in sample test shows that MACDR2 can generate compounding return of 4649405.16% on KOSPI starting from 1980 to 2006. Some results can still be astonishing if our setting is a step closer to reality. We have demonstrated in Table 3-16 that by a 36-12 (36-month training and 12-month applying) MACDR2 trading strategy, we can achieve 522626.9% of compounding return from 1983 to 2006.

Our research shows that with the presence of trading cost, all those exciting results seem vanished. Let us once again take KOSPI as an example. By assigning merely 6.25 basis point of one-way trading cost, the aforementioned 36-12 out of sample test result has slumped to 8719.9%. Even worse, we are now even unable to reject the null hypothesis that MACD trading result is no better than buy-and-hold result.

In conclusion, our test over ten indices and DJIA stocks shows that technical analysis performed by MACD trading strategies can not outperform buy-and-hold strategy with the presence of trading cost.
APPENDICES

Appendix A Interface of trading model

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EMA1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Strategy MACD:

- **Day Delay:** 1
- **Optimization:** Max Aver P/L for Strategies 1 or 2

Paste data below:

<table>
<thead>
<tr>
<th>Date</th>
<th>Price</th>
<th>Volume</th>
<th>MACD</th>
<th>Signal</th>
<th>%MACD%>50</th>
<th>Trade Date</th>
<th>Position</th>
<th>P/L</th>
<th>P/L %</th>
<th>7</th>
<th>21</th>
<th>5</th>
<th>22.87</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>29 Sep</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td>2219.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>28 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2217.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>27 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2215.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>26 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2213.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>25 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2210.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>24 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2208.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>23 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2205.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>22 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2202.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>21 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2199.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2196.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2193.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>18 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2189.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>17 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2185.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>16 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2182.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>15 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2179.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>14 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2176.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>13 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2173.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>12 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2170.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>11 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2167.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>10 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2164.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>9 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2161.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>8 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2158.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>7 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2155.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>6 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2152.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5 Sep</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2149.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

56
Appendix B Interface of Learning/Applying Model

<table>
<thead>
<tr>
<th>Learning period:</th>
<th>3 months</th>
<th>2 months</th>
<th>2 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (buy)%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Max EMAT=</td>
<td>20</td>
<td>DayDealy</td>
<td>0 3 1</td>
</tr>
<tr>
<td>Max EMAT2=</td>
<td>20</td>
<td>Trigger</td>
<td>0.00%</td>
</tr>
<tr>
<td>Max Signal=</td>
<td>10</td>
<td>Target</td>
<td>-5% 5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning Period (searching optimized parameters)</th>
<th>From</th>
<th>To</th>
<th>EMA1</th>
<th>EMA2</th>
<th>Signal</th>
<th>Return</th>
<th>Delay</th>
<th>Trigger</th>
<th>Target</th>
<th>1st data</th>
<th>From</th>
<th>To</th>
<th>Deal No.</th>
<th>Avg Profit</th>
<th>Return</th>
<th>Begin</th>
<th>End</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-Apr-86 30-Jun-86 3 4 2 15.1%</td>
<td>24-Jun-86</td>
<td>01-Jul-86</td>
<td>30-Sep-86</td>
<td>17 0.7%</td>
<td>12.4%</td>
<td>407.8 350.7 -14.0%</td>
<td></td>
</tr>
<tr>
<td>02-Jan-86 31-Mar-86 1 2 2 10.3%</td>
<td>26-Mar-86</td>
<td>01-Apr-86</td>
<td>30-Jun-86</td>
<td>27 0.1%</td>
<td>3.6%</td>
<td>374.2 405.6 8.4%</td>
<td></td>
</tr>
<tr>
<td>01-Oct-85 31-Dec-85 1 2 2 6.3%</td>
<td>27-Dec-85</td>
<td>02-Jan-86</td>
<td>31-Mar-86</td>
<td>38 0.3%</td>
<td>8.7%</td>
<td>326 374.7 15.3%</td>
<td></td>
</tr>
<tr>
<td>01-Jul-85 30-Sep-85 1 3 4 9.6%</td>
<td>20-Sep-85</td>
<td>01-Oct-85</td>
<td>31-Dec-85</td>
<td>20 0.2%</td>
<td>4.5%</td>
<td>231.5 324.6 15.2%</td>
<td></td>
</tr>
<tr>
<td>01-Apr-86 29-Jun-85 1 2 2 13.5%</td>
<td>24-Jun-85</td>
<td>01-Jul-85</td>
<td>30-Sep-85</td>
<td>22 0.4%</td>
<td>8.3%</td>
<td>208.5 263 5.6%</td>
<td></td>
</tr>
<tr>
<td>01-Jun-85 26-Aug-85 2 3 3 10.3%</td>
<td>25-Aug-85</td>
<td>01-Jun-85</td>
<td>26-Aug-85</td>
<td>16 0.8%</td>
<td>10.7%</td>
<td>280.3 286.2 5.7%</td>
<td></td>
</tr>
<tr>
<td>01-Oct-84 31-Dec-84 1 2 2 13.3%</td>
<td>24-Dec-84</td>
<td>02-Jan-85</td>
<td>29-Mar-85</td>
<td>24 0.4%</td>
<td>10.3%</td>
<td>246.8 272.2 15.6%</td>
<td></td>
</tr>
<tr>
<td>02-Jul-84 29-Sep-84 2 3 2 15.6%</td>
<td>18-Sep-84</td>
<td>01-Oct-84</td>
<td>31-Dec-84</td>
<td>17 0.5%</td>
<td>7.6%</td>
<td>247.6 247.1 0.3%</td>
<td></td>
</tr>
<tr>
<td>02-Apr-84 29-Jun-84 1 4 3 10.3%</td>
<td>20-Jun-86</td>
<td>02-Jul-84</td>
<td>28-Sep-84</td>
<td>20 0.7%</td>
<td>14.1%</td>
<td>237.9 249.4 5.1%</td>
<td></td>
</tr>
<tr>
<td>03-Jan-84 30-Mar-84 4 10 3 11.1%</td>
<td>15-Mar-84</td>
<td>02-Apr-84</td>
<td>26-Jun-84</td>
<td>9 1.5%</td>
<td>14.1%</td>
<td>240.6 229.5 4.1%</td>
<td></td>
</tr>
<tr>
<td>03-Oct-83 30-Dec-83 1 17 4 9.8%</td>
<td>02-Dec-83</td>
<td>03-Jan-84</td>
<td>30-Mar-84</td>
<td>12 0.7%</td>
<td>8.6%</td>
<td>277.8 262.7 0.7%</td>
<td></td>
</tr>
<tr>
<td>01-Jul-83 30-Sep-83 2 3 4 22.0%</td>
<td>23-Sep-83</td>
<td>09-Oct-83</td>
<td>30-Dec-83</td>
<td>21 0.0%</td>
<td>0.1%</td>
<td>204.8 276.5 5.4%</td>
<td></td>
</tr>
<tr>
<td>04-Aug-83 30-Jun-83 1 2 2 14.5%</td>
<td>28-Jun-83</td>
<td>01-Jul-83</td>
<td>30-Sep-83</td>
<td>28 0.4%</td>
<td>11.8%</td>
<td>312.5 206.5 7.9%</td>
<td></td>
</tr>
<tr>
<td>03-Jan-83 31-Mar-83 1 2 4 10.4%</td>
<td>25-Mar-83</td>
<td>04-Apr-83</td>
<td>30-Jun-83</td>
<td>25 0.5%</td>
<td>15.6%</td>
<td>269.7 318.7 16.5%</td>
<td></td>
</tr>
<tr>
<td>01-Oct-82 31-Dec-82 2 3 2 23.0%</td>
<td>28-Dec-82</td>
<td>02-Jan-83</td>
<td>31-Mar-83</td>
<td>24 0.2%</td>
<td>5.0%</td>
<td>230.9 270.8 17.4%</td>
<td></td>
</tr>
<tr>
<td>01-Jul-82 30-Sep-82 13 15 4 17.7%</td>
<td>07-Sep-82</td>
<td>01-Oct-82</td>
<td>31-Dec-82</td>
<td>9 0.7%</td>
<td>5.9%</td>
<td>198.7 232.4 23.2%</td>
<td></td>
</tr>
<tr>
<td>01-Nov-81 30-Dec-81 8 15 3 10.7%</td>
<td>27-Dec-81</td>
<td>01-Nov-81</td>
<td>30-Dec-81</td>
<td>5 2.5%</td>
<td>12.5%</td>
<td>170.6 187.6 10.0%</td>
<td></td>
</tr>
<tr>
<td>04-Jun-81 31-May-81 1 2 2 9.3%</td>
<td>05-May-81</td>
<td>01-Jun-81</td>
<td>30-Jun-81</td>
<td>10 0.1%</td>
<td>1.5%</td>
<td>177.3 171.3 3.4%</td>
<td></td>
</tr>
<tr>
<td>01-Oct-81 31-Dec-81 20 31 13 25.6%</td>
<td>29-Dec-81</td>
<td>01-Oct-81</td>
<td>31-Dec-81</td>
<td>25 0.5%</td>
<td>12.0%</td>
<td>195.6 175.6 10.2%</td>
<td></td>
</tr>
<tr>
<td>01-Jun-81 30-Sep-81 1 1 2 17.9%</td>
<td>28-Sep-81</td>
<td>01-Jun-81</td>
<td>30-Sep-81</td>
<td>27 0.3%</td>
<td>9.5%</td>
<td>181.0 196.4 8.1%</td>
<td></td>
</tr>
<tr>
<td>01-Oct-81 30-Jun-81 1 2 2 11.0%</td>
<td>26-Jun-81</td>
<td>01-Oct-81</td>
<td>30-Jun-81</td>
<td>27 0.7%</td>
<td>10.5%</td>
<td>214.0 200.3 -10.1%</td>
<td></td>
</tr>
<tr>
<td>01-Jul-81 31-Mar-81 2 3 3 10.0%</td>
<td>25-Mar-81</td>
<td>01-Jul-81</td>
<td>31-Mar-81</td>
<td>27 0.4%</td>
<td>10.2%</td>
<td>211.6 210.6 1.2%</td>
<td></td>
</tr>
<tr>
<td>01-Oct-80 31-Dec-80 6 7 5 17.0%</td>
<td>16-Dec-80</td>
<td>01-Oct-80</td>
<td>31-Dec-80</td>
<td>20 0.4%</td>
<td>15.5%</td>
<td>240.3 202.3 6.7%</td>
<td></td>
</tr>
<tr>
<td>01-Jul-80 30-Sep-80 1 2 4 11.0%</td>
<td>24-Sep-80</td>
<td>01-Oct-80</td>
<td>31-Dec-80</td>
<td>29 0.1%</td>
<td>3.5%</td>
<td>189.8 202.3 6.7%</td>
<td></td>
</tr>
<tr>
<td>01-Apr-80 30-Jun-80 1 1 4 11.9%</td>
<td>1-Jun-80</td>
<td>01-Jul-80</td>
<td>30-Jun-80</td>
<td>22 0.2%</td>
<td>5.1%</td>
<td>189.4 197.8 10.7%</td>
<td></td>
</tr>
<tr>
<td>02-Jan-80 31-Mar-80 7 21 5 22.1%</td>
<td>28-Feb-80</td>
<td>01-Apr-80</td>
<td>30-Jun-80</td>
<td>6 1.6%</td>
<td>9.1%</td>
<td>133.1 167.7 22.8%</td>
<td></td>
</tr>
</tbody>
</table>

| Strategy 2 | Compounded Rtn 24938.9% |
| Compound Rtn 1722.6% |
Appendix C Visual Basic Code

Declaration
Option Explicit
Option Base 1
Const MaxDays = 10000
Const MaxTrades = 7000

Public Price(MaxDays) As Double
Public PDate(MaxDays) As Date
Public MACD(MaxDays) As Single
Public EMA(MaxDays, 2) As Single 'EMA1 and EMA2
Public Signal(MaxDays) As Single
Public Trading(MaxDays) As Integer 'record buy/sell trading signal according to MACD rule
Public TotalDay As Integer
Public AllMACD As Integer 'total number of MACD value
Public AllSigl As Integer 'total number of Signal value
Public CopyPriceOK As Boolean
Public LearningMode As Boolean 'TRUE: we are in Learning mode, a signal for optimizer
Public LearnDay As Integer 'for Learning() to tell optimizer which time period to learn (or to apply)
Public LearnDay2 As Integer
Public Optimized(6) As Single '1:EMA1 2:EMA2 3:Signal 4:DayDelay 5:Trigger 6:Target
Public OptimizedRtn As Single 'Max return found by optimizer
Public Performance(4) '1:AllDealNo 2:DealAvgProfit% 3:CompoundedReturn 4: FarDay(for internal check)

CopyPrice
Sub CopyPrice()
'the 1st preparation work
'copy price and date to Price() and PDate()

ClearPublicMatrix
Dim i As Integer
TotalDay = Sheet1.Cells(4, 2)

For i = 1 To TotalDay
 PDate(i) = Sheet1.Cells(9 + i, 1)
 Price(i) = Sheet1.Cells(9 + i, 2)
Next i

End Sub

MACDInitiate
Sub MACDInitiate()
'must execute CopyPrice in advance
'calculate value of MACD and Singal

Dim Avg As Single
Dim Power As Integer
Dim Alpha As Single
Dim Denominator As Single
Dim EMA1 As Integer
Dim EMA2 As Integer
Dim Sigl As Integer
Dim i As Integer

TotalDay = Sheet1.Cells(4, 2)
If TotalDay = 0 Then Exit Sub

EMA1 = Sheet1.Cells(1, 2)
EMA2 = Sheet1.Cells(2, 2)
Sigl = Sheet1.Cells(3, 2)

If EMA2 <= EMA1 Or EMA1 < 1 Or Sigl <= 1 Then 'Invalid initial parameters
 MsgBox "Be sure that (1) EMA2 > EMA1, (2) EMA1 >= 1, (3) Signal >1 "
End If

End If

If EMA2 + Sigl - 2 >= TotalDay Then 'no sufficient data to generate Signal
 MsgBox "Insufficient data to generate MACD trading signal "
End If

Avg = 0
Alpha = 2 / (1 + EMA1)
Power = 0
Denominator = 0
For i = TotalDay - EMA1 + 1 To TotalDay 'to get initial EMA1
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Avg = Avg / Denominator
EMA(TotalDay - EMA1 + 1, 1) = Avg 'first EMA ready
For i = TotalDay - EMA1 To 1 Step -1 'fill the rest EMA1
 EMA(i, 1) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 1)
Next i

Avg = 0
Alpha = 2 / (1 + EMA2)
Power = 0
Denominator = 0
For i = TotalDay - EMA2 + 1 To TotalDay 'to get initial EMA2
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Avg = Avg / Denominator
EMA(TotalDay - EMA2 + 1, 2) = Avg 'first EMA2 ready
For i = TotalDay - EMA2 To 1 Step -1 'fill the rest EMA2
 EMA(i, 2) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 2)
Next i

AllMACD = TotalDay - EMA2 + 1
For i = 1 To AllMACD
 MACD(i) = EMA(i, 1) - EMA(i, 2)
Next i
'Signal = EMA of MACD
Avg = 0
Alpha = 2 / (1 + Sigl)
Power = 0
Denominator = 0
For i = AllMACD - Sigl + 1 To AllMACD 'to get initial Signal
 Avg = Avg + MACD(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i
 Avg = Avg / Denominator
AllSigl = AllMACD - Sigl + 1
 Signal(AllSigl) = Avg 'first Signal
For i = AllSigl - 1 To 1 Step -1 'fill the rest Signal
 Signal(i) = Alpha * MACD(i) + (1 - Alpha) * Signal(i + 1)
Next i
End Sub

MACDtradingsignal
Sub MACDtradingsignal()
 'must execute MACDiniciate in advance
 'Trading signals are stored in Trading(i)
 'The calculation follows standard MACD rules
 If TotalDay = 0 Then Exit Sub
 Dim i As Integer
 For i = AllSigl - 1 To 1 Step -1
 If MACD(i) > Signal(i) Then
 If (MACD(i + 1) < Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) < Signal(i + 2))) Then Trading(i) = -1
 ElseIf MACD(i) < Signal(i) Then
 If (MACD(i + 1) > Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) > Signal(i + 2))) Then Trading(i) = 1
 End If
 End If
 Next i
 'While inspecting myriads of output the chance that MACD=Signal does exist but quite rare,
 'therefore the code here ignores a very unlikely situation: MACD(i+1)=Signal(i+1) happens
 'right in the beginning when i=AllSigl-1. No value has yet been assigned to Signal(i+2), i.e. =0
End Sub

MACDoutput
Sub MACDoutput()
 'display MACD detail in Sheet1, this process is very slow
 'must execute (1) MACDiniciate and (2)MACDtradingsignal in advance
 Dim i As Integer
 Sheets("Sheet1").Select
 Range("D10:F65536").Select
 Selection.ClearContents
If AllMACD = 0 Then End
If MACD(1) = 0 And MACD(AllMACD) = 0 And Signal(1) = 0 And Signal(AllSigl) = 0 Then End

For i = 1 To AllMACD 'this value has been assigned already
 Sheet1.Cells(9 + i, 4) = MACD(i)
Next i
For i = 1 To AllSigl 'this value has been assigned already
 Sheet1.Cells(9 + i, 5) = Signal(i)
Next i

'Output MACD trading signal: (-)buy(+)sell
For i = 1 To AllSigl - 1
 If Trading(i) <> 0 Then
 Sheet1.Cells(i + 9, 6) = Trading(i)
 End If
Next i

End Sub

Sub MACDoutput()
 'display MACD detail in Sheet1, this process is very slow
 'must execute (1) MACDinicate and (2)MACDtradingsignal in advance
 Dim i As Integer
 Sheets("Sheet1").Select
 Range("D10:F65536").Select
 Selection.ClearContents

 If AllMACD = 0 Then End
 If MACD(1) = 0 And MACD(AllMACD) = 0 And Signal(1) = 0 And Signal(AllSigl) = 0 Then End

 For i = 1 To AllMACD 'this value has been assigned already
 Sheet1.Cells(9 + i, 4) = MACD(i)
 Next i
 For i = 1 To AllSigl 'this value has been assigned already
 Sheet1.Cells(9 + i, 5) = Signal(i)
 Next i

 'Output MACD trading signal: (-)buy(+)sell
 For i = 1 To AllSigl - 1
 If Trading(i) <> 0 Then
 Sheet1.Cells(i + 9, 6) = Trading(i)
 End If
 Next i

End Sub

MACDtrading1
Sub MACDtrading1()
 'Trade Strategy 1 starts here
 Dim i As Integer
 Dim JustStarted As Boolean
Dim Cost(1 To 3) As Single
Dim TradePos(MaxDays) As Single 'record buy/sell position
Dim TradeRecord(MaxTrades) As Single
Dim TradePL(MaxTrades, 3) As Single 'Profit/Loss for a round trip (1:amount 2: percentage 3:days)
Dim TradeDate(MaxTrades) As Date
Dim AllTrade As Integer
Dim RoundTrip As Integer 'should be half the number of AllTrade
Dim WinDeal As Integer
Dim LossDeal As Integer
Dim WinAvgPct As Single 'average percentage in a winning deal
Dim LossAvgPct As Single
Dim WinAvgDay As Single
Dim LossAvgDay As Single
Dim CompoundedReturn As Double

If TotalDay = 0 Or Sheet1ToggleButton1.Caption = "OFF" Then Exit Sub

JustStarted = True
AllTrade = 0

Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL
'no need to define Cost(2)

'Buy and sell based on the signal we stored in Trading()
'Here we only allow long position, no short sell allowed
For i = AllSigl - 1 To 1 Step -1
If Trading(i) <> 0 Then
 If JustStarted And Trading(i) = 1 Then
 'do nothing because the 1st signal is a SELL (don't allow short selling)
 Else
 If i = 1 And Trading(1) = -1 Then 'last day shows BUY signal => we won't allow this happen
 'do nothing (we are sure the last day will not have a BUY decision)
 Else
 TradePos(i) = Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i))
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
 TradeDate(AllTrade) = PDate(i)
 End If
 End If
 End If
Next i

'Force sell on the last day (if we still have position)
If AllTrade > 0 Then
 If TradeRecord(AllTrade) < 0 Then 'Your last trade is BUY, i.e. you have a long position need to close out
 TradePos(1) = Price(1) * 1 * (1 - Cost(1 + 2) * 1) 'in this formula, 1 = the signal generate by a sell decision
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(1) 'complete the record of this final force deal
 TradeDate(AllTrade) = PDate(1)
 End If
End If
'we are sure now AllTrade will be an even number

RoundTrip = AllTrade / 2 'the number of complete BUY and SELL transactions

CompoundedReturn = 1
For i = 1 To RoundTrip 'Count Profit/Loss for each round trip
 TradePL(i, 1) = TradeRecord(i * 2) + TradeRecord(i * 2 - 1)
 TradePL(i, 2) = TradePL(i, 1) / (-TradeRecord(i * 2 - 1))
 TradePL(i, 3) = TradeDate(i * 2) - TradeDate(i * 2 - 1)
 CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i
CompoundedReturn = CompoundedReturn - 1

-WinDeal = 0
-LossDeal = 0
-WinAvgPct = 0
-LossAvgPct = 0
-WinAvgDay = 0
-LossAvgDay = 0

For i = 1 To RoundTrip
 If TradePL(i, 1) > 0 Then 'a deal with profit
 WinDeal = WinDeal + 1
 WinAvgPct = WinAvgPct + TradePL(i, 2)
 WinAvgDay = WinAvgDay + TradePL(i, 3)
 End If
 If TradePL(i, 1) < 0 Then 'a deal with loss
 LossDeal = LossDeal + 1
 LossAvgPct = LossAvgPct + TradePL(i, 2)
 LossAvgDay = LossAvgDay + TradePL(i, 3)
 End If
Next i
If WinDeal > 0 Then
 WinAvgPct = WinAvgPct / WinDeal
 WinAvgDay = WinAvgDay / WinDeal
End If
If LossDeal > 0 Then
 LossAvgPct = LossAvgPct / LossDeal
 LossAvgDay = LossAvgDay / LossDeal
End If

'Output trading position to Sheet1

Sheet1.Cells(2, 8) = WinDeal
Sheet1.Cells(3, 8) = LossDeal
Sheet1.Cells(4, 8) = RoundTrip - WinDeal - LossDeal
Sheet1.Cells(5, 8) = RoundTrip

Sheet1.Cells(2, 9) = WinAvgPct
Sheet1.Cells(3, 9) = LossAvgPct
Sheet1.Cells(4, 9) = 0
Sheet1.Cells(5, 9) = 0
If RoundTrip > 0 Then Sheet1.Cells(5, 9) = (WinDeal * WinAvgPct + LossDeal * LossAvgPct) / RoundTrip
Shee1.Cells(6, 9) = CompoundedReturn
Sheet1.Cells(2, 10) = WinAvgDay
Sheet1.Cells(3, 10) = LossAvgDay

If Sheet1.ToggleButton6.Caption = "OFF" Then Exit Sub

For i = 1 To AllTrade 'display a continuous list of trading history
 Sheet1.Cells(i + 9, 8) = TradeRecord(AllTrade - i + 1) 'start from the last entry
 Sheet1.Cells(i + 9, 7) = TradeDate(AllTrade - i + 1)
Next i

For i = 1 To RoundTrip 'display profit/loss for each round trip
 Sheet1.Cells(i * 2 + 8, 9) = TradePL(RoundTrip - i + 1, 1) 'start from the last entry
 Sheet1.Cells(i * 2 + 8, 10) = TradePL(RoundTrip - i + 1, 2) 'profit/loss in terms of %
Next i

End Sub

MACDtrading2
Sub MACDtrading2()
 'Trade Strategy 2 starts here

 Dim i As Integer

 Dim JustStarted As Boolean
 Dim Cost(1 To 3) As Single
 Dim TradePos(MaxDays) As Single 'record buy/sell position
 Dim TradeRecord(MaxTrades) As Single
 Dim TradePL(MaxTrades, 3) As Single 'Profit/Loss for a round trip (1:amount 2: percentage 3: days)
 Dim TradeDate(MaxTrades) As Date
 Dim TradeTrigger(MaxTrades) As Single 'TEST to observe the magnitude of Trigger (definition see MACDTR2)
 Dim AllTrade As Integer
 Dim RoundTrip As Integer 'should be only 1 less than AllTrade
 Dim WinDeal As Integer
 Dim LossDeal As Integer
 Dim WinAvgPct As Single 'average percentage in a winning deal
 Dim LossAvgPct As Single
 Dim WinAvgDay As Single
 Dim LossAvgDay As Single
 Dim CompoundedReturn As Double

 If TotalDay = 0 Or Sheet1.ToggleButton2.Caption = "OFF" Then Exit Sub

 JustStarted = True
 AllTrade = 0

 Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
 Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL
 'no need to define Cost(2)

 'Buy and sell based on the signal we stored in Trading()
 'Here we allow either long or short position
 For i = AllSigl - 1 To 2 Step -1 'skip the final day (i=1) and deal with it later
 If Trading(i) <> 0 Then
 If JustStarted Then 'very first trade - for one unit only, no matter long or short
 ...
TradePos(i) = Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i))
AllTrade = AllTrade + 1
TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
TradeDate(AllTrade) = PDate(i)
'TradeTrigger(AllTrade) = -Trading(i) * (MACD(i) - Signal(i)) / Price(i) ' [TEST]
Else
TradePos(i) = 2 * (Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i)))
'double in order to close out original position and simultaneously open new position
AllTrade = AllTrade + 1
TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
TradeDate(AllTrade) = PDate(i)
'TradeTrigger(AllTrade) = -Trading(i) * (MACD(i) - Signal(i)) / Price(i) ' [TEST]
End If
Juststarted = False
End If
Next i

'Force close out existing position on the last day. Unless no trade at all, we must have position before the last day
If AllTrade > 0 Then

If TradeRecord(AllTrade) < 0 Then 'Your last trade is BUY, i.e. you have a long position need to close out
TradePos(1) = Price(1) * 1 * (1 - Cost(1 + 2) * 1) 'in this formula, 1 = the signal generate by a sell decision
Else 'Your last trade is SELL, i.e. you have a short position need to close out
TradePos(1) = Price(1) * (-1) * (1 - Cost(-1 + 2) * (-1)) 'in this formula, -1 = the signal generate by a buy decision
End If

AllTrade = AllTrade + 1
TradeRecord(AllTrade) = TradePos(1) 'complete the record of this final force deal
TradeDate(AllTrade) = PDate(1)

RoundTrip = AllTrade - 1 'the number of complete BUY and SELL transactions
CompoundedReturn = 1

If RoundTrip = 1 Then
i = 1 'special process for the only trade
TradePL(i, 1) = TradeRecord(i + 1) + TradeRecord(i)
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i))
TradePL(i, 3) = TradeDate(i + 1) - TradeDate(i)
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Else
i = 1 'special process for 1st trade
TradePL(i, 1) = TradeRecord(i + 1) / 2 + TradeRecord(i)
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i))
TradePL(i, 3) = TradeDate(i + 1) - TradeDate(i)
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
End If

i = RoundTrip 'special process for last trade
TradePL(i, 1) = TradeRecord(i + 1) + TradeRecord(i) / 2
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i) / 2)
TradePL(i, 3) = TradeDate(i + 1) - TradeDate(i)
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))

For i = 2 To RoundTrip - 1 'Count Profit/Loss for the rest round trips
 TradePL(i, 1) = TradeRecord(i + 1) / 2 + TradeRecord(i) / 2
 TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i) / 2)
 TradePL(i, 3) = TradeDate(i + 1) - TradeDate(i)
 CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i
End If
CompoundedReturn = CompoundedReturn - 1

End If

WinDeal = 0
LossDeal = 0
WinAvgPct = 0
LossAvgPct = 0
WinAvgDay = 0
LossAvgDay = 0

For i = 1 To RoundTrip
 If TradePL(i, 1) > 0 Then 'a deal with profit
 WinDeal = WinDeal + 1
 WinAvgPct = WinAvgPct + TradePL(i, 2)
 WinAvgDay = WinAvgDay + TradePL(i, 3)
 End If
 If TradePL(i, 1) < 0 Then 'a deal with loss
 LossDeal = LossDeal + 1
 LossAvgPct = LossAvgPct + TradePL(i, 2)
 LossAvgDay = LossAvgDay + TradePL(i, 3)
 End If
Next i

If WinDeal > 0 Then
 WinAvgPct = WinAvgPct / WinDeal
 WinAvgDay = WinAvgDay / WinDeal
End If

If LossDeal > 0 Then
 LossAvgPct = LossAvgPct / LossDeal
 LossAvgDay = LossAvgDay / LossDeal
End If

'Output trading position to Sheet1

Sheet1.Cells(2, 12) = WinDeal
Sheet1.Cells(3, 12) = LossDeal
Sheet1.Cells(4, 12) = RoundTrip - WinDeal - LossDeal
Sheet1.Cells(5, 12) = RoundTrip

Sheet1.Cells(2, 13) = WinAvgPct
Sheet1.Cells(3, 13) = LossAvgPct
Sheet1.Cells(4, 13) = 0
Sheet1.Cells(5, 13) = 0
If RoundTrip > 0 Then Sheet1.Cells(5, 13) = (WinDeal * WinAvgPct + LossDeal * LossAvgPct) / RoundTrip
Sheet1.Cells(6, 13) = CompoundedReturn
Sheet1.Cells(2, 14) = WinAvgDay
Sheet1.Cells(3, 14) = LossAvgDay

If Sheet1.ToggleButton6.Caption = "OFF" Then Exit Sub

For i = 1 To AllTrade 'display a continuous list of trading history
 Sheet1.Cells(i + 9, 12) = TradeRecord(AllTrade - i + 1) 'start from the last entry
 Sheet1.Cells(i + 9, 11) = TradeDate(AllTrade - i + 1)
Next i

For i = 1 To RoundTrip 'display profit/loss for each round trip
 Sheet1.Cells(i + 9, 13) = TradePL(RoundTrip - i + 1, 1) 'start from the last entry
 Sheet1.Cells(i + 9, 14) = TradePL(RoundTrip - i + 1, 2) 'profit/loss in terms of %
'Sheet1.Cells(i + 10, 13) = 1 + TradeTrigger(RoundTrip - i + 1) 'TEST] has to turn off p/l output
Next i

End Sub

MACDR2trading
Sub MACDR2trading()

Dim i As Integer

Dim Cost(1 To 3) As Single
Dim TradePos(MaxDays) As Single 'record buy/sell position
Dim TradeRecord(MaxTrades) As Single
Dim TradePL(MaxTrades, 3) As Single 'Profit/Loss for a round trip (1:amount 2: percentage 3: days)
Dim TradeDate(MaxTrades) As Date
Dim AllTrade As Integer
Dim RoundTrip As Integer 'should be half the number of AllTrade (like strategy 1)
Dim WinDeal As Integer
Dim LossDeal As Integer
Dim WinAvgPct As Single 'average percentage in a winning deal
Dim LossAvgPct As Single
Dim WinAvgDay As Single
Dim LossAvgDay As Single
Dim CompoundedReturn As Double

Dim DayDelay As Byte '=3 in standard MACD2
Dim Trigger As Single
Dim Target As Single
Dim TargetReached As Boolean 'true if it's time to take profit or stop loss
Dim TradeNow As Boolean
Dim CurrentPos As Single
Dim CurrentTrade As Integer 'same value as in Trading(), only have +1, -1, or 0
Dim ClosingTrade As Integer
Dim Profit As Single

If TotalDay = 0 Or Sheet1.ToggleButton3.Caption = "OFF" Then Exit Sub

Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL
'no need to define Cost(2)
DayDelay = Sheet1.Cells(7, 18) '3 for standard MACDR2, 0 for Strategy2 (when Trigger=0, Target=no limit, such as 99%)
Trigger = Sheet1.Cells(8, 16) 'Trade trigger level (for example 1%)
Target = Sheet1.Cells(8, 18) 'Trade profit target level (for example 3%)

AllTrade = 0
CurrentPos = 0
CurrentTrade = 0

For i = AllSigl - 1 - DayDelay To 2 Step -1

' the 1st possible MACD trading signal will start from Trading(AllSigl-1)
' first possible trading will be 3 (=DayDelay) days after seeing that signal
' therefore the starting point is AllSigl-4
' since we will close out position on the last day, we will process the last day separately

TradeNow = False 'should we do trade today?

If Trading(i + DayDelay) <> 0 Then 'There's MACD trading signal 3(=DayDelay) days ago
 If -Trading(i + DayDelay) * (MACD(i) - Signal(i)) / Price(i) >= Trigger Then TradeNow = True
 ' 3 days later the gap between MACD and Signal is large enough
End If

If TradeNow = True Then
 If Not (CurrentTrade = Trading(i + DayDelay)) Then 'do nothing if the signal is identical to the existing position
 ClosingTrade = -CurrentTrade
 TradePos(i) = ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i)
 TradeDate(AllTrade) = PDate(i)
 End If
 ' no need to worry any pending position now
 'open new position here
 TradePos(i) = TradePos(i) + Price(i) * Trading(i + DayDelay) * (1 - Cost(Trading(i + DayDelay) + 2) * Trading(i + DayDelay))
 'in case we have a close out deal and a new trade in same day, TradePos() will record total amount
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = Price(i) * Trading(i + DayDelay) * (1 - Cost(Trading(i + DayDelay) + 2) * Trading(i + DayDelay))
 'record new trade amount (while TradePos(i) might accumulate 2 same way trades in same day)
 TradeDate(AllTrade) = PDate(i)

 CurrentPos = TradeRecord(AllTrade)
 CurrentTrade = Trading(i + DayDelay)
End If 'Not (CurrentTrade = trade(i + DayDelay))

Else 'no new trade for this day

 If CurrentTrade <> 0 Then 'is it time for profit-taking or cutting-loss?

ClosingTrade = -CurrentTrade
Profit = CurrentPos + ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
Profit = Profit / Abs(CurrentPos) 'convert into %
TargetReached = False
If Profit > 0 And Target > 0 And Profit >= Target Then TargetReached = True 'confirm to take profit
If Profit < 0 And Target < 0 And Profit <= Target Then TargetReached = True 'confirm to stop loss
If TargetReached Or Trading(i) = ClosingTrade Then 'close out because of (1) TakeProfit or StopLoss,
(2) MACD signal said so
 TradePos(i) = ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i)
 TradeDate(AllTrade) = PDate(i)
 CurrentPos = 0
 CurrentTrade = 0
End If
End If
End If
End If
'TradeNow=True
Next i

'It's time to deal with the last working day
i = 1
If CurrentTrade <> 0 Then 'after running through the for-next loop, we still have position
 ClosingTrade = -CurrentTrade
 TradePos(i) = ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i)
 TradeDate(AllTrade) = PDate(i)
 CurrentPos = 0 'In fact it won't do any harm if we don't reset them
 CurrentTrade = 0
End If

RoundTrip = AllTrade / 2
CompoundedReturn = 1
For i = 1 To RoundTrip 'Count Profit/Loss for each round trip
 TradePL(i, 1) = TradeRecord(i * 2) + TradeRecord(i * 2 - 1)
 TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i * 2 - 1))
 TradePL(i, 3) = TradeDate(i * 2) - TradeDate(i * 2 - 1)
 CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i
CompoundedReturn = CompoundedReturn - 1

WinDeal = 0
LossDeal = 0
WinAvgPct = 0
LossAvgPct = 0
WinAvgDay = 0
LossAvgDay = 0

For i = 1 To RoundTrip
 If TradePL(i, 1) > 0 Then 'a deal with profit
 WinDeal = WinDeal + 1
 WinAvgPct = WinAvgPct + TradePL(i, 2)
 WinAvgDay = WinAvgDay + TradePL(i, 3)
End If
If TradePL(i, 1) < 0 Then 'a deal with loss
 LossDeal = LossDeal + 1
 LossAvgPct = LossAvgPct + TradePL(i, 2)
 LossAvgDay = LossAvgDay + TradePL(i, 3)
End If
Next i

If WinDeal > 0 Then
 WinAvgPct = WinAvgPct / WinDeal
 WinAvgDay = WinAvgDay / WinDeal
End If

If LossDeal > 0 Then
 LossAvgPct = LossAvgPct / LossDeal
 LossAvgDay = LossAvgDay / LossDeal
End If

'Output trading position to Sheet1
Sheet1.Cells(2, 16) = WinDeal
Sheet1.Cells(3, 16) = LossDeal
Sheet1.Cells(4, 16) = RoundTrip - WinDeal - LossDeal
Sheet1.Cells(5, 16) = RoundTrip

Sheet1.Cells(2, 17) = WinAvgPct
Sheet1.Cells(3, 17) = LossAvgPct
Sheet1.Cells(4, 17) = 0
Sheet1.Cells(5, 17) = 0
If RoundTrip > 0 Then Sheet1.Cells(5, 17) = (WinDeal * WinAvgPct + LossDeal * LossAvgPct) / RoundTrip

Sheet1.Cells(6, 17) = CompoundedReturn

Sheet1.Cells(2, 18) = WinAvgDay
Sheet1.Cells(3, 18) = LossAvgDay

If Sheet1.ToggleButton6.Caption = "OFF" Then Exit Sub

For i = 1 To AllTrade 'display a continuous list of trading history
 Sheet1.Cells(i + 9, 16) = TradeRecord(AllTrade - i + 1) 'start from the last entry
 Sheet1.Cells(i + 9, 15) = TradeDate(AllTrade - i + 1)
Next i

For i = 1 To RoundTrip 'display profit/loss for each round trip
 Sheet1.Cells(i * 2 + 8, 17) = TradePL(RoundTrip - i + 1, 1) 'start from the last entry
 Sheet1.Cells(i * 2 + 8, 18) = TradePL(RoundTrip - i + 1, 2) 'profit/loss in terms of %
Next i

End Sub

MACDtrading4
Sub MACDtrading4()
'Trade Strategy 4 starts here (we don't use sub name MACDtrading3)
'Only short sell allowed

70
Dim i As Integer

Dim JustStarted As Boolean
Dim Cost(1 To 3) As Single
Dim TradePos(MaxDays) As Single 'record buy/sell position
Dim TradeRecord(MaxTrades) As Single
Dim TradePL(MaxTrades, 3) As Single 'Profit/Loss for a round trip (1:amount 2: percentage 3:days)
Dim TradeDate(MaxTrades) As Date
Dim AllTrade As Integer
Dim RoundTrip As Integer 'should be half the number of AllTrade
Dim WinDeal As Integer
Dim LossDeal As Integer
Dim WinAvgPct As Single 'average percentage in a winning deal
Dim LossAvgPct As Single
Dim WinAvgDay As Single
Dim LossAvgDay As Single
Dim CompoundedReturn As Double

If TotalDay = 0 Or Sheet1.ToggleButton4.Caption = "OFF" Then Exit Sub

JustStarted = True
AllTrade = 0

Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL
'no need to define Cost(2)

'Buy and sell based on the signal we stored in Trading(i)
'Here we only allow SHORT position, no long position allowed
For i = AllSigl - 1 To 1 Step -1
 If Trading(i) <> 0 Then
 If JustStarted And Trading(i) = -1 Then
 'do nothing because the 1st signal is a BUY
 Else
 If i = 1 And Trading(i) = 1 Then 'last day shows SELL signal => we won't allow this happen
 'do nothing (we are sure the last day will not have a SELL decision)
 Else
 TradePos(i) = Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i))
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
 TradeDate(AllTrade) = PDate(i)
 End If
 End If
 JustStarted = False
 End If
Next i

'Force buy on the last day (if we still have position)
If AllTrade > 0 Then
 If TradeRecord(AllTrade) > 0 Then 'Your last trade is SELL, i.e. you have a short position need to close out
 TradePos(1) = Price(1) * (-1) * (1 - Cost((-1) + 2) * (-1)) 'in this formula, -1 = the signal generate by a sell decision
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(1) 'complete the record of this final force deal
TradeDate(AllTrade) = PDate(1)
End If
End If
'we are sure now AllTrade will be an even number

RoundTrip = ALLTrade / 2 'the number of complete BUY and SELL transactions

CompoundedReturn = 1
For i = 1 To RoundTrip 'Count Profit/Loss for each round trip
 TradePL(i, 1) = TradeRecord(i * 2) + TradeRecord(i * 2 - 1)
 TradePL(i, 2) = TradePL(i, 1) / TradeRecord(i * 2 - 1) 'denominator is always positive
 TradePL(i, 3) = TradeDate(i * 2) - TradeDate(i * 2 - 1)
 CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i
CompoundedReturn = CompoundedReturn - 1

WinDeal = 0
LossDeal = 0
WinAvgPct = 0
LossAvgPct = 0
WinAvgDay = 0
LossAvgDay = 0

For i = 1 To RoundTrip
 If TradePL(i, 1) > 0 Then 'a deal with profit
 WinDeal = WinDeal + 1
 WinAvgPct = WinAvgPct + TradePL(i, 2)
 WinAvgDay = WinAvgDay + TradePL(i, 3)
 End If
 If TradePL(i, 1) < 0 Then 'a deal with loss
 LossDeal = LossDeal + 1
 LossAvgPct = LossAvgPct + TradePL(i, 2)
 LossAvgDay = LossAvgDay + TradePL(i, 3)
 End If
Next i

If WinDeal > 0 Then
 WinAvgPct = WinAvgPct / WinDeal
 WinAvgDay = WinAvgDay / WinDeal
End If

If LossDeal > 0 Then
 LossAvgPct = LossAvgPct / LossDeal
 LossAvgDay = LossAvgDay / LossDeal
End If

'Output trading position to Sheet1

Sheet1.Cells(2, 20) = WinDeal
Sheet1.Cells(3, 20) = LossDeal
Sheet1.Cells(4, 20) = RoundTrip - WinDeal - LossDeal
Sheet1.Cells(5, 20) = RoundTrip
Sheet1.Cells(2, 21) = WinAvgPct
Sheet1.Cells(3, 21) = LossAvgPct
Sheet1.Cells(4, 21) = 0
Sheet1.Cells(5, 21) = 0
If RoundTrip > 0 Then Sheet1.Cells(5, 21) = (WinDeal * WinAvgPct + LossDeal * LossAvgPct) / RoundTrip
Sheet1.Cells(6, 21) = CompoundedReturn

Sheet1.Cells(2, 22) = WinAvgDay
Sheet1.Cells(3, 22) = LossAvgDay

If Sheet1.ToggleButton6.Caption = "OFF" Then Exit Sub

For i = 1 To AllTrade 'display a continuous list of trading history
 Sheet1.Cells(i + 9, 20) = TradeRecord(AllTrade - i + 1) 'start from the last entry
 Sheet1.Cells(i + 9, 19) = TradeDate(AllTrade - i + 1)
Next i

For i = 1 To RoundTrip 'display profit/loss for each round trip
 Sheet1.Cells(i * 2 + 8, 21) = TradePL(RoundTrip - i + 1, 1) 'start from the last entry
 Sheet1.Cells(i * 2 + 8, 22) = TradePL(RoundTrip - i + 1, 2) 'profit/loss in terms of %
Next i

End Sub

Optimizer1
Sub Optimizer1()
'Find the best combination of EMA1, EMA2, and Signal for Strategy1
'Use same code as in MACDInitiate, MACDtradingsignal, MACDtrading1

If CopyPriceOK = False Then Call CopyPrice

Dim i As Integer
Dim j As Long 'output pointer

Dim MaxEMA1 As Integer 'Max EMA1
Dim MaxEMA2 As Integer 'Max EMA2
Dim MaxSig1 As Integer 'Max Signal

Dim Avg As Single
Dim Power As Integer
Dim Alpha As Single
Dim Denominator As Single
Dim EMA1 As Integer
Dim EMA2 As Integer
Dim Sig1 As Integer

Dim Juststarted As Boolean
Dim Cost(1 To 3) As Single
Dim TradePos(MaxDays) As Single 'record buy/sell position
Dim TradeRecord(MaxTrades) As Single
Dim TradePL(MaxTrades, 2) As Single 'Profit/Loss for a round trip (1:amount 2: percentage) .. don't need 3: date
Dim AllTrade As Integer
Dim RoundTrip As Integer 'should be half the number of AllTrade
Dim CompoundedReturn As Double 'To search for MACD parameters that maximize this value
Dim MaxPL As Double

Dim NearDay As Integer 'The day range for optimizer to work
Dim FarDay As Integer
TotalDay = Sheet1.Cells(4, 2)
If TotalDay = 0 Then Exit Sub

If LearningMode = True Then 'Learning mode only require optimizer to work on a specific time period
 NearDay = LearnDay1
 FarDay = LearnDay2
Else 'By default, optimizer will go through the whole time period
 NearDay = 1
 FarDay = TotalDay
End If
'Once the Learning Mode is on, AllMACD and AllSigI no longer stand for the whole time period

MaxEMA2 = Sheet1.Cells(3, 24)
MaxEMA1 = MaxEMA2 - 1
MaxSigI = Sheet1.Cells(4, 24)

Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL

j = 0 'counter for displaying all combinations
MaxPL = -999
'Total loops = MaxEMA2 * (MaxEMA2 - 1) / 2 * (MaxSigI - 1)
For EMA1 = 1 To MaxEMA1
 For EMA2 = EMA1 + 1 To MaxEMA2
 For SigI = 2 To MaxSigI
 'These must reset first, or they will keep filling more and more entries
 Erase Trading
 Erase TradePos

 Avg = 0
 Alpha = 2 / (1 + EMA1)
 Power = 0
 Denominator = 0
 For i = FarDay - EMA1 + 1 To FarDay 'to get initial EMA1
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
 Next i
 Avg = Avg / Denominator
 EMA(FarDay - EMA1 + 1, 1) = Avg 'first EMA1 ready
 For i = FarDay - EMA1 To NearDay Step -1 'fill the rest EMA1
 EMA(i, 1) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 1)
 Next i

 Avg = 0
 Alpha = 2 / (1 + EMA2)
 Power = 0
 Denominator = 0
 For i = FarDay - EMA2 + 1 To FarDay 'to get initial EMA2
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
 Next i

74
Avg = Avg / Denominator
EMA(FarDay - EMA2 + 1, 2) = Avg 'first EMA2 ready
For i = FarDay - EMA2 To NearDay Step -1 'fill the rest EMA2
 EMA(i, 2) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 2)
Next i

AllMACD = FarDay - EMA2 + 1

For i = NearDay To AllMACD
 MACD(i) = EMA(i, 1) - EMA(i, 2)
Next i

'Signal = EMA of MACD
Avg = 0
Alpha = 2 / (1 + Sigl)
Power = 0
Denominator = 0
For i = AllMACD - Sigl + 1 To AllMACD 'to get initial Signal
 Avg = Avg + MACD(i) * (1 - Alpha)^Power
 Denominator = Denominator + (1 - Alpha)^Power
 Power = Power + 1
Next i

AllSigl = AllMACD - Sigl + 1
Signal(AllSigl) = Avg 'first Signal

For i = AllSigl - 1 To NearDay Step -1 'fill the rest Signal
 Signal(i) = Alpha * MACD(i) + (1 - Alpha) * Signal(i + 1)
Next i

For i = AllSigl - 1 To NearDay Step -1
 If MACD(i) > Signal(i) Then
 If (MACD(i + 1) < Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) < Signal(i + 2))) Then Trading(i) = -1
 ElseIf MACD(i) < Signal(i) Then
 If (MACD(i + 1) > Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) > Signal(i + 2))) Then Trading(i) = 1
 End If
 End If
Next i

JustStarted = True 'Strategy1 starts here (no need to record TradeDate)
AllTrade = 0

'Buy and sell based on the signal we stored in Trading()
'Here we only allow long position, no short sell allowed
For i = AllSigl - 1 To NearDay Step -1
 If Trading(i) <> 0 Then
 If JustStarted And Trading(i) = 1 Then
 'do nothing because the 1st signal is a SELL (don't allow short selling)
 Else
 If i = NearDay And Trading(NearDay) = -1 Then 'last day shows BUY signal => we won't allow this happen
 'do nothing (we are sure the last day will not have a BUY decision)
 Else
 TradePos(i) = Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i))
 End If
 End If
 End If
Next i
AllTrade = AllTrade + 1
TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
End If
End If
JustStarted = False
End If
Next i

'Force sell on the last day (if we still have position)
If AllTrade > 0 Then
If TradeRecord(AllTrade) < 0 Then 'Your last trade is BUY, i.e. you have a long position need to close out
 TradePos(NearDay) = Price(NearDay) * 1 * (1 - Cost(1 + 2) * 1) 'in this formula, 1 = the signal generate by a sell decision
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(NearDay) 'complete the record of this final force deal
End If
End If
'we are sure now AllTrade will be an even number

RoundTrip = AllTrade / 2 'the number of complete BUY and SELL transactions

CompoundedReturn = 1
For i = 1 To RoundTrip 'Count Profit/Loss for each round trip
 TradePL(i, 1) = TradeRecord(i * 2) + TradeRecord(i * 2 - 1)
 TradePL(i, 2) = TradePL(i, 1) / (-TradeRecord(i * 2 - 1))
 CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i
CompoundedReturn = CompoundedReturn - 1

'Output to Sheet1
If CompoundedReturn > MaxPL Then 'keep updating the best solution
 MaxPL = CompoundedReturn
 Sheet1.Cells(9, 23) = EMA1
 Sheet1.Cells(9, 24) = EMA2
 Sheet1.Cells(9, 25) = Sigl
 Sheet1.Cells(9, 26) = MaxPL
 Optimized(1) = EMA1 'stored in public variables for further usage in Learning()
 Optimized(2) = EMA2
 Optimized(3) = Sigl
 OptimizedRtn = MaxPL
End If

If Sheet1.ToggleButton5.Caption = "ON" And j <= 65526 Then 'output should not exceed Excel row 65536
 j = j + 1
 Sheet1.Cells(j + 9, 23) = EMA1
 Sheet1.Cells(j + 9, 24) = EMA2
 Sheet1.Cells(j + 9, 25) = Sigl
 Sheet1.Cells(j + 8, 26) = CompoundedReturn
End If

Next Sigl
Next EMA2
Next EMA1

76
End Sub

Sub Optimizer2()
 'Find the best combination of EMA1, EMA2, and Signal for Strategy2
 'The code in this sub is highly similar to Optimizer1

 If CopyPriceOK = False Then Call CopyPrice

 Dim i As Integer
 Dim j As Long 'output pointer

 Dim MaxEMA1 As Integer 'Max EMA1
 Dim MaxEMA2 As Integer 'Max EMA2
 Dim MaxSigl As Integer 'Max Signal

 Dim Avg As Single
 Dim Power As Integer
 Dim Alpha As Single
 Dim Denominator As Single
 Dim EMAl As Integer
 Dim EMA2 As Integer
 Dim Sigl As Integer

 Dim JustStarted As Boolean
 Dim Cost(1 To 3) As Single
 Dim TradePos(MaxDays) As Single 'record buy/sell position
 Dim TradeRecord(MaxTrades) As Single
 Dim TradePL(MaxTrades, 2) As Single 'Profit/Loss for a round trip (1:amount 2: percentage) .. don't need 3: date
 Dim AllTrade As Integer
 Dim RoundTrip As Integer 'should be half the number of AllTrade
 Dim CompoundedReturn As Double 'To search for MACD parameters that maximize this value
 Dim MaxPL As Double

 Dim NearDay As Integer 'The day range for optimizer to work
 Dim FarDay As Integer

 TotalDay = Sheet1.Cells(4, 2)
 If TotalDay = 0 Then Exit Sub

 If LearningMode = True Then 'Learning mode only require optimizer to work on a specific time period
 NearDay = LearnDay1
 FarDay = LearnDay2
 Else 'By default, optimizer will go through the whole time period
 NearDay = 1
 FarDay = TotalDay
 End If

 'Once the Learning Mode is on, AllMACD and AllSigl no longer stand for the whole time period

 Dim MaxEMA2 = Sheet1.Cells(3, 24)
 MaxEMA1 = MaxEMA2 - 1
 MaxSigl = Sheet1.Cells(4, 24)

 Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) ' Trading cost for SELL

j = 0 ' counter for displaying all combinations
MaxPL = .999

'Total loops = MaxEMA2 * (MaxEMA2 - 1) / 2 * (MaxSigl - 1)
For EMA1 = 1 To MaxEMA1
 For EMA2 = EMA1 + 1 To MaxEMA2
 For Sigl = 2 To MaxSigl

 ' These must reset first, or they will keep filling more and more entries
 Erase Trading
 Erase TradePos

 Avg = 0
 Alpha = 2 / (1 + EMA1)
 Power = 0
 Denominator = 0
 For i = FarDay - EMA1 + 1 To FarDay ' to get initial EMA1
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
 Next i
 Avg = Avg / Denominator
 EMA(FarDay - EMA1 + 1, 1) = Avg ' first EMA1 ready
 For i = FarDay - EMA1 To NearDay Step -1 ' fill the rest EMA1
 EMA(i, 1) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 1)
 Next i

 Avg = 0
 Alpha = 2 / (1 + EMA2)
 Power = 0
 Denominator = 0
 For i = FarDay - EMA2 + 1 To FarDay ' to get initial EMA2
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
 Next i
 Avg = Avg / Denominator
 EMA(FarDay - EMA2 + 1, 2) = Avg ' first EMA2 ready
 For i = FarDay - EMA2 To NearDay Step -1 ' fill the rest EMA2
 EMA(i, 2) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 2)
 Next i

 AllMACD = FarDay - EMA2 + 1
 For i = NearDay To AllMACD
 MACD(i) = EMA(i, 1) - EMA(i, 2)
 Next i

 ' Signal = EMA of MACD
 Avg = 0
 Alpha = 2 / (1 + Sigl)
 Power = 0
 Denominator = 0
 For i = AllMACD - Sigl + 1 To AllMACD ' to get initial Signal

 exit
Avg = Avg + MACD(i) * (1 - Alpha) ^ Power
Denominator = Denominator + (1 - Alpha) ^ Power
Power = Power + 1
Next i
Avg = Avg / Denominator

AllSigl = AllMACD - Sigl + 1
Signal(AllSigl) = Avg 'first Signal

For i = AllSigl - 1 To NearDay Step -1 'fill the rest Signal
Signal(i) = Alpha * MACD(i) + (1 - Alpha) * Signal(i + 1)
Next i

For i = AllSigl - 1 To NearDay Step -1
If MACD(i) > Signal(i) Then
If (MACD(i + 1) < Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) < Signal(i + 2))) Then Trading(i) = -1
ElseIf MACD(i) < Signal(i) Then
If (MACD(i + 1) > Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) > Signal(i + 2))) Then Trading(i) = 1
End If
Next i

JustStarted = True 'Strategy2 starts here (no need to record TradeDate)
AllTrade = 0

'Buy and sell based on the signal we stored in Trading()
'Here we allow either long or short position
For i = AllSigl - 1 To NearDay + 1 Step -1 'skip the final day (i=1 or NearDay) and deal with it later
If Trading(i) <> 0 Then
If JustStarted Then 'very first trade - for one unit only, no matter long or short
TradePos(i) = Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i))
AllTrade = AllTrade + 1
TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
Else
TradePos(i) = 2 * (Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i)))
'double in order to close out original position and simultaneously open new position
AllTrade = AllTrade + 1
TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
End If
JustStarted = False
End If
Next i

'Force close out existing position on the last day (It is certain that we still have position before the last day)
If AllTrade > 0 Then
If TradeRecord(AllTrade) < 0 Then 'Your last trade is BUY, i.e. you have a long position need to close out
TradePos(NearDay) = Price(NearDay) * 1 * (1 - Cost(1 + 2) * 1)'in this formula, 1 = the signal generate by a sell decision
Else 'Your last trade is SELL, i.e. you have a short position need to close out

TradePos(NearDay) = Price(NearDay) * (-1) * (1 - Cost(-1 + 2) * (-1)) 'in this formula, -1 = the signal generated by a buy decision

AllTrade = AllTrade + 1
TradeRecord(AllTrade) = TradePos(NearDay) 'complete the record of this final force deal

RoundTrip = AllTrade - 1 'the number of complete BUY and SELL transactions

CompoundedReturn = 1

If RoundTrip = 1 Then
i = 1 'special process for the only trade
TradePL(i, 1) = TradeRecord(i + 1) + TradeRecord(i)
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i))
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Else
i = RoundTrip 'special process for last trade
TradePL(i, 1) = TradeRecord(i + 1) / 2 + TradeRecord(i)
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i) / 2)
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
End If

For i = 2 To RoundTrip - 1 'Count Profit/Loss for the rest round trips
TradePL(i, 1) = TradeRecord(i + 1) / 2 + TradeRecord(i) / 2
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i) / 2)
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i

End If

'Output to Sheet1

If CompoundedReturn > MaxPL Then
MaxPL = CompoundedReturn
Sheet1.Cells(9, 23) = EMA1
Sheet1.Cells(9, 24) = EMA2
Sheet1.Cells(9, 25) = Sigl
Sheet1.Cells(9, 26) = MaxPL
Optimized(1) = EMA1 'stored in public variables for further usage in Learning()
Optimized(2) = EMA2
Optimized(3) = Sigl
OptimizedRtn = MaxPL
End If

If Sheet1.ToggleButton5.Caption = "ON" And j <= 65526 Then 'output should not exceed Excel row 65536
j = j + 1
Sheet1.Cells(j + 9, 23) = EMA1
Sheet1.Cells(j + 9, 24) = EMA2

80
Sub Optimizer3
Sub Optimizer3()
'Find the best combination of EMA1, EMA2, and Signal for MACDR2
'The code in this sub is modified from Optimizer2

If CopyPriceOK = False Then Call CopyPrice

Dim i As Integer
Dim j As Long 'output pointer

Dim MaxEMAl As Integer 'Max EMA1
Dim MaxEMA2 As Integer 'Max EMA2
Dim MaxSigl As Integer 'Max Signal

Dim Avg As Single
Dim Power As Integer
Dim Alpha As Single
Dim Denominator As Single
Dim EMAl As Integer
Dim EMA2 As Integer
Dim Sigl As Integer

Dim Cost(1 To 3) As Single
Dim TradePos(MaxDays) As Single 'record buy/sell position
Dim TradeRecord(MaxTrades) As Single
Dim TradePL(MaxTrades, 2) As Single 'Profit/Loss for a round trip (1:amount 2: percentage) .. don't need 3: date
Dim AllTrade As Integer
Dim RoundTrip As Integer 'should be half the number of AllTrade
Dim CompoundedReturn As Double 'To search for MACD parameters that maximize this value
Dim MaxPL As Double

Dim DayDelay As Byte '=3 in standard MACDR2
Dim Trigger As Single
Dim Target As Single
Dim TargetReached As Boolean 'true if it's time to take profit or stop loss
Dim TradeNow As Boolean
Dim CurrentPos As Single
Dim CurrentTrade As Integer 'same value as in Trading(), only have +1, -1, or 0
Dim ClosingTrade As Integer
Dim Profit As Single

Dim NearDay As Integer 'The day range for optimizer to work
Dim FarDay As Integer
TotalDay = Sheet1.Cells(4, 2)
If TotalDay = 0 Then Exit Sub

If LearningMode = True Then 'Learning mode only require optimizer to work on a specific time period
 NearDay = LearnDay1
 FarDay = LearnDay2
Else 'By default, optimizer will go through the whole time period
 NearDay = 1
 FarDay = TotalDay
End If

'Once the Learning Mode is on, AllMACD and AllSigl no longer stand for the whole time period

MaxEMA2 = Sheet1.Cells(3, 24)
MaxEMA1 = MaxEMA2 - 1
MaxSigl = Sheet1.Cells(4, 24)
Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL

'DayDelay = Sheet1.Cells(7, 18) '3 for standard MACDR2, 0 for Strategy2 (when Trigger=0, Target=no limit, such as 99%)
'Trigger = Sheet1.Cells(8, 16) 'Trade trigger level (for example 1%)
'Target = Sheet1.Cells(8, 18) 'Trade profit target level (for example 3%)

Dim DayDelay1 As Integer
Dim DayDelay2 As Integer
Dim DayDelayStep As Integer
Dim Trigger1 As Single
Dim Trigger2 As Single
Dim TriggerStep As Single
Dim Target1 As Single
Dim Target2 As Single
Dim TargetStep As Single

DayDelay1 = Sheet1.Cells(2, 28)
DayDelay2 = Sheet1.Cells(2, 29)
DayDelayStep = Sheet1.Cells(2, 30)
Trigger1 = Sheet1.Cells(3, 28)
Trigger2 = Sheet1.Cells(3, 29)
TriggerStep = Sheet1.Cells(3, 30)
Target1 = Sheet1.Cells(4, 28)
Target2 = Sheet1.Cells(4, 29)
TargetStep = Sheet1.Cells(4, 30)

j = 0 'counter for displaying all combinations
MaxPL = -999

'Total loops = MaxEMA2 * (MaxEMA2 - 1) / 2 * (MaxSigl - 1)
For EMA1 = 1 To MaxEMA1
 For EMA2 = EMA1 + 1 To MaxEMA2
 For Sigl = 2 To MaxSigl
 For DayDelay = DayDelay1 To DayDelay2 Step DayDelayStep
 For Trigger = Trigger1 To Trigger2 Step TriggerStep
 For Target = Target1 To Target2 Step TargetStep

 'These must reset first, or they will keep filling more and more entries
Erase Trading
Erase TradePos

Avg = 0
Alpha = 2 / (1 + EMA1)
Power = 0
Denominator = 0
For i = FarDay - EMA1 + 1 To FarDay 'to get initial EMA1
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Avg = Avg / Denominator
EMA(FarDay - EMA1 + 1, 1) = Avg 'first EMA1 ready
For i = FarDay - EMA1 To NearDay Step -1 'fill the rest EMA1
 EMA(i, 1) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 1)
Next i

AllMACD = FarDay - EMA2 + 1
For i = NearDay To AllMACD
 MACD(i) = EMA(i, 1) - EMA(i, 2)
Next i

'Signal = EMA of MACD
Avg = 0
Alpha = 2 / (1 + Sigl)
Power = 0
Denominator = 0
For i = AllMACD - Sigl + 1 To AllMACD 'to get initial Signal
 Avg = Avg + MACD(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Avg = Avg / Denominator
AllSigl = AllMACD - Sigl + 1
Signal(AllSigl) = Avg 'first Signal
For i = AllSigl - 1 To NearDay Step -1 'fill the rest Signal
 Signal(i) = Alpha * MACD(i) + (1 - Alpha) * Signal(i + 1)

83
Next i

For i = AllSigl - 1 To NearDay Step -1
 If MACD(i) > Signal(i) Then
 If (MACD(i + 1) < Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) < Signal(i + 2))) Then Trading(i) = -1
 ElseIf MACD(i) < Signal(i) Then
 If (MACD(i + 1) > Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) > Signal(i + 2))) Then Trading(i) = 1
 End If
 Next i

AllTrade = 0
CurrentPos = 0
CurrentTrade = 0

For i = AllSigl - 1 - DayDelay To NearDay + 1 Step -1 'skip the final day (i=1 or NearDay) and deal with it later

' the 1st possible MACD trading signal will start from Trading(AllSigl-1)
' first possible trading will be 3(=DayDelay) days after seeing that signal
' therefore the starting point is AllSigl-4
' since we will close out position on the last day, we will process the last day separately

TradeNow = False 'should we do trade today?

If Trading(i + DayDelay) <> 0 Then 'There's MACD trading signal 3(=DayDelay) days ago
 If -Trading(i + DayDelay) * (MACD(i) - Signal(i)) / Price(i) >= Trigger Then TradeNow = True
 '3 days later the gap between MACD and Signal is large enough
End If

If TradeNow = True Then
 If Not (CurrentTrade = Trading(i + DayDelay)) Then 'do nothing if the signal is identical to the existing position
 If CurrentTrade <> 0 Then 'new trade certainly has different signal versus existing position
 'close out existing position
 ClosingTrade = -CurrentTrade
 TradePos(i) = ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i)
 End If
 'no need to worry any pending position now
 'open new position here
 TradePos(i) = TradePos(i) + Price(i) * Trading(i + DayDelay) * (1 - Cost(Trading(i + DayDelay) + 2) * Trading(i + DayDelay))
 'in case we have a close out deal and a new trade in same day, TradePos() will record total amount
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = Price(i) * Trading(i + DayDelay) * (1 - Cost(Trading(i + DayDelay) + 2) * Trading(i + DayDelay))
 'record new trade amount (while TradePos(i) might accumulate 2 same way trades in same day)
 End If

CurrentPos = TradeRecord(AllTrade)
CurrentTrade = Trading(i + DayDelay)
End If 'Not (CurrentTrade = trade(i + DayDelay))

Else 'no new trade for this day

If CurrentTrade <> 0 Then 'is it time for profit-taking?
 ClosingTrade = -CurrentTrade
 Profit = CurrentPos + ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 Profit = Profit / Abs(CurrentPos) 'convert into %
 TargetReached = False
 If Profit > 0 And Target > 0 And Profit >= Target Then TargetReached = True 'confirm to take profit
 If Profit < 0 And Target < 0 And Profit <= Target Then TargetReached = True 'confirm to stop loss
 If TargetReached Or Trading(i) = ClosingTrade Then 'close out because of (1) TakeProfit or StopLoss, (2) MACD signal said so
 TradePos(i) = ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i)
 CurrentPos = 0
 CurrentTrade = 0
 End If
End If

End If 'TradeNow=True

Next i

i = NearDay 'to deal with the last working day
If CurrentTrade <> 0 Then 'after running through the for-next loop, we still have position
 ClosingTrade = -CurrentTrade
 TradePos(i) = ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i)
 CurrentPos = 0 'in fact it won't do any harm if we don't reset them
 CurrentTrade = 0
End If

RoundTrip = AllTrade / 2

CompoundedReturn = 1
For i = 1 To RoundTrip 'Count Profit/Loss for each round trip
 TradePL(i, 1) = TradeRecord(i * 2) + TradeRecord(i * 2 - 1)
 TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i * 2 - 1))
 CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i

CompoundedReturn = CompoundedReturn - 1

'Output to Sheet1

If CompoundedReturn > MaxPL Then
 MaxPL = CompoundedReturn
 Sheet1.Cells(9, 23) = EMA1
 Sheet1.Cells(9, 24) = EMA2
 Sheet1.Cells(9, 25) = Sig1
 Sheet1.Cells(9, 26) = MaxPL
 Sheet1.Cells(9, 27) = DayDelay
 Sheet1.Cells(9, 28) = Trigger

85
Sheet1.Cells(9, 29) = Target
Optimized(1) = EMA1 'stored in public variables for further usage in Learning()
Optimized(2) = EMA2
Optimized(3) = Sigl
Optimized(4) = DayDelay 'only for MACDR2
Optimized(5) = Trigger 'only for MACDR2
Optimized(6) = Target 'only for MACDR2
OptimizedRtn = MaxPL
End If

If Sheet1.ToggleButton5.Caption = "ON" And j <= 65526 Then 'output should not exceed Excel row 65536
 j = j + 1
 Sheet1.Cells(j + 9, 23) = EMA1
 Sheet1.Cells(j + 9, 24) = EMA2
 Sheet1.Cells(j + 9, 25) = Sigl
 Sheet1.Cells(j + 9, 26) = CompoundedReturn
 Sheet1.Cells(j + 9, 27) = DayDelay
 Sheet1.Cells(j + 9, 28) = Trigger
 Sheet1.Cells(j + 9, 29) = Target
 End If

Next Target
Next Trigger
Next DayDelay
Next Sigl
Next EMA2
Next EMA1

End Sub

Optimizer4
Sub Optimizer4()
'Find the best combination of EMA1, EMA2, and Signal for Strategy4 (short only)
' use same code as in Optimizer1

If CopyPriceOK = False Then Call CopyPrice
' apply same arrangement in every optimizer even though Learnin() does not cite Optimizer4

Dim i As Integer
Dim j As Long 'output pointer

Dim MaxEMA1 As Integer 'Max EMA1
Dim MaxEMA2 As Integer 'Max EMA2
Dim MaxSigl As Integer 'Max Signal

Dim Avg As Single
Dim Power As Integer
Dim Alpha As Single
Dim Denominator As Single
Dim EMA1 As Integer
Dim EMA2 As Integer
Dim Sigl As Integer

Dim JustStarted As Boolean
Dim Cost(1 To 3) As Single
Dim TradePos(MaxDays) As Single 'record buy/sell position
Dim TradeRecord(MaxTrades) As Single
Dim TradePL(MaxTrades, 2) As Single 'Profit/Loss for a round trip (1: amount 2: percentage) .. don't need 3: date
Dim AllTrade As Integer
Dim RoundTrip As Integer 'should be half the number of AllTrade
Dim CompoundedReturn As Double 'To search for MACD parameters that maximize this value
Dim MaxPL As Double

TotalDay = Sheet1.Cells(4, 2)
If TotalDay = 0 Then Exit Sub

MaxEMA2 = Sheet1.Cells(3, 24)
MaxEMA1 = MaxEMA2 - 1
MaxSigl = Sheet1.Cells(4, 24)

Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL

j = 0 'counter for displaying all combinations
MaxPL = -.999

'Total loops = MaxEMA2 * (MaxEMA2 - 1) / 2 * (MaxSigl - 1)
For EMA1 = 1 To MaxEMA1
 For EMA2 = EMA1 + 1 To MaxEMA2
 For Sigl = 2 To MaxSigl

 'These must reset first, or they will keep filling more and more entries
 Erase Trading
 Erase TradePos

 Avg = 0
 Alpha = 2 / (1 + EMA1)
 Power = 0
 Denominator = 0
 For i = TotalDay - EMA1 + 1 To TotalDay 'to get initial EMA1
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
 Next i
 Avg = Avg / Denominator
 EMA(TotalDay - EMA1 + 1, 1) = Avg 'first EMA1 ready
 For i = TotalDay - EMA1 To 1 Step -1 'fill the rest EMA1
 EMA(i, 1) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 1)
 Next i

 Avg = 0
 Alpha = 2 / (1 + EMA2)
 Power = 0
 Denominator = 0
 For i = TotalDay - EMA2 + 1 To TotalDay 'to get initial EMA2
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
 Next i
 Avg = Avg / Denominator
EMA(TotalDay - EMA2 + 1, 2) = Avg 'first EMA ready
For i = TotalDay - EMA2 To 1 Step -1 'fill the rest EMA2
 EMA(i, 2) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 2)
Next i

AllMACD = TotalDay - EMA2 + 1

For i = 1 To AllMACD
 MACD(i) = EMA(i, 1) - EMA(i, 2)
Next i

'Signal = EMA of MACD
Avg = 0
Alpha = 2 / (1 + Sigl)
Power = 0
Denominator = 0
For i = AllMACD - Sigl + 1 To AllMACD 'to get initial Signal
 Avg = Avg + MACD(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Avg = Avg / Denominator

AllSigl = AllMACD - Sigl + 1
Signal(AllSigl) = Avg 'first Signal

For i = AllSigl - 1 To 1 Step -1 'fill the rest Signal
 Signal(i) = Alpha * MACD(i) + (1 - Alpha) * Signal(i + 1)
Next i

For i = AllSigl - 1 To 1 Step -1
 If MACD(i) > Signal(i) Then
 End If
 ElseIf MACD(i) < Signal(i) Then
 End If
Next i

JustStarted = True 'Strategy4 starts here (no need to record TradeDate)
AllTrade = 0

'Buy and sell based on the signal we stored in Trading()
'Here we only allow SHORT position, no long position allowed
For i = AllSigl - 1 To 1 Step -1
 If Trading(i) <> 0 Then
 If JustStarted And Trading(i) = -1 Then
 'do nothing because the 1st signal is a BUY
 Else
 If i = 1 And Trading(i) = 1 Then 'last day shows SELL signal => we won't allow this happen
 'do nothing (we are sure the last day will not have a SELL decision)
 Else
 TradePos(i) = Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i))
 AllTrade = AllTrade + 1
 End If
 End If
Next i
TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
End If
End If
JustStarted = False
End If
Next i

'Force buy on the last day (if we still have position)
If AllTrade > 0 Then
If TradeRecord(AllTrade) > 0 Then 'Your last trade is SELL, i.e. you have a short position need to close out
TradePos(1) = Price(1) * (-1) * (1 - Cost((-1) + 2) * (-1)) 'in this formula, -1 = the signal generate by a sell decision
AllTrade = AllTrade + 1
TradeRecord(AllTrade) = TradePos(1) 'complete the record of this final force deal
End If
End If
'we are sure now AllTrade will be an even number

RoundTrip = AllTrade / 2 'the number of complete BUY and SELL transactions

CompoundedReturn = 1
For i = 1 To RoundTrip 'Count Profit/Loss for each round trip
TradePL(i, 1) = TradeRecord(i * 2) + TradeRecord(i * 2 - 1)
TradePL(i, 2) = TradePL(i, 1) / TradeRecord(i * 2 - 1) 'denominator is always positive
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i
CompoundedReturn = CompoundedReturn - 1

'Output to Sheet1
If CompoundedReturn > MaxPL Then 'keep updating the best solution
MaxPL = CompoundedReturn
Sheet1.Cells(9, 23) = EMA1
Sheet1.Cells(9, 24) = EMA2
Sheet1.Cells(9, 25) = Sigl
Sheet1.Cells(9, 26) = MaxPL.
End If

If Sheet1.ToggleButton5.Caption = "ON" And j <= 65526 Then 'output should not exceed Excel row 65536
j = j + 1
Sheet1.Cells(j + 9, 23) = EMA1
Sheet1.Cells(j + 9, 24) = EMA2
Sheet1.Cells(j + 9, 25) = Sigl
Sheet1.Cells(j + 9, 26) = CompoundedReturn
End If

Next Sigl
Next EMA2
Next EMA1

End Sub
Learning
Sub Learning(WhichOne As Byte) 'Learn and trade, WhichOne=1 or 2 (Strategy1 or 2)

Dim i As Integer
Dim j As Integer
Dim CompoundedReturn As Double
Dim Cost(1 To 3) As Single
Dim Months(500) As Byte 'Trade days in each month
Dim Learn(500, 2) As Integer 'Schedule of each learning period 1:Last Day 2:First Day
Dim Apply(500, 2) As Integer 'Schedule of each applying period 1:Last Day 2:First Day
Dim ApplyRtn(500) As Single 'Compounded return in each apply period
Dim BuyAndHold(500, 3) As Double '1:EndPrice 2:BeginPrice 3:NetReturn
Dim Apply1 As Byte 'Total months in the nearest applying period (probably shorter than the rest)
Dim ApplyMonth As Integer 'How many times to perform actual trading (Each time will last: ApplyMonth)
Dim CountedMth As Integer 'months already counted in preparing Apply() and Learn()
Dim AllMonth As Integer 'Total months in source data
Dim LearnMonth As Integer 'Assigned in Sheet2 by user
Dim ApplyMonth As Integer 'Assigned in Sheet2 by user

CopyPrice
CopyPriceOK = True 'Tell optimizer to skip this procedure

If TotalDay = 0 Then Exit Sub

Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL

LearnMonth = Sheet2.Cells(1, 3)
ApplyMonth = Sheet2.Cells(2, 3)

AllMonth = 1
Months(AllMonth) = 1

For i = 2 To TotalDay
If Month(PDate(i)) = Month(PDate(i - 1)) Then 'Still counting days in the same month
 Months(AllMonth) = Months(AllMonth) + 1
Else
 AllMonth = AllMonth + 1
 Months(AllMonth) = 1
End If
Next i 'Months() is ready

AllApply = AllMonth - LearnMonth 'Covering full applying period
If AllApply <= 0 Then
 MsgBox "No sufficient data to apply trading simulation."
End
End If

If AllApply Mod ApplyMonth = 0 Then 'Perfect, every apply period equals to ApplyMonth
 Apply1 = ApplyMonth
 AllApply = AllApply / ApplyMonth
Else
 Apply1 = AllApply Mod ApplyMonth
 AllApply = Int(AllApply / ApplyMonth) + 1
End If
Apply(1, 1) = 1 'the nearest day in source data
For i = 1 To Apply
 Apply(1, 2) = Apply(1, 2) + Months(i)
Next i

CountedMth = Apply
For i = 2 To AllApply
 Apply(i, 1) = Apply(i - 1, 2) + 1 'the last day in previous period plus 1
 Apply(i, 2) = Apply(i - 1, 2) 'in Apply() the day count is accumulating
 For j = 1 To ApplyMonth
 Apply(i, 2) = Apply(i, 2) + Months(CountedMth + j)
 Next j
 CountedMth = CountedMth + ApplyMonth
Next i 'Apply() is ready

CountedMth = Apply 'use the same methodology again
For i = 1 To AllApply 'no need to assign AllLearn because for Learn() and Apply(), this counter has to be identical
 Learn(i, 1) = Apply(i, 2) + 1 'the day before the first apply (trade) day is the last learning day
 Learn(i, 2) = Apply(i, 2) 'use the first trade day as a starting point
 For j = 1 To LearnMonth
 Learn(i, 2) = Learn(i, 2) + Months(CountedMth + j)
 Next j
 CountedMth = CountedMth + ApplyMonth
Next i 'Learn() is ready

'Output Learning and Applying schedule
For i = 1 To AllApply
 Sheet2.Cells(i + 9, 2) = PDate(Learn(i, 2))
 Sheet2.Cells(i + 9, 3) = PDate(Learn(i, 1))
Next i

For i = 1 To AllApply
 CountedMth = CountedMth + ApplyMonth
Next i 'Apply() is ready

CompoundedReturn = 1
For i = 1 To AllApply
 CompoundedReturn = CompoundedReturn * (1 + BuyAndHold(i, 3))
Next i

CompoundedReturn = CompoundedReturn - 1
Sheet2.Cells(i + 9, 21) = CompoundedReturn 'here i = AllApply + 1
Sheet2.Cells(i + 9, 21) = " Compounded Rtn ="

LearningMode = True 'turn on the signal, prepare to call optimizer
For i = 1 To AllApply
LearnDay1 = Learn(i, 1) 'optimizer will catch these two dates
LearnDay2 = Learn(i, 2)

Select Case WhichOne
Case 1
 Call Optimizer1
Case 2
 Call Optimizer2
Case 3
 Call Optimizer3
End Select

Sheet2.Cells(i + 9, 4) = Optimized(1) 'Output EMA1 from optimizer
Sheet2.Cells(i + 9, 5) = Optimized(2) 'Output EMA2
Sheet2.Cells(i + 9, 6) = Optimized(3) 'Output Signal
Sheet2.Cells(i + 9, 7) = OptimizedRtn 'Output Max return
If WhichOne = 3 Then
 Sheet2.Cells(i + 9, 8) = Optimized(4) 'Output DayDelay
 Sheet2.Cells(i + 9, 9) = Optimized(5) 'Output Trigger
 Sheet2.Cells(i + 9, 10) = Optimized(6) 'Output Target
End If

'Transferring Apply schedule to ApplyStrategy (the variable names may look confusing)
LearnDay1 = Apply(i, 1) 'ApplyStrategy will catch these two dates
LearnDay2 = Apply(i, 2)
If WhichOne = 1 Then Call ApplyStrategy1
If WhichOne = 2 Then Call ApplyStrategy2

Select Case WhichOne
Case 1
 Call ApplyStrategy1
Case 2
 Call ApplyStrategy2
Case 3
 Call ApplyStrategy3
End Select

'Output apply results
Sheet2.Cells(i + 9, 15) = Performance(1) 'Deal No.
Sheet2.Cells(i + 9, 16) = Performance(2) 'Avg Profit
ApplyRtn(i) = Performance(3)
Sheet2.Cells(i + 9, 17) = ApplyRtn(i) 'Compounded Return for this apply period
Sheet2.Cells(i + 9, 12) = PDate(Performance(4)) '1st data - enable user to manually verify the results

Next i

CompoundedReturn = 1
For i = 1 To AllApply
 CompoundedReturn = CompoundedReturn * (1 + ApplyRtn(i))
Next i

CompoundedReturn = CompoundedReturn - 1
Sheet2.Cells(i + 9, 17) = CompoundedReturn 'here i=AllApply+1
Sheet2.Cells(i + 9, 15) = " Compounded Rtn ="
Sheet2.Cells(i + 9, 14) = "Strategy" & Str(WhichOne)
LearningMode = False 'turn off the signal
End Sub

ApplyStrategy1
Sub ApplyStrategy1()
'Apply the optimized parameters to trade and report profit/loss
'Learning() calls this sub immediately after it calls Optimizer1
code is very similar to Optimizer1

Dim i As Integer
Dim Avg As Single
Dim Power As Integer
Dim Alpha As Single
Dim Denominator As Single
Dim EMA1 As Integer
Dim EMA2 As Integer
Dim Sigl As Integer
Dim JustStarted As Boolean
Dim Cost(1 To 3) As Single
Dim TradePos(MaxDays) As Single 'record bu/sell position
Dim TradeRecord(MaxTrades) As Single
Dim TradePL(MaxTrades, 2) As Single 'Profit/Loss for a round trip (1:amount 2: percentage) .. don't need 3: date
Dim AllTrade As Integer
Dim RoundTrip As Integer 'should be half the number of AllTrade
Dim AvgPL As Single 'a simple average for reference only

Dim NearDay As Integer 'The day range for optimizer to work
Dim FarDay As Integer
Dim PreparingPeriod As Integer ' = EMA2+Signal-2+1 (the minimum days required to generate the 1st trading signal)
Dim CompoundedReturn As Double

EMA1 = Optimized(1)
EMA2 = Optimized(2)
Sigl = Optimized(3)

PreparingPeriod = EMA2 + Sigl - 2 + 1
NearDay = LearnDay
FarDay = LearnDay2 + PreparingPeriod 'to ensure system is ready to generate trading signal when entering Apply period

Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL

Avg = 0
Alpha = 2 / (1 + EMA1)
Power = 0
Denominator = 0
For i = FarDay - EMA1 + 1 To FarDay 'to get initial EMA1
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Next i
Avg = Avg / Denominator
EMA(FarDay - EMA1 + 1, 1) = Avg 'first EMA1 ready
For i = FarDay - EMA1 To NearDay Step -1 'fill the rest EMA1
 EMA(i, 1) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 1)
Next i

Avg = 0
Alpha = 2 / (1 + EMA2)
Power = 0
Denominator = 0
For i = FarDay - EMA2 + 1 To FarDay 'to get initial EMA2
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

EMA(FarDay - EMA2 + 1, 2) = Avg 'first EMA2 ready
For i = FarDay - EMA2 To NearDay Step -1 'fill the rest EMA2
 EMA(i, 2) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 2)
Next i

AllMACD = FarDay - EMA2 + 1

For i = NearDay To AllMACD
 MACD(i) = EMA(i, 1) - EMA(i, 2)
Next i

'Signal = EMA of MACD
Avg = 0
Alpha = 2 / (1 + Sigl)
Power = 0
Denominator = 0
For i = AllMACD - Sigl + 1 To AllMACD 'to get initial Signal
 Avg = Avg + MACD(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Avg = Avg / Denominator

AllSigl = AllMACD - Sigl + 1
Signal(AllSigl) = Avg 'first Signal

For i = AllSigl - 1 To NearDay Step -1 'fill the rest Signal
 Signal(i) = Alpha * MACD(i) + (1 - Alpha) * Signal(i + 1)
Next i

'Learning() fist call optimizer that will write something into Trading(),
'they should still exist in "learning period" and will not contaminate the following area (applying period)
For i = AllSigl - 1 To NearDay Step -1
 If MACD(i) > Signal(i) Then
 If (MACD(i + 1) < Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) < Signal(i + 2))) Then Trading(i) = -1
 ElseIf MACD(i) < Signal(i) Then
 If (MACD(i + 1) > Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) > Signal(i + 2))) Then Trading(i) = 1
 Next i
End If
Next i

JustStarted = True 'Strategy starts here (no need to record TradeDate)
AllTrade = 0

'Buy and sell based on the signal we stored in Trading()
'Here we only allow long position, no short sell allowed
'Even though the code here is almost identical to MACDtrading1 or Optimizer1, 'those subs can't trade on the 1st available set of data (1st MACD and Signal) 'because the trading signal in Trading() will come into existence after that day.
'This loop is ready to trade exactly from the first apply day (AllSigl - 1 = 1st day of apply period)

For i = AllSigl - 1 To NearDay Step -1
 If Trading(i) <> 0 Then
 If JustStarted And Trading(i) = 1 Then
 'do nothing because the 1st signal is a SELL (don't allow short selling)
 Else
 If i = NearDay And Trading(NearDay) = -1 Then 'last day shows BUY signal => we won't allow this happen
 'do nothing (we are sure the last day will not have a BUY decision)
 Else
 TradePos(i) = Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i))
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
 End If
 End If
 JustStarted = False
 End If
 End If
Next i

'Force sell on the last day (if we still have position)
If AllTrade > 0 Then
 If TradeRecord(AllTrade) < 0 Then 'Your last trade is BUY, i.e. you have a long position need to close out
 TradePos(NearDay) = Price(NearDay) * 1 * (1 - Cost(1 + 2) * 1) 'in this formula, 1 = the signal generate by a sell decision
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(NearDay) 'complete the record of this final force deal
 End If
End If

'we are sure now AllTrade will be an even number

RoundTrip = AllTrade / 2 'the number of complete BUY and SELL transactions

CompoundedReturn = 1
For i = 1 To RoundTrip 'Count Profit/Loss for each round trip
 TradePL(i, 1) = TradeRecord(i * 2) + TradeRecord(i * 2 - 1)
 TradePL(i, 2) = TradePL(i, 1) / (-TradeRecord(i * 2 - 1))
 CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i

CompoundedReturn = CompoundedReturn - 1

AvgPL = 0
For i = 1 To RoundTrip
AvgPL = AvgPL + TradePL[i, 2]
Next i

If RoundTrip > 0 Then AvgPL = AvgPL / RoundTrip

' Transferring results back to sub Learning()
Performance(1) = RoundTrip
Performance(2) = AvgPL
Performance(3) = CompoundedReturn
Performance(4) = FarDay ' with this info user is able to verify results manually

End Sub

ApplyStrategy2()
Sub ApplyStrategy2()
' Apply the optimized parameters to trade and report profit/loss
' Learning() calls this sub immediately after it calls Optimizer2
' code is very similar to ApplyStrategy1

Dim i As Integer
Dim Avg As Single
Dim Power As Integer
Dim Alpha As Single
Dim Denominator As Single
Dim EMA1 As Integer
Dim EMA2 As Integer
Dim Sigl As Integer
Dim Juststarted As Boolean
Dim Cost(1 To 3) As Single
Dim TradePos(MaxDays) As Single ' record buy/sell position
Dim TradeRecord(MaxTrades) As Single
Dim TradePL(MaxTrades, 2) As Single ' Profit/Loss for a round trip (1: amount 2: percentage) .. don't need 3: date
Dim AllTrade As Integer
Dim RoundTrip As Integer ' should be half the number of AllTrade

Dim AvgPL As Single ' a simple average for reference only

Dim NearDay As Integer ' The day range for optimizer to work
Dim FarDay As Integer
Dim PreparingPeriod As Integer ' = EMA2+Signal-2+1 (the minimum days required to generate the 1st trading signal)
Dim CompoundedReturn As Double

EMA1 = Optimized(1)
EMA2 = Optimized(2)
Sigl = Optimized(3)

PreparingPeriod = EMA2 + Sigl - 2 + 1
NearDay = LearnDay1
FarDay = LearnDay2 + PreparingPeriod ' to ensure system is ready to generate trading signal when entering Apply period
Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL

Avg = 0
Alpha = 2 / (1 + EMA1)
Power = 0
Denominator = 0
For i = FarDay - EMA1 + 1 To FarDay 'to get initial EMA1
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i
Avg = Avg / Denominator
EMA(FarDay - EMA1 + 1, 1) = Avg 'first EMA1 ready
For i = FarDay - EMA1 To NearDay Step -1 'fill the rest EMA1
 EMA(i, 1) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 1)
Next i

Avg = 0
Alpha = 2 / (1 + EMA2)
Power = 0
Denominator = 0
For i = FarDay - EMA2 + 1 To FarDay 'to get initial EMA2
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i
Avg = Avg / Denominator
EMA(FarDay - EMA2 + 1, 2) = Avg 'first EMA2 ready
For i = FarDay - EMA2 To NearDay Step -1 'fill the rest EMA2
 EMA(i, 2) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 2)
Next i

AllMACD = FarDay - EMA2 + 1

For i = NearDay To AllMACD
 MACD(i) = EMA(i, 1) - EMA(i, 2)
Next i

'Signal = EMA of MACD
Avg = 0
Alpha = 2 / (1 + Sigl)
Power = 0
Denominator = 0
For i = AllMACD - Sigl + 1 To AllMACD 'to get initial Signal
 Avg = Avg + MACD(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i
Avg = Avg / Denominator

AllSigl = AllMACD - Sigl + 1
Signal(AllSigl) = Avg 'first Signal

For i = AllSigl - 1 To NearDay Step -1 'fill the rest Signal
 Signal(i) = Alpha * MACD(i) + (1 - Alpha) * Signal(i + 1)
Next i

For i = AllSigl - 1 To NearDay Step -1
 If MACD(i) > Signal(i) Then
 If (MACD(i + 1) < Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) < Signal(i + 2))) Then Trading(i) = -1
 ElseIf MACD(i) < Signal(i) Then
 If (MACD(i + 1) > Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) > Signal(i + 2))) Then Trading(i) = 1
 End If
Next i

JustStarted = True 'Strategy 1 starts here (no need to record TradeDate)
AllTrade = 0

'Buy and sell based on the signal we stored in Trading()
'Here we allow either long or short position
'More information, see comments in ApplyStrategy1
For i = AllSigl - 1 To NearDay + 1 Step -1 'skip the final day (i=1 or NearDay) and deal with it later
 If Trading(i) <> 0 Then
 If JustStarted Then 'very first trade - for one unit only, no matter long or short
 TradePos(i) = Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i))
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
 Else
 TradePos(i) = 2 * (Price(i) * Trading(i) * (1 - Cost(Trading(i) + 2) * Trading(i)))
 'double in order to close out original position and simultaneously open new position
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i) 'Be careful the indexing in TradePos and TradeRecord are different
 End If
 JustStarted = False
 End If
Next i

'Force close out existing position on the last day (It is certain that we still have position before the last day)
If AllTrade > 0 Then
 If TradeRecord(AllTrade) < 0 Then 'Your last trade is BUY, i.e. you have a long position need to close out
 TradePos(NearDay) = Price(NearDay) * 1 * (1 - Cost(1 + 2) * 1) 'in this formula, 1 = the signal generate by a sell decision
 Else 'Your last trade is SELL, i.e. you have a short position need to close out
 TradePos(NearDay) = Price(NearDay) * (-1) * (1 - Cost(-1 + 2) * (-1)) 'in this formula, -1 = the signal generate by a buy decision
 End If
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(NearDay) 'complete the record of this final force deal

RoundTrip = AllTrade - 1 'the number of complete BUY and SELL transactions
CompoundedReturn = 1
If RoundTrip = 1 Then
i = 1 'special process for the only trade
TradePL(i, 1) = TradeRecord(i + 1) + TradeRecord(i)
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i))
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Else
i = 1 'special process for 1st trade
TradePL(i, 1) = TradeRecord(i + 1) / 2 + TradeRecord(i)
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i))
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
End If

i = RoundTrip 'special process for last trade
TradePL(i, 1) = TradeRecord(i + 1) / 2
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i) / 2)
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))

For i = 2 To RoundTrip - 1 'Count Profit/Loss for the rest round trips
TradePL(i, 1) = TradeRecord(i + 1) / 2 + TradeRecord(i) / 2
TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i) / 2)
CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i
End If

CompoundedReturn = CompoundedReturn - 1

End If

AvgPL = 0

For i = 1 To RoundTrip
AvgPL = AvgPL + TradePL(i, 2)
Next i

If RoundTrip > 0 Then AvgPL = AvgPL / RoundTrip

'Transferring results back to sub Learning()
Performance(1) = RoundTrip
Performance(2) = AvgPL
Performance(3) = CompoundedReturn
Performance(4) = FarDay 'with this info user is able to verify results manually

End Sub

ApplyStrategy3
Sub ApplyStrategy3()
'Apply the optimized parameters to trade and report profit/loss
'Learning() calls this sub immediately after it calls Optimizer3
'code is very similar to ApplyStrategy2

Dim i As Integer
Dim Avg As Single
Dim Power As Integer
Dim Alpha As Single
Dim Denominator As Single
Dim EMA1 As Integer
Dim EMA2 As Integer
Dim Sigl As Integer
Dim Cost(1 To 3) As Single
Dim TradePos(MaxDays) As Single 'record buy/sell position
Dim TradeRecord(MaxTrades) As Single
Dim TradePL(MaxTrades, 2) As Single 'Profit/Loss for a round trip (1:amount 2: percentage) .. don't need 3: date
Dim AllTrade As Integer
Dim RoundTrip As Integer 'should be half the number of AllTrade

Dim AvgPL As Single 'a simple average for reference only
Dim NearDay As Integer 'The day range for optimizer to work
Dim FarDay As Integer
Dim PreparingPeriod As Integer
= EMA2 + Signal - 2 + 1 (the minimum days required to generate the 1st trading signal)
Dim CompoundedReturn As Double

Dim DayDelay As Byte '3 in standard MACD2
Dim Trigger As Single
Dim Target As Single
Dim TargetReached As Boolean 'true if it's time to take profit or stop loss
Dim CurrentPos As Single
Dim CurrentTrade As Integer 'same value as in Trading(), only have +1, -1, or 0
Dim ClosingTrade As Integer
Dim Profit As Single

EMA1 = Optimized(1)
EMA2 = Optimized(2)
Sigl = Optimized(3)
DayDelay = Optimized(4)
Trigger = Optimized(5)
Target = Optimized(6)

PreparingPeriod = EMA2 + Sigl - 2 + 1

NearDay = LearnDay1
FarDay = LearnDay2 + PreparingPeriod 'to ensure system is ready to general trading signal when entering Apply period

Cost(1) = Sheet1.Cells(5, 2) 'Trading cost for BUY
Cost(3) = Sheet1.Cells(6, 2) 'Trading cost for SELL

Avg = 0
Alpha = 2 / (1 + EMA1)
Power = 0
Denominator = 0
For i = FarDay - EMA1 + 1 To FarDay 'to get initial EMA1
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Avg = Avg / Denominator
EMA(FarDay - EMA1 + 1, 1) = Avg 'first EMA1 ready

For i = FarDay - EMA1 To NearDay Step -1 'fill the rest EMA1
 EMA(i, 1) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 1)
End Sub
Next i

Avg = 0
Alpha = 2 / (1 + EMA2)
Power = 0
Denominator = 0
For i = FarDay - EMA2 + 1 To FarDay 'to get initial EMA2
 Avg = Avg + Price(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Avg = Avg / Denominator
EMA(FarDay - EMA2 + 1, 2) = Avg 'first EMA2 ready
For i = FarDay - EMA2 To NearDay Step -1 'fill the rest EMA2
 EMA(i, 2) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 2)
Next i

AllMACD = FarDay - EMA2 + 1

For i = NearDay To AllMACD
 MACD(i) = EMA(i, 1) - EMA(i, 2)
Next i

'Signal = EMA of MACD
Avg = 0
Alpha = 2 / (1 + Sigl)
Power = 0
Denominator = 0
For i = AllMACD - Sigl + 1 To AllMACD 'to get initial Signal
 Avg = Avg + MACD(i) * (1 - Alpha) ^ Power
 Denominator = Denominator + (1 - Alpha) ^ Power
 Power = Power + 1
Next i

Avg = Avg / Denominator

AllSigl = AllMACD - Sigl + 1
Signal(AllSigl) = Avg 'first Signal

For i = AllSigl - 1 To NearDay Step -1 'fill the rest Signal
 Signal(i) = Alpha * MACD(i) + (1 - Alpha) * Signal(i + 1)
Next i

For i = AllSigl - 1 To NearDay Step -1
 If MACD(i) > Signal(i) Then
 If (MACD(i + 1) < Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) < Signal(i + 2))) Then Trading(i) = -1
 ElseIf MACD(i) < Signal(i) Then
 If (MACD(i + 1) > Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) > Signal(i + 2))) Then Trading(i) = 1
 End If
Next i

Avg = 0
Alpha = 2 / (1 + EMA1)
Power = 0
Denominator = 0
For $i = \text{FarDay} - \text{EMA} + 1$ To FarDay 'to get initial EMA
Avg = Avg + Price(i) * (1 - Alpha) ^ Power
Denominator = Denominator + (1 - Alpha) ^ Power
Power = Power + 1
Next i
Avg = Avg / Denominator
EMA(FarDay - EMA + 1, 1) = Avg 'first EMA ready
For $i = \text{FarDay} - \text{EMA} 1$ To NearDay Step -1 'fill the rest EMA
EMA(i, 1) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 1)
Next i

For $i = \text{FarDay} - \text{EMA}2 + 1$ To FarDay 'to get initial EMA2
Avg = Avg + Price(i) * (1 - Alpha) ^ Power
Denominator = Denominator + (1 - Alpha) ^ Power
Power = Power + 1
Next i
Avg = Avg / Denominator
EMA(FarDay - EMA2 + 1, 2) = Avg 'first EMA2 ready
For $i = \text{FarDay} - \text{EMA}2$ To NearDay Step -1 'fill the rest EMA2
EMA(i, 2) = Alpha * Price(i) + (1 - Alpha) * EMA(i + 1, 2)
Next i

AllMACD = FarDay - EMA2 + 1

For $i = \text{NearDay}$ To AllMACD
MACD(i) = EMA(i, 1) - EMA(i, 2)
Next i

'Signal = EMA of MACD
Avg = 0
Alpha = 2 / (1 + Sigl)
Power = 0
Denominator = 0
For $i = \text{AllMACD} - \text{Sigl} + 1$ To AllMACD 'to get initial Signal
Avg = Avg + MACD(i) * (1 - Alpha) ^ Power
Denominator = Denominator + (1 - Alpha) ^ Power
Power = Power + 1
Next i
Avg = Avg / Denominator

AllSigl = AllMACD - Sigl + 1
Signal(AllSigl) = Avg 'first Signal

For $i = \text{AllSigl} - 1$ To NearDay Step -1 'fill the rest Signal
Signal(i) = Alpha * MACD(i) + (1 - Alpha) * Signal(i + 1)
Next i

For $i = \text{AllSigl} - 1$ To NearDay Step -1
If MACD(i) > Signal(i) Then
 If (MACD(i + 1) < Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) < Signal(i + 2))) Then Trading(i) = -1
ElseIf MACD(i) < Signal(i) Then
If (MACD(i + 1) > Signal(i + 1)) Or ((MACD(i + 1) = Signal(i + 1)) And (MACD(i + 2) > Signal(i + 2))) Then Trading(i) = 1
End If
Next i

AllTrade = 0
CurrentPos = 0
CurrentTrade = 0

For i = AllSigl - 1 - DayDelay To NearDay + 1 Step -1 'skip the final day (i=1 or NearDay) and deal with it later

'the 1st possible MACD trading signal will start from Trading(AllSigl-1)
'first possible trading will be 3(=DayDelay) days after seeing that signal
'therefore the starting point is AllSigl-4
'since we will close out position on the last day, we will process the last day separately

TradeNow = False 'should we do trade today?

If Trading(i + DayDelay) <> 0 Then 'There's MACD trading signal 3(=DayDelay) days ago
 If -Trading(i + DayDelay) * (MACD(i) - Signal(i)) / Price(i) >= Trigger Then TradeNow = True
 '3 days later the gap between MACD and Signal is large enough
End If

If TradeNow = True Then
 If Not (CurrentTrade = Trading(i + DayDelay)) Then 'do nothing if the signal is identical to the existing position
 If CurrentTrade <> 0 Then 'new trade certainly has different signal versus existing position
 ClosingTrade = -CurrentTrade
 TradePos(i) = ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i)
 End If

 'no need to worry any pending position now
 TradePos(i) = TradePos(i) + Price(i) * Trading(i + DayDelay) * (1 - Cost(Trading(i + DayDelay) + 2) * Trading(i + DayDelay))
 'in case we have a close out deal and a new trade in same day, TradePos() will record total amount
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = Price(i) * Trading(i + DayDelay) * (1 - Cost(Trading(i + DayDelay) + 2) * Trading(i + DayDelay))
 'record new trade amount (while TradePos(i) might accumulate 2 same way trades in same day)
 CurrentPos = TradeRecord(AllTrade)
 CurrentTrade = Trading(i + DayDelay)
 End If 'Not (CurrentTrade = trade(i + DayDelay))
 End If

Else 'no new trade for this day

 If CurrentTrade <> 0 Then 'is it time for profit-taking?
 ClosingTrade = -CurrentTrade
 Profit = CurrentPos + ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 End If
Profit = Profit / Abs(CurrentPos) 'convert into %
TargetReached = False
If Profit > 0 And Target > 0 And Profit >= Target Then TargetReached = True 'confirm to take profit
If Profit < 0 And Target < 0 And Profit <= Target Then TargetReached = True 'confirm to stop loss
If TargetReached Or Trading(i) = ClosingTrade Then 'close out because of (1) TakeProfit or StopLoss,
(2) MACD signal said so
 TradePos(i) = ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i)
 CurrentPos = 0
 CurrentTrade = 0
End If
End If

End If 'TradeNow=True

Next i

i = NearDay 'to deal with the last working day
If CurrentTrade <> 0 Then 'after running through the for-next loop, we still have position
 ClosingTrade = -CurrentTrade
 TradePos(i) = ClosingTrade * Price(i) * (1 - Cost(ClosingTrade + 2) * ClosingTrade)
 AllTrade = AllTrade + 1
 TradeRecord(AllTrade) = TradePos(i)
 CurrentPos = 0 'in fact it won't do any harm if we don't reset them
 CurrentTrade = 0
End If

RoundTrip = AllTrade / 2

CompoundedReturn = 1
For i = 1 To RoundTrip 'Count Profit/Loss for each round trip
 TradePL(i, 1) = TradeRecord(i * 2) + TradeRecord(i * 2 - 1)
 TradePL(i, 2) = TradePL(i, 1) / Abs(TradeRecord(i * 2 - 1))
 CompoundedReturn = CompoundedReturn * (1 + TradePL(i, 2))
Next i
CompoundedReturn = CompoundedReturn - 1

AvgPL = 0
For i = 1 To RoundTrip
 AvgPL = AvgPL + TradePL(i, 2)
Next i

If RoundTrip > 0 Then AvgPL = AvgPL / RoundTrip

'Transferring results back to sub Learning()
Performance(1) = RoundTrip
Performance(2) = AvgPL
Performance(3) = CompoundedReturn
Performance(4) = FarDay 'with this info user is able to verify results manually

End Sub
ClearPublicMatrix
Sub ClearPublicMatrix()

Erase Price
Erase MACD
Erase EMA
Erase Signal
Erase Trading

End Sub

Sheet1 Code
Private Sub CommandButton1_Click() 'RUN

Call CopyPrice
Call MACDInitiate
Call MACDtradingSignal
Call MACDtrading1
Call MACDtrading2
Call MACDR2trading
Call MACDtrading4

End Sub

Private Sub CommandButton2_Click()

Call MACDoutput 'it is quite slow

End Sub

Private Sub CommandButton3_Click() 'Clear All

ClearPublicMatrix

Sheets("Sheet1").Select
Range("A10:AC65536").Select
Selection.ClearContents

Range("H2:J5").Select
Selection.ClearContents

Range("I6").Select
Selection.ClearContents

Range("L2:N5").Select
Selection.ClearContents

Range("M6").Select
Selection.ClearContents

Range("P2:R5").Select
Selection.ClearContents

Range("Q6").Select
Selection.ClearContents
Private Sub CommandButton4_Click() ' Clear output but keep index data

Call Optimizer

End Sub

Private Sub CommandButton5_Click() 'Optimizer1
 Call Optimizer1
End Sub
Private Sub CommandButton6_Click() 'Optimizer2
 Call Optimizer2
End Sub

Private Sub CommandButton7_Click()
 Call Optimizer3
End Sub

Private Sub CommandButton8_Click()
 Call Optimizer4
End Sub

Private Sub ToggleButton1_Click() 'Strategy1 long only
 If ToggleButton1.Value = True Then
 ToggleButton1.Caption = "ON"
 Columns("G:J").Select
 Selection.EntireColumn.Hidden = False
 Range("A1").Select
 Else
 ToggleButton1.Caption = "OFF"
 Columns("G:J").Select
 Selection.EntireColumn.Hidden = True
 Range("A1").Select
 End If
End Sub

Private Sub ToggleButton2_Click() 'Strategy2 long or short
 If ToggleButton2.Value = True Then
 ToggleButton2.Caption = "ON"
 Columns("K:N").Select
 Selection.EntireColumn.Hidden = False
 Range("A1").Select
 Else
 ToggleButton2.Caption = "OFF"
 Columns("K:N").Select
 Selection.EntireColumn.Hidden = True
 Range("A1").Select
 End If
End Sub

Private Sub ToggleButton3_Click() 'Strategy3 MACDR2
 If ToggleButton3.Value = True Then
ToggleButton3.Caption = "ON"

Columns("O:R").Select
Selection.EntireColumn.Hidden = False
Range("A1").Select

Else
ToggleButton3.Caption = "OFF"

Columns("O:R").Select
Selection.EntireColumn.Hidden = True
Range("A1").Select

End If

End Sub

Private Sub ToggleButton4_Click() 'Strategy4 short only

If ToggleButton4.Value = True Then
ToggleButton4.Caption = "ON"

Columns("S:V").Select
Selection.EntireColumn.Hidden = False
Range("A1").Select

Else
ToggleButton4.Caption = "OFF"

Columns("S:V").Select
Selection.EntireColumn.Hidden = True
Range("A1").Select

End If

End Sub

Private Sub ToggleButton5_Click() 'Optimizer1 output detail

If ToggleButton5.Value = True Then
ToggleButton5.Caption = "ON"

Else
ToggleButton5.Caption = "OFF"

End If

End Sub

Private Sub ToggleButton6_Click() 'Trade detail

If ToggleButton6.Value = True Then
ToggleButton6.Caption = "ON"

Else
ToggleButton6.Caption = "OFF"

End If

End Sub
Sheet2 Code
Private Sub CommandButton1_Click() 'Learn and Apply Strategy1
 Sheets("Sheet2").Select
 Range("B10:U65536").Select
 Selection.ClearContents
 Range("A1").Select
 Call Learning(1)
End Sub

Private Sub CommandButton2_Click() 'Learn and Apply Strategy2
 Sheets("Sheet2").Select
 Range("B10:U65536").Select
 Selection.ClearContents
 Range("A1").Select
 Call Learning(2)
End Sub

Private Sub CommandButton3_Click() 'Learn and Apply Strategy3 - MACDR2
 Sheets("Sheet2").Select
 Range("B10:U65536").Select
 Selection.ClearContents
 Range("A1").Select
 Call Learning(3)
End Sub
REFERENCE LIST

Zitzlsperger, David. “Empirically Testing the Assumption of the Technical Analysis” Simon Fraser University. (September 2002)